Compare commits

...

20 Commits

Author SHA1 Message Date
Lance Release
ec39d98571 Bump version: 0.12.0-beta.0 → 0.12.0 2024-08-07 20:55:40 +00:00
Lance Release
0cb37f0e5e Bump version: 0.11.0 → 0.12.0-beta.0 2024-08-07 20:55:39 +00:00
Gagan Bhullar
24e3507ee2 fix(node): export optimize options (#1518)
PR fixes #1514
2024-08-07 13:15:51 -07:00
Lei Xu
2bdf0a02f9 feat!: upgrade lance to 0.16 (#1519) 2024-08-07 13:15:22 -07:00
Gagan Bhullar
32123713fd feat(python): optimize stats repr method (#1510)
PR fixes #1507
2024-08-07 08:47:52 -07:00
Gagan Bhullar
d5a01ffe7b feat(python): index config repr method (#1509)
PR fixes #1506
2024-08-07 08:46:46 -07:00
Ayush Chaurasia
e01045692c feat(python): support embedding functions in remote table (#1405) 2024-08-07 20:22:43 +05:30
Rithik Kumar
a62f661d90 docs: revamp example docs (#1512)
Before: 
![Screenshot 2024-08-07
015834](https://github.com/user-attachments/assets/b817f846-78b3-4d6f-b4a0-dfa3f4d6be87)

After:
![Screenshot 2024-08-07
015852](https://github.com/user-attachments/assets/53370301-8c40-45f8-abe3-32f9d051597e)
![Screenshot 2024-08-07
015934](https://github.com/user-attachments/assets/63cdd038-32bb-4b3e-b9c4-1389d2754014)
![Screenshot 2024-08-07
015941](https://github.com/user-attachments/assets/70388680-9c2b-49ef-ba00-2bb015988214)
![Screenshot 2024-08-07
015949](https://github.com/user-attachments/assets/76335a33-bb6f-473c-896f-447320abcc25)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-07 03:56:59 +05:30
Ayush Chaurasia
4769d8eb76 feat(python): multi-vector reranking support (#1481)
Currently targeting the following usage:
```
from lancedb.rerankers import CrossEncoderReranker

reranker = CrossEncoderReranker()

query = "hello"

res1 = table.search(query, vector_column_name="vector").limit(3)
res2 = table.search(query, vector_column_name="text_vector").limit(3)
res3 = table.search(query, vector_column_name="meta_vector").limit(3)

reranked = reranker.rerank_multivector(
               [res1, res2, res3],  
              deduplicate=True,
              query=query # some reranker models need query
)
```
- This implements rerank_multivector function in the base reranker so
that all rerankers that implement rerank_vector will automatically have
multivector reranking support
- Special case for RRF reranker that just uses its existing
rerank_hybrid fcn to multi-vector reranking.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-08-07 01:45:46 +05:30
Ayush Chaurasia
d07d7a5980 chore: update polars version range (#1508) 2024-08-06 23:43:15 +05:30
Robby
8d2ff7b210 feat(python): add watsonx embeddings to registry (#1486)
Related issue: https://github.com/lancedb/lancedb/issues/1412

---------

Co-authored-by: Robby <h0rv@users.noreply.github.com>
2024-08-06 10:58:33 +05:30
Will Jones
61c05b51a0 fix(nodejs): address import issues in lancedb npm module (#1503)
Fixes [#1496](https://github.com/lancedb/lancedb/issues/1496)
2024-08-05 16:30:27 -07:00
Will Jones
7801ab9b8b ci: fix release by upgrading to Node 18 (#1494)
Building with Node 16 produced this error:

```
npm ERR! code ENOENT
npm ERR! syscall chmod
npm ERR! path /io/nodejs/node_modules/apache-arrow-15/bin/arrow2csv.cjs
npm ERR! errno -2
npm ERR! enoent ENOENT: no such file or directory, chmod '/io/nodejs/node_modules/apache-arrow-15/bin/arrow2csv.cjs'
npm ERR! enoent This is related to npm not being able to find a file.
npm ERR! enoent 
```

[CI
Failure](https://github.com/lancedb/lancedb/actions/runs/10117131772/job/27981475770).
This looks like it is https://github.com/apache/arrow/issues/43341

Upgrading to Node 18 makes this goes away. Since Node 18 requires glibc
>= 2_28, we had to upgrade the manylinux version we are using. This is
fine since we already state a minimum Node version of 18.

This also upgrades the openssl version we bundle, as well as
consolidates the build files.
2024-08-05 14:08:42 -07:00
Rithik Kumar
d297da5a7e docs: update examples docs (#1488)
Testing Workflow with my first PR.
Before:
![Screenshot 2024-08-01
183326](https://github.com/user-attachments/assets/83d22101-8bbf-4b18-81e4-f740e605727a)

After:
![Screenshot 2024-08-01
183333](https://github.com/user-attachments/assets/a5e4cd2c-c524-4009-81d5-75b2b0361f83)
2024-08-01 18:54:45 +05:30
Ryan Green
6af69b57ad fix: return LanceMergeInsertBuilder in overridden merge_insert method on remote table (#1484) 2024-07-31 12:25:16 -02:30
Cory Grinstead
a062a92f6b docs: custom embedding function for ts (#1479) 2024-07-30 18:19:55 -05:00
Gagan Bhullar
277b753fd8 fix: run java stages in parallel (#1472)
This PR is for issue - https://github.com/lancedb/lancedb/issues/1331
2024-07-27 12:04:32 -07:00
Lance Release
f78b7863f6 Updating package-lock.json 2024-07-26 20:18:55 +00:00
Lance Release
e7d824af2b Bump version: 0.8.0-beta.0 → 0.8.0 2024-07-26 20:18:37 +00:00
Lance Release
02f1ec775f Bump version: 0.7.2 → 0.8.0-beta.0 2024-07-26 20:18:36 +00:00
75 changed files with 1155 additions and 481 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.7.2" current_version = "0.8.0"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

View File

@@ -3,6 +3,8 @@ on:
push: push:
branches: branches:
- main - main
paths:
- java/**
pull_request: pull_request:
paths: paths:
- java/** - java/**
@@ -21,9 +23,42 @@ env:
CARGO_INCREMENTAL: "0" CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1" CARGO_BUILD_JOBS: "1"
jobs: jobs:
linux-build: linux-build-java-11:
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11 & 17 name: ubuntu-22.04 + Java 11
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
linux-build-java-17:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 17
defaults: defaults:
run: run:
working-directory: ./java working-directory: ./java
@@ -47,20 +82,12 @@ jobs:
java-version: 17 java-version: 17
cache: "maven" cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV - run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check - name: Java Style Check
run: mvn checkstyle:check run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code # Disable because of issues in lancedb rust core code
# - name: Rust Clippy # - name: Rust Clippy
# working-directory: java/core/lancedb-jni # working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings # run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
- name: Running tests with Java 17 - name: Running tests with Java 17
run: | run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \ export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
@@ -83,3 +110,4 @@ jobs:
-Djdk.reflect.useDirectMethodHandle=false \ -Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true" -Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -20,20 +20,21 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.15.0", "features" = ["dynamodb"] } lance = { "version" = "=0.16.0", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.15.0" } lance-index = { "version" = "=0.16.0" }
lance-linalg = { "version" = "=0.15.0" } lance-linalg = { "version" = "=0.16.0" }
lance-testing = { "version" = "=0.15.0" } lance-testing = { "version" = "=0.16.0" }
lance-datafusion = { "version" = "=0.15.0" } lance-datafusion = { "version" = "=0.16.0" }
lance-encoding = { "version" = "=0.16.0" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "52.1", optional = false } arrow = { version = "52.2", optional = false }
arrow-array = "52.1" arrow-array = "52.2"
arrow-data = "52.1" arrow-data = "52.2"
arrow-ipc = "52.1" arrow-ipc = "52.2"
arrow-ord = "52.1" arrow-ord = "52.2"
arrow-schema = "52.1" arrow-schema = "52.2"
arrow-arith = "52.1" arrow-arith = "52.2"
arrow-cast = "52.1" arrow-cast = "52.2"
async-trait = "0" async-trait = "0"
chrono = "0.4.35" chrono = "0.4.35"
datafusion-physical-plan = "40.0" datafusion-physical-plan = "40.0"

View File

@@ -18,4 +18,4 @@ docker run \
-v $(pwd):/io -w /io \ -v $(pwd):/io -w /io \
--memory-swap=-1 \ --memory-swap=-1 \
lancedb-node-manylinux \ lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH bash ci/manylinux_node/build_vectordb.sh $ARCH

View File

@@ -4,9 +4,9 @@ ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files # We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user. # into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs pushd ci/manylinux_node
docker build \ docker build \
-t lancedb-nodejs-manylinux \ -t lancedb-node-manylinux-$ARCH \
--build-arg="ARCH=$ARCH" \ --build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \ --build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \ --progress=plain \
@@ -17,5 +17,5 @@ popd
docker run \ docker run \
-v $(pwd):/io -w /io \ -v $(pwd):/io -w /io \
--memory-swap=-1 \ --memory-swap=-1 \
lancedb-nodejs-manylinux \ lancedb-node-manylinux-$ARCH \
bash ci/manylinux_nodejs/build.sh $ARCH bash ci/manylinux_node/build_lancedb.sh $ARCH

View File

@@ -4,7 +4,7 @@
# range of linux distributions. # range of linux distributions.
ARG ARCH=x86_64 ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH} FROM quay.io/pypa/manylinux_2_28_${ARCH}
ARG ARCH=x86_64 ARG ARCH=x86_64
ARG DOCKER_USER=default_user ARG DOCKER_USER=default_user

View File

View File

@@ -6,7 +6,7 @@
# /usr/bin/ld: failed to set dynamic section sizes: Bad value # /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e set -e
git clone -b OpenSSL_1_1_1u \ git clone -b OpenSSL_1_1_1v \
--single-branch \ --single-branch \
https://github.com/openssl/openssl.git https://github.com/openssl/openssl.git

View File

@@ -8,7 +8,7 @@ install_node() {
source "$HOME"/.bashrc source "$HOME"/.bashrc
nvm install --no-progress 16 nvm install --no-progress 18
} }
install_rust() { install_rust() {

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -141,10 +141,13 @@ nav:
- Overview: examples/index.md - Overview: examples/index.md
- 🐍 Python: - 🐍 Python:
- Overview: examples/examples_python.md - Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript: - 👾 JavaScript:
@@ -221,14 +224,24 @@ nav:
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- Examples: - Examples:
- examples/index.md - examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md - 👾 JavaScript:
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md - Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- API reference: - API reference:
- Overview: api_reference.md - Overview: api_reference.md
- Python: python/python.md - Python: python/python.md

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>

After

Width:  |  Height:  |  Size: 1.7 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -15,12 +15,15 @@ There is another optional layer of abstraction available: `TextEmbeddingFunction
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry` Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers") === "Python"
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2" name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc. # set more default instance vars like device, etc.
@@ -39,38 +42,59 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@cached(cache={}) @cached(cache={})
def _embedding_model(self): def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name) return sentence_transformers.SentenceTransformer(name)
``` ```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings. === "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs. Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
```python === "Python"
from lancedb.pydantic import LanceModel, Vector
registry = EmbeddingFunctionRegistry.get_instance() ```python
stransformer = registry.get("sentence-transformers").create() from lancedb.pydantic import LanceModel, Vector
class TextModelSchema(LanceModel): registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField() vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField() text: str = stransformer.SourceField()
tbl = db.create_table("table", schema=TextModelSchema) tbl = db.create_table("table", schema=TextModelSchema)
tbl.add(pd.DataFrame({"text": ["halo", "world"]})) tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5) result = tbl.search("world").limit(5)
``` ```
NOTE: === "TypeScript"
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case ```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
```
!!! note
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example ## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions. You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
```python === "Python"
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction): LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32" name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k" pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu" device: str = "cpu"
@@ -209,4 +233,8 @@ class OpenClipEmbeddings(EmbeddingFunction):
if self.normalize: if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True) image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze() return image_features.cpu().numpy().squeeze()
``` ```
=== "TypeScript"
Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!

View File

@@ -518,6 +518,82 @@ tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas() rs = tbl.search("hello").limit(1).to_pandas()
``` ```
# IBM watsonx.ai Embeddings
Generate text embeddings using IBM's watsonx.ai platform.
## Supported Models
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
- `ibm/slate-125m-english-rtrvr`
- `ibm/slate-30m-english-rtrvr`
- `sentence-transformers/all-minilm-l12-v2`
- `intfloat/multilingual-e5-large`
## Parameters
The following parameters can be passed to the `create` method:
| Parameter | Type | Default Value | Description |
|------------|----------|----------------------------------|-----------------------------------------------------------|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
| url | str | None | Optional custom URL for the watsonx.ai instance |
| params | dict | None | Optional additional parameters for the embedding model |
## Usage Example
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
```
pip install ibm-watsonx-ai
```
Optionally set environment variables (if not passing credentials to `create` directly):
```sh
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
```
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
watsonx_embed = EmbeddingFunctionRegistry
.get_instance()
.get("watsonx")
.create(
name="ibm/slate-125m-english-rtrvr",
# Uncomment and set these if not using environment variables
# api_key="your_api_key_here",
# project_id="your_project_id_here",
# url="your_watsonx_url_here",
# params={...},
)
class TextModel(LanceModel):
text: str = watsonx_embed.SourceField()
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"},
]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
tbl.add(data)
rs = tbl.search("hello").limit(1).to_pandas()
print(rs)
```
## Multi-modal embedding functions ## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text. Multi-modal embedding functions allow you to query your table using both images and text.

View File

@@ -10,7 +10,7 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
## Applications powered by LanceDB ## Applications powered by LanceDB
| Project Name | Description | Screenshot | | Project Name | Description |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------| | --- | --- |
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) | | **Ultralytics Explorer 🚀**<br>[![Ultralytics](https://img.shields.io/badge/Ultralytics-Docs-green?labelColor=0f3bc4&style=flat-square&logo=https://cdn.prod.website-files.com/646dd1f1a3703e451ba81ecc/64994922cf2a6385a4bf4489_UltralyticsYOLO_mark_blue.svg&link=https://docs.ultralytics.com/datasets/explorer/)](https://docs.ultralytics.com/datasets/explorer/)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) | | **Website Chatbot🤖**<br>[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&amp;env=OPENAI_API_KEY&amp;envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&amp;project-name=lancedb-vercel-chatbot&amp;repository-name=lancedb-vercel-chatbot&amp;demo-title=LanceDB%20Chatbot%20Demo&amp;demo-description=Demo%20website%20chatbot%20with%20LanceDB.&amp;demo-url=https%3A%2F%2Flancedb.vercel.app&amp;demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |

View File

@@ -0,0 +1,13 @@
# Build from Scratch with LanceDB 🚀
Start building your GenAI applications from the ground up using LanceDB's efficient vector-based document retrieval capabilities! 📄
#### Get Started in Minutes ⏱️
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to proof of concept quickly with applied examples. Get started and see what you can create! 💻
| **Build From Scratch** | **Description** | **Links** |
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)]() |
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |

View File

@@ -0,0 +1,28 @@
# Multimodal Search with LanceDB 🔍💡
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus and unlock new possibilities! 🔓💡
#### Explore the Future of Search 🚀
Unlock the power of multimodal search with LanceDB, enabling efficient vector-based retrieval of text and image data! 📊💻
| **Multimodal** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Revolutionize search with Multimodal CLIP and DiffusionDB, combining text and image understanding for a new dimension of discovery! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search Youtube videos using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Discover relevant documents and images with a single query, using LanceDB's multimodal search capabilities to bridge the gap between text and visuals! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Dive into vision-centric exploration of images with Cambrian-1, powered by LanceDB's multimodal search to uncover new insights! 🔎 | [![GitHub](../../assets/github.svg)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br>[![Open In Collab](../../assets/colab.svg)]() <br> [![Python](../../assets/python.svg)]() <br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
[Clip_diffusionDB_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.ipynb
[Clip_diffusionDB_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.py
[Clip_diffusionDB_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
[Clip_youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search
[Clip_youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb
[Clip_youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.py
[Clip_youtube_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/

View File

@@ -0,0 +1,85 @@
**🔍💡 RAG: Revolutionize Information Retrieval with LanceDB 🔓**
====================================================================
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, the ultimate solution for efficient vector-based information retrieval 📊. Input text queries and retrieve relevant documents with lightning-fast speed ⚡️ and accuracy ✅. Generate comprehensive answers by combining retrieved information, uncovering new insights 🔍 and connections.
### Experience the Future of Search 🔄
Experience the future of search with RAG, transforming information retrieval and answer generation. Apply RAG to various industries, streamlining processes 📈, saving time ⏰, and resources 💰. Stay ahead of the curve with innovative technology 🔝, powered by LanceDB. Discover the power of RAG with LanceDB and transform your industry with innovative solutions 💡.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| **RAG with Matryoshka Embeddings and LlamaIndex** 🪆🔗 | Utilize **Matryoshka embeddings** and **LlamaIndex** to improve the efficiency and accuracy of your RAG models. 📈✨ | [![Github](../../assets/github.svg)][matryoshka_github] <br>[![Open In Collab](../../assets/colab.svg)][matryoshka_colab] |
| **Improve RAG with Re-ranking** 📈🔄 | Enhance your RAG applications by implementing **re-ranking strategies** for more relevant document retrieval. 📚🔍 | [![Github](../../assets/github.svg)][rag_reranking_github] <br>[![Open In Collab](../../assets/colab.svg)][rag_reranking_colab] <br>[![Ghost](../../assets/ghost.svg)][rag_reranking_ghost] |
| **Instruct-Multitask** 🧠🎯 | Integrate the **Instruct Embedding Model** with LanceDB to streamline your embedding API, reducing redundant code and overhead. 🌐📊 | [![Github](../../assets/github.svg)][instruct_multitask_github] <br>[![Open In Collab](../../assets/colab.svg)][instruct_multitask_colab] <br>[![Python](../../assets/python.svg)][instruct_multitask_python] <br>[![Ghost](../../assets/ghost.svg)][instruct_multitask_ghost] |
| **Improve RAG with HyDE** 🌌🔍 | Use **Hypothetical Document Embeddings** for efficient, accurate, and unsupervised dense retrieval. 📄🔍 | [![Github](../../assets/github.svg)][hyde_github] <br>[![Open In Collab](../../assets/colab.svg)][hyde_colab]<br>[![Ghost](../../assets/ghost.svg)][hyde_ghost] |
| **Improve RAG with LOTR** 🧙‍♂️📜 | Enhance RAG with **Lord of the Retriever (LOTR)** to address 'Lost in the Middle' challenges, especially in medical data. 🌟📜 | [![Github](../../assets/github.svg)][lotr_github] <br>[![Open In Collab](../../assets/colab.svg)][lotr_colab] <br>[![Ghost](../../assets/ghost.svg)][lotr_ghost] |
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [![Github](../../assets/github.svg)][parent_doc_retriever_github] <br>[![Open In Collab](../../assets/colab.svg)][parent_doc_retriever_colab] <br>[![Ghost](../../assets/ghost.svg)][parent_doc_retriever_ghost] |
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[![Github](../../assets/github.svg)][corrective_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][corrective_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][corrective_rag_ghost] |
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [![Github](../../assets/github.svg)][compression_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][compression_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][compression_rag_ghost] |
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to academic papers, focusing on ArXiv papers, with Forward-Looking Active REtrieval augmented generation.🚀🌟 | [![Github](../../assets/github.svg)][flare_github] <br>[![Open In Collab](../../assets/colab.svg)][flare_colab] <br>[![Ghost](../../assets/ghost.svg)][flare_ghost] |
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like Cross Encoders, ColBERT v2, and FlashRank for improved document retrieval precision and recall 🔍📈 | [![Github](../../assets/github.svg)][query_github] <br>[![Open In Collab](../../assets/colab.svg)][query_colab] |
| **RAG Fusion** ⚡🌐 | Revolutionize search with RAG Fusion, utilizing the **RRF algorithm** to rerank documents based on user queries, and leveraging LanceDB and OPENAI Embeddings for efficient information retrieval ⚡🌐 | [![Github](../../assets/github.svg)][fusion_github] <br>[![Open In Collab](../../assets/colab.svg)][fusion_colab] |
| **Agentic RAG** 🤖📚 | Unlock autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, enabling proactive and informed decision-making 🤖📚 | [![Github](../../assets/github.svg)][agentic_github] <br>[![Open In Collab](../../assets/colab.svg)][agentic_colab] |
[matryoshka_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex
[matryoshka_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex/RAG_with_MatryoshkaEmbedding_and_Llamaindex.ipynb
[rag_reranking_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking
[rag_reranking_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking/main.ipynb
[rag_reranking_ghost]: https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544
[instruct_multitask_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask
[instruct_multitask_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.ipynb
[instruct_multitask_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.py
[instruct_multitask_ghost]: https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543
[hyde_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE
[hyde_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb
[hyde_ghost]: https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb
[lotr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR
[lotr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR/main.ipynb
[lotr_ghost]: https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35
[parent_doc_retriever_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever
[parent_doc_retriever_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever/main.ipynb
[parent_doc_retriever_ghost]: https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6
[corrective_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph
[corrective_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb
[corrective_rag_ghost]: https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
[compression_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG
[compression_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb
[compression_rag_ghost]: https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/
[flare_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb

View File

@@ -5,4 +5,5 @@ pylance
duckdb duckdb
--extra-index-url https://download.pytorch.org/whl/cpu --extra-index-url https://download.pytorch.org/whl/cpu
torch torch
polars polars>=0.19, <=1.3.0

View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.7.2", "version": "0.8.0",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.7.2", "version": "0.8.0",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.7.2", "version": "0.8.0",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",

View File

@@ -20,7 +20,6 @@ napi = { version = "2.16.8", default-features = false, features = [
"async", "async",
] } ] }
napi-derive = "2.16.4" napi-derive = "2.16.4"
# Prevent dynamic linking of lzma, which comes from datafusion # Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] } lzma-sys = { version = "*", features = ["static"] }

View File

@@ -1,3 +1,4 @@
import * as apiArrow from "apache-arrow";
// Copyright 2024 Lance Developers. // Copyright 2024 Lance Developers.
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
@@ -69,7 +70,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
return 3; return 3;
} }
embeddingDataType() { embeddingDataType() {
return new arrow.Float32(); return new arrow.Float32() as apiArrow.Float;
} }
async computeSourceEmbeddings(data: string[]) { async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]); return data.map(() => [1, 2, 3]);
@@ -82,7 +83,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
const schema = LanceSchema({ const schema = LanceSchema({
id: new arrow.Int32(), id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()), text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(), vector: func.vectorField(),
}); });
@@ -119,7 +120,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
return 3; return 3;
} }
embeddingDataType() { embeddingDataType() {
return new arrow.Float32(); return new arrow.Float32() as apiArrow.Float;
} }
async computeSourceEmbeddings(data: string[]) { async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]); return data.map(() => [1, 2, 3]);
@@ -144,7 +145,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
return 3; return 3;
} }
embeddingDataType() { embeddingDataType() {
return new arrow.Float32(); return new arrow.Float32() as apiArrow.Float;
} }
async computeSourceEmbeddings(data: string[]) { async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]); return data.map(() => [1, 2, 3]);
@@ -154,7 +155,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
const schema = LanceSchema({ const schema = LanceSchema({
id: new arrow.Int32(), id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()), text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(), vector: func.vectorField(),
}); });
const expectedMetadata = new Map<string, string>([ const expectedMetadata = new Map<string, string>([

View File

@@ -0,0 +1,64 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import {
LanceSchema,
TextEmbeddingFunction,
getRegistry,
register,
} from "@lancedb/lancedb/embedding";
import { pipeline } from "@xenova/transformers";
// --8<-- [end:imports]
// --8<-- [start:embedding_impl]
@register("sentence-transformers")
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
name = "Xenova/all-miniLM-L6-v2";
#ndims!: number;
extractor: any;
async init() {
this.extractor = await pipeline("feature-extraction", this.name);
this.#ndims = await this.generateEmbeddings(["hello"]).then(
(e) => e[0].length,
);
}
ndims() {
return this.#ndims;
}
toJSON() {
return {
name: this.name,
};
}
async generateEmbeddings(texts: string[]) {
const output = await this.extractor(texts, {
pooling: "mean",
normalize: true,
});
return output.tolist();
}
}
// -8<-- [end:embedding_impl]
// --8<-- [start:call_custom_function]
const registry = getRegistry();
const sentenceTransformer = await registry
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
.create();
const schema = LanceSchema({
vector: sentenceTransformer.vectorField(),
text: sentenceTransformer.sourceField(),
});
const db = await lancedb.connect("/tmp/db");
const table = await db.createEmptyTable("table", schema, { mode: "overwrite" });
await table.add([{ text: "hello" }, { text: "world" }]);
const results = await table.search("greeting").limit(1).toArray();
console.log(results[0].text);
// -8<-- [end:call_custom_function]

View File

@@ -103,50 +103,11 @@ export type IntoVector =
| number[] | number[]
| Promise<Float32Array | Float64Array | number[]>; | Promise<Float32Array | Float64Array | number[]>;
export type FloatLike =
| import("apache-arrow-13").Float
| import("apache-arrow-14").Float
| import("apache-arrow-15").Float
| import("apache-arrow-16").Float
| import("apache-arrow-17").Float;
export type DataTypeLike =
| import("apache-arrow-13").DataType
| import("apache-arrow-14").DataType
| import("apache-arrow-15").DataType
| import("apache-arrow-16").DataType
| import("apache-arrow-17").DataType;
export function isArrowTable(value: object): value is TableLike { export function isArrowTable(value: object): value is TableLike {
if (value instanceof ArrowTable) return true; if (value instanceof ArrowTable) return true;
return "schema" in value && "batches" in value; return "schema" in value && "batches" in value;
} }
export function isDataType(value: unknown): value is DataTypeLike {
return (
value instanceof DataType ||
DataType.isNull(value) ||
DataType.isInt(value) ||
DataType.isFloat(value) ||
DataType.isBinary(value) ||
DataType.isLargeBinary(value) ||
DataType.isUtf8(value) ||
DataType.isLargeUtf8(value) ||
DataType.isBool(value) ||
DataType.isDecimal(value) ||
DataType.isDate(value) ||
DataType.isTime(value) ||
DataType.isTimestamp(value) ||
DataType.isInterval(value) ||
DataType.isDuration(value) ||
DataType.isList(value) ||
DataType.isStruct(value) ||
DataType.isUnion(value) ||
DataType.isFixedSizeBinary(value) ||
DataType.isFixedSizeList(value) ||
DataType.isMap(value) ||
DataType.isDictionary(value)
);
}
export function isNull(value: unknown): value is Null { export function isNull(value: unknown): value is Null {
return value instanceof Null || DataType.isNull(value); return value instanceof Null || DataType.isNull(value);
} }

View File

@@ -44,10 +44,20 @@ export interface CreateTableOptions {
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/ * The available options are described at https://lancedb.github.io/lancedb/guides/storage/
*/ */
storageOptions?: Record<string, string>; storageOptions?: Record<string, string>;
/**
* The version of the data storage format to use.
*
* The default is `legacy`, which is Lance format v1.
* `stable` is the new format, which is Lance format v2.
*/
dataStorageVersion?: string;
/** /**
* If true then data files will be written with the legacy format * If true then data files will be written with the legacy format
* *
* The default is true while the new format is in beta * The default is true while the new format is in beta
*
* Deprecated.
*/ */
useLegacyFormat?: boolean; useLegacyFormat?: boolean;
schema?: SchemaLike; schema?: SchemaLike;
@@ -247,12 +257,19 @@ export class LocalConnection extends Connection {
throw new Error("data is required"); throw new Error("data is required");
} }
const { buf, mode } = await Table.parseTableData(data, options); const { buf, mode } = await Table.parseTableData(data, options);
let dataStorageVersion = "legacy";
if (options?.dataStorageVersion !== undefined) {
dataStorageVersion = options.dataStorageVersion;
} else if (options?.useLegacyFormat !== undefined) {
dataStorageVersion = options.useLegacyFormat ? "legacy" : "stable";
}
const innerTable = await this.inner.createTable( const innerTable = await this.inner.createTable(
nameOrOptions, nameOrOptions,
buf, buf,
mode, mode,
cleanseStorageOptions(options?.storageOptions), cleanseStorageOptions(options?.storageOptions),
options?.useLegacyFormat, dataStorageVersion,
); );
return new LocalTable(innerTable); return new LocalTable(innerTable);
@@ -276,6 +293,13 @@ export class LocalConnection extends Connection {
metadata = registry.getTableMetadata([embeddingFunction]); metadata = registry.getTableMetadata([embeddingFunction]);
} }
let dataStorageVersion = "legacy";
if (options?.dataStorageVersion !== undefined) {
dataStorageVersion = options.dataStorageVersion;
} else if (options?.useLegacyFormat !== undefined) {
dataStorageVersion = options.useLegacyFormat ? "legacy" : "stable";
}
const table = makeEmptyTable(schema, metadata); const table = makeEmptyTable(schema, metadata);
const buf = await fromTableToBuffer(table); const buf = await fromTableToBuffer(table);
const innerTable = await this.inner.createEmptyTable( const innerTable = await this.inner.createEmptyTable(
@@ -283,7 +307,7 @@ export class LocalConnection extends Connection {
buf, buf,
mode, mode,
cleanseStorageOptions(options?.storageOptions), cleanseStorageOptions(options?.storageOptions),
options?.useLegacyFormat, dataStorageVersion,
); );
return new LocalTable(innerTable); return new LocalTable(innerTable);
} }

View File

@@ -15,13 +15,12 @@
import "reflect-metadata"; import "reflect-metadata";
import { import {
DataType, DataType,
DataTypeLike,
Field, Field,
FixedSizeList, FixedSizeList,
Float,
Float32, Float32,
FloatLike,
type IntoVector, type IntoVector,
isDataType, Utf8,
isFixedSizeList, isFixedSizeList,
isFloat, isFloat,
newVectorType, newVectorType,
@@ -93,11 +92,12 @@ export abstract class EmbeddingFunction<
* @see {@link lancedb.LanceSchema} * @see {@link lancedb.LanceSchema}
*/ */
sourceField( sourceField(
optionsOrDatatype: Partial<FieldOptions> | DataTypeLike, optionsOrDatatype: Partial<FieldOptions> | DataType,
): [DataTypeLike, Map<string, EmbeddingFunction>] { ): [DataType, Map<string, EmbeddingFunction>] {
let datatype = isDataType(optionsOrDatatype) let datatype =
? optionsOrDatatype "datatype" in optionsOrDatatype
: optionsOrDatatype?.datatype; ? optionsOrDatatype.datatype
: optionsOrDatatype;
if (!datatype) { if (!datatype) {
throw new Error("Datatype is required"); throw new Error("Datatype is required");
} }
@@ -123,15 +123,17 @@ export abstract class EmbeddingFunction<
let dims: number | undefined = this.ndims(); let dims: number | undefined = this.ndims();
// `func.vectorField(new Float32())` // `func.vectorField(new Float32())`
if (isDataType(optionsOrDatatype)) { if (optionsOrDatatype === undefined) {
dtype = optionsOrDatatype; dtype = new Float32();
} else if (!("datatype" in optionsOrDatatype)) {
dtype = sanitizeType(optionsOrDatatype);
} else { } else {
// `func.vectorField({ // `func.vectorField({
// datatype: new Float32(), // datatype: new Float32(),
// dims: 10 // dims: 10
// })` // })`
dims = dims ?? optionsOrDatatype?.dims; dims = dims ?? optionsOrDatatype?.dims;
dtype = optionsOrDatatype?.datatype; dtype = sanitizeType(optionsOrDatatype?.datatype);
} }
if (dtype !== undefined) { if (dtype !== undefined) {
@@ -173,7 +175,7 @@ export abstract class EmbeddingFunction<
} }
/** The datatype of the embeddings */ /** The datatype of the embeddings */
abstract embeddingDataType(): FloatLike; abstract embeddingDataType(): Float;
/** /**
* Creates a vector representation for the given values. * Creates a vector representation for the given values.
@@ -192,6 +194,38 @@ export abstract class EmbeddingFunction<
} }
} }
/**
* an abstract class for implementing embedding functions that take text as input
*/
export abstract class TextEmbeddingFunction<
M extends FunctionOptions = FunctionOptions,
> extends EmbeddingFunction<string, M> {
//** Generate the embeddings for the given texts */
abstract generateEmbeddings(
texts: string[],
// biome-ignore lint/suspicious/noExplicitAny: we don't know what the implementor will do
...args: any[]
): Promise<number[][] | Float32Array[] | Float64Array[]>;
async computeQueryEmbeddings(data: string): Promise<Awaited<IntoVector>> {
return this.generateEmbeddings([data]).then((data) => data[0]);
}
embeddingDataType(): Float {
return new Float32();
}
override sourceField(): [DataType, Map<string, EmbeddingFunction>] {
return super.sourceField(new Utf8());
}
computeSourceEmbeddings(
data: string[],
): Promise<number[][] | Float32Array[] | Float64Array[]> {
return this.generateEmbeddings(data);
}
}
export interface FieldOptions<T extends DataType = DataType> { export interface FieldOptions<T extends DataType = DataType> {
datatype: T; datatype: T;
dims?: number; dims?: number;

View File

@@ -13,12 +13,11 @@
// limitations under the License. // limitations under the License.
import { Field, Schema } from "../arrow"; import { Field, Schema } from "../arrow";
import { isDataType } from "../arrow";
import { sanitizeType } from "../sanitize"; import { sanitizeType } from "../sanitize";
import { EmbeddingFunction } from "./embedding_function"; import { EmbeddingFunction } from "./embedding_function";
import { EmbeddingFunctionConfig, getRegistry } from "./registry"; import { EmbeddingFunctionConfig, getRegistry } from "./registry";
export { EmbeddingFunction } from "./embedding_function"; export { EmbeddingFunction, TextEmbeddingFunction } from "./embedding_function";
// We need to explicitly export '*' so that the `register` decorator actually registers the class. // We need to explicitly export '*' so that the `register` decorator actually registers the class.
export * from "./openai"; export * from "./openai";
@@ -57,15 +56,15 @@ export function LanceSchema(
Partial<EmbeddingFunctionConfig> Partial<EmbeddingFunctionConfig>
>(); >();
Object.entries(fields).forEach(([key, value]) => { Object.entries(fields).forEach(([key, value]) => {
if (isDataType(value)) { if (Array.isArray(value)) {
arrowFields.push(new Field(key, sanitizeType(value), true));
} else {
const [dtype, metadata] = value as [ const [dtype, metadata] = value as [
object, object,
Map<string, EmbeddingFunction>, Map<string, EmbeddingFunction>,
]; ];
arrowFields.push(new Field(key, sanitizeType(dtype), true)); arrowFields.push(new Field(key, sanitizeType(dtype), true));
parseEmbeddingFunctions(embeddingFunctions, key, metadata); parseEmbeddingFunctions(embeddingFunctions, key, metadata);
} else {
arrowFields.push(new Field(key, sanitizeType(value), true));
} }
}); });
const registry = getRegistry(); const registry = getRegistry();

View File

@@ -13,7 +13,7 @@
// limitations under the License. // limitations under the License.
import type OpenAI from "openai"; import type OpenAI from "openai";
import { type EmbeddingCreateParams } from "openai/resources"; import type { EmbeddingCreateParams } from "openai/resources/index";
import { Float, Float32 } from "../arrow"; import { Float, Float32 } from "../arrow";
import { EmbeddingFunction } from "./embedding_function"; import { EmbeddingFunction } from "./embedding_function";
import { register } from "./registry"; import { register } from "./registry";

View File

@@ -59,7 +59,7 @@ export {
export { Index, IndexOptions, IvfPqOptions } from "./indices"; export { Index, IndexOptions, IvfPqOptions } from "./indices";
export { Table, AddDataOptions, UpdateOptions } from "./table"; export { Table, AddDataOptions, UpdateOptions, OptimizeOptions } from "./table";
export * as embedding from "./embedding"; export * as embedding from "./embedding";

View File

@@ -340,8 +340,14 @@ export function sanitizeType(typeLike: unknown): DataType<any> {
if (typeof typeLike !== "object" || typeLike === null) { if (typeof typeLike !== "object" || typeLike === null) {
throw Error("Expected a Type but object was null/undefined"); throw Error("Expected a Type but object was null/undefined");
} }
if (!("typeId" in typeLike) || !(typeof typeLike.typeId !== "function")) { if (
throw Error("Expected a Type to have a typeId function"); !("typeId" in typeLike) ||
!(
typeof typeLike.typeId !== "function" ||
typeof typeLike.typeId !== "number"
)
) {
throw Error("Expected a Type to have a typeId property");
} }
let typeId: Type; let typeId: Type;
if (typeof typeLike.typeId === "function") { if (typeof typeLike.typeId === "function") {

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-darwin-arm64", "name": "@lancedb/lancedb-darwin-arm64",
"version": "0.7.2", "version": "0.8.0",
"os": ["darwin"], "os": ["darwin"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node", "main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-darwin-x64", "name": "@lancedb/lancedb-darwin-x64",
"version": "0.7.2", "version": "0.8.0",
"os": ["darwin"], "os": ["darwin"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.darwin-x64.node", "main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-arm64-gnu", "name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.7.2", "version": "0.8.0",
"os": ["linux"], "os": ["linux"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node", "main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-x64-gnu", "name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.7.2", "version": "0.8.0",
"os": ["linux"], "os": ["linux"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node", "main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-win32-x64-msvc", "name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.7.2", "version": "0.8.0",
"os": ["win32"], "os": ["win32"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node", "main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{ {
"name": "@lancedb/lancedb", "name": "@lancedb/lancedb",
"version": "0.7.2", "version": "0.8.0",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "@lancedb/lancedb", "name": "@lancedb/lancedb",
"version": "0.7.2", "version": "0.8.0",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"

View File

@@ -10,7 +10,7 @@
"vector database", "vector database",
"ann" "ann"
], ],
"version": "0.7.2", "version": "0.8.0",
"main": "dist/index.js", "main": "dist/index.js",
"exports": { "exports": {
".": "./dist/index.js", ".": "./dist/index.js",

View File

@@ -13,13 +13,16 @@
// limitations under the License. // limitations under the License.
use std::collections::HashMap; use std::collections::HashMap;
use std::str::FromStr;
use napi::bindgen_prelude::*; use napi::bindgen_prelude::*;
use napi_derive::*; use napi_derive::*;
use crate::table::Table; use crate::table::Table;
use crate::ConnectionOptions; use crate::ConnectionOptions;
use lancedb::connection::{ConnectBuilder, Connection as LanceDBConnection, CreateTableMode}; use lancedb::connection::{
ConnectBuilder, Connection as LanceDBConnection, CreateTableMode, LanceFileVersion,
};
use lancedb::ipc::{ipc_file_to_batches, ipc_file_to_schema}; use lancedb::ipc::{ipc_file_to_batches, ipc_file_to_schema};
#[napi] #[napi]
@@ -120,7 +123,7 @@ impl Connection {
buf: Buffer, buf: Buffer,
mode: String, mode: String,
storage_options: Option<HashMap<String, String>>, storage_options: Option<HashMap<String, String>>,
use_legacy_format: Option<bool>, data_storage_options: Option<String>,
) -> napi::Result<Table> { ) -> napi::Result<Table> {
let batches = ipc_file_to_batches(buf.to_vec()) let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?; .map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
@@ -131,8 +134,11 @@ impl Connection {
builder = builder.storage_option(key, value); builder = builder.storage_option(key, value);
} }
} }
if let Some(use_legacy_format) = use_legacy_format { if let Some(data_storage_option) = data_storage_options.as_ref() {
builder = builder.use_legacy_format(use_legacy_format); builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_option)
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
);
} }
let tbl = builder let tbl = builder
.execute() .execute()
@@ -148,7 +154,7 @@ impl Connection {
schema_buf: Buffer, schema_buf: Buffer,
mode: String, mode: String,
storage_options: Option<HashMap<String, String>>, storage_options: Option<HashMap<String, String>>,
use_legacy_format: Option<bool>, data_storage_options: Option<String>,
) -> napi::Result<Table> { ) -> napi::Result<Table> {
let schema = ipc_file_to_schema(schema_buf.to_vec()).map_err(|e| { let schema = ipc_file_to_schema(schema_buf.to_vec()).map_err(|e| {
napi::Error::from_reason(format!("Failed to marshal schema from JS to Rust: {}", e)) napi::Error::from_reason(format!("Failed to marshal schema from JS to Rust: {}", e))
@@ -163,8 +169,11 @@ impl Connection {
builder = builder.storage_option(key, value); builder = builder.storage_option(key, value);
} }
} }
if let Some(use_legacy_format) = use_legacy_format { if let Some(data_storage_option) = data_storage_options.as_ref() {
builder = builder.use_legacy_format(use_legacy_format); builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_option)
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
);
} }
let tbl = builder let tbl = builder
.execute() .execute()

View File

@@ -293,6 +293,7 @@ impl Table {
.optimize(OptimizeAction::Prune { .optimize(OptimizeAction::Prune {
older_than, older_than,
delete_unverified: None, delete_unverified: None,
error_if_tagged_old_versions: None,
}) })
.await .await
.default_error()? .default_error()?

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.11.0" current_version = "0.12.0"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "lancedb-python" name = "lancedb-python"
version = "0.11.0" version = "0.12.0"
edition.workspace = true edition.workspace = true
description = "Python bindings for LanceDB" description = "Python bindings for LanceDB"
license.workspace = true license.workspace = true

View File

@@ -3,7 +3,7 @@ name = "lancedb"
# version in Cargo.toml # version in Cargo.toml
dependencies = [ dependencies = [
"deprecation", "deprecation",
"pylance==0.15.0", "pylance==0.16.0",
"ratelimiter~=1.0", "ratelimiter~=1.0",
"requests>=2.31.0", "requests>=2.31.0",
"retry>=0.9.2", "retry>=0.9.2",
@@ -56,7 +56,7 @@ tests = [
"pytest-asyncio", "pytest-asyncio",
"duckdb", "duckdb",
"pytz", "pytz",
"polars>=0.19", "polars>=0.19, <=1.3.0",
"tantivy", "tantivy",
] ]
dev = ["ruff", "pre-commit"] dev = ["ruff", "pre-commit"]
@@ -76,6 +76,7 @@ embeddings = [
"awscli>=1.29.57", "awscli>=1.29.57",
"botocore>=1.31.57", "botocore>=1.31.57",
"ollama", "ollama",
"ibm-watsonx-ai>=1.1.2",
] ]
azure = ["adlfs>=2024.2.0"] azure = ["adlfs>=2024.2.0"]

View File

@@ -24,7 +24,7 @@ class Connection(object):
mode: str, mode: str,
data: pa.RecordBatchReader, data: pa.RecordBatchReader,
storage_options: Optional[Dict[str, str]] = None, storage_options: Optional[Dict[str, str]] = None,
use_legacy_format: Optional[bool] = None, data_storage_version: Optional[str] = None,
) -> Table: ... ) -> Table: ...
async def create_empty_table( async def create_empty_table(
self, self,
@@ -32,7 +32,7 @@ class Connection(object):
mode: str, mode: str,
schema: pa.Schema, schema: pa.Schema,
storage_options: Optional[Dict[str, str]] = None, storage_options: Optional[Dict[str, str]] = None,
use_legacy_format: Optional[bool] = None, data_storage_version: Optional[str] = None,
) -> Table: ... ) -> Table: ...
class Table: class Table:

View File

@@ -560,6 +560,7 @@ class AsyncConnection(object):
fill_value: Optional[float] = None, fill_value: Optional[float] = None,
storage_options: Optional[Dict[str, str]] = None, storage_options: Optional[Dict[str, str]] = None,
*, *,
data_storage_version: Optional[str] = None,
use_legacy_format: Optional[bool] = None, use_legacy_format: Optional[bool] = None,
) -> AsyncTable: ) -> AsyncTable:
"""Create an [AsyncTable][lancedb.table.AsyncTable] in the database. """Create an [AsyncTable][lancedb.table.AsyncTable] in the database.
@@ -603,9 +604,15 @@ class AsyncConnection(object):
connection will be inherited by the table, but can be overridden here. connection will be inherited by the table, but can be overridden here.
See available options at See available options at
https://lancedb.github.io/lancedb/guides/storage/ https://lancedb.github.io/lancedb/guides/storage/
use_legacy_format: bool, optional, default True data_storage_version: optional, str, default "legacy"
The version of the data storage format to use. Newer versions are more
efficient but require newer versions of lance to read. The default is
"legacy" which will use the legacy v1 version. See the user guide
for more details.
use_legacy_format: bool, optional, default True. (Deprecated)
If True, use the legacy format for the table. If False, use the new format. If True, use the legacy format for the table. If False, use the new format.
The default is True while the new format is in beta. The default is True while the new format is in beta.
This method is deprecated, use `data_storage_version` instead.
Returns Returns
@@ -765,13 +772,18 @@ class AsyncConnection(object):
if mode == "create" and exist_ok: if mode == "create" and exist_ok:
mode = "exist_ok" mode = "exist_ok"
if not data_storage_version:
data_storage_version = (
"legacy" if use_legacy_format is None or use_legacy_format else "stable"
)
if data is None: if data is None:
new_table = await self._inner.create_empty_table( new_table = await self._inner.create_empty_table(
name, name,
mode, mode,
schema, schema,
storage_options=storage_options, storage_options=storage_options,
use_legacy_format=use_legacy_format, data_storage_version=data_storage_version,
) )
else: else:
data = data_to_reader(data, schema) data = data_to_reader(data, schema)
@@ -780,7 +792,7 @@ class AsyncConnection(object):
mode, mode,
data, data,
storage_options=storage_options, storage_options=storage_options,
use_legacy_format=use_legacy_format, data_storage_version=data_storage_version,
) )
return AsyncTable(new_table) return AsyncTable(new_table)

View File

@@ -26,3 +26,4 @@ from .transformers import TransformersEmbeddingFunction, ColbertEmbeddings
from .imagebind import ImageBindEmbeddings from .imagebind import ImageBindEmbeddings
from .utils import with_embeddings from .utils import with_embeddings
from .jinaai import JinaEmbeddings from .jinaai import JinaEmbeddings
from .watsonx import WatsonxEmbeddings

View File

@@ -0,0 +1,111 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import cached_property
from typing import List, Optional, Dict, Union
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
import numpy as np
DEFAULT_WATSONX_URL = "https://us-south.ml.cloud.ibm.com"
MODELS_DIMS = {
"ibm/slate-125m-english-rtrvr": 768,
"ibm/slate-30m-english-rtrvr": 384,
"sentence-transformers/all-minilm-l12-v2": 384,
"intfloat/multilingual-e5-large": 1024,
}
@register("watsonx")
class WatsonxEmbeddings(TextEmbeddingFunction):
"""
API Docs:
---------
https://cloud.ibm.com/apidocs/watsonx-ai#text-embeddings
Supported embedding models:
---------------------------
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx
"""
name: str = "ibm/slate-125m-english-rtrvr"
api_key: Optional[str] = None
project_id: Optional[str] = None
url: Optional[str] = None
params: Optional[Dict] = None
@staticmethod
def model_names():
return [
"ibm/slate-125m-english-rtrvr",
"ibm/slate-30m-english-rtrvr",
"sentence-transformers/all-minilm-l12-v2",
"intfloat/multilingual-e5-large",
]
def ndims(self):
return self._ndims
@cached_property
def _ndims(self):
if self.name not in MODELS_DIMS:
raise ValueError(f"Unknown model name {self.name}")
return MODELS_DIMS[self.name]
def generate_embeddings(
self,
texts: Union[List[str], np.ndarray],
*args,
**kwargs,
) -> List[List[float]]:
return self._watsonx_client.embed_documents(
texts=list(texts),
*args,
**kwargs,
)
@cached_property
def _watsonx_client(self):
ibm_watsonx_ai = attempt_import_or_raise("ibm_watsonx_ai")
ibm_watsonx_ai_foundation_models = attempt_import_or_raise(
"ibm_watsonx_ai.foundation_models"
)
kwargs = {"model_id": self.name}
if self.params:
kwargs["params"] = self.params
if self.project_id:
kwargs["project_id"] = self.project_id
elif "WATSONX_PROJECT_ID" in os.environ:
kwargs["project_id"] = os.environ["WATSONX_PROJECT_ID"]
else:
raise ValueError("WATSONX_PROJECT_ID must be set or passed")
creds_kwargs = {}
if self.api_key:
creds_kwargs["api_key"] = self.api_key
elif "WATSONX_API_KEY" in os.environ:
creds_kwargs["api_key"] = os.environ["WATSONX_API_KEY"]
else:
raise ValueError("WATSONX_API_KEY must be set or passed")
if self.url:
creds_kwargs["url"] = self.url
else:
creds_kwargs["url"] = DEFAULT_WATSONX_URL
kwargs["credentials"] = ibm_watsonx_ai.Credentials(**creds_kwargs)
return ibm_watsonx_ai_foundation_models.Embeddings(**kwargs)

View File

@@ -22,8 +22,9 @@ from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from lancedb.merge import LanceMergeInsertBuilder from lancedb.merge import LanceMergeInsertBuilder
from lancedb.embeddings import EmbeddingFunctionRegistry
from ..query import LanceVectorQueryBuilder from ..query import LanceVectorQueryBuilder, LanceQueryBuilder
from ..table import Query, Table, _sanitize_data from ..table import Query, Table, _sanitize_data
from ..util import inf_vector_column_query, value_to_sql from ..util import inf_vector_column_query, value_to_sql
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
@@ -58,6 +59,21 @@ class RemoteTable(Table):
resp = self._conn._client.post(f"/v1/table/{self._name}/describe/") resp = self._conn._client.post(f"/v1/table/{self._name}/describe/")
return resp["version"] return resp["version"]
@cached_property
def embedding_functions(self) -> dict:
"""
Get the embedding functions for the table
Returns
-------
funcs: dict
A mapping of the vector column to the embedding function
or empty dict if not configured.
"""
return EmbeddingFunctionRegistry.get_instance().parse_functions(
self.schema.metadata
)
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pa.Table:
"""to_arrow() is not yet supported on LanceDB cloud.""" """to_arrow() is not yet supported on LanceDB cloud."""
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.") raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
@@ -213,7 +229,7 @@ class RemoteTable(Table):
data, _ = _sanitize_data( data, _ = _sanitize_data(
data, data,
self.schema, self.schema,
metadata=None, metadata=self.schema.metadata,
on_bad_vectors=on_bad_vectors, on_bad_vectors=on_bad_vectors,
fill_value=fill_value, fill_value=fill_value,
) )
@@ -293,6 +309,7 @@ class RemoteTable(Table):
""" """
if vector_column_name is None: if vector_column_name is None:
vector_column_name = inf_vector_column_query(self.schema) vector_column_name = inf_vector_column_query(self.schema)
query = LanceQueryBuilder._query_to_vector(self, query, vector_column_name)
return LanceVectorQueryBuilder(self, query, vector_column_name) return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query( def _execute_query(
@@ -336,7 +353,7 @@ class RemoteTable(Table):
See [`Table.merge_insert`][lancedb.table.Table.merge_insert] for more details. See [`Table.merge_insert`][lancedb.table.Table.merge_insert] for more details.
""" """
super().merge_insert(on) return super().merge_insert(on)
def _do_merge( def _do_merge(
self, self,

View File

@@ -1,9 +1,13 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from packaging.version import Version from packaging.version import Version
from typing import Union, List, TYPE_CHECKING
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
if TYPE_CHECKING:
from ..table import LanceVectorQueryBuilder
ARROW_VERSION = Version(pa.__version__) ARROW_VERSION = Version(pa.__version__)
@@ -130,12 +134,94 @@ class Reranker(ABC):
combined = pa.concat_tables( combined = pa.concat_tables(
[vector_results, fts_results], **self._concat_tables_args [vector_results, fts_results], **self._concat_tables_args
) )
row_id = combined.column("_rowid")
# deduplicate # deduplicate
mask = np.full((combined.shape[0]), False) combined = self._deduplicate(combined)
_, mask_indices = np.unique(np.array(row_id), return_index=True)
mask[mask_indices] = True
combined = combined.filter(mask=mask)
return combined return combined
def rerank_multivector(
self,
vector_results: Union[List[pa.Table], List["LanceVectorQueryBuilder"]],
query: Union[str, None], # Some rerankers might not need the query
deduplicate: bool = False,
):
"""
This is a rerank function that receives the results from multiple
vector searches. For example, this can be used to combine the
results of two vector searches with different embeddings.
Parameters
----------
vector_results : List[pa.Table] or List[LanceVectorQueryBuilder]
The results from the vector search. Either accepts the query builder
if the results haven't been executed yet or the results in arrow format.
query : str or None,
The input query. Some rerankers might not need the query to rerank.
In that case, it can be set to None explicitly. This is inteded to
be handled by the reranker implementations.
deduplicate : bool, optional
Whether to deduplicate the results based on the `_rowid` column,
by default False. Requires `_rowid` to be present in the results.
Returns
-------
pa.Table
The reranked results
"""
vector_results = (
[vector_results] if not isinstance(vector_results, list) else vector_results
)
# Make sure all elements are of the same type
if not all(isinstance(v, type(vector_results[0])) for v in vector_results):
raise ValueError(
"All elements in vector_results should be of the same type"
)
# avoids circular import
if type(vector_results[0]).__name__ == "LanceVectorQueryBuilder":
vector_results = [result.to_arrow() for result in vector_results]
elif not isinstance(vector_results[0], pa.Table):
raise ValueError(
"vector_results should be a list of pa.Table or LanceVectorQueryBuilder"
)
combined = pa.concat_tables(vector_results, **self._concat_tables_args)
reranked = self.rerank_vector(query, combined)
# TODO: Allow custom deduplicators here.
# currently, this'll just keep the first instance.
if deduplicate:
if "_rowid" not in combined.column_names:
raise ValueError(
"'_rowid' is required for deduplication. \
add _rowid to search results like this: \
`search().with_row_id(True)`"
)
reranked = self._deduplicate(reranked)
return reranked
def _deduplicate(self, table: pa.Table):
"""
Deduplicate the table based on the `_rowid` column.
"""
row_id = table.column("_rowid")
# deduplicate
mask = np.full((table.shape[0]), False)
_, mask_indices = np.unique(np.array(row_id), return_index=True)
mask[mask_indices] = True
deduped_table = table.filter(mask=mask)
return deduped_table
def _keep_relevance_score(self, combined_results: pa.Table):
if self.score == "relevance":
if "score" in combined_results.column_names:
combined_results = combined_results.drop_columns(["score"])
if "_distance" in combined_results.column_names:
combined_results = combined_results.drop_columns(["_distance"])
return combined_results

View File

@@ -88,7 +88,7 @@ class CohereReranker(Reranker):
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
if self.score == "relevance": if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"]) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all": elif self.score == "all":
raise NotImplementedError( raise NotImplementedError(
"return_score='all' not implemented for cohere reranker" "return_score='all' not implemented for cohere reranker"

View File

@@ -73,7 +73,7 @@ class ColbertReranker(Reranker):
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
if self.score == "relevance": if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"]) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all": elif self.score == "all":
raise NotImplementedError( raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet" "OpenAI Reranker does not support score='all' yet"

View File

@@ -66,7 +66,7 @@ class CrossEncoderReranker(Reranker):
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
# sort the results by _score # sort the results by _score
if self.score == "relevance": if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"]) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all": elif self.score == "all":
raise NotImplementedError( raise NotImplementedError(
"return_score='all' not implemented for CrossEncoderReranker" "return_score='all' not implemented for CrossEncoderReranker"

View File

@@ -92,7 +92,7 @@ class JinaReranker(Reranker):
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
if self.score == "relevance": if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"]) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all": elif self.score == "all":
raise NotImplementedError( raise NotImplementedError(
"return_score='all' not implemented for JinaReranker" "return_score='all' not implemented for JinaReranker"

View File

@@ -103,7 +103,7 @@ class LinearCombinationReranker(Reranker):
[("_relevance_score", "descending")] [("_relevance_score", "descending")]
) )
if self.score == "relevance": if self.score == "relevance":
tbl = tbl.drop_columns(["score", "_distance"]) tbl = self._keep_relevance_score(tbl)
return tbl return tbl
def _combine_score(self, score1, score2): def _combine_score(self, score1, score2):

View File

@@ -84,7 +84,7 @@ class OpenaiReranker(Reranker):
combined_results = self.merge_results(vector_results, fts_results) combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query) combined_results = self._rerank(combined_results, query)
if self.score == "relevance": if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"]) combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all": elif self.score == "all":
raise NotImplementedError( raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet" "OpenAI Reranker does not support score='all' yet"

View File

@@ -1,8 +1,12 @@
from typing import Union, List, TYPE_CHECKING
import pyarrow as pa import pyarrow as pa
from collections import defaultdict from collections import defaultdict
from .base import Reranker from .base import Reranker
if TYPE_CHECKING:
from ..table import LanceVectorQueryBuilder
class RRFReranker(Reranker): class RRFReranker(Reranker):
""" """
@@ -55,6 +59,46 @@ class RRFReranker(Reranker):
) )
if self.score == "relevance": if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"]) combined_results = self._keep_relevance_score(combined_results)
return combined_results return combined_results
def rerank_multivector(
self,
vector_results: Union[List[pa.Table], List["LanceVectorQueryBuilder"]],
query: str = None,
deduplicate: bool = True, # noqa: F821 # TODO: automatically deduplicates
):
"""
Overridden method to rerank the results from multiple vector searches.
This leverages the RRF hybrid reranking algorithm to combine the
results from multiple vector searches as it doesn't support reranking
vector results individually.
"""
# Make sure all elements are of the same type
if not all(isinstance(v, type(vector_results[0])) for v in vector_results):
raise ValueError(
"All elements in vector_results should be of the same type"
)
# avoid circular import
if type(vector_results[0]).__name__ == "LanceVectorQueryBuilder":
vector_results = [result.to_arrow() for result in vector_results]
elif not isinstance(vector_results[0], pa.Table):
raise ValueError(
"vector_results should be a list of pa.Table or LanceVectorQueryBuilder"
)
# _rowid is required for RRF reranking
if not all("_rowid" in result.column_names for result in vector_results):
raise ValueError(
"'_rowid' is required for deduplication. \
add _rowid to search results like this: \
`search().with_row_id(True)`"
)
combined = pa.concat_tables(vector_results, **self._concat_tables_args)
empty_table = pa.Table.from_arrays([], names=[])
reranked = self.rerank_hybrid(query, combined, empty_table)
return reranked

View File

@@ -417,3 +417,28 @@ def test_openai_embedding(tmp_path):
tbl.add(df) tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims() assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world" assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("WATSONX_API_KEY") is None
or os.environ.get("WATSONX_PROJECT_ID") is None,
reason="WATSONX_API_KEY and WATSONX_PROJECT_ID not set",
)
def test_watsonx_embedding(tmp_path):
from lancedb.embeddings import WatsonxEmbeddings
for name in WatsonxEmbeddings.model_names():
model = get_registry().get("watsonx").create(max_retries=0, name=name)
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"

View File

@@ -42,6 +42,7 @@ async def test_create_scalar_index(some_table: AsyncTable):
# Can recreate if replace=True # Can recreate if replace=True
await some_table.create_index("id", replace=True) await some_table.create_index("id", replace=True)
indices = await some_table.list_indices() indices = await some_table.list_indices()
assert str(indices) == '[Index(BTree, columns=["id"])]'
assert len(indices) == 1 assert len(indices) == 1
assert indices[0].index_type == "BTree" assert indices[0].index_type == "BTree"
assert indices[0].columns == ["id"] assert indices[0].columns == ["id"]

View File

@@ -1,4 +1,5 @@
import os import os
import random
import lancedb import lancedb
import numpy as np import numpy as np
@@ -25,10 +26,13 @@ def get_test_table(tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
# Create a LanceDB table schema with a vector and a text column # Create a LanceDB table schema with a vector and a text column
emb = EmbeddingFunctionRegistry.get_instance().get("test")() emb = EmbeddingFunctionRegistry.get_instance().get("test")()
meta_emb = EmbeddingFunctionRegistry.get_instance().get("test")()
class MyTable(LanceModel): class MyTable(LanceModel):
text: str = emb.SourceField() text: str = emb.SourceField()
vector: Vector(emb.ndims()) = emb.VectorField() vector: Vector(emb.ndims()) = emb.VectorField()
meta: str = meta_emb.SourceField()
meta_vector: Vector(meta_emb.ndims()) = meta_emb.VectorField()
# Initialize the table using the schema # Initialize the table using the schema
table = LanceTable.create( table = LanceTable.create(
@@ -77,7 +81,12 @@ def get_test_table(tmp_path):
] ]
# Add the phrases and vectors to the table # Add the phrases and vectors to the table
table.add([{"text": p} for p in phrases]) table.add(
[
{"text": p, "meta": phrases[random.randint(0, len(phrases) - 1)]}
for p in phrases
]
)
# Create a fts index # Create a fts index
table.create_fts_index("text") table.create_fts_index("text")
@@ -88,12 +97,12 @@ def get_test_table(tmp_path):
def _run_test_reranker(reranker, table, query, query_vector, schema): def _run_test_reranker(reranker, table, query, query_vector, schema):
# Hybrid search setting # Hybrid search setting
result1 = ( result1 = (
table.search(query, query_type="hybrid") table.search(query, query_type="hybrid", vector_column_name="vector")
.rerank(normalize="score", reranker=reranker) .rerank(normalize="score", reranker=reranker)
.to_pydantic(schema) .to_pydantic(schema)
) )
result2 = ( result2 = (
table.search(query, query_type="hybrid") table.search(query, query_type="hybrid", vector_column_name="vector")
.rerank(reranker=reranker) .rerank(reranker=reranker)
.to_pydantic(schema) .to_pydantic(schema)
) )
@@ -101,7 +110,7 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
query_vector = table.to_pandas()["vector"][0] query_vector = table.to_pandas()["vector"][0]
result = ( result = (
table.search((query_vector, query)) table.search((query_vector, query), vector_column_name="vector")
.limit(30) .limit(30)
.rerank(reranker=reranker) .rerank(reranker=reranker)
.to_arrow() .to_arrow()
@@ -116,11 +125,16 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
# Vector search setting # Vector search setting
result = table.search(query).rerank(reranker=reranker).limit(30).to_arrow() result = (
table.search(query, vector_column_name="vector")
.rerank(reranker=reranker)
.limit(30)
.to_arrow()
)
assert len(result) == 30 assert len(result) == 30
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
result_explicit = ( result_explicit = (
table.search(query_vector) table.search(query_vector, vector_column_name="vector")
.rerank(reranker=reranker, query_string=query) .rerank(reranker=reranker, query_string=query)
.limit(30) .limit(30)
.to_arrow() .to_arrow()
@@ -129,11 +143,13 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
with pytest.raises( with pytest.raises(
ValueError ValueError
): # This raises an error because vector query is provided without reanking query ): # This raises an error because vector query is provided without reanking query
table.search(query_vector).rerank(reranker=reranker).limit(30).to_arrow() table.search(query_vector, vector_column_name="vector").rerank(
reranker=reranker
).limit(30).to_arrow()
# FTS search setting # FTS search setting
result = ( result = (
table.search(query, query_type="fts") table.search(query, query_type="fts", vector_column_name="vector")
.rerank(reranker=reranker) .rerank(reranker=reranker)
.limit(30) .limit(30)
.to_arrow() .to_arrow()
@@ -141,22 +157,48 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
assert len(result) > 0 assert len(result) > 0
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
# Multi-vector search setting
rs1 = table.search(query, vector_column_name="vector").limit(10).with_row_id(True)
rs2 = (
table.search(query, vector_column_name="meta_vector")
.limit(10)
.with_row_id(True)
)
result = reranker.rerank_multivector([rs1, rs2], query)
assert len(result) == 20
result_deduped = reranker.rerank_multivector(
[rs1, rs2, rs1], query, deduplicate=True
)
assert len(result_deduped) < 20
result_arrow = reranker.rerank_multivector([rs1.to_arrow(), rs2.to_arrow()], query)
assert len(result) == 20 and result == result_arrow
def _run_test_hybrid_reranker(reranker, tmp_path): def _run_test_hybrid_reranker(reranker, tmp_path):
table, schema = get_test_table(tmp_path) table, schema = get_test_table(tmp_path)
# The default reranker # The default reranker
result1 = ( result1 = (
table.search("Our father who art in heaven", query_type="hybrid") table.search(
"Our father who art in heaven",
query_type="hybrid",
vector_column_name="vector",
)
.rerank(normalize="score") .rerank(normalize="score")
.to_pydantic(schema) .to_pydantic(schema)
) )
result2 = ( # noqa result2 = ( # noqa
table.search("Our father who art in heaven.", query_type="hybrid") table.search(
"Our father who art in heaven.",
query_type="hybrid",
vector_column_name="vector",
)
.rerank(normalize="rank") .rerank(normalize="rank")
.to_pydantic(schema) .to_pydantic(schema)
) )
result3 = table.search( result3 = table.search(
"Our father who art in heaven..", query_type="hybrid" "Our father who art in heaven..",
query_type="hybrid",
vector_column_name="vector",
).to_pydantic(schema) ).to_pydantic(schema)
assert result1 == result3 # 2 & 3 should be the same as they use score as score assert result1 == result3 # 2 & 3 should be the same as they use score as score
@@ -164,7 +206,7 @@ def _run_test_hybrid_reranker(reranker, tmp_path):
query = "Our father who art in heaven" query = "Our father who art in heaven"
query_vector = table.to_pandas()["vector"][0] query_vector = table.to_pandas()["vector"][0]
result = ( result = (
table.search((query_vector, query)) table.search((query_vector, query), vector_column_name="vector")
.limit(30) .limit(30)
.rerank(normalize="score") .rerank(normalize="score")
.to_arrow() .to_arrow()

View File

@@ -730,7 +730,7 @@ def test_create_scalar_index(db):
indices = table.to_lance().list_indices() indices = table.to_lance().list_indices()
assert len(indices) == 1 assert len(indices) == 1
scalar_index = indices[0] scalar_index = indices[0]
assert scalar_index["type"] == "Scalar" assert scalar_index["type"] == "BTree"
# Confirm that prefiltering still works with the scalar index column # Confirm that prefiltering still works with the scalar index column
results = table.search().where("x = 'c'").to_arrow() results = table.search().where("x = 'c'").to_arrow()
@@ -1034,6 +1034,12 @@ async def test_optimize(db_async: AsyncConnection):
], ],
) )
stats = await table.optimize() stats = await table.optimize()
expected = (
"OptimizeStats(compaction=CompactionStats { fragments_removed: 2, "
"fragments_added: 1, files_removed: 2, files_added: 1 }, "
"prune=RemovalStats { bytes_removed: 0, old_versions_removed: 0 })"
)
assert str(stats) == expected
assert stats.compaction.files_removed == 2 assert stats.compaction.files_removed == 2
assert stats.compaction.files_added == 1 assert stats.compaction.files_added == 1
assert stats.compaction.fragments_added == 1 assert stats.compaction.fragments_added == 1

View File

@@ -1,21 +1,10 @@
// Copyright 2024 Lance Developers. // SPDX-License-Identifier: Apache-2.0
// // SPDX-FileCopyrightText: Copyright The LanceDB Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{collections::HashMap, sync::Arc, time::Duration}; use std::{collections::HashMap, str::FromStr, sync::Arc, time::Duration};
use arrow::{datatypes::Schema, ffi_stream::ArrowArrayStreamReader, pyarrow::FromPyArrow}; use arrow::{datatypes::Schema, ffi_stream::ArrowArrayStreamReader, pyarrow::FromPyArrow};
use lancedb::connection::{Connection as LanceConnection, CreateTableMode}; use lancedb::connection::{Connection as LanceConnection, CreateTableMode, LanceFileVersion};
use pyo3::{ use pyo3::{
exceptions::{PyRuntimeError, PyValueError}, exceptions::{PyRuntimeError, PyValueError},
pyclass, pyfunction, pymethods, Bound, PyAny, PyRef, PyResult, Python, pyclass, pyfunction, pymethods, Bound, PyAny, PyRef, PyResult, Python,
@@ -91,7 +80,7 @@ impl Connection {
mode: &str, mode: &str,
data: Bound<'_, PyAny>, data: Bound<'_, PyAny>,
storage_options: Option<HashMap<String, String>>, storage_options: Option<HashMap<String, String>>,
use_legacy_format: Option<bool>, data_storage_version: Option<String>,
) -> PyResult<Bound<'a, PyAny>> { ) -> PyResult<Bound<'a, PyAny>> {
let inner = self_.get_inner()?.clone(); let inner = self_.get_inner()?.clone();
@@ -104,8 +93,11 @@ impl Connection {
builder = builder.storage_options(storage_options); builder = builder.storage_options(storage_options);
} }
if let Some(use_legacy_format) = use_legacy_format { if let Some(data_storage_version) = data_storage_version.as_ref() {
builder = builder.use_legacy_format(use_legacy_format); builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_version)
.map_err(|e| PyValueError::new_err(e.to_string()))?,
);
} }
future_into_py(self_.py(), async move { future_into_py(self_.py(), async move {
@@ -120,7 +112,7 @@ impl Connection {
mode: &str, mode: &str,
schema: Bound<'_, PyAny>, schema: Bound<'_, PyAny>,
storage_options: Option<HashMap<String, String>>, storage_options: Option<HashMap<String, String>>,
use_legacy_format: Option<bool>, data_storage_version: Option<String>,
) -> PyResult<Bound<'a, PyAny>> { ) -> PyResult<Bound<'a, PyAny>> {
let inner = self_.get_inner()?.clone(); let inner = self_.get_inner()?.clone();
@@ -134,8 +126,11 @@ impl Connection {
builder = builder.storage_options(storage_options); builder = builder.storage_options(storage_options);
} }
if let Some(use_legacy_format) = use_legacy_format { if let Some(data_storage_version) = data_storage_version.as_ref() {
builder = builder.use_legacy_format(use_legacy_format); builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_version)
.map_err(|e| PyValueError::new_err(e.to_string()))?,
);
} }
future_into_py(self_.py(), async move { future_into_py(self_.py(), async move {

View File

@@ -98,6 +98,13 @@ pub struct IndexConfig {
pub columns: Vec<String>, pub columns: Vec<String>,
} }
#[pymethods]
impl IndexConfig {
pub fn __repr__(&self) -> String {
format!("Index({}, columns={:?})", self.index_type, self.columns)
}
}
impl From<lancedb::index::IndexConfig> for IndexConfig { impl From<lancedb::index::IndexConfig> for IndexConfig {
fn from(value: lancedb::index::IndexConfig) -> Self { fn from(value: lancedb::index::IndexConfig) -> Self {
let index_type = format!("{:?}", value.index_type); let index_type = format!("{:?}", value.index_type);

View File

@@ -60,6 +60,16 @@ pub struct Table {
inner: Option<LanceDbTable>, inner: Option<LanceDbTable>,
} }
#[pymethods]
impl OptimizeStats {
pub fn __repr__(&self) -> String {
format!(
"OptimizeStats(compaction={:?}, prune={:?})",
self.compaction, self.prune
)
}
}
impl Table { impl Table {
pub(crate) fn new(inner: LanceDbTable) -> Self { pub(crate) fn new(inner: LanceDbTable) -> Self {
Self { Self {
@@ -266,6 +276,7 @@ impl Table {
.optimize(OptimizeAction::Prune { .optimize(OptimizeAction::Prune {
older_than, older_than,
delete_unverified: None, delete_unverified: None,
error_if_tagged_old_versions: None,
}) })
.await .await
.infer_error()? .infer_error()?

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "lancedb-node" name = "lancedb-node"
version = "0.7.2" version = "0.8.0"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license.workspace = true license.workspace = true
edition.workspace = true edition.workspace = true

View File

@@ -320,12 +320,19 @@ impl JsTable {
.map(|val| val.value(&mut cx)) .map(|val| val.value(&mut cx))
.unwrap_or_default(), .unwrap_or_default(),
); );
let error_if_tagged_old_versions: Option<bool> = Some(
cx.argument_opt(2)
.and_then(|val| val.downcast::<JsBoolean, _>(&mut cx).ok())
.map(|val| val.value(&mut cx))
.unwrap_or_default(),
);
rt.spawn(async move { rt.spawn(async move {
let stats = table let stats = table
.optimize(OptimizeAction::Prune { .optimize(OptimizeAction::Prune {
older_than: Some(older_than), older_than: Some(older_than),
delete_unverified, delete_unverified,
error_if_tagged_old_versions,
}) })
.await; .await;

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "lancedb" name = "lancedb"
version = "0.7.2" version = "0.8.0"
edition.workspace = true edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true license.workspace = true
@@ -29,6 +29,7 @@ lance-datafusion.workspace = true
lance-index = { workspace = true } lance-index = { workspace = true }
lance-linalg = { workspace = true } lance-linalg = { workspace = true }
lance-testing = { workspace = true } lance-testing = { workspace = true }
lance-encoding = { workspace = true }
pin-project = { workspace = true } pin-project = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }
log.workspace = true log.workspace = true
@@ -46,11 +47,11 @@ serde_with = { version = "3.8.1" }
reqwest = { version = "0.11.24", features = ["gzip", "json"], optional = true } reqwest = { version = "0.11.24", features = ["gzip", "json"], optional = true }
polars-arrow = { version = ">=0.37,<0.40.0", optional = true } polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
polars = { version = ">=0.37,<0.40.0", optional = true } polars = { version = ">=0.37,<0.40.0", optional = true }
hf-hub = {version = "0.3.2", optional = true} hf-hub = { version = "0.3.2", optional = true }
candle-core = { version = "0.6.0", optional = true } candle-core = { version = "0.6.0", optional = true }
candle-transformers = { version = "0.6.0", optional = true } candle-transformers = { version = "0.6.0", optional = true }
candle-nn = { version = "0.6.0", optional = true } candle-nn = { version = "0.6.0", optional = true }
tokenizers = { version = "0.19.1", optional = true} tokenizers = { version = "0.19.1", optional = true }
[dev-dependencies] [dev-dependencies]
tempfile = "3.5.0" tempfile = "3.5.0"
@@ -70,7 +71,13 @@ fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = [] s3-test = []
openai = ["dep:async-openai", "dep:reqwest"] openai = ["dep:async-openai", "dep:reqwest"]
polars = ["dep:polars-arrow", "dep:polars"] polars = ["dep:polars-arrow", "dep:polars"]
sentence-transformers = ["dep:hf-hub", "dep:candle-core", "dep:candle-transformers", "dep:candle-nn", "dep:tokenizers"] sentence-transformers = [
"dep:hf-hub",
"dep:candle-core",
"dep:candle-transformers",
"dep:candle-nn",
"dep:tokenizers"
]
[[example]] [[example]]
name = "openai" name = "openai"

View File

@@ -22,7 +22,7 @@ use std::sync::Arc;
use arrow_array::{RecordBatchIterator, RecordBatchReader}; use arrow_array::{RecordBatchIterator, RecordBatchReader};
use arrow_schema::SchemaRef; use arrow_schema::SchemaRef;
use lance::dataset::{ReadParams, WriteMode}; use lance::dataset::{ReadParams, WriteMode};
use lance::io::{ObjectStore, ObjectStoreParams, WrappingObjectStore}; use lance::io::{ObjectStore, ObjectStoreParams, ObjectStoreRegistry, WrappingObjectStore};
use object_store::{aws::AwsCredential, local::LocalFileSystem}; use object_store::{aws::AwsCredential, local::LocalFileSystem};
use snafu::prelude::*; use snafu::prelude::*;
@@ -35,6 +35,7 @@ use crate::io::object_store::MirroringObjectStoreWrapper;
use crate::table::{NativeTable, TableDefinition, WriteOptions}; use crate::table::{NativeTable, TableDefinition, WriteOptions};
use crate::utils::validate_table_name; use crate::utils::validate_table_name;
use crate::Table; use crate::Table;
pub use lance_encoding::version::LanceFileVersion;
#[cfg(feature = "remote")] #[cfg(feature = "remote")]
use log::warn; use log::warn;
@@ -140,7 +141,7 @@ pub struct CreateTableBuilder<const HAS_DATA: bool, T: IntoArrow> {
pub(crate) write_options: WriteOptions, pub(crate) write_options: WriteOptions,
pub(crate) table_definition: Option<TableDefinition>, pub(crate) table_definition: Option<TableDefinition>,
pub(crate) embeddings: Vec<(EmbeddingDefinition, Arc<dyn EmbeddingFunction>)>, pub(crate) embeddings: Vec<(EmbeddingDefinition, Arc<dyn EmbeddingFunction>)>,
pub(crate) use_legacy_format: bool, pub(crate) data_storage_version: Option<LanceFileVersion>,
} }
// Builder methods that only apply when we have initial data // Builder methods that only apply when we have initial data
@@ -154,7 +155,7 @@ impl<T: IntoArrow> CreateTableBuilder<true, T> {
write_options: WriteOptions::default(), write_options: WriteOptions::default(),
table_definition: None, table_definition: None,
embeddings: Vec::new(), embeddings: Vec::new(),
use_legacy_format: true, data_storage_version: None,
} }
} }
@@ -186,7 +187,7 @@ impl<T: IntoArrow> CreateTableBuilder<true, T> {
mode: self.mode, mode: self.mode,
write_options: self.write_options, write_options: self.write_options,
embeddings: self.embeddings, embeddings: self.embeddings,
use_legacy_format: self.use_legacy_format, data_storage_version: self.data_storage_version,
}; };
Ok((data, builder)) Ok((data, builder))
} }
@@ -220,7 +221,7 @@ impl CreateTableBuilder<false, NoData> {
mode: CreateTableMode::default(), mode: CreateTableMode::default(),
write_options: WriteOptions::default(), write_options: WriteOptions::default(),
embeddings: Vec::new(), embeddings: Vec::new(),
use_legacy_format: true, data_storage_version: None,
} }
} }
@@ -283,6 +284,14 @@ impl<const HAS_DATA: bool, T: IntoArrow> CreateTableBuilder<HAS_DATA, T> {
self self
} }
/// Set the data storage version.
///
/// The default is `LanceFileVersion::Legacy`.
pub fn data_storage_version(mut self, data_storage_version: LanceFileVersion) -> Self {
self.data_storage_version = Some(data_storage_version);
self
}
/// Set to true to use the v1 format for data files /// Set to true to use the v1 format for data files
/// ///
/// This is currently defaulted to true and can be set to false to opt-in /// This is currently defaulted to true and can be set to false to opt-in
@@ -292,8 +301,13 @@ impl<const HAS_DATA: bool, T: IntoArrow> CreateTableBuilder<HAS_DATA, T> {
/// ///
/// Once the new format is stable, the default will change to `false` for /// Once the new format is stable, the default will change to `false` for
/// several releases and then eventually this option will be removed. /// several releases and then eventually this option will be removed.
#[deprecated(since = "0.9.0", note = "use data_storage_version instead")]
pub fn use_legacy_format(mut self, use_legacy_format: bool) -> Self { pub fn use_legacy_format(mut self, use_legacy_format: bool) -> Self {
self.use_legacy_format = use_legacy_format; self.data_storage_version = if use_legacy_format {
Some(LanceFileVersion::Legacy)
} else {
Some(LanceFileVersion::Stable)
};
self self
} }
} }
@@ -789,13 +803,14 @@ impl Database {
let plain_uri = url.to_string(); let plain_uri = url.to_string();
let registry = Arc::new(ObjectStoreRegistry::default());
let storage_options = options.storage_options.clone(); let storage_options = options.storage_options.clone();
let os_params = ObjectStoreParams { let os_params = ObjectStoreParams {
storage_options: Some(storage_options.clone()), storage_options: Some(storage_options.clone()),
..Default::default() ..Default::default()
}; };
let (object_store, base_path) = let (object_store, base_path) =
ObjectStore::from_uri_and_params(&plain_uri, &os_params).await?; ObjectStore::from_uri_and_params(registry, &plain_uri, &os_params).await?;
if object_store.is_local() { if object_store.is_local() {
Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?; Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?;
} }
@@ -961,7 +976,7 @@ impl ConnectionInternal for Database {
if matches!(&options.mode, CreateTableMode::Overwrite) { if matches!(&options.mode, CreateTableMode::Overwrite) {
write_params.mode = WriteMode::Overwrite; write_params.mode = WriteMode::Overwrite;
} }
write_params.use_legacy_format = options.use_legacy_format; write_params.data_storage_version = options.data_storage_version;
match NativeTable::create( match NativeTable::create(
&table_uri, &table_uri,

View File

@@ -191,6 +191,8 @@ pub enum OptimizeAction {
/// Because they may be part of an in-progress transaction, files newer than 7 days old are not deleted by default. /// Because they may be part of an in-progress transaction, files newer than 7 days old are not deleted by default.
/// If you are sure that there are no in-progress transactions, then you can set this to True to delete all files older than `older_than`. /// If you are sure that there are no in-progress transactions, then you can set this to True to delete all files older than `older_than`.
delete_unverified: Option<bool>, delete_unverified: Option<bool>,
/// If true, an error will be returned if there are any old versions that are still tagged.
error_if_tagged_old_versions: Option<bool>,
}, },
/// Optimize the indices /// Optimize the indices
/// ///
@@ -1079,8 +1081,8 @@ impl NativeTable {
params: Option<WriteParams>, params: Option<WriteParams>,
read_consistency_interval: Option<std::time::Duration>, read_consistency_interval: Option<std::time::Duration>,
) -> Result<Self> { ) -> Result<Self> {
// Default params uses format v1.
let params = params.unwrap_or(WriteParams { let params = params.unwrap_or(WriteParams {
use_legacy_format: true,
..Default::default() ..Default::default()
}); });
// patch the params if we have a write store wrapper // patch the params if we have a write store wrapper
@@ -1173,12 +1175,13 @@ impl NativeTable {
&self, &self,
older_than: Duration, older_than: Duration,
delete_unverified: Option<bool>, delete_unverified: Option<bool>,
error_if_tagged_old_versions: Option<bool>,
) -> Result<RemovalStats> { ) -> Result<RemovalStats> {
Ok(self Ok(self
.dataset .dataset
.get_mut() .get_mut()
.await? .await?
.cleanup_old_versions(older_than, delete_unverified) .cleanup_old_versions(older_than, delete_unverified, error_if_tagged_old_versions)
.await?) .await?)
} }
@@ -1506,8 +1509,8 @@ impl NativeTable {
} }
let mut dataset = self.dataset.get_mut().await?; let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance::index::scalar::ScalarIndexParams { let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance::index::scalar::ScalarIndexType::BTree), force_index_type: Some(lance_index::scalar::ScalarIndexType::BTree),
}; };
dataset dataset
.create_index( .create_index(
@@ -1607,6 +1610,9 @@ impl TableInternal for NativeTable {
let data = let data =
MaybeEmbedded::try_new(data, self.table_definition().await?, add.embedding_registry)?; MaybeEmbedded::try_new(data, self.table_definition().await?, add.embedding_registry)?;
// Still use the legacy lance format (v1) by default.
// We don't want to accidentally switch to v2 format during an add operation.
// If the table is already v2 this won't have any effect.
let mut lance_params = add.write_options.lance_write_params.unwrap_or(WriteParams { let mut lance_params = add.write_options.lance_write_params.unwrap_or(WriteParams {
mode: match add.mode { mode: match add.mode {
AddDataMode::Append => WriteMode::Append, AddDataMode::Append => WriteMode::Append,
@@ -1628,16 +1634,11 @@ impl TableInternal for NativeTable {
} }
// patch the params if we have a write store wrapper // patch the params if we have a write store wrapper
let mut lance_params = match self.store_wrapper.clone() { let lance_params = match self.store_wrapper.clone() {
Some(wrapper) => lance_params.patch_with_store_wrapper(wrapper)?, Some(wrapper) => lance_params.patch_with_store_wrapper(wrapper)?,
None => lance_params, None => lance_params,
}; };
// Only use the new format if the user passes use_legacy_format=False in while creating
// a table with data. We don't want to accidentally switch to v2 format during an add
// operation. If the table is already v2 this won't have any effect.
lance_params.use_legacy_format = true;
self.dataset.ensure_mutable().await?; self.dataset.ensure_mutable().await?;
let dataset = Dataset::write(data, &self.uri, Some(lance_params)).await?; let dataset = Dataset::write(data, &self.uri, Some(lance_params)).await?;
@@ -1878,6 +1879,7 @@ impl TableInternal for NativeTable {
.optimize(OptimizeAction::Prune { .optimize(OptimizeAction::Prune {
older_than: None, older_than: None,
delete_unverified: None, delete_unverified: None,
error_if_tagged_old_versions: None,
}) })
.await? .await?
.prune; .prune;
@@ -1893,11 +1895,13 @@ impl TableInternal for NativeTable {
OptimizeAction::Prune { OptimizeAction::Prune {
older_than, older_than,
delete_unverified, delete_unverified,
error_if_tagged_old_versions,
} => { } => {
stats.prune = Some( stats.prune = Some(
self.cleanup_old_versions( self.cleanup_old_versions(
older_than.unwrap_or(Duration::try_days(7).expect("valid delta")), older_than.unwrap_or(Duration::try_days(7).expect("valid delta")),
delete_unverified, delete_unverified,
error_if_tagged_old_versions,
) )
.await?, .await?,
); );