Compare commits

...

35 Commits

Author SHA1 Message Date
BubbleCal
d8d3d712d6 fix ut
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-13 16:10:01 +08:00
BubbleCal
a98ea8bb53 chore: upgrade lance to 0.17.0-beta.3
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-13 15:15:25 +08:00
Lance Release
aaff43d304 Updating package-lock.json 2024-08-12 19:48:18 +00:00
Lance Release
d4c3a8ca87 Bump version: 0.9.0 → 0.10.0-beta.0 2024-08-12 19:48:02 +00:00
Lance Release
ff5bbfdd4c Bump version: 0.12.0 → 0.13.0-beta.0 2024-08-12 19:47:57 +00:00
Lei Xu
694ca30c7c feat(nodejs): add bitmap and label list index types in nodejs (#1532) 2024-08-11 12:06:02 -07:00
Lei Xu
b2317c904d feat: create bitmap and label list scalar index using python async api (#1529)
* Expose `bitmap` and `LabelList` scalar index type via Rust and Async
Python API
* Add documents
2024-08-11 09:16:11 -07:00
BubbleCal
613f3063b9 chore: upgrade lance to 0.16.1 (#1524)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-09 19:18:05 +08:00
BubbleCal
5d2cd7fb2e chore: upgrade object_store to 0.10.2 (#1523)
To use the same version with lance

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-09 12:03:46 +08:00
Ayush Chaurasia
a88e9bb134 docs: add lancedb embedding fcn on cloud docs (#1521) 2024-08-09 07:21:04 +05:30
Gagan Bhullar
9c1adff426 feat(python): add to_list to async api (#1520)
PR fixes #1517
2024-08-08 11:45:20 -07:00
BubbleCal
f9d5fa88a1 feat!: migrate FTS from tantivy to lance-index (#1483)
Lance now supports FTS, so add it into lancedb Python, TypeScript and
Rust SDKs.

For Python, we still use tantivy based FTS by default because the lance
FTS index now misses some features of tantivy.

For Python:
- Support to create lance based FTS index
- Support to specify columns for full text search (only available for
lance based FTS index)

For TypeScript:
- Change the search method so that it can accept both string and vector
- Support full text search

For Rust
- Support full text search

The others:
- Update the FTS doc

BREAKING CHANGE: 
- for Python, this renames the attached score column of FTS from "score"
to "_score", this could be a breaking change for users that rely the
scores

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-08 15:33:15 +08:00
Lance Release
4db554eea5 Updating package-lock.json 2024-08-07 20:56:12 +00:00
Lance Release
101066788d Bump version: 0.9.0-beta.0 → 0.9.0 2024-08-07 20:55:53 +00:00
Lance Release
c4135d9d30 Bump version: 0.8.0 → 0.9.0-beta.0 2024-08-07 20:55:52 +00:00
Lance Release
ec39d98571 Bump version: 0.12.0-beta.0 → 0.12.0 2024-08-07 20:55:40 +00:00
Lance Release
0cb37f0e5e Bump version: 0.11.0 → 0.12.0-beta.0 2024-08-07 20:55:39 +00:00
Gagan Bhullar
24e3507ee2 fix(node): export optimize options (#1518)
PR fixes #1514
2024-08-07 13:15:51 -07:00
Lei Xu
2bdf0a02f9 feat!: upgrade lance to 0.16 (#1519) 2024-08-07 13:15:22 -07:00
Gagan Bhullar
32123713fd feat(python): optimize stats repr method (#1510)
PR fixes #1507
2024-08-07 08:47:52 -07:00
Gagan Bhullar
d5a01ffe7b feat(python): index config repr method (#1509)
PR fixes #1506
2024-08-07 08:46:46 -07:00
Ayush Chaurasia
e01045692c feat(python): support embedding functions in remote table (#1405) 2024-08-07 20:22:43 +05:30
Rithik Kumar
a62f661d90 docs: revamp example docs (#1512)
Before: 
![Screenshot 2024-08-07
015834](https://github.com/user-attachments/assets/b817f846-78b3-4d6f-b4a0-dfa3f4d6be87)

After:
![Screenshot 2024-08-07
015852](https://github.com/user-attachments/assets/53370301-8c40-45f8-abe3-32f9d051597e)
![Screenshot 2024-08-07
015934](https://github.com/user-attachments/assets/63cdd038-32bb-4b3e-b9c4-1389d2754014)
![Screenshot 2024-08-07
015941](https://github.com/user-attachments/assets/70388680-9c2b-49ef-ba00-2bb015988214)
![Screenshot 2024-08-07
015949](https://github.com/user-attachments/assets/76335a33-bb6f-473c-896f-447320abcc25)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-07 03:56:59 +05:30
Ayush Chaurasia
4769d8eb76 feat(python): multi-vector reranking support (#1481)
Currently targeting the following usage:
```
from lancedb.rerankers import CrossEncoderReranker

reranker = CrossEncoderReranker()

query = "hello"

res1 = table.search(query, vector_column_name="vector").limit(3)
res2 = table.search(query, vector_column_name="text_vector").limit(3)
res3 = table.search(query, vector_column_name="meta_vector").limit(3)

reranked = reranker.rerank_multivector(
               [res1, res2, res3],  
              deduplicate=True,
              query=query # some reranker models need query
)
```
- This implements rerank_multivector function in the base reranker so
that all rerankers that implement rerank_vector will automatically have
multivector reranking support
- Special case for RRF reranker that just uses its existing
rerank_hybrid fcn to multi-vector reranking.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-08-07 01:45:46 +05:30
Ayush Chaurasia
d07d7a5980 chore: update polars version range (#1508) 2024-08-06 23:43:15 +05:30
Robby
8d2ff7b210 feat(python): add watsonx embeddings to registry (#1486)
Related issue: https://github.com/lancedb/lancedb/issues/1412

---------

Co-authored-by: Robby <h0rv@users.noreply.github.com>
2024-08-06 10:58:33 +05:30
Will Jones
61c05b51a0 fix(nodejs): address import issues in lancedb npm module (#1503)
Fixes [#1496](https://github.com/lancedb/lancedb/issues/1496)
2024-08-05 16:30:27 -07:00
Will Jones
7801ab9b8b ci: fix release by upgrading to Node 18 (#1494)
Building with Node 16 produced this error:

```
npm ERR! code ENOENT
npm ERR! syscall chmod
npm ERR! path /io/nodejs/node_modules/apache-arrow-15/bin/arrow2csv.cjs
npm ERR! errno -2
npm ERR! enoent ENOENT: no such file or directory, chmod '/io/nodejs/node_modules/apache-arrow-15/bin/arrow2csv.cjs'
npm ERR! enoent This is related to npm not being able to find a file.
npm ERR! enoent 
```

[CI
Failure](https://github.com/lancedb/lancedb/actions/runs/10117131772/job/27981475770).
This looks like it is https://github.com/apache/arrow/issues/43341

Upgrading to Node 18 makes this goes away. Since Node 18 requires glibc
>= 2_28, we had to upgrade the manylinux version we are using. This is
fine since we already state a minimum Node version of 18.

This also upgrades the openssl version we bundle, as well as
consolidates the build files.
2024-08-05 14:08:42 -07:00
Rithik Kumar
d297da5a7e docs: update examples docs (#1488)
Testing Workflow with my first PR.
Before:
![Screenshot 2024-08-01
183326](https://github.com/user-attachments/assets/83d22101-8bbf-4b18-81e4-f740e605727a)

After:
![Screenshot 2024-08-01
183333](https://github.com/user-attachments/assets/a5e4cd2c-c524-4009-81d5-75b2b0361f83)
2024-08-01 18:54:45 +05:30
Ryan Green
6af69b57ad fix: return LanceMergeInsertBuilder in overridden merge_insert method on remote table (#1484) 2024-07-31 12:25:16 -02:30
Cory Grinstead
a062a92f6b docs: custom embedding function for ts (#1479) 2024-07-30 18:19:55 -05:00
Gagan Bhullar
277b753fd8 fix: run java stages in parallel (#1472)
This PR is for issue - https://github.com/lancedb/lancedb/issues/1331
2024-07-27 12:04:32 -07:00
Lance Release
f78b7863f6 Updating package-lock.json 2024-07-26 20:18:55 +00:00
Lance Release
e7d824af2b Bump version: 0.8.0-beta.0 → 0.8.0 2024-07-26 20:18:37 +00:00
Lance Release
02f1ec775f Bump version: 0.7.2 → 0.8.0-beta.0 2024-07-26 20:18:36 +00:00
102 changed files with 2340 additions and 663 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.7.2"
current_version = "0.10.0-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -3,6 +3,8 @@ on:
push:
branches:
- main
paths:
- java/**
pull_request:
paths:
- java/**
@@ -21,9 +23,42 @@ env:
CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1"
jobs:
linux-build:
linux-build-java-11:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11 & 17
name: ubuntu-22.04 + Java 11
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
linux-build-java-17:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 17
defaults:
run:
working-directory: ./java
@@ -47,20 +82,12 @@ jobs:
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
- name: Running tests with Java 17
run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
@@ -83,3 +110,4 @@ jobs:
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -20,20 +20,23 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.15.0", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.15.0" }
lance-linalg = { "version" = "=0.15.0" }
lance-testing = { "version" = "=0.15.0" }
lance-datafusion = { "version" = "=0.15.0" }
lance = { "version" = "=0.17.0", "features" = [
"dynamodb",
], git = "https://github.com/lancedb/lance.git", tag = "v0.17.0-beta.2" }
lance-index = { "version" = "=0.17.0", git = "https://github.com/lancedb/lance.git", tag = "v0.17.0-beta.2" }
lance-linalg = { "version" = "=0.17.0", git = "https://github.com/lancedb/lance.git", tag = "v0.17.0-beta.2" }
lance-testing = { "version" = "=0.17.0", git = "https://github.com/lancedb/lance.git", tag = "v0.17.0-beta.2" }
lance-datafusion = { "version" = "=0.17.0", git = "https://github.com/lancedb/lance.git", tag = "v0.17.0-beta.2" }
lance-encoding = { "version" = "=0.17.0", git = "https://github.com/lancedb/lance.git", tag = "v0.17.0-beta.2" }
# Note that this one does not include pyarrow
arrow = { version = "52.1", optional = false }
arrow-array = "52.1"
arrow-data = "52.1"
arrow-ipc = "52.1"
arrow-ord = "52.1"
arrow-schema = "52.1"
arrow-arith = "52.1"
arrow-cast = "52.1"
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
arrow-data = "52.2"
arrow-ipc = "52.2"
arrow-ord = "52.2"
arrow-schema = "52.2"
arrow-arith = "52.2"
arrow-cast = "52.2"
async-trait = "0"
chrono = "0.4.35"
datafusion-physical-plan = "40.0"
@@ -42,7 +45,7 @@ half = { "version" = "=2.4.1", default-features = false, features = [
] }
futures = "0"
log = "0.4"
object_store = "0.10.1"
object_store = "0.10.2"
pin-project = "1.0.7"
snafu = "0.7.4"
url = "2"

View File

@@ -18,4 +18,4 @@ docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH
bash ci/manylinux_node/build_vectordb.sh $ARCH

View File

@@ -4,9 +4,9 @@ ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs
pushd ci/manylinux_node
docker build \
-t lancedb-nodejs-manylinux \
-t lancedb-node-manylinux-$ARCH \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
@@ -17,5 +17,5 @@ popd
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH
lancedb-node-manylinux-$ARCH \
bash ci/manylinux_node/build_lancedb.sh $ARCH

View File

@@ -4,7 +4,7 @@
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
FROM quay.io/pypa/manylinux_2_28_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user

View File

View File

@@ -6,7 +6,7 @@
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
git clone -b OpenSSL_1_1_1v \
--single-branch \
https://github.com/openssl/openssl.git

View File

@@ -8,7 +8,7 @@ install_node() {
source "$HOME"/.bashrc
nvm install --no-progress 16
nvm install --no-progress 18
}
install_rust() {

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -141,12 +141,15 @@ nav:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
@@ -221,14 +224,24 @@ nav:
- PromptTools: integrations/prompttools.md
- Examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- API reference:
- Overview: api_reference.md
- Python: python/python.md

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>

After

Width:  |  Height:  |  Size: 1.7 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -15,198 +15,226 @@ There is another optional layer of abstraction available: `TextEmbeddingFunction
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
=== "Python"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
```python
from lancedb.pydantic import LanceModel, Vector
=== "Python"
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
```python
from lancedb.pydantic import LanceModel, Vector
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
tbl = db.create_table("table", schema=TextModelSchema)
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
tbl = db.create_table("table", schema=TextModelSchema)
NOTE:
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
```
!!! note
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
=== "Python"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
=== "TypeScript"
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```
Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!

View File

@@ -518,6 +518,82 @@ tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
# IBM watsonx.ai Embeddings
Generate text embeddings using IBM's watsonx.ai platform.
## Supported Models
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
- `ibm/slate-125m-english-rtrvr`
- `ibm/slate-30m-english-rtrvr`
- `sentence-transformers/all-minilm-l12-v2`
- `intfloat/multilingual-e5-large`
## Parameters
The following parameters can be passed to the `create` method:
| Parameter | Type | Default Value | Description |
|------------|----------|----------------------------------|-----------------------------------------------------------|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
| url | str | None | Optional custom URL for the watsonx.ai instance |
| params | dict | None | Optional additional parameters for the embedding model |
## Usage Example
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
```
pip install ibm-watsonx-ai
```
Optionally set environment variables (if not passing credentials to `create` directly):
```sh
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
```
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
watsonx_embed = EmbeddingFunctionRegistry
.get_instance()
.get("watsonx")
.create(
name="ibm/slate-125m-english-rtrvr",
# Uncomment and set these if not using environment variables
# api_key="your_api_key_here",
# project_id="your_project_id_here",
# url="your_watsonx_url_here",
# params={...},
)
class TextModel(LanceModel):
text: str = watsonx_embed.SourceField()
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"},
]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
tbl.add(data)
rs = tbl.search("hello").limit(1).to_pandas()
print(rs)
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.
@@ -721,4 +797,4 @@ Usage Example:
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
```

View File

@@ -2,8 +2,8 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! Note "LanceDB cloud doesn't support embedding functions yet"
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
!!! Note "Embedding functions on LanceDB cloud"
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.

View File

@@ -99,28 +99,28 @@ LanceDB registers the Sentence Transformers embeddings function in the registry
Coming Soon!
### Jina Embeddings
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
`jina-clip-v1` can handle both text and images and other models only support `text`.
You need to pass `JINA_API_KEY` in the environment variable or pass it as `api_key` to `create` method.
### Embedding function with LanceDB cloud
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
os.environ['JINA_API_KEY'] = "jina_*"
os.environ['OPENAI_API_KEY'] = "..."
db = lancedb.connect("/tmp/db")
func = get_registry().get("jina").create(name="jina-clip-v1")
db = lancedb.connect(
uri="db://....",
api_key="sk_...",
region="us-east-1"
)
func = get_registry().get("openai").create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},

View File

@@ -10,7 +10,7 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
## Applications powered by LanceDB
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |
| Project Name | Description |
| --- | --- |
| **Ultralytics Explorer 🚀**<br>[![Ultralytics](https://img.shields.io/badge/Ultralytics-Docs-green?labelColor=0f3bc4&style=flat-square&logo=https://cdn.prod.website-files.com/646dd1f1a3703e451ba81ecc/64994922cf2a6385a4bf4489_UltralyticsYOLO_mark_blue.svg&link=https://docs.ultralytics.com/datasets/explorer/)](https://docs.ultralytics.com/datasets/explorer/)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
| **Website Chatbot🤖**<br>[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&amp;env=OPENAI_API_KEY&amp;envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&amp;project-name=lancedb-vercel-chatbot&amp;repository-name=lancedb-vercel-chatbot&amp;demo-title=LanceDB%20Chatbot%20Demo&amp;demo-description=Demo%20website%20chatbot%20with%20LanceDB.&amp;demo-url=https%3A%2F%2Flancedb.vercel.app&amp;demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |

View File

@@ -0,0 +1,13 @@
# Build from Scratch with LanceDB 🚀
Start building your GenAI applications from the ground up using LanceDB's efficient vector-based document retrieval capabilities! 📄
#### Get Started in Minutes ⏱️
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to proof of concept quickly with applied examples. Get started and see what you can create! 💻
| **Build From Scratch** | **Description** | **Links** |
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)]() |
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |

View File

@@ -0,0 +1,28 @@
# Multimodal Search with LanceDB 🔍💡
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus and unlock new possibilities! 🔓💡
#### Explore the Future of Search 🚀
Unlock the power of multimodal search with LanceDB, enabling efficient vector-based retrieval of text and image data! 📊💻
| **Multimodal** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Revolutionize search with Multimodal CLIP and DiffusionDB, combining text and image understanding for a new dimension of discovery! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search Youtube videos using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Discover relevant documents and images with a single query, using LanceDB's multimodal search capabilities to bridge the gap between text and visuals! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Dive into vision-centric exploration of images with Cambrian-1, powered by LanceDB's multimodal search to uncover new insights! 🔎 | [![GitHub](../../assets/github.svg)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br>[![Open In Collab](../../assets/colab.svg)]() <br> [![Python](../../assets/python.svg)]() <br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
[Clip_diffusionDB_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.ipynb
[Clip_diffusionDB_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.py
[Clip_diffusionDB_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
[Clip_youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search
[Clip_youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb
[Clip_youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.py
[Clip_youtube_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/

View File

@@ -0,0 +1,85 @@
**🔍💡 RAG: Revolutionize Information Retrieval with LanceDB 🔓**
====================================================================
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, the ultimate solution for efficient vector-based information retrieval 📊. Input text queries and retrieve relevant documents with lightning-fast speed ⚡️ and accuracy ✅. Generate comprehensive answers by combining retrieved information, uncovering new insights 🔍 and connections.
### Experience the Future of Search 🔄
Experience the future of search with RAG, transforming information retrieval and answer generation. Apply RAG to various industries, streamlining processes 📈, saving time ⏰, and resources 💰. Stay ahead of the curve with innovative technology 🔝, powered by LanceDB. Discover the power of RAG with LanceDB and transform your industry with innovative solutions 💡.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| **RAG with Matryoshka Embeddings and LlamaIndex** 🪆🔗 | Utilize **Matryoshka embeddings** and **LlamaIndex** to improve the efficiency and accuracy of your RAG models. 📈✨ | [![Github](../../assets/github.svg)][matryoshka_github] <br>[![Open In Collab](../../assets/colab.svg)][matryoshka_colab] |
| **Improve RAG with Re-ranking** 📈🔄 | Enhance your RAG applications by implementing **re-ranking strategies** for more relevant document retrieval. 📚🔍 | [![Github](../../assets/github.svg)][rag_reranking_github] <br>[![Open In Collab](../../assets/colab.svg)][rag_reranking_colab] <br>[![Ghost](../../assets/ghost.svg)][rag_reranking_ghost] |
| **Instruct-Multitask** 🧠🎯 | Integrate the **Instruct Embedding Model** with LanceDB to streamline your embedding API, reducing redundant code and overhead. 🌐📊 | [![Github](../../assets/github.svg)][instruct_multitask_github] <br>[![Open In Collab](../../assets/colab.svg)][instruct_multitask_colab] <br>[![Python](../../assets/python.svg)][instruct_multitask_python] <br>[![Ghost](../../assets/ghost.svg)][instruct_multitask_ghost] |
| **Improve RAG with HyDE** 🌌🔍 | Use **Hypothetical Document Embeddings** for efficient, accurate, and unsupervised dense retrieval. 📄🔍 | [![Github](../../assets/github.svg)][hyde_github] <br>[![Open In Collab](../../assets/colab.svg)][hyde_colab]<br>[![Ghost](../../assets/ghost.svg)][hyde_ghost] |
| **Improve RAG with LOTR** 🧙‍♂️📜 | Enhance RAG with **Lord of the Retriever (LOTR)** to address 'Lost in the Middle' challenges, especially in medical data. 🌟📜 | [![Github](../../assets/github.svg)][lotr_github] <br>[![Open In Collab](../../assets/colab.svg)][lotr_colab] <br>[![Ghost](../../assets/ghost.svg)][lotr_ghost] |
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [![Github](../../assets/github.svg)][parent_doc_retriever_github] <br>[![Open In Collab](../../assets/colab.svg)][parent_doc_retriever_colab] <br>[![Ghost](../../assets/ghost.svg)][parent_doc_retriever_ghost] |
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[![Github](../../assets/github.svg)][corrective_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][corrective_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][corrective_rag_ghost] |
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [![Github](../../assets/github.svg)][compression_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][compression_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][compression_rag_ghost] |
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to academic papers, focusing on ArXiv papers, with Forward-Looking Active REtrieval augmented generation.🚀🌟 | [![Github](../../assets/github.svg)][flare_github] <br>[![Open In Collab](../../assets/colab.svg)][flare_colab] <br>[![Ghost](../../assets/ghost.svg)][flare_ghost] |
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like Cross Encoders, ColBERT v2, and FlashRank for improved document retrieval precision and recall 🔍📈 | [![Github](../../assets/github.svg)][query_github] <br>[![Open In Collab](../../assets/colab.svg)][query_colab] |
| **RAG Fusion** ⚡🌐 | Revolutionize search with RAG Fusion, utilizing the **RRF algorithm** to rerank documents based on user queries, and leveraging LanceDB and OPENAI Embeddings for efficient information retrieval ⚡🌐 | [![Github](../../assets/github.svg)][fusion_github] <br>[![Open In Collab](../../assets/colab.svg)][fusion_colab] |
| **Agentic RAG** 🤖📚 | Unlock autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, enabling proactive and informed decision-making 🤖📚 | [![Github](../../assets/github.svg)][agentic_github] <br>[![Open In Collab](../../assets/colab.svg)][agentic_colab] |
[matryoshka_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex
[matryoshka_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex/RAG_with_MatryoshkaEmbedding_and_Llamaindex.ipynb
[rag_reranking_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking
[rag_reranking_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking/main.ipynb
[rag_reranking_ghost]: https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544
[instruct_multitask_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask
[instruct_multitask_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.ipynb
[instruct_multitask_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.py
[instruct_multitask_ghost]: https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543
[hyde_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE
[hyde_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb
[hyde_ghost]: https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb
[lotr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR
[lotr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR/main.ipynb
[lotr_ghost]: https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35
[parent_doc_retriever_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever
[parent_doc_retriever_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever/main.ipynb
[parent_doc_retriever_ghost]: https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6
[corrective_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph
[corrective_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb
[corrective_rag_ghost]: https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
[compression_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG
[compression_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb
[compression_rag_ghost]: https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/
[flare_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb

View File

@@ -1,9 +1,14 @@
# Full-text search
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes phrase queries, re-ranking, and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
## Installation
## Installation (Only for Tantivy-based FTS)
!!! note
No need to install the tantivy dependency if using native FTS
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
@@ -14,42 +19,83 @@ pip install tantivy==0.20.1
## Example
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search.
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
```python
import lancedb
=== "Python"
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
import lancedb
table = db.create_table(
"my_table",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
```
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
## Create FTS index on single column
table = db.create_table(
"my_table",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
The FTS index must be created before you can search via keywords.
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text")
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
```python
table.create_fts_index("text")
```
=== "TypeScript"
To search an FTS index via keywords, LanceDB's `table.search` accepts a string as input:
```typescript
import * as lancedb from "@lancedb/lancedb";
const uri = "data/sample-lancedb"
const db = await lancedb.connect(uri);
```python
table.search("puppy").limit(10).select(["text"]).to_list()
```
const data = [
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
];
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
await tbl.createIndex("text", {
config: lancedb.Index.fts(),
});
This returns the result as a list of dictionaries as follows.
await tbl
.search("puppy")
.select(["text"])
.limit(10)
.toArray();
```
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
```
=== "Rust"
```rust
let uri = "data/sample-lancedb";
let db = connect(uri).execute().await?;
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
let tbl = db
.create_table("my_table", initial_data)
.execute()
.await?;
tbl
.create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
.execute()
.await?;
tbl
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
.limit(10)
.execute()
.await?;
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
For now, this is supported in tantivy way only.
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
@@ -57,20 +103,33 @@ This returns the result as a list of dictionaries as follows.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
```python
table.create_fts_index("text", tokenizer_name="en_stem")
```
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
The following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
=== "use_tantivy=True"
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
```python
table.create_fts_index(["text1", "text2"])
```
=== "use_tantivy=True"
```python
table.create_fts_index(["text1", "text2"])
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
Note that the search API call does not change - you can search over all indexed columns at once.
@@ -80,19 +139,48 @@ Currently the LanceDB full text search feature supports *post-filtering*, meanin
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
=== "TypeScript"
```typescript
await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.toArray();
```
=== "Rust"
```rust
table
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
## Sorting
!!! warning "Warn"
Sorting is available for only Tantivy-based FTS
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
field. For example,
```
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
```python
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
(table.search("terms", ordering_field_name="sort_by_field")
.limit(20)
@@ -105,8 +193,8 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
@@ -116,6 +204,9 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
## Phrase queries vs. terms queries
!!! warning "Warn"
Phrase queries are available for only Tantivy-based FTS
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
@@ -142,7 +233,7 @@ enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
@@ -150,7 +241,7 @@ In general, a query that's declared as a phrase query will be wrapped in double
double quotes replaced by single quotes.
## Configurations
## Configurations (Only for Tantivy-based FTS)
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
@@ -164,6 +255,8 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
## Current limitations
For that Tantivy-based FTS:
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.

View File

@@ -113,6 +113,10 @@ lists the indices that LanceDb supports.
::: lancedb.index.BTree
::: lancedb.index.Bitmap
::: lancedb.index.LabelList
::: lancedb.index.IvfPq
## Querying (Asynchronous)

View File

@@ -5,4 +5,5 @@ pylance
duckdb
--extra-index-url https://download.pytorch.org/whl/cpu
torch
polars
polars>=0.19, <=1.3.0

View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.7.2",
"version": "0.10.0-beta.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.7.2",
"version": "0.10.0-beta.0",
"cpu": [
"x64",
"arm64"

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.7.2",
"version": "0.10.0-beta.0",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",

View File

@@ -20,7 +20,6 @@ napi = { version = "2.16.8", default-features = false, features = [
"async",
] }
napi-derive = "2.16.4"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }

View File

@@ -1,3 +1,4 @@
import * as apiArrow from "apache-arrow";
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
@@ -69,7 +70,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
return 3;
}
embeddingDataType() {
return new arrow.Float32();
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
@@ -82,7 +83,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
@@ -119,7 +120,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
return 3;
}
embeddingDataType() {
return new arrow.Float32();
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
@@ -144,7 +145,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
return 3;
}
embeddingDataType() {
return new arrow.Float32();
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
@@ -154,7 +155,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
const expectedMetadata = new Map<string, string>([

View File

@@ -31,7 +31,9 @@ import {
Float64,
Int32,
Int64,
List,
Schema,
Utf8,
makeArrowTable,
} from "../lancedb/arrow";
import {
@@ -331,6 +333,7 @@ describe("When creating an index", () => {
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
new Field("tags", new List(new Field("item", new Utf8(), true))),
]);
let tbl: Table;
let queryVec: number[];
@@ -346,6 +349,7 @@ describe("When creating an index", () => {
vec: Array(32)
.fill(1)
.map(() => Math.random()),
tags: ["tag1", "tag2", "tag3"],
})),
{
schema,
@@ -428,6 +432,22 @@ describe("When creating an index", () => {
}
});
test("create a bitmap index", async () => {
await tbl.createIndex("id", {
config: Index.bitmap(),
});
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
});
test("create a label list index", async () => {
await tbl.createIndex("tags", {
config: Index.labelList(),
});
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
});
test("should be able to get index stats", async () => {
await tbl.createIndex("id");
@@ -785,11 +805,26 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
];
const table = await db.createTable("test", data);
expect(table.search("hello").toArray()).rejects.toThrow(
expect(table.search("hello", "vector").toArray()).rejects.toThrow(
"No embedding functions are defined in the table",
);
});
test("full text search if no embedding function provided", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
});
const results = await table.search("hello").toArray();
expect(results[0].text).toBe(data[0].text);
});
test.each([
[0.4, 0.5, 0.599], // number[]
Float32Array.of(0.4, 0.5, 0.599), // Float32Array

View File

@@ -0,0 +1,64 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import {
LanceSchema,
TextEmbeddingFunction,
getRegistry,
register,
} from "@lancedb/lancedb/embedding";
import { pipeline } from "@xenova/transformers";
// --8<-- [end:imports]
// --8<-- [start:embedding_impl]
@register("sentence-transformers")
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
name = "Xenova/all-miniLM-L6-v2";
#ndims!: number;
extractor: any;
async init() {
this.extractor = await pipeline("feature-extraction", this.name);
this.#ndims = await this.generateEmbeddings(["hello"]).then(
(e) => e[0].length,
);
}
ndims() {
return this.#ndims;
}
toJSON() {
return {
name: this.name,
};
}
async generateEmbeddings(texts: string[]) {
const output = await this.extractor(texts, {
pooling: "mean",
normalize: true,
});
return output.tolist();
}
}
// -8<-- [end:embedding_impl]
// --8<-- [start:call_custom_function]
const registry = getRegistry();
const sentenceTransformer = await registry
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
.create();
const schema = LanceSchema({
vector: sentenceTransformer.vectorField(),
text: sentenceTransformer.sourceField(),
});
const db = await lancedb.connect("/tmp/db");
const table = await db.createEmptyTable("table", schema, { mode: "overwrite" });
await table.add([{ text: "hello" }, { text: "world" }]);
const results = await table.search("greeting").limit(1).toArray();
console.log(results[0].text);
// -8<-- [end:call_custom_function]

View File

@@ -0,0 +1,52 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const words = [
"apple",
"banana",
"cherry",
"date",
"elderberry",
"fig",
"grape",
];
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
doc: words[i % words.length],
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
await tbl.createIndex("doc", {
config: lancedb.Index.fts(),
});
// --8<-- [start:full_text_search]
let result = await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.toArray();
console.log(result);
// --8<-- [end:full_text_search]
console.log("SQL search: done");

View File

@@ -10,7 +10,11 @@
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
"@xenova/transformers": "^2.17.2",
"tsc": "^2.0.4"
},
"devDependencies": {
"typescript": "^5.5.4"
},
"peerDependencies": {
"typescript": "^5.0.0"
@@ -18,7 +22,7 @@
},
"..": {
"name": "@lancedb/lancedb",
"version": "0.7.1",
"version": "0.8.0",
"cpu": [
"x64",
"arm64"
@@ -43,26 +47,30 @@
"@types/axios": "^0.14.0",
"@types/jest": "^29.1.2",
"@types/tmp": "^0.2.6",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"apache-arrow-13": "npm:apache-arrow@13.0.0",
"apache-arrow-14": "npm:apache-arrow@14.0.0",
"apache-arrow-15": "npm:apache-arrow@15.0.0",
"apache-arrow-16": "npm:apache-arrow@16.0.0",
"apache-arrow-17": "npm:apache-arrow@17.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
"tmp": "^0.2.3",
"ts-jest": "^29.1.2",
"typedoc": "^0.25.7",
"typedoc-plugin-markdown": "^3.17.1",
"typescript": "^5.3.3",
"typedoc": "^0.26.4",
"typedoc-plugin-markdown": "^4.2.1",
"typescript": "^5.5.4",
"typescript-eslint": "^7.1.0"
},
"engines": {
"node": ">= 18"
},
"optionalDependencies": {
"@xenova/transformers": "^2.17.2",
"@xenova/transformers": ">=2.17 < 3",
"openai": "^4.29.2"
},
"peerDependencies": {
"apache-arrow": "^15.0.0"
"apache-arrow": ">=13.0.0 <=17.0.0"
}
},
"node_modules/@huggingface/jinja": {
@@ -785,6 +793,15 @@
"b4a": "^1.6.4"
}
},
"node_modules/tsc": {
"version": "2.0.4",
"resolved": "https://registry.npmjs.org/tsc/-/tsc-2.0.4.tgz",
"integrity": "sha512-fzoSieZI5KKJVBYGvwbVZs/J5za84f2lSTLPYf6AGiIf43tZ3GNrI1QzTLcjtyDDP4aLxd46RTZq1nQxe7+k5Q==",
"license": "MIT",
"bin": {
"tsc": "bin/tsc"
}
},
"node_modules/tunnel-agent": {
"version": "0.6.0",
"resolved": "https://registry.npmjs.org/tunnel-agent/-/tunnel-agent-0.6.0.tgz",
@@ -797,10 +814,11 @@
}
},
"node_modules/typescript": {
"version": "5.5.2",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.2.tgz",
"integrity": "sha512-NcRtPEOsPFFWjobJEtfihkLCZCXZt/os3zf8nTxjVH3RvTSxjrCamJpbExGvYOF+tFHc3pA65qpdwPbzjohhew==",
"peer": true,
"version": "5.5.4",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.4.tgz",
"integrity": "sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==",
"dev": true,
"license": "Apache-2.0",
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"

View File

@@ -13,7 +13,16 @@
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
},
"peerDependencies": {
"typescript": "^5.0.0"
"devDependencies": {
"typescript": "^5.5.4"
},
"compilerOptions": {
"target": "ESNext",
"module": "ESNext",
"moduleResolution": "Node",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
}
}

View File

@@ -32,6 +32,7 @@ const _results2 = await tbl
.distanceType("cosine")
.limit(10)
.toArray();
console.log(_results2);
// --8<-- [end:search2]
console.log("search: done");

View File

@@ -103,50 +103,11 @@ export type IntoVector =
| number[]
| Promise<Float32Array | Float64Array | number[]>;
export type FloatLike =
| import("apache-arrow-13").Float
| import("apache-arrow-14").Float
| import("apache-arrow-15").Float
| import("apache-arrow-16").Float
| import("apache-arrow-17").Float;
export type DataTypeLike =
| import("apache-arrow-13").DataType
| import("apache-arrow-14").DataType
| import("apache-arrow-15").DataType
| import("apache-arrow-16").DataType
| import("apache-arrow-17").DataType;
export function isArrowTable(value: object): value is TableLike {
if (value instanceof ArrowTable) return true;
return "schema" in value && "batches" in value;
}
export function isDataType(value: unknown): value is DataTypeLike {
return (
value instanceof DataType ||
DataType.isNull(value) ||
DataType.isInt(value) ||
DataType.isFloat(value) ||
DataType.isBinary(value) ||
DataType.isLargeBinary(value) ||
DataType.isUtf8(value) ||
DataType.isLargeUtf8(value) ||
DataType.isBool(value) ||
DataType.isDecimal(value) ||
DataType.isDate(value) ||
DataType.isTime(value) ||
DataType.isTimestamp(value) ||
DataType.isInterval(value) ||
DataType.isDuration(value) ||
DataType.isList(value) ||
DataType.isStruct(value) ||
DataType.isUnion(value) ||
DataType.isFixedSizeBinary(value) ||
DataType.isFixedSizeList(value) ||
DataType.isMap(value) ||
DataType.isDictionary(value)
);
}
export function isNull(value: unknown): value is Null {
return value instanceof Null || DataType.isNull(value);
}

View File

@@ -44,10 +44,20 @@ export interface CreateTableOptions {
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/
*/
storageOptions?: Record<string, string>;
/**
* The version of the data storage format to use.
*
* The default is `legacy`, which is Lance format v1.
* `stable` is the new format, which is Lance format v2.
*/
dataStorageVersion?: string;
/**
* If true then data files will be written with the legacy format
*
* The default is true while the new format is in beta
*
* Deprecated.
*/
useLegacyFormat?: boolean;
schema?: SchemaLike;
@@ -247,12 +257,19 @@ export class LocalConnection extends Connection {
throw new Error("data is required");
}
const { buf, mode } = await Table.parseTableData(data, options);
let dataStorageVersion = "legacy";
if (options?.dataStorageVersion !== undefined) {
dataStorageVersion = options.dataStorageVersion;
} else if (options?.useLegacyFormat !== undefined) {
dataStorageVersion = options.useLegacyFormat ? "legacy" : "stable";
}
const innerTable = await this.inner.createTable(
nameOrOptions,
buf,
mode,
cleanseStorageOptions(options?.storageOptions),
options?.useLegacyFormat,
dataStorageVersion,
);
return new LocalTable(innerTable);
@@ -276,6 +293,13 @@ export class LocalConnection extends Connection {
metadata = registry.getTableMetadata([embeddingFunction]);
}
let dataStorageVersion = "legacy";
if (options?.dataStorageVersion !== undefined) {
dataStorageVersion = options.dataStorageVersion;
} else if (options?.useLegacyFormat !== undefined) {
dataStorageVersion = options.useLegacyFormat ? "legacy" : "stable";
}
const table = makeEmptyTable(schema, metadata);
const buf = await fromTableToBuffer(table);
const innerTable = await this.inner.createEmptyTable(
@@ -283,7 +307,7 @@ export class LocalConnection extends Connection {
buf,
mode,
cleanseStorageOptions(options?.storageOptions),
options?.useLegacyFormat,
dataStorageVersion,
);
return new LocalTable(innerTable);
}

View File

@@ -15,13 +15,12 @@
import "reflect-metadata";
import {
DataType,
DataTypeLike,
Field,
FixedSizeList,
Float,
Float32,
FloatLike,
type IntoVector,
isDataType,
Utf8,
isFixedSizeList,
isFloat,
newVectorType,
@@ -93,11 +92,12 @@ export abstract class EmbeddingFunction<
* @see {@link lancedb.LanceSchema}
*/
sourceField(
optionsOrDatatype: Partial<FieldOptions> | DataTypeLike,
): [DataTypeLike, Map<string, EmbeddingFunction>] {
let datatype = isDataType(optionsOrDatatype)
? optionsOrDatatype
: optionsOrDatatype?.datatype;
optionsOrDatatype: Partial<FieldOptions> | DataType,
): [DataType, Map<string, EmbeddingFunction>] {
let datatype =
"datatype" in optionsOrDatatype
? optionsOrDatatype.datatype
: optionsOrDatatype;
if (!datatype) {
throw new Error("Datatype is required");
}
@@ -123,15 +123,17 @@ export abstract class EmbeddingFunction<
let dims: number | undefined = this.ndims();
// `func.vectorField(new Float32())`
if (isDataType(optionsOrDatatype)) {
dtype = optionsOrDatatype;
if (optionsOrDatatype === undefined) {
dtype = new Float32();
} else if (!("datatype" in optionsOrDatatype)) {
dtype = sanitizeType(optionsOrDatatype);
} else {
// `func.vectorField({
// datatype: new Float32(),
// dims: 10
// })`
dims = dims ?? optionsOrDatatype?.dims;
dtype = optionsOrDatatype?.datatype;
dtype = sanitizeType(optionsOrDatatype?.datatype);
}
if (dtype !== undefined) {
@@ -173,7 +175,7 @@ export abstract class EmbeddingFunction<
}
/** The datatype of the embeddings */
abstract embeddingDataType(): FloatLike;
abstract embeddingDataType(): Float;
/**
* Creates a vector representation for the given values.
@@ -192,6 +194,38 @@ export abstract class EmbeddingFunction<
}
}
/**
* an abstract class for implementing embedding functions that take text as input
*/
export abstract class TextEmbeddingFunction<
M extends FunctionOptions = FunctionOptions,
> extends EmbeddingFunction<string, M> {
//** Generate the embeddings for the given texts */
abstract generateEmbeddings(
texts: string[],
// biome-ignore lint/suspicious/noExplicitAny: we don't know what the implementor will do
...args: any[]
): Promise<number[][] | Float32Array[] | Float64Array[]>;
async computeQueryEmbeddings(data: string): Promise<Awaited<IntoVector>> {
return this.generateEmbeddings([data]).then((data) => data[0]);
}
embeddingDataType(): Float {
return new Float32();
}
override sourceField(): [DataType, Map<string, EmbeddingFunction>] {
return super.sourceField(new Utf8());
}
computeSourceEmbeddings(
data: string[],
): Promise<number[][] | Float32Array[] | Float64Array[]> {
return this.generateEmbeddings(data);
}
}
export interface FieldOptions<T extends DataType = DataType> {
datatype: T;
dims?: number;

View File

@@ -13,12 +13,11 @@
// limitations under the License.
import { Field, Schema } from "../arrow";
import { isDataType } from "../arrow";
import { sanitizeType } from "../sanitize";
import { EmbeddingFunction } from "./embedding_function";
import { EmbeddingFunctionConfig, getRegistry } from "./registry";
export { EmbeddingFunction } from "./embedding_function";
export { EmbeddingFunction, TextEmbeddingFunction } from "./embedding_function";
// We need to explicitly export '*' so that the `register` decorator actually registers the class.
export * from "./openai";
@@ -57,15 +56,15 @@ export function LanceSchema(
Partial<EmbeddingFunctionConfig>
>();
Object.entries(fields).forEach(([key, value]) => {
if (isDataType(value)) {
arrowFields.push(new Field(key, sanitizeType(value), true));
} else {
if (Array.isArray(value)) {
const [dtype, metadata] = value as [
object,
Map<string, EmbeddingFunction>,
];
arrowFields.push(new Field(key, sanitizeType(dtype), true));
parseEmbeddingFunctions(embeddingFunctions, key, metadata);
} else {
arrowFields.push(new Field(key, sanitizeType(value), true));
}
});
const registry = getRegistry();

View File

@@ -13,7 +13,7 @@
// limitations under the License.
import type OpenAI from "openai";
import { type EmbeddingCreateParams } from "openai/resources";
import type { EmbeddingCreateParams } from "openai/resources/index";
import { Float, Float32 } from "../arrow";
import { EmbeddingFunction } from "./embedding_function";
import { register } from "./registry";

View File

@@ -37,6 +37,13 @@ interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
export class EmbeddingFunctionRegistry {
#functions = new Map<string, EmbeddingFunctionConstructor>();
/**
* Get the number of registered functions
*/
length() {
return this.#functions.size;
}
/**
* Register an embedding function
* @param name The name of the function

View File

@@ -59,7 +59,7 @@ export {
export { Index, IndexOptions, IvfPqOptions } from "./indices";
export { Table, AddDataOptions, UpdateOptions } from "./table";
export { Table, AddDataOptions, UpdateOptions, OptimizeOptions } from "./table";
export * as embedding from "./embedding";

View File

@@ -175,6 +175,45 @@ export class Index {
static btree() {
return new Index(LanceDbIndex.btree());
}
/**
* Create a bitmap index.
*
* A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
*
* This index works best for low-cardinality columns, where the number of unique values
* is small (i.e., less than a few hundreds).
*/
static bitmap() {
return new Index(LanceDbIndex.bitmap());
}
/**
* Create a label list index.
*
* LabelList index is a scalar index that can be used on `List<T>` columns to
* support queries with `array_contains_all` and `array_contains_any`
* using an underlying bitmap index.
*/
static labelList() {
return new Index(LanceDbIndex.labelList());
}
/**
* Create a full text search index
*
* A full text search index is an index on a string column, so that you can conduct full
* text searches on the column.
*
* The results of a full text search are ordered by relevance measured by BM25.
*
* You can combine filters with full text search.
*
* For now, the full text search index only supports English, and doesn't support phrase search.
*/
static fts() {
return new Index(LanceDbIndex.fts());
}
}
export interface IndexOptions {

View File

@@ -88,6 +88,19 @@ export interface QueryExecutionOptions {
maxBatchLength?: number;
}
/**
* Options that control the behavior of a full text search
*/
export interface FullTextSearchOptions {
/**
* The columns to search
*
* If not specified, all indexed columns will be searched.
* For now, only one column can be searched.
*/
columns?: string | string[];
}
/** Common methods supported by all query types */
export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
implements AsyncIterable<RecordBatch>
@@ -134,6 +147,25 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
return this.where(predicate);
}
fullTextSearch(
query: string,
options?: Partial<FullTextSearchOptions>,
): this {
let columns: string[] | null = null;
if (options) {
if (typeof options.columns === "string") {
columns = [options.columns];
} else if (Array.isArray(options.columns)) {
columns = options.columns;
}
}
this.doCall((inner: NativeQueryType) =>
inner.fullTextSearch(query, columns),
);
return this;
}
/**
* Return only the specified columns.
*

View File

@@ -340,8 +340,14 @@ export function sanitizeType(typeLike: unknown): DataType<any> {
if (typeof typeLike !== "object" || typeLike === null) {
throw Error("Expected a Type but object was null/undefined");
}
if (!("typeId" in typeLike) || !(typeof typeLike.typeId !== "function")) {
throw Error("Expected a Type to have a typeId function");
if (
!("typeId" in typeLike) ||
!(
typeof typeLike.typeId !== "function" ||
typeof typeLike.typeId !== "number"
)
) {
throw Error("Expected a Type to have a typeId property");
}
let typeId: Type;
if (typeof typeLike.typeId === "function") {

View File

@@ -270,22 +270,23 @@ export abstract class Table {
* @returns {Query} A builder that can be used to parameterize the query
*/
abstract query(): Query;
/**
* Create a search query to find the nearest neighbors
* of the given query vector
* @param {string} query - the query. This will be converted to a vector using the table's provided embedding function
* @note If no embedding functions are defined in the table, this will error when collecting the results.
* of the given query
* @param {string | IntoVector} query - the query, a vector or string
* @param {string} queryType - the type of the query, "vector", "fts", or "auto"
* @param {string | string[]} ftsColumns - the columns to search in for full text search
* for now, only one column can be searched at a time.
*
* This is just a convenience method for calling `.query().nearestTo(await myEmbeddingFunction(query))`
* when "auto" is used, if the query is a string and an embedding function is defined, it will be treated as a vector query
* if the query is a string and no embedding function is defined, it will be treated as a full text search query
*/
abstract search(query: string): VectorQuery;
/**
* Create a search query to find the nearest neighbors
* of the given query vector
* @param {IntoVector} query - the query vector
* This is just a convenience method for calling `.query().nearestTo(query)`
*/
abstract search(query: IntoVector): VectorQuery;
abstract search(
query: string | IntoVector,
queryType?: string,
ftsColumns?: string | string[],
): VectorQuery | Query;
/**
* Search the table with a given query vector.
*
@@ -581,27 +582,50 @@ export class LocalTable extends Table {
query(): Query {
return new Query(this.inner);
}
search(query: string | IntoVector): VectorQuery {
if (typeof query !== "string") {
return this.vectorSearch(query);
} else {
const queryPromise = this.getEmbeddingFunctions().then(
async (functions) => {
// TODO: Support multiple embedding functions
const embeddingFunc: EmbeddingFunctionConfig | undefined = functions
.values()
.next().value;
if (!embeddingFunc) {
return Promise.reject(
new Error("No embedding functions are defined in the table"),
);
}
return await embeddingFunc.function.computeQueryEmbeddings(query);
},
);
return this.query().nearestTo(queryPromise);
search(
query: string | IntoVector,
queryType: string = "auto",
ftsColumns?: string | string[],
): VectorQuery | Query {
if (typeof query !== "string") {
if (queryType === "fts") {
throw new Error("Cannot perform full text search on a vector query");
}
return this.vectorSearch(query);
}
// If the query is a string, we need to determine if it is a vector query or a full text search query
if (queryType === "fts") {
return this.query().fullTextSearch(query, {
columns: ftsColumns,
});
}
// The query type is auto or vector
// fall back to full text search if no embedding functions are defined and the query is a string
if (queryType === "auto" && getRegistry().length() === 0) {
return this.query().fullTextSearch(query, {
columns: ftsColumns,
});
}
const queryPromise = this.getEmbeddingFunctions().then(
async (functions) => {
// TODO: Support multiple embedding functions
const embeddingFunc: EmbeddingFunctionConfig | undefined = functions
.values()
.next().value;
if (!embeddingFunc) {
return Promise.reject(
new Error("No embedding functions are defined in the table"),
);
}
return await embeddingFunc.function.computeQueryEmbeddings(query);
},
);
return this.query().nearestTo(queryPromise);
}
vectorSearch(vector: IntoVector): VectorQuery {

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.7.2",
"version": "0.10.0-beta.0",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.7.2",
"version": "0.10.0-beta.0",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.7.2",
"version": "0.10.0-beta.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.7.2",
"version": "0.10.0-beta.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.7.2",
"version": "0.10.0-beta.0",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.7.2",
"version": "0.8.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.7.2",
"version": "0.8.0",
"cpu": [
"x64",
"arm64"
@@ -43,7 +43,7 @@
"ts-jest": "^29.1.2",
"typedoc": "^0.26.4",
"typedoc-plugin-markdown": "^4.2.1",
"typescript": "^5.3.3",
"typescript": "^5.5.4",
"typescript-eslint": "^7.1.0"
},
"engines": {
@@ -9292,10 +9292,11 @@
}
},
"node_modules/typescript": {
"version": "5.3.3",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
"version": "5.5.4",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.4.tgz",
"integrity": "sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==",
"dev": true,
"license": "Apache-2.0",
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"

View File

@@ -10,7 +10,7 @@
"vector database",
"ann"
],
"version": "0.7.2",
"version": "0.10.0-beta.0",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
@@ -53,7 +53,7 @@
"ts-jest": "^29.1.2",
"typedoc": "^0.26.4",
"typedoc-plugin-markdown": "^4.2.1",
"typescript": "^5.3.3",
"typescript": "^5.5.4",
"typescript-eslint": "^7.1.0"
},
"ava": {

View File

@@ -13,13 +13,16 @@
// limitations under the License.
use std::collections::HashMap;
use std::str::FromStr;
use napi::bindgen_prelude::*;
use napi_derive::*;
use crate::table::Table;
use crate::ConnectionOptions;
use lancedb::connection::{ConnectBuilder, Connection as LanceDBConnection, CreateTableMode};
use lancedb::connection::{
ConnectBuilder, Connection as LanceDBConnection, CreateTableMode, LanceFileVersion,
};
use lancedb::ipc::{ipc_file_to_batches, ipc_file_to_schema};
#[napi]
@@ -120,7 +123,7 @@ impl Connection {
buf: Buffer,
mode: String,
storage_options: Option<HashMap<String, String>>,
use_legacy_format: Option<bool>,
data_storage_options: Option<String>,
) -> napi::Result<Table> {
let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
@@ -131,8 +134,11 @@ impl Connection {
builder = builder.storage_option(key, value);
}
}
if let Some(use_legacy_format) = use_legacy_format {
builder = builder.use_legacy_format(use_legacy_format);
if let Some(data_storage_option) = data_storage_options.as_ref() {
builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_option)
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
);
}
let tbl = builder
.execute()
@@ -148,7 +154,7 @@ impl Connection {
schema_buf: Buffer,
mode: String,
storage_options: Option<HashMap<String, String>>,
use_legacy_format: Option<bool>,
data_storage_options: Option<String>,
) -> napi::Result<Table> {
let schema = ipc_file_to_schema(schema_buf.to_vec()).map_err(|e| {
napi::Error::from_reason(format!("Failed to marshal schema from JS to Rust: {}", e))
@@ -163,8 +169,11 @@ impl Connection {
builder = builder.storage_option(key, value);
}
}
if let Some(use_legacy_format) = use_legacy_format {
builder = builder.use_legacy_format(use_legacy_format);
if let Some(data_storage_option) = data_storage_options.as_ref() {
builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_option)
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
);
}
let tbl = builder
.execute()

View File

@@ -14,7 +14,7 @@
use std::sync::Mutex;
use lancedb::index::scalar::BTreeIndexBuilder;
use lancedb::index::scalar::{BTreeIndexBuilder, FtsIndexBuilder};
use lancedb::index::vector::IvfPqIndexBuilder;
use lancedb::index::Index as LanceDbIndex;
use napi_derive::napi;
@@ -76,4 +76,25 @@ impl Index {
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
}
}
#[napi(factory)]
pub fn bitmap() -> Self {
Self {
inner: Mutex::new(Some(LanceDbIndex::Bitmap(Default::default()))),
}
}
#[napi(factory)]
pub fn label_list() -> Self {
Self {
inner: Mutex::new(Some(LanceDbIndex::LabelList(Default::default()))),
}
}
#[napi(factory)]
pub fn fts() -> Self {
Self {
inner: Mutex::new(Some(LanceDbIndex::FTS(FtsIndexBuilder::default()))),
}
}
}

View File

@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use lancedb::index::scalar::FullTextSearchQuery;
use lancedb::query::ExecutableQuery;
use lancedb::query::Query as LanceDbQuery;
use lancedb::query::QueryBase;
@@ -42,6 +43,12 @@ impl Query {
self.inner = self.inner.clone().only_if(predicate);
}
#[napi]
pub fn full_text_search(&mut self, query: String, columns: Option<Vec<String>>) {
let query = FullTextSearchQuery::new(query).columns(columns);
self.inner = self.inner.clone().full_text_search(query);
}
#[napi]
pub fn select(&mut self, columns: Vec<(String, String)>) {
self.inner = self.inner.clone().select(Select::dynamic(&columns));
@@ -138,6 +145,12 @@ impl VectorQuery {
self.inner = self.inner.clone().only_if(predicate);
}
#[napi]
pub fn full_text_search(&mut self, query: String, columns: Option<Vec<String>>) {
let query = FullTextSearchQuery::new(query).columns(columns);
self.inner = self.inner.clone().full_text_search(query);
}
#[napi]
pub fn select(&mut self, columns: Vec<(String, String)>) {
self.inner = self.inner.clone().select(Select::dynamic(&columns));

View File

@@ -293,6 +293,7 @@ impl Table {
.optimize(OptimizeAction::Prune {
older_than,
delete_unverified: None,
error_if_tagged_old_versions: None,
})
.await
.default_error()?

View File

@@ -9,7 +9,8 @@
"allowJs": true,
"resolveJsonModule": true,
"emitDecoratorMetadata": true,
"experimentalDecorators": true
"experimentalDecorators": true,
"moduleResolution": "Node"
},
"exclude": ["./dist/*"],
"typedocOptions": {

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.11.0"
current_version = "0.13.0-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.11.0"
version = "0.13.0-beta.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -3,7 +3,7 @@ name = "lancedb"
# version in Cargo.toml
dependencies = [
"deprecation",
"pylance==0.15.0",
"pylance==0.17.0-beta.2",
"ratelimiter~=1.0",
"requests>=2.31.0",
"retry>=0.9.2",
@@ -56,7 +56,7 @@ tests = [
"pytest-asyncio",
"duckdb",
"pytz",
"polars>=0.19",
"polars>=0.19, <=1.3.0",
"tantivy",
]
dev = ["ruff", "pre-commit"]
@@ -76,6 +76,7 @@ embeddings = [
"awscli>=1.29.57",
"botocore>=1.31.57",
"ollama",
"ibm-watsonx-ai>=1.1.2",
]
azure = ["adlfs>=2024.2.0"]

View File

@@ -24,7 +24,7 @@ class Connection(object):
mode: str,
data: pa.RecordBatchReader,
storage_options: Optional[Dict[str, str]] = None,
use_legacy_format: Optional[bool] = None,
data_storage_version: Optional[str] = None,
) -> Table: ...
async def create_empty_table(
self,
@@ -32,7 +32,7 @@ class Connection(object):
mode: str,
schema: pa.Schema,
storage_options: Optional[Dict[str, str]] = None,
use_legacy_format: Optional[bool] = None,
data_storage_version: Optional[str] = None,
) -> Table: ...
class Table:

View File

@@ -560,6 +560,7 @@ class AsyncConnection(object):
fill_value: Optional[float] = None,
storage_options: Optional[Dict[str, str]] = None,
*,
data_storage_version: Optional[str] = None,
use_legacy_format: Optional[bool] = None,
) -> AsyncTable:
"""Create an [AsyncTable][lancedb.table.AsyncTable] in the database.
@@ -603,9 +604,15 @@ class AsyncConnection(object):
connection will be inherited by the table, but can be overridden here.
See available options at
https://lancedb.github.io/lancedb/guides/storage/
use_legacy_format: bool, optional, default True
data_storage_version: optional, str, default "legacy"
The version of the data storage format to use. Newer versions are more
efficient but require newer versions of lance to read. The default is
"legacy" which will use the legacy v1 version. See the user guide
for more details.
use_legacy_format: bool, optional, default True. (Deprecated)
If True, use the legacy format for the table. If False, use the new format.
The default is True while the new format is in beta.
This method is deprecated, use `data_storage_version` instead.
Returns
@@ -765,13 +772,18 @@ class AsyncConnection(object):
if mode == "create" and exist_ok:
mode = "exist_ok"
if not data_storage_version:
data_storage_version = (
"legacy" if use_legacy_format is None or use_legacy_format else "stable"
)
if data is None:
new_table = await self._inner.create_empty_table(
name,
mode,
schema,
storage_options=storage_options,
use_legacy_format=use_legacy_format,
data_storage_version=data_storage_version,
)
else:
data = data_to_reader(data, schema)
@@ -780,7 +792,7 @@ class AsyncConnection(object):
mode,
data,
storage_options=storage_options,
use_legacy_format=use_legacy_format,
data_storage_version=data_storage_version,
)
return AsyncTable(new_table)

View File

@@ -26,3 +26,4 @@ from .transformers import TransformersEmbeddingFunction, ColbertEmbeddings
from .imagebind import ImageBindEmbeddings
from .utils import with_embeddings
from .jinaai import JinaEmbeddings
from .watsonx import WatsonxEmbeddings

View File

@@ -0,0 +1,111 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import cached_property
from typing import List, Optional, Dict, Union
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
import numpy as np
DEFAULT_WATSONX_URL = "https://us-south.ml.cloud.ibm.com"
MODELS_DIMS = {
"ibm/slate-125m-english-rtrvr": 768,
"ibm/slate-30m-english-rtrvr": 384,
"sentence-transformers/all-minilm-l12-v2": 384,
"intfloat/multilingual-e5-large": 1024,
}
@register("watsonx")
class WatsonxEmbeddings(TextEmbeddingFunction):
"""
API Docs:
---------
https://cloud.ibm.com/apidocs/watsonx-ai#text-embeddings
Supported embedding models:
---------------------------
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx
"""
name: str = "ibm/slate-125m-english-rtrvr"
api_key: Optional[str] = None
project_id: Optional[str] = None
url: Optional[str] = None
params: Optional[Dict] = None
@staticmethod
def model_names():
return [
"ibm/slate-125m-english-rtrvr",
"ibm/slate-30m-english-rtrvr",
"sentence-transformers/all-minilm-l12-v2",
"intfloat/multilingual-e5-large",
]
def ndims(self):
return self._ndims
@cached_property
def _ndims(self):
if self.name not in MODELS_DIMS:
raise ValueError(f"Unknown model name {self.name}")
return MODELS_DIMS[self.name]
def generate_embeddings(
self,
texts: Union[List[str], np.ndarray],
*args,
**kwargs,
) -> List[List[float]]:
return self._watsonx_client.embed_documents(
texts=list(texts),
*args,
**kwargs,
)
@cached_property
def _watsonx_client(self):
ibm_watsonx_ai = attempt_import_or_raise("ibm_watsonx_ai")
ibm_watsonx_ai_foundation_models = attempt_import_or_raise(
"ibm_watsonx_ai.foundation_models"
)
kwargs = {"model_id": self.name}
if self.params:
kwargs["params"] = self.params
if self.project_id:
kwargs["project_id"] = self.project_id
elif "WATSONX_PROJECT_ID" in os.environ:
kwargs["project_id"] = os.environ["WATSONX_PROJECT_ID"]
else:
raise ValueError("WATSONX_PROJECT_ID must be set or passed")
creds_kwargs = {}
if self.api_key:
creds_kwargs["api_key"] = self.api_key
elif "WATSONX_API_KEY" in os.environ:
creds_kwargs["api_key"] = os.environ["WATSONX_API_KEY"]
else:
raise ValueError("WATSONX_API_KEY must be set or passed")
if self.url:
creds_kwargs["url"] = self.url
else:
creds_kwargs["url"] = DEFAULT_WATSONX_URL
kwargs["credentials"] = ibm_watsonx_ai.Credentials(**creds_kwargs)
return ibm_watsonx_ai_foundation_models.Embeddings(**kwargs)

View File

@@ -8,7 +8,7 @@ from ._lancedb import (
)
class BTree(object):
class BTree:
"""Describes a btree index configuration
A btree index is an index on scalar columns. The index stores a copy of the
@@ -22,7 +22,8 @@ class BTree(object):
sizeof(Scalar) * 4096 bytes to find the correct row ids.
This index is good for scalar columns with mostly distinct values and does best
when the query is highly selective.
when the query is highly selective. It works with numeric, temporal, and string
columns.
The btree index does not currently have any parameters though parameters such as
the block size may be added in the future.
@@ -32,7 +33,44 @@ class BTree(object):
self._inner = LanceDbIndex.btree()
class IvfPq(object):
class Bitmap:
"""Describe a Bitmap index configuration.
A `Bitmap` index stores a bitmap for each distinct value in the column for
every row.
This index works best for low-cardinality numeric or string columns,
where the number of unique values is small (i.e., less than a few thousands).
`Bitmap` index can accelerate the following filters:
- `<`, `<=`, `=`, `>`, `>=`
- `IN (value1, value2, ...)`
- `between (value1, value2)`
- `is null`
For example, a bitmap index with a table with 1Bi rows, and 128 distinct values,
requires 128 / 8 * 1Bi bytes on disk.
"""
def __init__(self):
self._inner = LanceDbIndex.bitmap()
class LabelList:
"""Describe a LabelList index configuration.
`LabelList` is a scalar index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
For example, it works with `tags`, `categories`, `keywords`, etc.
"""
def __init__(self):
self._inner = LanceDbIndex.label_list()
class IvfPq:
"""Describes an IVF PQ Index
This index stores a compressed (quantized) copy of every vector. These vectors

View File

@@ -99,6 +99,9 @@ class Query(pydantic.BaseModel):
# if True then apply the filter before vector search
prefilter: bool = False
# full text search query
full_text_query: Optional[Union[str, dict]] = None
# top k results to return
k: int
@@ -131,6 +134,7 @@ class LanceQueryBuilder(ABC):
query_type: str,
vector_column_name: str,
ordering_field_name: str = None,
fts_columns: Union[str, List[str]] = None,
) -> LanceQueryBuilder:
"""
Create a query builder based on the given query and query type.
@@ -226,6 +230,7 @@ class LanceQueryBuilder(ABC):
self._limit = 10
self._columns = None
self._where = None
self._prefilter = False
self._with_row_id = False
@deprecation.deprecated(
@@ -664,12 +669,19 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
class LanceFtsQueryBuilder(LanceQueryBuilder):
"""A builder for full text search for LanceDB."""
def __init__(self, table: "Table", query: str, ordering_field_name: str = None):
def __init__(
self,
table: "Table",
query: str,
ordering_field_name: str = None,
fts_columns: Union[str, List[str]] = None,
):
super().__init__(table)
self._query = query
self._phrase_query = False
self.ordering_field_name = ordering_field_name
self._reranker = None
self._fts_columns = fts_columns
def phrase_query(self, phrase_query: bool = True) -> LanceFtsQueryBuilder:
"""Set whether to use phrase query.
@@ -689,6 +701,35 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
return self
def to_arrow(self) -> pa.Table:
tantivy_index_path = self._table._get_fts_index_path()
if Path(tantivy_index_path).exists():
return self.tantivy_to_arrow()
query = self._query
if self._phrase_query:
raise NotImplementedError(
"Phrase query is not yet supported in Lance FTS. "
"Use tantivy-based index instead for now."
)
if self._reranker:
raise NotImplementedError(
"Reranking is not yet supported in Lance FTS. "
"Use tantivy-based index instead for now."
)
ds = self._table.to_lance()
return ds.to_table(
columns=self._columns,
filter=self._where,
limit=self._limit,
prefilter=self._prefilter,
with_row_id=self._with_row_id,
full_text_query={
"query": query,
"columns": self._fts_columns,
},
)
def tantivy_to_arrow(self) -> pa.Table:
try:
import tantivy
except ImportError:
@@ -726,11 +767,11 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
index, query, self._limit, ordering_field=self.ordering_field_name
)
if len(row_ids) == 0:
empty_schema = pa.schema([pa.field("score", pa.float32())])
empty_schema = pa.schema([pa.field("_score", pa.float32())])
return pa.Table.from_pylist([], schema=empty_schema)
scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores)
output_tbl = output_tbl.append_column("_score", scores)
# this needs to match vector search results which are uint64
row_ids = pa.array(row_ids, type=pa.uint64())
@@ -784,8 +825,7 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
LanceFtsQueryBuilder
The LanceQueryBuilder object.
"""
self._reranker = reranker
return self
raise NotImplementedError("Reranking is not yet supported for FTS queries.")
class LanceEmptyQueryBuilder(LanceQueryBuilder):
@@ -856,13 +896,13 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
# convert to ranks first if needed
if self._norm == "rank":
vector_results = self._rank(vector_results, "_distance")
fts_results = self._rank(fts_results, "score")
fts_results = self._rank(fts_results, "_score")
# normalize the scores to be between 0 and 1, 0 being most relevant
vector_results = self._normalize_scores(vector_results, "_distance")
# In fts higher scores represent relevance. Not inverting them here as
# rerankers might need to preserve this score to support `return_score="all"`
fts_results = self._normalize_scores(fts_results, "score")
fts_results = self._normalize_scores(fts_results, "_score")
results = self._reranker.rerank_hybrid(
self._fts_query._query, vector_results, fts_results
@@ -1177,6 +1217,16 @@ class AsyncQueryBase(object):
await batch_iter.read_all(), schema=batch_iter.schema
)
async def to_list(self) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
"""
return (await self.to_arrow()).to_pylist()
async def to_pandas(self) -> "pd.DataFrame":
"""
Execute the query and collect the results into a pandas DataFrame.

View File

@@ -22,8 +22,9 @@ from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from lancedb.merge import LanceMergeInsertBuilder
from lancedb.embeddings import EmbeddingFunctionRegistry
from ..query import LanceVectorQueryBuilder
from ..query import LanceVectorQueryBuilder, LanceQueryBuilder
from ..table import Query, Table, _sanitize_data
from ..util import inf_vector_column_query, value_to_sql
from .arrow import to_ipc_binary
@@ -58,6 +59,21 @@ class RemoteTable(Table):
resp = self._conn._client.post(f"/v1/table/{self._name}/describe/")
return resp["version"]
@cached_property
def embedding_functions(self) -> dict:
"""
Get the embedding functions for the table
Returns
-------
funcs: dict
A mapping of the vector column to the embedding function
or empty dict if not configured.
"""
return EmbeddingFunctionRegistry.get_instance().parse_functions(
self.schema.metadata
)
def to_arrow(self) -> pa.Table:
"""to_arrow() is not yet supported on LanceDB cloud."""
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
@@ -213,7 +229,7 @@ class RemoteTable(Table):
data, _ = _sanitize_data(
data,
self.schema,
metadata=None,
metadata=self.schema.metadata,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
@@ -293,6 +309,7 @@ class RemoteTable(Table):
"""
if vector_column_name is None:
vector_column_name = inf_vector_column_query(self.schema)
query = LanceQueryBuilder._query_to_vector(self, query, vector_column_name)
return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(
@@ -336,7 +353,7 @@ class RemoteTable(Table):
See [`Table.merge_insert`][lancedb.table.Table.merge_insert] for more details.
"""
super().merge_insert(on)
return super().merge_insert(on)
def _do_merge(
self,

View File

@@ -1,9 +1,13 @@
from abc import ABC, abstractmethod
from packaging.version import Version
from typing import Union, List, TYPE_CHECKING
import numpy as np
import pyarrow as pa
if TYPE_CHECKING:
from ..table import LanceVectorQueryBuilder
ARROW_VERSION = Version(pa.__version__)
@@ -130,12 +134,94 @@ class Reranker(ABC):
combined = pa.concat_tables(
[vector_results, fts_results], **self._concat_tables_args
)
row_id = combined.column("_rowid")
# deduplicate
mask = np.full((combined.shape[0]), False)
_, mask_indices = np.unique(np.array(row_id), return_index=True)
mask[mask_indices] = True
combined = combined.filter(mask=mask)
combined = self._deduplicate(combined)
return combined
def rerank_multivector(
self,
vector_results: Union[List[pa.Table], List["LanceVectorQueryBuilder"]],
query: Union[str, None], # Some rerankers might not need the query
deduplicate: bool = False,
):
"""
This is a rerank function that receives the results from multiple
vector searches. For example, this can be used to combine the
results of two vector searches with different embeddings.
Parameters
----------
vector_results : List[pa.Table] or List[LanceVectorQueryBuilder]
The results from the vector search. Either accepts the query builder
if the results haven't been executed yet or the results in arrow format.
query : str or None,
The input query. Some rerankers might not need the query to rerank.
In that case, it can be set to None explicitly. This is inteded to
be handled by the reranker implementations.
deduplicate : bool, optional
Whether to deduplicate the results based on the `_rowid` column,
by default False. Requires `_rowid` to be present in the results.
Returns
-------
pa.Table
The reranked results
"""
vector_results = (
[vector_results] if not isinstance(vector_results, list) else vector_results
)
# Make sure all elements are of the same type
if not all(isinstance(v, type(vector_results[0])) for v in vector_results):
raise ValueError(
"All elements in vector_results should be of the same type"
)
# avoids circular import
if type(vector_results[0]).__name__ == "LanceVectorQueryBuilder":
vector_results = [result.to_arrow() for result in vector_results]
elif not isinstance(vector_results[0], pa.Table):
raise ValueError(
"vector_results should be a list of pa.Table or LanceVectorQueryBuilder"
)
combined = pa.concat_tables(vector_results, **self._concat_tables_args)
reranked = self.rerank_vector(query, combined)
# TODO: Allow custom deduplicators here.
# currently, this'll just keep the first instance.
if deduplicate:
if "_rowid" not in combined.column_names:
raise ValueError(
"'_rowid' is required for deduplication. \
add _rowid to search results like this: \
`search().with_row_id(True)`"
)
reranked = self._deduplicate(reranked)
return reranked
def _deduplicate(self, table: pa.Table):
"""
Deduplicate the table based on the `_rowid` column.
"""
row_id = table.column("_rowid")
# deduplicate
mask = np.full((table.shape[0]), False)
_, mask_indices = np.unique(np.array(row_id), return_index=True)
mask[mask_indices] = True
deduped_table = table.filter(mask=mask)
return deduped_table
def _keep_relevance_score(self, combined_results: pa.Table):
if self.score == "relevance":
if "_score" in combined_results.column_names:
combined_results = combined_results.drop_columns(["_score"])
if "_distance" in combined_results.column_names:
combined_results = combined_results.drop_columns(["_distance"])
return combined_results

View File

@@ -88,7 +88,7 @@ class CohereReranker(Reranker):
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for cohere reranker"
@@ -113,6 +113,6 @@ class CohereReranker(Reranker):
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["score"])
result_set = result_set.drop_columns(["_score"])
return result_set

View File

@@ -73,7 +73,7 @@ class ColbertReranker(Reranker):
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
@@ -105,7 +105,7 @@ class ColbertReranker(Reranker):
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["score"])
result_set = result_set.drop_columns(["_score"])
result_set = result_set.sort_by([("_relevance_score", "descending")])

View File

@@ -66,7 +66,7 @@ class CrossEncoderReranker(Reranker):
combined_results = self._rerank(combined_results, query)
# sort the results by _score
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for CrossEncoderReranker"
@@ -96,7 +96,7 @@ class CrossEncoderReranker(Reranker):
):
fts_results = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["score"])
fts_results = fts_results.drop_columns(["_score"])
fts_results = fts_results.sort_by([("_relevance_score", "descending")])
return fts_results

View File

@@ -92,7 +92,7 @@ class JinaReranker(Reranker):
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for JinaReranker"
@@ -117,6 +117,6 @@ class JinaReranker(Reranker):
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["score"])
result_set = result_set.drop_columns(["_score"])
return result_set

View File

@@ -69,12 +69,12 @@ class LinearCombinationReranker(Reranker):
vi = vector_list[i]
fj = fts_list[j]
# invert the fts score from relevance to distance
inverted_fts_score = self._invert_score(fj["score"])
inverted_fts_score = self._invert_score(fj["_score"])
if vi["_rowid"] == fj["_rowid"]:
vi["_relevance_score"] = self._combine_score(
vi["_distance"], inverted_fts_score
)
vi["score"] = fj["score"] # keep the original score
vi["_score"] = fj["_score"] # keep the original score
combined_list.append(vi)
i += 1
j += 1
@@ -103,7 +103,7 @@ class LinearCombinationReranker(Reranker):
[("_relevance_score", "descending")]
)
if self.score == "relevance":
tbl = tbl.drop_columns(["score", "_distance"])
tbl = self._keep_relevance_score(tbl)
return tbl
def _combine_score(self, score1, score2):

View File

@@ -84,7 +84,7 @@ class OpenaiReranker(Reranker):
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
@@ -108,7 +108,7 @@ class OpenaiReranker(Reranker):
def rerank_fts(self, query: str, fts_results: pa.Table):
fts_results = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["score"])
fts_results = fts_results.drop_columns(["_score"])
fts_results = fts_results.sort_by([("_relevance_score", "descending")])

View File

@@ -1,8 +1,12 @@
from typing import Union, List, TYPE_CHECKING
import pyarrow as pa
from collections import defaultdict
from .base import Reranker
if TYPE_CHECKING:
from ..table import LanceVectorQueryBuilder
class RRFReranker(Reranker):
"""
@@ -55,6 +59,46 @@ class RRFReranker(Reranker):
)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
combined_results = self._keep_relevance_score(combined_results)
return combined_results
def rerank_multivector(
self,
vector_results: Union[List[pa.Table], List["LanceVectorQueryBuilder"]],
query: str = None,
deduplicate: bool = True, # noqa: F821 # TODO: automatically deduplicates
):
"""
Overridden method to rerank the results from multiple vector searches.
This leverages the RRF hybrid reranking algorithm to combine the
results from multiple vector searches as it doesn't support reranking
vector results individually.
"""
# Make sure all elements are of the same type
if not all(isinstance(v, type(vector_results[0])) for v in vector_results):
raise ValueError(
"All elements in vector_results should be of the same type"
)
# avoid circular import
if type(vector_results[0]).__name__ == "LanceVectorQueryBuilder":
vector_results = [result.to_arrow() for result in vector_results]
elif not isinstance(vector_results[0], pa.Table):
raise ValueError(
"vector_results should be a list of pa.Table or LanceVectorQueryBuilder"
)
# _rowid is required for RRF reranking
if not all("_rowid" in result.column_names for result in vector_results):
raise ValueError(
"'_rowid' is required for deduplication. \
add _rowid to search results like this: \
`search().with_row_id(True)`"
)
combined = pa.concat_tables(vector_results, **self._concat_tables_args)
empty_table = pa.Table.from_arrays([], names=[])
reranked = self.rerank_hybrid(query, combined, empty_table)
return reranked

View File

@@ -1,15 +1,5 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from __future__ import annotations
@@ -59,10 +49,9 @@ from .util import (
if TYPE_CHECKING:
import PIL
from lance.dataset import CleanupStats, ReaderLike
from ._lancedb import Table as LanceDBTable, OptimizeStats
from .db import LanceDBConnection
from .index import BTree, IndexConfig, IvfPq
from .index import BTree, IndexConfig, IvfPq, Bitmap, LabelList
pd = safe_import_pandas()
@@ -350,6 +339,7 @@ class Table(ABC):
def create_scalar_index(
self,
column: str,
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST"] = "BTREE",
*,
replace: bool = True,
):
@@ -511,6 +501,8 @@ class Table(ABC):
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: Optional[str] = None,
query_type: str = "auto",
ordering_field_name: Optional[str] = None,
fts_columns: Union[str, List[str]] = None,
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
@@ -1188,9 +1180,15 @@ class LanceTable(Table):
index_cache_size=index_cache_size,
)
def create_scalar_index(self, column: str, *, replace: bool = True):
def create_scalar_index(
self,
column: str,
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST"] = "BTREE",
*,
replace: bool = True,
):
self._dataset_mut.create_scalar_index(
column, index_type="BTREE", replace=replace
column, index_type=index_type, replace=replace
)
def create_fts_index(
@@ -1201,6 +1199,7 @@ class LanceTable(Table):
replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
tokenizer_name: str = "default",
use_tantivy: bool = True,
):
"""Create a full-text search index on the table.
@@ -1211,6 +1210,7 @@ class LanceTable(Table):
----------
field_names: str or list of str
The name(s) of the field to index.
can be only str if use_tantivy=True for now.
replace: bool, default False
If True, replace the existing index if it exists. Note that this is
not yet an atomic operation; the index will be temporarily
@@ -1218,12 +1218,31 @@ class LanceTable(Table):
writer_heap_size: int, default 1GB
ordering_field_names:
A list of unsigned type fields to index to optionally order
results on at search time
results on at search time.
only available with use_tantivy=True
tokenizer_name: str, default "default"
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
language code followed by "_stem". So for english it would be "en_stem".
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
only available with use_tantivy=True for now
use_tantivy: bool, default False
If True, use the legacy full-text search implementation based on tantivy.
If False, use the new full-text search implementation based on lance-index.
"""
if not use_tantivy:
if not isinstance(field_names, str):
raise ValueError("field_names must be a string when use_tantivy=False")
# delete the existing legacy index if it exists
if replace:
fs, path = fs_from_uri(self._get_fts_index_path())
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
if index_exists:
fs.delete_dir(path)
self._dataset_mut.create_scalar_index(
field_names, index_type="INVERTED", replace=replace
)
return
from .fts import create_index, populate_index
if isinstance(field_names, str):
@@ -1392,6 +1411,7 @@ class LanceTable(Table):
vector_column_name: Optional[str] = None,
query_type: str = "auto",
ordering_field_name: Optional[str] = None,
fts_columns: Union[str, List[str]] = None,
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
@@ -1446,6 +1466,10 @@ class LanceTable(Table):
or raise an error if no corresponding embedding function is found.
If the `query` is a string, then the query type is "vector" if the
table has embedding functions, else the query type is "fts"
fts_columns: str or list of str, default None
The column(s) to search in for full-text search.
If None then the search is performed on all indexed columns.
For now, only one column can be searched at a time.
Returns
-------
@@ -1665,6 +1689,7 @@ class LanceTable(Table):
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
},
full_text_query=query.full_text_query,
with_row_id=query.with_row_id,
batch_size=batch_size,
).to_reader()
@@ -2088,7 +2113,7 @@ class AsyncTable:
column: str,
*,
replace: Optional[bool] = None,
config: Optional[Union[IvfPq, BTree]] = None,
config: Optional[Union[IvfPq, BTree, Bitmap, LabelList]] = None,
):
"""Create an index to speed up queries

View File

@@ -22,7 +22,8 @@ import pytest
from lancedb.pydantic import LanceModel, Vector
def test_basic(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_basic(tmp_path, use_tantivy):
db = lancedb.connect(tmp_path)
assert db.uri == str(tmp_path)
@@ -55,7 +56,7 @@ def test_basic(tmp_path):
assert len(rs) == 1
assert rs["item"].iloc[0] == "foo"
table.create_fts_index(["item"])
table.create_fts_index("item", use_tantivy=use_tantivy)
rs = table.search("bar", query_type="fts").to_pandas()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"

View File

@@ -417,3 +417,28 @@ def test_openai_embedding(tmp_path):
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("WATSONX_API_KEY") is None
or os.environ.get("WATSONX_PROJECT_ID") is None,
reason="WATSONX_API_KEY and WATSONX_PROJECT_ID not set",
)
def test_watsonx_embedding(tmp_path):
from lancedb.embeddings import WatsonxEmbeddings
for name in WatsonxEmbeddings.model_names():
model = get_registry().get("watsonx").create(max_retries=0, name=name)
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"

View File

@@ -74,7 +74,12 @@ def test_create_index_with_stemming(tmp_path, table):
assert os.path.exists(str(tmp_path / "index"))
# Check stemming by running tokenizer on non empty table
table.create_fts_index("text", tokenizer_name="en_stem")
table.create_fts_index("text", tokenizer_name="en_stem", use_tantivy=True)
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_create_inverted_index(table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
def test_populate_index(tmp_path, table):
@@ -92,8 +97,15 @@ def test_search_index(tmp_path, table):
assert len(results[1]) == 10 # _distance
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_search_fts(table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
results = table.search("puppy").limit(10).to_list()
assert len(results) == 10
def test_search_ordering_field_index_table(tmp_path, table):
table.create_fts_index("text", ordering_field_names=["count"])
table.create_fts_index("text", ordering_field_names=["count"], use_tantivy=True)
rows = (
table.search("puppy", ordering_field_name="count")
.limit(20)
@@ -125,8 +137,9 @@ def test_search_ordering_field_index(tmp_path, table):
assert sorted(rows, key=lambda x: x["count"], reverse=True) == rows
def test_create_index_from_table(tmp_path, table):
table.create_fts_index("text")
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_create_index_from_table(tmp_path, table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
df = table.search("puppy").limit(10).select(["text"]).to_pandas()
assert len(df) <= 10
assert "text" in df.columns
@@ -145,15 +158,15 @@ def test_create_index_from_table(tmp_path, table):
]
)
with pytest.raises(ValueError, match="already exists"):
table.create_fts_index("text")
with pytest.raises(Exception, match="already exists"):
table.create_fts_index("text", use_tantivy=use_tantivy)
table.create_fts_index("text", replace=True)
table.create_fts_index("text", replace=True, use_tantivy=use_tantivy)
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"])
table.create_fts_index(["text", "text2"], use_tantivy=True)
df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 10
assert "text" in df.columns
@@ -161,20 +174,21 @@ def test_create_index_multiple_columns(tmp_path, table):
def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"])
table.create_fts_index(["text", "text2"], use_tantivy=True)
mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 0
def test_nested_schema(tmp_path, table):
table.create_fts_index("nested.text")
table.create_fts_index("nested.text", use_tantivy=True)
rs = table.search("puppy").limit(10).to_list()
assert len(rs) == 10
def test_search_index_with_filter(table):
table.create_fts_index("text")
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_search_index_with_filter(table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
orig_import = __import__
def import_mock(name, *args):
@@ -186,7 +200,7 @@ def test_search_index_with_filter(table):
with mock.patch("builtins.__import__", side_effect=import_mock):
rs = table.search("puppy").where("id=1").limit(10)
# test schema
assert rs.to_arrow().drop("score").schema.equals(table.schema)
assert rs.to_arrow().drop("_score").schema.equals(table.schema)
rs = rs.to_list()
for r in rs:
@@ -204,7 +218,8 @@ def test_search_index_with_filter(table):
assert r["_rowid"] is not None
def test_null_input(table):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_null_input(table, use_tantivy):
table.add(
[
{
@@ -217,12 +232,12 @@ def test_null_input(table):
}
]
)
table.create_fts_index("text")
table.create_fts_index("text", use_tantivy=use_tantivy)
def test_syntax(table):
# https://github.com/lancedb/lancedb/issues/769
table.create_fts_index("text")
table.create_fts_index("text", use_tantivy=True)
with pytest.raises(ValueError, match="Syntax Error"):
table.search("they could have been dogs OR").limit(10).to_list()

View File

@@ -1,10 +1,14 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from datetime import timedelta
import random
import pyarrow as pa
import pytest
import pytest_asyncio
from lancedb import AsyncConnection, AsyncTable, connect_async
from lancedb.index import BTree, IvfPq
from lancedb.index import BTree, IvfPq, Bitmap, LabelList
@pytest_asyncio.fixture
@@ -25,8 +29,11 @@ NROWS = 256
async def some_table(db_async):
data = pa.Table.from_pydict(
{
"id": list(range(256)),
"id": list(range(NROWS)),
"vector": sample_fixed_size_list_array(NROWS, DIM),
"tags": [
[f"tag{random.randint(0, 8)}" for _ in range(2)] for _ in range(NROWS)
],
}
)
return await db_async.create_table(
@@ -42,6 +49,7 @@ async def test_create_scalar_index(some_table: AsyncTable):
# Can recreate if replace=True
await some_table.create_index("id", replace=True)
indices = await some_table.list_indices()
assert str(indices) == '[Index(BTree, columns=["id"])]'
assert len(indices) == 1
assert indices[0].index_type == "BTree"
assert indices[0].columns == ["id"]
@@ -52,6 +60,22 @@ async def test_create_scalar_index(some_table: AsyncTable):
await some_table.create_index("id", config=BTree())
@pytest.mark.asyncio
async def test_create_bitmap_index(some_table: AsyncTable):
await some_table.create_index("id", config=Bitmap())
# TODO: Fix via https://github.com/lancedb/lance/issues/2039
# indices = await some_table.list_indices()
# assert str(indices) == '[Index(Bitmap, columns=["id"])]'
@pytest.mark.asyncio
async def test_create_label_list_index(some_table: AsyncTable):
await some_table.create_index("tags", config=LabelList())
# TODO: Fix via https://github.com/lancedb/lance/issues/2039
# indices = await some_table.list_indices()
# assert str(indices) == '[Index(LabelList, columns=["id"])]'
@pytest.mark.asyncio
async def test_create_vector_index(some_table: AsyncTable):
# Can create

View File

@@ -354,3 +354,11 @@ async def test_query_camelcase_async(tmp_path):
result = await table.query().select(["camelCase"]).to_arrow()
assert result == pa.table({"camelCase": pa.array([1, 2])})
@pytest.mark.asyncio
async def test_query_to_list_async(table_async: AsyncTable):
list = await table_async.query().to_list()
assert len(list) == 2
assert list[0]["vector"] == [1, 2]
assert list[1]["vector"] == [3, 4]

View File

@@ -1,4 +1,5 @@
import os
import random
import lancedb
import numpy as np
@@ -21,14 +22,17 @@ from lancedb.table import LanceTable
pytest.importorskip("lancedb.fts")
def get_test_table(tmp_path):
def get_test_table(tmp_path, use_tantivy):
db = lancedb.connect(tmp_path)
# Create a LanceDB table schema with a vector and a text column
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
meta_emb = EmbeddingFunctionRegistry.get_instance().get("test")()
class MyTable(LanceModel):
text: str = emb.SourceField()
vector: Vector(emb.ndims()) = emb.VectorField()
meta: str = meta_emb.SourceField()
meta_vector: Vector(meta_emb.ndims()) = meta_emb.VectorField()
# Initialize the table using the schema
table = LanceTable.create(
@@ -77,10 +81,15 @@ def get_test_table(tmp_path):
]
# Add the phrases and vectors to the table
table.add([{"text": p} for p in phrases])
table.add(
[
{"text": p, "meta": phrases[random.randint(0, len(phrases) - 1)]}
for p in phrases
]
)
# Create a fts index
table.create_fts_index("text")
table.create_fts_index("text", use_tantivy=use_tantivy)
return table, MyTable
@@ -88,12 +97,12 @@ def get_test_table(tmp_path):
def _run_test_reranker(reranker, table, query, query_vector, schema):
# Hybrid search setting
result1 = (
table.search(query, query_type="hybrid")
table.search(query, query_type="hybrid", vector_column_name="vector")
.rerank(normalize="score", reranker=reranker)
.to_pydantic(schema)
)
result2 = (
table.search(query, query_type="hybrid")
table.search(query, query_type="hybrid", vector_column_name="vector")
.rerank(reranker=reranker)
.to_pydantic(schema)
)
@@ -101,7 +110,7 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
query_vector = table.to_pandas()["vector"][0]
result = (
table.search((query_vector, query))
table.search((query_vector, query), vector_column_name="vector")
.limit(30)
.rerank(reranker=reranker)
.to_arrow()
@@ -116,11 +125,16 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
# Vector search setting
result = table.search(query).rerank(reranker=reranker).limit(30).to_arrow()
result = (
table.search(query, vector_column_name="vector")
.rerank(reranker=reranker)
.limit(30)
.to_arrow()
)
assert len(result) == 30
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
result_explicit = (
table.search(query_vector)
table.search(query_vector, vector_column_name="vector")
.rerank(reranker=reranker, query_string=query)
.limit(30)
.to_arrow()
@@ -129,11 +143,13 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
with pytest.raises(
ValueError
): # This raises an error because vector query is provided without reanking query
table.search(query_vector).rerank(reranker=reranker).limit(30).to_arrow()
table.search(query_vector, vector_column_name="vector").rerank(
reranker=reranker
).limit(30).to_arrow()
# FTS search setting
result = (
table.search(query, query_type="fts")
table.search(query, query_type="fts", vector_column_name="vector")
.rerank(reranker=reranker)
.limit(30)
.to_arrow()
@@ -141,22 +157,48 @@ def _run_test_reranker(reranker, table, query, query_vector, schema):
assert len(result) > 0
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
# Multi-vector search setting
rs1 = table.search(query, vector_column_name="vector").limit(10).with_row_id(True)
rs2 = (
table.search(query, vector_column_name="meta_vector")
.limit(10)
.with_row_id(True)
)
result = reranker.rerank_multivector([rs1, rs2], query)
assert len(result) == 20
result_deduped = reranker.rerank_multivector(
[rs1, rs2, rs1], query, deduplicate=True
)
assert len(result_deduped) < 20
result_arrow = reranker.rerank_multivector([rs1.to_arrow(), rs2.to_arrow()], query)
assert len(result) == 20 and result == result_arrow
def _run_test_hybrid_reranker(reranker, tmp_path):
table, schema = get_test_table(tmp_path)
def _run_test_hybrid_reranker(reranker, tmp_path, use_tantivy):
table, schema = get_test_table(tmp_path, use_tantivy)
# The default reranker
result1 = (
table.search("Our father who art in heaven", query_type="hybrid")
table.search(
"Our father who art in heaven",
query_type="hybrid",
vector_column_name="vector",
)
.rerank(normalize="score")
.to_pydantic(schema)
)
result2 = ( # noqa
table.search("Our father who art in heaven.", query_type="hybrid")
table.search(
"Our father who art in heaven.",
query_type="hybrid",
vector_column_name="vector",
)
.rerank(normalize="rank")
.to_pydantic(schema)
)
result3 = table.search(
"Our father who art in heaven..", query_type="hybrid"
"Our father who art in heaven..",
query_type="hybrid",
vector_column_name="vector",
).to_pydantic(schema)
assert result1 == result3 # 2 & 3 should be the same as they use score as score
@@ -164,7 +206,7 @@ def _run_test_hybrid_reranker(reranker, tmp_path):
query = "Our father who art in heaven"
query_vector = table.to_pandas()["vector"][0]
result = (
table.search((query_vector, query))
table.search((query_vector, query), vector_column_name="vector")
.limit(30)
.rerank(normalize="score")
.to_arrow()
@@ -179,14 +221,16 @@ def _run_test_hybrid_reranker(reranker, tmp_path):
)
def test_linear_combination(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_linear_combination(tmp_path, use_tantivy):
reranker = LinearCombinationReranker()
_run_test_hybrid_reranker(reranker, tmp_path)
_run_test_hybrid_reranker(reranker, tmp_path, use_tantivy)
def test_rrf_reranker(tmp_path):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_rrf_reranker(tmp_path, use_tantivy):
reranker = RRFReranker()
_run_test_hybrid_reranker(reranker, tmp_path)
_run_test_hybrid_reranker(reranker, tmp_path, use_tantivy)
@pytest.mark.skipif(

View File

@@ -730,7 +730,7 @@ def test_create_scalar_index(db):
indices = table.to_lance().list_indices()
assert len(indices) == 1
scalar_index = indices[0]
assert scalar_index["type"] == "Scalar"
assert scalar_index["type"] == "BTree"
# Confirm that prefiltering still works with the scalar index column
results = table.search().where("x = 'c'").to_arrow()
@@ -1034,6 +1034,12 @@ async def test_optimize(db_async: AsyncConnection):
],
)
stats = await table.optimize()
expected = (
"OptimizeStats(compaction=CompactionStats { fragments_removed: 2, "
"fragments_added: 1, files_removed: 2, files_added: 1 }, "
"prune=RemovalStats { bytes_removed: 0, old_versions_removed: 0 })"
)
assert str(stats) == expected
assert stats.compaction.files_removed == 2
assert stats.compaction.files_added == 1
assert stats.compaction.fragments_added == 1

View File

@@ -1,21 +1,10 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::{collections::HashMap, sync::Arc, time::Duration};
use std::{collections::HashMap, str::FromStr, sync::Arc, time::Duration};
use arrow::{datatypes::Schema, ffi_stream::ArrowArrayStreamReader, pyarrow::FromPyArrow};
use lancedb::connection::{Connection as LanceConnection, CreateTableMode};
use lancedb::connection::{Connection as LanceConnection, CreateTableMode, LanceFileVersion};
use pyo3::{
exceptions::{PyRuntimeError, PyValueError},
pyclass, pyfunction, pymethods, Bound, PyAny, PyRef, PyResult, Python,
@@ -91,7 +80,7 @@ impl Connection {
mode: &str,
data: Bound<'_, PyAny>,
storage_options: Option<HashMap<String, String>>,
use_legacy_format: Option<bool>,
data_storage_version: Option<String>,
) -> PyResult<Bound<'a, PyAny>> {
let inner = self_.get_inner()?.clone();
@@ -104,8 +93,11 @@ impl Connection {
builder = builder.storage_options(storage_options);
}
if let Some(use_legacy_format) = use_legacy_format {
builder = builder.use_legacy_format(use_legacy_format);
if let Some(data_storage_version) = data_storage_version.as_ref() {
builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_version)
.map_err(|e| PyValueError::new_err(e.to_string()))?,
);
}
future_into_py(self_.py(), async move {
@@ -120,7 +112,7 @@ impl Connection {
mode: &str,
schema: Bound<'_, PyAny>,
storage_options: Option<HashMap<String, String>>,
use_legacy_format: Option<bool>,
data_storage_version: Option<String>,
) -> PyResult<Bound<'a, PyAny>> {
let inner = self_.get_inner()?.clone();
@@ -134,8 +126,11 @@ impl Connection {
builder = builder.storage_options(storage_options);
}
if let Some(use_legacy_format) = use_legacy_format {
builder = builder.use_legacy_format(use_legacy_format);
if let Some(data_storage_version) = data_storage_version.as_ref() {
builder = builder.data_storage_version(
LanceFileVersion::from_str(data_storage_version)
.map_err(|e| PyValueError::new_err(e.to_string()))?,
);
}
future_into_py(self_.py(), async move {

View File

@@ -84,6 +84,20 @@ impl Index {
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
})
}
#[staticmethod]
pub fn bitmap() -> PyResult<Self> {
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::Bitmap(Default::default()))),
})
}
#[staticmethod]
pub fn label_list() -> PyResult<Self> {
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::LabelList(Default::default()))),
})
}
}
#[pyclass(get_all)]
@@ -98,6 +112,13 @@ pub struct IndexConfig {
pub columns: Vec<String>,
}
#[pymethods]
impl IndexConfig {
pub fn __repr__(&self) -> String {
format!("Index({}, columns={:?})", self.index_type, self.columns)
}
}
impl From<lancedb::index::IndexConfig> for IndexConfig {
fn from(value: lancedb::index::IndexConfig) -> Self {
let index_type = format!("{:?}", value.index_type);

View File

@@ -60,6 +60,16 @@ pub struct Table {
inner: Option<LanceDbTable>,
}
#[pymethods]
impl OptimizeStats {
pub fn __repr__(&self) -> String {
format!(
"OptimizeStats(compaction={:?}, prune={:?})",
self.compaction, self.prune
)
}
}
impl Table {
pub(crate) fn new(inner: LanceDbTable) -> Self {
Self {
@@ -266,6 +276,7 @@ impl Table {
.optimize(OptimizeAction::Prune {
older_than,
delete_unverified: None,
error_if_tagged_old_versions: None,
})
.await
.infer_error()?

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.7.2"
version = "0.10.0-beta.0"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -320,12 +320,19 @@ impl JsTable {
.map(|val| val.value(&mut cx))
.unwrap_or_default(),
);
let error_if_tagged_old_versions: Option<bool> = Some(
cx.argument_opt(2)
.and_then(|val| val.downcast::<JsBoolean, _>(&mut cx).ok())
.map(|val| val.value(&mut cx))
.unwrap_or_default(),
);
rt.spawn(async move {
let stats = table
.optimize(OptimizeAction::Prune {
older_than: Some(older_than),
delete_unverified,
error_if_tagged_old_versions,
})
.await;

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.7.2"
version = "0.10.0-beta.0"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -29,6 +29,7 @@ lance-datafusion.workspace = true
lance-index = { workspace = true }
lance-linalg = { workspace = true }
lance-testing = { workspace = true }
lance-encoding = { workspace = true }
pin-project = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
log.workspace = true
@@ -46,15 +47,16 @@ serde_with = { version = "3.8.1" }
reqwest = { version = "0.11.24", features = ["gzip", "json"], optional = true }
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
polars = { version = ">=0.37,<0.40.0", optional = true }
hf-hub = {version = "0.3.2", optional = true}
hf-hub = { version = "0.3.2", optional = true }
candle-core = { version = "0.6.0", optional = true }
candle-transformers = { version = "0.6.0", optional = true }
candle-nn = { version = "0.6.0", optional = true }
tokenizers = { version = "0.19.1", optional = true}
tokenizers = { version = "0.19.1", optional = true }
[dev-dependencies]
tempfile = "3.5.0"
rand = { version = "0.8.3", features = ["small_rng"] }
random_word = { version = "0.4.3", features = ["en"] }
uuid = { version = "1.7.0", features = ["v4"] }
walkdir = "2"
aws-sdk-dynamodb = { version = "1.38.0" }
@@ -70,7 +72,13 @@ fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = []
openai = ["dep:async-openai", "dep:reqwest"]
polars = ["dep:polars-arrow", "dep:polars"]
sentence-transformers = ["dep:hf-hub", "dep:candle-core", "dep:candle-transformers", "dep:candle-nn", "dep:tokenizers"]
sentence-transformers = [
"dep:hf-hub",
"dep:candle-core",
"dep:candle-transformers",
"dep:candle-nn",
"dep:tokenizers"
]
[[example]]
name = "openai"

View File

@@ -0,0 +1,114 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator, RecordBatchReader, StringArray};
use arrow_schema::{DataType, Field, Schema};
use futures::TryStreamExt;
use lance_index::scalar::FullTextSearchQuery;
use lancedb::connection::Connection;
use lancedb::index::scalar::FtsIndexBuilder;
use lancedb::index::Index;
use lancedb::query::{ExecutableQuery, QueryBase};
use lancedb::{connect, Result, Table};
use rand::random;
#[tokio::main]
async fn main() -> Result<()> {
if std::path::Path::new("data").exists() {
std::fs::remove_dir_all("data").unwrap();
}
let uri = "data/sample-lancedb";
let db = connect(uri).execute().await?;
let tbl = create_table(&db).await?;
create_index(&tbl).await?;
search_index(&tbl).await?;
Ok(())
}
fn create_some_records() -> Result<Box<dyn RecordBatchReader + Send>> {
const TOTAL: usize = 1000;
let schema = Arc::new(Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("doc", DataType::Utf8, true),
]));
let words = random_word::all(random_word::Lang::En)
.iter()
.step_by(1024)
.take(500)
.map(|w| *w)
.collect::<Vec<_>>();
let n_terms = 3;
let batches = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..TOTAL as i32)),
Arc::new(StringArray::from_iter_values((0..TOTAL).map(|_| {
(0..n_terms)
.map(|_| words[random::<usize>() % words.len()])
.collect::<Vec<_>>()
.join(" ")
}))),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Ok(Box::new(batches))
}
async fn create_table(db: &Connection) -> Result<Table> {
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
let tbl = db.create_table("my_table", initial_data).execute().await?;
Ok(tbl)
}
async fn create_index(table: &Table) -> Result<()> {
table
.create_index(&["doc"], Index::FTS(FtsIndexBuilder::default()))
.execute()
.await?;
Ok(())
}
async fn search_index(table: &Table) -> Result<()> {
let words = random_word::all(random_word::Lang::En)
.iter()
.step_by(1024)
.take(500)
.map(|w| *w)
.collect::<Vec<_>>();
let query = words[0].to_owned();
println!("Searching for: {}", query);
let mut results = table
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.execute()
.await?;
while let Some(batch) = results.try_next().await? {
println!("{:?}", batch);
}
Ok(())
}

View File

@@ -22,7 +22,7 @@ use std::sync::Arc;
use arrow_array::{RecordBatchIterator, RecordBatchReader};
use arrow_schema::SchemaRef;
use lance::dataset::{ReadParams, WriteMode};
use lance::io::{ObjectStore, ObjectStoreParams, WrappingObjectStore};
use lance::io::{ObjectStore, ObjectStoreParams, ObjectStoreRegistry, WrappingObjectStore};
use object_store::{aws::AwsCredential, local::LocalFileSystem};
use snafu::prelude::*;
@@ -35,6 +35,7 @@ use crate::io::object_store::MirroringObjectStoreWrapper;
use crate::table::{NativeTable, TableDefinition, WriteOptions};
use crate::utils::validate_table_name;
use crate::Table;
pub use lance_encoding::version::LanceFileVersion;
#[cfg(feature = "remote")]
use log::warn;
@@ -140,7 +141,7 @@ pub struct CreateTableBuilder<const HAS_DATA: bool, T: IntoArrow> {
pub(crate) write_options: WriteOptions,
pub(crate) table_definition: Option<TableDefinition>,
pub(crate) embeddings: Vec<(EmbeddingDefinition, Arc<dyn EmbeddingFunction>)>,
pub(crate) use_legacy_format: bool,
pub(crate) data_storage_version: Option<LanceFileVersion>,
}
// Builder methods that only apply when we have initial data
@@ -154,7 +155,7 @@ impl<T: IntoArrow> CreateTableBuilder<true, T> {
write_options: WriteOptions::default(),
table_definition: None,
embeddings: Vec::new(),
use_legacy_format: true,
data_storage_version: None,
}
}
@@ -186,7 +187,7 @@ impl<T: IntoArrow> CreateTableBuilder<true, T> {
mode: self.mode,
write_options: self.write_options,
embeddings: self.embeddings,
use_legacy_format: self.use_legacy_format,
data_storage_version: self.data_storage_version,
};
Ok((data, builder))
}
@@ -220,7 +221,7 @@ impl CreateTableBuilder<false, NoData> {
mode: CreateTableMode::default(),
write_options: WriteOptions::default(),
embeddings: Vec::new(),
use_legacy_format: true,
data_storage_version: None,
}
}
@@ -283,6 +284,14 @@ impl<const HAS_DATA: bool, T: IntoArrow> CreateTableBuilder<HAS_DATA, T> {
self
}
/// Set the data storage version.
///
/// The default is `LanceFileVersion::Legacy`.
pub fn data_storage_version(mut self, data_storage_version: LanceFileVersion) -> Self {
self.data_storage_version = Some(data_storage_version);
self
}
/// Set to true to use the v1 format for data files
///
/// This is currently defaulted to true and can be set to false to opt-in
@@ -292,8 +301,13 @@ impl<const HAS_DATA: bool, T: IntoArrow> CreateTableBuilder<HAS_DATA, T> {
///
/// Once the new format is stable, the default will change to `false` for
/// several releases and then eventually this option will be removed.
#[deprecated(since = "0.9.0", note = "use data_storage_version instead")]
pub fn use_legacy_format(mut self, use_legacy_format: bool) -> Self {
self.use_legacy_format = use_legacy_format;
self.data_storage_version = if use_legacy_format {
Some(LanceFileVersion::Legacy)
} else {
Some(LanceFileVersion::Stable)
};
self
}
}
@@ -789,13 +803,14 @@ impl Database {
let plain_uri = url.to_string();
let registry = Arc::new(ObjectStoreRegistry::default());
let storage_options = options.storage_options.clone();
let os_params = ObjectStoreParams {
storage_options: Some(storage_options.clone()),
..Default::default()
};
let (object_store, base_path) =
ObjectStore::from_uri_and_params(&plain_uri, &os_params).await?;
ObjectStore::from_uri_and_params(registry, &plain_uri, &os_params).await?;
if object_store.is_local() {
Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?;
}
@@ -961,7 +976,7 @@ impl ConnectionInternal for Database {
if matches!(&options.mode, CreateTableMode::Overwrite) {
write_params.mode = WriteMode::Overwrite;
}
write_params.use_legacy_format = options.use_legacy_format;
write_params.data_storage_version = options.data_storage_version;
match NativeTable::create(
&table_uri,
@@ -1202,7 +1217,7 @@ mod tests {
let tbl = db
.create_table("v2_test", make_data())
.use_legacy_format(false)
.data_storage_version(LanceFileVersion::Stable)
.execute()
.await
.unwrap();

View File

@@ -14,24 +14,54 @@
use std::sync::Arc;
use scalar::FtsIndexBuilder;
use serde::Deserialize;
use serde_with::skip_serializing_none;
use crate::{table::TableInternal, Result};
use self::{
scalar::BTreeIndexBuilder,
scalar::{BTreeIndexBuilder, BitmapIndexBuilder, LabelListIndexBuilder},
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
};
pub mod scalar;
pub mod vector;
/// Supported index types.
pub enum Index {
Auto,
/// A `BTree` index is an sorted index on scalar columns.
/// This index is good for scalar columns with mostly distinct values and does best when
/// the query is highly selective. It can apply to numeric, temporal, and string columns.
///
/// BTree index is useful to answer queries with
/// equality (`=`), inequality (`>`, `>=`, `<`, `<=`),and range queries.
///
/// This is the default index type for scalar columns.
BTree(BTreeIndexBuilder),
/// A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
///
/// This index works best for low-cardinality columns,
/// where the number of unique values is small (i.e., less than a few hundreds).
Bitmap(BitmapIndexBuilder),
/// [LabelListIndexBuilder] is a scalar index that can be used on `List<T>` columns to
/// support queries with `array_contains_all` and `array_contains_any`
/// using an underlying bitmap index.
LabelList(LabelListIndexBuilder),
/// Full text search index using bm25.
FTS(FtsIndexBuilder),
/// IVF index with Product Quantization
IvfPq(IvfPqIndexBuilder),
/// IVF-HNSW index with Product Quantization
IvfHnswPq(IvfHnswPqIndexBuilder),
/// IVF-HNSW index with Scalar Quantization
IvfHnswSq(IvfHnswSqIndexBuilder),
}
@@ -72,10 +102,14 @@ impl IndexBuilder {
#[derive(Debug, Clone, PartialEq)]
pub enum IndexType {
// Vector
IvfPq,
IvfHnswPq,
IvfHnswSq,
// Scalar
BTree,
Bitmap,
LabelList,
}
/// A description of an index currently configured on a column

View File

@@ -28,3 +28,32 @@
pub struct BTreeIndexBuilder {}
impl BTreeIndexBuilder {}
/// Builder for a Bitmap index.
///
/// It is a scalar index that stores a bitmap for each possible value
///
/// This index works best for low-cardinality (i.e., less than 1000 unique values) columns,
/// where the number of unique values is small.
/// The bitmap stores a list of row ids where the value is present.
#[derive(Debug, Clone, Default)]
pub struct BitmapIndexBuilder {}
/// Builder for LabelList index.
///
/// [LabeListIndexBuilder] is a scalar index that can be used on `List<T>` columns to
/// support queries with `array_contains_all` and `array_contains_any`
/// using an underlying bitmap index.
///
#[derive(Debug, Clone, Default)]
pub struct LabelListIndexBuilder {}
/// Builder for a full text search index
///
/// A full text search index is an index on a string column that allows for full text search
#[derive(Debug, Clone, Default)]
pub struct FtsIndexBuilder {}
impl FtsIndexBuilder {}
pub use lance_index::scalar::FullTextSearchQuery;

View File

@@ -13,7 +13,7 @@
// limitations under the License.
//! [LanceDB](https://github.com/lancedb/lancedb) is an open-source database for vector-search built with persistent storage,
//! which greatly simplifies retrevial, filtering and management of embeddings.
//! which greatly simplifies retrieval, filtering and management of embeddings.
//!
//! The key features of LanceDB include:
//! - Production-scale vector search with no servers to manage.
@@ -133,6 +133,13 @@
//!
//! #### Create vector index (IVF_PQ)
//!
//! LanceDB is capable to automatically create appropriate indices based on the data types
//! of the columns. For example,
//!
//! * If a column has a data type of `FixedSizeList<Float16/Float32>`,
//! LanceDB will create a `IVF-PQ` vector index with default parameters.
//! * Otherwise, it creates a `BTree` index by default.
//!
//! ```no_run
//! # use std::sync::Arc;
//! # use arrow_array::{FixedSizeListArray, types::Float32Type, RecordBatch,
@@ -150,7 +157,10 @@
//! # });
//! ```
//!
//! #### Open table and run search
//!
//! User can also specify the index type explicitly, see [`Table::create_index`].
//!
//! #### Open table and search
//!
//! ```rust
//! # use std::sync::Arc;

Some files were not shown because too many files have changed in this diff Show More