Compare commits

..

1 Commits

Author SHA1 Message Date
albertlockett
ffcf632abb use local path for lance 14.1 2024-07-11 15:16:36 -03:00
155 changed files with 4152 additions and 10416 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.7.2" current_version = "0.6.0"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

View File

@@ -7,7 +7,6 @@ on:
jobs: jobs:
node: node:
name: vectordb Typescript
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -40,7 +39,6 @@ jobs:
node/vectordb-*.tgz node/vectordb-*.tgz
node-macos: node-macos:
name: vectordb ${{ matrix.config.arch }}
strategy: strategy:
matrix: matrix:
config: config:
@@ -71,7 +69,6 @@ jobs:
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos: nodejs-macos:
name: lancedb ${{ matrix.config.arch }}
strategy: strategy:
matrix: matrix:
config: config:
@@ -102,7 +99,7 @@ jobs:
nodejs/dist/*.node nodejs/dist/*.node
node-linux: node-linux:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu) name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -142,7 +139,7 @@ jobs:
node/dist/lancedb-vectordb-linux*.tgz node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux: nodejs-linux:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -193,7 +190,6 @@ jobs:
!nodejs/dist/*.node !nodejs/dist/*.node
node-windows: node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -227,7 +223,6 @@ jobs:
node/dist/lancedb-vectordb-win32*.tgz node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows: nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -261,7 +256,6 @@ jobs:
nodejs/dist/*.node nodejs/dist/*.node
release: release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux, node-windows] needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
@@ -290,18 +284,8 @@ jobs:
for filename in *.tgz; do for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename npm publish $PUBLISH_ARGS $filename
done done
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
release-nodejs: release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux, nodejs-windows] needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
@@ -349,15 +333,6 @@ jobs:
else else
npm publish --access public npm publish --access public
fi fi
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock: update-package-lock:
needs: [release] needs: [release]

View File

@@ -33,11 +33,11 @@ jobs:
python-version: "3.11" python-version: "3.11"
- name: Install ruff - name: Install ruff
run: | run: |
pip install ruff==0.5.4 pip install ruff==0.2.2
- name: Format check - name: Format check
run: ruff format --check . run: ruff format --check .
- name: Lint - name: Lint
run: ruff check . run: ruff .
doctest: doctest:
name: "Doctest" name: "Doctest"
timeout-minutes: 30 timeout-minutes: 30

View File

@@ -53,10 +53,7 @@ jobs:
run: cargo clippy --all --all-features -- -D warnings run: cargo clippy --all --all-features -- -D warnings
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
# To build all features, we need more disk space than is available runs-on: ubuntu-22.04
# on the GitHub-provided runner. This is mostly due to the the
# sentence-transformers feature.
runs-on: warp-ubuntu-latest-x64-4x
defaults: defaults:
run: run:
shell: bash shell: bash
@@ -134,3 +131,4 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT $env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build cargo build
cargo test cargo test

1
.gitignore vendored
View File

@@ -4,7 +4,6 @@
**/__pycache__ **/__pycache__
.DS_Store .DS_Store
venv venv
.venv
.vscode .vscode
.zed .zed

View File

@@ -18,4 +18,4 @@ repos:
language: system language: system
types: [text] types: [text]
files: "nodejs/.*" files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.* exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*

View File

@@ -20,29 +20,36 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.15.0", "features" = ["dynamodb"] } # lance = { "version" = "=0.14.0", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.15.0" } # lance-index = { "version" = "=0.14.0" }
lance-linalg = { "version" = "=0.15.0" } # lance-linalg = { "version" = "=0.14.0" }
lance-testing = { "version" = "=0.15.0" } # lance-testing = { "version" = "=0.14.0" }
lance-datafusion = { "version" = "=0.15.0" } # lance-datafusion = { "version" = "=0.14.0" }
lance = { path = "../lance/rust/lance", "features" = ["dynamodb"] }
lance-index = { path = "../lance/rust/lance-index" }
lance-linalg = { path = "../lance/rust/lance-linalg" }
lance-testing = { path = "../lance/rust/lance-testing" }
lance-datafusion = { path = "../lance/rust/lance-datafusion" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "52.1", optional = false } arrow = { version = "51.0", optional = false }
arrow-array = "52.1" arrow-array = "51.0"
arrow-data = "52.1" arrow-data = "51.0"
arrow-ipc = "52.1" arrow-ipc = "51.0"
arrow-ord = "52.1" arrow-ord = "51.0"
arrow-schema = "52.1" arrow-schema = "51.0"
arrow-arith = "52.1" arrow-arith = "51.0"
arrow-cast = "52.1" arrow-cast = "51.0"
async-trait = "0" async-trait = "0"
chrono = "0.4.35" chrono = "0.4.35"
datafusion-physical-plan = "40.0" datafusion-physical-plan = "37.1"
half = { "version" = "=2.4.1", default-features = false, features = [ half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
futures = "0" futures = "0"
log = "0.4" log = "0.4"
object_store = "0.10.1" object_store = "0.9.0"
pin-project = "1.0.7" pin-project = "1.0.7"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"

View File

@@ -44,24 +44,26 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
**Javascript** **Javascript**
```shell ```shell
npm install @lancedb/lancedb npm install vectordb
``` ```
```javascript ```javascript
import * as lancedb from "@lancedb/lancedb"; const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const db = await lancedb.connect("data/sample-lancedb"); const table = await db.createTable({
const table = await db.createTable("vectors", [ name: 'vectors',
data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 }, { id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }, { id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
], {mode: 'overwrite'}); ]
})
const query = table.search([0.1, 0.3]).limit(2);
const query = table.vectorSearch([0.1, 0.3]).limit(2); const results = await query.execute();
const results = await query.toArray();
// You can also search for rows by specific criteria without involving a vector search. // You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray(); const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
``` ```
**Python** **Python**

View File

@@ -18,8 +18,8 @@ COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH} RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER} ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user, but only if it doesn't exist # Create a group and user
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be # We switch to the user to install Rust and Node, since those like to be
# installed at the user level. # installed at the user level.

View File

@@ -100,21 +100,17 @@ nav:
- Quickstart: reranking/index.md - Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md - Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md - Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md - Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md - ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md - OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md - Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Migration Guide: migration.md - Sync -> Async Migration Guide: migration.md
- Tuning retrieval performance: - Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md - Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md - Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings: - 🧬 Managing embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
@@ -158,7 +154,7 @@ nav:
- ⚙️ API reference: - ⚙️ API reference:
- 🐍 Python: python/python.md - 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md - 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md - 👾 JavaScript (lancedb): javascript/modules.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/ - 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud: - ☁️ LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md
@@ -186,21 +182,17 @@ nav:
- Quickstart: reranking/index.md - Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md - Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md - Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md - Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md - ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md - OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md - Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Migration Guide: migration.md - Sync -> Async Migration Guide: migration.md
- Tuning retrieval performance: - Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md - Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md - Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings: - Managing Embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
@@ -233,7 +225,7 @@ nav:
- Overview: api_reference.md - Overview: api_reference.md
- Python: python/python.md - Python: python/python.md
- Javascript (vectordb): javascript/modules.md - Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/globals.md - Javascript (lancedb): js/modules.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html - Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud: - LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md

View File

@@ -187,14 +187,6 @@ paths:
type: integer type: integer
description: | description: |
The refine factor to use for search. Optional. The refine factor to use for search. Optional.
default: null
fast_search:
type: boolean
description: |
Whether to use fast search. Optional.
default: false
required:
- vector
responses: responses:
"200": "200":

View File

@@ -38,21 +38,7 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96) tbl.create_index(num_partitions=256, num_sub_vectors=96)
``` ```
=== "TypeScript" === "Typescript"
=== "@lancedb/lancedb"
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
```
=== "vectordb (deprecated)"
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
```typescript ```typescript
--8<--- "docs/src/ann_indexes.ts:import" --8<--- "docs/src/ann_indexes.ts:import"
@@ -164,15 +150,7 @@ There are a couple of parameters that can be used to fine-tune the search:
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
``` ```
=== "TypeScript" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search1"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/ann_indexes.ts:search1" --8<-- "docs/src/ann_indexes.ts:search1"
@@ -198,15 +176,7 @@ You can further filter the elements returned by a search using a where clause.
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas() tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
``` ```
=== "TypeScript" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search2"
```
=== "vectordb (deprecated)"
```javascript ```javascript
--8<-- "docs/src/ann_indexes.ts:search2" --8<-- "docs/src/ann_indexes.ts:search2"
@@ -230,15 +200,7 @@ You can select the columns returned by the query using a select clause.
... ...
``` ```
=== "TypeScript" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search3"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/ann_indexes.ts:search3" --8<-- "docs/src/ann_indexes.ts:search3"

View File

@@ -4,5 +4,5 @@ The API reference for the LanceDB client SDKs are available at the following loc
- [Python](python/python.md) - [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md) - [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md) - [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html) - [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

View File

@@ -16,60 +16,11 @@
pip install lancedb pip install lancedb
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb
```
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "vectordb (deprecated)"
```shell ```shell
npm install vectordb npm install vectordb
``` ```
!!! note "Bundling `vectordb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "Rust" === "Rust"
@@ -107,14 +58,7 @@ recommend switching to stable releases.
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb@preview
```
=== "vectordb (deprecated)"
```shell ```shell
npm install vectordb@preview npm install vectordb@preview
@@ -149,23 +93,24 @@ recommend switching to stable releases.
use the same syntax as the asynchronous API. To help with this migration we use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences. have created a [migration guide](migration.md) detailing the differences.
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript ```typescript
import * as lancedb from "@lancedb/lancedb"; --8<-- "docs/src/basic_legacy.ts:import"
import * as arrow from "apache-arrow";
--8<-- "nodejs/examples/basic.ts:connect"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:open_db" --8<-- "docs/src/basic_legacy.ts:open_db"
``` ```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust" === "Rust"
```rust ```rust
@@ -207,22 +152,14 @@ table.
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas" --8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_table"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:create_table" --8<-- "docs/src/basic_legacy.ts:create_table"
``` ```
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode:"overwrite"` If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function. to the `createTable` function.
=== "Rust" === "Rust"
@@ -263,15 +200,7 @@ similar to a `CREATE TABLE` statement in SQL.
!!! note "You can define schema in Pydantic" !!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md). LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table" --8<-- "docs/src/basic_legacy.ts:create_empty_table"
@@ -294,20 +223,12 @@ Once created, you can open a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:open_table_async" --8<-- "python/python/tests/docs/test_basic.py:open_table_async"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:open_table"
```
=== "vectordb (deprecated)"
```typescript ```typescript
const tbl = await db.openTable("myTable"); const tbl = await db.openTable("myTable");
``` ```
=== "Rust" === "Rust"
```rust ```rust
@@ -323,16 +244,9 @@ If you forget the name of your table, you can always get a listing of all table
--8<-- "python/python/tests/docs/test_basic.py:table_names_async" --8<-- "python/python/tests/docs/test_basic.py:table_names_async"
``` ```
=== "Typescript[^1]" === "Javascript"
=== "@lancedb/lancedb"
```typescript ```javascript
--8<-- "nodejs/examples/basic.ts:table_names"
```
=== "vectordb (deprecated)"
```typescript
console.log(await db.tableNames()); console.log(await db.tableNames());
``` ```
@@ -353,14 +267,7 @@ After a table has been created, you can always add more data to it as follows:
--8<-- "python/python/tests/docs/test_basic.py:add_data_async" --8<-- "python/python/tests/docs/test_basic.py:add_data_async"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:add_data"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:add" --8<-- "docs/src/basic_legacy.ts:add"
@@ -385,14 +292,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:vector_search"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:search" --8<-- "docs/src/basic_legacy.ts:search"
@@ -425,14 +325,7 @@ LanceDB allows you to create an ANN index on a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:create_index_async" --8<-- "python/python/tests/docs/test_basic.py:create_index_async"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_index"
```
=== "vectordb (deprecated)"
```{.typescript .ignore} ```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index" --8<-- "docs/src/basic_legacy.ts:create_index"
@@ -464,15 +357,7 @@ This can delete any number of rows that match the filter.
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async" --8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:delete_rows"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:delete" --8<-- "docs/src/basic_legacy.ts:delete"
@@ -493,13 +378,7 @@ simple or complex as needed. To see what expressions are supported, see the
Read more: [lancedb.table.Table.delete][] Read more: [lancedb.table.Table.delete][]
=== "Typescript[^1]" === "Javascript"
=== "@lancedb/lancedb"
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
=== "vectordb (deprecated)"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete) Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
@@ -522,15 +401,7 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:drop_table"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table" --8<-- "docs/src/basic_legacy.ts:drop_table"
@@ -545,6 +416,19 @@ Use the `drop_table()` method on the database to remove a table.
--8<-- "rust/lancedb/examples/simple.rs:drop_table" --8<-- "rust/lancedb/examples/simple.rs:drop_table"
``` ```
!!! note "Bundling `vectordb` apps with Webpack"
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
## Using the Embedding API ## Using the Embedding API
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more. You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
@@ -556,22 +440,6 @@ You can use the embedding API when working with embedding models. It automatical
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings" --8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
``` ```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/). Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
@@ -580,5 +448,3 @@ Learn about using the existing integrations and creating custom embedding functi
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts. This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail. If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,14 +1,6 @@
// --8<-- [start:import] // --8<-- [start:import]
import * as lancedb from "vectordb"; import * as lancedb from "vectordb";
import { import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
Schema,
Field,
Float32,
FixedSizeList,
Int32,
Float16,
} from "apache-arrow";
import * as arrow from "apache-arrow";
// --8<-- [end:import] // --8<-- [end:import]
import * as fs from "fs"; import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow"; import { Table as ArrowTable, Utf8 } from "apache-arrow";
@@ -28,33 +20,9 @@ const example = async () => {
{ vector: [3.1, 4.1], item: "foo", price: 10.0 }, { vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 }, { vector: [5.9, 26.5], item: "bar", price: 20.0 },
], ],
{ writeMode: lancedb.WriteMode.Overwrite }, { writeMode: lancedb.WriteMode.Overwrite }
); );
// --8<-- [end:create_table] // --8<-- [end:create_table]
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable({
name: "myTableWithSchema",
data,
schema,
});
// --8<-- [end:create_table_with_schema]
}
// --8<-- [start:add] // --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({ const newData = Array.from({ length: 500 }, (_, i) => ({
@@ -74,35 +42,33 @@ const example = async () => {
// --8<-- [end:create_index] // --8<-- [end:create_index]
// --8<-- [start:create_empty_table] // --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
{
// --8<-- [start:create_f16_table]
const dim = 16;
const total = 10;
const schema = new Schema([ const schema = new Schema([
new Field("id", new Int32()), new Field("id", new Int32()),
new Field( new Field("name", new Utf8()),
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]); ]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable( const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({ Array.from(Array(total), (_, i) => ({
id: i, id: i,
vector: Array.from(Array(dim), Math.random), vector: Array.from(Array(dim), Math.random)
})), })),
{ schema }, { f16_schema }
); )
const table = await db.createTable("f16_tbl", data); const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table] // --8<-- [end:create_f16_table]
}
// --8<-- [start:search] // --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute(); const query = await tbl.search([100, 100]).limit(2).execute();

View File

@@ -17,7 +17,6 @@ Allows you to set parameters when registering a `sentence-transformers` object.
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model | | `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) | | `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model | | `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
??? "Check out available sentence-transformer models here!" ??? "Check out available sentence-transformer models here!"
@@ -390,7 +389,6 @@ Supported parameters (to be passed in `create` method) are:
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. | | `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types: Cohere supports following input types:
| Input Type | Description | | Input Type | Description |
|-------------------------|---------------------------------------| |-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector| | "`search_document`" | Used for embeddings stored in a vector|
@@ -429,45 +427,6 @@ Usage Example:
tbl.add(data) tbl.add(data)
``` ```
### Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```
### AWS Bedrock Text Embedding Functions ### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token: You can do so by using `awscli` and also add your session_token:
@@ -565,7 +524,7 @@ uris = [
# get each uri as bytes # get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris] image_bytes = [requests.get(uri).content for uri in uris]
table.add( table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes}) [{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
) )
``` ```
Now we can search using text from both the default vector column and the custom vector column Now we can search using text from both the default vector column and the custom vector column
@@ -671,54 +630,3 @@ print(actual.text == "bird")
``` ```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues). If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
### Jina Embeddings
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -29,32 +29,17 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
You can also define your own embedding function by implementing the `EmbeddingFunction` You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next! abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "TypeScript" === "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. embedding function is available.
```javascript ```javascript
import * as lancedb from '@lancedb/lancedb' const lancedb = require("vectordb");
import { getRegistry } from '@lancedb/lancedb/embeddings'
// You need to provide an OpenAI API key // You need to provide an OpenAI API key
const apiKey = "sk-..." const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column // The embedding function will create embeddings for the 'text' column
const func = getRegistry().get("openai").create({apiKey}) const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
=== "Rust"
In the Rust SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
```toml
// Make sure to include the `openai` feature
[dependencies]
lancedb = {version = "*", features = ["openai"]}
```
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
``` ```
## 2. Define the data model or schema ## 2. Define the data model or schema
@@ -70,7 +55,7 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`. `VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "TypeScript" === "JavaScript"
For the TypeScript SDK, a schema can be inferred from input data, or an explicit For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided. Arrow schema can be provided.
@@ -89,18 +74,9 @@ the embeddings at all:
table.add([{"image_uri": u} for u in uris]) table.add([{"image_uri": u} for u in uris])
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
```
=== "vectordb (deprecated)"
```ts
const db = await lancedb.connect("data/sample-lancedb"); const db = await lancedb.connect("data/sample-lancedb");
const data = [ const data = [
{ text: "pepperoni"}, { text: "pepperoni"},
@@ -140,19 +116,9 @@ need to worry about it when you query the table:
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query. Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
const results = await table.search("What's the best pizza topping?")
.limit(10)
.toArray()
```
=== "vectordb (deprecated)
```ts
const results = await table const results = await table
.search("What's the best pizza topping?") .search("What's the best pizza topping?")
.limit(10) .limit(10)

View File

@@ -7,7 +7,7 @@ LanceDB supports 3 methods of working with embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB. 1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background. 2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. You can define your own [custom embedding function](./custom_embedding_function.md) 3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions. that extends the default embedding functions.
For python users, there is also a legacy [with_embeddings API](./legacy.md). For python users, there is also a legacy [with_embeddings API](./legacy.md).
@@ -18,89 +18,62 @@ It is retained for compatibility and will be removed in a future version.
To get started with embeddings, you can use the built-in embedding functions. To get started with embeddings, you can use the built-in embedding functions.
### OpenAI Embedding function ### OpenAI Embedding function
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`. LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
=== "Python" ```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
```python db = lancedb.connect("/tmp/db")
import lancedb func = get_registry().get("openai").create(name="text-embedding-ada-002")
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db") class Words(LanceModel):
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField() text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField() vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite") table = db.create_table("words", schema=Words, mode="overwrite")
table.add( table.add(
[ [
{"text": "hello world"}, {"text": "hello world"},
{"text": "goodbye world"} {"text": "goodbye world"}
] ]
) )
query = "greetings" query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0] actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<--- "rust/lancedb/examples/openai.rs:imports"
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
### Sentence Transformers Embedding function ### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`. LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
=== "Python" ```python
```python import lancedb
import lancedb from lancedb.pydantic import LanceModel, Vector
from lancedb.pydantic import LanceModel, Vector from lancedb.embeddings import get_registry
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db") db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu") model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel): class Words(LanceModel):
text: str = model.SourceField() text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField() vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words) table = db.create_table("words", schema=Words)
table.add( table.add(
[ [
{"text": "hello world"}, {"text": "hello world"},
{"text": "goodbye world"} {"text": "goodbye world"}
] ]
) )
query = "greetings" query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0] actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
=== "TypeScript"
Coming Soon!
=== "Rust"
Coming Soon!
### Jina Embeddings ### Jina Embeddings
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`. LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
`jina-clip-v1` can handle both text and images and other models only support `text`. `jina-clip-v1` can handle both text and images and other models only support `text`.

View File

@@ -32,51 +32,25 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
db = lancedb.connect("az://bucket/path") db = lancedb.connect("az://bucket/path")
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb"
AWS S3: AWS S3:
```ts ```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("az://bucket/path");
```
=== "vectordb (deprecated)"
AWS S3:
```ts
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path"); const db = await lancedb.connect("s3://bucket/path");
``` ```
Google Cloud Storage: Google Cloud Storage:
```ts ```javascript
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path"); const db = await lancedb.connect("gs://bucket/path");
``` ```
Azure Blob Storage: Azure Blob Storage:
```ts ```javascript
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path"); const db = await lancedb.connect("az://bucket/path");
``` ```
@@ -104,25 +78,12 @@ If you only want this to apply to one particular connection, you can pass the `s
) )
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path", { const db = await lancedb.connect("s3://bucket/path",
storageOptions: {timeout: "60s"} {storageOptions: {timeout: "60s"}});
});
``` ```
Getting even more specific, you can set the `timeout` for only a particular table: Getting even more specific, you can set the `timeout` for only a particular table:
@@ -140,25 +101,10 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
) )
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb"
<!-- skip-test --> <!-- skip-test -->
```ts ```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
=== "vectordb (deprecated)"
<!-- skip-test -->
```ts
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path"); const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable( const table = db.createTable(
@@ -189,6 +135,7 @@ There are several options that can be set for all object stores, mostly related
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. | | `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. | | `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
### AWS S3 ### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS. To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS.
@@ -208,27 +155,9 @@ These can be set as environment variables or passed in the `storage_options` par
) )
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect( const db = await lancedb.connect(
"s3://bucket/path", "s3://bucket/path",
@@ -259,6 +188,7 @@ The following keys can be used as both environment variables or keys in the `sto
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. | | `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. | | `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
!!! tip "Automatic cleanup for failed writes" !!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide: LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
@@ -454,26 +384,9 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
) )
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect( const db = await lancedb.connect(
"s3://bucket/path", "s3://bucket/path",
@@ -515,26 +428,9 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
) )
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect( const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path", "s3://my-bucket--use1-az4--x-s3/path",
@@ -547,6 +443,7 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
); );
``` ```
### Google Cloud Storage ### Google Cloud Storage
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. Alternatively, you can pass the path to the JSON file in the `storage_options`: GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. Alternatively, you can pass the path to the JSON file in the `storage_options`:
@@ -564,25 +461,9 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
) )
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect( const db = await lancedb.connect(
"gs://my-bucket/my-database", "gs://my-bucket/my-database",
@@ -594,10 +475,12 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
); );
``` ```
!!! info "HTTP/2 support" !!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`. By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
The following keys can be used as both environment variables or keys in the `storage_options` parameter: The following keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html --> <!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
@@ -607,6 +490,7 @@ The following keys can be used as both environment variables or keys in the `sto
| ``google_service_account_key`` | The serialized service account key. | | ``google_service_account_key`` | The serialized service account key. |
| ``google_application_credentials`` | Path to the application credentials. | | ``google_application_credentials`` | Path to the application credentials. |
### Azure Blob Storage ### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter: Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter:
@@ -625,26 +509,9 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
) )
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb"); const lancedb = require("lancedb");
const db = await lancedb.connect( const db = await lancedb.connect(
"az://my-container/my-database", "az://my-container/my-database",

View File

@@ -8,40 +8,26 @@ This guide will show how to create tables, insert data into them, and update the
## Creating a LanceDB Table ## Creating a LanceDB Table
Initialize a LanceDB connection and create a table
=== "Python" === "Python"
Initialize a LanceDB connection and create a table using one of the many methods listed below.
```python ```python
import lancedb import lancedb
db = lancedb.connect("./.lancedb") db = lancedb.connect("./.lancedb")
``` ```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these. === "Javascript"
=== "Typescript[^1]" Initialize a VectorDB connection and create a table using one of the many methods listed below.
=== "@lancedb/lancedb" ```javascript
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
=== "vectordb (deprecated)"
```typescript
const lancedb = require("vectordb"); const lancedb = require("vectordb");
const arrow = require("apache-arrow");
const uri = "data/sample-lancedb"; const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri); const db = await lancedb.connect(uri);
``` ```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries ### From list of tuples or dictionaries
@@ -59,7 +45,6 @@ Initialize a LanceDB connection and create a table
db["my_table"].head() db["my_table"].head()
``` ```
!!! info "Note" !!! info "Note"
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
@@ -78,102 +63,56 @@ Initialize a LanceDB connection and create a table
db.create_table("name", data, mode="overwrite") db.create_table("name", data, mode="overwrite")
``` ```
=== "Typescript[^1]" === "Javascript"
You can create a LanceDB table in JavaScript using an array of records as follows. You can create a LanceDB table in JavaScript using an array of JSON records as follows.
=== "@lancedb/lancedb" ```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
```ts "item": "foo",
--8<-- "nodejs/examples/basic.ts:create_table" "price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
``` ```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
```
!!! info "Note" !!! info "Note"
`createTable` supports an optional `existsOk` parameter. When set to true If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```ts ```javascript
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok" const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
``` ```
Sometimes you want to make sure that you start fresh. If you want to ### From a Pandas DataFrame
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts ```python
--8<-- "nodejs/examples/basic.ts:create_table_overwrite" import pandas as pd
```
=== "vectordb (deprecated)" data = pd.DataFrame({
```ts
--8<-- "docs/src/basic_legacy.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use apache-arrow to declare a schema
```ts
--8<-- "docs/src/basic_legacy.ts:create_table_with_schema"
```
!!! warning
`existsOk` is not available in `vectordb`
If the table already exists, vectordb will raise an error by default.
You can use `writeMode: WriteMode.Overwrite` to overwrite the table.
But this will delete the existing table and create a new one with the same name.
Sometimes you want to make sure that you start fresh.
If you want to overwrite the table, you can pass in `writeMode: lancedb.WriteMode.Overwrite` to the createTable function.
```ts
const table = await con.createTable(tableName, data, {
writeMode: WriteMode.Overwrite
})
```
### From a Pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]], "vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1], "lat": [45.5, 40.1],
"long": [-122.7, -74.1] "long": [-122.7, -74.1]
}) })
db.create_table("my_table", data) db.create_table("my_table", data)
db["my_table"].head() db["my_table"].head()
``` ```
!!! info "Note"
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly. Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type. The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python ```python
custom_schema = pa.schema([ custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()), pa.field("lat", pa.float32()),
pa.field("long", pa.float32()) pa.field("long", pa.float32())
]) ])
table = db.create_table("my_table", data, schema=custom_schema) table = db.create_table("my_table", data, schema=custom_schema)
``` ```
### From a Polars DataFrame ### From a Polars DataFrame
@@ -194,10 +133,9 @@ table = db.create_table("pl_table", data=data)
``` ```
### From an Arrow Table ### From an Arrow Table
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python" === "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python ```python
import pyarrows as pa import pyarrows as pa
@@ -222,17 +160,11 @@ LanceDB supports float16 data type!
tbl = db.create_table("f16_tbl", data, schema=schema) tbl = db.create_table("f16_tbl", data, schema=schema)
``` ```
=== "Typescript[^1]" === "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
=== "@lancedb/lancedb" ```javascript
```typescript
--8<-- "nodejs/examples/basic.ts:create_f16_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_f16_table" --8<-- "docs/src/basic_legacy.ts:create_f16_table"
``` ```
@@ -397,24 +329,23 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
tbl = db.open_table("my_table") tbl = db.open_table("my_table")
``` ```
=== "Typescript[^1]" === "JavaScript"
If you forget the name of your table, you can always get a listing of all table names. If you forget the name of your table, you can always get a listing of all table names.
```typescript ```javascript
console.log(await db.tableNames()); console.log(await db.tableNames());
``` ```
Then, you can open any existing tables. Then, you can open any existing tables.
```typescript ```javascript
const tbl = await db.openTable("my_table"); const tbl = await db.openTable("my_table");
``` ```
## Creating empty table ## Creating empty table
You can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
=== "Python" === "Python"
In Python, you can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
```python ```python
@@ -451,23 +382,9 @@ You can create an empty table for scenarios where you want to add data to the ta
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section. Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
## Adding to a table ## Adding to a table
After a table has been created, you can always add more data to it usind the `add` method After a table has been created, you can always add more data to it using the various methods available.
=== "Python" === "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples. You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -555,7 +472,9 @@ After a table has been created, you can always add more data to it usind the `ad
tbl.add(models) tbl.add(models)
``` ```
=== "Typescript[^1]"
=== "JavaScript"
```javascript ```javascript
await tbl.add( await tbl.add(
@@ -611,15 +530,15 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
# 0 3 [5.0, 6.0] # 0 3 [5.0, 6.0]
``` ```
=== "Typescript[^1]" === "JavaScript"
```ts ```javascript
await tbl.delete('item = "fizz"') await tbl.delete('item = "fizz"')
``` ```
### Deleting row with specific column value ### Deleting row with specific column value
```ts ```javascript
const con = await lancedb.connect("./.lancedb") const con = await lancedb.connect("./.lancedb")
const data = [ const data = [
{id: 1, vector: [1, 2]}, {id: 1, vector: [1, 2]},
@@ -633,7 +552,7 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
### Delete from a list of values ### Delete from a list of values
```ts ```javascript
const to_remove = [1, 5]; const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`) await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
@@ -690,32 +609,11 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0] 2 2 [10.0, 10.0]
``` ```
=== "Typescript[^1]" === "JavaScript/Typescript"
=== "@lancedb/lancedb"
API Reference: [lancedb.Table.update](../js/classes/Table.md/#update)
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({vector: [10, 10]}, { where: "x = 2"})
```
=== "vectordb (deprecated)"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update) API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
```ts ```javascript
const lancedb = require("vectordb"); const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb"); const db = await lancedb.connect("./.lancedb");
@@ -730,9 +628,7 @@ This can be used to update zero to all rows depending on how many rows match the
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} }) await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
``` ```
#### Updating using a sql query The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python" === "Python"
@@ -751,15 +647,9 @@ This can be used to update zero to all rows depending on how many rows match the
2 3 [10.0, 10.0] 2 3 [10.0, 10.0]
``` ```
=== "Typescript[^1]" === "JavaScript/Typescript"
=== "@lancedb/lancedb" ```javascript
Coming Soon!
=== "vectordb (deprecated)"
```ts
await tbl.update({ valuesSql: { x: "x + 1" } }) await tbl.update({ valuesSql: { x: "x + 1" } })
``` ```
@@ -782,7 +672,7 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "TypeScript" === "Javascript/Typescript"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table" --8<-- "docs/src/basic_legacy.ts:drop_table"
@@ -836,18 +726,18 @@ There are three possible settings for `read_consistency_interval`:
table.checkout_latest() table.checkout_latest()
``` ```
=== "Typescript[^1]" === "JavaScript/Typescript"
To set strong consistency, use `0`: To set strong consistency, use `0`:
```ts ```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 }); const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table"); const table = await db.openTable("my_table");
``` ```
For eventual consistency, specify the update interval as seconds: For eventual consistency, specify the update interval as seconds:
```ts ```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 }); const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table"); const table = await db.openTable("my_table");
``` ```
@@ -859,5 +749,3 @@ There are three possible settings for `read_consistency_interval`:
## What's next? ## What's next?
Learn the best practices on creating an ANN index and getting the most out of it. Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,7 +1,4 @@
## Improving retriever performance ## Improving retriever performance
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers. VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are: There are serveral ways to improve the performance of retrievers. Some of the common techniques are:

View File

@@ -1,6 +1,4 @@
Continuing from the previous section, we can now rerank the results using more complex rerankers. Continuing from the previous example, we can now rerank the results using more complex rerankers.
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
## Reranking search results ## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows: You can rerank any search results using a reranker. The syntax for reranking is as follows:

View File

@@ -1,82 +0,0 @@
## Finetuning the Embedding Model
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
We'll use the same dataset as in the previous sections. Start off by splitting the dataset into training and validation sets:
```python
from sklearn.model_selection import train_test_split
train_df, validation_df = train_test_split("data_qa.csv", test_size=0.2, random_state=42)
train_df.to_csv("data_train.csv", index=False)
validation_df.to_csv("data_val.csv", index=False)
```
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
from llama_index.finetuning import generate_qa_embedding_pairs
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
def load_corpus(file):
loader = PagedCSVReader(encoding="utf-8")
docs = loader.load_data(file=Path(file))
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(docs)
return nodes
from llama_index.llms.openai import OpenAI
train_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes, verbose=False
)
val_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes, verbose=False
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en-v1.5",
model_output_path="tuned_model",
val_dataset=val_dataset,
)
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder. This al
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
On performing the same hit-rate evaluation as before, we see a significant improvement in the hit-rate across all query types.
### Baseline
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.677 |
| Reranked Full-text Search | 0.672 |
| Hybrid Search (w/ CohereReranker) | 0.759|
### Fine-tuned model ( 2 iterations )
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.672 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.754 |
| Reranked Full-text Search | 0.672|
| Hybrid Search (w/ CohereReranker) | 0.768 |

View File

@@ -1,6 +1,4 @@
**@lancedb/lancedb** • [**Docs**](globals.md) @lancedb/lancedb / [Exports](modules.md)
***
# LanceDB JavaScript SDK # LanceDB JavaScript SDK
@@ -47,20 +45,29 @@ npm run test
### Running lint / format ### Running lint / format
LanceDb uses [biome](https://biomejs.dev/) for linting and formatting. if you are using VSCode you will need to install the official [Biome](https://marketplace.visualstudio.com/items?itemName=biomejs.biome) extension. LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
To manually lint your code you can run: may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
set to true. Also, if your vscode root folder is the repo root then you will need to set
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
```sh ```sh
npm run lint npm run lint
``` ```
to automatically fix all fixable issues: LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
for typescript and you should enable format on save. To manually check your code's format you
can run:
```sh ```sh
npm run lint-fix npm run chkformat
``` ```
If you do not have your workspace root set to the `nodejs` directory, unfortunately the extension will not work. You can still run the linting and formatting commands manually. If you need to manually format your code you can run:
```sh
npx prettier --write .
```
### Generating docs ### Generating docs

View File

@@ -1,10 +1,6 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection
*** # Class: Connection
[@lancedb/lancedb](../globals.md) / Connection
# Class: `abstract` Connection
A LanceDB Connection that allows you to open tables and create new ones. A LanceDB Connection that allows you to open tables and create new ones.
@@ -23,21 +19,62 @@ be closed when they are garbage collected.
Any created tables are independent and will continue to work even if Any created tables are independent and will continue to work even if
the underlying connection has been closed. the underlying connection has been closed.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [inner](Connection.md#inner)
### Methods
- [close](Connection.md#close)
- [createEmptyTable](Connection.md#createemptytable)
- [createTable](Connection.md#createtable)
- [display](Connection.md#display)
- [dropTable](Connection.md#droptable)
- [isOpen](Connection.md#isopen)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors ## Constructors
### new Connection() ### constructor
> **new Connection**(): [`Connection`](Connection.md) **new Connection**(`inner`): [`Connection`](Connection.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Connection` |
#### Returns #### Returns
[`Connection`](Connection.md) [`Connection`](Connection.md)
#### Defined in
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
## Properties
### inner
`Readonly` **inner**: `Connection`
#### Defined in
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
## Methods ## Methods
### close() ### close
> `abstract` **close**(): `void` **close**(): `void`
Close the connection, releasing any underlying resources. Close the connection, releasing any underlying resources.
@@ -49,78 +86,63 @@ Any attempt to use the connection after it is closed will result in an error.
`void` `void`
*** #### Defined in
### createEmptyTable() [connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88)
> `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt; ___
### createEmptyTable
**createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new empty Table Creates a new empty Table
#### Parameters #### Parameters
**name**: `string` | Name | Type | Description |
| :------ | :------ | :------ |
The name of the table. | `name` | `string` | The name of the table. |
| `schema` | `Schema`\<`any`\> | The schema of the table |
**schema**: `SchemaLike` | `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
The schema of the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
#### Returns #### Returns
`Promise`&lt;[`Table`](Table.md)&gt; `Promise`\<[`Table`](Table.md)\>
*** #### Defined in
### createTable() [connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151)
#### createTable(options) ___
> `abstract` **createTable**(`options`): `Promise`&lt;[`Table`](Table.md)&gt; ### createTable
**createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new Table and initialize it with new data. Creates a new Table and initialize it with new data.
##### Parameters #### Parameters
**options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt; | Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
The options object. #### Returns
##### Returns `Promise`\<[`Table`](Table.md)\>
`Promise`&lt;[`Table`](Table.md)&gt; #### Defined in
#### createTable(name, data, options) [connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123)
> `abstract` **createTable**(`name`, `data`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt; ___
Creates a new Table and initialize it with new data. ### display
##### Parameters **display**(): `string`
**name**: `string`
The name of the table.
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
##### Returns
`Promise`&lt;[`Table`](Table.md)&gt;
***
### display()
> `abstract` **display**(): `string`
Return a brief description of the connection Return a brief description of the connection
@@ -128,29 +150,37 @@ Return a brief description of the connection
`string` `string`
*** #### Defined in
### dropTable() [connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93)
> `abstract` **dropTable**(`name`): `Promise`&lt;`void`&gt; ___
### dropTable
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table. Drop an existing table.
#### Parameters #### Parameters
**name**: `string` | Name | Type | Description |
| :------ | :------ | :------ |
The name of the table to drop. | `name` | `string` | The name of the table to drop. |
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
*** #### Defined in
### isOpen() [connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173)
> `abstract` **isOpen**(): `boolean` ___
### isOpen
**isOpen**(): `boolean`
Return true if the connection has not been closed Return true if the connection has not been closed
@@ -158,31 +188,37 @@ Return true if the connection has not been closed
`boolean` `boolean`
*** #### Defined in
### openTable() [connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77)
> `abstract` **openTable**(`name`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt; ___
### openTable
**openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
Open a table in the database. Open a table in the database.
#### Parameters #### Parameters
**name**: `string` | Name | Type | Description |
| :------ | :------ | :------ |
The name of the table | `name` | `string` | The name of the table |
**options?**: `Partial`&lt;`OpenTableOptions`&gt;
#### Returns #### Returns
`Promise`&lt;[`Table`](Table.md)&gt; `Promise`\<[`Table`](Table.md)\>
*** #### Defined in
### tableNames() [connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112)
> `abstract` **tableNames**(`options`?): `Promise`&lt;`string`[]&gt; ___
### tableNames
**tableNames**(`options?`): `Promise`\<`string`[]\>
List all the table names in this database. List all the table names in this database.
@@ -190,11 +226,14 @@ Tables will be returned in lexicographical order.
#### Parameters #### Parameters
**options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt; | Name | Type | Description |
| :------ | :------ | :------ |
options to control the | `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point |
paging / start point
#### Returns #### Returns
`Promise`&lt;`string`[]&gt; `Promise`\<`string`[]\>
#### Defined in
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)

View File

@@ -1,16 +1,57 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index
***
[@lancedb/lancedb](../globals.md) / Index
# Class: Index # Class: Index
## Table of contents
### Constructors
- [constructor](Index.md#constructor)
### Properties
- [inner](Index.md#inner)
### Methods
- [btree](Index.md#btree)
- [ivfPq](Index.md#ivfpq)
## Constructors
### constructor
**new Index**(`inner`): [`Index`](Index.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Index` |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
## Properties
### inner
`Private` `Readonly` **inner**: `Index`
#### Defined in
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
## Methods ## Methods
### btree() ### btree
> `static` **btree**(): [`Index`](Index.md) **btree**(): [`Index`](Index.md)
Create a btree index Create a btree index
@@ -34,11 +75,15 @@ block size may be added in the future.
[`Index`](Index.md) [`Index`](Index.md)
*** #### Defined in
### ivfPq() [indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175)
> `static` **ivfPq**(`options`?): [`Index`](Index.md) ___
### ivfPq
**ivfPq**(`options?`): [`Index`](Index.md)
Create an IvfPq index Create an IvfPq index
@@ -63,8 +108,14 @@ currently is also a memory intensive operation.
#### Parameters #### Parameters
**options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt; | Name | Type |
| :------ | :------ |
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
#### Returns #### Returns
[`Index`](Index.md) [`Index`](Index.md)
#### Defined in
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)

View File

@@ -1,32 +1,46 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
***
[@lancedb/lancedb](../globals.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions # Class: MakeArrowTableOptions
Options to control the makeArrowTable call. Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors ## Constructors
### new MakeArrowTableOptions() ### constructor
> **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md) **new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Parameters #### Parameters
**values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt; | Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Returns #### Returns
[`MakeArrowTableOptions`](MakeArrowTableOptions.md) [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Defined in
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
## Properties ## Properties
### dictionaryEncodeStrings ### dictionaryEncodeStrings
> **dictionaryEncodeStrings**: `boolean` = `false` **dictionaryEncodeStrings**: `boolean` = `false`
If true then string columns will be encoded with dictionary encoding If true then string columns will be encoded with dictionary encoding
@@ -36,26 +50,26 @@ data type for individual columns.
If `schema` is provided then this property is ignored. If `schema` is provided then this property is ignored.
*** #### Defined in
### embeddingFunction? [arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98)
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md) ___
*** ### schema
### embeddings? `Optional` **schema**: `Schema`\<`any`\>
> `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt; #### Defined in
*** [arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67)
### schema? ___
> `optional` **schema**: `SchemaLike`
***
### vectorColumns ### vectorColumns
> **vectorColumns**: `Record`&lt;`string`, [`VectorColumnOptions`](VectorColumnOptions.md)&gt; **vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\>
#### Defined in
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)

View File

@@ -1,26 +1,48 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query
***
[@lancedb/lancedb](../globals.md) / Query
# Class: Query # Class: Query
A builder for LanceDB queries. A builder for LanceDB queries.
## Extends ## Hierarchy
- [`QueryBase`](QueryBase.md)&lt;`NativeQuery`&gt; - [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\>
**`Query`**
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [inner](Query.md#inner)
### Methods
- [[asyncIterator]](Query.md#[asynciterator])
- [execute](Query.md#execute)
- [limit](Query.md#limit)
- [nativeExecute](Query.md#nativeexecute)
- [nearestTo](Query.md#nearestto)
- [select](Query.md#select)
- [toArray](Query.md#toarray)
- [toArrow](Query.md#toarrow)
- [where](Query.md#where)
## Constructors ## Constructors
### new Query() ### constructor
> **new Query**(`tbl`): [`Query`](Query.md) **new Query**(`tbl`): [`Query`](Query.md)
#### Parameters #### Parameters
**tbl**: `Table` | Name | Type |
| :------ | :------ |
| `tbl` | `Table` |
#### Returns #### Returns
@@ -28,67 +50,57 @@ A builder for LanceDB queries.
#### Overrides #### Overrides
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors) [QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
## Properties ## Properties
### inner ### inner
> `protected` **inner**: `Query` \| `Promise`&lt;`Query`&gt; `Protected` **inner**: `Query`
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner) [QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods ## Methods
### \[asyncIterator\]() ### [asyncIterator]
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt; **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns #### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt; `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D) [QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
*** #### Defined in
### doCall() [query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
> `protected` **doCall**(`fn`): `void` ___
#### Parameters ### execute
**fn** **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
[`RecordBatchIterator`](RecordBatchIterator.md) [`RecordBatchIterator`](RecordBatchIterator.md)
#### See **`See`**
- AsyncIterator - AsyncIterator
of of
@@ -102,76 +114,17 @@ single query)
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute) [QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
*** #### Defined in
### explainPlan() [query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt; ___
Generates an explanation of the query execution plan. ### limit
#### Parameters **limit**(`limit`): [`Query`](Query.md)
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
***
### limit()
> **limit**(`limit`): `this`
Set the maximum number of results to return. Set the maximum number of results to return.
@@ -180,39 +133,45 @@ called then every valid row from the table will be returned.
#### Parameters #### Parameters
**limit**: `number` | Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns #### Returns
`this` [`Query`](Query.md)
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit) [QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
*** #### Defined in
### nativeExecute() [query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt; ___
#### Parameters ### nativeExecute
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt; **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns #### Returns
`Promise`&lt;`RecordBatchIterator`&gt; `Promise`\<`RecordBatchIterator`\>
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute) [QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
*** #### Defined in
### nearestTo() [query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
> **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md) ___
### nearestTo
**nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
Find the nearest vectors to the given query vector. Find the nearest vectors to the given query vector.
@@ -232,13 +191,15 @@ If there is more than one vector column you must use
#### Parameters #### Parameters
**vector**: `IntoVector` | Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
#### See **`See`**
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like - [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
to compare with. to compare with.
@@ -262,11 +223,15 @@ Vector searches always have a `limit`. If `limit` has not been called then
a default `limit` of 10 will be used. a default `limit` of 10 will be used.
- [Query#limit](Query.md#limit) - [Query#limit](Query.md#limit)
*** #### Defined in
### select() [query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370)
> **select**(`columns`): `this` ___
### select
**select**(`columns`): [`Query`](Query.md)
Return only the specified columns. Return only the specified columns.
@@ -290,13 +255,15 @@ input to this method would be:
#### Parameters #### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt; | Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns #### Returns
`this` [`Query`](Query.md)
#### Example **`Example`**
```ts ```ts
new Map([["combined", "a + b"], ["c", "c"]]) new Map([["combined", "a + b"], ["c", "c"]])
@@ -311,57 +278,61 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select) [QueryBase](QueryBase.md).[select](QueryBase.md#select)
*** #### Defined in
### toArray() [query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt; ___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects. Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`&lt;`any`[]&gt; `Promise`\<`unknown`[]\>
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray) [QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
*** #### Defined in
### toArrow() [query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt; ___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt; `Promise`\<`Table`\<`any`\>\>
#### See **`See`**
ArrowTable. ArrowTable.
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow) [QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
*** #### Defined in
### where() [query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
> **where**(`predicate`): `this` ___
### where
**where**(`predicate`): [`Query`](Query.md)
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -369,13 +340,15 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters #### Parameters
**predicate**: `string` | Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns #### Returns
`this` [`Query`](Query.md)
#### Example **`Example`**
```ts ```ts
x > 10 x > 10
@@ -388,4 +361,8 @@ on the filter column(s).
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where) [QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,91 +1,117 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase
*** # Class: QueryBase\<NativeQueryType, QueryType\>
[@lancedb/lancedb](../globals.md) / QueryBase
# Class: QueryBase&lt;NativeQueryType&gt;
Common methods supported by all query types Common methods supported by all query types
## Extended by ## Type parameters
- [`Query`](Query.md) | Name | Type |
- [`VectorQuery`](VectorQuery.md) | :------ | :------ |
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
| `QueryType` | `QueryType` |
## Type Parameters ## Hierarchy
**NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery` - **`QueryBase`**
↳ [`Query`](Query.md)
↳ [`VectorQuery`](VectorQuery.md)
## Implements ## Implements
- `AsyncIterable`&lt;`RecordBatch`&gt; - `AsyncIterable`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](QueryBase.md#constructor)
### Properties
- [inner](QueryBase.md#inner)
### Methods
- [[asyncIterator]](QueryBase.md#[asynciterator])
- [execute](QueryBase.md#execute)
- [limit](QueryBase.md#limit)
- [nativeExecute](QueryBase.md#nativeexecute)
- [select](QueryBase.md#select)
- [toArray](QueryBase.md#toarray)
- [toArrow](QueryBase.md#toarrow)
- [where](QueryBase.md#where)
## Constructors ## Constructors
### new QueryBase() ### constructor
> `protected` **new QueryBase**&lt;`NativeQueryType`&gt;(`inner`): [`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt; **new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
| `QueryType` | `QueryType` |
#### Parameters #### Parameters
**inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt; | Name | Type |
| :------ | :------ |
| `inner` | `NativeQueryType` |
#### Returns #### Returns
[`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt; [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Properties ## Properties
### inner ### inner
> `protected` **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt; `Protected` **inner**: `NativeQueryType`
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods ## Methods
### \[asyncIterator\]() ### [asyncIterator]
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt; **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns #### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt; `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Implementation of #### Implementation of
`AsyncIterable.[asyncIterator]` AsyncIterable.[asyncIterator]
*** #### Defined in
### doCall() [query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
> `protected` **doCall**(`fn`): `void` ___
#### Parameters ### execute
**fn** **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Returns
`void`
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
[`RecordBatchIterator`](RecordBatchIterator.md) [`RecordBatchIterator`](RecordBatchIterator.md)
#### See **`See`**
- AsyncIterator - AsyncIterator
of of
@@ -97,66 +123,15 @@ This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a stream is consumed slowly (this constrains the maximum memory used by a
single query) single query)
*** #### Defined in
### explainPlan() [query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt; ___
Generates an explanation of the query execution plan. ### limit
#### Parameters **limit**(`limit`): `QueryType`
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
***
### limit()
> **limit**(`limit`): `this`
Set the maximum number of results to return. Set the maximum number of results to return.
@@ -165,31 +140,37 @@ called then every valid row from the table will be returned.
#### Parameters #### Parameters
**limit**: `number` | Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns #### Returns
`this` `QueryType`
*** #### Defined in
### nativeExecute() [query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt; ___
#### Parameters ### nativeExecute
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt; **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns #### Returns
`Promise`&lt;`RecordBatchIterator`&gt; `Promise`\<`RecordBatchIterator`\>
*** #### Defined in
### select() [query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
> **select**(`columns`): `this` ___
### select
**select**(`columns`): `QueryType`
Return only the specified columns. Return only the specified columns.
@@ -213,13 +194,15 @@ input to this method would be:
#### Parameters #### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt; | Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns #### Returns
`this` `QueryType`
#### Example **`Example`**
```ts ```ts
new Map([["combined", "a + b"], ["c", "c"]]) new Map([["combined", "a + b"], ["c", "c"]])
@@ -232,47 +215,51 @@ uses `Object.entries` which should preserve the insertion order of the object.
object insertion order is easy to get wrong and `Map` is more foolproof. object insertion order is easy to get wrong and `Map` is more foolproof.
``` ```
*** #### Defined in
### toArray() [query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt; ___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects. Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`&lt;`any`[]&gt; `Promise`\<`unknown`[]\>
*** #### Defined in
### toArrow() [query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt; ___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt; `Promise`\<`Table`\<`any`\>\>
#### See **`See`**
ArrowTable. ArrowTable.
*** #### Defined in
### where() [query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
> **where**(`predicate`): `this` ___
### where
**where**(`predicate`): `QueryType`
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -280,13 +267,15 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters #### Parameters
**predicate**: `string` | Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns #### Returns
`this` `QueryType`
#### Example **`Example`**
```ts ```ts
x > 10 x > 10
@@ -296,3 +285,7 @@ x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index Filtering performance can often be improved by creating a scalar index
on the filter column(s). on the filter column(s).
``` ```
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,39 +1,80 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator
***
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
# Class: RecordBatchIterator # Class: RecordBatchIterator
## Implements ## Implements
- `AsyncIterator`&lt;`RecordBatch`&gt; - `AsyncIterator`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](RecordBatchIterator.md#constructor)
### Properties
- [inner](RecordBatchIterator.md#inner)
- [promisedInner](RecordBatchIterator.md#promisedinner)
### Methods
- [next](RecordBatchIterator.md#next)
## Constructors ## Constructors
### new RecordBatchIterator() ### constructor
> **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md) **new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Parameters #### Parameters
**promise?**: `Promise`&lt;`RecordBatchIterator`&gt; | Name | Type |
| :------ | :------ |
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
#### Returns #### Returns
[`RecordBatchIterator`](RecordBatchIterator.md) [`RecordBatchIterator`](RecordBatchIterator.md)
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
## Properties
### inner
`Private` `Optional` **inner**: `RecordBatchIterator`
#### Defined in
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
___
### promisedInner
`Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
## Methods ## Methods
### next() ### next
> **next**(): `Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt; **next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Returns #### Returns
`Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt; `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Implementation of #### Implementation of
`AsyncIterator.next` AsyncIterator.next
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)

View File

@@ -1,10 +1,6 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table
*** # Class: Table
[@lancedb/lancedb](../globals.md) / Table
# Class: `abstract` Table
A Table is a collection of Records in a LanceDB Database. A Table is a collection of Records in a LanceDB Database.
@@ -17,149 +13,196 @@ further operations.
Closing a table is optional. It not closed, it will be closed when it is garbage Closing a table is optional. It not closed, it will be closed when it is garbage
collected. collected.
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [inner](Table.md#inner)
### Methods
- [add](Table.md#add)
- [addColumns](Table.md#addcolumns)
- [alterColumns](Table.md#altercolumns)
- [checkout](Table.md#checkout)
- [checkoutLatest](Table.md#checkoutlatest)
- [close](Table.md#close)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [display](Table.md#display)
- [dropColumns](Table.md#dropcolumns)
- [isOpen](Table.md#isopen)
- [listIndices](Table.md#listindices)
- [query](Table.md#query)
- [restore](Table.md#restore)
- [schema](Table.md#schema)
- [update](Table.md#update)
- [vectorSearch](Table.md#vectorsearch)
- [version](Table.md#version)
## Constructors ## Constructors
### new Table() ### constructor
> **new Table**(): [`Table`](Table.md) **new Table**(`inner`): [`Table`](Table.md)
Construct a Table. Internal use only.
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Table` |
#### Returns #### Returns
[`Table`](Table.md) [`Table`](Table.md)
## Accessors #### Defined in
### name [table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69)
> `get` `abstract` **name**(): `string` ## Properties
Returns the name of the table ### inner
#### Returns `Private` `Readonly` **inner**: `Table`
`string` #### Defined in
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
## Methods ## Methods
### add() ### add
> `abstract` **add**(`data`, `options`?): `Promise`&lt;`void`&gt; **add**(`data`, `options?`): `Promise`\<`void`\>
Insert records into this Table. Insert records into this Table.
#### Parameters #### Parameters
**data**: [`Data`](../type-aliases/Data.md) | Name | Type | Description |
| :------ | :------ | :------ |
Records to be inserted into the Table | `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table |
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
**options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
*** #### Defined in
### addColumns() [table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105)
> `abstract` **addColumns**(`newColumnTransforms`): `Promise`&lt;`void`&gt; ___
### addColumns
**addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values. Add new columns with defined values.
#### Parameters #### Parameters
**newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | Name | Type | Description |
| :------ | :------ | :------ |
pairs of column names and | `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
*** #### Defined in
### alterColumns() [table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261)
> `abstract` **alterColumns**(`columnAlterations`): `Promise`&lt;`void`&gt; ___
### alterColumns
**alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns. Alter the name or nullability of columns.
#### Parameters #### Parameters
**columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | Name | Type | Description |
| :------ | :------ | :------ |
One or more alterations to | `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
apply to columns.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
*** #### Defined in
### checkout() [table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270)
> `abstract` **checkout**(`version`): `Promise`&lt;`void`&gt; ___
Checks out a specific version of the table _This is an in-place operation._ ### checkout
This allows viewing previous versions of the table. If you wish to **checkout**(`version`): `Promise`\<`void`\>
keep writing to the dataset starting from an old version, then use
the `restore` function.
Calling this method will set the table into time-travel mode. If you Checks out a specific version of the Table
wish to return to standard mode, call `checkoutLatest`.
Any read operation on the table will now access the data at the checked out version.
As a consequence, calling this method will disable any read consistency interval
that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the change
permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
#### Parameters #### Parameters
**version**: `number` | Name | Type |
| :------ | :------ |
The version to checkout | `version` | `number` |
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
#### Example #### Defined in
```typescript [table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317)
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], type: "vector" },
]);
console.log(await table.version()); // 1 ___
console.log(table.display());
await table.add([{ vector: [0.5, 0.2], type: "vector" }]);
await table.checkout(1);
console.log(await table.version()); // 2
```
*** ### checkoutLatest
### checkoutLatest() **checkoutLatest**(): `Promise`\<`void`\>
> `abstract` **checkoutLatest**(): `Promise`&lt;`void`&gt; Ensures the table is pointing at the latest version
Checkout the latest version of the table. _This is an in-place operation._ This can be used to manually update a table when the read_consistency_interval is None
It can also be used to undo a `[Self::checkout]` operation
The table will be set back into standard mode, and will track the latest
version of the table.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
*** #### Defined in
### close() [table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327)
> `abstract` **close**(): `void` ___
### close
**close**(): `void`
Close the table, releasing any underlying resources. Close the table, releasing any underlying resources.
@@ -171,27 +214,37 @@ Any attempt to use the table after it is closed will result in an error.
`void` `void`
*** #### Defined in
### countRows() [table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85)
> `abstract` **countRows**(`filter`?): `Promise`&lt;`number`&gt; ___
### countRows
**countRows**(`filter?`): `Promise`\<`number`\>
Count the total number of rows in the dataset. Count the total number of rows in the dataset.
#### Parameters #### Parameters
**filter?**: `string` | Name | Type |
| :------ | :------ |
| `filter?` | `string` |
#### Returns #### Returns
`Promise`&lt;`number`&gt; `Promise`\<`number`\>
*** #### Defined in
### createIndex() [table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152)
> `abstract` **createIndex**(`column`, `options`?): `Promise`&lt;`void`&gt; ___
### createIndex
**createIndex**(`column`, `options?`): `Promise`\<`void`\>
Create an index to speed up queries. Create an index to speed up queries.
@@ -202,66 +255,73 @@ vector and non-vector searches)
#### Parameters #### Parameters
**column**: `string` | Name | Type |
| :------ | :------ |
**options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt; | `column` | `string` |
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
#### Note **`Example`**
We currently don't support custom named indexes,
The index name will always be `${column}_idx`
#### Examples
```ts ```ts
// If the column has a vector (fixed size list) data type then // If the column has a vector (fixed size list) data type then
// an IvfPq vector index will be created. // an IvfPq vector index will be created.
const table = await conn.openTable("my_table"); const table = await conn.openTable("my_table");
await table.createIndex("vector"); await table.createIndex(["vector"]);
``` ```
**`Example`**
```ts ```ts
// For advanced control over vector index creation you can specify // For advanced control over vector index creation you can specify
// the index type and options. // the index type and options.
const table = await conn.openTable("my_table"); const table = await conn.openTable("my_table");
await table.createIndex("vector", { await table.createIndex(["vector"], I)
config: lancedb.Index.ivfPq({ .ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
numPartitions: 128, .build();
numSubVectors: 16,
}),
});
``` ```
**`Example`**
```ts ```ts
// Or create a Scalar index // Or create a Scalar index
await table.createIndex("my_float_col"); await table.createIndex("my_float_col").build();
``` ```
*** #### Defined in
### delete() [table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184)
> `abstract` **delete**(`predicate`): `Promise`&lt;`void`&gt; ___
### delete
**delete**(`predicate`): `Promise`\<`void`\>
Delete the rows that satisfy the predicate. Delete the rows that satisfy the predicate.
#### Parameters #### Parameters
**predicate**: `string` | Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
*** #### Defined in
### display() [table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157)
> `abstract` **display**(): `string` ___
### display
**display**(): `string`
Return a brief description of the table Return a brief description of the table
@@ -269,11 +329,15 @@ Return a brief description of the table
`string` `string`
*** #### Defined in
### dropColumns() [table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90)
> `abstract` **dropColumns**(`columnNames`): `Promise`&lt;`void`&gt; ___
### dropColumns
**dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset Drop one or more columns from the dataset
@@ -284,41 +348,23 @@ then call ``cleanup_files`` to remove the old files.
#### Parameters #### Parameters
• **columnNames**: `string`[] | Name | Type | Description |
| :------ | :------ | :------ |
The names of the columns to drop. These can | `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
*** #### Defined in
### indexStats() [table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285)
> `abstract` **indexStats**(`name`): `Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt; ___
List all the stats of a specified index ### isOpen
#### Parameters ▸ **isOpen**(): `boolean`
• **name**: `string`
The name of the index.
#### Returns
`Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt;
The stats of the index. If the index does not exist, it will return undefined
***
### isOpen()
> `abstract` **isOpen**(): `boolean`
Return true if the table has not been closed Return true if the table has not been closed
@@ -326,79 +372,31 @@ Return true if the table has not been closed
`boolean` `boolean`
*** #### Defined in
### listIndices() [table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74)
> `abstract` **listIndices**(): `Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt; ___
List all indices that have been created with [Table.createIndex](Table.md#createindex) ### listIndices
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
List all indices that have been created with Self::create_index
#### Returns #### Returns
`Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt; `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
*** #### Defined in
### mergeInsert() [table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350)
> `abstract` **mergeInsert**(`on`): `MergeInsertBuilder` ___
#### Parameters ### query
**on**: `string` \| `string`[] **query**(): [`Query`](Query.md)
#### Returns
`MergeInsertBuilder`
***
### optimize()
> `abstract` **optimize**(`options`?): `Promise`&lt;`OptimizeStats`&gt;
Optimize the on-disk data and indices for better performance.
Modeled after ``VACUUM`` in PostgreSQL.
Optimization covers three operations:
- Compaction: Merges small files into larger ones
- Prune: Removes old versions of the dataset
- Index: Optimizes the indices, adding new data to existing indices
Experimental API
----------------
The optimization process is undergoing active development and may change.
Our goal with these changes is to improve the performance of optimization and
reduce the complexity.
That being said, it is essential today to run optimize if you want the best
performance. It should be stable and safe to use in production, but it our
hope that the API may be simplified (or not even need to be called) in the
future.
The frequency an application shoudl call optimize is based on the frequency of
data modifications. If data is frequently added, deleted, or updated then
optimize should be run frequently. A good rule of thumb is to run optimize if
you have added or modified 100,000 or more records or run more than 20 data
modification operations.
#### Parameters
• **options?**: `Partial`&lt;`OptimizeOptions`&gt;
#### Returns
`Promise`&lt;`OptimizeStats`&gt;
***
### query()
> `abstract` **query**(): [`Query`](Query.md)
Create a [Query](Query.md) Builder. Create a [Query](Query.md) Builder.
@@ -408,7 +406,8 @@ returned by this method can be used to control the query using filtering,
vector similarity, sorting, and more. vector similarity, sorting, and more.
Note: By default, all columns are returned. For best performance, you should Note: By default, all columns are returned. For best performance, you should
only fetch the columns you need. only fetch the columns you need. See [`Query::select_with_projection`] for
more details.
When appropriate, various indices and statistics based pruning will be used to When appropriate, various indices and statistics based pruning will be used to
accelerate the query. accelerate the query.
@@ -419,22 +418,21 @@ accelerate the query.
A builder that can be used to parameterize the query A builder that can be used to parameterize the query
#### Examples **`Example`**
```ts ```ts
// SQL-style filtering // SQL-style filtering
// //
// This query will return up to 1000 rows whose value in the `id` column // This query will return up to 1000 rows whose value in the `id` column
// is greater than 5. LanceDb supports a broad set of filtering functions. // is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table for await (const batch of table.query()
.query() .filter("id > 1").select(["id"]).limit(20)) {
.where("id > 1")
.select(["id"])
.limit(20)) {
console.log(batch); console.log(batch);
} }
``` ```
**`Example`**
```ts ```ts
// Vector Similarity Search // Vector Similarity Search
// //
@@ -442,17 +440,18 @@ for await (const batch of table
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created // closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
// on the "vector" column then this will perform an ANN search. // on the "vector" column then this will perform an ANN search.
// //
// The `refineFactor` and `nprobes` methods are used to control the recall / // The `refine_factor` and `nprobes` methods are used to control the recall /
// latency tradeoff of the search. // latency tradeoff of the search.
for await (const batch of table for await (const batch of table.query()
.query() .nearestTo([1, 2, 3])
.where("id > 1") .refineFactor(5).nprobe(10)
.select(["id"]) .limit(10)) {
.limit(20)) {
console.log(batch); console.log(batch);
} }
``` ```
**`Example`**
```ts ```ts
// Scan the full dataset // Scan the full dataset
// //
@@ -462,11 +461,15 @@ for await (const batch of table.query()) {
} }
``` ```
*** #### Defined in
### restore() [table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238)
> `abstract` **restore**(): `Promise`&lt;`void`&gt; ___
### restore
▸ **restore**(): `Promise`\<`void`\>
Restore the table to the currently checked out version Restore the table to the currently checked out version
@@ -481,121 +484,33 @@ out state and the read_consistency_interval, if any, will apply.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`\<`void`\>
*** #### Defined in
### schema() [table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343)
> `abstract` **schema**(): `Promise`&lt;`Schema`&lt;`any`&gt;&gt; ___
### schema
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
Get the schema of the table. Get the schema of the table.
#### Returns #### Returns
`Promise`&lt;`Schema`&lt;`any`&gt;&gt; `Promise`\<`Schema`\<`any`\>\>
*** #### Defined in
### search() [table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95)
#### search(query) ___
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md) ### update
Create a search query to find the nearest neighbors ▸ **update**(`updates`, `options?`): `Promise`\<`void`\>
of the given query vector
##### Parameters
• **query**: `string`
the query. This will be converted to a vector using the table's provided embedding function
##### Returns
[`VectorQuery`](VectorQuery.md)
##### Note
If no embedding functions are defined in the table, this will error when collecting the results.
#### search(query)
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
Create a search query to find the nearest neighbors
of the given query vector
##### Parameters
• **query**: `IntoVector`
the query vector
##### Returns
[`VectorQuery`](VectorQuery.md)
***
### toArrow()
> `abstract` **toArrow**(): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
Return the table as an arrow table
#### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt;
***
### update()
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
Update existing records in the Table
##### Parameters
• **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
`Promise`&lt;`void`&gt;
##### Example
```ts
table.update({where:"x = 2", values:{"vector": [10, 10]}})
```
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
Update existing records in the Table
##### Parameters
• **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
`Promise`&lt;`void`&gt;
##### Example
```ts
table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
```
#### update(updates, options)
> `abstract` **update**(`updates`, `options`?): `Promise`&lt;`void`&gt;
Update existing records in the Table Update existing records in the Table
@@ -612,32 +527,26 @@ you are updating many rows (with different ids) then you will get
better performance with a single [`merge_insert`] call instead of better performance with a single [`merge_insert`] call instead of
repeatedly calilng this method. repeatedly calilng this method.
##### Parameters #### Parameters
• **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt; | Name | Type | Description |
| :------ | :------ | :------ |
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
the #### Returns
columns to update
Keys in the map should specify the name of the column to update. `Promise`\<`void`\>
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
• **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt; #### Defined in
additional options to control [table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137)
the update behavior
##### Returns ___
`Promise`&lt;`void`&gt; ### vectorSearch
*** ▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
### vectorSearch()
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
Search the table with a given query vector. Search the table with a given query vector.
@@ -647,50 +556,39 @@ by `query`.
#### Parameters #### Parameters
• **vector**: `IntoVector` | Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
#### See **`See`**
[Query#nearestTo](Query.md#nearestto) for more details. [Query#nearestTo](Query.md#nearestto) for more details.
*** #### Defined in
### version() [table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249)
> `abstract` **version**(): `Promise`&lt;`number`&gt; ___
### version
▸ **version**(): `Promise`\<`number`\>
Retrieve the version of the table Retrieve the version of the table
#### Returns LanceDb supports versioning. Every operation that modifies the table increases
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
`Promise`&lt;`number`&gt; version to view the data at that point. In addition, you can `[Self::restore]` the
version to replace the current table with a previous version.
***
### parseTableData()
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`&lt;`object`&gt;
#### Parameters
• **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
• **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
• **streaming?**: `boolean` = `false`
#### Returns #### Returns
`Promise`&lt;`object`&gt; `Promise`\<`number`\>
##### buf #### Defined in
> **buf**: `Buffer` [table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297)
##### mode
> **mode**: `string`

View File

@@ -1,29 +1,45 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions
***
[@lancedb/lancedb](../globals.md) / VectorColumnOptions
# Class: VectorColumnOptions # Class: VectorColumnOptions
## Table of contents
### Constructors
- [constructor](VectorColumnOptions.md#constructor)
### Properties
- [type](VectorColumnOptions.md#type)
## Constructors ## Constructors
### new VectorColumnOptions() ### constructor
> **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md) **new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md)
#### Parameters #### Parameters
**values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt; | Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
#### Returns #### Returns
[`VectorColumnOptions`](VectorColumnOptions.md) [`VectorColumnOptions`](VectorColumnOptions.md)
#### Defined in
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
## Properties ## Properties
### type ### type
> **type**: `Float`&lt;`Floats`&gt; **type**: `Float`\<`Floats`\>
Vector column type. Vector column type.
#### Defined in
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)

View File

@@ -1,8 +1,4 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery
***
[@lancedb/lancedb](../globals.md) / VectorQuery
# Class: VectorQuery # Class: VectorQuery
@@ -10,19 +6,50 @@ A builder used to construct a vector search
This builder can be reused to execute the query many times. This builder can be reused to execute the query many times.
## Extends ## Hierarchy
- [`QueryBase`](QueryBase.md)&lt;`NativeVectorQuery`&gt; - [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\>
**`VectorQuery`**
## Table of contents
### Constructors
- [constructor](VectorQuery.md#constructor)
### Properties
- [inner](VectorQuery.md#inner)
### Methods
- [[asyncIterator]](VectorQuery.md#[asynciterator])
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
- [column](VectorQuery.md#column)
- [distanceType](VectorQuery.md#distancetype)
- [execute](VectorQuery.md#execute)
- [limit](VectorQuery.md#limit)
- [nativeExecute](VectorQuery.md#nativeexecute)
- [nprobes](VectorQuery.md#nprobes)
- [postfilter](VectorQuery.md#postfilter)
- [refineFactor](VectorQuery.md#refinefactor)
- [select](VectorQuery.md#select)
- [toArray](VectorQuery.md#toarray)
- [toArrow](VectorQuery.md#toarrow)
- [where](VectorQuery.md#where)
## Constructors ## Constructors
### new VectorQuery() ### constructor
> **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md) **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
#### Parameters #### Parameters
**inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt; | Name | Type |
| :------ | :------ |
| `inner` | `VectorQuery` |
#### Returns #### Returns
@@ -30,37 +57,49 @@ This builder can be reused to execute the query many times.
#### Overrides #### Overrides
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors) [QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
## Properties ## Properties
### inner ### inner
> `protected` **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt; `Protected` **inner**: `VectorQuery`
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner) [QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods ## Methods
### \[asyncIterator\]() ### [asyncIterator]
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt; **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns #### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt; `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D) [QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
*** #### Defined in
### bypassVectorIndex() [query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
> **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md) ___
### bypassVectorIndex
**bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
If this is called then any vector index is skipped If this is called then any vector index is skipped
@@ -74,11 +113,15 @@ calculate your recall to select an appropriate value for nprobes.
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
*** #### Defined in
### column() [query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321)
> **column**(`column`): [`VectorQuery`](VectorQuery.md) ___
### column
**column**(`column`): [`VectorQuery`](VectorQuery.md)
Set the vector column to query Set the vector column to query
@@ -87,24 +130,30 @@ the call to
#### Parameters #### Parameters
**column**: `string` | Name | Type |
| :------ | :------ |
| `column` | `string` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
#### See **`See`**
[Query#nearestTo](Query.md#nearestto) [Query#nearestTo](Query.md#nearestto)
This parameter must be specified if the table has more than one column This parameter must be specified if the table has more than one column
whose data type is a fixed-size-list of floats. whose data type is a fixed-size-list of floats.
*** #### Defined in
### distanceType() [query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229)
> **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md) ___
### distanceType
**distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
Set the distance metric to use Set the distance metric to use
@@ -114,13 +163,15 @@ use. See
#### Parameters #### Parameters
**distanceType**: `"l2"` \| `"cosine"` \| `"dot"` | Name | Type |
| :------ | :------ |
| `distanceType` | `string` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
#### See **`See`**
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different [IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
distance metrics available. distance metrics available.
@@ -131,41 +182,23 @@ invalid.
By default "l2" is used. By default "l2" is used.
*** #### Defined in
### doCall() [query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248)
> `protected` **doCall**(`fn`): `void` ___
#### Parameters ### execute
**fn** **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
[`RecordBatchIterator`](RecordBatchIterator.md) [`RecordBatchIterator`](RecordBatchIterator.md)
#### See **`See`**
- AsyncIterator - AsyncIterator
of of
@@ -179,76 +212,17 @@ single query)
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute) [QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
*** #### Defined in
### explainPlan() [query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt; ___
Generates an explanation of the query execution plan. ### limit
#### Parameters **limit**(`limit`): [`VectorQuery`](VectorQuery.md)
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
***
### limit()
> **limit**(`limit`): `this`
Set the maximum number of results to return. Set the maximum number of results to return.
@@ -257,39 +231,45 @@ called then every valid row from the table will be returned.
#### Parameters #### Parameters
**limit**: `number` | Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns #### Returns
`this` [`VectorQuery`](VectorQuery.md)
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit) [QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
*** #### Defined in
### nativeExecute() [query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt; ___
#### Parameters ### nativeExecute
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt; **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns #### Returns
`Promise`&lt;`RecordBatchIterator`&gt; `Promise`\<`RecordBatchIterator`\>
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute) [QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
*** #### Defined in
### nprobes() [query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
> **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md) ___
### nprobes
**nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
Set the number of partitions to search (probe) Set the number of partitions to search (probe)
@@ -314,17 +294,23 @@ you the desired recall.
#### Parameters #### Parameters
**nprobes**: `number` | Name | Type |
| :------ | :------ |
| `nprobes` | `number` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
*** #### Defined in
### postfilter() [query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215)
> **postfilter**(): [`VectorQuery`](VectorQuery.md) ___
### postfilter
**postfilter**(): [`VectorQuery`](VectorQuery.md)
If this is called then filtering will happen after the vector search instead of If this is called then filtering will happen after the vector search instead of
before. before.
@@ -347,16 +333,20 @@ Post filtering happens during the "refine stage" (described in more detail in
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
#### See **`See`**
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine [VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering. factor can often help restore some of the results lost by post filtering.
*** #### Defined in
### refineFactor() [query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307)
> **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md) ___
### refineFactor
**refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
A multiplier to control how many additional rows are taken during the refine step A multiplier to control how many additional rows are taken during the refine step
@@ -388,17 +378,23 @@ distance between the query vector and the actual uncompressed vector.
#### Parameters #### Parameters
**refineFactor**: `number` | Name | Type |
| :------ | :------ |
| `refineFactor` | `number` |
#### Returns #### Returns
[`VectorQuery`](VectorQuery.md) [`VectorQuery`](VectorQuery.md)
*** #### Defined in
### select() [query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282)
> **select**(`columns`): `this` ___
### select
**select**(`columns`): [`VectorQuery`](VectorQuery.md)
Return only the specified columns. Return only the specified columns.
@@ -422,13 +418,15 @@ input to this method would be:
#### Parameters #### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt; | Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns #### Returns
`this` [`VectorQuery`](VectorQuery.md)
#### Example **`Example`**
```ts ```ts
new Map([["combined", "a + b"], ["c", "c"]]) new Map([["combined", "a + b"], ["c", "c"]])
@@ -443,57 +441,61 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select) [QueryBase](QueryBase.md).[select](QueryBase.md#select)
*** #### Defined in
### toArray() [query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt; ___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects. Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`&lt;`any`[]&gt; `Promise`\<`unknown`[]\>
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray) [QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
*** #### Defined in
### toArrow() [query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt; ___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns #### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt; `Promise`\<`Table`\<`any`\>\>
#### See **`See`**
ArrowTable. ArrowTable.
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow) [QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
*** #### Defined in
### where() [query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
> **where**(`predicate`): `this` ___
### where
**where**(`predicate`): [`VectorQuery`](VectorQuery.md)
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -501,13 +503,15 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters #### Parameters
**predicate**: `string` | Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns #### Returns
`this` [`VectorQuery`](VectorQuery.md)
#### Example **`Example`**
```ts ```ts
x > 10 x > 10
@@ -520,4 +524,8 @@ on the filter column(s).
#### Inherited from #### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where) [QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,111 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
## Table of contents
### Constructors
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `"text-embedding-ada-002"` |
#### Returns
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Defined in
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
## Methods
### embed
**embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`\<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)

View File

@@ -1,27 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Enumeration Members
### Append
> **Append**: `"Append"`
***
### Create
> **Create**: `"Create"`
***
### Overwrite
> **Overwrite**: `"Overwrite"`

View File

@@ -0,0 +1,43 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"Append"``
#### Defined in
native.d.ts:69
___
### Create
• **Create** = ``"Create"``
#### Defined in
native.d.ts:68
___
### Overwrite
• **Overwrite** = ``"Overwrite"``
#### Defined in
native.d.ts:70

View File

@@ -1,82 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / connect
# Function: connect()
## connect(uri, opts)
> **connect**(`uri`, `opts`?): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
Connect to a LanceDB instance at the given URI.
Accepted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
### Parameters
**uri**: `string`
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
**opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt;
### Returns
`Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
### See
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
### Examples
```ts
const conn = await connect("/path/to/database");
```
```ts
const conn = await connect(
"s3://bucket/path/to/database",
{storageOptions: {timeout: "60s"}
});
```
## connect(opts)
> **connect**(`opts`): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
Connect to a LanceDB instance at the given URI.
Accepted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
### Parameters
**opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt; & `object`
### Returns
`Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
### See
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
### Example
```ts
const conn = await connect({
uri: "/path/to/database",
storageOptions: {timeout: "60s"}
});
```

View File

@@ -1,51 +0,0 @@
[**@lancedb/lancedb**](README.md) • **Docs**
***
# @lancedb/lancedb
## Namespaces
- [embedding](namespaces/embedding/README.md)
## Enumerations
- [WriteMode](enumerations/WriteMode.md)
## Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
## Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexMetadata](interfaces/IndexMetadata.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
## Type Aliases
- [Data](type-aliases/Data.md)
## Functions
- [connect](functions/connect.md)
- [makeArrowTable](functions/makeArrowTable.md)

View File

@@ -1,26 +1,37 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql
***
[@lancedb/lancedb](../globals.md) / AddColumnsSql
# Interface: AddColumnsSql # Interface: AddColumnsSql
A definition of a new column to add to a table. A definition of a new column to add to a table.
## Table of contents
### Properties
- [name](AddColumnsSql.md#name)
- [valueSql](AddColumnsSql.md#valuesql)
## Properties ## Properties
### name ### name
> **name**: `string` **name**: `string`
The name of the new column. The name of the new column.
*** #### Defined in
native.d.ts:43
___
### valueSql ### valueSql
> **valueSql**: `string` **valueSql**: `string`
The values to populate the new column with, as a SQL expression. The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table. The expression can reference other columns in the table.
#### Defined in
native.d.ts:48

View File

@@ -1,19 +1,25 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions
***
[@lancedb/lancedb](../globals.md) / AddDataOptions
# Interface: AddDataOptions # Interface: AddDataOptions
Options for adding data to a table. Options for adding data to a table.
## Table of contents
### Properties
- [mode](AddDataOptions.md#mode)
## Properties ## Properties
### mode ### mode
> **mode**: `"append"` \| `"overwrite"` **mode**: ``"append"`` \| ``"overwrite"``
If "append" (the default) then the new data will be added to the table If "append" (the default) then the new data will be added to the table
If "overwrite" then the new data will replace the existing data in the table. If "overwrite" then the new data will replace the existing data in the table.
#### Defined in
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)

View File

@@ -1,8 +1,4 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration
***
[@lancedb/lancedb](../globals.md) / ColumnAlteration
# Interface: ColumnAlteration # Interface: ColumnAlteration
@@ -11,30 +7,50 @@ A definition of a column alteration. The alteration changes the column at
and to have the data type `data_type`. At least one of `rename` or `nullable` and to have the data type `data_type`. At least one of `rename` or `nullable`
must be provided. must be provided.
## Table of contents
### Properties
- [nullable](ColumnAlteration.md#nullable)
- [path](ColumnAlteration.md#path)
- [rename](ColumnAlteration.md#rename)
## Properties ## Properties
### nullable? ### nullable
> `optional` **nullable**: `boolean` `Optional` **nullable**: `boolean`
Set the new nullability. Note that a nullable column cannot be made non-nullable. Set the new nullability. Note that a nullable column cannot be made non-nullable.
*** #### Defined in
native.d.ts:38
___
### path ### path
> **path**: `string` **path**: `string`
The path to the column to alter. This is a dot-separated path to the column. The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is If it is a top-level column then it is just the name of the column. If it is
a nested column then it is the path to the column, e.g. "a.b.c" for a column a nested column then it is the path to the column, e.g. "a.b.c" for a column
`c` nested inside a column `b` nested inside a column `a`. `c` nested inside a column `b` nested inside a column `a`.
*** #### Defined in
### rename? native.d.ts:31
> `optional` **rename**: `string` ___
### rename
`Optional` **rename**: `string`
The new name of the column. If not provided then the name will not be changed. The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table. This must be distinct from the names of all other columns in the table.
#### Defined in
native.d.ts:36

View File

@@ -1,16 +1,40 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions
***
[@lancedb/lancedb](../globals.md) / ConnectionOptions
# Interface: ConnectionOptions # Interface: ConnectionOptions
## Table of contents
### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
## Properties ## Properties
### readConsistencyInterval? ### apiKey
> `optional` **readConsistencyInterval**: `number` `Optional` **apiKey**: `string`
#### Defined in
native.d.ts:51
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
native.d.ts:52
___
### readConsistencyInterval
`Optional` **readConsistencyInterval**: `number`
(For LanceDB OSS only): The interval, in seconds, at which to check for (For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not updates to the table from other processes. If None, then consistency is not
@@ -22,12 +46,6 @@ has passed since the last check, then the table will be checked for updates.
Note: this consistency only applies to read operations. Write operations are Note: this consistency only applies to read operations. Write operations are
always consistent. always consistent.
*** #### Defined in
### storageOptions? native.d.ts:64
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
(For LanceDB OSS only): configuration for object storage.
The available options are described at https://lancedb.github.io/lancedb/guides/storage/

View File

@@ -1,31 +1,32 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions
***
[@lancedb/lancedb](../globals.md) / CreateTableOptions
# Interface: CreateTableOptions # Interface: CreateTableOptions
## Table of contents
### Properties
- [existOk](CreateTableOptions.md#existok)
- [mode](CreateTableOptions.md#mode)
## Properties ## Properties
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
***
### existOk ### existOk
> **existOk**: `boolean` **existOk**: `boolean`
If this is true and the table already exists and the mode is "create" If this is true and the table already exists and the mode is "create"
then no error will be raised. then no error will be raised.
*** #### Defined in
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
___
### mode ### mode
> **mode**: `"overwrite"` \| `"create"` **mode**: ``"overwrite"`` \| ``"create"``
The mode to use when creating the table. The mode to use when creating the table.
@@ -35,31 +36,6 @@ happen. Any provided data will be ignored.
If this is set to "overwrite" then any existing table will be replaced. If this is set to "overwrite" then any existing table will be replaced.
*** #### Defined in
### schema? [connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30)
> `optional` **schema**: `SchemaLike`
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
Configuration for object storage.
Options already set on the connection will be inherited by the table,
but can be overridden here.
The available options are described at https://lancedb.github.io/lancedb/guides/storage/
***
### useLegacyFormat?
> `optional` **useLegacyFormat**: `boolean`
If true then data files will be written with the legacy format
The default is true while the new format is in beta

View File

@@ -1,8 +1,4 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ExecutableQuery
***
[@lancedb/lancedb](../globals.md) / ExecutableQuery
# Interface: ExecutableQuery # Interface: ExecutableQuery

View File

@@ -1,36 +1,39 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexConfig
***
[@lancedb/lancedb](../globals.md) / IndexConfig
# Interface: IndexConfig # Interface: IndexConfig
A description of an index currently configured on a column A description of an index currently configured on a column
## Table of contents
### Properties
- [columns](IndexConfig.md#columns)
- [indexType](IndexConfig.md#indextype)
## Properties ## Properties
### columns ### columns
> **columns**: `string`[] **columns**: `string`[]
The columns in the index The columns in the index
Currently this is always an array of size 1. In the future there may Currently this is always an array of size 1. In the future there may
be more columns to represent composite indices. be more columns to represent composite indices.
*** #### Defined in
native.d.ts:16
___
### indexType ### indexType
> **indexType**: `string` **indexType**: `string`
The type of the index The type of the index
*** #### Defined in
### name native.d.ts:9
> **name**: `string`
The name of the index

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexMetadata
# Interface: IndexMetadata
## Properties
### indexType?
> `optional` **indexType**: `string`
***
### metricType?
> `optional` **metricType**: `string`

View File

@@ -1,16 +1,19 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexOptions
***
[@lancedb/lancedb](../globals.md) / IndexOptions
# Interface: IndexOptions # Interface: IndexOptions
## Table of contents
### Properties
- [config](IndexOptions.md#config)
- [replace](IndexOptions.md#replace)
## Properties ## Properties
### config? ### config
> `optional` **config**: [`Index`](../classes/Index.md) `Optional` **config**: [`Index`](../classes/Index.md)
Advanced index configuration Advanced index configuration
@@ -22,11 +25,15 @@ See the static methods on Index for details on the various index types.
If this is not supplied then column data type(s) and column statistics If this is not supplied then column data type(s) and column statistics
will be used to determine the most useful kind of index to create. will be used to determine the most useful kind of index to create.
*** #### Defined in
### replace? [indices.ts:192](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L192)
> `optional` **replace**: `boolean` ___
### replace
`Optional` **replace**: `boolean`
Whether to replace the existing index Whether to replace the existing index
@@ -35,3 +42,7 @@ and the same name, then an error will be returned. This is true even if
that index is out of date. that index is out of date.
The default is true The default is true
#### Defined in
[indices.ts:202](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L202)

View File

@@ -1,39 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexStatistics
# Interface: IndexStatistics
## Properties
### indexType?
> `optional` **indexType**: `string`
The type of the index
***
### indices
> **indices**: [`IndexMetadata`](IndexMetadata.md)[]
The metadata for each index
***
### numIndexedRows
> **numIndexedRows**: `number`
The number of rows indexed by the index
***
### numUnindexedRows
> **numUnindexedRows**: `number`
The number of rows not indexed

View File

@@ -1,18 +1,24 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IvfPqOptions
***
[@lancedb/lancedb](../globals.md) / IvfPqOptions
# Interface: IvfPqOptions # Interface: IvfPqOptions
Options to create an `IVF_PQ` index Options to create an `IVF_PQ` index
## Table of contents
### Properties
- [distanceType](IvfPqOptions.md#distancetype)
- [maxIterations](IvfPqOptions.md#maxiterations)
- [numPartitions](IvfPqOptions.md#numpartitions)
- [numSubVectors](IvfPqOptions.md#numsubvectors)
- [sampleRate](IvfPqOptions.md#samplerate)
## Properties ## Properties
### distanceType? ### distanceType
> `optional` **distanceType**: `"l2"` \| `"cosine"` \| `"dot"` `Optional` **distanceType**: ``"l2"`` \| ``"cosine"`` \| ``"dot"``
Distance type to use to build the index. Distance type to use to build the index.
@@ -46,11 +52,15 @@ never be returned from a vector search.
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance. L2 norm is 1), then dot distance is equivalent to the cosine distance.
*** #### Defined in
### maxIterations? [indices.ts:83](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L83)
> `optional` **maxIterations**: `number` ___
### maxIterations
• `Optional` **maxIterations**: `number`
Max iteration to train IVF kmeans. Max iteration to train IVF kmeans.
@@ -62,11 +72,15 @@ iterations have diminishing returns.
The default value is 50. The default value is 50.
*** #### Defined in
### numPartitions? [indices.ts:96](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L96)
> `optional` **numPartitions**: `number` ___
### numPartitions
• `Optional` **numPartitions**: `number`
The number of IVF partitions to create. The number of IVF partitions to create.
@@ -78,11 +92,15 @@ If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow. part of the search (searching within a partition) will be slow.
*** #### Defined in
### numSubVectors? [indices.ts:32](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L32)
> `optional` **numSubVectors**: `number` ___
### numSubVectors
• `Optional` **numSubVectors**: `number`
Number of sub-vectors of PQ. Number of sub-vectors of PQ.
@@ -97,11 +115,15 @@ us to use efficient SIMD instructions.
If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
will likely result in poor performance. will likely result in poor performance.
*** #### Defined in
### sampleRate? [indices.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L48)
> `optional` **sampleRate**: `number` ___
### sampleRate
• `Optional` **sampleRate**: `number`
The number of vectors, per partition, to sample when training IVF kmeans. The number of vectors, per partition, to sample when training IVF kmeans.
@@ -116,3 +138,7 @@ Increasing this value might improve the quality of the index but in most cases t
default should be sufficient. default should be sufficient.
The default value is 256. The default value is 256.
#### Defined in
[indices.ts:113](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L113)

View File

@@ -1,27 +1,38 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / TableNamesOptions
***
[@lancedb/lancedb](../globals.md) / TableNamesOptions
# Interface: TableNamesOptions # Interface: TableNamesOptions
## Table of contents
### Properties
- [limit](TableNamesOptions.md#limit)
- [startAfter](TableNamesOptions.md#startafter)
## Properties ## Properties
### limit? ### limit
> `optional` **limit**: `number` `Optional` **limit**: `number`
An optional limit to the number of results to return. An optional limit to the number of results to return.
*** #### Defined in
### startAfter? [connection.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L48)
> `optional` **startAfter**: `string` ___
### startAfter
`Optional` **startAfter**: `string`
If present, only return names that come lexicographically after the If present, only return names that come lexicographically after the
supplied value. supplied value.
This can be combined with limit to implement pagination by setting this to This can be combined with limit to implement pagination by setting this to
the last table name from the previous page. the last table name from the previous page.
#### Defined in
[connection.ts:46](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L46)

View File

@@ -1,16 +1,18 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / UpdateOptions
***
[@lancedb/lancedb](../globals.md) / UpdateOptions
# Interface: UpdateOptions # Interface: UpdateOptions
## Table of contents
### Properties
- [where](UpdateOptions.md#where)
## Properties ## Properties
### where ### where
> **where**: `string` **where**: `string`
A filter that limits the scope of the update. A filter that limits the scope of the update.
@@ -20,3 +22,7 @@ Only rows that satisfy the expression will be updated.
For example, this could be 'my_col == 0' to replace all instances For example, this could be 'my_col == 0' to replace all instances
of 0 in a column with some other default value. of 0 in a column with some other default value.
#### Defined in
[table.ts:50](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L50)

View File

@@ -1,17 +1,21 @@
[**@lancedb/lancedb**](../README.md) **Docs** [@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteOptions
***
[@lancedb/lancedb](../globals.md) / WriteOptions
# Interface: WriteOptions # Interface: WriteOptions
Write options when creating a Table. Write options when creating a Table.
## Table of contents
### Properties
- [mode](WriteOptions.md#mode)
## Properties ## Properties
### mode? ### mode
> `optional` **mode**: [`WriteMode`](../enumerations/WriteMode.md) `Optional` **mode**: [`WriteMode`](../enums/WriteMode.md)
Write mode for writing to a table. #### Defined in
native.d.ts:74

View File

@@ -0,0 +1,129 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / EmbeddingFunction
# Interface: EmbeddingFunction\<T\>
[embedding](../modules/embedding.md).EmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/embedding.OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [destColumn](embedding.EmbeddingFunction.md#destcolumn)
- [embed](embedding.EmbeddingFunction.md#embed)
- [embeddingDataType](embedding.EmbeddingFunction.md#embeddingdatatype)
- [embeddingDimension](embedding.EmbeddingFunction.md#embeddingdimension)
- [excludeSource](embedding.EmbeddingFunction.md#excludesource)
- [sourceColumn](embedding.EmbeddingFunction.md#sourcecolumn)
## Properties
### destColumn
`Optional` **destColumn**: `string`
The name of the column that will contain the embedding
By default this is "vector"
#### Defined in
[embedding/embedding_function.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L49)
___
### embed
**embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Type declaration
▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`\<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L62)
___
### embeddingDataType
`Optional` **embeddingDataType**: `Float`\<`Floats`\>
The data type of the embedding
The embedding function should return `number`. This will be converted into
an Arrow float array. By default this will be Float32 but this property can
be used to control the conversion.
#### Defined in
[embedding/embedding_function.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L33)
___
### embeddingDimension
`Optional` **embeddingDimension**: `number`
The dimension of the embedding
This is optional, normally this can be determined by looking at the results of
`embed`. If this is not specified, and there is an attempt to apply the embedding
to an empty table, then that process will fail.
#### Defined in
[embedding/embedding_function.ts:42](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L42)
___
### excludeSource
`Optional` **excludeSource**: `boolean`
Should the source column be excluded from the resulting table
By default the source column is included. Set this to true and
only the embedding will be stored.
#### Defined in
[embedding/embedding_function.ts:57](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L57)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L24)

View File

@@ -1,12 +1,103 @@
[**@lancedb/lancedb**](../README.md) • **Docs** [@lancedb/lancedb](README.md) / Exports
*** # @lancedb/lancedb
[@lancedb/lancedb](../globals.md) / makeArrowTable ## Table of contents
# Function: makeArrowTable() ### Namespaces
> **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable` - [embedding](modules/embedding.md)
### Enumerations
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
### Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases
- [Data](modules.md#data)
### Functions
- [connect](modules.md#connect)
- [makeArrowTable](modules.md#makearrowtable)
## Type Aliases
### Data
Ƭ **Data**: `Record`\<`string`, `unknown`\>[] \| `ArrowTable`
Data type accepted by NodeJS SDK
#### Defined in
[arrow.ts:40](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L40)
## Functions
### connect
**connect**(`uri`, `opts?`): `Promise`\<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI.
Accpeted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. If the database uri starts with `db://` then it connects to a remote database. |
| `opts?` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | - |
#### Returns
`Promise`\<[`Connection`](classes/Connection.md)\>
**`See`**
[ConnectionOptions](interfaces/ConnectionOptions.md) for more details on the URI format.
#### Defined in
[index.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/index.ts#L62)
___
### makeArrowTable
**makeArrowTable**(`data`, `options?`): `ArrowTable`
An enhanced version of the makeTable function from Apache Arrow An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns. that supports nested fields and embeddings columns.
@@ -38,20 +129,20 @@ rules are as follows:
- Record<String, any> => Struct - Record<String, any> => Struct
- Array<any> => List - Array<any> => List
## Parameters #### Parameters
**data**: `Record`&lt;`string`, `unknown`&gt;[] | Name | Type |
| :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] |
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
**options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt; #### Returns
**metadata?**: `Map`&lt;`string`, `string`&gt;
## Returns
`ArrowTable` `ArrowTable`
## Example **`Example`**
```ts
import { fromTableToBuffer, makeArrowTable } from "../arrow"; import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow"; import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
@@ -112,3 +203,7 @@ const table = makeArrowTable([
} }
assert.deepEqual(table.schema, schema) assert.deepEqual(table.schema, schema)
``` ```
#### Defined in
[arrow.ts:197](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L197)

View File

@@ -0,0 +1,45 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / embedding
# Namespace: embedding
## Table of contents
### Classes
- [OpenAIEmbeddingFunction](../classes/embedding.OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md)
### Functions
- [isEmbeddingFunction](embedding.md#isembeddingfunction)
## Functions
### isEmbeddingFunction
**isEmbeddingFunction**\<`T`\>(`value`): value is EmbeddingFunction\<T\>
Test if the input seems to be an embedding function
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `unknown` |
#### Returns
value is EmbeddingFunction\<T\>
#### Defined in
[embedding/embedding_function.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L66)

View File

@@ -1,29 +0,0 @@
[**@lancedb/lancedb**](../../README.md) • **Docs**
***
[@lancedb/lancedb](../../globals.md) / embedding
# embedding
## Index
### Classes
- [EmbeddingFunction](classes/EmbeddingFunction.md)
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
### Type Aliases
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
### Functions
- [LanceSchema](functions/LanceSchema.md)
- [getRegistry](functions/getRegistry.md)
- [register](functions/register.md)

View File

@@ -1,162 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunction
# Class: `abstract` EmbeddingFunction&lt;T, M&gt;
An embedding function that automatically creates vector representation for a given column.
## Extended by
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
## Type Parameters
**T** = `any`
**M** *extends* `FunctionOptions` = `FunctionOptions`
## Constructors
### new EmbeddingFunction()
> **new EmbeddingFunction**&lt;`T`, `M`&gt;(): [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
#### Returns
[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
## Methods
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
Compute the embeddings for a single query
#### Parameters
**data**: `T`
#### Returns
`Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
***
### computeSourceEmbeddings()
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
Creates a vector representation for the given values.
#### Parameters
**data**: `T`[]
#### Returns
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
***
### embeddingDataType()
> `abstract` **embeddingDataType**(): `Float`&lt;`Floats`&gt;
The datatype of the embeddings
#### Returns
`Float`&lt;`Floats`&gt;
***
### ndims()
> **ndims**(): `undefined` \| `number`
The number of dimensions of the embeddings
#### Returns
`undefined` \| `number`
***
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
***
### toJSON()
> `abstract` **toJSON**(): `Partial`&lt;`M`&gt;
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
It's important that any object returned by this method contains all the necessary
information to recreate the embedding function
It should return the same object that was passed to the constructor
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
#### Returns
`Partial`&lt;`M`&gt;
#### Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
constructor(options: {model: string, timeout: number}) {
super();
this.model = options.model;
this.timeout = options.timeout;
}
toJSON() {
return {
model: this.model,
timeout: this.timeout,
};
}
```
***
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema

View File

@@ -1,124 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionRegistry
# Class: EmbeddingFunctionRegistry
This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry
## Constructors
### new EmbeddingFunctionRegistry()
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns
[`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
## Methods
### functionToMetadata()
> **functionToMetadata**(`conf`): `Record`&lt;`string`, `any`&gt;
#### Parameters
**conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
#### Returns
`Record`&lt;`string`, `any`&gt;
***
### get()
> **get**&lt;`T`, `Name`&gt;(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
Fetch an embedding function by name
#### Type Parameters
**T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
**Name** *extends* `string` = `""`
#### Parameters
**name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
The name of the function
#### Returns
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
***
### getTableMetadata()
> **getTableMetadata**(`functions`): `Map`&lt;`string`, `string`&gt;
#### Parameters
**functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
#### Returns
`Map`&lt;`string`, `string`&gt;
***
### register()
> **register**&lt;`T`&gt;(`this`, `alias`?): (`ctor`) => `any`
Register an embedding function
#### Type Parameters
**T** *extends* `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt; = `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
**alias?**: `string`
#### Returns
`Function`
##### Parameters
**ctor**: `T`
##### Returns
`any`
#### Throws
Error if the function is already registered
***
### reset()
> **reset**(`this`): `void`
reset the registry to the initial state
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns
`void`

View File

@@ -1,196 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Extends
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt;&gt;
## Constructors
### new OpenAIEmbeddingFunction()
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Parameters
**options**: `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt; = `...`
#### Returns
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
## Methods
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[]&gt;
Compute the embeddings for a single query
#### Parameters
**data**: `string`
#### Returns
`Promise`&lt;`number`[]&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeQueryEmbeddings`](EmbeddingFunction.md#computequeryembeddings)
***
### computeSourceEmbeddings()
> **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][]&gt;
Creates a vector representation for the given values.
#### Parameters
**data**: `string`[]
#### Returns
`Promise`&lt;`number`[][]&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeSourceEmbeddings`](EmbeddingFunction.md#computesourceembeddings)
***
### embeddingDataType()
> **embeddingDataType**(): `Float`&lt;`Floats`&gt;
The datatype of the embeddings
#### Returns
`Float`&lt;`Floats`&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`embeddingDataType`](EmbeddingFunction.md#embeddingdatatype)
***
### ndims()
> **ndims**(): `number`
The number of dimensions of the embeddings
#### Returns
`number`
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
***
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
***
### toJSON()
> **toJSON**(): `object`
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
It's important that any object returned by this method contains all the necessary
information to recreate the embedding function
It should return the same object that was passed to the constructor
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
#### Returns
`object`
##### model
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
#### Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
constructor(options: {model: string, timeout: number}) {
super();
this.model = options.model;
this.timeout = options.timeout;
}
toJSON() {
return {
model: this.model,
timeout: this.timeout,
};
}
```
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
***
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`vectorField`](EmbeddingFunction.md#vectorfield)

View File

@@ -1,39 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / LanceSchema
# Function: LanceSchema()
> **LanceSchema**(`fields`): `Schema`
Create a schema with embedding functions.
## Parameters
**fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
## Returns
`Schema`
Schema
## Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
// ...
}
const func = new MyEmbeddingFunction();
const schema = LanceSchema({
id: new Int32(),
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
// optional: specify the datatype and/or dimensions
vector2: func.vectorField({ datatype: new Float32(), dims: 3}),
});
const table = await db.createTable("my_table", data, { schema });
```

View File

@@ -1,23 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / getRegistry
# Function: getRegistry()
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
Utility function to get the global instance of the registry
## Returns
[`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
`EmbeddingFunctionRegistry` The global instance of the registry
## Example
```ts
const registry = getRegistry();
const openai = registry.get("openai").create();

View File

@@ -1,25 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / register
# Function: register()
> **register**(`name`?): (`ctor`) => `any`
## Parameters
**name?**: `string`
## Returns
`Function`
### Parameters
**ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
### Returns
`any`

View File

@@ -1,25 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionConfig
# Interface: EmbeddingFunctionConfig
## Properties
### function
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;
***
### sourceColumn
> **sourceColumn**: `string`
***
### vectorColumn?
> `optional` **vectorColumn**: `string`

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
# Type Alias: OpenAIOptions
> **OpenAIOptions**: `object`
## Type declaration
### apiKey
> **apiKey**: `string`
### model
> **model**: `EmbeddingCreateParams`\[`"model"`\]

View File

@@ -1,11 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Data
# Type Alias: Data
> **Data**: `Record`&lt;`string`, `unknown`&gt;[] \| `TableLike`
Data type accepted by NodeJS SDK

View File

@@ -9,8 +9,7 @@ around the asynchronous client.
This guide describes the differences between the two APIs and will hopefully assist users This guide describes the differences between the two APIs and will hopefully assist users
that would like to migrate to the new API. that would like to migrate to the new API.
## Python ## Closeable Connections
### Closeable Connections
The Connection now has a `close` method. You can call this when The Connection now has a `close` method. You can call this when
you are done with the connection to eagerly free resources. Currently you are done with the connection to eagerly free resources. Currently
@@ -33,20 +32,20 @@ async def my_async_fn():
It is not mandatory to call the `close` method. If you do not call it It is not mandatory to call the `close` method. If you do not call it
then the connection will be closed when the object is garbage collected. then the connection will be closed when the object is garbage collected.
### Closeable Table ## Closeable Table
The Table now also has a `close` method, similar to the connection. This The Table now also has a `close` method, similar to the connection. This
can be used to eagerly free the cache used by a Table object. Similar to can be used to eagerly free the cache used by a Table object. Similar to
the connection, it can be used as a context manager and it is not mandatory the connection, it can be used as a context manager and it is not mandatory
to call the `close` method. to call the `close` method.
#### Changes to Table APIs ### Changes to Table APIs
- Previously `Table.schema` was a property. Now it is an async method. - Previously `Table.schema` was a property. Now it is an async method.
- The method `Table.__len__` was removed and `len(table)` will no longer - The method `Table.__len__` was removed and `len(table)` will no longer
work. Use `Table.count_rows` instead. work. Use `Table.count_rows` instead.
#### Creating Indices ### Creating Indices
The `Table.create_index` method is now used for creating both vector indices The `Table.create_index` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the and scalar indices. It currently requires a column name to be specified (the
@@ -56,12 +55,12 @@ the size of the data.
To specify index configuration details you will need to specify which kind of To specify index configuration details you will need to specify which kind of
index you are using. index you are using.
#### Querying ### Querying
The `Table.search` method has been renamed to `AsyncTable.vector_search` for The `Table.search` method has been renamed to `AsyncTable.vector_search` for
clarity. clarity.
### Features not yet supported ## Features not yet supported
The following features are not yet supported by the asynchronous API. However, The following features are not yet supported by the asynchronous API. However,
we plan to support them soon. we plan to support them soon.
@@ -75,117 +74,3 @@ we plan to support them soon.
search search
- Remote connections to LanceDb Cloud are not yet supported. - Remote connections to LanceDb Cloud are not yet supported.
- The method Table.head is not yet supported. - The method Table.head is not yet supported.
## TypeScript/JavaScript
For JS/TS users, we offer a brand new SDK [@lancedb/lancedb](https://www.npmjs.com/package/@lancedb/lancedb)
We tried to keep the API as similar as possible to the previous version, but there are a few small changes. Here are the most important ones:
### Creating Tables
[CreateTableOptions.writeOptions.writeMode](./javascript/interfaces/WriteOptions.md#writemode) has been replaced with [CreateTableOptions.mode](./js/interfaces/CreateTableOptions.md#mode)
=== "vectordb (deprecated)"
```ts
db.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite });
```
=== "@lancedb/lancedb"
```ts
db.createTable(tableName, data, { mode: "overwrite" })
```
### Changes to Table APIs
Previously `Table.schema` was a property. Now it is an async method.
#### Creating Indices
The `Table.createIndex` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
column to index). Vector index defaults are now smarter and scale better with
the size of the data.
=== "vectordb (deprecated)"
```ts
await tbl.createIndex({
column: "vector", // default
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
```
=== "@lancedb/lancedb"
```ts
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 2,
numSubVectors: 2,
}),
});
```
### Embedding Functions
The embedding API has been completely reworked, and it now more closely resembles the Python API, including the new [embedding registry](./js/classes/embedding.EmbeddingFunctionRegistry.md)
=== "vectordb (deprecated)"
```ts
const embeddingFunction = new lancedb.OpenAIEmbeddingFunction('text', API_KEY)
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, embeddingFunction)
```
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
const func = getRegistry().get("openai").create({apiKey: API_KEY});
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, {
embeddingFunction: {
sourceColumn: "text",
function: func,
}
})
```
You can also use a schema driven approach, which parallels the Pydantic integration in our Python SDK:
```ts
const func = getRegistry().get("openai").create({apiKey: API_KEY});
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
price: new arrow.Float64(),
vector: func.vectorField()
})
const table = await db.createTable('vectors', data, {schema})
```

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
# Python API Reference (SaaS) # Python API Reference (SaaS)
This section contains the API reference for the LanceDB Cloud Python API. This section contains the API reference for the SaaS Python API.
## Installation ## Installation

View File

@@ -15,6 +15,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
Using rerankers is optional for vector and FTS. However, for hybrid search, rerankers are required. To use a reranker, you need to create an instance of the reranker and pass it to the `rerank` method of the query builder. Using rerankers is optional for vector and FTS. However, for hybrid search, rerankers are required. To use a reranker, you need to create an instance of the reranker and pass it to the `rerank` method of the query builder.
```python ```python
import numpy
import lancedb import lancedb
from lancedb.embeddings import get_registry from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
@@ -53,7 +54,6 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
- [ColBERT Reranker](./colbert.md) - [ColBERT Reranker](./colbert.md)
- [OpenAI Reranker](./openai.md) - [OpenAI Reranker](./openai.md)
- [Linear Combination Reranker](./linear_combination.md) - [Linear Combination Reranker](./linear_combination.md)
- [Jina Reranker](./jina.md)
## Creating Custom Rerankers ## Creating Custom Rerankers

View File

@@ -1,53 +0,0 @@
# Reciprocal Rank Fusion Reranker
Reciprocal Rank Fusion (RRF) is an algorithm that evaluates the search scores by leveraging the positions/rank of the documents. The implementation follows this [paper](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf).
!!! note
Supported Query Types: Hybrid
```python
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import RRFReranker
embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = RRFReranker()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
```
Accepted Arguments
----------------
| Argument | Type | Default | Description |
| --- | --- | --- | --- |
| `K` | `int` | `60` | A constant used in the RRF formula (default is 60). Experiments indicate that k = 60 was near-optimal, but that the choice is not critical |
| `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score`. If "all", will return all scores from the vector and FTS search along with the relevance score. |
## Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
### Hybrid Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returned rows only have the `_relevance_score` column |
| `all` | ✅ Supported | Returned rows have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |

View File

@@ -53,20 +53,9 @@ db.create_table("my_vectors", data=data)
.to_list() .to_list()
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
--8<-- "nodejs/examples/search.ts:import"
--8<-- "nodejs/examples/search.ts:search1"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/search_legacy.ts:import" --8<-- "docs/src/search_legacy.ts:import"
--8<-- "docs/src/search_legacy.ts:search1" --8<-- "docs/src/search_legacy.ts:search1"
@@ -84,15 +73,7 @@ By default, `l2` will be used as metric type. You can specify the metric type as
.to_list() .to_list()
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.ts:search2"
```
=== "vectordb (deprecated)"
```javascript ```javascript
--8<-- "docs/src/search_legacy.ts:search2" --8<-- "docs/src/search_legacy.ts:search2"

View File

@@ -44,17 +44,9 @@ const tbl = await db.createTable('myVectors', data)
) )
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
--8<-- "nodejs/examples/filtering.ts:search"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/sql_legacy.ts:search" --8<-- "docs/src/sql_legacy.ts:search"
``` ```
@@ -86,17 +78,9 @@ For example, the following filter string is acceptable:
.to_arrow() .to_arrow()
``` ```
=== "TypeScript" === "Javascript"
=== "@lancedb/lancedb" ```javascript
```ts
--8<-- "nodejs/examples/filtering.ts:vec_search"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/sql_legacy.ts:vec_search" --8<-- "docs/src/sql_legacy.ts:vec_search"
``` ```
@@ -164,17 +148,9 @@ You can also filter your data without search.
tbl.search().where("id = 10").limit(10).to_arrow() tbl.search().where("id = 10").limit(10).to_arrow()
``` ```
=== "TypeScript" === "JavaScript"
=== "@lancedb/lancedb" ```javascript
```ts
--8<-- "nodejs/examples/filtering.ts:sql_search"
```
=== "vectordb (deprecated)"
```ts
--8<---- "docs/src/sql_legacy.ts:sql_search" --8<---- "docs/src/sql_legacy.ts:sql_search"
``` ```

View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.7.2", "version": "0.6.0",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.7.2", "version": "0.6.0",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.7.2", "version": "0.6.0",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",

View File

@@ -62,8 +62,6 @@ export {
const defaultAwsRegion = "us-west-2"; const defaultAwsRegion = "us-west-2";
const defaultRequestTimeout = 10_000
export interface AwsCredentials { export interface AwsCredentials {
accessKeyId: string accessKeyId: string
@@ -121,11 +119,6 @@ export interface ConnectionOptions {
*/ */
hostOverride?: string hostOverride?: string
/**
* Duration in milliseconds for request timeout. Default = 10,000 (10 seconds)
*/
timeout?: number
/** /**
* (For LanceDB OSS only): The interval, in seconds, at which to check for * (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not * updates to the table from other processes. If None, then consistency is not
@@ -211,8 +204,7 @@ export async function connect(
awsCredentials: undefined, awsCredentials: undefined,
awsRegion: defaultAwsRegion, awsRegion: defaultAwsRegion,
apiKey: undefined, apiKey: undefined,
region: defaultAwsRegion, region: defaultAwsRegion
timeout: defaultRequestTimeout
}, },
arg arg
); );

View File

@@ -41,7 +41,7 @@ async function callWithMiddlewares (
if (i > middlewares.length) { if (i > middlewares.length) {
const headers = Object.fromEntries(req.headers.entries()) const headers = Object.fromEntries(req.headers.entries())
const params = Object.fromEntries(req.params?.entries() ?? []) const params = Object.fromEntries(req.params?.entries() ?? [])
const timeout = opts?.timeout const timeout = 10000
let res let res
if (req.method === Method.POST) { if (req.method === Method.POST) {
res = await axios.post( res = await axios.post(
@@ -82,7 +82,6 @@ async function callWithMiddlewares (
interface MiddlewareInvocationOptions { interface MiddlewareInvocationOptions {
responseType?: ResponseType responseType?: ResponseType
timeout?: number,
} }
/** /**
@@ -124,19 +123,15 @@ export class HttpLancedbClient {
private readonly _url: string private readonly _url: string
private readonly _apiKey: () => string private readonly _apiKey: () => string
private readonly _middlewares: HttpLancedbClientMiddleware[] private readonly _middlewares: HttpLancedbClientMiddleware[]
private readonly _timeout: number | undefined
public constructor ( public constructor (
url: string, url: string,
apiKey: string, apiKey: string,
timeout?: number, private readonly _dbName?: string
private readonly _dbName?: string,
) { ) {
this._url = url this._url = url
this._apiKey = () => apiKey this._apiKey = () => apiKey
this._middlewares = [] this._middlewares = []
this._timeout = timeout
} }
get uri (): string { get uri (): string {
@@ -235,10 +230,7 @@ export class HttpLancedbClient {
let response let response
try { try {
response = await callWithMiddlewares(req, this._middlewares, { response = await callWithMiddlewares(req, this._middlewares, { responseType })
responseType,
timeout: this._timeout,
})
// return response // return response
} catch (err: any) { } catch (err: any) {
@@ -275,7 +267,7 @@ export class HttpLancedbClient {
* Make a clone of this client * Make a clone of this client
*/ */
private clone (): HttpLancedbClient { private clone (): HttpLancedbClient {
const clone = new HttpLancedbClient(this._url, this._apiKey(), this._timeout, this._dbName) const clone = new HttpLancedbClient(this._url, this._apiKey(), this._dbName)
for (const mw of this._middlewares) { for (const mw of this._middlewares) {
clone._middlewares.push(mw) clone._middlewares.push(mw)
} }

View File

@@ -72,7 +72,6 @@ export class RemoteConnection implements Connection {
this._client = new HttpLancedbClient( this._client = new HttpLancedbClient(
server, server,
opts.apiKey, opts.apiKey,
opts.timeout,
opts.hostOverride === undefined ? undefined : this._dbName opts.hostOverride === undefined ? undefined : this._dbName
) )
} }

View File

@@ -13,13 +13,3 @@ __test__
renovate.json renovate.json
.idea .idea
src src
lancedb
examples
nodejs-artifacts
Cargo.toml
biome.json
build.rs
jest.config.js
native.d.ts
tsconfig.json
typedoc.json

View File

@@ -1,4 +1,3 @@
import { Schema } from "apache-arrow";
// Copyright 2024 Lance Developers. // Copyright 2024 Lance Developers.
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,12 +12,40 @@ import { Schema } from "apache-arrow";
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import * as arrow13 from "apache-arrow-13"; import {
import * as arrow14 from "apache-arrow-14"; Binary,
import * as arrow15 from "apache-arrow-15"; Bool,
import * as arrow16 from "apache-arrow-16"; DataType,
import * as arrow17 from "apache-arrow-17"; Dictionary,
Field,
FixedSizeList,
Float,
Float16,
Float32,
Float64,
Int32,
Int64,
List,
MetadataVersion,
Precision,
Schema,
Struct,
type Table,
Type,
Utf8,
tableFromIPC,
} from "apache-arrow";
import {
Dictionary as OldDictionary,
Field as OldField,
FixedSizeList as OldFixedSizeList,
Float32 as OldFloat32,
Int32 as OldInt32,
Schema as OldSchema,
Struct as OldStruct,
TimestampNanosecond as OldTimestampNanosecond,
Utf8 as OldUtf8,
} from "apache-arrow-old";
import { import {
convertToTable, convertToTable,
fromTableToBuffer, fromTableToBuffer,
@@ -45,55 +72,16 @@ function sampleRecords(): Array<Record<string, any>> {
}, },
]; ];
} }
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
"Arrow",
(
arrow:
| typeof arrow13
| typeof arrow14
| typeof arrow15
| typeof arrow16
| typeof arrow17,
) => {
type ApacheArrow =
| typeof arrow13
| typeof arrow14
| typeof arrow15
| typeof arrow16
| typeof arrow17;
const {
Schema,
Field,
Binary,
Bool,
Utf8,
Float64,
Struct,
List,
Int32,
Int64,
Float,
Float16,
Float32,
FixedSizeList,
Precision,
tableFromIPC,
DataType,
Dictionary,
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
} = <any>arrow;
type Schema = ApacheArrow["Schema"];
type Table = ApacheArrow["Table"];
// Helper method to verify various ways to create a table // Helper method to verify various ways to create a table
async function checkTableCreation( async function checkTableCreation(
tableCreationMethod: ( tableCreationMethod: (
records: Record<string, unknown>[], records: Record<string, unknown>[],
recordsReversed: Record<string, unknown>[], recordsReversed: Record<string, unknown>[],
schema: Schema, schema: Schema,
) => Promise<Table>, ) => Promise<Table>,
infersTypes: boolean, infersTypes: boolean,
): Promise<void> { ): Promise<void> {
const records = sampleRecords(); const records = sampleRecords();
const recordsReversed = [ const recordsReversed = [
{ {
@@ -117,25 +105,11 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
new Field("y", new Float64(), false), new Field("y", new Float64(), false),
]), ]),
), ),
new Field( new Field("list", new List(new Field("item", new Utf8(), false)), false),
"list",
new List(new Field("item", new Utf8(), false)),
false,
),
]); ]);
const table = (await tableCreationMethod( const table = await tableCreationMethod(records, recordsReversed, schema);
records, schema.fields.forEach((field, idx) => {
recordsReversed,
schema,
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
)) as any;
schema.fields.forEach(
(
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
field: { name: any; type: { toString: () => any } },
idx: string | number,
) => {
const actualField = table.schema.fields[idx]; const actualField = table.schema.fields[idx];
// Type inference always assumes nullable=true // Type inference always assumes nullable=true
if (infersTypes) { if (infersTypes) {
@@ -149,19 +123,15 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
expect(table.getChildAt(idx)?.type.toString()).toEqual( expect(table.getChildAt(idx)?.type.toString()).toEqual(
field.type.toString(), field.type.toString(),
); );
}, });
); }
}
describe("The function makeArrowTable", function () { describe("The function makeArrowTable", function () {
it("will use data types from a provided schema instead of inference", async function () { it("will use data types from a provided schema instead of inference", async function () {
const schema = new Schema([ const schema = new Schema([
new Field("a", new Int32()), new Field("a", new Int32()),
new Field("b", new Float32()), new Field("b", new Float32()),
new Field( new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
"c",
new FixedSizeList(3, new Field("item", new Float16())),
),
new Field("d", new Int64()), new Field("d", new Int64()),
]); ]);
const table = makeArrowTable( const table = makeArrowTable(
@@ -257,15 +227,15 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
}, },
}); });
expect( expect(table.getChild("fp16")?.type.children[0].type.toString()).toEqual(
table.getChild("fp16")?.type.children[0].type.toString(), new Float16().toString(),
).toEqual(new Float16().toString()); );
expect( expect(table.getChild("fp32")?.type.children[0].type.toString()).toEqual(
table.getChild("fp32")?.type.children[0].type.toString(), new Float32().toString(),
).toEqual(new Float32().toString()); );
expect( expect(table.getChild("fp64")?.type.children[0].type.toString()).toEqual(
table.getChild("fp64")?.type.children[0].type.toString(), new Float64().toString(),
).toEqual(new Float64().toString()); );
}); });
it("will use dictionary encoded strings if asked", async function () { it("will use dictionary encoded strings if asked", async function () {
@@ -284,24 +254,18 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
]); ]);
const tableWithDict2 = makeArrowTable([{ str: "hello" }], { schema }); const tableWithDict2 = makeArrowTable([{ str: "hello" }], { schema });
expect( expect(DataType.isDictionary(tableWithDict2.getChild("str")?.type)).toBe(
DataType.isDictionary(tableWithDict2.getChild("str")?.type),
).toBe(true);
});
it("will infer data types correctly", async function () {
await checkTableCreation(
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
async (records) => (<any>makeArrowTable)(records),
true, true,
); );
}); });
it("will infer data types correctly", async function () {
await checkTableCreation(async (records) => makeArrowTable(records), true);
});
it("will allow a schema to be provided", async function () { it("will allow a schema to be provided", async function () {
await checkTableCreation( await checkTableCreation(
async (records, _, schema) => async (records, _, schema) => makeArrowTable(records, { schema }),
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(<any>makeArrowTable)(records, { schema }),
false, false,
); );
}); });
@@ -309,22 +273,20 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
it("will use the field order of any provided schema", async function () { it("will use the field order of any provided schema", async function () {
await checkTableCreation( await checkTableCreation(
async (_, recordsReversed, schema) => async (_, recordsReversed, schema) =>
// biome-ignore lint/suspicious/noExplicitAny: <explanation> makeArrowTable(recordsReversed, { schema }),
(<any>makeArrowTable)(recordsReversed, { schema }),
false, false,
); );
}); });
it("will make an empty table", async function () { it("will make an empty table", async function () {
await checkTableCreation( await checkTableCreation(
// biome-ignore lint/suspicious/noExplicitAny: <explanation> async (_, __, schema) => makeArrowTable([], { schema }),
async (_, __, schema) => (<any>makeArrowTable)([], { schema }),
false, false,
); );
}); });
}); });
class DummyEmbedding extends EmbeddingFunction<string> { class DummyEmbedding extends EmbeddingFunction<string> {
toJSON(): Partial<FunctionOptions> { toJSON(): Partial<FunctionOptions> {
return {}; return {};
} }
@@ -340,36 +302,35 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
embeddingDataType() { embeddingDataType() {
return new Float16(); return new Float16();
} }
} }
class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> { class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> {
toJSON(): Partial<FunctionOptions> { toJSON(): Partial<FunctionOptions> {
return {}; return {};
} }
embeddingDataType() { embeddingDataType(): Float {
return new Float16(); return new Float16();
} }
async computeSourceEmbeddings(data: string[]): Promise<number[][]> { async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
return data.map(() => [0.0, 0.0]); return data.map(() => [0.0, 0.0]);
} }
} }
const dummyEmbeddingConfig: EmbeddingFunctionConfig = { const dummyEmbeddingConfig: EmbeddingFunctionConfig = {
sourceColumn: "string", sourceColumn: "string",
function: new DummyEmbedding(), function: new DummyEmbedding(),
}; };
const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = { const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = {
sourceColumn: "string", sourceColumn: "string",
function: new DummyEmbeddingWithNoDimension(), function: new DummyEmbeddingWithNoDimension(),
}; };
describe("convertToTable", function () { describe("convertToTable", function () {
it("will infer data types correctly", async function () { it("will infer data types correctly", async function () {
await checkTableCreation( await checkTableCreation(
// biome-ignore lint/suspicious/noExplicitAny: <explanation> async (records) => await convertToTable(records),
async (records) => await (<any>convertToTable)(records),
true, true,
); );
}); });
@@ -377,8 +338,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
it("will allow a schema to be provided", async function () { it("will allow a schema to be provided", async function () {
await checkTableCreation( await checkTableCreation(
async (records, _, schema) => async (records, _, schema) =>
// biome-ignore lint/suspicious/noExplicitAny: <explanation> await convertToTable(records, undefined, { schema }),
await (<any>convertToTable)(records, undefined, { schema }),
false, false,
); );
}); });
@@ -386,17 +346,14 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
it("will use the field order of any provided schema", async function () { it("will use the field order of any provided schema", async function () {
await checkTableCreation( await checkTableCreation(
async (_, recordsReversed, schema) => async (_, recordsReversed, schema) =>
// biome-ignore lint/suspicious/noExplicitAny: <explanation> await convertToTable(recordsReversed, undefined, { schema }),
await (<any>convertToTable)(recordsReversed, undefined, { schema }),
false, false,
); );
}); });
it("will make an empty table", async function () { it("will make an empty table", async function () {
await checkTableCreation( await checkTableCreation(
async (_, __, schema) => async (_, __, schema) => await convertToTable([], undefined, { schema }),
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
await (<any>convertToTable)([], undefined, { schema }),
false, false,
); );
}); });
@@ -404,12 +361,10 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
it("will apply embeddings", async function () { it("will apply embeddings", async function () {
const records = sampleRecords(); const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig); const table = await convertToTable(records, dummyEmbeddingConfig);
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe( expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
true, expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
new Float16().toString(),
); );
expect(
table.getChild("vector")?.type.children[0].type.toString(),
).toEqual(new Float16().toString());
}); });
it("will fail if missing the embedding source column", async function () { it("will fail if missing the embedding source column", async function () {
@@ -457,15 +412,11 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
false, false,
), ),
]); ]);
const table = await convertToTable([], dummyEmbeddingConfig, { const table = await convertToTable([], dummyEmbeddingConfig, { schema });
schema, expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
}); expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe( new Float16().toString(),
true,
); );
expect(
table.getChild("vector")?.type.children[0].type.toString(),
).toEqual(new Float16().toString());
}); });
it("will complain if embeddings present but schema missing embedding column", async function () { it("will complain if embeddings present but schema missing embedding column", async function () {
@@ -484,54 +435,42 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
fromTableToBuffer(table, dummyEmbeddingConfig), fromTableToBuffer(table, dummyEmbeddingConfig),
).rejects.toThrow("already existed"); ).rejects.toThrow("already existed");
}); });
}); });
describe("makeEmptyTable", function () { describe("makeEmptyTable", function () {
it("will make an empty table", async function () { it("will make an empty table", async function () {
await checkTableCreation( await checkTableCreation(
// biome-ignore lint/suspicious/noExplicitAny: <explanation> async (_, __, schema) => makeEmptyTable(schema),
async (_, __, schema) => (<any>makeEmptyTable)(schema),
false, false,
); );
}); });
}); });
describe("when using two versions of arrow", function () { describe("when using two versions of arrow", function () {
it("can still import data", async function () { it("can still import data", async function () {
const schema = new arrow13.Schema([ const schema = new OldSchema([
new arrow13.Field("id", new arrow13.Int32()), new OldField("id", new OldInt32()),
new arrow13.Field( new OldField(
"vector", "vector",
new arrow13.FixedSizeList( new OldFixedSizeList(
1024, 1024,
new arrow13.Field("item", new arrow13.Float32(), true), new OldField("item", new OldFloat32(), true),
), ),
), ),
new arrow13.Field( new OldField(
"struct", "struct",
new arrow13.Struct([ new OldStruct([
new arrow13.Field( new OldField(
"nested", "nested",
new arrow13.Dictionary( new OldDictionary(new OldUtf8(), new OldInt32(), 1, true),
new arrow13.Utf8(),
new arrow13.Int32(),
1,
true,
),
),
new arrow13.Field(
"ts_with_tz",
new arrow13.TimestampNanosecond("some_tz"),
),
new arrow13.Field(
"ts_no_tz",
new arrow13.TimestampNanosecond(null),
), ),
new OldField("ts_with_tz", new OldTimestampNanosecond("some_tz")),
new OldField("ts_no_tz", new OldTimestampNanosecond(null)),
]), ]),
), ),
// biome-ignore lint/suspicious/noExplicitAny: skip // biome-ignore lint/suspicious/noExplicitAny: skip
]) as any; ]) as any;
schema.metadataVersion = arrow13.MetadataVersion.V5; schema.metadataVersion = MetadataVersion.V5;
const table = makeArrowTable([], { schema }); const table = makeArrowTable([], { schema });
const buf = await fromTableToBuffer(table); const buf = await fromTableToBuffer(table);
@@ -543,22 +482,19 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
// Deep equality gets hung up on some very minor unimportant differences // Deep equality gets hung up on some very minor unimportant differences
// between arrow version 13 and 15 which isn't really what we're testing for // between arrow version 13 and 15 which isn't really what we're testing for
// and so we do our own comparison that just checks name/type/nullability // and so we do our own comparison that just checks name/type/nullability
function compareFields(lhs: arrow13.Field, rhs: arrow13.Field) { function compareFields(lhs: Field, rhs: Field) {
expect(lhs.name).toEqual(rhs.name); expect(lhs.name).toEqual(rhs.name);
expect(lhs.nullable).toEqual(rhs.nullable); expect(lhs.nullable).toEqual(rhs.nullable);
expect(lhs.typeId).toEqual(rhs.typeId); expect(lhs.typeId).toEqual(rhs.typeId);
if ("children" in lhs.type && lhs.type.children !== null) { if ("children" in lhs.type && lhs.type.children !== null) {
const lhsChildren = lhs.type.children as arrow13.Field[]; const lhsChildren = lhs.type.children as Field[];
lhsChildren.forEach((child: arrow13.Field, idx) => { lhsChildren.forEach((child: Field, idx) => {
compareFields(child, rhs.type.children[idx]); compareFields(child, rhs.type.children[idx]);
}); });
} }
} }
// biome-ignore lint/suspicious/noExplicitAny: <explanation> actualSchema.fields.forEach((field, idx) => {
actualSchema.fields.forEach((field: any, idx: string | number) => {
compareFields(field, actualSchema.fields[idx]); compareFields(field, actualSchema.fields[idx]);
}); });
}); });
}); });
},
);

View File

@@ -11,11 +11,8 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import * as arrow13 from "apache-arrow-13"; import * as arrow from "apache-arrow";
import * as arrow14 from "apache-arrow-14"; import * as arrowOld from "apache-arrow-old";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as tmp from "tmp"; import * as tmp from "tmp";
@@ -23,27 +20,18 @@ import { connect } from "../lancedb";
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding"; import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
import { getRegistry, register } from "../lancedb/embedding/registry"; import { getRegistry, register } from "../lancedb/embedding/registry";
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])( describe.each([arrow, arrowOld])("LanceSchema", (arrow) => {
"LanceSchema",
(arrow) => {
test("should preserve input order", async () => { test("should preserve input order", async () => {
const schema = LanceSchema({ const schema = LanceSchema({
id: new arrow.Int32(), id: new arrow.Int32(),
text: new arrow.Utf8(), text: new arrow.Utf8(),
vector: new arrow.Float32(), vector: new arrow.Float32(),
}); });
expect(schema.fields.map((x) => x.name)).toEqual([ expect(schema.fields.map((x) => x.name)).toEqual(["id", "text", "vector"]);
"id",
"text",
"vector",
]);
}); });
}, });
);
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])( describe("Registry", () => {
"Registry",
(arrow) => {
let tmpDir: tmp.DirResult; let tmpDir: tmp.DirResult;
beforeEach(() => { beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true }); tmpDir = tmp.dirSync({ unsafeCleanup: true });
@@ -68,7 +56,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
ndims() { ndims() {
return 3; return 3;
} }
embeddingDataType() { embeddingDataType(): arrow.Float {
return new arrow.Float32(); return new arrow.Float32();
} }
async computeSourceEmbeddings(data: string[]) { async computeSourceEmbeddings(data: string[]) {
@@ -100,10 +88,17 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
[1, 2, 3], [1, 2, 3],
]; ];
const actual = await table.query().toArrow(); const actual = await table.query().toArrow();
const vectors = actual.getChild("vector")!.toArray(); const vectors = actual
expect(JSON.parse(JSON.stringify(vectors))).toEqual( .getChild("vector")
JSON.parse(JSON.stringify(expected)), ?.toArray()
); .map((x: unknown) => {
if (x instanceof arrow.Vector) {
return [...x];
} else {
return x;
}
});
expect(vectors).toEqual(expected);
}); });
test("should error if registering with the same name", async () => { test("should error if registering with the same name", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> { class MockEmbeddingFunction extends EmbeddingFunction<string> {
@@ -118,7 +113,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
ndims() { ndims() {
return 3; return 3;
} }
embeddingDataType() { embeddingDataType(): arrow.Float {
return new arrow.Float32(); return new arrow.Float32();
} }
async computeSourceEmbeddings(data: string[]) { async computeSourceEmbeddings(data: string[]) {
@@ -143,7 +138,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
ndims() { ndims() {
return 3; return 3;
} }
embeddingDataType() { embeddingDataType(): arrow.Float {
return new arrow.Float32(); return new arrow.Float32();
} }
async computeSourceEmbeddings(data: string[]) { async computeSourceEmbeddings(data: string[]) {
@@ -172,5 +167,4 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
]); ]);
expect(schema.metadata).toEqual(expectedMetadata); expect(schema.metadata).toEqual(expectedMetadata);
}); });
}, });
);

View File

@@ -16,11 +16,8 @@ import * as fs from "fs";
import * as path from "path"; import * as path from "path";
import * as tmp from "tmp"; import * as tmp from "tmp";
import * as arrow13 from "apache-arrow-13"; import * as arrow from "apache-arrow";
import * as arrow14 from "apache-arrow-14"; import * as arrowOld from "apache-arrow-old";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import { Table, connect } from "../lancedb"; import { Table, connect } from "../lancedb";
import { import {
@@ -34,27 +31,17 @@ import {
Schema, Schema,
makeArrowTable, makeArrowTable,
} from "../lancedb/arrow"; } from "../lancedb/arrow";
import { import { EmbeddingFunction, LanceSchema, register } from "../lancedb/embedding";
EmbeddingFunction,
LanceSchema,
getRegistry,
register,
} from "../lancedb/embedding";
import { Index } from "../lancedb/indices"; import { Index } from "../lancedb/indices";
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])( // biome-ignore lint/suspicious/noExplicitAny: <explanation>
"Given a table", describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(arrow: any) => {
let tmpDir: tmp.DirResult; let tmpDir: tmp.DirResult;
let table: Table; let table: Table;
const schema: const schema:
| import("apache-arrow-13").Schema | import("apache-arrow").Schema
| import("apache-arrow-14").Schema | import("apache-arrow-old").Schema = new arrow.Schema([
| import("apache-arrow-15").Schema
| import("apache-arrow-16").Schema
| import("apache-arrow-17").Schema = new arrow.Schema([
new arrow.Field("id", new arrow.Float64(), true), new arrow.Field("id", new arrow.Float64(), true),
]); ]);
@@ -109,50 +96,6 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
expect(await table.countRows("id == 10")).toBe(1); expect(await table.countRows("id == 10")).toBe(1);
}); });
it("should let me update values with `values`", async () => {
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({ values: { id: 7 } });
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update({
values: {
id: "10",
},
where: "id % 2 == 0",
});
expect(await table.countRows("id == 2")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
expect(await table.countRows("id == 10")).toBe(1);
});
it("should let me update values with `valuesSql`", async () => {
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({
valuesSql: {
id: "7",
},
});
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
// Test Map as input
await table.update({
valuesSql: {
id: "10",
},
where: "id % 2 == 0",
});
expect(await table.countRows("id == 2")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
expect(await table.countRows("id == 10")).toBe(1);
});
// https://github.com/lancedb/lancedb/issues/1293 // https://github.com/lancedb/lancedb/issues/1293
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])( test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])(
"can create empty table with non default float type: %s", "can create empty table with non default float type: %s",
@@ -189,8 +132,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
const arrowTbl = await table.toArrow(); const arrowTbl = await table.toArrow();
expect(arrowTbl).toBeInstanceOf(ArrowTable); expect(arrowTbl).toBeInstanceOf(ArrowTable);
}); });
}, });
);
describe("merge insert", () => { describe("merge insert", () => {
let tmpDir: tmp.DirResult; let tmpDir: tmp.DirResult;
@@ -708,18 +650,12 @@ describe("when optimizing a dataset", () => {
}); });
}); });
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])( describe("table.search", () => {
"when optimizing a dataset",
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(arrow: any) => {
let tmpDir: tmp.DirResult; let tmpDir: tmp.DirResult;
beforeEach(() => { beforeEach(() => {
getRegistry().reset();
tmpDir = tmp.dirSync({ unsafeCleanup: true }); tmpDir = tmp.dirSync({ unsafeCleanup: true });
}); });
afterEach(() => { afterEach(() => tmpDir.removeCallback());
tmpDir.removeCallback();
});
test("can search using a string", async () => { test("can search using a string", async () => {
@register() @register()
@@ -730,7 +666,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
ndims() { ndims() {
return 1; return 1;
} }
embeddingDataType() { embeddingDataType(): arrow.Float {
return new Float32(); return new Float32();
} }
@@ -808,8 +744,7 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
expect(results.length).toBe(2); expect(results.length).toBe(2);
expect(results[0].text).toBe(data[1].text); expect(results[0].text).toBe(data[1].text);
}); });
}, });
);
describe("when calling explainPlan", () => { describe("when calling explainPlan", () => {
let tmpDir: tmp.DirResult; let tmpDir: tmp.DirResult;
@@ -834,25 +769,3 @@ describe("when calling explainPlan", () => {
expect(plan).toMatch("KNN"); expect(plan).toMatch("KNN");
}); });
}); });
describe("column name options", () => {
let tmpDir: tmp.DirResult;
let table: Table;
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const con = await connect(tmpDir.name);
table = await con.createTable("vectors", [
{ camelCase: 1, vector: [0.1, 0.2] },
]);
});
test("can select columns with different names", async () => {
const results = await table.query().select(["camelCase"]).toArray();
expect(results[0].camelCase).toBe(1);
});
test("can filter on columns with different names", async () => {
const results = await table.query().where("`camelCase` = 1").toArray();
expect(results[0].camelCase).toBe(1);
});
});

View File

@@ -6,5 +6,5 @@
"target": "es2022", "target": "es2022",
"types": ["jest", "node"] "types": ["jest", "node"]
}, },
"include": ["**/*", "../examples/ann_indexes.ts"] "include": ["**/*"]
} }

View File

@@ -1,28 +0,0 @@
import { IntoSql, toSQL } from "../lancedb/util";
test.each([
["string", "'string'"],
[123, "123"],
[1.11, "1.11"],
[true, "TRUE"],
[false, "FALSE"],
[null, "NULL"],
[new Date("2021-01-01T00:00:00.000Z"), "'2021-01-01T00:00:00.000Z'"],
[[1, 2, 3], "[1, 2, 3]"],
[new ArrayBuffer(8), "X'0000000000000000'"],
[Buffer.from("hello"), "X'68656c6c6f'"],
["Hello 'world'", "'Hello ''world'''"],
])("toSQL(%p) === %p", (value, expected) => {
expect(toSQL(value)).toBe(expected);
});
test("toSQL({}) throws on unsupported value type", () => {
expect(() => toSQL({} as unknown as IntoSql)).toThrow(
"Unsupported value type: object value: ([object Object])",
);
});
test("toSQL() throws on unsupported value type", () => {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
expect(() => (<any>toSQL)()).toThrow(
"Unsupported value type: undefined value: (undefined)",
);
});

View File

@@ -94,13 +94,7 @@
"useValidTypeof": "error" "useValidTypeof": "error"
} }
}, },
"ignore": [ "ignore": ["**/dist/**/*", "**/native.js", "**/native.d.ts"]
"**/dist/**/*",
"**/native.js",
"**/native.d.ts",
"__test__/docs/**/*",
"examples/**/*"
]
}, },
"javascript": { "javascript": {
"globals": [] "globals": []

View File

@@ -1 +0,0 @@
data/

View File

@@ -1,49 +0,0 @@
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
// --8<-- [start:ingest]
const db = await lancedb.connect("/tmp/lancedb/");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 16,
numSubVectors: 48,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const _results1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
// --8<-- [start:search3]
const _results3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
console.log("Ann indexes: done");

View File

@@ -1,162 +0,0 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import {
Field,
FixedSizeList,
Float16,
Int32,
Schema,
Utf8,
} from "apache-arrow";
// --8<-- [end:imports]
// --8<-- [start:connect]
const uri = "/tmp/lancedb/";
const db = await lancedb.connect(uri);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ mode: "overwrite" },
);
// --8<-- [end:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
{
// --8<-- [start:create_table_exists_ok]
const tbl = await db.createTable("myTable", data, {
existsOk: true,
});
// --8<-- [end:create_table_exists_ok]
}
{
// --8<-- [start:create_table_overwrite]
const _tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
}
}
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
console.log(tableNames);
// --8<-- [end:table_names]
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const _res = tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect("/tmp/lancedb");
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}

View File

@@ -1,83 +0,0 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
{
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect("/tmp/db");
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await (await tbl.search(query)).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
console.log("result = ", actual.text);
}
{
// --8<-- [start:embedding_function]
const db = await lancedb.connect("/tmp/db");
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([1, 2, 3]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
}

View File

@@ -1,34 +0,0 @@
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
console.log("SQL search: done");

View File

@@ -1,27 +0,0 @@
{
"compilerOptions": {
// Enable latest features
"lib": ["ESNext", "DOM"],
"target": "ESNext",
"module": "ESNext",
"moduleDetection": "force",
"jsx": "react-jsx",
"allowJs": true,
// Bundler mode
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"verbatimModuleSyntax": true,
"noEmit": true,
// Best practices
"strict": true,
"skipLibCheck": true,
"noFallthroughCasesInSwitch": true,
// Some stricter flags (disabled by default)
"noUnusedLocals": false,
"noUnusedParameters": false,
"noPropertyAccessFromIndexSignature": false
}
}

View File

@@ -1,828 +0,0 @@
{
"name": "examples",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "examples",
"version": "1.0.0",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
},
"peerDependencies": {
"typescript": "^5.0.0"
}
},
"..": {
"name": "@lancedb/lancedb",
"version": "0.7.1",
"cpu": [
"x64",
"arm64"
],
"license": "Apache 2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"axios": "^1.7.2",
"reflect-metadata": "^0.2.2"
},
"devDependencies": {
"@aws-sdk/client-dynamodb": "^3.33.0",
"@aws-sdk/client-kms": "^3.33.0",
"@aws-sdk/client-s3": "^3.33.0",
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"@napi-rs/cli": "^2.18.3",
"@types/axios": "^0.14.0",
"@types/jest": "^29.1.2",
"@types/tmp": "^0.2.6",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
"tmp": "^0.2.3",
"ts-jest": "^29.1.2",
"typedoc": "^0.25.7",
"typedoc-plugin-markdown": "^3.17.1",
"typescript": "^5.3.3",
"typescript-eslint": "^7.1.0"
},
"engines": {
"node": ">= 18"
},
"optionalDependencies": {
"@xenova/transformers": "^2.17.2",
"openai": "^4.29.2"
},
"peerDependencies": {
"apache-arrow": "^15.0.0"
}
},
"node_modules/@huggingface/jinja": {
"version": "0.2.2",
"resolved": "https://registry.npmjs.org/@huggingface/jinja/-/jinja-0.2.2.tgz",
"integrity": "sha512-/KPde26khDUIPkTGU82jdtTW9UAuvUTumCAbFs/7giR0SxsvZC4hru51PBvpijH6BVkHcROcvZM/lpy5h1jRRA==",
"engines": {
"node": ">=18"
}
},
"node_modules/@lancedb/lancedb": {
"resolved": "..",
"link": true
},
"node_modules/@protobufjs/aspromise": {
"version": "1.1.2",
"resolved": "https://registry.npmjs.org/@protobufjs/aspromise/-/aspromise-1.1.2.tgz",
"integrity": "sha512-j+gKExEuLmKwvz3OgROXtrJ2UG2x8Ch2YZUxahh+s1F2HZ+wAceUNLkvy6zKCPVRkU++ZWQrdxsUeQXmcg4uoQ=="
},
"node_modules/@protobufjs/base64": {
"version": "1.1.2",
"resolved": "https://registry.npmjs.org/@protobufjs/base64/-/base64-1.1.2.tgz",
"integrity": "sha512-AZkcAA5vnN/v4PDqKyMR5lx7hZttPDgClv83E//FMNhR2TMcLUhfRUBHCmSl0oi9zMgDDqRUJkSxO3wm85+XLg=="
},
"node_modules/@protobufjs/codegen": {
"version": "2.0.4",
"resolved": "https://registry.npmjs.org/@protobufjs/codegen/-/codegen-2.0.4.tgz",
"integrity": "sha512-YyFaikqM5sH0ziFZCN3xDC7zeGaB/d0IUb9CATugHWbd1FRFwWwt4ld4OYMPWu5a3Xe01mGAULCdqhMlPl29Jg=="
},
"node_modules/@protobufjs/eventemitter": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/@protobufjs/eventemitter/-/eventemitter-1.1.0.tgz",
"integrity": "sha512-j9ednRT81vYJ9OfVuXG6ERSTdEL1xVsNgqpkxMsbIabzSo3goCjDIveeGv5d03om39ML71RdmrGNjG5SReBP/Q=="
},
"node_modules/@protobufjs/fetch": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/@protobufjs/fetch/-/fetch-1.1.0.tgz",
"integrity": "sha512-lljVXpqXebpsijW71PZaCYeIcE5on1w5DlQy5WH6GLbFryLUrBD4932W/E2BSpfRJWseIL4v/KPgBFxDOIdKpQ==",
"dependencies": {
"@protobufjs/aspromise": "^1.1.1",
"@protobufjs/inquire": "^1.1.0"
}
},
"node_modules/@protobufjs/float": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/@protobufjs/float/-/float-1.0.2.tgz",
"integrity": "sha512-Ddb+kVXlXst9d+R9PfTIxh1EdNkgoRe5tOX6t01f1lYWOvJnSPDBlG241QLzcyPdoNTsblLUdujGSE4RzrTZGQ=="
},
"node_modules/@protobufjs/inquire": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/@protobufjs/inquire/-/inquire-1.1.0.tgz",
"integrity": "sha512-kdSefcPdruJiFMVSbn801t4vFK7KB/5gd2fYvrxhuJYg8ILrmn9SKSX2tZdV6V+ksulWqS7aXjBcRXl3wHoD9Q=="
},
"node_modules/@protobufjs/path": {
"version": "1.1.2",
"resolved": "https://registry.npmjs.org/@protobufjs/path/-/path-1.1.2.tgz",
"integrity": "sha512-6JOcJ5Tm08dOHAbdR3GrvP+yUUfkjG5ePsHYczMFLq3ZmMkAD98cDgcT2iA1lJ9NVwFd4tH/iSSoe44YWkltEA=="
},
"node_modules/@protobufjs/pool": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/@protobufjs/pool/-/pool-1.1.0.tgz",
"integrity": "sha512-0kELaGSIDBKvcgS4zkjz1PeddatrjYcmMWOlAuAPwAeccUrPHdUqo/J6LiymHHEiJT5NrF1UVwxY14f+fy4WQw=="
},
"node_modules/@protobufjs/utf8": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/@protobufjs/utf8/-/utf8-1.1.0.tgz",
"integrity": "sha512-Vvn3zZrhQZkkBE8LSuW3em98c0FwgO4nxzv6OdSxPKJIEKY2bGbHn+mhGIPerzI4twdxaP8/0+06HBpwf345Lw=="
},
"node_modules/@types/long": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/@types/long/-/long-4.0.2.tgz",
"integrity": "sha512-MqTGEo5bj5t157U6fA/BiDynNkn0YknVdh48CMPkTSpFTVmvao5UQmm7uEF6xBEo7qIMAlY/JSleYaE6VOdpaA=="
},
"node_modules/@types/node": {
"version": "20.14.11",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.14.11.tgz",
"integrity": "sha512-kprQpL8MMeszbz6ojB5/tU8PLN4kesnN8Gjzw349rDlNgsSzg90lAVj3llK99Dh7JON+t9AuscPPFW6mPbTnSA==",
"dependencies": {
"undici-types": "~5.26.4"
}
},
"node_modules/@xenova/transformers": {
"version": "2.17.2",
"resolved": "https://registry.npmjs.org/@xenova/transformers/-/transformers-2.17.2.tgz",
"integrity": "sha512-lZmHqzrVIkSvZdKZEx7IYY51TK0WDrC8eR0c5IMnBsO8di8are1zzw8BlLhyO2TklZKLN5UffNGs1IJwT6oOqQ==",
"dependencies": {
"@huggingface/jinja": "^0.2.2",
"onnxruntime-web": "1.14.0",
"sharp": "^0.32.0"
},
"optionalDependencies": {
"onnxruntime-node": "1.14.0"
}
},
"node_modules/b4a": {
"version": "1.6.6",
"resolved": "https://registry.npmjs.org/b4a/-/b4a-1.6.6.tgz",
"integrity": "sha512-5Tk1HLk6b6ctmjIkAcU/Ujv/1WqiDl0F0JdRCR80VsOcUlHcu7pWeWRlOqQLHfDEsVx9YH/aif5AG4ehoCtTmg=="
},
"node_modules/bare-events": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/bare-events/-/bare-events-2.4.2.tgz",
"integrity": "sha512-qMKFd2qG/36aA4GwvKq8MxnPgCQAmBWmSyLWsJcbn8v03wvIPQ/hG1Ms8bPzndZxMDoHpxez5VOS+gC9Yi24/Q==",
"optional": true
},
"node_modules/bare-fs": {
"version": "2.3.1",
"resolved": "https://registry.npmjs.org/bare-fs/-/bare-fs-2.3.1.tgz",
"integrity": "sha512-W/Hfxc/6VehXlsgFtbB5B4xFcsCl+pAh30cYhoFyXErf6oGrwjh8SwiPAdHgpmWonKuYpZgGywN0SXt7dgsADA==",
"optional": true,
"dependencies": {
"bare-events": "^2.0.0",
"bare-path": "^2.0.0",
"bare-stream": "^2.0.0"
}
},
"node_modules/bare-os": {
"version": "2.4.0",
"resolved": "https://registry.npmjs.org/bare-os/-/bare-os-2.4.0.tgz",
"integrity": "sha512-v8DTT08AS/G0F9xrhyLtepoo9EJBJ85FRSMbu1pQUlAf6A8T0tEEQGMVObWeqpjhSPXsE0VGlluFBJu2fdoTNg==",
"optional": true
},
"node_modules/bare-path": {
"version": "2.1.3",
"resolved": "https://registry.npmjs.org/bare-path/-/bare-path-2.1.3.tgz",
"integrity": "sha512-lh/eITfU8hrj9Ru5quUp0Io1kJWIk1bTjzo7JH1P5dWmQ2EL4hFUlfI8FonAhSlgIfhn63p84CDY/x+PisgcXA==",
"optional": true,
"dependencies": {
"bare-os": "^2.1.0"
}
},
"node_modules/bare-stream": {
"version": "2.1.3",
"resolved": "https://registry.npmjs.org/bare-stream/-/bare-stream-2.1.3.tgz",
"integrity": "sha512-tiDAH9H/kP+tvNO5sczyn9ZAA7utrSMobyDchsnyyXBuUe2FSQWbxhtuHB8jwpHYYevVo2UJpcmvvjrbHboUUQ==",
"optional": true,
"dependencies": {
"streamx": "^2.18.0"
}
},
"node_modules/base64-js": {
"version": "1.5.1",
"resolved": "https://registry.npmjs.org/base64-js/-/base64-js-1.5.1.tgz",
"integrity": "sha512-AKpaYlHn8t4SVbOHCy+b5+KKgvR4vrsD8vbvrbiQJps7fKDTkjkDry6ji0rUJjC0kzbNePLwzxq8iypo41qeWA==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
]
},
"node_modules/bl": {
"version": "4.1.0",
"resolved": "https://registry.npmjs.org/bl/-/bl-4.1.0.tgz",
"integrity": "sha512-1W07cM9gS6DcLperZfFSj+bWLtaPGSOHWhPiGzXmvVJbRLdG82sH/Kn8EtW1VqWVA54AKf2h5k5BbnIbwF3h6w==",
"dependencies": {
"buffer": "^5.5.0",
"inherits": "^2.0.4",
"readable-stream": "^3.4.0"
}
},
"node_modules/buffer": {
"version": "5.7.1",
"resolved": "https://registry.npmjs.org/buffer/-/buffer-5.7.1.tgz",
"integrity": "sha512-EHcyIPBQ4BSGlvjB16k5KgAJ27CIsHY/2JBmCRReo48y9rQ3MaUzWX3KVlBa4U7MyX02HdVj0K7C3WaB3ju7FQ==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
],
"dependencies": {
"base64-js": "^1.3.1",
"ieee754": "^1.1.13"
}
},
"node_modules/chownr": {
"version": "1.1.4",
"resolved": "https://registry.npmjs.org/chownr/-/chownr-1.1.4.tgz",
"integrity": "sha512-jJ0bqzaylmJtVnNgzTeSOs8DPavpbYgEr/b0YL8/2GO3xJEhInFmhKMUnEJQjZumK7KXGFhUy89PrsJWlakBVg=="
},
"node_modules/color": {
"version": "4.2.3",
"resolved": "https://registry.npmjs.org/color/-/color-4.2.3.tgz",
"integrity": "sha512-1rXeuUUiGGrykh+CeBdu5Ie7OJwinCgQY0bc7GCRxy5xVHy+moaqkpL/jqQq0MtQOeYcrqEz4abc5f0KtU7W4A==",
"dependencies": {
"color-convert": "^2.0.1",
"color-string": "^1.9.0"
},
"engines": {
"node": ">=12.5.0"
}
},
"node_modules/color-convert": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
"dependencies": {
"color-name": "~1.1.4"
},
"engines": {
"node": ">=7.0.0"
}
},
"node_modules/color-name": {
"version": "1.1.4",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA=="
},
"node_modules/color-string": {
"version": "1.9.1",
"resolved": "https://registry.npmjs.org/color-string/-/color-string-1.9.1.tgz",
"integrity": "sha512-shrVawQFojnZv6xM40anx4CkoDP+fZsw/ZerEMsW/pyzsRbElpsL/DBVW7q3ExxwusdNXI3lXpuhEZkzs8p5Eg==",
"dependencies": {
"color-name": "^1.0.0",
"simple-swizzle": "^0.2.2"
}
},
"node_modules/decompress-response": {
"version": "6.0.0",
"resolved": "https://registry.npmjs.org/decompress-response/-/decompress-response-6.0.0.tgz",
"integrity": "sha512-aW35yZM6Bb/4oJlZncMH2LCoZtJXTRxES17vE3hoRiowU2kWHaJKFkSBDnDR+cm9J+9QhXmREyIfv0pji9ejCQ==",
"dependencies": {
"mimic-response": "^3.1.0"
},
"engines": {
"node": ">=10"
},
"funding": {
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/deep-extend": {
"version": "0.6.0",
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA==",
"engines": {
"node": ">=4.0.0"
}
},
"node_modules/detect-libc": {
"version": "2.0.3",
"resolved": "https://registry.npmjs.org/detect-libc/-/detect-libc-2.0.3.tgz",
"integrity": "sha512-bwy0MGW55bG41VqxxypOsdSdGqLwXPI/focwgTYCFMbdUiBAxLg9CFzG08sz2aqzknwiX7Hkl0bQENjg8iLByw==",
"engines": {
"node": ">=8"
}
},
"node_modules/end-of-stream": {
"version": "1.4.4",
"resolved": "https://registry.npmjs.org/end-of-stream/-/end-of-stream-1.4.4.tgz",
"integrity": "sha512-+uw1inIHVPQoaVuHzRyXd21icM+cnt4CzD5rW+NC1wjOUSTOs+Te7FOv7AhN7vS9x/oIyhLP5PR1H+phQAHu5Q==",
"dependencies": {
"once": "^1.4.0"
}
},
"node_modules/expand-template": {
"version": "2.0.3",
"resolved": "https://registry.npmjs.org/expand-template/-/expand-template-2.0.3.tgz",
"integrity": "sha512-XYfuKMvj4O35f/pOXLObndIRvyQ+/+6AhODh+OKWj9S9498pHHn/IMszH+gt0fBCRWMNfk1ZSp5x3AifmnI2vg==",
"engines": {
"node": ">=6"
}
},
"node_modules/fast-fifo": {
"version": "1.3.2",
"resolved": "https://registry.npmjs.org/fast-fifo/-/fast-fifo-1.3.2.tgz",
"integrity": "sha512-/d9sfos4yxzpwkDkuN7k2SqFKtYNmCTzgfEpz82x34IM9/zc8KGxQoXg1liNC/izpRM/MBdt44Nmx41ZWqk+FQ=="
},
"node_modules/flatbuffers": {
"version": "1.12.0",
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-1.12.0.tgz",
"integrity": "sha512-c7CZADjRcl6j0PlvFy0ZqXQ67qSEZfrVPynmnL+2zPc+NtMvrF8Y0QceMo7QqnSPc7+uWjUIAbvCQ5WIKlMVdQ=="
},
"node_modules/fs-constants": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/fs-constants/-/fs-constants-1.0.0.tgz",
"integrity": "sha512-y6OAwoSIf7FyjMIv94u+b5rdheZEjzR63GTyZJm5qh4Bi+2YgwLCcI/fPFZkL5PSixOt6ZNKm+w+Hfp/Bciwow=="
},
"node_modules/github-from-package": {
"version": "0.0.0",
"resolved": "https://registry.npmjs.org/github-from-package/-/github-from-package-0.0.0.tgz",
"integrity": "sha512-SyHy3T1v2NUXn29OsWdxmK6RwHD+vkj3v8en8AOBZ1wBQ/hCAQ5bAQTD02kW4W9tUp/3Qh6J8r9EvntiyCmOOw=="
},
"node_modules/guid-typescript": {
"version": "1.0.9",
"resolved": "https://registry.npmjs.org/guid-typescript/-/guid-typescript-1.0.9.tgz",
"integrity": "sha512-Y8T4vYhEfwJOTbouREvG+3XDsjr8E3kIr7uf+JZ0BYloFsttiHU0WfvANVsR7TxNUJa/WpCnw/Ino/p+DeBhBQ=="
},
"node_modules/ieee754": {
"version": "1.2.1",
"resolved": "https://registry.npmjs.org/ieee754/-/ieee754-1.2.1.tgz",
"integrity": "sha512-dcyqhDvX1C46lXZcVqCpK+FtMRQVdIMN6/Df5js2zouUsqG7I6sFxitIC+7KYK29KdXOLHdu9zL4sFnoVQnqaA==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
]
},
"node_modules/inherits": {
"version": "2.0.4",
"resolved": "https://registry.npmjs.org/inherits/-/inherits-2.0.4.tgz",
"integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ=="
},
"node_modules/ini": {
"version": "1.3.8",
"resolved": "https://registry.npmjs.org/ini/-/ini-1.3.8.tgz",
"integrity": "sha512-JV/yugV2uzW5iMRSiZAyDtQd+nxtUnjeLt0acNdw98kKLrvuRVyB80tsREOE7yvGVgalhZ6RNXCmEHkUKBKxew=="
},
"node_modules/is-arrayish": {
"version": "0.3.2",
"resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.3.2.tgz",
"integrity": "sha512-eVRqCvVlZbuw3GrM63ovNSNAeA1K16kaR/LRY/92w0zxQ5/1YzwblUX652i4Xs9RwAGjW9d9y6X88t8OaAJfWQ=="
},
"node_modules/long": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/long/-/long-4.0.0.tgz",
"integrity": "sha512-XsP+KhQif4bjX1kbuSiySJFNAehNxgLb6hPRGJ9QsUr8ajHkuXGdrHmFUTUUXhDwVX2R5bY4JNZEwbUiMhV+MA=="
},
"node_modules/mimic-response": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/mimic-response/-/mimic-response-3.1.0.tgz",
"integrity": "sha512-z0yWI+4FDrrweS8Zmt4Ej5HdJmky15+L2e6Wgn3+iK5fWzb6T3fhNFq2+MeTRb064c6Wr4N/wv0DzQTjNzHNGQ==",
"engines": {
"node": ">=10"
},
"funding": {
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/minimist": {
"version": "1.2.8",
"resolved": "https://registry.npmjs.org/minimist/-/minimist-1.2.8.tgz",
"integrity": "sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==",
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/mkdirp-classic": {
"version": "0.5.3",
"resolved": "https://registry.npmjs.org/mkdirp-classic/-/mkdirp-classic-0.5.3.tgz",
"integrity": "sha512-gKLcREMhtuZRwRAfqP3RFW+TK4JqApVBtOIftVgjuABpAtpxhPGaDcfvbhNvD0B8iD1oUr/txX35NjcaY6Ns/A=="
},
"node_modules/napi-build-utils": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/napi-build-utils/-/napi-build-utils-1.0.2.tgz",
"integrity": "sha512-ONmRUqK7zj7DWX0D9ADe03wbwOBZxNAfF20PlGfCWQcD3+/MakShIHrMqx9YwPTfxDdF1zLeL+RGZiR9kGMLdg=="
},
"node_modules/node-abi": {
"version": "3.65.0",
"resolved": "https://registry.npmjs.org/node-abi/-/node-abi-3.65.0.tgz",
"integrity": "sha512-ThjYBfoDNr08AWx6hGaRbfPwxKV9kVzAzOzlLKbk2CuqXE2xnCh+cbAGnwM3t8Lq4v9rUB7VfondlkBckcJrVA==",
"dependencies": {
"semver": "^7.3.5"
},
"engines": {
"node": ">=10"
}
},
"node_modules/node-addon-api": {
"version": "6.1.0",
"resolved": "https://registry.npmjs.org/node-addon-api/-/node-addon-api-6.1.0.tgz",
"integrity": "sha512-+eawOlIgy680F0kBzPUNFhMZGtJ1YmqM6l4+Crf4IkImjYrO/mqPwRMh352g23uIaQKFItcQ64I7KMaJxHgAVA=="
},
"node_modules/once": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/once/-/once-1.4.0.tgz",
"integrity": "sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w==",
"dependencies": {
"wrappy": "1"
}
},
"node_modules/onnx-proto": {
"version": "4.0.4",
"resolved": "https://registry.npmjs.org/onnx-proto/-/onnx-proto-4.0.4.tgz",
"integrity": "sha512-aldMOB3HRoo6q/phyB6QRQxSt895HNNw82BNyZ2CMh4bjeKv7g/c+VpAFtJuEMVfYLMbRx61hbuqnKceLeDcDA==",
"dependencies": {
"protobufjs": "^6.8.8"
}
},
"node_modules/onnxruntime-common": {
"version": "1.14.0",
"resolved": "https://registry.npmjs.org/onnxruntime-common/-/onnxruntime-common-1.14.0.tgz",
"integrity": "sha512-3LJpegM2iMNRX2wUmtYfeX/ytfOzNwAWKSq1HbRrKc9+uqG/FsEA0bbKZl1btQeZaXhC26l44NWpNUeXPII7Ew=="
},
"node_modules/onnxruntime-node": {
"version": "1.14.0",
"resolved": "https://registry.npmjs.org/onnxruntime-node/-/onnxruntime-node-1.14.0.tgz",
"integrity": "sha512-5ba7TWomIV/9b6NH/1x/8QEeowsb+jBEvFzU6z0T4mNsFwdPqXeFUM7uxC6QeSRkEbWu3qEB0VMjrvzN/0S9+w==",
"optional": true,
"os": [
"win32",
"darwin",
"linux"
],
"dependencies": {
"onnxruntime-common": "~1.14.0"
}
},
"node_modules/onnxruntime-web": {
"version": "1.14.0",
"resolved": "https://registry.npmjs.org/onnxruntime-web/-/onnxruntime-web-1.14.0.tgz",
"integrity": "sha512-Kcqf43UMfW8mCydVGcX9OMXI2VN17c0p6XvR7IPSZzBf/6lteBzXHvcEVWDPmCKuGombl997HgLqj91F11DzXw==",
"dependencies": {
"flatbuffers": "^1.12.0",
"guid-typescript": "^1.0.9",
"long": "^4.0.0",
"onnx-proto": "^4.0.4",
"onnxruntime-common": "~1.14.0",
"platform": "^1.3.6"
}
},
"node_modules/platform": {
"version": "1.3.6",
"resolved": "https://registry.npmjs.org/platform/-/platform-1.3.6.tgz",
"integrity": "sha512-fnWVljUchTro6RiCFvCXBbNhJc2NijN7oIQxbwsyL0buWJPG85v81ehlHI9fXrJsMNgTofEoWIQeClKpgxFLrg=="
},
"node_modules/prebuild-install": {
"version": "7.1.2",
"resolved": "https://registry.npmjs.org/prebuild-install/-/prebuild-install-7.1.2.tgz",
"integrity": "sha512-UnNke3IQb6sgarcZIDU3gbMeTp/9SSU1DAIkil7PrqG1vZlBtY5msYccSKSHDqa3hNg436IXK+SNImReuA1wEQ==",
"dependencies": {
"detect-libc": "^2.0.0",
"expand-template": "^2.0.3",
"github-from-package": "0.0.0",
"minimist": "^1.2.3",
"mkdirp-classic": "^0.5.3",
"napi-build-utils": "^1.0.1",
"node-abi": "^3.3.0",
"pump": "^3.0.0",
"rc": "^1.2.7",
"simple-get": "^4.0.0",
"tar-fs": "^2.0.0",
"tunnel-agent": "^0.6.0"
},
"bin": {
"prebuild-install": "bin.js"
},
"engines": {
"node": ">=10"
}
},
"node_modules/prebuild-install/node_modules/tar-fs": {
"version": "2.1.1",
"resolved": "https://registry.npmjs.org/tar-fs/-/tar-fs-2.1.1.tgz",
"integrity": "sha512-V0r2Y9scmbDRLCNex/+hYzvp/zyYjvFbHPNgVTKfQvVrb6guiE/fxP+XblDNR011utopbkex2nM4dHNV6GDsng==",
"dependencies": {
"chownr": "^1.1.1",
"mkdirp-classic": "^0.5.2",
"pump": "^3.0.0",
"tar-stream": "^2.1.4"
}
},
"node_modules/prebuild-install/node_modules/tar-stream": {
"version": "2.2.0",
"resolved": "https://registry.npmjs.org/tar-stream/-/tar-stream-2.2.0.tgz",
"integrity": "sha512-ujeqbceABgwMZxEJnk2HDY2DlnUZ+9oEcb1KzTVfYHio0UE6dG71n60d8D2I4qNvleWrrXpmjpt7vZeF1LnMZQ==",
"dependencies": {
"bl": "^4.0.3",
"end-of-stream": "^1.4.1",
"fs-constants": "^1.0.0",
"inherits": "^2.0.3",
"readable-stream": "^3.1.1"
},
"engines": {
"node": ">=6"
}
},
"node_modules/protobufjs": {
"version": "6.11.4",
"resolved": "https://registry.npmjs.org/protobufjs/-/protobufjs-6.11.4.tgz",
"integrity": "sha512-5kQWPaJHi1WoCpjTGszzQ32PG2F4+wRY6BmAT4Vfw56Q2FZ4YZzK20xUYQH4YkfehY1e6QSICrJquM6xXZNcrw==",
"hasInstallScript": true,
"dependencies": {
"@protobufjs/aspromise": "^1.1.2",
"@protobufjs/base64": "^1.1.2",
"@protobufjs/codegen": "^2.0.4",
"@protobufjs/eventemitter": "^1.1.0",
"@protobufjs/fetch": "^1.1.0",
"@protobufjs/float": "^1.0.2",
"@protobufjs/inquire": "^1.1.0",
"@protobufjs/path": "^1.1.2",
"@protobufjs/pool": "^1.1.0",
"@protobufjs/utf8": "^1.1.0",
"@types/long": "^4.0.1",
"@types/node": ">=13.7.0",
"long": "^4.0.0"
},
"bin": {
"pbjs": "bin/pbjs",
"pbts": "bin/pbts"
}
},
"node_modules/pump": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/pump/-/pump-3.0.0.tgz",
"integrity": "sha512-LwZy+p3SFs1Pytd/jYct4wpv49HiYCqd9Rlc5ZVdk0V+8Yzv6jR5Blk3TRmPL1ft69TxP0IMZGJ+WPFU2BFhww==",
"dependencies": {
"end-of-stream": "^1.1.0",
"once": "^1.3.1"
}
},
"node_modules/queue-tick": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/queue-tick/-/queue-tick-1.0.1.tgz",
"integrity": "sha512-kJt5qhMxoszgU/62PLP1CJytzd2NKetjSRnyuj31fDd3Rlcz3fzlFdFLD1SItunPwyqEOkca6GbV612BWfaBag=="
},
"node_modules/rc": {
"version": "1.2.8",
"resolved": "https://registry.npmjs.org/rc/-/rc-1.2.8.tgz",
"integrity": "sha512-y3bGgqKj3QBdxLbLkomlohkvsA8gdAiUQlSBJnBhfn+BPxg4bc62d8TcBW15wavDfgexCgccckhcZvywyQYPOw==",
"dependencies": {
"deep-extend": "^0.6.0",
"ini": "~1.3.0",
"minimist": "^1.2.0",
"strip-json-comments": "~2.0.1"
},
"bin": {
"rc": "cli.js"
}
},
"node_modules/readable-stream": {
"version": "3.6.2",
"resolved": "https://registry.npmjs.org/readable-stream/-/readable-stream-3.6.2.tgz",
"integrity": "sha512-9u/sniCrY3D5WdsERHzHE4G2YCXqoG5FTHUiCC4SIbr6XcLZBY05ya9EKjYek9O5xOAwjGq+1JdGBAS7Q9ScoA==",
"dependencies": {
"inherits": "^2.0.3",
"string_decoder": "^1.1.1",
"util-deprecate": "^1.0.1"
},
"engines": {
"node": ">= 6"
}
},
"node_modules/safe-buffer": {
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.2.1.tgz",
"integrity": "sha512-rp3So07KcdmmKbGvgaNxQSJr7bGVSVk5S9Eq1F+ppbRo70+YeaDxkw5Dd8NPN+GD6bjnYm2VuPuCXmpuYvmCXQ==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
]
},
"node_modules/semver": {
"version": "7.6.3",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.6.3.tgz",
"integrity": "sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==",
"bin": {
"semver": "bin/semver.js"
},
"engines": {
"node": ">=10"
}
},
"node_modules/sharp": {
"version": "0.32.6",
"resolved": "https://registry.npmjs.org/sharp/-/sharp-0.32.6.tgz",
"integrity": "sha512-KyLTWwgcR9Oe4d9HwCwNM2l7+J0dUQwn/yf7S0EnTtb0eVS4RxO0eUSvxPtzT4F3SY+C4K6fqdv/DO27sJ/v/w==",
"hasInstallScript": true,
"dependencies": {
"color": "^4.2.3",
"detect-libc": "^2.0.2",
"node-addon-api": "^6.1.0",
"prebuild-install": "^7.1.1",
"semver": "^7.5.4",
"simple-get": "^4.0.1",
"tar-fs": "^3.0.4",
"tunnel-agent": "^0.6.0"
},
"engines": {
"node": ">=14.15.0"
},
"funding": {
"url": "https://opencollective.com/libvips"
}
},
"node_modules/simple-concat": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/simple-concat/-/simple-concat-1.0.1.tgz",
"integrity": "sha512-cSFtAPtRhljv69IK0hTVZQ+OfE9nePi/rtJmw5UjHeVyVroEqJXP1sFztKUy1qU+xvz3u/sfYJLa947b7nAN2Q==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
]
},
"node_modules/simple-get": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/simple-get/-/simple-get-4.0.1.tgz",
"integrity": "sha512-brv7p5WgH0jmQJr1ZDDfKDOSeWWg+OVypG99A/5vYGPqJ6pxiaHLy8nxtFjBA7oMa01ebA9gfh1uMCFqOuXxvA==",
"funding": [
{
"type": "github",
"url": "https://github.com/sponsors/feross"
},
{
"type": "patreon",
"url": "https://www.patreon.com/feross"
},
{
"type": "consulting",
"url": "https://feross.org/support"
}
],
"dependencies": {
"decompress-response": "^6.0.0",
"once": "^1.3.1",
"simple-concat": "^1.0.0"
}
},
"node_modules/simple-swizzle": {
"version": "0.2.2",
"resolved": "https://registry.npmjs.org/simple-swizzle/-/simple-swizzle-0.2.2.tgz",
"integrity": "sha512-JA//kQgZtbuY83m+xT+tXJkmJncGMTFT+C+g2h2R9uxkYIrE2yy9sgmcLhCnw57/WSD+Eh3J97FPEDFnbXnDUg==",
"dependencies": {
"is-arrayish": "^0.3.1"
}
},
"node_modules/streamx": {
"version": "2.18.0",
"resolved": "https://registry.npmjs.org/streamx/-/streamx-2.18.0.tgz",
"integrity": "sha512-LLUC1TWdjVdn1weXGcSxyTR3T4+acB6tVGXT95y0nGbca4t4o/ng1wKAGTljm9VicuCVLvRlqFYXYy5GwgM7sQ==",
"dependencies": {
"fast-fifo": "^1.3.2",
"queue-tick": "^1.0.1",
"text-decoder": "^1.1.0"
},
"optionalDependencies": {
"bare-events": "^2.2.0"
}
},
"node_modules/string_decoder": {
"version": "1.3.0",
"resolved": "https://registry.npmjs.org/string_decoder/-/string_decoder-1.3.0.tgz",
"integrity": "sha512-hkRX8U1WjJFd8LsDJ2yQ/wWWxaopEsABU1XfkM8A+j0+85JAGppt16cr1Whg6KIbb4okU6Mql6BOj+uup/wKeA==",
"dependencies": {
"safe-buffer": "~5.2.0"
}
},
"node_modules/strip-json-comments": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-2.0.1.tgz",
"integrity": "sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ==",
"engines": {
"node": ">=0.10.0"
}
},
"node_modules/tar-fs": {
"version": "3.0.6",
"resolved": "https://registry.npmjs.org/tar-fs/-/tar-fs-3.0.6.tgz",
"integrity": "sha512-iokBDQQkUyeXhgPYaZxmczGPhnhXZ0CmrqI+MOb/WFGS9DW5wnfrLgtjUJBvz50vQ3qfRwJ62QVoCFu8mPVu5w==",
"dependencies": {
"pump": "^3.0.0",
"tar-stream": "^3.1.5"
},
"optionalDependencies": {
"bare-fs": "^2.1.1",
"bare-path": "^2.1.0"
}
},
"node_modules/tar-stream": {
"version": "3.1.7",
"resolved": "https://registry.npmjs.org/tar-stream/-/tar-stream-3.1.7.tgz",
"integrity": "sha512-qJj60CXt7IU1Ffyc3NJMjh6EkuCFej46zUqJ4J7pqYlThyd9bO0XBTmcOIhSzZJVWfsLks0+nle/j538YAW9RQ==",
"dependencies": {
"b4a": "^1.6.4",
"fast-fifo": "^1.2.0",
"streamx": "^2.15.0"
}
},
"node_modules/text-decoder": {
"version": "1.1.1",
"resolved": "https://registry.npmjs.org/text-decoder/-/text-decoder-1.1.1.tgz",
"integrity": "sha512-8zll7REEv4GDD3x4/0pW+ppIxSNs7H1J10IKFZsuOMscumCdM2a+toDGLPA3T+1+fLBql4zbt5z83GEQGGV5VA==",
"dependencies": {
"b4a": "^1.6.4"
}
},
"node_modules/tunnel-agent": {
"version": "0.6.0",
"resolved": "https://registry.npmjs.org/tunnel-agent/-/tunnel-agent-0.6.0.tgz",
"integrity": "sha512-McnNiV1l8RYeY8tBgEpuodCC1mLUdbSN+CYBL7kJsJNInOP8UjDDEwdk6Mw60vdLLrr5NHKZhMAOSrR2NZuQ+w==",
"dependencies": {
"safe-buffer": "^5.0.1"
},
"engines": {
"node": "*"
}
},
"node_modules/typescript": {
"version": "5.5.2",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.2.tgz",
"integrity": "sha512-NcRtPEOsPFFWjobJEtfihkLCZCXZt/os3zf8nTxjVH3RvTSxjrCamJpbExGvYOF+tFHc3pA65qpdwPbzjohhew==",
"peer": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/undici-types": {
"version": "5.26.5",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA=="
},
"node_modules/util-deprecate": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz",
"integrity": "sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw=="
},
"node_modules/wrappy": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz",
"integrity": "sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ=="
}
}
}

View File

@@ -1,19 +0,0 @@
{
"name": "examples",
"version": "1.0.0",
"description": "Examples for LanceDB",
"main": "index.js",
"type": "module",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../",
"@xenova/transformers": "^2.17.2"
},
"peerDependencies": {
"typescript": "^5.0.0"
}
}

View File

@@ -1,37 +0,0 @@
// --8<-- [end:import]
import * as fs from "node:fs";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const _results1 = await tbl.search(Array(1536).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await tbl
.search(Array(1536).fill(1.2))
.distanceType("cosine")
.limit(10)
.toArray();
// --8<-- [end:search2]
console.log("search: done");

View File

@@ -1,50 +0,0 @@
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
import { Utf8 } from "apache-arrow";
const db = await lancedb.connect("/tmp/db");
const func = await getRegistry().get("huggingface").create();
const facts = [
"Albert Einstein was a theoretical physicist.",
"The capital of France is Paris.",
"The Great Wall of China is one of the Seven Wonders of the World.",
"Python is a popular programming language.",
"Mount Everest is the highest mountain in the world.",
"Leonardo da Vinci painted the Mona Lisa.",
"Shakespeare wrote Hamlet.",
"The human body has 206 bones.",
"The speed of light is approximately 299,792 kilometers per second.",
"Water boils at 100 degrees Celsius.",
"The Earth orbits the Sun.",
"The Pyramids of Giza are located in Egypt.",
"Coffee is one of the most popular beverages in the world.",
"Tokyo is the capital city of Japan.",
"Photosynthesis is the process by which plants make their food.",
"The Pacific Ocean is the largest ocean on Earth.",
"Mozart was a prolific composer of classical music.",
"The Internet is a global network of computers.",
"Basketball is a sport played with a ball and a hoop.",
"The first computer virus was created in 1983.",
"Artificial neural networks are inspired by the human brain.",
"Deep learning is a subset of machine learning.",
"IBM's Watson won Jeopardy! in 2011.",
"The first computer programmer was Ada Lovelace.",
"The first chatbot was ELIZA, created in the 1960s.",
].map((text) => ({ text }));
const factsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createTable("facts", facts, {
mode: "overwrite",
schema: factsSchema,
});
const query = "How many bones are in the human body?";
const actual = await tbl.search(query).limit(1).toArray();
console.log("Answer: ", actual[0]["text"]);

View File

@@ -103,25 +103,12 @@ export type IntoVector =
| number[] | number[]
| Promise<Float32Array | Float64Array | number[]>; | Promise<Float32Array | Float64Array | number[]>;
export type FloatLike =
| import("apache-arrow-13").Float
| import("apache-arrow-14").Float
| import("apache-arrow-15").Float
| import("apache-arrow-16").Float
| import("apache-arrow-17").Float;
export type DataTypeLike =
| import("apache-arrow-13").DataType
| import("apache-arrow-14").DataType
| import("apache-arrow-15").DataType
| import("apache-arrow-16").DataType
| import("apache-arrow-17").DataType;
export function isArrowTable(value: object): value is TableLike { export function isArrowTable(value: object): value is TableLike {
if (value instanceof ArrowTable) return true; if (value instanceof ArrowTable) return true;
return "schema" in value && "batches" in value; return "schema" in value && "batches" in value;
} }
export function isDataType(value: unknown): value is DataTypeLike { export function isDataType(value: unknown): value is DataType {
return ( return (
value instanceof DataType || value instanceof DataType ||
DataType.isNull(value) || DataType.isNull(value) ||
@@ -578,7 +565,7 @@ async function applyEmbeddingsFromMetadata(
schema: Schema, schema: Schema,
): Promise<ArrowTable> { ): Promise<ArrowTable> {
const registry = getRegistry(); const registry = getRegistry();
const functions = await registry.parseFunctions(schema.metadata); const functions = registry.parseFunctions(schema.metadata);
const columns = Object.fromEntries( const columns = Object.fromEntries(
table.schema.fields.map((field) => [ table.schema.fields.map((field) => [
@@ -756,7 +743,7 @@ export async function convertToTable(
/** Creates the Arrow Type for a Vector column with dimension `dim` */ /** Creates the Arrow Type for a Vector column with dimension `dim` */
export function newVectorType<T extends Float>( export function newVectorType<T extends Float>(
dim: number, dim: number,
innerType: unknown, innerType: T,
): FixedSizeList<T> { ): FixedSizeList<T> {
// in Lance we always default to have the elements nullable, so we need to set it to true // in Lance we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements // otherwise we often get schema mismatches because the stored data always has schema with nullable elements

View File

@@ -240,7 +240,6 @@ export class LocalConnection extends Connection {
): Promise<Table> { ): Promise<Table> {
if (typeof nameOrOptions !== "string" && "name" in nameOrOptions) { if (typeof nameOrOptions !== "string" && "name" in nameOrOptions) {
const { name, data, ...options } = nameOrOptions; const { name, data, ...options } = nameOrOptions;
return this.createTable(name, data, options); return this.createTable(name, data, options);
} }
if (data === undefined) { if (data === undefined) {

View File

@@ -15,11 +15,10 @@
import "reflect-metadata"; import "reflect-metadata";
import { import {
DataType, DataType,
DataTypeLike,
Field, Field,
FixedSizeList, FixedSizeList,
Float,
Float32, Float32,
FloatLike,
type IntoVector, type IntoVector,
isDataType, isDataType,
isFixedSizeList, isFixedSizeList,
@@ -41,7 +40,6 @@ export interface EmbeddingFunctionConstructor<
> { > {
new (modelOptions?: T["TOptions"]): T; new (modelOptions?: T["TOptions"]): T;
} }
/** /**
* An embedding function that automatically creates vector representation for a given column. * An embedding function that automatically creates vector representation for a given column.
*/ */
@@ -83,8 +81,6 @@ export abstract class EmbeddingFunction<
*/ */
abstract toJSON(): Partial<M>; abstract toJSON(): Partial<M>;
async init?(): Promise<void>;
/** /**
* sourceField is used in combination with `LanceSchema` to provide a declarative data model * sourceField is used in combination with `LanceSchema` to provide a declarative data model
* *
@@ -93,8 +89,8 @@ export abstract class EmbeddingFunction<
* @see {@link lancedb.LanceSchema} * @see {@link lancedb.LanceSchema}
*/ */
sourceField( sourceField(
optionsOrDatatype: Partial<FieldOptions> | DataTypeLike, optionsOrDatatype: Partial<FieldOptions> | DataType,
): [DataTypeLike, Map<string, EmbeddingFunction>] { ): [DataType, Map<string, EmbeddingFunction>] {
let datatype = isDataType(optionsOrDatatype) let datatype = isDataType(optionsOrDatatype)
? optionsOrDatatype ? optionsOrDatatype
: optionsOrDatatype?.datatype; : optionsOrDatatype?.datatype;
@@ -173,7 +169,7 @@ export abstract class EmbeddingFunction<
} }
/** The datatype of the embeddings */ /** The datatype of the embeddings */
abstract embeddingDataType(): FloatLike; abstract embeddingDataType(): Float;
/** /**
* Creates a vector representation for the given values. * Creates a vector representation for the given values.

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import { Field, Schema } from "../arrow"; import { DataType, Field, Schema } from "../arrow";
import { isDataType } from "../arrow"; import { isDataType } from "../arrow";
import { sanitizeType } from "../sanitize"; import { sanitizeType } from "../sanitize";
import { EmbeddingFunction } from "./embedding_function"; import { EmbeddingFunction } from "./embedding_function";
@@ -22,7 +22,6 @@ export { EmbeddingFunction } from "./embedding_function";
// We need to explicitly export '*' so that the `register` decorator actually registers the class. // We need to explicitly export '*' so that the `register` decorator actually registers the class.
export * from "./openai"; export * from "./openai";
export * from "./transformers";
export * from "./registry"; export * from "./registry";
/** /**

View File

@@ -18,14 +18,9 @@ import {
} from "./embedding_function"; } from "./embedding_function";
import "reflect-metadata"; import "reflect-metadata";
import { OpenAIEmbeddingFunction } from "./openai"; import { OpenAIEmbeddingFunction } from "./openai";
import { TransformersEmbeddingFunction } from "./transformers";
type CreateReturnType<T> = T extends { init: () => Promise<void> }
? Promise<T>
: T;
interface EmbeddingFunctionCreate<T extends EmbeddingFunction> { interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
create(options?: T["TOptions"]): CreateReturnType<T>; create(options?: T["TOptions"]): T;
} }
/** /**
@@ -66,43 +61,38 @@ export class EmbeddingFunctionRegistry {
}; };
} }
get(name: "openai"): EmbeddingFunctionCreate<OpenAIEmbeddingFunction>;
get(
name: "huggingface",
): EmbeddingFunctionCreate<TransformersEmbeddingFunction>;
get<T extends EmbeddingFunction<unknown>>(
name: string,
): EmbeddingFunctionCreate<T> | undefined;
/** /**
* Fetch an embedding function by name * Fetch an embedding function by name
* @param name The name of the function * @param name The name of the function
*/ */
get(name: string) { get<T extends EmbeddingFunction<unknown>, Name extends string = "">(
name: Name extends "openai" ? "openai" : string,
//This makes it so that you can use string constants as "types", or use an explicitly supplied type
// ex:
// `registry.get("openai") -> EmbeddingFunctionCreate<OpenAIEmbeddingFunction>`
// `registry.get<MyCustomEmbeddingFunction>("my_func") -> EmbeddingFunctionCreate<MyCustomEmbeddingFunction> | undefined`
//
// the reason this is important is that we always know our built in functions are defined so the user isnt forced to do a non null/undefined
// ```ts
// const openai: OpenAIEmbeddingFunction = registry.get("openai").create()
// ```
): Name extends "openai"
? EmbeddingFunctionCreate<OpenAIEmbeddingFunction>
: EmbeddingFunctionCreate<T> | undefined {
type Output = Name extends "openai"
? EmbeddingFunctionCreate<OpenAIEmbeddingFunction>
: EmbeddingFunctionCreate<T> | undefined;
const factory = this.#functions.get(name); const factory = this.#functions.get(name);
if (!factory) { if (!factory) {
// biome-ignore lint/suspicious/noExplicitAny: <explanation> return undefined as Output;
return undefined as any;
}
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
let create: any;
if (factory.prototype.init) {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
create = async function (options?: any) {
const instance = new factory(options);
await instance.init!();
return instance;
};
} else {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
create = function (options?: any) {
const instance = new factory(options);
return instance;
};
} }
return { return {
create, create: function (options?: T["TOptions"]) {
}; return new factory(options);
},
} as Output;
} }
/** /**
@@ -115,10 +105,10 @@ export class EmbeddingFunctionRegistry {
/** /**
* @ignore * @ignore
*/ */
async parseFunctions( parseFunctions(
this: EmbeddingFunctionRegistry, this: EmbeddingFunctionRegistry,
metadata: Map<string, string>, metadata: Map<string, string>,
): Promise<Map<string, EmbeddingFunctionConfig>> { ): Map<string, EmbeddingFunctionConfig> {
if (!metadata.has("embedding_functions")) { if (!metadata.has("embedding_functions")) {
return new Map(); return new Map();
} else { } else {
@@ -128,30 +118,25 @@ export class EmbeddingFunctionRegistry {
vectorColumn: string; vectorColumn: string;
model: EmbeddingFunction["TOptions"]; model: EmbeddingFunction["TOptions"];
}; };
const functions = <FunctionConfig[]>( const functions = <FunctionConfig[]>(
JSON.parse(metadata.get("embedding_functions")!) JSON.parse(metadata.get("embedding_functions")!)
); );
return new Map(
const items: [string, EmbeddingFunctionConfig][] = await Promise.all( functions.map((f) => {
functions.map(async (f) => {
const fn = this.get(f.name); const fn = this.get(f.name);
if (!fn) { if (!fn) {
throw new Error(`Function "${f.name}" not found in registry`); throw new Error(`Function "${f.name}" not found in registry`);
} }
const func = await this.get(f.name)!.create(f.model);
return [ return [
f.name, f.name,
{ {
sourceColumn: f.sourceColumn, sourceColumn: f.sourceColumn,
vectorColumn: f.vectorColumn, vectorColumn: f.vectorColumn,
function: func, function: this.get(f.name)!.create(f.model),
}, },
]; ];
}), }),
); );
return new Map(items);
} }
} }
// biome-ignore lint/suspicious/noExplicitAny: <explanation> // biome-ignore lint/suspicious/noExplicitAny: <explanation>

Some files were not shown because too many files have changed in this diff Show More