Compare commits

..

1 Commits

Author SHA1 Message Date
albertlockett
ffcf632abb use local path for lance 14.1 2024-07-11 15:16:36 -03:00
195 changed files with 4547 additions and 11485 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.8.0"
current_version = "0.6.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -3,8 +3,6 @@ on:
push:
branches:
- main
paths:
- java/**
pull_request:
paths:
- java/**
@@ -23,42 +21,9 @@ env:
CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1"
jobs:
linux-build-java-11:
linux-build:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
linux-build-java-17:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 17
name: ubuntu-22.04 + Java 11 & 17
defaults:
run:
working-directory: ./java
@@ -82,12 +47,20 @@ jobs:
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
- name: Running tests with Java 17
run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
@@ -110,4 +83,3 @@ jobs:
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -7,7 +7,6 @@ on:
jobs:
node:
name: vectordb Typescript
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -40,7 +39,6 @@ jobs:
node/vectordb-*.tgz
node-macos:
name: vectordb ${{ matrix.config.arch }}
strategy:
matrix:
config:
@@ -71,7 +69,6 @@ jobs:
node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
name: lancedb ${{ matrix.config.arch }}
strategy:
matrix:
config:
@@ -102,7 +99,7 @@ jobs:
nodejs/dist/*.node
node-linux:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -142,7 +139,7 @@ jobs:
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -193,7 +190,6 @@ jobs:
!nodejs/dist/*.node
node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -227,7 +223,6 @@ jobs:
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -261,7 +256,6 @@ jobs:
nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
@@ -290,18 +284,8 @@ jobs:
for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename
done
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
@@ -349,15 +333,6 @@ jobs:
else
npm publish --access public
fi
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
needs: [release]

View File

@@ -33,11 +33,11 @@ jobs:
python-version: "3.11"
- name: Install ruff
run: |
pip install ruff==0.5.4
pip install ruff==0.2.2
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff check .
run: ruff .
doctest:
name: "Doctest"
timeout-minutes: 30

View File

@@ -53,10 +53,7 @@ jobs:
run: cargo clippy --all --all-features -- -D warnings
linux:
timeout-minutes: 30
# To build all features, we need more disk space than is available
# on the GitHub-provided runner. This is mostly due to the the
# sentence-transformers feature.
runs-on: warp-ubuntu-latest-x64-4x
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
@@ -134,3 +131,4 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test

1
.gitignore vendored
View File

@@ -4,7 +4,6 @@
**/__pycache__
.DS_Store
venv
.venv
.vscode
.zed

View File

@@ -18,4 +18,4 @@ repos:
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*

View File

@@ -20,30 +20,36 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.16.0", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.16.0" }
lance-linalg = { "version" = "=0.16.0" }
lance-testing = { "version" = "=0.16.0" }
lance-datafusion = { "version" = "=0.16.0" }
lance-encoding = { "version" = "=0.16.0" }
# lance = { "version" = "=0.14.0", "features" = ["dynamodb"] }
# lance-index = { "version" = "=0.14.0" }
# lance-linalg = { "version" = "=0.14.0" }
# lance-testing = { "version" = "=0.14.0" }
# lance-datafusion = { "version" = "=0.14.0" }
lance = { path = "../lance/rust/lance", "features" = ["dynamodb"] }
lance-index = { path = "../lance/rust/lance-index" }
lance-linalg = { path = "../lance/rust/lance-linalg" }
lance-testing = { path = "../lance/rust/lance-testing" }
lance-datafusion = { path = "../lance/rust/lance-datafusion" }
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
arrow-data = "52.2"
arrow-ipc = "52.2"
arrow-ord = "52.2"
arrow-schema = "52.2"
arrow-arith = "52.2"
arrow-cast = "52.2"
arrow = { version = "51.0", optional = false }
arrow-array = "51.0"
arrow-data = "51.0"
arrow-ipc = "51.0"
arrow-ord = "51.0"
arrow-schema = "51.0"
arrow-arith = "51.0"
arrow-cast = "51.0"
async-trait = "0"
chrono = "0.4.35"
datafusion-physical-plan = "40.0"
datafusion-physical-plan = "37.1"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
object_store = "0.10.1"
object_store = "0.9.0"
pin-project = "1.0.7"
snafu = "0.7.4"
url = "2"

View File

@@ -7,8 +7,8 @@
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
</p>
@@ -44,24 +44,26 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
**Javascript**
```shell
npm install @lancedb/lancedb
npm install vectordb
```
```javascript
import * as lancedb from "@lancedb/lancedb";
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
const table = await db.createTable({
name: 'vectors',
data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
```
**Python**

View File

@@ -18,4 +18,4 @@ docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build_vectordb.sh $ARCH
bash ci/manylinux_node/build.sh $ARCH

View File

@@ -4,9 +4,9 @@ ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
pushd ci/manylinux_nodejs
docker build \
-t lancedb-node-manylinux-$ARCH \
-t lancedb-nodejs-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
@@ -17,5 +17,5 @@ popd
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux-$ARCH \
bash ci/manylinux_node/build_lancedb.sh $ARCH
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH

View File

@@ -4,7 +4,7 @@
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux_2_28_${ARCH}
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
@@ -18,8 +18,8 @@ COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user, but only if it doesn't exist
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.

View File

@@ -6,7 +6,7 @@
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1v \
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git

View File

@@ -8,7 +8,7 @@ install_node() {
source "$HOME"/.bashrc
nvm install --no-progress 18
nvm install --no-progress 16
}
install_rust() {

View File

@@ -0,0 +1,31 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

View File

@@ -0,0 +1,26 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -100,21 +100,17 @@ nav:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Sync -> Async Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
@@ -141,15 +137,12 @@ nav:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
@@ -161,7 +154,7 @@ nav:
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md
- 👾 JavaScript (lancedb): javascript/modules.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
@@ -189,21 +182,17 @@ nav:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Sync -> Async Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
@@ -224,29 +213,19 @@ nav:
- PromptTools: integrations/prompttools.md
- Examples:
- examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API reference:
- Overview: api_reference.md
- Python: python/python.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/globals.md
- Javascript (lancedb): js/modules.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md

View File

@@ -187,14 +187,6 @@ paths:
type: integer
description: |
The refine factor to use for search. Optional.
default: null
fast_search:
type: boolean
description: |
Whether to use fast search. Optional.
default: false
required:
- vector
responses:
"200":

View File

@@ -38,27 +38,13 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "TypeScript"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
```
=== "vectordb (deprecated)"
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
```
--8<-- "docs/src/ann_indexes.ts:ingest"
```
=== "Rust"
@@ -105,27 +91,27 @@ You can specify the GPU device to train IVF partitions via
=== "Linux"
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
=== "MacOS"
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
Troubleshooting:
@@ -164,19 +150,11 @@ There are a couple of parameters that can be used to fine-tune the search:
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "TypeScript"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search1"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
=== "Rust"
@@ -194,23 +172,15 @@ You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "TypeScript"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search2"
```
=== "vectordb (deprecated)"
```javascript
--8<-- "docs/src/ann_indexes.ts:search2"
```
```javascript
--8<-- "docs/src/ann_indexes.ts:search2"
```
### Projections (select clause)
@@ -218,31 +188,23 @@ You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
```text
vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
```text
vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "TypeScript"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search3"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"
```
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"
```
## FAQ

View File

@@ -4,5 +4,5 @@ The API reference for the LanceDB client SDKs are available at the following loc
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

Before

Width:  |  Height:  |  Size: 2.3 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.7 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>

Before

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -16,60 +16,11 @@
pip install lancedb
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
=== "Typescript"
```shell
npm install @lancedb/lancedb
```
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "vectordb (deprecated)"
```shell
npm install vectordb
```
!!! note "Bundling `vectordb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
```shell
npm install vectordb
```
=== "Rust"
@@ -107,21 +58,14 @@ recommend switching to stable releases.
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
```
=== "Typescript[^1]"
=== "Typescript"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb@preview
```
=== "vectordb (deprecated)"
```shell
npm install vectordb@preview
```
```shell
npm install vectordb@preview
```
=== "Rust"
We don't push preview releases to crates.io, but you can referent the tag
in GitHub within your Cargo dependencies:
@@ -149,22 +93,23 @@ recommend switching to stable releases.
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript[^1]"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "docs/src/basic_legacy.ts:import"
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "docs/src/basic_legacy.ts:open_db"
```
--8<-- "nodejs/examples/basic.ts:connect"
```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:open_db"
```
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust"
@@ -207,23 +152,15 @@ table.
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript[^1]"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
```typescript
--8<-- "nodejs/examples/basic.ts:create_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode:"overwrite"`
to the `createTable` function.
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Rust"
@@ -263,19 +200,11 @@ similar to a `CREATE TABLE` statement in SQL.
!!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
=== "Typescript[^1]"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust"
@@ -294,19 +223,11 @@ Once created, you can open a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:open_table"
```
=== "vectordb (deprecated)"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Typescript"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
@@ -323,18 +244,11 @@ If you forget the name of your table, you can always get a listing of all table
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
=== "Javascript"
```typescript
--8<-- "nodejs/examples/basic.ts:table_names"
```
=== "vectordb (deprecated)"
```typescript
console.log(await db.tableNames());
```
```javascript
console.log(await db.tableNames());
```
=== "Rust"
@@ -353,18 +267,11 @@ After a table has been created, you can always add more data to it as follows:
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.ts:add_data"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
```
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
```
=== "Rust"
@@ -385,18 +292,11 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
This returns a pandas DataFrame with the results.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.ts:vector_search"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
```
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
```
=== "Rust"
@@ -425,18 +325,11 @@ LanceDB allows you to create an ANN index on a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.ts:create_index"
```
=== "vectordb (deprecated)"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust"
@@ -464,19 +357,11 @@ This can delete any number of rows that match the filter.
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript[^1]"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:delete_rows"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust"
@@ -493,15 +378,9 @@ simple or complex as needed. To see what expressions are supported, see the
Read more: [lancedb.table.Table.delete][]
=== "Typescript[^1]"
=== "Javascript"
=== "@lancedb/lancedb"
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
=== "vectordb (deprecated)"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
=== "Rust"
@@ -513,31 +392,23 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "Typescript[^1]"
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
```typescript
--8<-- "nodejs/examples/basic.ts:drop_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
=== "Rust"
@@ -545,6 +416,19 @@ Use the `drop_table()` method on the database to remove a table.
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack"
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
## Using the Embedding API
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
@@ -556,22 +440,6 @@ You can use the embedding API when working with embedding models. It automatical
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
@@ -580,5 +448,3 @@ Learn about using the existing integrations and creating custom embedding functi
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,14 +1,6 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import {
Schema,
Field,
Float32,
FixedSizeList,
Int32,
Float16,
} from "apache-arrow";
import * as arrow from "apache-arrow";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
@@ -28,33 +20,9 @@ const example = async () => {
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite },
{ writeMode: lancedb.WriteMode.Overwrite }
);
// --8<-- [end:create_table]
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable({
name: "myTableWithSchema",
data,
schema,
});
// --8<-- [end:create_table_with_schema]
}
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
@@ -74,35 +42,33 @@ const example = async () => {
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
const schema = new Schema([
new Field("id", new Int32()),
new Field("name", new Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
{
// --8<-- [start:create_f16_table]
const dim = 16;
const total = 10;
const schema = new Schema([
new Field("id", new Int32()),
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
vector: Array.from(Array(dim), Math.random)
})),
{ schema },
);
const table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
}
{ f16_schema }
)
const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table]
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();

View File

@@ -15,226 +15,198 @@ There is another optional layer of abstraction available: `TextEmbeddingFunction
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
=== "Python"
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
=== "Python"
```python
from lancedb.pydantic import LanceModel, Vector
```python
from lancedb.pydantic import LanceModel, Vector
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
tbl = db.create_table("table", schema=TextModelSchema)
tbl = db.create_table("table", schema=TextModelSchema)
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
NOTE:
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
```
!!! note
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
=== "Python"
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
=== "TypeScript"
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```

View File

@@ -17,7 +17,6 @@ Allows you to set parameters when registering a `sentence-transformers` object.
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
??? "Check out available sentence-transformer models here!"
@@ -390,7 +389,6 @@ Supported parameters (to be passed in `create` method) are:
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types:
| Input Type | Description |
|-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector|
@@ -429,45 +427,6 @@ Usage Example:
tbl.add(data)
```
### Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
@@ -518,82 +477,6 @@ tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
# IBM watsonx.ai Embeddings
Generate text embeddings using IBM's watsonx.ai platform.
## Supported Models
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
- `ibm/slate-125m-english-rtrvr`
- `ibm/slate-30m-english-rtrvr`
- `sentence-transformers/all-minilm-l12-v2`
- `intfloat/multilingual-e5-large`
## Parameters
The following parameters can be passed to the `create` method:
| Parameter | Type | Default Value | Description |
|------------|----------|----------------------------------|-----------------------------------------------------------|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
| url | str | None | Optional custom URL for the watsonx.ai instance |
| params | dict | None | Optional additional parameters for the embedding model |
## Usage Example
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
```
pip install ibm-watsonx-ai
```
Optionally set environment variables (if not passing credentials to `create` directly):
```sh
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
```
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
watsonx_embed = EmbeddingFunctionRegistry
.get_instance()
.get("watsonx")
.create(
name="ibm/slate-125m-english-rtrvr",
# Uncomment and set these if not using environment variables
# api_key="your_api_key_here",
# project_id="your_project_id_here",
# url="your_watsonx_url_here",
# params={...},
)
class TextModel(LanceModel):
text: str = watsonx_embed.SourceField()
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"},
]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
tbl.add(data)
rs = tbl.search("hello").limit(1).to_pandas()
print(rs)
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.
@@ -641,7 +524,7 @@ uris = [
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
)
```
Now we can search using text from both the default vector column and the custom vector column
@@ -747,54 +630,3 @@ print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
### Jina Embeddings
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -6,8 +6,8 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings.
@@ -16,7 +16,7 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
=== "Python"
In the LanceDB python SDK, we define a global embedding function registry with
many different embedding models and even more coming soon.
many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example.
```python
@@ -26,35 +26,20 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "TypeScript"
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
import * as lancedb from '@lancedb/lancedb'
import { getRegistry } from '@lancedb/lancedb/embeddings'
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const func = getRegistry().get("openai").create({apiKey})
```
=== "Rust"
In the Rust SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
```toml
// Make sure to include the `openai` feature
[dependencies]
lancedb = {version = "*", features = ["openai"]}
```
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## 2. Define the data model or schema
@@ -70,14 +55,14 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "TypeScript"
=== "JavaScript"
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
## 3. Create table and add data
Now that we have chosen/defined our embedding function and the schema,
Now that we have chosen/defined our embedding function and the schema,
we can create the table and ingest data without needing to explicitly generate
the embeddings at all:
@@ -89,26 +74,17 @@ the embeddings at all:
table.add([{"image_uri": u} for u in uris])
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
```ts
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
```
=== "vectordb (deprecated)"
```ts
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
const table = await db.createTable("vectors", data, embedding)
```
## 4. Querying your table
Not only can you forget about the embeddings during ingestion, you also don't
@@ -121,8 +97,8 @@ need to worry about it when you query the table:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
.limit(10)
.to_pandas()
)
```
@@ -133,32 +109,22 @@ need to worry about it when you query the table:
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
const results = await table.search("What's the best pizza topping?")
.limit(10)
.toArray()
```
=== "vectordb (deprecated)
```ts
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
---

View File

@@ -1,13 +1,13 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 3 methods of working with embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. You can define your own [custom embedding function](./custom_embedding_function.md)
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
For python users, there is also a legacy [with_embeddings API](./legacy.md).
@@ -18,89 +18,62 @@ It is retained for compatibility and will be removed in a future version.
To get started with embeddings, you can use the built-in embedding functions.
### OpenAI Embedding function
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<--- "rust/lancedb/examples/openai.rs:imports"
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
Coming Soon!
=== "Rust"
Coming Soon!
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Jina Embeddings
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
`jina-clip-v1` can handle both text and images and other models only support `text`.
@@ -131,4 +104,4 @@ table.add(
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
```

View File

@@ -10,7 +10,7 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
## Applications powered by LanceDB
| Project Name | Description |
| --- | --- |
| **Ultralytics Explorer 🚀**<br>[![Ultralytics](https://img.shields.io/badge/Ultralytics-Docs-green?labelColor=0f3bc4&style=flat-square&logo=https://cdn.prod.website-files.com/646dd1f1a3703e451ba81ecc/64994922cf2a6385a4bf4489_UltralyticsYOLO_mark_blue.svg&link=https://docs.ultralytics.com/datasets/explorer/)](https://docs.ultralytics.com/datasets/explorer/)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
| **Website Chatbot🤖**<br>[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&amp;env=OPENAI_API_KEY&amp;envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&amp;project-name=lancedb-vercel-chatbot&amp;repository-name=lancedb-vercel-chatbot&amp;demo-title=LanceDB%20Chatbot%20Demo&amp;demo-description=Demo%20website%20chatbot%20with%20LanceDB.&amp;demo-url=https%3A%2F%2Flancedb.vercel.app&amp;demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -1,13 +0,0 @@
# Build from Scratch with LanceDB 🚀
Start building your GenAI applications from the ground up using LanceDB's efficient vector-based document retrieval capabilities! 📄
#### Get Started in Minutes ⏱️
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to proof of concept quickly with applied examples. Get started and see what you can create! 💻
| **Build From Scratch** | **Description** | **Links** |
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)]() |
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |

View File

@@ -1,28 +0,0 @@
# Multimodal Search with LanceDB 🔍💡
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus and unlock new possibilities! 🔓💡
#### Explore the Future of Search 🚀
Unlock the power of multimodal search with LanceDB, enabling efficient vector-based retrieval of text and image data! 📊💻
| **Multimodal** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Revolutionize search with Multimodal CLIP and DiffusionDB, combining text and image understanding for a new dimension of discovery! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search Youtube videos using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Discover relevant documents and images with a single query, using LanceDB's multimodal search capabilities to bridge the gap between text and visuals! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Dive into vision-centric exploration of images with Cambrian-1, powered by LanceDB's multimodal search to uncover new insights! 🔎 | [![GitHub](../../assets/github.svg)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br>[![Open In Collab](../../assets/colab.svg)]() <br> [![Python](../../assets/python.svg)]() <br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
[Clip_diffusionDB_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.ipynb
[Clip_diffusionDB_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.py
[Clip_diffusionDB_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
[Clip_youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search
[Clip_youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb
[Clip_youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.py
[Clip_youtube_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/

View File

@@ -1,85 +0,0 @@
**🔍💡 RAG: Revolutionize Information Retrieval with LanceDB 🔓**
====================================================================
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, the ultimate solution for efficient vector-based information retrieval 📊. Input text queries and retrieve relevant documents with lightning-fast speed ⚡️ and accuracy ✅. Generate comprehensive answers by combining retrieved information, uncovering new insights 🔍 and connections.
### Experience the Future of Search 🔄
Experience the future of search with RAG, transforming information retrieval and answer generation. Apply RAG to various industries, streamlining processes 📈, saving time ⏰, and resources 💰. Stay ahead of the curve with innovative technology 🔝, powered by LanceDB. Discover the power of RAG with LanceDB and transform your industry with innovative solutions 💡.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| **RAG with Matryoshka Embeddings and LlamaIndex** 🪆🔗 | Utilize **Matryoshka embeddings** and **LlamaIndex** to improve the efficiency and accuracy of your RAG models. 📈✨ | [![Github](../../assets/github.svg)][matryoshka_github] <br>[![Open In Collab](../../assets/colab.svg)][matryoshka_colab] |
| **Improve RAG with Re-ranking** 📈🔄 | Enhance your RAG applications by implementing **re-ranking strategies** for more relevant document retrieval. 📚🔍 | [![Github](../../assets/github.svg)][rag_reranking_github] <br>[![Open In Collab](../../assets/colab.svg)][rag_reranking_colab] <br>[![Ghost](../../assets/ghost.svg)][rag_reranking_ghost] |
| **Instruct-Multitask** 🧠🎯 | Integrate the **Instruct Embedding Model** with LanceDB to streamline your embedding API, reducing redundant code and overhead. 🌐📊 | [![Github](../../assets/github.svg)][instruct_multitask_github] <br>[![Open In Collab](../../assets/colab.svg)][instruct_multitask_colab] <br>[![Python](../../assets/python.svg)][instruct_multitask_python] <br>[![Ghost](../../assets/ghost.svg)][instruct_multitask_ghost] |
| **Improve RAG with HyDE** 🌌🔍 | Use **Hypothetical Document Embeddings** for efficient, accurate, and unsupervised dense retrieval. 📄🔍 | [![Github](../../assets/github.svg)][hyde_github] <br>[![Open In Collab](../../assets/colab.svg)][hyde_colab]<br>[![Ghost](../../assets/ghost.svg)][hyde_ghost] |
| **Improve RAG with LOTR** 🧙‍♂️📜 | Enhance RAG with **Lord of the Retriever (LOTR)** to address 'Lost in the Middle' challenges, especially in medical data. 🌟📜 | [![Github](../../assets/github.svg)][lotr_github] <br>[![Open In Collab](../../assets/colab.svg)][lotr_colab] <br>[![Ghost](../../assets/ghost.svg)][lotr_ghost] |
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [![Github](../../assets/github.svg)][parent_doc_retriever_github] <br>[![Open In Collab](../../assets/colab.svg)][parent_doc_retriever_colab] <br>[![Ghost](../../assets/ghost.svg)][parent_doc_retriever_ghost] |
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[![Github](../../assets/github.svg)][corrective_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][corrective_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][corrective_rag_ghost] |
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [![Github](../../assets/github.svg)][compression_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][compression_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][compression_rag_ghost] |
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to academic papers, focusing on ArXiv papers, with Forward-Looking Active REtrieval augmented generation.🚀🌟 | [![Github](../../assets/github.svg)][flare_github] <br>[![Open In Collab](../../assets/colab.svg)][flare_colab] <br>[![Ghost](../../assets/ghost.svg)][flare_ghost] |
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like Cross Encoders, ColBERT v2, and FlashRank for improved document retrieval precision and recall 🔍📈 | [![Github](../../assets/github.svg)][query_github] <br>[![Open In Collab](../../assets/colab.svg)][query_colab] |
| **RAG Fusion** ⚡🌐 | Revolutionize search with RAG Fusion, utilizing the **RRF algorithm** to rerank documents based on user queries, and leveraging LanceDB and OPENAI Embeddings for efficient information retrieval ⚡🌐 | [![Github](../../assets/github.svg)][fusion_github] <br>[![Open In Collab](../../assets/colab.svg)][fusion_colab] |
| **Agentic RAG** 🤖📚 | Unlock autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, enabling proactive and informed decision-making 🤖📚 | [![Github](../../assets/github.svg)][agentic_github] <br>[![Open In Collab](../../assets/colab.svg)][agentic_colab] |
[matryoshka_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex
[matryoshka_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex/RAG_with_MatryoshkaEmbedding_and_Llamaindex.ipynb
[rag_reranking_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking
[rag_reranking_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking/main.ipynb
[rag_reranking_ghost]: https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544
[instruct_multitask_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask
[instruct_multitask_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.ipynb
[instruct_multitask_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.py
[instruct_multitask_ghost]: https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543
[hyde_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE
[hyde_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb
[hyde_ghost]: https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb
[lotr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR
[lotr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR/main.ipynb
[lotr_ghost]: https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35
[parent_doc_retriever_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever
[parent_doc_retriever_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever/main.ipynb
[parent_doc_retriever_ghost]: https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6
[corrective_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph
[corrective_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb
[corrective_rag_ghost]: https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
[compression_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG
[compression_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb
[compression_rag_ghost]: https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/
[flare_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb

View File

@@ -32,54 +32,28 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
db = lancedb.connect("az://bucket/path")
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
AWS S3:
AWS S3:
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
Google Cloud Storage:
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
Azure Blob Storage:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("az://bucket/path");
```
=== "vectordb (deprecated)"
AWS S3:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path");
```
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path");
```
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`:
@@ -104,26 +78,13 @@ If you only want this to apply to one particular connection, you can pass the `s
)
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path",
{storageOptions: {timeout: "60s"}});
```
Getting even more specific, you can set the `timeout` for only a particular table:
@@ -140,33 +101,18 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
)
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
<!-- skip-test -->
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
=== "vectordb (deprecated)"
<!-- skip-test -->
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
<!-- skip-test -->
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
!!! info "Storage option casing"
@@ -189,6 +135,7 @@ There are several options that can be set for all object stores, mostly related
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS.
@@ -208,39 +155,21 @@ These can be set as environment variables or passed in the `storage_options` par
)
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
}
);
```
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
@@ -259,6 +188,7 @@ The following keys can be used as both environment variables or keys in the `sto
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
!!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
@@ -454,37 +384,20 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
)
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
}
);
```
This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables.
@@ -515,37 +428,21 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
)
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
);
```
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
### Google Cloud Storage
@@ -564,40 +461,26 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
)
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
);
```
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
!!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
The following keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
@@ -607,6 +490,7 @@ The following keys can be used as both environment variables or keys in the `sto
| ``google_service_account_key`` | The serialized service account key. |
| ``google_application_credentials`` | Path to the application credentials. |
### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter:
@@ -625,37 +509,20 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
)
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
}
);
```
These keys can be used as both environment variables or keys in the `storage_options` parameter:
@@ -680,4 +547,4 @@ These keys can be used as both environment variables or keys in the `storage_opt
| ``azure_use_azure_cli`` | Use azure cli for acquiring access token. |
| ``azure_disable_tagging`` | Disables tagging objects. This can be desirable if not supported by the backing store. |
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->

View File

@@ -3,46 +3,32 @@
A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time.
This guide will show how to create tables, insert data into them, and update the data.
This guide will show how to create tables, insert data into them, and update the data.
## Creating a LanceDB Table
Initialize a LanceDB connection and create a table
=== "Python"
Initialize a LanceDB connection and create a table using one of the many methods listed below.
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
=== "Javascript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
=== "vectordb (deprecated)"
```typescript
const lancedb = require("vectordb");
const arrow = require("apache-arrow");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
### From list of tuples or dictionaries
=== "Python"
@@ -59,121 +45,74 @@ Initialize a LanceDB connection and create a table
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
If the table already exists, LanceDB will raise an error by default.
`create_table` supports an optional `exist_ok` parameter. When set to True
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```python
db.create_table("name", data, exist_ok=True)
```python
db.create_table("name", data, exist_ok=True)
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
### From a Pandas DataFrame
```python
db.create_table("name", data, mode="overwrite")
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("my_table", data)
db["my_table"].head()
```
=== "Typescript[^1]"
You can create a LanceDB table in JavaScript using an array of records as follows.
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/basic.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
```
!!! info "Note"
`createTable` supports an optional `existsOk` parameter. When set to true
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/basic_legacy.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use apache-arrow to declare a schema
```ts
--8<-- "docs/src/basic_legacy.ts:create_table_with_schema"
```
!!! warning
`existsOk` is not available in `vectordb`
If the table already exists, vectordb will raise an error by default.
You can use `writeMode: WriteMode.Overwrite` to overwrite the table.
But this will delete the existing table and create a new one with the same name.
Sometimes you want to make sure that you start fresh.
If you want to overwrite the table, you can pass in `writeMode: lancedb.WriteMode.Overwrite` to the createTable function.
```ts
const table = await con.createTable(tableName, data, {
writeMode: WriteMode.Overwrite
})
```
### From a Pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
table = db.create_table("my_table", data, schema=custom_schema)
```
table = db.create_table("my_table", data, schema=custom_schema)
```
### From a Polars DataFrame
@@ -194,15 +133,14 @@ table = db.create_table("pl_table", data=data)
```
### From an Arrow Table
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python
import pyarrows as pa
import numpy as np
dim = 16
total = 2
schema = pa.schema(
@@ -222,19 +160,13 @@ LanceDB supports float16 data type!
tbl = db.create_table("f16_tbl", data, schema=schema)
```
=== "Typescript[^1]"
=== "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_f16_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
```javascript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
### From Pydantic Models
@@ -293,7 +225,7 @@ class NestedSchema(LanceModel):
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
This creates a struct column called "document" that has two subfields
This creates a struct column called "document" that has two subfields
called "content" and "source":
```
@@ -304,7 +236,7 @@ vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
child 1, source: string not null
```
#### Validators
@@ -329,7 +261,7 @@ class TestModel(LanceModel):
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
return dt
ok = TestModel(dt_with_tz=datetime.now(tz))
@@ -397,24 +329,23 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
tbl = db.open_table("my_table")
```
=== "Typescript[^1]"
=== "JavaScript"
If you forget the name of your table, you can always get a listing of all table names.
```typescript
```javascript
console.log(await db.tableNames());
```
Then, you can open any existing tables.
```typescript
```javascript
const tbl = await db.openTable("my_table");
```
## Creating empty table
You can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
=== "Python"
In Python, you can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
```python
@@ -433,8 +364,8 @@ You can create an empty table for scenarios where you want to add data to the ta
tbl = db.create_table("empty_table_add", schema=schema)
```
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
that has been extended to support LanceDB specific types like `Vector`.
```python
@@ -451,23 +382,9 @@ You can create an empty table for scenarios where you want to add data to the ta
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
## Adding to a table
After a table has been created, you can always add more data to it usind the `add` method
After a table has been created, you can always add more data to it using the various methods available.
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -555,7 +472,9 @@ After a table has been created, you can always add more data to it usind the `ad
tbl.add(models)
```
=== "Typescript[^1]"
=== "JavaScript"
```javascript
await tbl.add(
@@ -611,15 +530,15 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
# 0 3 [5.0, 6.0]
```
=== "Typescript[^1]"
=== "JavaScript"
```ts
```javascript
await tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```ts
```javascript
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
@@ -633,7 +552,7 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
### Delete from a list of values
```ts
```javascript
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
@@ -690,49 +609,26 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0]
```
=== "Typescript[^1]"
=== "JavaScript/Typescript"
=== "@lancedb/lancedb"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
API Reference: [lancedb.Table.update](../js/classes/Table.md/#update)
```javascript
const lancedb = require("vectordb");
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("./.lancedb");
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
await tbl.update({vector: [10, 10]}, { where: "x = 2"})
```
=== "vectordb (deprecated)"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
```ts
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
#### Updating using a sql query
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
@@ -751,17 +647,11 @@ This can be used to update zero to all rows depending on how many rows match the
2 3 [10.0, 10.0]
```
=== "Typescript[^1]"
=== "JavaScript/Typescript"
=== "@lancedb/lancedb"
Coming Soon!
=== "vectordb (deprecated)"
```ts
await tbl.update({ valuesSql: { x: "x + 1" } })
```
```javascript
await tbl.update({ valuesSql: { x: "x + 1" } })
```
!!! info "Note"
@@ -782,7 +672,7 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "TypeScript"
=== "Javascript/Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
@@ -807,7 +697,7 @@ There are three possible settings for `read_consistency_interval`:
This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent.
=== "Python"
To set strong consistency, use `timedelta(0)`:
```python
@@ -829,35 +719,33 @@ There are three possible settings for `read_consistency_interval`:
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
# (Other writes happen to my_table from another process)
# Check for updates
table.checkout_latest()
```
=== "Typescript[^1]"
=== "JavaScript/Typescript"
To set strong consistency, use `0`:
```ts
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```ts
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
Once it does, we can show manual consistency check for Node as well.
-->
## What's next?
Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
Learn the best practices on creating an ANN index and getting the most out of it.

View File

@@ -1,7 +1,4 @@
## Improving retriever performance
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:

View File

@@ -1,6 +1,4 @@
Continuing from the previous section, we can now rerank the results using more complex rerankers.
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Continuing from the previous example, we can now rerank the results using more complex rerankers.
## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows:

View File

@@ -1,82 +0,0 @@
## Finetuning the Embedding Model
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
We'll use the same dataset as in the previous sections. Start off by splitting the dataset into training and validation sets:
```python
from sklearn.model_selection import train_test_split
train_df, validation_df = train_test_split("data_qa.csv", test_size=0.2, random_state=42)
train_df.to_csv("data_train.csv", index=False)
validation_df.to_csv("data_val.csv", index=False)
```
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
from llama_index.finetuning import generate_qa_embedding_pairs
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
def load_corpus(file):
loader = PagedCSVReader(encoding="utf-8")
docs = loader.load_data(file=Path(file))
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(docs)
return nodes
from llama_index.llms.openai import OpenAI
train_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes, verbose=False
)
val_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes, verbose=False
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en-v1.5",
model_output_path="tuned_model",
val_dataset=val_dataset,
)
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder. This al
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
On performing the same hit-rate evaluation as before, we see a significant improvement in the hit-rate across all query types.
### Baseline
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.677 |
| Reranked Full-text Search | 0.672 |
| Hybrid Search (w/ CohereReranker) | 0.759|
### Fine-tuned model ( 2 iterations )
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.672 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.754 |
| Reranked Full-text Search | 0.672|
| Hybrid Search (w/ CohereReranker) | 0.768 |

View File

@@ -1,6 +1,4 @@
**@lancedb/lancedb** • [**Docs**](globals.md)
***
@lancedb/lancedb / [Exports](modules.md)
# LanceDB JavaScript SDK
@@ -47,20 +45,29 @@ npm run test
### Running lint / format
LanceDb uses [biome](https://biomejs.dev/) for linting and formatting. if you are using VSCode you will need to install the official [Biome](https://marketplace.visualstudio.com/items?itemName=biomejs.biome) extension.
To manually lint your code you can run:
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
set to true. Also, if your vscode root folder is the repo root then you will need to set
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
```sh
npm run lint
```
to automatically fix all fixable issues:
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
for typescript and you should enable format on save. To manually check your code's format you
can run:
```sh
npm run lint-fix
npm run chkformat
```
If you do not have your workspace root set to the `nodejs` directory, unfortunately the extension will not work. You can still run the linting and formatting commands manually.
If you need to manually format your code you can run:
```sh
npx prettier --write .
```
### Generating docs

View File

@@ -1,10 +1,6 @@
[**@lancedb/lancedb**](../README.md) **Docs**
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection
***
[@lancedb/lancedb](../globals.md) / Connection
# Class: `abstract` Connection
# Class: Connection
A LanceDB Connection that allows you to open tables and create new ones.
@@ -23,21 +19,62 @@ be closed when they are garbage collected.
Any created tables are independent and will continue to work even if
the underlying connection has been closed.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [inner](Connection.md#inner)
### Methods
- [close](Connection.md#close)
- [createEmptyTable](Connection.md#createemptytable)
- [createTable](Connection.md#createtable)
- [display](Connection.md#display)
- [dropTable](Connection.md#droptable)
- [isOpen](Connection.md#isopen)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### new Connection()
### constructor
> **new Connection**(): [`Connection`](Connection.md)
**new Connection**(`inner`): [`Connection`](Connection.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Connection` |
#### Returns
[`Connection`](Connection.md)
#### Defined in
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
## Properties
### inner
`Readonly` **inner**: `Connection`
#### Defined in
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
## Methods
### close()
### close
> `abstract` **close**(): `void`
**close**(): `void`
Close the connection, releasing any underlying resources.
@@ -49,78 +86,63 @@ Any attempt to use the connection after it is closed will result in an error.
`void`
***
#### Defined in
### createEmptyTable()
[connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88)
> `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
___
### createEmptyTable
**createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new empty Table
#### Parameters
**name**: `string`
The name of the table.
**schema**: `SchemaLike`
The schema of the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `schema` | `Schema`\<`any`\> | The schema of the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`&lt;[`Table`](Table.md)&gt;
`Promise`\<[`Table`](Table.md)\>
***
#### Defined in
### createTable()
[connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151)
#### createTable(options)
___
> `abstract` **createTable**(`options`): `Promise`&lt;[`Table`](Table.md)&gt;
### createTable
**createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new Table and initialize it with new data.
##### Parameters
#### Parameters
**options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
The options object.
#### Returns
##### Returns
`Promise`\<[`Table`](Table.md)\>
`Promise`&lt;[`Table`](Table.md)&gt;
#### Defined in
#### createTable(name, data, options)
[connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123)
> `abstract` **createTable**(`name`, `data`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
___
Creates a new Table and initialize it with new data.
### display
##### Parameters
**name**: `string`
The name of the table.
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
##### Returns
`Promise`&lt;[`Table`](Table.md)&gt;
***
### display()
> `abstract` **display**(): `string`
**display**(): `string`
Return a brief description of the connection
@@ -128,29 +150,37 @@ Return a brief description of the connection
`string`
***
#### Defined in
### dropTable()
[connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93)
> `abstract` **dropTable**(`name`): `Promise`&lt;`void`&gt;
___
### dropTable
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table.
#### Parameters
**name**: `string`
The name of the table to drop.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
***
#### Defined in
### isOpen()
[connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173)
> `abstract` **isOpen**(): `boolean`
___
### isOpen
**isOpen**(): `boolean`
Return true if the connection has not been closed
@@ -158,31 +188,37 @@ Return true if the connection has not been closed
`boolean`
***
#### Defined in
### openTable()
[connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77)
> `abstract` **openTable**(`name`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
___
### openTable
**openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
Open a table in the database.
#### Parameters
**name**: `string`
The name of the table
**options?**: `Partial`&lt;`OpenTableOptions`&gt;
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table |
#### Returns
`Promise`&lt;[`Table`](Table.md)&gt;
`Promise`\<[`Table`](Table.md)\>
***
#### Defined in
### tableNames()
[connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112)
> `abstract` **tableNames**(`options`?): `Promise`&lt;`string`[]&gt;
___
### tableNames
**tableNames**(`options?`): `Promise`\<`string`[]\>
List all the table names in this database.
@@ -190,11 +226,14 @@ Tables will be returned in lexicographical order.
#### Parameters
**options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt;
options to control the
paging / start point
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point |
#### Returns
`Promise`&lt;`string`[]&gt;
`Promise`\<`string`[]\>
#### Defined in
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)

View File

@@ -1,16 +1,57 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / Index
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index
# Class: Index
## Table of contents
### Constructors
- [constructor](Index.md#constructor)
### Properties
- [inner](Index.md#inner)
### Methods
- [btree](Index.md#btree)
- [ivfPq](Index.md#ivfpq)
## Constructors
### constructor
**new Index**(`inner`): [`Index`](Index.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Index` |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
## Properties
### inner
`Private` `Readonly` **inner**: `Index`
#### Defined in
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
## Methods
### btree()
### btree
> `static` **btree**(): [`Index`](Index.md)
**btree**(): [`Index`](Index.md)
Create a btree index
@@ -34,11 +75,15 @@ block size may be added in the future.
[`Index`](Index.md)
***
#### Defined in
### ivfPq()
[indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175)
> `static` **ivfPq**(`options`?): [`Index`](Index.md)
___
### ivfPq
**ivfPq**(`options?`): [`Index`](Index.md)
Create an IvfPq index
@@ -63,8 +108,14 @@ currently is also a memory intensive operation.
#### Parameters
**options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt;
| Name | Type |
| :------ | :------ |
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)

View File

@@ -1,32 +1,46 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / MakeArrowTableOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions
Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors
### new MakeArrowTableOptions()
### constructor
> **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
**new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Parameters
**values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt;
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Returns
[`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Defined in
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
## Properties
### dictionaryEncodeStrings
> **dictionaryEncodeStrings**: `boolean` = `false`
**dictionaryEncodeStrings**: `boolean` = `false`
If true then string columns will be encoded with dictionary encoding
@@ -36,26 +50,26 @@ data type for individual columns.
If `schema` is provided then this property is ignored.
***
#### Defined in
### embeddingFunction?
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98)
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
___
***
### schema
### embeddings?
`Optional` **schema**: `Schema`\<`any`\>
> `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
#### Defined in
***
[arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67)
### schema?
> `optional` **schema**: `SchemaLike`
***
___
### vectorColumns
> **vectorColumns**: `Record`&lt;`string`, [`VectorColumnOptions`](VectorColumnOptions.md)&gt;
**vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\>
#### Defined in
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)

View File

@@ -1,26 +1,48 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / Query
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query
# Class: Query
A builder for LanceDB queries.
## Extends
## Hierarchy
- [`QueryBase`](QueryBase.md)&lt;`NativeQuery`&gt;
- [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\>
**`Query`**
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [inner](Query.md#inner)
### Methods
- [[asyncIterator]](Query.md#[asynciterator])
- [execute](Query.md#execute)
- [limit](Query.md#limit)
- [nativeExecute](Query.md#nativeexecute)
- [nearestTo](Query.md#nearestto)
- [select](Query.md#select)
- [toArray](Query.md#toarray)
- [toArrow](Query.md#toarrow)
- [where](Query.md#where)
## Constructors
### new Query()
### constructor
> **new Query**(`tbl`): [`Query`](Query.md)
**new Query**(`tbl`): [`Query`](Query.md)
#### Parameters
**tbl**: `Table`
| Name | Type |
| :------ | :------ |
| `tbl` | `Table` |
#### Returns
@@ -28,67 +50,57 @@ A builder for LanceDB queries.
#### Overrides
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
## Properties
### inner
> `protected` **inner**: `Query` \| `Promise`&lt;`Query`&gt;
`Protected` **inner**: `Query`
#### Inherited from
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### \[asyncIterator\]()
### [asyncIterator]
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
***
#### Defined in
### doCall()
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
> `protected` **doCall**(`fn`): `void`
___
#### Parameters
### execute
**fn**
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### See
**`See`**
- AsyncIterator
of
@@ -102,76 +114,17 @@ single query)
#### Inherited from
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
***
#### Defined in
### explainPlan()
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
___
Generates an explanation of the query execution plan.
### limit
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
***
### limit()
> **limit**(`limit`): `this`
**limit**(`limit`): [`Query`](Query.md)
Set the maximum number of results to return.
@@ -180,39 +133,45 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
`this`
[`Query`](Query.md)
#### Inherited from
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
***
#### Defined in
### nativeExecute()
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
___
#### Parameters
### nativeExecute
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`&lt;`RecordBatchIterator`&gt;
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
***
#### Defined in
### nearestTo()
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
> **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
___
### nearestTo
**nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
Find the nearest vectors to the given query vector.
@@ -232,13 +191,15 @@ If there is more than one vector column you must use
#### Parameters
**vector**: `IntoVector`
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### See
**`See`**
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
to compare with.
@@ -262,11 +223,15 @@ Vector searches always have a `limit`. If `limit` has not been called then
a default `limit` of 10 will be used.
- [Query#limit](Query.md#limit)
***
#### Defined in
### select()
[query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370)
> **select**(`columns`): `this`
___
### select
**select**(`columns`): [`Query`](Query.md)
Return only the specified columns.
@@ -290,13 +255,15 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
`this`
[`Query`](Query.md)
#### Example
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
@@ -311,57 +278,61 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
***
#### Defined in
### toArray()
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`any`[]&gt;
`Promise`\<`unknown`[]\>
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
***
#### Defined in
### toArrow()
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt;
`Promise`\<`Table`\<`any`\>\>
#### See
**`See`**
ArrowTable.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
***
#### Defined in
### where()
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
> **where**(`predicate`): `this`
___
### where
**where**(`predicate`): [`Query`](Query.md)
A filter statement to be applied to this query.
@@ -369,13 +340,15 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`this`
[`Query`](Query.md)
#### Example
**`Example`**
```ts
x > 10
@@ -388,4 +361,8 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,91 +1,117 @@
[**@lancedb/lancedb**](../README.md) **Docs**
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase
***
[@lancedb/lancedb](../globals.md) / QueryBase
# Class: QueryBase&lt;NativeQueryType&gt;
# Class: QueryBase\<NativeQueryType, QueryType\>
Common methods supported by all query types
## Extended by
## Type parameters
- [`Query`](Query.md)
- [`VectorQuery`](VectorQuery.md)
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
| `QueryType` | `QueryType` |
## Type Parameters
## Hierarchy
**NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery`
- **`QueryBase`**
↳ [`Query`](Query.md)
↳ [`VectorQuery`](VectorQuery.md)
## Implements
- `AsyncIterable`&lt;`RecordBatch`&gt;
- `AsyncIterable`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](QueryBase.md#constructor)
### Properties
- [inner](QueryBase.md#inner)
### Methods
- [[asyncIterator]](QueryBase.md#[asynciterator])
- [execute](QueryBase.md#execute)
- [limit](QueryBase.md#limit)
- [nativeExecute](QueryBase.md#nativeexecute)
- [select](QueryBase.md#select)
- [toArray](QueryBase.md#toarray)
- [toArrow](QueryBase.md#toarrow)
- [where](QueryBase.md#where)
## Constructors
### new QueryBase()
### constructor
> `protected` **new QueryBase**&lt;`NativeQueryType`&gt;(`inner`): [`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
**new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
| `QueryType` | `QueryType` |
#### Parameters
**inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
| Name | Type |
| :------ | :------ |
| `inner` | `NativeQueryType` |
#### Returns
[`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
[`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Properties
### inner
> `protected` **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
`Protected` **inner**: `NativeQueryType`
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### \[asyncIterator\]()
### [asyncIterator]
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Implementation of
`AsyncIterable.[asyncIterator]`
AsyncIterable.[asyncIterator]
***
#### Defined in
### doCall()
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
> `protected` **doCall**(`fn`): `void`
___
#### Parameters
### execute
**fn**
#### Returns
`void`
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### See
**`See`**
- AsyncIterator
of
@@ -97,66 +123,15 @@ This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
***
#### Defined in
### explainPlan()
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
___
Generates an explanation of the query execution plan.
### limit
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
***
### limit()
> **limit**(`limit`): `this`
**limit**(`limit`): `QueryType`
Set the maximum number of results to return.
@@ -165,31 +140,37 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
`this`
`QueryType`
***
#### Defined in
### nativeExecute()
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
___
#### Parameters
### nativeExecute
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`&lt;`RecordBatchIterator`&gt;
`Promise`\<`RecordBatchIterator`\>
***
#### Defined in
### select()
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
> **select**(`columns`): `this`
___
### select
**select**(`columns`): `QueryType`
Return only the specified columns.
@@ -213,13 +194,15 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
`this`
`QueryType`
#### Example
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
@@ -232,47 +215,51 @@ uses `Object.entries` which should preserve the insertion order of the object.
object insertion order is easy to get wrong and `Map` is more foolproof.
```
***
#### Defined in
### toArray()
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`any`[]&gt;
`Promise`\<`unknown`[]\>
***
#### Defined in
### toArrow()
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt;
`Promise`\<`Table`\<`any`\>\>
#### See
**`See`**
ArrowTable.
***
#### Defined in
### where()
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
> **where**(`predicate`): `this`
___
### where
**where**(`predicate`): `QueryType`
A filter statement to be applied to this query.
@@ -280,13 +267,15 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`this`
`QueryType`
#### Example
**`Example`**
```ts
x > 10
@@ -296,3 +285,7 @@ x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,39 +1,80 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator
# Class: RecordBatchIterator
## Implements
- `AsyncIterator`&lt;`RecordBatch`&gt;
- `AsyncIterator`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](RecordBatchIterator.md#constructor)
### Properties
- [inner](RecordBatchIterator.md#inner)
- [promisedInner](RecordBatchIterator.md#promisedinner)
### Methods
- [next](RecordBatchIterator.md#next)
## Constructors
### new RecordBatchIterator()
### constructor
> **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md)
**new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Parameters
**promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
| Name | Type |
| :------ | :------ |
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
## Properties
### inner
`Private` `Optional` **inner**: `RecordBatchIterator`
#### Defined in
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
___
### promisedInner
`Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
## Methods
### next()
### next
> **next**(): `Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt;
**next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Returns
`Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt;
`Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Implementation of
`AsyncIterator.next`
AsyncIterator.next
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)

View File

@@ -1,10 +1,6 @@
[**@lancedb/lancedb**](../README.md) **Docs**
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table
***
[@lancedb/lancedb](../globals.md) / Table
# Class: `abstract` Table
# Class: Table
A Table is a collection of Records in a LanceDB Database.
@@ -17,149 +13,196 @@ further operations.
Closing a table is optional. It not closed, it will be closed when it is garbage
collected.
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [inner](Table.md#inner)
### Methods
- [add](Table.md#add)
- [addColumns](Table.md#addcolumns)
- [alterColumns](Table.md#altercolumns)
- [checkout](Table.md#checkout)
- [checkoutLatest](Table.md#checkoutlatest)
- [close](Table.md#close)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [display](Table.md#display)
- [dropColumns](Table.md#dropcolumns)
- [isOpen](Table.md#isopen)
- [listIndices](Table.md#listindices)
- [query](Table.md#query)
- [restore](Table.md#restore)
- [schema](Table.md#schema)
- [update](Table.md#update)
- [vectorSearch](Table.md#vectorsearch)
- [version](Table.md#version)
## Constructors
### new Table()
### constructor
> **new Table**(): [`Table`](Table.md)
**new Table**(`inner`): [`Table`](Table.md)
Construct a Table. Internal use only.
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Table` |
#### Returns
[`Table`](Table.md)
## Accessors
#### Defined in
### name
[table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69)
> `get` `abstract` **name**(): `string`
## Properties
Returns the name of the table
### inner
#### Returns
`Private` `Readonly` **inner**: `Table`
`string`
#### Defined in
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
## Methods
### add()
### add
> `abstract` **add**(`data`, `options`?): `Promise`&lt;`void`&gt;
**add**(`data`, `options?`): `Promise`\<`void`\>
Insert records into this Table.
#### Parameters
**data**: [`Data`](../type-aliases/Data.md)
Records to be inserted into the Table
**options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table |
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
***
#### Defined in
### addColumns()
[table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105)
> `abstract` **addColumns**(`newColumnTransforms`): `Promise`&lt;`void`&gt;
___
### addColumns
**addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values.
#### Parameters
**newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
pairs of column names and
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
| Name | Type | Description |
| :------ | :------ | :------ |
| `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
***
#### Defined in
### alterColumns()
[table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261)
> `abstract` **alterColumns**(`columnAlterations`): `Promise`&lt;`void`&gt;
___
### alterColumns
**alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns.
#### Parameters
**columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
One or more alterations to
apply to columns.
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
***
#### Defined in
### checkout()
[table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270)
> `abstract` **checkout**(`version`): `Promise`&lt;`void`&gt;
___
Checks out a specific version of the table _This is an in-place operation._
### checkout
This allows viewing previous versions of the table. If you wish to
keep writing to the dataset starting from an old version, then use
the `restore` function.
**checkout**(`version`): `Promise`\<`void`\>
Calling this method will set the table into time-travel mode. If you
wish to return to standard mode, call `checkoutLatest`.
Checks out a specific version of the Table
Any read operation on the table will now access the data at the checked out version.
As a consequence, calling this method will disable any read consistency interval
that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the change
permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
#### Parameters
**version**: `number`
The version to checkout
| Name | Type |
| :------ | :------ |
| `version` | `number` |
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
#### Example
#### Defined in
```typescript
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], type: "vector" },
]);
[table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317)
console.log(await table.version()); // 1
console.log(table.display());
await table.add([{ vector: [0.5, 0.2], type: "vector" }]);
await table.checkout(1);
console.log(await table.version()); // 2
```
___
***
### checkoutLatest
### checkoutLatest()
**checkoutLatest**(): `Promise`\<`void`\>
> `abstract` **checkoutLatest**(): `Promise`&lt;`void`&gt;
Ensures the table is pointing at the latest version
Checkout the latest version of the table. _This is an in-place operation._
The table will be set back into standard mode, and will track the latest
version of the table.
This can be used to manually update a table when the read_consistency_interval is None
It can also be used to undo a `[Self::checkout]` operation
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
***
#### Defined in
### close()
[table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327)
> `abstract` **close**(): `void`
___
### close
**close**(): `void`
Close the table, releasing any underlying resources.
@@ -171,27 +214,37 @@ Any attempt to use the table after it is closed will result in an error.
`void`
***
#### Defined in
### countRows()
[table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85)
> `abstract` **countRows**(`filter`?): `Promise`&lt;`number`&gt;
___
### countRows
**countRows**(`filter?`): `Promise`\<`number`\>
Count the total number of rows in the dataset.
#### Parameters
**filter?**: `string`
| Name | Type |
| :------ | :------ |
| `filter?` | `string` |
#### Returns
`Promise`&lt;`number`&gt;
`Promise`\<`number`\>
***
#### Defined in
### createIndex()
[table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152)
> `abstract` **createIndex**(`column`, `options`?): `Promise`&lt;`void`&gt;
___
### createIndex
**createIndex**(`column`, `options?`): `Promise`\<`void`\>
Create an index to speed up queries.
@@ -202,66 +255,73 @@ vector and non-vector searches)
#### Parameters
**column**: `string`
**options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt;
| Name | Type |
| :------ | :------ |
| `column` | `string` |
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
#### Note
We currently don't support custom named indexes,
The index name will always be `${column}_idx`
#### Examples
**`Example`**
```ts
// If the column has a vector (fixed size list) data type then
// an IvfPq vector index will be created.
const table = await conn.openTable("my_table");
await table.createIndex("vector");
await table.createIndex(["vector"]);
```
**`Example`**
```ts
// For advanced control over vector index creation you can specify
// the index type and options.
const table = await conn.openTable("my_table");
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 128,
numSubVectors: 16,
}),
});
await table.createIndex(["vector"], I)
.ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
.build();
```
**`Example`**
```ts
// Or create a Scalar index
await table.createIndex("my_float_col");
await table.createIndex("my_float_col").build();
```
***
#### Defined in
### delete()
[table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184)
> `abstract` **delete**(`predicate`): `Promise`&lt;`void`&gt;
___
### delete
**delete**(`predicate`): `Promise`\<`void`\>
Delete the rows that satisfy the predicate.
#### Parameters
**predicate**: `string`
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
***
#### Defined in
### display()
[table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157)
> `abstract` **display**(): `string`
___
### display
**display**(): `string`
Return a brief description of the table
@@ -269,11 +329,15 @@ Return a brief description of the table
`string`
***
#### Defined in
### dropColumns()
[table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90)
> `abstract` **dropColumns**(`columnNames`): `Promise`&lt;`void`&gt;
___
### dropColumns
**dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset
@@ -284,41 +348,23 @@ then call ``cleanup_files`` to remove the old files.
#### Parameters
• **columnNames**: `string`[]
The names of the columns to drop. These can
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
***
#### Defined in
### indexStats()
[table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285)
> `abstract` **indexStats**(`name`): `Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt;
___
List all the stats of a specified index
### isOpen
#### Parameters
• **name**: `string`
The name of the index.
#### Returns
`Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt;
The stats of the index. If the index does not exist, it will return undefined
***
### isOpen()
> `abstract` **isOpen**(): `boolean`
▸ **isOpen**(): `boolean`
Return true if the table has not been closed
@@ -326,79 +372,31 @@ Return true if the table has not been closed
`boolean`
***
#### Defined in
### listIndices()
[table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74)
> `abstract` **listIndices**(): `Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt;
___
List all indices that have been created with [Table.createIndex](Table.md#createindex)
### listIndices
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
List all indices that have been created with Self::create_index
#### Returns
`Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt;
`Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
***
#### Defined in
### mergeInsert()
[table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350)
> `abstract` **mergeInsert**(`on`): `MergeInsertBuilder`
___
#### Parameters
### query
**on**: `string` \| `string`[]
#### Returns
`MergeInsertBuilder`
***
### optimize()
> `abstract` **optimize**(`options`?): `Promise`&lt;`OptimizeStats`&gt;
Optimize the on-disk data and indices for better performance.
Modeled after ``VACUUM`` in PostgreSQL.
Optimization covers three operations:
- Compaction: Merges small files into larger ones
- Prune: Removes old versions of the dataset
- Index: Optimizes the indices, adding new data to existing indices
Experimental API
----------------
The optimization process is undergoing active development and may change.
Our goal with these changes is to improve the performance of optimization and
reduce the complexity.
That being said, it is essential today to run optimize if you want the best
performance. It should be stable and safe to use in production, but it our
hope that the API may be simplified (or not even need to be called) in the
future.
The frequency an application shoudl call optimize is based on the frequency of
data modifications. If data is frequently added, deleted, or updated then
optimize should be run frequently. A good rule of thumb is to run optimize if
you have added or modified 100,000 or more records or run more than 20 data
modification operations.
#### Parameters
• **options?**: `Partial`&lt;`OptimizeOptions`&gt;
#### Returns
`Promise`&lt;`OptimizeStats`&gt;
***
### query()
> `abstract` **query**(): [`Query`](Query.md)
**query**(): [`Query`](Query.md)
Create a [Query](Query.md) Builder.
@@ -408,7 +406,8 @@ returned by this method can be used to control the query using filtering,
vector similarity, sorting, and more.
Note: By default, all columns are returned. For best performance, you should
only fetch the columns you need.
only fetch the columns you need. See [`Query::select_with_projection`] for
more details.
When appropriate, various indices and statistics based pruning will be used to
accelerate the query.
@@ -419,22 +418,21 @@ accelerate the query.
A builder that can be used to parameterize the query
#### Examples
**`Example`**
```ts
// SQL-style filtering
//
// This query will return up to 1000 rows whose value in the `id` column
// is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table
.query()
.where("id > 1")
.select(["id"])
.limit(20)) {
console.log(batch);
// is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table.query()
.filter("id > 1").select(["id"]).limit(20)) {
console.log(batch);
}
```
**`Example`**
```ts
// Vector Similarity Search
//
@@ -442,17 +440,18 @@ for await (const batch of table
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
// on the "vector" column then this will perform an ANN search.
//
// The `refineFactor` and `nprobes` methods are used to control the recall /
// The `refine_factor` and `nprobes` methods are used to control the recall /
// latency tradeoff of the search.
for await (const batch of table
.query()
.where("id > 1")
.select(["id"])
.limit(20)) {
console.log(batch);
for await (const batch of table.query()
.nearestTo([1, 2, 3])
.refineFactor(5).nprobe(10)
.limit(10)) {
console.log(batch);
}
```
**`Example`**
```ts
// Scan the full dataset
//
@@ -462,11 +461,15 @@ for await (const batch of table.query()) {
}
```
***
#### Defined in
### restore()
[table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238)
> `abstract` **restore**(): `Promise`&lt;`void`&gt;
___
### restore
▸ **restore**(): `Promise`\<`void`\>
Restore the table to the currently checked out version
@@ -481,121 +484,33 @@ out state and the read_consistency_interval, if any, will apply.
#### Returns
`Promise`&lt;`void`&gt;
`Promise`\<`void`\>
***
#### Defined in
### schema()
[table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343)
> `abstract` **schema**(): `Promise`&lt;`Schema`&lt;`any`&gt;&gt;
___
### schema
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
Get the schema of the table.
#### Returns
`Promise`&lt;`Schema`&lt;`any`&gt;&gt;
`Promise`\<`Schema`\<`any`\>\>
***
#### Defined in
### search()
[table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95)
#### search(query)
___
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
### update
Create a search query to find the nearest neighbors
of the given query vector
##### Parameters
• **query**: `string`
the query. This will be converted to a vector using the table's provided embedding function
##### Returns
[`VectorQuery`](VectorQuery.md)
##### Note
If no embedding functions are defined in the table, this will error when collecting the results.
#### search(query)
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
Create a search query to find the nearest neighbors
of the given query vector
##### Parameters
• **query**: `IntoVector`
the query vector
##### Returns
[`VectorQuery`](VectorQuery.md)
***
### toArrow()
> `abstract` **toArrow**(): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
Return the table as an arrow table
#### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt;
***
### update()
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
Update existing records in the Table
##### Parameters
• **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
`Promise`&lt;`void`&gt;
##### Example
```ts
table.update({where:"x = 2", values:{"vector": [10, 10]}})
```
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
Update existing records in the Table
##### Parameters
• **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
`Promise`&lt;`void`&gt;
##### Example
```ts
table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
```
#### update(updates, options)
> `abstract` **update**(`updates`, `options`?): `Promise`&lt;`void`&gt;
▸ **update**(`updates`, `options?`): `Promise`\<`void`\>
Update existing records in the Table
@@ -612,32 +527,26 @@ you are updating many rows (with different ids) then you will get
better performance with a single [`merge_insert`] call instead of
repeatedly calilng this method.
##### Parameters
#### Parameters
• **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
| Name | Type | Description |
| :------ | :------ | :------ |
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
the
columns to update
#### Returns
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
`Promise`\<`void`\>
• **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
#### Defined in
additional options to control
the update behavior
[table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137)
##### Returns
___
`Promise`&lt;`void`&gt;
### vectorSearch
***
### vectorSearch()
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
Search the table with a given query vector.
@@ -647,50 +556,39 @@ by `query`.
#### Parameters
• **vector**: `IntoVector`
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### See
**`See`**
[Query#nearestTo](Query.md#nearestto) for more details.
***
#### Defined in
### version()
[table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249)
> `abstract` **version**(): `Promise`&lt;`number`&gt;
___
### version
▸ **version**(): `Promise`\<`number`\>
Retrieve the version of the table
#### Returns
`Promise`&lt;`number`&gt;
***
### parseTableData()
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`&lt;`object`&gt;
#### Parameters
• **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
• **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
• **streaming?**: `boolean` = `false`
LanceDb supports versioning. Every operation that modifies the table increases
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
version to view the data at that point. In addition, you can `[Self::restore]` the
version to replace the current table with a previous version.
#### Returns
`Promise`&lt;`object`&gt;
`Promise`\<`number`\>
##### buf
#### Defined in
> **buf**: `Buffer`
##### mode
> **mode**: `string`
[table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297)

View File

@@ -1,29 +1,45 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / VectorColumnOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions
# Class: VectorColumnOptions
## Table of contents
### Constructors
- [constructor](VectorColumnOptions.md#constructor)
### Properties
- [type](VectorColumnOptions.md#type)
## Constructors
### new VectorColumnOptions()
### constructor
> **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md)
**new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md)
#### Parameters
**values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt;
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
#### Returns
[`VectorColumnOptions`](VectorColumnOptions.md)
#### Defined in
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
## Properties
### type
> **type**: `Float`&lt;`Floats`&gt;
**type**: `Float`\<`Floats`\>
Vector column type.
#### Defined in
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)

View File

@@ -1,8 +1,4 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / VectorQuery
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery
# Class: VectorQuery
@@ -10,19 +6,50 @@ A builder used to construct a vector search
This builder can be reused to execute the query many times.
## Extends
## Hierarchy
- [`QueryBase`](QueryBase.md)&lt;`NativeVectorQuery`&gt;
- [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\>
**`VectorQuery`**
## Table of contents
### Constructors
- [constructor](VectorQuery.md#constructor)
### Properties
- [inner](VectorQuery.md#inner)
### Methods
- [[asyncIterator]](VectorQuery.md#[asynciterator])
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
- [column](VectorQuery.md#column)
- [distanceType](VectorQuery.md#distancetype)
- [execute](VectorQuery.md#execute)
- [limit](VectorQuery.md#limit)
- [nativeExecute](VectorQuery.md#nativeexecute)
- [nprobes](VectorQuery.md#nprobes)
- [postfilter](VectorQuery.md#postfilter)
- [refineFactor](VectorQuery.md#refinefactor)
- [select](VectorQuery.md#select)
- [toArray](VectorQuery.md#toarray)
- [toArrow](VectorQuery.md#toarrow)
- [where](VectorQuery.md#where)
## Constructors
### new VectorQuery()
### constructor
> **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
**new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
#### Parameters
**inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
| Name | Type |
| :------ | :------ |
| `inner` | `VectorQuery` |
#### Returns
@@ -30,37 +57,49 @@ This builder can be reused to execute the query many times.
#### Overrides
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
## Properties
### inner
> `protected` **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
`Protected` **inner**: `VectorQuery`
#### Inherited from
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### \[asyncIterator\]()
### [asyncIterator]
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
***
#### Defined in
### bypassVectorIndex()
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
> **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
___
### bypassVectorIndex
**bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
If this is called then any vector index is skipped
@@ -74,11 +113,15 @@ calculate your recall to select an appropriate value for nprobes.
[`VectorQuery`](VectorQuery.md)
***
#### Defined in
### column()
[query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321)
> **column**(`column`): [`VectorQuery`](VectorQuery.md)
___
### column
**column**(`column`): [`VectorQuery`](VectorQuery.md)
Set the vector column to query
@@ -87,24 +130,30 @@ the call to
#### Parameters
**column**: `string`
| Name | Type |
| :------ | :------ |
| `column` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### See
**`See`**
[Query#nearestTo](Query.md#nearestto)
This parameter must be specified if the table has more than one column
whose data type is a fixed-size-list of floats.
***
#### Defined in
### distanceType()
[query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229)
> **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
___
### distanceType
**distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
Set the distance metric to use
@@ -114,13 +163,15 @@ use. See
#### Parameters
**distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
| Name | Type |
| :------ | :------ |
| `distanceType` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### See
**`See`**
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
distance metrics available.
@@ -131,41 +182,23 @@ invalid.
By default "l2" is used.
***
#### Defined in
### doCall()
[query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248)
> `protected` **doCall**(`fn`): `void`
___
#### Parameters
### execute
**fn**
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### See
**`See`**
- AsyncIterator
of
@@ -179,76 +212,17 @@ single query)
#### Inherited from
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
***
#### Defined in
### explainPlan()
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
___
Generates an explanation of the query execution plan.
### limit
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
***
### limit()
> **limit**(`limit`): `this`
**limit**(`limit`): [`VectorQuery`](VectorQuery.md)
Set the maximum number of results to return.
@@ -257,39 +231,45 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
`this`
[`VectorQuery`](VectorQuery.md)
#### Inherited from
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
***
#### Defined in
### nativeExecute()
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
___
#### Parameters
### nativeExecute
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`&lt;`RecordBatchIterator`&gt;
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
***
#### Defined in
### nprobes()
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
> **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
___
### nprobes
**nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
Set the number of partitions to search (probe)
@@ -314,17 +294,23 @@ you the desired recall.
#### Parameters
**nprobes**: `number`
| Name | Type |
| :------ | :------ |
| `nprobes` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
***
#### Defined in
### postfilter()
[query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215)
> **postfilter**(): [`VectorQuery`](VectorQuery.md)
___
### postfilter
**postfilter**(): [`VectorQuery`](VectorQuery.md)
If this is called then filtering will happen after the vector search instead of
before.
@@ -347,16 +333,20 @@ Post filtering happens during the "refine stage" (described in more detail in
[`VectorQuery`](VectorQuery.md)
#### See
**`See`**
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering.
***
#### Defined in
### refineFactor()
[query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307)
> **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
___
### refineFactor
**refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
A multiplier to control how many additional rows are taken during the refine step
@@ -388,17 +378,23 @@ distance between the query vector and the actual uncompressed vector.
#### Parameters
**refineFactor**: `number`
| Name | Type |
| :------ | :------ |
| `refineFactor` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
***
#### Defined in
### select()
[query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282)
> **select**(`columns`): `this`
___
### select
**select**(`columns`): [`VectorQuery`](VectorQuery.md)
Return only the specified columns.
@@ -422,13 +418,15 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
`this`
[`VectorQuery`](VectorQuery.md)
#### Example
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
@@ -443,57 +441,61 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
***
#### Defined in
### toArray()
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`any`[]&gt;
`Promise`\<`unknown`[]\>
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
***
#### Defined in
### toArrow()
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt;
`Promise`\<`Table`\<`any`\>\>
#### See
**`See`**
ArrowTable.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
***
#### Defined in
### where()
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
> **where**(`predicate`): `this`
___
### where
**where**(`predicate`): [`VectorQuery`](VectorQuery.md)
A filter statement to be applied to this query.
@@ -501,13 +503,15 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`this`
[`VectorQuery`](VectorQuery.md)
#### Example
**`Example`**
```ts
x > 10
@@ -520,4 +524,8 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,111 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
## Table of contents
### Constructors
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `"text-embedding-ada-002"` |
#### Returns
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Defined in
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
## Methods
### embed
**embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`\<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)

View File

@@ -1,27 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Enumeration Members
### Append
> **Append**: `"Append"`
***
### Create
> **Create**: `"Create"`
***
### Overwrite
> **Overwrite**: `"Overwrite"`

View File

@@ -0,0 +1,43 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"Append"``
#### Defined in
native.d.ts:69
___
### Create
• **Create** = ``"Create"``
#### Defined in
native.d.ts:68
___
### Overwrite
• **Overwrite** = ``"Overwrite"``
#### Defined in
native.d.ts:70

View File

@@ -1,82 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / connect
# Function: connect()
## connect(uri, opts)
> **connect**(`uri`, `opts`?): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
Connect to a LanceDB instance at the given URI.
Accepted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
### Parameters
**uri**: `string`
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
**opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt;
### Returns
`Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
### See
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
### Examples
```ts
const conn = await connect("/path/to/database");
```
```ts
const conn = await connect(
"s3://bucket/path/to/database",
{storageOptions: {timeout: "60s"}
});
```
## connect(opts)
> **connect**(`opts`): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
Connect to a LanceDB instance at the given URI.
Accepted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
### Parameters
**opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt; & `object`
### Returns
`Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
### See
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
### Example
```ts
const conn = await connect({
uri: "/path/to/database",
storageOptions: {timeout: "60s"}
});
```

View File

@@ -1,51 +0,0 @@
[**@lancedb/lancedb**](README.md) • **Docs**
***
# @lancedb/lancedb
## Namespaces
- [embedding](namespaces/embedding/README.md)
## Enumerations
- [WriteMode](enumerations/WriteMode.md)
## Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
## Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexMetadata](interfaces/IndexMetadata.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
## Type Aliases
- [Data](type-aliases/Data.md)
## Functions
- [connect](functions/connect.md)
- [makeArrowTable](functions/makeArrowTable.md)

View File

@@ -1,26 +1,37 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / AddColumnsSql
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql
# Interface: AddColumnsSql
A definition of a new column to add to a table.
## Table of contents
### Properties
- [name](AddColumnsSql.md#name)
- [valueSql](AddColumnsSql.md#valuesql)
## Properties
### name
> **name**: `string`
**name**: `string`
The name of the new column.
***
#### Defined in
native.d.ts:43
___
### valueSql
> **valueSql**: `string`
**valueSql**: `string`
The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table.
#### Defined in
native.d.ts:48

View File

@@ -1,19 +1,25 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / AddDataOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions
# Interface: AddDataOptions
Options for adding data to a table.
## Table of contents
### Properties
- [mode](AddDataOptions.md#mode)
## Properties
### mode
> **mode**: `"append"` \| `"overwrite"`
**mode**: ``"append"`` \| ``"overwrite"``
If "append" (the default) then the new data will be added to the table
If "overwrite" then the new data will replace the existing data in the table.
#### Defined in
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)

View File

@@ -1,8 +1,4 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / ColumnAlteration
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration
# Interface: ColumnAlteration
@@ -11,30 +7,50 @@ A definition of a column alteration. The alteration changes the column at
and to have the data type `data_type`. At least one of `rename` or `nullable`
must be provided.
## Table of contents
### Properties
- [nullable](ColumnAlteration.md#nullable)
- [path](ColumnAlteration.md#path)
- [rename](ColumnAlteration.md#rename)
## Properties
### nullable?
### nullable
> `optional` **nullable**: `boolean`
`Optional` **nullable**: `boolean`
Set the new nullability. Note that a nullable column cannot be made non-nullable.
***
#### Defined in
native.d.ts:38
___
### path
> **path**: `string`
**path**: `string`
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
a nested column then it is the path to the column, e.g. "a.b.c" for a column
`c` nested inside a column `b` nested inside a column `a`.
***
#### Defined in
### rename?
native.d.ts:31
> `optional` **rename**: `string`
___
### rename
`Optional` **rename**: `string`
The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table.
#### Defined in
native.d.ts:36

View File

@@ -1,16 +1,40 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / ConnectionOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
## Properties
### readConsistencyInterval?
### apiKey
> `optional` **readConsistencyInterval**: `number`
`Optional` **apiKey**: `string`
#### Defined in
native.d.ts:51
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
native.d.ts:52
___
### readConsistencyInterval
`Optional` **readConsistencyInterval**: `number`
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
@@ -22,12 +46,6 @@ has passed since the last check, then the table will be checked for updates.
Note: this consistency only applies to read operations. Write operations are
always consistent.
***
#### Defined in
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
(For LanceDB OSS only): configuration for object storage.
The available options are described at https://lancedb.github.io/lancedb/guides/storage/
native.d.ts:64

View File

@@ -1,31 +1,32 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / CreateTableOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions
## Table of contents
### Properties
- [existOk](CreateTableOptions.md#existok)
- [mode](CreateTableOptions.md#mode)
## Properties
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
***
### existOk
> **existOk**: `boolean`
**existOk**: `boolean`
If this is true and the table already exists and the mode is "create"
then no error will be raised.
***
#### Defined in
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
___
### mode
> **mode**: `"overwrite"` \| `"create"`
**mode**: ``"overwrite"`` \| ``"create"``
The mode to use when creating the table.
@@ -35,31 +36,6 @@ happen. Any provided data will be ignored.
If this is set to "overwrite" then any existing table will be replaced.
***
#### Defined in
### schema?
> `optional` **schema**: `SchemaLike`
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
Configuration for object storage.
Options already set on the connection will be inherited by the table,
but can be overridden here.
The available options are described at https://lancedb.github.io/lancedb/guides/storage/
***
### useLegacyFormat?
> `optional` **useLegacyFormat**: `boolean`
If true then data files will be written with the legacy format
The default is true while the new format is in beta
[connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30)

View File

@@ -1,8 +1,4 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / ExecutableQuery
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ExecutableQuery
# Interface: ExecutableQuery

View File

@@ -1,36 +1,39 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexConfig
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexConfig
# Interface: IndexConfig
A description of an index currently configured on a column
## Table of contents
### Properties
- [columns](IndexConfig.md#columns)
- [indexType](IndexConfig.md#indextype)
## Properties
### columns
> **columns**: `string`[]
**columns**: `string`[]
The columns in the index
Currently this is always an array of size 1. In the future there may
Currently this is always an array of size 1. In the future there may
be more columns to represent composite indices.
***
#### Defined in
native.d.ts:16
___
### indexType
> **indexType**: `string`
**indexType**: `string`
The type of the index
***
#### Defined in
### name
> **name**: `string`
The name of the index
native.d.ts:9

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexMetadata
# Interface: IndexMetadata
## Properties
### indexType?
> `optional` **indexType**: `string`
***
### metricType?
> `optional` **metricType**: `string`

View File

@@ -1,16 +1,19 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexOptions
# Interface: IndexOptions
## Table of contents
### Properties
- [config](IndexOptions.md#config)
- [replace](IndexOptions.md#replace)
## Properties
### config?
### config
> `optional` **config**: [`Index`](../classes/Index.md)
`Optional` **config**: [`Index`](../classes/Index.md)
Advanced index configuration
@@ -22,11 +25,15 @@ See the static methods on Index for details on the various index types.
If this is not supplied then column data type(s) and column statistics
will be used to determine the most useful kind of index to create.
***
#### Defined in
### replace?
[indices.ts:192](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L192)
> `optional` **replace**: `boolean`
___
### replace
`Optional` **replace**: `boolean`
Whether to replace the existing index
@@ -35,3 +42,7 @@ and the same name, then an error will be returned. This is true even if
that index is out of date.
The default is true
#### Defined in
[indices.ts:202](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L202)

View File

@@ -1,39 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexStatistics
# Interface: IndexStatistics
## Properties
### indexType?
> `optional` **indexType**: `string`
The type of the index
***
### indices
> **indices**: [`IndexMetadata`](IndexMetadata.md)[]
The metadata for each index
***
### numIndexedRows
> **numIndexedRows**: `number`
The number of rows indexed by the index
***
### numUnindexedRows
> **numUnindexedRows**: `number`
The number of rows not indexed

View File

@@ -1,18 +1,24 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / IvfPqOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IvfPqOptions
# Interface: IvfPqOptions
Options to create an `IVF_PQ` index
## Table of contents
### Properties
- [distanceType](IvfPqOptions.md#distancetype)
- [maxIterations](IvfPqOptions.md#maxiterations)
- [numPartitions](IvfPqOptions.md#numpartitions)
- [numSubVectors](IvfPqOptions.md#numsubvectors)
- [sampleRate](IvfPqOptions.md#samplerate)
## Properties
### distanceType?
### distanceType
> `optional` **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
`Optional` **distanceType**: ``"l2"`` \| ``"cosine"`` \| ``"dot"``
Distance type to use to build the index.
@@ -46,11 +52,15 @@ never be returned from a vector search.
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance.
***
#### Defined in
### maxIterations?
[indices.ts:83](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L83)
> `optional` **maxIterations**: `number`
___
### maxIterations
• `Optional` **maxIterations**: `number`
Max iteration to train IVF kmeans.
@@ -62,11 +72,15 @@ iterations have diminishing returns.
The default value is 50.
***
#### Defined in
### numPartitions?
[indices.ts:96](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L96)
> `optional` **numPartitions**: `number`
___
### numPartitions
• `Optional` **numPartitions**: `number`
The number of IVF partitions to create.
@@ -78,11 +92,15 @@ If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
***
#### Defined in
### numSubVectors?
[indices.ts:32](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L32)
> `optional` **numSubVectors**: `number`
___
### numSubVectors
• `Optional` **numSubVectors**: `number`
Number of sub-vectors of PQ.
@@ -97,11 +115,15 @@ us to use efficient SIMD instructions.
If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
will likely result in poor performance.
***
#### Defined in
### sampleRate?
[indices.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L48)
> `optional` **sampleRate**: `number`
___
### sampleRate
• `Optional` **sampleRate**: `number`
The number of vectors, per partition, to sample when training IVF kmeans.
@@ -116,3 +138,7 @@ Increasing this value might improve the quality of the index but in most cases t
default should be sufficient.
The default value is 256.
#### Defined in
[indices.ts:113](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L113)

View File

@@ -1,27 +1,38 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / TableNamesOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / TableNamesOptions
# Interface: TableNamesOptions
## Table of contents
### Properties
- [limit](TableNamesOptions.md#limit)
- [startAfter](TableNamesOptions.md#startafter)
## Properties
### limit?
### limit
> `optional` **limit**: `number`
`Optional` **limit**: `number`
An optional limit to the number of results to return.
***
#### Defined in
### startAfter?
[connection.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L48)
> `optional` **startAfter**: `string`
___
### startAfter
`Optional` **startAfter**: `string`
If present, only return names that come lexicographically after the
supplied value.
This can be combined with limit to implement pagination by setting this to
the last table name from the previous page.
#### Defined in
[connection.ts:46](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L46)

View File

@@ -1,16 +1,18 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / UpdateOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / UpdateOptions
# Interface: UpdateOptions
## Table of contents
### Properties
- [where](UpdateOptions.md#where)
## Properties
### where
> **where**: `string`
**where**: `string`
A filter that limits the scope of the update.
@@ -20,3 +22,7 @@ Only rows that satisfy the expression will be updated.
For example, this could be 'my_col == 0' to replace all instances
of 0 in a column with some other default value.
#### Defined in
[table.ts:50](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L50)

View File

@@ -1,17 +1,21 @@
[**@lancedb/lancedb**](../README.md) **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteOptions
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteOptions
# Interface: WriteOptions
Write options when creating a Table.
## Table of contents
### Properties
- [mode](WriteOptions.md#mode)
## Properties
### mode?
### mode
> `optional` **mode**: [`WriteMode`](../enumerations/WriteMode.md)
`Optional` **mode**: [`WriteMode`](../enums/WriteMode.md)
Write mode for writing to a table.
#### Defined in
native.d.ts:74

View File

@@ -0,0 +1,129 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / EmbeddingFunction
# Interface: EmbeddingFunction\<T\>
[embedding](../modules/embedding.md).EmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/embedding.OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [destColumn](embedding.EmbeddingFunction.md#destcolumn)
- [embed](embedding.EmbeddingFunction.md#embed)
- [embeddingDataType](embedding.EmbeddingFunction.md#embeddingdatatype)
- [embeddingDimension](embedding.EmbeddingFunction.md#embeddingdimension)
- [excludeSource](embedding.EmbeddingFunction.md#excludesource)
- [sourceColumn](embedding.EmbeddingFunction.md#sourcecolumn)
## Properties
### destColumn
`Optional` **destColumn**: `string`
The name of the column that will contain the embedding
By default this is "vector"
#### Defined in
[embedding/embedding_function.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L49)
___
### embed
**embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Type declaration
▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`\<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L62)
___
### embeddingDataType
`Optional` **embeddingDataType**: `Float`\<`Floats`\>
The data type of the embedding
The embedding function should return `number`. This will be converted into
an Arrow float array. By default this will be Float32 but this property can
be used to control the conversion.
#### Defined in
[embedding/embedding_function.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L33)
___
### embeddingDimension
`Optional` **embeddingDimension**: `number`
The dimension of the embedding
This is optional, normally this can be determined by looking at the results of
`embed`. If this is not specified, and there is an attempt to apply the embedding
to an empty table, then that process will fail.
#### Defined in
[embedding/embedding_function.ts:42](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L42)
___
### excludeSource
`Optional` **excludeSource**: `boolean`
Should the source column be excluded from the resulting table
By default the source column is included. Set this to true and
only the embedding will be stored.
#### Defined in
[embedding/embedding_function.ts:57](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L57)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L24)

View File

@@ -1,12 +1,103 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
[@lancedb/lancedb](README.md) / Exports
***
# @lancedb/lancedb
[@lancedb/lancedb](../globals.md) / makeArrowTable
## Table of contents
# Function: makeArrowTable()
### Namespaces
> **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable`
- [embedding](modules/embedding.md)
### Enumerations
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
### Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases
- [Data](modules.md#data)
### Functions
- [connect](modules.md#connect)
- [makeArrowTable](modules.md#makearrowtable)
## Type Aliases
### Data
Ƭ **Data**: `Record`\<`string`, `unknown`\>[] \| `ArrowTable`
Data type accepted by NodeJS SDK
#### Defined in
[arrow.ts:40](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L40)
## Functions
### connect
**connect**(`uri`, `opts?`): `Promise`\<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI.
Accpeted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. If the database uri starts with `db://` then it connects to a remote database. |
| `opts?` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | - |
#### Returns
`Promise`\<[`Connection`](classes/Connection.md)\>
**`See`**
[ConnectionOptions](interfaces/ConnectionOptions.md) for more details on the URI format.
#### Defined in
[index.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/index.ts#L62)
___
### makeArrowTable
**makeArrowTable**(`data`, `options?`): `ArrowTable`
An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns.
@@ -38,20 +129,20 @@ rules are as follows:
- Record<String, any> => Struct
- Array<any> => List
## Parameters
#### Parameters
**data**: `Record`&lt;`string`, `unknown`&gt;[]
| Name | Type |
| :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] |
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
**options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt;
**metadata?**: `Map`&lt;`string`, `string`&gt;
## Returns
#### Returns
`ArrowTable`
## Example
**`Example`**
```ts
import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
@@ -112,3 +203,7 @@ const table = makeArrowTable([
}
assert.deepEqual(table.schema, schema)
```
#### Defined in
[arrow.ts:197](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L197)

View File

@@ -0,0 +1,45 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / embedding
# Namespace: embedding
## Table of contents
### Classes
- [OpenAIEmbeddingFunction](../classes/embedding.OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md)
### Functions
- [isEmbeddingFunction](embedding.md#isembeddingfunction)
## Functions
### isEmbeddingFunction
**isEmbeddingFunction**\<`T`\>(`value`): value is EmbeddingFunction\<T\>
Test if the input seems to be an embedding function
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `unknown` |
#### Returns
value is EmbeddingFunction\<T\>
#### Defined in
[embedding/embedding_function.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L66)

View File

@@ -1,29 +0,0 @@
[**@lancedb/lancedb**](../../README.md) • **Docs**
***
[@lancedb/lancedb](../../globals.md) / embedding
# embedding
## Index
### Classes
- [EmbeddingFunction](classes/EmbeddingFunction.md)
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
### Type Aliases
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
### Functions
- [LanceSchema](functions/LanceSchema.md)
- [getRegistry](functions/getRegistry.md)
- [register](functions/register.md)

View File

@@ -1,162 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunction
# Class: `abstract` EmbeddingFunction&lt;T, M&gt;
An embedding function that automatically creates vector representation for a given column.
## Extended by
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
## Type Parameters
**T** = `any`
**M** *extends* `FunctionOptions` = `FunctionOptions`
## Constructors
### new EmbeddingFunction()
> **new EmbeddingFunction**&lt;`T`, `M`&gt;(): [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
#### Returns
[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
## Methods
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
Compute the embeddings for a single query
#### Parameters
**data**: `T`
#### Returns
`Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
***
### computeSourceEmbeddings()
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
Creates a vector representation for the given values.
#### Parameters
**data**: `T`[]
#### Returns
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
***
### embeddingDataType()
> `abstract` **embeddingDataType**(): `Float`&lt;`Floats`&gt;
The datatype of the embeddings
#### Returns
`Float`&lt;`Floats`&gt;
***
### ndims()
> **ndims**(): `undefined` \| `number`
The number of dimensions of the embeddings
#### Returns
`undefined` \| `number`
***
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
***
### toJSON()
> `abstract` **toJSON**(): `Partial`&lt;`M`&gt;
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
It's important that any object returned by this method contains all the necessary
information to recreate the embedding function
It should return the same object that was passed to the constructor
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
#### Returns
`Partial`&lt;`M`&gt;
#### Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
constructor(options: {model: string, timeout: number}) {
super();
this.model = options.model;
this.timeout = options.timeout;
}
toJSON() {
return {
model: this.model,
timeout: this.timeout,
};
}
```
***
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema

View File

@@ -1,124 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionRegistry
# Class: EmbeddingFunctionRegistry
This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry
## Constructors
### new EmbeddingFunctionRegistry()
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns
[`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
## Methods
### functionToMetadata()
> **functionToMetadata**(`conf`): `Record`&lt;`string`, `any`&gt;
#### Parameters
**conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
#### Returns
`Record`&lt;`string`, `any`&gt;
***
### get()
> **get**&lt;`T`, `Name`&gt;(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
Fetch an embedding function by name
#### Type Parameters
**T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
**Name** *extends* `string` = `""`
#### Parameters
**name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
The name of the function
#### Returns
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
***
### getTableMetadata()
> **getTableMetadata**(`functions`): `Map`&lt;`string`, `string`&gt;
#### Parameters
**functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
#### Returns
`Map`&lt;`string`, `string`&gt;
***
### register()
> **register**&lt;`T`&gt;(`this`, `alias`?): (`ctor`) => `any`
Register an embedding function
#### Type Parameters
**T** *extends* `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt; = `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
**alias?**: `string`
#### Returns
`Function`
##### Parameters
**ctor**: `T`
##### Returns
`any`
#### Throws
Error if the function is already registered
***
### reset()
> **reset**(`this`): `void`
reset the registry to the initial state
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns
`void`

View File

@@ -1,196 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Extends
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt;&gt;
## Constructors
### new OpenAIEmbeddingFunction()
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Parameters
**options**: `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt; = `...`
#### Returns
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
## Methods
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[]&gt;
Compute the embeddings for a single query
#### Parameters
**data**: `string`
#### Returns
`Promise`&lt;`number`[]&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeQueryEmbeddings`](EmbeddingFunction.md#computequeryembeddings)
***
### computeSourceEmbeddings()
> **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][]&gt;
Creates a vector representation for the given values.
#### Parameters
**data**: `string`[]
#### Returns
`Promise`&lt;`number`[][]&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeSourceEmbeddings`](EmbeddingFunction.md#computesourceembeddings)
***
### embeddingDataType()
> **embeddingDataType**(): `Float`&lt;`Floats`&gt;
The datatype of the embeddings
#### Returns
`Float`&lt;`Floats`&gt;
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`embeddingDataType`](EmbeddingFunction.md#embeddingdatatype)
***
### ndims()
> **ndims**(): `number`
The number of dimensions of the embeddings
#### Returns
`number`
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
***
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
***
### toJSON()
> **toJSON**(): `object`
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
It's important that any object returned by this method contains all the necessary
information to recreate the embedding function
It should return the same object that was passed to the constructor
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
#### Returns
`object`
##### model
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
#### Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
constructor(options: {model: string, timeout: number}) {
super();
this.model = options.model;
this.timeout = options.timeout;
}
toJSON() {
return {
model: this.model,
timeout: this.timeout,
};
}
```
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
***
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
#### See
lancedb.LanceSchema
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`vectorField`](EmbeddingFunction.md#vectorfield)

View File

@@ -1,39 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / LanceSchema
# Function: LanceSchema()
> **LanceSchema**(`fields`): `Schema`
Create a schema with embedding functions.
## Parameters
**fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
## Returns
`Schema`
Schema
## Example
```ts
class MyEmbeddingFunction extends EmbeddingFunction {
// ...
}
const func = new MyEmbeddingFunction();
const schema = LanceSchema({
id: new Int32(),
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
// optional: specify the datatype and/or dimensions
vector2: func.vectorField({ datatype: new Float32(), dims: 3}),
});
const table = await db.createTable("my_table", data, { schema });
```

View File

@@ -1,23 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / getRegistry
# Function: getRegistry()
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
Utility function to get the global instance of the registry
## Returns
[`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
`EmbeddingFunctionRegistry` The global instance of the registry
## Example
```ts
const registry = getRegistry();
const openai = registry.get("openai").create();

View File

@@ -1,25 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / register
# Function: register()
> **register**(`name`?): (`ctor`) => `any`
## Parameters
**name?**: `string`
## Returns
`Function`
### Parameters
**ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
### Returns
`any`

View File

@@ -1,25 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionConfig
# Interface: EmbeddingFunctionConfig
## Properties
### function
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;
***
### sourceColumn
> **sourceColumn**: `string`
***
### vectorColumn?
> `optional` **vectorColumn**: `string`

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
# Type Alias: OpenAIOptions
> **OpenAIOptions**: `object`
## Type declaration
### apiKey
> **apiKey**: `string`
### model
> **model**: `EmbeddingCreateParams`\[`"model"`\]

View File

@@ -1,11 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Data
# Type Alias: Data
> **Data**: `Record`&lt;`string`, `unknown`&gt;[] \| `TableLike`
Data type accepted by NodeJS SDK

View File

@@ -9,8 +9,7 @@ around the asynchronous client.
This guide describes the differences between the two APIs and will hopefully assist users
that would like to migrate to the new API.
## Python
### Closeable Connections
## Closeable Connections
The Connection now has a `close` method. You can call this when
you are done with the connection to eagerly free resources. Currently
@@ -33,20 +32,20 @@ async def my_async_fn():
It is not mandatory to call the `close` method. If you do not call it
then the connection will be closed when the object is garbage collected.
### Closeable Table
## Closeable Table
The Table now also has a `close` method, similar to the connection. This
can be used to eagerly free the cache used by a Table object. Similar to
the connection, it can be used as a context manager and it is not mandatory
to call the `close` method.
#### Changes to Table APIs
### Changes to Table APIs
- Previously `Table.schema` was a property. Now it is an async method.
- The method `Table.__len__` was removed and `len(table)` will no longer
work. Use `Table.count_rows` instead.
#### Creating Indices
### Creating Indices
The `Table.create_index` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
@@ -56,12 +55,12 @@ the size of the data.
To specify index configuration details you will need to specify which kind of
index you are using.
#### Querying
### Querying
The `Table.search` method has been renamed to `AsyncTable.vector_search` for
clarity.
### Features not yet supported
## Features not yet supported
The following features are not yet supported by the asynchronous API. However,
we plan to support them soon.
@@ -75,117 +74,3 @@ we plan to support them soon.
search
- Remote connections to LanceDb Cloud are not yet supported.
- The method Table.head is not yet supported.
## TypeScript/JavaScript
For JS/TS users, we offer a brand new SDK [@lancedb/lancedb](https://www.npmjs.com/package/@lancedb/lancedb)
We tried to keep the API as similar as possible to the previous version, but there are a few small changes. Here are the most important ones:
### Creating Tables
[CreateTableOptions.writeOptions.writeMode](./javascript/interfaces/WriteOptions.md#writemode) has been replaced with [CreateTableOptions.mode](./js/interfaces/CreateTableOptions.md#mode)
=== "vectordb (deprecated)"
```ts
db.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite });
```
=== "@lancedb/lancedb"
```ts
db.createTable(tableName, data, { mode: "overwrite" })
```
### Changes to Table APIs
Previously `Table.schema` was a property. Now it is an async method.
#### Creating Indices
The `Table.createIndex` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
column to index). Vector index defaults are now smarter and scale better with
the size of the data.
=== "vectordb (deprecated)"
```ts
await tbl.createIndex({
column: "vector", // default
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
```
=== "@lancedb/lancedb"
```ts
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 2,
numSubVectors: 2,
}),
});
```
### Embedding Functions
The embedding API has been completely reworked, and it now more closely resembles the Python API, including the new [embedding registry](./js/classes/embedding.EmbeddingFunctionRegistry.md)
=== "vectordb (deprecated)"
```ts
const embeddingFunction = new lancedb.OpenAIEmbeddingFunction('text', API_KEY)
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, embeddingFunction)
```
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
const func = getRegistry().get("openai").create({apiKey: API_KEY});
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, {
embeddingFunction: {
sourceColumn: "text",
function: func,
}
})
```
You can also use a schema driven approach, which parallels the Pydantic integration in our Python SDK:
```ts
const func = getRegistry().get("openai").create({apiKey: API_KEY});
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8()),
price: new arrow.Float64(),
vector: func.vectorField()
})
const table = await db.createTable('vectors', data, {schema})
```

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,6 @@
# Python API Reference (SaaS)
This section contains the API reference for the LanceDB Cloud Python API.
This section contains the API reference for the SaaS Python API.
## Installation

View File

@@ -15,6 +15,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
Using rerankers is optional for vector and FTS. However, for hybrid search, rerankers are required. To use a reranker, you need to create an instance of the reranker and pass it to the `rerank` method of the query builder.
```python
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
@@ -53,7 +54,6 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
- [ColBERT Reranker](./colbert.md)
- [OpenAI Reranker](./openai.md)
- [Linear Combination Reranker](./linear_combination.md)
- [Jina Reranker](./jina.md)
## Creating Custom Rerankers

View File

@@ -1,53 +0,0 @@
# Reciprocal Rank Fusion Reranker
Reciprocal Rank Fusion (RRF) is an algorithm that evaluates the search scores by leveraging the positions/rank of the documents. The implementation follows this [paper](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf).
!!! note
Supported Query Types: Hybrid
```python
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import RRFReranker
embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = RRFReranker()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
```
Accepted Arguments
----------------
| Argument | Type | Default | Description |
| --- | --- | --- | --- |
| `K` | `int` | `60` | A constant used in the RRF formula (default is 60). Experiments indicate that k = 60 was near-optimal, but that the choice is not critical |
| `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score`. If "all", will return all scores from the vector and FTS search along with the relevance score. |
## Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
### Hybrid Search
|`return_score`| Status | Description |
| --- | --- | --- |
| `relevance` | ✅ Supported | Returned rows only have the `_relevance_score` column |
| `all` | ✅ Supported | Returned rows have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |

View File

@@ -53,24 +53,13 @@ db.create_table("my_vectors", data=data)
.to_list()
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```javascript
--8<-- "docs/src/search_legacy.ts:import"
```ts
--8<-- "nodejs/examples/search.ts:import"
--8<-- "nodejs/examples/search.ts:search1"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/search_legacy.ts:import"
--8<-- "docs/src/search_legacy.ts:search1"
```
--8<-- "docs/src/search_legacy.ts:search1"
```
By default, `l2` will be used as metric type. You can specify the metric type as
`cosine` or `dot` if required.
@@ -84,19 +73,11 @@ By default, `l2` will be used as metric type. You can specify the metric type as
.to_list()
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/search.ts:search2"
```
=== "vectordb (deprecated)"
```javascript
--8<-- "docs/src/search_legacy.ts:search2"
```
```javascript
--8<-- "docs/src/search_legacy.ts:search2"
```
## Approximate nearest neighbor (ANN) search

View File

@@ -44,19 +44,11 @@ const tbl = await db.createTable('myVectors', data)
)
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:search"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/sql_legacy.ts:search"
```
```javascript
--8<-- "docs/src/sql_legacy.ts:search"
```
## SQL filters
@@ -86,19 +78,11 @@ For example, the following filter string is acceptable:
.to_arrow()
```
=== "TypeScript"
=== "Javascript"
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:vec_search"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/sql_legacy.ts:vec_search"
```
```javascript
--8<-- "docs/src/sql_legacy.ts:vec_search"
```
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
@@ -164,18 +148,10 @@ You can also filter your data without search.
tbl.search().where("id = 10").limit(10).to_arrow()
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/filtering.ts:sql_search"
```
=== "vectordb (deprecated)"
```ts
--8<---- "docs/src/sql_legacy.ts:sql_search"
```
```javascript
--8<---- "docs/src/sql_legacy.ts:sql_search"
```
!!!warning "If your table is large, this could potentially return a very large amount of data. Please be sure to use a `limit` clause unless you're sure you want to return the whole result set."

View File

@@ -5,5 +5,4 @@ pylance
duckdb
--extra-index-url https://download.pytorch.org/whl/cpu
torch
polars>=0.19, <=1.3.0
polars

View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.8.0",
"version": "0.6.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.8.0",
"version": "0.6.0",
"cpu": [
"x64",
"arm64"

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.8.0",
"version": "0.6.0",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",

View File

@@ -62,8 +62,6 @@ export {
const defaultAwsRegion = "us-west-2";
const defaultRequestTimeout = 10_000
export interface AwsCredentials {
accessKeyId: string
@@ -121,11 +119,6 @@ export interface ConnectionOptions {
*/
hostOverride?: string
/**
* Duration in milliseconds for request timeout. Default = 10,000 (10 seconds)
*/
timeout?: number
/**
* (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not
@@ -211,8 +204,7 @@ export async function connect(
awsCredentials: undefined,
awsRegion: defaultAwsRegion,
apiKey: undefined,
region: defaultAwsRegion,
timeout: defaultRequestTimeout
region: defaultAwsRegion
},
arg
);

View File

@@ -41,7 +41,7 @@ async function callWithMiddlewares (
if (i > middlewares.length) {
const headers = Object.fromEntries(req.headers.entries())
const params = Object.fromEntries(req.params?.entries() ?? [])
const timeout = opts?.timeout
const timeout = 10000
let res
if (req.method === Method.POST) {
res = await axios.post(
@@ -82,7 +82,6 @@ async function callWithMiddlewares (
interface MiddlewareInvocationOptions {
responseType?: ResponseType
timeout?: number,
}
/**
@@ -124,19 +123,15 @@ export class HttpLancedbClient {
private readonly _url: string
private readonly _apiKey: () => string
private readonly _middlewares: HttpLancedbClientMiddleware[]
private readonly _timeout: number | undefined
public constructor (
url: string,
apiKey: string,
timeout?: number,
private readonly _dbName?: string,
private readonly _dbName?: string
) {
this._url = url
this._apiKey = () => apiKey
this._middlewares = []
this._timeout = timeout
}
get uri (): string {
@@ -235,10 +230,7 @@ export class HttpLancedbClient {
let response
try {
response = await callWithMiddlewares(req, this._middlewares, {
responseType,
timeout: this._timeout,
})
response = await callWithMiddlewares(req, this._middlewares, { responseType })
// return response
} catch (err: any) {
@@ -275,7 +267,7 @@ export class HttpLancedbClient {
* Make a clone of this client
*/
private clone (): HttpLancedbClient {
const clone = new HttpLancedbClient(this._url, this._apiKey(), this._timeout, this._dbName)
const clone = new HttpLancedbClient(this._url, this._apiKey(), this._dbName)
for (const mw of this._middlewares) {
clone._middlewares.push(mw)
}

View File

@@ -72,7 +72,6 @@ export class RemoteConnection implements Connection {
this._client = new HttpLancedbClient(
server,
opts.apiKey,
opts.timeout,
opts.hostOverride === undefined ? undefined : this._dbName
)
}

View File

@@ -13,13 +13,3 @@ __test__
renovate.json
.idea
src
lancedb
examples
nodejs-artifacts
Cargo.toml
biome.json
build.rs
jest.config.js
native.d.ts
tsconfig.json
typedoc.json

Some files were not shown because too many files have changed in this diff Show More