Compare commits

..

456 Commits

Author SHA1 Message Date
Lance Release
05f484b716 [python] Bump version: 0.6.5 → 0.6.6 2024-04-01 19:09:01 +00:00
Lance Release
7e92aa657a Updating package-lock.json 2024-04-01 18:36:25 +00:00
Lance Release
e5f40a4b09 Bump version: 0.4.14 → 0.4.15 2024-04-01 18:36:13 +00:00
Weston Pace
6779c1c192 chore: bump lance version to 0.10.6 (#1175) 2024-04-01 11:35:47 -07:00
Bert
e0bf6d9bd0 Update LanceDB Logo in README (#1167)
<img width="1034" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/5b8aa53c-4d93-4c0e-bed4-80c238b319ba">
2024-03-29 10:10:43 -04:00
Weston Pace
67f041be91 docs: add a reference to @lancedb/lance in the docs (#1166)
We aren't yet ready to switch over the examples since almost all JS
examples rely on embeddings and we haven't yet ported those over.
However, this makes it possible for those that are interested to start
using `@lancedb/lancedb`
2024-03-29 04:55:03 -07:00
Will Jones
d388ef2f55 ci: fix name collision in npm artifacts for vectordb (#1164)
Fixes #1163
2024-03-28 14:07:27 -05:00
Weston Pace
e52dc877e3 chore: add nodejs to bumpversion (#1161)
The previous release failed to release nodejs because the nodejs version
wasn't bumped. This should fix that.
2024-03-28 08:54:32 -07:00
Weston Pace
ca4fdf5499 chore: fix clippy (#1162) 2024-03-28 08:54:17 -07:00
Bert
0e9ad764b0 added new logo to vercel example gif (#1158) 2024-03-26 16:25:36 -04:00
Bert
cae0348c51 New logo on docs site (#1157) 2024-03-26 20:50:13 +05:30
Ayush Chaurasia
e9e0a37ca8 docs: Add all available HF/sentence transformers embedding models list (#1134)
Solves -  https://github.com/lancedb/lancedb/issues/968
2024-03-26 19:04:09 +05:30
Weston Pace
c37a28abbd docs: add the async python API to the docs (#1156) 2024-03-26 07:54:16 -05:00
Lance Release
98c1e635b3 Updating package-lock.json 2024-03-25 20:38:37 +00:00
Lance Release
9992b927fd Updating package-lock.json 2024-03-25 15:43:00 +00:00
Lance Release
80d501011c Bump version: 0.4.13 → 0.4.14 2024-03-25 15:42:49 +00:00
Weston Pace
6e3a9d08e0 feat: add publish step for nodejs (#1155)
This will start publishing `@lancedb/lancedb` with the new nodejs
package on our releases.
2024-03-25 11:23:30 -04:00
Pranav Maddi
268d8e057b Adds a Ask LanceDB button to docs. (#1150)
This links out to the new [asklancedb.com](https://asklancedb.com) page.

Screenshots of the change:

![Quick start - LanceDB · 10 20am ·
03-22](https://github.com/lancedb/lancedb/assets/2371511/c45ba893-fc74-4957-bdd3-3712b351aff3)
![Quick start -
LanceDB](https://github.com/lancedb/lancedb/assets/2371511/d4762eb6-52af-4fd5-857e-3ed280716999)
2024-03-23 01:09:44 +05:30
Bert
dfc518b8fb Node SDK Client middleware for HTTP Requests (#1130)
Adds client-side middleware to LanceDB Node SDK to instrument HTTP
Requests

Example - adding `x-request-id` request header:
```js
class HttpMiddleware {
    constructor({ requestId }) {
        this.requestId = requestId
    }

    onRemoteRequest(req, next) {
        req.headers['x-request-id'] = this.requestId
        return next(req)
    }
}

const db = await lancedb.connect({
  uri: 'db://remote-123',
  apiKey: 'sk_...',
})

let tables = await db.withMiddleware(new HttpMiddleware({ requestId: '123' })).tableNames();

```

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-03-22 11:58:05 -04:00
QianZhu
98acf34ae8 remove warnings (#1147) 2024-03-21 14:49:01 -07:00
Lei Xu
25988d23cd chore: validate table name (#1146)
Closes #1129
2024-03-21 14:46:13 -07:00
Lance Release
c0dd98c798 [python] Bump version: 0.6.4 → 0.6.5 2024-03-21 19:53:38 +00:00
Lei Xu
ee73a3bcb8 chore: bump lance to 0.10.5 (#1145) 2024-03-21 12:53:02 -07:00
QianZhu
c07989ac29 fix nodejs test (#1141)
changed the error msg for query with wrong vector dim thus need this
change to pass the nodejs tests.
2024-03-21 07:21:39 -07:00
QianZhu
8f7ef26f5f better error msg for query vector with wrong dim (#1140) 2024-03-20 21:01:05 -07:00
Ishani Ghose
e14f079fe2 feat: add to_batches API #805 (#1048)
SDK
Python

Description
Exposes pyarrow batch api during query execution - relevant when there
is no vector search query, dataset is large and the filtered result is
larger than memory.

---------

Co-authored-by: Ishani Ghose <isghose@amazon.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-03-20 13:38:06 -07:00
Weston Pace
7d790bd9e7 feat: introduce ArrowNative wrapper struct for adding data that is already a RecordBatchReader (#1139)
In
2de226220b
I added a new `IntoArrow` trait for adding data into a table.
Unfortunately, it seems my approach for implementing the trait for
"things that are already record batch readers" was flawed. This PR
corrects that flaw and, conveniently, removes the need to box readers at
all (though it is ok if you do).
2024-03-20 13:28:17 -07:00
natcharacter
dbdd0a7b4b Order by field support FTS (#1132)
This PR adds support for passing through a set of ordering fields at
index time (unsigned ints that tantivity can use as fast_fields) that at
query time you can sort your results on. This is useful for cases where
you want to get related hits, i.e by keyword, but order those hits by
some other score, such as popularity.

I.e search for songs descriptions that match on "sad AND jazz AND 1920"
and then order those by number of times played. Example usage can be
seen in the fts tests.

---------

Co-authored-by: Nat Roth <natroth@Nats-MacBook-Pro.local>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-03-20 01:27:37 -07:00
Chang She
befb79c5f9 feat(python): support writing huggingface dataset and dataset dict (#1110)
HuggingFace Dataset is written as arrow batches.
For DatasetDict, all splits are written with a "split" column appended.

- [x] what if the dataset schema already has a `split` column
- [x] add unit tests
2024-03-20 00:22:03 -07:00
Ayush Chaurasia
0a387a5429 feat(python): Support reranking for vector and fts (#1103)
solves https://github.com/lancedb/lancedb/issues/1086

Usage Reranking with FTS:
```
retriever = db.create_table("fine-tuning", schema=Schema, mode="overwrite")
pylist = [{"text": "Carson City is the capital city of the American state of Nevada. At the  2010 United States Census, Carson City had a population of 55,274."},
          {"text": "The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that are a political division controlled by the United States. Its capital is Saipan."},
        {"text": "Charlotte Amalie is the capital and largest city of the United States Virgin Islands. It has about 20,000 people. The city is on the island of Saint Thomas."},
        {"text": "Washington, D.C. (also known as simply Washington or D.C., and officially as the District of Columbia) is the capital of the United States. It is a federal district. "},
        {"text": "Capital punishment (the death penalty) has existed in the United States since before the United States was a country. As of 2017, capital punishment is legal in 30 of the 50 states."},
        {"text": "North Dakota is a state in the United States. 672,591 people lived in North Dakota in the year 2010. The capital and seat of government is Bismarck."},
        ]
retriever.add(pylist)
retriever.create_fts_index("text", replace=True)

query = "What is the capital of the United States?"
reranker = CohereReranker(return_score="all")
print(retriever.search(query, query_type="fts").limit(10).to_pandas())
print(retriever.search(query, query_type="fts").rerank(reranker=reranker).limit(10).to_pandas())
```
Result
```
                                                text                                             vector     score
0  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  0.729602
1  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  0.678046
2  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  0.671521
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  0.667898
4  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  0.653422
5  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  0.639346
                                                text                                             vector     score  _relevance_score
0  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  0.653422          0.979977
1  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  0.671521          0.299105
2  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  0.729602          0.284874
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  0.667898          0.089614
4  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  0.639346          0.063832
5  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  0.678046          0.041462
```

## Vector Search usage:
```
query = "What is the capital of the United States?"
reranker = CohereReranker(return_score="all")
print(retriever.search(query).limit(10).to_pandas())
print(retriever.search(query).rerank(reranker=reranker, query=query).limit(10).to_pandas()) # <-- Note: passing extra string query here
```

Results
```
                                                text                                             vector  _distance
0  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  39.728973
1  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  41.384884
2  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  55.220200
3  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  58.345654
4  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  60.060867
5  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  64.260544
                                                text                                             vector  _distance  _relevance_score
0  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  41.384884          0.979977
1  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  60.060867          0.299105
2  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  39.728973          0.284874
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  55.220200          0.089614
4  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  64.260544          0.063832
5  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  58.345654          0.041462
```
2024-03-19 22:20:31 +05:30
Weston Pace
5a173e1d54 fix: fix compile error in example caused by merge conflict (#1135) 2024-03-19 08:55:15 -07:00
Weston Pace
51bdbcad98 feat: change DistanceType to be independent thing instead of resuing lance_linalg (#1133)
This PR originated from a request to add `Serialize` / `Deserialize` to
`lance_linalg::distance::DistanceType`. However, that is a strange
request for `lance_linalg` which shouldn't really have to worry about
`Serialize` / `Deserialize`. The problem is that `lancedb` is re-using
`DistanceType` and things in `lancedb` do need to worry about
`Serialize`/`Deserialize` (because `lancedb` needs to support remote
client).

On the bright side, separating the two types allows us to independently
document distance type and allows `lance_linalg` to make changes to
`DistanceType` in the future without having to worry about backwards
compatibility concerns.
2024-03-19 07:27:51 -07:00
Weston Pace
0c7809c7a0 docs: add links to rust SDK docs, remove references to rust SDK being unstable / experimental (#1131) 2024-03-19 07:16:48 -07:00
Weston Pace
2de226220b feat(rust): add trait for incoming data (#1128)
This will make it easier for 3rd party integrations. They simply need to
implement `IntoArrow` for their types in order for those types to be
used in ingestion.
2024-03-19 07:15:49 -07:00
vincent d warmerdam
bd5b6f21e2 Unhide Pydantic guides in Docs (#1122)
@wjones127 after fixing https://github.com/lancedb/lancedb/issues/1112 I
noticed something else on the docs. There's an odd chunk of the docs
missing
[here](https://lancedb.github.io/lancedb/guides/tables/#from-a-polars-dataframe).
I can see the heading, but after clicking it the contents don't show.

![CleanShot 2024-03-15 at 23 40
17@2x](https://github.com/lancedb/lancedb/assets/1019791/04784b19-0200-4c3f-ae17-7a8f871ef9bd)

Apon inspection it was a markdown issue, one tab too many on a whole
segment.

This PR fixes it. It looks like this now and the sections appear again:

![CleanShot 2024-03-15 at 23 42
32@2x](https://github.com/lancedb/lancedb/assets/1019791/c5aaec4c-1c37-474d-9fb0-641f4cf52626)
2024-03-18 23:47:51 -07:00
Weston Pace
6331807b95 feat: refactor the query API and add query support to the python async API (#1113)
In addition, there are also a number of changes in nodejs to the
docstrings of existing methods because this PR adds a jsdoc linter.
2024-03-18 12:36:49 -07:00
Lance Release
83cb3f01a4 Updating package-lock.json 2024-03-18 18:05:55 +00:00
Lance Release
81f2cdf736 [python] Bump version: 0.6.3 → 0.6.4 2024-03-16 18:59:14 +00:00
Lance Release
d404a3590c Updating package-lock.json 2024-03-16 05:21:58 +00:00
Lance Release
e688484bd3 Bump version: 0.4.12 → 0.4.13 2024-03-16 05:21:44 +00:00
Weston Pace
3bcd61c8de feat: bump lance to 0.10.4 (#1123) 2024-03-15 22:21:04 -07:00
vincent d warmerdam
c76ec48603 Explain vonoroi seed initalisation (#1114)
This PR fixes https://github.com/lancedb/lancedb/issues/1112. It turned
out that K-means is currently used internally, so I figured adding that
context to the docs would be nice.
2024-03-15 14:16:05 -07:00
Christian Di Lorenzo
d974413745 fix(python): Add python azure blob read support (#1102)
I know there's a larger effort to have the python client based on the
core rust implementation, but in the meantime there have been several
issues (#1072 and #485) with some of the azure blob storage calls due to
pyarrow not natively supporting an azure backend. To this end, I've
added an optional import of the fsspec implementation of azure blob
storage [`adlfs`](https://pypi.org/project/adlfs/) and passed it to
`pyarrow.fs`. I've modified the existing test and manually verified it
with some real credentials to make sure it behaves as expected.

It should be now as simple as:

```python
import lancedb

db = lancedb.connect("az://blob_name/path")
table = db.open_table("test")
table.search(...)
```

Thank you for this cool project and we're excited to start using this
for real shortly! 🎉 And thanks to @dwhitena for bringing it to my
attention with his prediction guard posts.

Co-authored-by: christiandilorenzo <christian.dilorenzo@infiniaml.com>
2024-03-15 14:15:41 -07:00
Weston Pace
ec4f2fbd30 feat: update lance to v0.10.3 (#1094) 2024-03-15 08:50:28 -07:00
Ayush Chaurasia
6375ea419a chore(python): Increase event interval for telemetry (#1108)
Increasing event reporting interval from 5mins to 60mins
2024-03-15 17:04:43 +05:30
Raghav Dixit
6689192cee doc updates (#1085)
closes #1084
2024-03-14 14:38:28 +05:30
Chang She
dbec598610 feat(python): support optional vector field in pydantic model (#1097)
The LanceDB embeddings registry allows users to annotate the pydantic
model used as table schema with the desired embedding function, e.g.:

```python
class Schema(LanceModel):
    id: str
    vector: Vector(openai.ndims()) = openai.VectorField()
    text: str = openai.SourceField()
```

Tables created like this does not require embeddings to be calculated by
the user explicitly, e.g. this works:

```python
table.add([{"id": "foo", "text": "rust all the things"}])
```

However, trying to construct pydantic model instances without vector
doesn't because it's a required field.

Instead, you need add a default value:

```python
class Schema(LanceModel):
    id: str
    vector: Vector(openai.ndims()) = openai.VectorField(default=None)
    text: str = openai.SourceField()
```

then this completes without errors:
```python
table.add([Schema(id="foo", text="rust all the things")])
```

However, all of the vectors are filled with zeros. Instead in
add_vector_col we have to add an additional check so that the embedding
generation is called.
2024-03-14 03:05:08 +05:30
QianZhu
8f6e7ce4f3 add index_stats python api (#1096)
the integration test will be covered in another PR:
https://github.com/lancedb/sophon/pull/1876
2024-03-13 08:47:54 -07:00
Chang She
b482f41bf4 fix(python): fix typo in passing in the api_key explicitly (#1098)
fix silly typo
2024-03-12 22:01:12 -07:00
Weston Pace
4dc7497547 feat: add list_indices to the async api (#1074) 2024-03-12 14:41:21 -07:00
Weston Pace
d744972f2f feat: add update to the async API (#1093) 2024-03-12 14:11:37 -07:00
Will Jones
9bc320874a fix: handle uri in object (#1091)
Fixes #1078
2024-03-12 13:25:56 -07:00
Weston Pace
510d449167 feat: add time travel operations to the async API (#1070) 2024-03-12 09:20:23 -07:00
Weston Pace
356e89a800 feat: add create_index to the async python API (#1052)
This also refactors the rust lancedb index builder API (and,
correspondingly, the nodejs API)
2024-03-12 05:17:05 -07:00
Will Jones
ae1cf4441d fix: propagate filter validation errors (#1092)
In Rust and Node, we have been swallowing filter validation errors. If
there was an error in parsing the filter, then the filter was silently
ignored, returning unfiltered results.

Fixes #1081
2024-03-11 14:11:39 -07:00
Lance Release
1ae08fe31d [python] Bump version: 0.6.2 → 0.6.3 2024-03-11 20:16:36 +00:00
Rob Meng
a517629c65 feat: configurable timeout for LanceDB Cloud queries (#1090) 2024-03-11 16:15:48 -04:00
Ivan Leo
553dae1607 Update default_embedding_functions.md (#1073)
Added a small bit of documentation for the `dim` feature which is
provided by the new `text-embedding-3` model series that allows users to
shorten an embedding.

Happy to discuss a bit on the phrasing but I struggled quite a bit with
getting it to work so wanted to help others who might want to use the
newer model too
2024-03-11 21:30:07 +05:30
Weston Pace
9c7e00eec3 Remove remote integration workflow (#1076) 2024-03-07 12:00:04 -08:00
Will Jones
a7d66032aa fix: Allow converting from NativeTable to Table (#1069) 2024-03-07 08:33:46 -08:00
Lance Release
7fb8a732a5 Updating package-lock.json 2024-03-07 01:05:09 +00:00
Lance Release
f393ac3b0d Updating package-lock.json 2024-03-06 23:26:48 +00:00
Lance Release
ca83354780 Bump version: 0.4.11 → 0.4.12 2024-03-06 23:26:38 +00:00
Lance Release
272cbcad7a [python] Bump version: 0.6.1 → 0.6.2 2024-03-06 16:28:50 +00:00
Will Jones
722fe1836c fix: make checkout_latest force a reload (#1064)
#1002 accidentally changed `checkout_latest` to do nothing if the table
was already in latest mode. This PR makes sure it forces a reload of the
table (if there is a newer version).
2024-03-05 11:51:47 -08:00
Lei Xu
d1983602c2 chore: bump lance to 0.10.2 (#1061) 2024-03-05 10:16:07 -08:00
Weston Pace
9148cd6d47 feat: page_token / limit to native table_names function. Use async table_names function from sync table_names function (#1059)
The synchronous table_names function in python lancedb relies on arrow's
filesystem which behaves slightly differently than object_store. As a
result, the function would not work properly in GCS.

However, the async table_names function uses object_store directly and
thus is accurate. In most cases we can fallback to using the async
table_names function and so this PR does so. The one case we cannot is
if the user is already in an async context (we can't start a new async
event loop). Soon, we can just redirect those users to use the async API
instead of the sync API and so that case will eventually go away. For
now, we fallback to the old behavior.
2024-03-05 08:38:18 -08:00
Will Jones
47dbb988bf feat: more accessible errors (#1025)
The fact that we convert errors to strings makes them really hard to
work with. For example, in SaaS we want to know whether the underlying
`lance::Error` was the `InvalidInput` variant, so we can return a 400
instead of a 500.
2024-03-05 07:57:11 -08:00
Chang She
6821536d44 doc(python): document the method in fts (#982)
Co-authored-by: prrao87 <prrao87@gmail.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-03-04 16:42:24 -08:00
Ayush Chaurasia
d6f0663671 fix(python): Few fts patches (#1039)
1. filtering with fts mutated the schema, which caused schema mistmatch
problems with hybrid search as it combines fts and vector search tables.
2. fts with filter failed with `with_row_id`. This was because row_id
was calculated before filtering which caused size mismatch on attaching
it after.
3. The fix for 1 meant that now row_id is attached before filtering but
passing a filter to `to_lance` on a dataset that already contains
`_rowid` raises a panic from lance. So temporarily, in case where fts is
used with a filter AND `with_row_id`, we just force user to using the
duckdb pathway.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-03-04 16:41:59 -08:00
Weston Pace
ea33b68c6c fix: sanitize foreign schemas (#1058)
Arrow-js uses brittle `instanceof` checks throughout the code base.
These fail unless the library instance that produced the object matches
exactly the same instance the vectordb is using. At a minimum, this
means that a user using arrow version 15 (or any version that doesn't
match exactly the version that vectordb is using) will get strange
errors when they try and use vectordb.

However, there are even cases where the versions can be perfectly
identical, and the instanceof check still fails. One such example is
when using `vite` (e.g. https://github.com/vitejs/vite/issues/3910)

This PR solves the problem in a rather brute force, but workable,
fashion. If we encounter a schema that does not pass the `instanceof`
check then we will attempt to sanitize that schema by traversing the
object and, if it has all the correct properties, constructing an
appropriate `Schema` instance via deep cloning.
2024-03-04 13:06:36 -08:00
Weston Pace
1453bf4e7a feat: reconfigure typescript linter / formatter for nodejs (#1042)
The eslint rules specify some formatting requirements that are rather
strict and conflict with vscode's default formatter. I was unable to get
auto-formatting to setup correctly. Also, eslint has quite recently
[given up on
formatting](https://eslint.org/blog/2023/10/deprecating-formatting-rules/)
and recommends using a 3rd party formatter.

This PR adds prettier as the formatter. It restores the eslint rules to
their defaults. This does mean we now have the "no explicit any" check
back on. I know that rule is pedantic but it did help me catch a few
corner cases in type testing that weren't covered in the current code.
Leaving in draft as this is dependent on other PRs.
2024-03-04 10:49:08 -08:00
Weston Pace
abaf315baf feat: add support for add to async python API (#1037)
In order to add support for `add` we needed to migrate the rust `Table`
trait to a `Table` struct and `TableInternal` trait (similar to the way
the connection is designed).

While doing this we also cleaned up some inconsistencies between the
SDKs:

* Python and Node are garbage collected languages and it can be
difficult to trigger something to be freed. The convention for these
languages is to have some kind of close method. I added a close method
to both the table and connection which will drop the underlying rust
object.
* We made significant improvements to table creation in
cc5f2136a6
for the `node` SDK. I copied these changes to the `nodejs` SDK.
* The nodejs tables were using fs to create tmp directories and these
were not getting cleaned up. This is mostly harmless but annoying and so
I changed it up a bit to ensure we cleanup tmp directories.
* ~~countRows in the node SDK was returning `bigint`. I changed it to
return `number`~~ (this actually happened in a previous PR)
* Tables and connections now implement `std::fmt::Display` which is
hooked into python's `__repr__`. Node has no concept of a regular "to
string" function and so I added a `display` method.
* Python method signatures are changing so that optional parameters are
always `Optional[foo] = None` instead of something like `foo = False`.
This is because we want those defaults to be in rust whenever possible
(though we still need to mention the default in documentation).
* I changed the python `AsyncConnection/AsyncTable` classes from
abstract classes with a single implementation to just classes because we
no longer have the remote implementation in python.

Note: this does NOT add the `add` function to the remote table. This PR
was already large enough, and the remote implementation is unique
enough, that I am going to do all the remote stuff at a later date (we
should have the structure in place and correct so there shouldn't be any
refactor concerns)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-03-04 09:27:41 -08:00
Chang She
14b9277ac1 chore(rust): update rust version (#810) 2024-03-03 18:51:58 -08:00
Chang She
d621826b79 feat(python): allow user to override api url (#1054) 2024-03-03 18:29:47 -08:00
Chang She
08c0803ae1 chore(python): use pypi tantivy to speed up CI (#987) 2024-03-03 16:57:55 -08:00
Chang She
62632cb90b doc: fix docs deployment GHA (#1055) 2024-03-03 16:04:45 -08:00
Prashanth Rao
14566df213 [docs]: Fix issues with Rust code snippets in "quick start" (#1047)
The renaming of `vectordb` to `lancedb` broke the [quick start
docs](https://lancedb.github.io/lancedb/basic/#__tabbed_5_3) (it's
pointing to a non-existent directory). This PR fixes the code snippets
and the paths in the docs page.

Additionally, more fixes related to indexing docs below 👇🏽.
2024-03-03 15:59:57 -08:00
Louis Guitton
acfdf1b9cb Fix default_embedding_functions.md (#1043)
typo and broken table
2024-03-03 15:22:53 -08:00
Chang She
f95402af7c doc: fix langchain link (#1053) 2024-03-03 15:20:48 -08:00
Chang She
d14c9b6d9e feat(python): add model_names() method to openai embedding function (#1049)
small QoL improvement
2024-03-03 12:33:00 -08:00
QianZhu
c1af53b787 Add create scalar index to sdk (#1033) 2024-02-29 13:32:01 -08:00
Weston Pace
2a02d1394b feat: port create_table to the async python API and the remote rust API (#1031)
I've also started `ASYNC_MIGRATION.MD` to keep track of the breaking
changes from sync to async python.
2024-02-29 13:29:29 -08:00
Lance Release
085066d2a8 [python] Bump version: 0.6.0 → 0.6.1 2024-02-29 19:48:16 +00:00
Rob Meng
adf1a38f4d fix: fix columns type for pydantic 2.x (#1045) 2024-02-29 14:47:56 -05:00
Weston Pace
294c33a42e feat: Initial remote table implementation for rust (#1024)
This will eventually replace the remote table implementations in python
and node.
2024-02-29 10:55:49 -08:00
Lance Release
245786fed7 [python] Bump version: 0.5.7 → 0.6.0 2024-02-29 16:03:01 +00:00
BubbleCal
edd9a043f8 chore: enable test for dropping table (#1038)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-02-29 15:00:24 +08:00
natcharacter
38c09fc294 A simple base usage that install the dependencies necessary to use FT… (#1036)
A simple base usage that install the dependencies necessary to use FTS
and Hybrid search

---------

Co-authored-by: Nat Roth <natroth@Nats-MacBook-Pro.local>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-28 09:38:05 -08:00
Rob Meng
ebaa2dede5 chore: upgrade to lance 0.10.1 (#1034)
upgrade to lance 0.10.1 and update doc string to reflect dynamic
projection options
2024-02-28 11:06:46 -05:00
BubbleCal
ba7618a026 chore(rust): report the TableNotFound error while dropping non-exist table (#1022)
this will work after upgrading lance with
https://github.com/lancedb/lance/pull/1995 merged
see #884 for details

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-02-28 04:46:39 -08:00
Weston Pace
a6bcbd007b feat: add a basic async python client starting point (#1014)
This changes `lancedb` from a "pure python" setuptools project to a
maturin project and adds a rust lancedb dependency.

The async python client is extremely minimal (only `connect` and
`Connection.table_names` are supported). The purpose of this PR is to
get the infrastructure in place for building out the rest of the async
client.

Although this is not technically a breaking change (no APIs are
changing) it is still a considerable change in the way the wheels are
built because they now include the native shared library.
2024-02-27 04:52:02 -08:00
Will Jones
5af74b5aca feat: {add|alter|drop}_columns APIs (#1015)
Initial work for #959. This exposes the basic functionality for each in
all of the APIs. Will add user guide documentation in a later PR.
2024-02-26 11:04:53 -08:00
Weston Pace
8a52619bc0 refactor: change arrow from a direct dependency to a peer dependency (#984)
BREAKING CHANGE: users will now need to npm install `apache-arrow` and
`@apache-arrow/ts` themselves.
2024-02-23 14:08:39 -08:00
Lance Release
314d4c93e5 Updating package-lock.json 2024-02-23 05:11:22 +00:00
Lance Release
c5471ee694 Updating package-lock.json 2024-02-23 03:57:39 +00:00
Lance Release
4605359d3b Bump version: 0.4.10 → 0.4.11 2024-02-23 03:57:28 +00:00
Weston Pace
f1596122e6 refactor: rename the rust crate from vectordb to lancedb (#1012)
This also renames the new experimental node package to lancedb. The
classic node package remains named vectordb.

The goal here is to avoid introducing piecemeal breaking changes to the
vectordb crate. Instead, once the new API is stabilized, we will
officially release the lancedb crate and deprecate the vectordb crate.
The same pattern will eventually happen with the npm package vectordb.
2024-02-22 19:56:39 -08:00
Will Jones
3aa0c40168 feat(node): add read_consistency_interval to Node and Rust (#1002)
This PR adds the same consistency semantics as was added in #828. It
*does not* add the same lazy-loading of tables, since that breaks some
existing tests.

This closes #998.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-22 15:04:30 -08:00
Lance Release
677b7c1fcc [python] Bump version: 0.5.6 → 0.5.7 2024-02-22 20:07:12 +00:00
Lei Xu
8303a7197b chore: bump pylance to 0.9.18 (#1011) 2024-02-22 11:47:36 -08:00
Raghav Dixit
5fa9bfc4a8 python(feat): Imagebind embedding fn support (#1003)
Added imagebind fn support , steps to install mentioned in docstring. 
pytest slow checks done locally

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-02-22 11:47:08 +05:30
Ayush Chaurasia
bf2e9d0088 Docs: add meta tags (#1006) 2024-02-21 23:22:47 +05:30
Weston Pace
f04590ddad refactor: rust vectordb API stabilization of the Connection trait (#993)
This is the start of a more comprehensive refactor and stabilization of
the Rust API. The `Connection` trait is cleaned up to not require
`lance` and to match the `Connection` trait in other APIs. In addition,
the concrete implementation `Database` is hidden.

BREAKING CHANGE: The struct `crate::connection::Database` is now gone.
Several examples opened a connection using `Database::connect` or
`Database::connect_with_params`. Users should now use
`vectordb::connect`.

BREAKING CHANGE: The `connect`, `create_table`, and `open_table` methods
now all return a builder object. This means that a call like
`conn.open_table(..., opt1, opt2)` will now become
`conn.open_table(...).opt1(opt1).opt2(opt2).execute()` In addition, the
structure of options has changed slightly. However, no options
capability has been removed.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-02-20 18:35:52 -08:00
Lance Release
62c5117def [python] Bump version: 0.5.5 → 0.5.6 2024-02-20 20:45:02 +00:00
Bert
22c196b3e3 lance 0.9.18 (#1000) 2024-02-19 15:20:34 -05:00
Johannes Kolbe
1f4ac71fa3 apply fixes for notebook (#989) 2024-02-19 15:36:52 +05:30
Ayush Chaurasia
b5aad2d856 docs: Add meta tag for image preview (#988)
I think this should work. Need to deploy it to be sure as it can be
tested locally. Can be tested here.

2 things about this solution:
* All pages have a same meta tag, i.e, lancedb banner
* If needed, we can automatically use the first image of each page and
generate meta tags using the ultralytics mkdocs plugin that we did for
this purpose - https://github.com/ultralytics/mkdocs
2024-02-19 14:07:31 +05:30
Chang She
ca6f55b160 doc: update navigation links for embedding functions (#986) 2024-02-17 12:12:11 -08:00
Chang She
6f8cf1e068 doc: improve embedding functions documentation (#983)
Got some user feedback that the `implicit` / `explicit` distinction is
confusing.
Instead I was thinking we would just deprecate the `with_embeddings` API
and then organize working with embeddings into 3 buckets:

1. manually generate embeddings
2. use a provided embedding function
3. define your own custom embedding function
2024-02-17 10:39:28 -08:00
Chang She
e0277383a5 feat(python): add optional threadpool for batch requests (#981)
Currently if a batch request is given to the remote API, each query is
sent sequentially. We should allow the user to specify a threadpool.
2024-02-16 20:22:22 -08:00
Will Jones
d6b408e26f fix: use static C runtime on Windows (#979)
We depend on C static runtime, but not all Windows machines have that.
So might be worth statically linking it.

https://github.com/reorproject/reor/issues/36#issuecomment-1948876463
2024-02-16 15:54:12 -08:00
Will Jones
2447372c1f docs: show DuckDB with dataset, not table (#974)
Using datasets is preferred way to allow filter and projection pushdown,
as well as aggregated larger-than-memory tables.
2024-02-16 09:18:18 -08:00
Ayush Chaurasia
f0298d8372 docs: Minimal reranking evaluation benchmarks (#977) 2024-02-15 22:16:53 +05:30
Lance Release
54693e6bec Updating package-lock.json 2024-02-14 23:20:59 +00:00
Will Jones
73b2977bff chore: upgrade lance to 0.9.16 (#975) 2024-02-14 14:20:03 -08:00
Will Jones
aec85f7875 ci: fix Node ARM release build (#971)
When we turned on fat LTO builds, we made the release build job **much**
more compute and memory intensive. The ARM runners have particularly low
memory per core, which makes them susceptible to OOM errors. To avoid
issues, I have enabled memory swap on ARM and bumped the side of the
runner.
2024-02-14 13:02:09 -08:00
Will Jones
51f92ecb3d ci: reduce number of build jobs on aarch64 to avoid OOM (#970) 2024-02-13 17:33:09 -08:00
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
Lance Release
82936c77ef [python] Bump version: 0.5.3 → 0.5.4 2024-02-09 22:56:45 +00:00
Weston Pace
dddcddcaf9 chore: bump lance version to 0.9.15 (#949) 2024-02-09 14:55:44 -08:00
Weston Pace
a9727eb318 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-02-09 10:26:14 -08:00
QianZhu
48d55bf952 added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-09 10:07:47 -08:00
Weston Pace
d2e71c8b08 feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-02-08 09:40:29 -08:00
Nitish Sharma
f53aace89c Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-02-07 20:49:25 -08:00
Ayush Chaurasia
d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30
Will Jones
57605a2d86 feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

## Table reference state

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-02-05 08:12:19 -08:00
Ayush Chaurasia
738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00
Lei Xu
0b0f42537e chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-02-04 14:21:27 -08:00
QianZhu
e412194008 fix hybrid search example (#922) 2024-02-03 09:26:32 +05:30
Lance Release
a9088224c5 [python] Bump version: 0.5.2 → 0.5.3 2024-02-03 03:04:04 +00:00
Ayush Chaurasia
688c57a0d8 fix: revert safe_import_pandas usage (#921) 2024-02-02 18:57:13 -08:00
Lance Release
12a98deded Updating package-lock.json 2024-02-02 22:37:23 +00:00
Lance Release
e4bb042918 Updating package-lock.json 2024-02-02 21:57:07 +00:00
Lance Release
04e1662681 Bump version: 0.4.7 → 0.4.8 2024-02-02 21:56:57 +00:00
Lance Release
ce2242e06d [python] Bump version: 0.5.1 → 0.5.2 2024-02-02 21:33:02 +00:00
Weston Pace
778339388a chore: bump pylance version to latest in pyproject.toml (#918) 2024-02-02 13:32:12 -08:00
Weston Pace
7f8637a0b4 feat: add merge_insert to the node and rust APIs (#915) 2024-02-02 13:16:51 -08:00
QianZhu
09cd08222d make it explicit about the vector column data type (#916)
<img width="837" alt="Screenshot 2024-02-01 at 4 23 34 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/4f0f5c5a-2a24-4b00-aad1-ef80a593d964">
[
<img width="838" alt="Screenshot 2024-02-01 at 4 26 03 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/ca073bc8-b518-4be3-811d-8a7184416f07">
](url)

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-02 09:02:02 -08:00
Bert
a248d7feec fix: add request retry to python client (#917)
Adds capability to the remote python SDK to retry requests (fixes #911)

This can be configured through environment:
- `LANCE_CLIENT_MAX_RETRIES`= total number of retries. Set to 0 to
disable retries. default = 3
- `LANCE_CLIENT_CONNECT_RETRIES` = number of times to retry request in
case of TCP connect failure. default = 3
- `LANCE_CLIENT_READ_RETRIES` = number of times to retry request in case
of HTTP request failure. default = 3
- `LANCE_CLIENT_RETRY_STATUSES` = http statuses for which the request
will be retried. passed as comma separated list of ints. default `500,
502, 503`
- `LANCE_CLIENT_RETRY_BACKOFF_FACTOR` = controls time between retry
requests. see
[here](23f2287eb5/src/urllib3/util/retry.py (L141-L146)).
default = 0.25

Only read requests will be retried:
- list table names
- query
- describe table
- list table indices

This does not add retry capabilities for writes as it could possibly
cause issues in the case where the retried write isn't idempotent. For
example, in the case where the LB times-out the request but the server
completes the request anyway, we might not want to blindly retry an
insert request.
2024-02-02 11:27:29 -05:00
Weston Pace
cc9473a94a docs: add cleanup_old_versions and compact_files to Table for documentation purposes (#900)
Closes #819
2024-02-01 15:06:00 -08:00
Weston Pace
d77e95a4f4 feat: upgrade to lance 0.9.11 and expose merge_insert (#906)
This adds the python bindings requested in #870 The javascript/rust
bindings will be added in a future PR.
2024-02-01 11:36:29 -08:00
Lei Xu
62f053ac92 ci: bump to new version of python action to use node 20 gIthub action runtime (#909)
Github action is deprecating old node-16 runtime.
2024-02-01 11:36:03 -08:00
JacobLinCool
34e10caad2 fix the repo link on npm, add links for homepage and bug report (#910)
- fix the repo link on npm
- add links for homepage and bug report
2024-01-31 21:07:11 -08:00
QianZhu
f5726e2d0c arrow table/f16 example (#907) 2024-01-31 14:41:28 -08:00
Lance Release
12b4fb42fc Updating package-lock.json 2024-01-31 21:18:24 +00:00
Lance Release
1328cd46f1 Updating package-lock.json 2024-01-31 20:29:38 +00:00
Lance Release
0c940ed9f8 Bump version: 0.4.6 → 0.4.7 2024-01-31 20:29:28 +00:00
Lei Xu
5f59e51583 fix(node): pass AWS credentials to db level operations (#908)
Passed the following tests

```ts
const keyId = process.env.AWS_ACCESS_KEY_ID;
const secretKey = process.env.AWS_SECRET_ACCESS_KEY;
const sessionToken = process.env.AWS_SESSION_TOKEN;
const region = process.env.AWS_REGION;

const db = await lancedb.connect({
  uri: "s3://bucket/path",
  awsCredentials: {
    accessKeyId: keyId,
    secretKey: secretKey,
    sessionToken: sessionToken,
  },
  awsRegion: region,
} as lancedb.ConnectionOptions);

  console.log(await db.createTable("test", [{ vector: [1, 2, 3] }]));
  console.log(await db.tableNames());
  console.log(await db.dropTable("test"))
```
2024-01-31 12:05:01 -08:00
Will Jones
8d0ea29f89 docs: provide AWS S3 cleanup and permissions advice (#903)
Adding some more quick advice for how to setup AWS S3 with LanceDB.

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-31 09:24:54 -08:00
Abraham Lopez
b9468bb980 chore: update JS/TS example in README (#898)
- The JS/TS library actually expects named parameters via an object in
`.createTable()` rather than individual arguments
- Added example on how to search rows by criteria without a vector
search. TS type of `.search()` currently has the `query` parameter as
non-optional so we have to pass undefined for now.
2024-01-30 11:09:45 -08:00
Lei Xu
a42df158a3 ci: change apple silicon runner to free OSS macos-14 target (#901) 2024-01-30 11:05:42 -08:00
Raghav Dixit
9df6905d86 chore(python): GTE embedding function model name update (#902)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 23:56:29 +05:30
Ayush Chaurasia
3ffed89793 feat(python): Hybrid search & Reranker API (#824)
based on https://github.com/lancedb/lancedb/pull/713
- The Reranker api can be plugged into vector only or fts only search
but this PR doesn't do that (see example -
https://txt.cohere.com/rerank/)


### Default reranker -- `LinearCombinationReranker(weight=0.7,
fill=1.0)`

```
table.search("hello", query_type="hybrid").rerank(normalize="score").to_pandas()
```
### Available rerankers
LinearCombinationReranker
```
from lancedb.rerankers import LinearCombinationReranker

# Same as default 
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=LinearCombinationReranker()
                                     ).to_pandas()

# with custom params
reranker = LinearCombinationReranker(weight=0.3, fill=1.0)
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=reranker
                                     ).to_pandas()
```

Cohere Reranker
```
from lancedb.rerankers import CohereReranker

# default model.. English and multi-lingual supported. See docstring for available custom params
table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank",  # score or rank
                                      reranker=CohereReranker()
                                     ).to_pandas()

```

CrossEncoderReranker

```
from lancedb.rerankers import CrossEncoderReranker

table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank", 
                                      reranker=CrossEncoderReranker()
                                     ).to_pandas()

```

## Using custom Reranker
```
from lancedb.reranker import Reranker

class CustomReranker(Reranker):
    def rerank_hybrid(self, vector_result, fts_result):
           combined_res = self.merge_results(vector_results, fts_results) # or use custom combination logic
           # Custom rerank logic here
           
           return combined_res
```

- [x] Expand testing
- [x] Make sure usage makes sense
- [x] Run simple benchmarks for correctness (Seeing weird result from
cohere reranker in the toy example)
- Support diverse rerankers by default:
- [x] Cross encoding
- [x] Cohere
- [x] Reciprocal Rank Fusion

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-30 19:10:33 +05:30
Prashanth Rao
f150768739 Fix image bgcolor (#891)
Minor fix to change the background color for an image in the docs. It's
now readable in both light and dark modes (earlier version made it
impossible to read in dark mode).
2024-01-30 16:50:29 +05:30
Ayush Chaurasia
b432ecf2f6 doc: Add documentation chatbot for LanceDB (#890)
<img width="1258" alt="Screenshot 2024-01-29 at 10 05 52 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/7c108fde-e993-415c-ad01-72010fd5fe31">
2024-01-30 11:24:57 +05:30
Raghav Dixit
d1a7257810 feat(python): Embedding fn support for gte-mlx/gte-large (#873)
have added testing and an example in the docstring, will be pushing a
separate PR in recipe repo for rag example

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 11:21:57 +05:30
Ayush Chaurasia
5c5e23bbb9 chore(python): Temporarily extend remote connection timeout (#888)
Context - https://etoai.slack.com/archives/C05NC5YSW5V/p1706371205883149
2024-01-29 17:34:33 +05:30
Lei Xu
e5796a4836 doc: fix js example of create index (#886) 2024-01-28 17:02:36 -08:00
Lei Xu
b9c5323265 doc: use snippet for rust code example and make sure rust examples run through CI (#885) 2024-01-28 14:30:30 -08:00
Lei Xu
e41a52863a fix: fix doc build to include the source snippet correctly (#883) 2024-01-28 11:55:58 -08:00
Chang She
13acc8a480 doc(rust): minor fixes for Rust quick start. (#878) 2024-01-28 11:40:52 -08:00
Lei Xu
22b9eceb12 chore: convert all js doc test to use snippet. (#881) 2024-01-28 11:39:25 -08:00
Lei Xu
5f62302614 doc: use code snippet for typescript examples (#880)
The typescript code is in a fully function file, that will be run via the CI.
2024-01-27 22:52:37 -08:00
Ayush Chaurasia
d84e0d1db8 feat(python): Aws Bedrock embeddings integration (#822)
Supports amazon titan, cohere english & cohere multi-lingual base
models.
2024-01-28 02:04:15 +05:30
Lei Xu
ac94b2a420 chore: upgrade lance, pylance and datafusion (#879) 2024-01-27 12:31:38 -08:00
Lei Xu
b49bc113c4 chore: add one rust SDK e2e example (#876)
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-26 22:41:20 -08:00
Lei Xu
77b5b1cf0e doc: update quick start for full rust example (#872) 2024-01-26 16:19:43 -08:00
Lei Xu
e910809de0 chore: bump github actions to v4 due to GHA warnings of node version deprecation (#874) 2024-01-26 15:52:47 -08:00
Lance Release
90b5b55126 Updating package-lock.json 2024-01-26 23:35:58 +00:00
Lance Release
488e4f8452 Updating package-lock.json 2024-01-26 22:40:46 +00:00
Lance Release
ba6f949515 Bump version: 0.4.5 → 0.4.6 2024-01-26 22:40:36 +00:00
Lei Xu
3dd8522bc9 feat(rust): provide connect and connect_with_options in Rust SDK (#871)
* Bring the feature parity of Rust connect methods.
* A global connect method that can connect to local and remote / cloud
table, as the same as in js/python today.
2024-01-26 11:40:11 -08:00
Lei Xu
e01ef63488 chore(rust): simplified version of optimize (#869)
Consolidate various optimize() into one method, similar to postgres
VACCUM in the process of preparing Rust API for public use
2024-01-26 11:36:04 -08:00
Lei Xu
a6cf24b359 feat(napi): Issue queries as node SDK (#868)
* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
2024-01-25 22:14:14 -08:00
Lance Release
9a07c9aad8 Updating package-lock.json 2024-01-25 21:49:36 +00:00
Lance Release
d405798952 Updating package-lock.json 2024-01-25 20:54:55 +00:00
Lance Release
e8a8b92b2a Bump version: 0.4.4 → 0.4.5 2024-01-25 20:54:44 +00:00
Lei Xu
66362c6506 fix: release build for node sdk (#861) 2024-01-25 12:51:32 -08:00
Lance Release
5228ca4b6b Updating package-lock.json 2024-01-25 19:53:05 +00:00
Lance Release
dcc216a244 Bump version: 0.4.3 → 0.4.4 2024-01-25 19:52:54 +00:00
Lei Xu
a7aa168c7f feat: improve the rust table query API and documents (#860)
* Easy to type
* Handle `String, &str, [String] and [&str]` well without manual
conversion
* Fix function name to be verb
* Improve docstring of Rust.
* Promote `query` and `search()` to public `Table` trait
2024-01-25 10:44:31 -08:00
Lei Xu
7a89b5ec68 doc: update rust readme to include crate and docs.rs links (#859) 2024-01-24 20:26:30 -08:00
Lei Xu
ee862abd29 feat(napi): Provide a new createIndex API in the napi SDK. (#857) 2024-01-24 17:27:46 -08:00
Will Jones
4e1ed2b139 docs: document basics of configuring object storage (#832)
Created based on upstream PR https://github.com/lancedb/lance/pull/1849

Closes #681

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-24 15:27:22 -08:00
Lei Xu
008e0b1a93 feat(rust): create index API improvement (#853)
* Extract a minimal Table interface in Rust SDK
* Make create_index composable in Rust.
* Fix compiling issues from ffi
2024-01-24 10:05:12 -08:00
Bert
82cbcf6d07 Bump lance 0.9.9 (#851) 2024-01-24 08:41:28 -05:00
Lei Xu
1cd5426aea feat: rework NodeJS SDK using napi (#847)
Use Napi to write a Node.js SDK that follows Polars for better
maintainability, while keeping most of the logic in Rust.
2024-01-23 15:14:45 -08:00
Lance Release
41f0e32a06 [python] Bump version: 0.5.0 → 0.5.1 2024-01-23 22:01:14 +00:00
Lei Xu
ccfd043939 feat: change create table to accept Arrow table (#845) 2024-01-23 13:25:15 -08:00
QianZhu
b4d451ed21 extend timeout for requests.get and requests.post (#848) 2024-01-22 20:31:39 -08:00
Lei Xu
4c303ba293 chore(rust): provide a Connection trait to match python and nodejs SDK (#846)
In NodeJS and Python, LanceDB establishes a connection to a db. In Rust
core, it is called Database.
We should be consistent with the naming.
2024-01-22 17:35:02 -08:00
Bert
66eaa2a00e allow passing api key as env var (#841)
Allow passing API key as env var:
```shell
export LANCEDB_API_KEY=sh_123...
```

with this set, apiKey argument can omitted from `connect`
```js
    const db = await vectordb.connect({
        uri: "db://test-proj-01-ae8343",
        region: "us-east-1",
  })
```
```py
    db = lancedb.connect(
        uri="db://test-proj-01-ae8343",
        region="us-east-1",
    )
```
2024-01-22 16:18:28 -05:00
Lei Xu
5f14a411af feat(js): add helper function to create Arrow Table with schema (#838)
Support to make Apache Arrow Table from an array of javascript Records,
with optionally provided Schema.
2024-01-22 11:49:44 -08:00
Chang She
bea3cef627 chore(js): remove errant console.log (#834) 2024-01-22 11:44:38 -08:00
Lei Xu
0e92a7277c doc: add index page for rust crate (#839)
Rust API doc for the braves
2024-01-22 09:15:55 -08:00
Lei Xu
83ed8d1e49 bug: add a test for fp16 (#837)
Add test to ingest fp16 to a database
2024-01-20 16:23:28 -08:00
Chang She
a1ab549457 Merge branch 'tecmie-tecmie/embeddings-openai' 2024-01-19 16:46:16 -08:00
Chang She
3ba1618be9 Merge branch 'tecmie/embeddings-openai' of github.com:tecmie/lancedb into tecmie-tecmie/embeddings-openai 2024-01-19 16:45:41 -08:00
Lei Xu
9a9fc77a95 doc: improve docs for nodejs connect functions (#833)
* improve the docstring for NodeJS connect functions and
`ConnectOptions` parameters.
* Simplify `npm run build` steps.
2024-01-19 16:07:53 -08:00
Bert
c89d5e6e6d fix: remote python client closes idle connections (#831) 2024-01-19 17:28:36 -05:00
Will Jones
d012db24c2 ci: lint and enforce linting (#829)
@eddyxu added instructions for linting here:


7af213801a/python/README.md (L45-L50)

However, we had a lot of failures and weren't checking this in CI. This
PR fixes all lints and adds a check to CI to keep us in compliance with
the lints.
2024-01-19 13:09:14 -08:00
Bert
7af213801a bump lance to 0.9.7 (#826) 2024-01-18 20:44:22 -08:00
Prashanth Rao
8f54cfcde9 Docs updates incl. Polars (#827)
This PR makes the following aesthetic and content updates to the docs.

- [x] Fix max width issue on mobile: Content should now render more
cleanly and be more readable on smaller devices
- [x] Improve image quality of flowchart in data management page
- [x] Fix syntax highlighting in text at the bottom of the IVF-PQ
concepts page
- [x] Add example of Polars LazyFrames to docs (Integrations)
- [x] Add example of adding data to tables using Polars (guides)
2024-01-18 20:43:59 -08:00
Prashanth Rao
119b928a52 docs: Updates and refactor (#683)
This PR makes incremental changes to the documentation.

* Closes #697 
* Closes #698

## Chores
- [x] Add dark mode
- [x] Fix headers in navbar
- [x] Add `extra.css` to customize navbar styles
- [x] Customize fonts for prose/code blocks, navbar and admonitions
- [x] Inspect all admonition boxes (remove redundant dropdowns) and
improve clarity and readability
- [x] Ensure that all images in the docs have white background (not
transparent) to be viewable in dark mode
- [x] Improve code formatting in code blocks to make them consistent
with autoformatters (eslint/ruff)
- [x] Add bolder weight to h1 headers
- [x] Add diagram showing the difference between embedded (OSS) and
serverless (Cloud)
- [x] Fix [Creating an empty
table](https://lancedb.github.io/lancedb/guides/tables/#creating-empty-table)
section: right now, the subheaders are not clickable.
- [x] In critical data ingestion methods like `table.add` (among
others), the type signature often does not match the actual code
- [x] Proof-read each documentation section and rewrite as necessary to
provide more context, use cases, and explanations so it reads less like
reference documentation. This is especially important for CRUD and
search sections since those are so central to the user experience.

## Restructure/new content 
- [x] The section for [Adding
data](https://lancedb.github.io/lancedb/guides/tables/#adding-to-a-table)
only shows examples for pandas and iterables. We should include pydantic
models, arrow tables, etc.
- [x] Add conceptual tutorial for IVF-PQ index
- [x] Clearly separate vector search, FTS and filtering sections so that
these are easier to find
- [x] Add docs on refine factor to explain its importance for recall.
Closes #716
- [x] Add an FAQ page showing answers to commonly asked questions about
LanceDB. Closes #746
- [x] Add simple polars example to the integrations section. Closes #756
and closes #153
- [ ] Add basic docs for the Rust API (more detailed API docs can come
later). Closes #781
- [x] Add a section on the various storage options on local vs. cloud
(S3, EBS, EFS, local disk, etc.) and the tradeoffs involved. Closes #782
- [x] Revamp filtering docs: add pre-filtering examples and redo headers
and update content for SQL filters. Closes #783 and closes #784.
- [x] Add docs for data management: compaction, cleaning up old versions
and incremental indexing. Closes #785
- [ ] Add a benchmark section that also discusses some best practices.
Closes #787

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-01-19 00:18:37 +05:30
Lance Release
8bcdc81fd3 [python] Bump version: 0.4.4 → 0.5.0 2024-01-18 01:53:15 +00:00
Chang She
39e14c70c5 chore(python): turn off lazy frame ingestion (#821) 2024-01-16 19:11:16 -08:00
Chang She
af8263af94 feat(python): allow the entire table to be converted a polars dataframe (#814) 2024-01-15 15:49:16 -08:00
Chang She
be4ab9eef3 feat(python): add exist_ok option to create table (#813)
This mimics CREATE TABLE IF NOT EXISTS behavior.
We add `db.create_table(..., exist_ok=True)` parameter.
By default it is set to False, so trying to create
a table with the same name will raise an exception.
If set to True, then it only opens the table if it
already exists. If you pass in a schema, it will
be checked against the existing table to make sure
you get what you want. If you pass in data, it will
NOT be added to the existing table.
2024-01-15 11:09:18 -08:00
Ayush Chaurasia
184d2bc969 chore(python): get rid of Pydantic deprication warning in embedding fcn (#816)
```
UserWarning: Valid config keys have changed in V2:
* 'keep_untouched' has been renamed to 'ignored_types' warnings.warn(message, UserWarning)
```
2024-01-15 12:19:51 +05:30
Anton Shevtsov
ff6f005336 Add openai api key not found help (#815)
This pull request adds check for the presence of an environment variable
`OPENAI_API_KEY` and removes an unused parameter in
`retry_with_exponential_backoff` function.
2024-01-15 02:44:09 +05:30
Chang She
49333e522c feat(python): basic polars integration (#811)
We should now be able to directly ingest polars dataframes and return
results as polars dataframes


![image](https://github.com/lancedb/lancedb/assets/759245/828b1260-c791-45f1-a047-aa649575e798)
2024-01-13 16:38:16 -08:00
Andrew Miracle
44eba363b5 eslint fix 2024-01-13 09:15:01 +01:00
Ayush Chaurasia
4568df422d feat(python): Add gemini text embedding function (#806)
Named it Gemini-text for now. Not sure how complicated it will be to
support both text and multimodal embeddings under the same class
"gemini"..But its not something to worry about for now I guess.
2024-01-12 22:38:55 -08:00
Andrew Miracle
a90358a1e3 Merge branch 'main' into tecmie/embeddings-openai 2024-01-12 10:18:54 +01:00
Andrew Miracle
f7f9beaf31 rebase from lancedb/main 2024-01-12 10:17:30 +01:00
Lance Release
cfdbddc5cf Updating package-lock.json 2024-01-12 09:45:45 +01:00
Lance Release
88affc1428 Bump version: 0.4.2 → 0.4.3 2024-01-12 09:45:40 +01:00
Lance Release
a7be064f00 [python] Bump version: 0.4.3 → 0.4.4 2024-01-12 09:45:40 +01:00
Will Jones
707df47c3f upgrade lance (#809) 2024-01-12 09:45:40 +01:00
Lei Xu
6e97fada13 chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-12 09:45:40 +01:00
Chang She
3f66be666d feat(node): align incoming data to table schema (#802) 2024-01-12 09:45:40 +01:00
Sebastian Law
eda4c587fc use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-12 09:45:36 +01:00
Chang She
91d64d86e0 chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-12 09:45:36 +01:00
Chang She
ff81c0d698 feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-12 09:45:36 +01:00
Chang She
fcfb4587bb feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-12 09:45:36 +01:00
Chang She
f43c06d9ce fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-12 09:45:36 +01:00
Chang She
ba01d274eb feat(python): support new style optional syntax (#793) 2024-01-12 09:45:36 +01:00
Chang She
615c469af2 chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-12 09:45:36 +01:00
Chang She
a649b3b1e4 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-12 09:45:36 +01:00
Lei Xu
be76242884 chore: bump lance to 0.9.5 (#790) 2024-01-12 09:45:36 +01:00
Chang She
f4994cb0ec feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-12 09:45:36 +01:00
lucasiscovici
00b0c75710 raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-12 09:45:36 +01:00
sudhir
47299385fa Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-12 09:45:36 +01:00
Chris
9dea884a7f Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-12 09:45:36 +01:00
Vladimir Varankin
85f8cf20aa Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-12 09:45:36 +01:00
QianZhu
5e720b2776 small bug fix for example code in SaaS JS doc (#770) 2024-01-12 09:45:36 +01:00
Chang She
30a8223944 chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-12 09:45:36 +01:00
Bengsoon Chuah
5b1587d84a Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-12 09:45:36 +01:00
QianZhu
78bafb3007 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-12 09:45:36 +01:00
Chang She
4417f7c5a7 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-12 09:45:36 +01:00
Lance Release
577d6ea16e Updating package-lock.json 2024-01-12 09:45:33 +01:00
Lance Release
53d2ef5e81 Bump version: 0.4.1 → 0.4.2 2024-01-12 09:45:29 +01:00
Lance Release
e48ceb2ebd [python] Bump version: 0.4.2 → 0.4.3 2024-01-12 09:45:29 +01:00
Lei Xu
327692ccb1 chore: bump pylance to 0.9.2 (#754) 2024-01-12 09:45:29 +01:00
Xin Hao
bc224a6a0b docs: fix link (#752) 2024-01-12 09:45:29 +01:00
Chang She
2dcb39f556 feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2024-01-12 09:45:29 +01:00
Lance Release
6bda6f2f2a [python] Bump version: 0.4.1 → 0.4.2 2024-01-12 09:45:29 +01:00
Chang She
a3fafd6b54 chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2024-01-12 09:45:29 +01:00
Chang She
dc8d6835c0 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2024-01-12 09:45:29 +01:00
Chang She
f55d99cec5 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-01-12 09:45:29 +01:00
Aidan
3d8b2f5531 fix: createIndex index cache size (#741) 2024-01-12 09:45:29 +01:00
Chang She
b71aa4117f feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2024-01-12 09:45:29 +01:00
Lance Release
55db26f59a Updating package-lock.json 2024-01-12 09:45:29 +01:00
Lance Release
7e42f58dec [python] Bump version: 0.4.0 → 0.4.1 2024-01-12 09:45:23 +01:00
Lance Release
2790b19279 Bump version: 0.4.0 → 0.4.1 2024-01-12 09:45:23 +01:00
elliottRobinson
4ba655d05e Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2024-01-12 09:45:23 +01:00
Lance Release
986891db98 Updating package-lock.json 2024-01-11 22:21:42 +00:00
Lance Release
036bf02901 Updating package-lock.json 2024-01-11 21:34:04 +00:00
Lance Release
4e31f0cc7a Bump version: 0.4.2 → 0.4.3 2024-01-11 21:33:55 +00:00
Lance Release
0a16e29b93 [python] Bump version: 0.4.3 → 0.4.4 2024-01-11 21:29:00 +00:00
Will Jones
cf7d7a19f5 upgrade lance (#809) 2024-01-11 13:28:10 -08:00
Lei Xu
fe2fb91a8b chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-11 10:58:49 -08:00
Chang She
81af350d85 feat(node): align incoming data to table schema (#802) 2024-01-10 16:44:00 -08:00
Sebastian Law
99adfe065a use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-10 00:07:50 -05:00
Chang She
277406509e chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-09 20:20:13 -08:00
Chang She
63411b4d8b feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-09 19:41:31 -08:00
Chang She
d998f80b04 feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-09 19:33:03 -08:00
Chang She
629379a532 fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-09 19:27:38 -08:00
Andrew Miracle
821cf0e434 eslint fix 2024-01-09 16:27:22 +01:00
Chang She
99ba5331f0 feat(python): support new style optional syntax (#793) 2024-01-09 07:03:29 -08:00
Chang She
121687231c chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-08 21:49:31 -08:00
Chang She
ac40d4b235 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-08 21:12:48 -08:00
Lei Xu
c5a52565ac chore: bump lance to 0.9.5 (#790) 2024-01-07 19:27:47 -08:00
Chang She
b0a88a7286 feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-07 15:15:13 -08:00
lucasiscovici
d41d849e0e raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-07 14:34:04 -08:00
sudhir
bf5202f196 Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-07 14:27:56 -08:00
Chris
8be2861061 Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-07 14:27:40 -08:00
Vladimir Varankin
0560e3a0e5 Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-07 14:26:35 -08:00
QianZhu
b83fbfc344 small bug fix for example code in SaaS JS doc (#770) 2024-01-04 14:30:34 -08:00
Chang She
60b22d84bf chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-04 11:45:12 -08:00
Bengsoon Chuah
7d55a94efd Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-04 11:15:42 -08:00
QianZhu
4d8e401d34 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-03 16:24:21 -08:00
Chang She
684eb8b087 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-02 20:55:33 -08:00
Lance Release
4e3b82feaa Updating package-lock.json 2023-12-30 03:16:41 +00:00
Lance Release
8e248a9d67 Updating package-lock.json 2023-12-30 00:53:51 +00:00
Lance Release
065ffde443 Bump version: 0.4.1 → 0.4.2 2023-12-30 00:53:30 +00:00
Lance Release
c3059dc689 [python] Bump version: 0.4.2 → 0.4.3 2023-12-30 00:52:54 +00:00
Lei Xu
a9caa5f2d4 chore: bump pylance to 0.9.2 (#754) 2023-12-29 16:39:45 -08:00
Xin Hao
8411c36b96 docs: fix link (#752) 2023-12-29 15:33:24 -08:00
Chang She
7773bda7ee feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2023-12-29 15:33:03 -08:00
Lance Release
392777952f [python] Bump version: 0.4.1 → 0.4.2 2023-12-29 00:19:21 +00:00
Chang She
7e75e50d3a chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2023-12-28 15:05:57 -08:00
Chang She
4b8af261a3 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2023-12-28 11:02:56 -08:00
Chang She
c8728d4ca1 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-27 09:31:04 -08:00
Aidan
446f837335 fix: createIndex index cache size (#741) 2023-12-27 09:25:13 -08:00
Chang She
8f9ad978f5 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2023-12-27 09:10:09 -08:00
Lance Release
0df38341d5 Updating package-lock.json 2023-12-26 17:21:51 +00:00
Lance Release
60260018cf [python] Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:16 +00:00
Lance Release
bb100c5c19 Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:09 +00:00
elliottRobinson
eab9072bb5 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2023-12-26 19:24:22 +05:30
Andrew Miracle
ee1d0b596f remove console logs 2023-12-25 21:51:02 +00:00
Andrew Miracle
38a4524893 add support for openai SDK version ^4.24.1 2023-12-25 20:29:54 +00:00
Will Jones
ee0f0611d9 docs: update node API reference (#734)
This command hasn't been run for a while...
2023-12-22 10:14:31 -08:00
Will Jones
34966312cb docs: enhance Update user guide (#735)
Closes #705
2023-12-22 10:14:21 -08:00
Bert
756188358c docs: fix JS api docs for update method (#738) 2023-12-21 13:48:00 -05:00
Weston Pace
dc5126d8d1 feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2023-12-21 09:50:10 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
Chang She
7856a94d2c feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 12:28:53 -08:00
Chang She
371d2f979e feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-12-20 12:23:07 -08:00
Aidan
fff8e399a3 feat: Node create index API (#720) 2023-12-20 15:22:35 -05:00
Aidan
73e4015797 feat: Node Schema API (#717) 2023-12-20 12:16:40 -05:00
Lance Release
5142a27482 Updating package-lock.json 2023-12-18 18:15:50 +00:00
Lance Release
81df2a524e Updating package-lock.json 2023-12-18 17:29:58 +00:00
Lance Release
40638e5515 Bump version: 0.3.11 → 0.4.0 2023-12-18 17:29:47 +00:00
Lance Release
018314a5c1 [python] Bump version: 0.3.6 → 0.4.0 2023-12-18 17:27:26 +00:00
Lei Xu
409eb30ea5 chore: bump lance version to 0.9 (#715) 2023-12-17 22:11:42 -05:00
Lance Release
ff9872fd44 Updating package-lock.json 2023-12-15 18:25:06 +00:00
Lance Release
a0608044a1 [python] Bump version: 0.3.5 → 0.3.6 2023-12-15 18:20:55 +00:00
Lance Release
2e4ea7d2bc Updating package-lock.json 2023-12-15 18:01:45 +00:00
Lance Release
57e5695a54 Bump version: 0.3.10 → 0.3.11 2023-12-15 18:01:34 +00:00
Bert
ce58ea7c38 chore: fix package lock (#711) 2023-12-15 11:49:16 -05:00
Bert
57207eff4a implement update for remote clients (#706) 2023-12-15 09:06:40 -05:00
Rob Meng
2d78bff120 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2023-12-15 00:19:08 -05:00
Rob Meng
7c09b9b9a9 feat: allow custom column name in query (#709) 2023-12-14 23:29:26 -05:00
Chang She
bd0034a157 feat: support nested pydantic schema (#707) 2023-12-14 18:20:45 -08:00
Will Jones
144b3b5d83 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2023-12-14 12:09:28 -08:00
Lance Release
b6f0a31686 Updating package-lock.json 2023-12-14 19:31:56 +00:00
Lance Release
9ec526f73f Bump version: 0.3.9 → 0.3.10 2023-12-14 19:31:41 +00:00
Lance Release
600bfd7237 [python] Bump version: 0.3.4 → 0.3.5 2023-12-14 19:31:22 +00:00
Will Jones
d087e7891d feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2023-12-14 11:28:32 -08:00
Chang She
098e397cf0 feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2023-12-13 22:59:01 -08:00
Bert
63ee8fa6a1 Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-13 14:53:06 -05:00
Ayush Chaurasia
693091db29 chore(python): Reduce posthog event count (#661)
- Register open_table as event 
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2023-12-08 11:00:51 -08:00
Ayush Chaurasia
dca4533dbe docs: Update roboflow tutorial position (#666) 2023-12-08 11:00:11 -08:00
QianZhu
f6bbe199dc Qian/minor fix doc (#695) 2023-12-08 09:58:53 -08:00
Kaushal Kumar Choudhary
366e522c2b docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2023-12-08 20:55:04 +05:30
Chang She
244b6919cc chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2023-12-07 15:49:52 -08:00
QianZhu
aca785ff98 saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2023-12-07 14:47:56 -08:00
Chang She
bbdebf2c38 chore: update package lock (#689) 2023-12-06 17:14:56 -08:00
Chang She
1336cce0dc chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2023-12-06 14:20:46 -08:00
Lance Release
6c83b6a513 Updating package-lock.json 2023-12-04 18:34:43 +00:00
Lance Release
6bec4bec51 Updating package-lock.json 2023-12-04 17:02:48 +00:00
Lance Release
23d30dfc78 Bump version: 0.3.8 → 0.3.9 2023-12-04 17:02:35 +00:00
Rob Meng
94c8c50f96 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2023-12-04 12:01:16 -05:00
Rob Meng
72765d8e1a feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2023-12-01 16:49:10 -05:00
Rob Meng
a2a8f9615e chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2023-12-01 00:44:14 -05:00
James
b085d9aaa1 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2023-11-27 20:39:01 +05:30
Bert
6eb662de9b fix: python remote correct open_table error message (#659) 2023-11-24 19:28:33 -05:00
Lance Release
2bb2bb581a Updating package-lock.json 2023-11-19 00:45:51 +00:00
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
Lance Release
123a49df77 Bump version: 0.3.7 → 0.3.8 2023-11-19 00:03:58 +00:00
Will Jones
a57aa4b142 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2023-11-18 15:57:23 -08:00
Rok Mihevc
d8e3e54226 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2023-11-18 14:17:40 -08:00
Ayush Chaurasia
ccfdf4853a [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2023-11-18 06:08:26 +05:30
Ayush Chaurasia
87e5d86e90 [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2023-11-18 06:08:13 +05:30
Aidan
1cf8a3e4e0 SaaS create_index API (#649) 2023-11-15 19:12:52 -05:00
Lance Release
5372843281 Updating package-lock.json 2023-11-15 03:15:10 +00:00
Lance Release
54677b8f0b Updating package-lock.json 2023-11-15 02:42:38 +00:00
Lance Release
ebcf9bf6ae Bump version: 0.3.6 → 0.3.7 2023-11-15 02:42:25 +00:00
Bert
797514bcbf fix: node remote implement table.countRows (#648) 2023-11-13 17:43:20 -05:00
Rok Mihevc
1c872ce501 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2023-11-13 21:43:48 +01:00
Bert
479f471c14 fix: node send db header for GET requests (#646) 2023-11-11 16:33:25 -05:00
Ayush Chaurasia
ae0d2f2599 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2023-11-10 15:02:38 +05:30
Ayush Chaurasia
1e8678f11a Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2023-11-09 12:34:18 +05:30
QianZhu
662968559d fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2023-11-07 17:34:38 -08:00
Rob Meng
9d895801f2 upgrade lance to 0.8.14 (#636)
upgrade lance
2023-11-07 19:01:29 -05:00
Rob Meng
80613a40fd skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2023-11-07 12:33:32 -05:00
Lei Xu
d43ef7f11e chore: apple silicon runner (#633)
Close #632
2023-11-06 21:04:32 -08:00
Lei Xu
554e068917 chore: improve create_table API consistency between local and remote SDK (#627) 2023-11-03 13:15:11 -07:00
Bert
567734dd6e fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2023-11-03 10:24:56 -04:00
Ayush Chaurasia
1589499f89 Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2023-11-02 19:20:10 +05:30
Lance Release
682e95fa83 Updating package-lock.json 2023-11-01 22:20:49 +00:00
Lance Release
1ad5e7f2f0 Updating package-lock.json 2023-11-01 21:16:20 +00:00
Lance Release
ddb3ef4ce5 Bump version: 0.3.5 → 0.3.6 2023-11-01 21:16:06 +00:00
Lance Release
ef20b2a138 [python] Bump version: 0.3.2 → 0.3.3 2023-11-01 21:15:55 +00:00
Lei Xu
2e0f251bfd chore: bump lance to 8.10 (#622) 2023-11-01 14:14:38 -07:00
Ayush Chaurasia
2cb91e818d Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2023-11-02 01:13:16 +05:30
Chang She
2835c76336 doc: node sdk now supports windows (#616) 2023-11-01 10:04:18 -07:00
Bert
8068a2bbc3 ci: cancel in progress runs on new push (#620) 2023-11-01 11:33:48 -04:00
Bert
24111d543a fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2023-11-01 10:50:09 -04:00
QianZhu
7eec2b8f9a Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2023-10-31 19:50:05 -07:00
Will Jones
b2b70ea399 increment pylance (#618) 2023-10-31 18:07:03 -07:00
Bert
e50a3c1783 added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-10-31 16:39:32 -04:00
Weston Pace
b517134309 feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2023-10-31 13:11:03 -07:00
Lei Xu
6fb539b5bf doc: add doc to use GPU for indexing (#611) 2023-10-30 15:25:00 -07:00
Lance Release
f37fe120fd Updating package-lock.json 2023-10-26 22:30:16 +00:00
Lance Release
2e115acb9a Updating package-lock.json 2023-10-26 21:48:01 +00:00
Lance Release
27a638362d Bump version: 0.3.4 → 0.3.5 2023-10-26 21:47:44 +00:00
Bert
22a6695d7a fix conv version (#605) 2023-10-26 17:44:11 -04:00
Lance Release
57eff82ee7 Updating package-lock.json 2023-10-26 21:03:07 +00:00
Lance Release
7732f7d41c Bump version: 0.3.3 → 0.3.4 2023-10-26 21:02:52 +00:00
Bert
5ca98c326f feat: added dataset stats api to node (#604) 2023-10-26 17:00:48 -04:00
Bert
b55db397eb feat: added data stats apis (#596) 2023-10-26 13:10:17 -04:00
Rob Meng
c04d72ac8a expose remap index api (#603)
expose index remap options in `compact_files`
2023-10-25 22:10:37 -04:00
Rob Meng
28b02fb72a feat: expose optimize index api (#602)
expose `optimize_index` api.
2023-10-25 19:40:23 -04:00
Lance Release
f3cf986777 [python] Bump version: 0.3.1 → 0.3.2 2023-10-24 19:06:38 +00:00
Bert
c73fcc8898 update lance to 0.8.7 (#598) 2023-10-24 14:49:36 -04:00
Chang She
cd9debc3b7 fix(python): fix multiple embedding functions bug (#597)
Closes #594

The embedding functions are pydantic models so multiple instances with
the same parameters are considered ==, which means that if you have
multiple embedding columns it's possible for the embeddings to get
overwritten. Instead we use `is` instead of == to avoid this problem.

testing: modified unit test to include this case
2023-10-24 13:05:05 -04:00
Rob Meng
26a97ba997 feat: add checkout method to table to reuse existing store and connections (#593)
Prior to this PR, to get a new version of a table, we need to re-open
the table. This has a few downsides w.r.t. performance:
* Object store is recreated, which takes time and throws away existing
warm connections
* Commit handler is thrown aways as well, which also may contain warm
connections
2023-10-23 12:06:13 -04:00
Rob Meng
ce19fedb08 feat: include manifest files in mirrow store (#589) 2023-10-21 12:21:41 -04:00
Will Jones
14e8e48de2 Revert "[python] Bump version: 0.3.2 → 0.3.3"
This reverts commit c30faf6083.
2023-10-20 17:52:49 -07:00
Will Jones
c30faf6083 [python] Bump version: 0.3.2 → 0.3.3 2023-10-20 17:30:00 -07:00
Ayush Chaurasia
64a4f025bb [Docs]: Minor Fixes (#587)
* Filename typo
* Remove rick_morty csv as users won't really be able to use it.. We can
create a an executable colab and download it from a bucket or smth.
2023-10-20 16:14:35 +02:00
Ayush Chaurasia
6dc968e7d3 [Docs] Embeddings API: Add multi-lingual semantic search example (#582) 2023-10-20 18:40:49 +05:30
Ayush Chaurasia
06b5b69f1e [Docs]Versioning docs (#586)
closes #564

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-20 18:40:16 +05:30
Lance Release
6bd3a838fc Updating package-lock.json 2023-10-19 20:45:39 +00:00
Lance Release
f36fea8f20 Updating package-lock.json 2023-10-19 20:06:10 +00:00
Lance Release
0a30591729 Bump version: 0.3.2 → 0.3.3 2023-10-19 20:05:57 +00:00
Chang She
0ed39b6146 chore: bump lance version in python/rust lancedb (#584)
To include latest v0.8.6

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-19 13:05:12 -07:00
Ayush Chaurasia
a8c7f80073 [Docs] Update embedding function docs (#581) 2023-10-18 13:04:42 +05:30
Ayush Chaurasia
0293bbe142 [Python]Embeddings API refactor (#580)
Sets things up for this -> https://github.com/lancedb/lancedb/issues/579
- Just separates out the registry/ingestion code from the function
implementation code
- adds a `get_registry` util
- package name "open-clip" -> "open-clip-torch"
2023-10-17 22:32:19 -07:00
Ayush Chaurasia
7372656369 [Docs] Add posthog telemetry to docs (#577)
Allows creation of funnels and user journeys
2023-10-17 21:11:59 -07:00
QianZhu
d46bc5dd6e list table pagination draft (#574) 2023-10-16 21:09:20 -07:00
Prashanth Rao
86efb11572 Add pyarrow date and timestamp type conversion from pydantic (#576) 2023-10-16 19:42:24 -07:00
Chang She
bb01ad5290 doc: fix broken link and add README (#573)
Fix broken link to embedding functions

testing: broken link was verified after local docs build to have been
repaired

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-16 16:13:07 -07:00
Lance Release
1b8cda0941 Updating package-lock.json 2023-10-16 16:10:07 +00:00
Lance Release
bc85a749a3 Updating package-lock.json 2023-10-16 15:12:15 +00:00
Lance Release
02c35d3457 Bump version: 0.3.1 → 0.3.2 2023-10-16 15:11:57 +00:00
Rob Meng
345c136cfb implement remote api calls for table mutation (#567)
Add more APIs to remote table for Node SDK
* `add` rows
* `overwrite` table with rows
* `create` table

This has been tested against dev stack
2023-10-16 11:07:58 -04:00
Rok Mihevc
043e388254 docs: show source of documented functions (#569) 2023-10-15 09:05:36 -07:00
Lei Xu
fe64fc4671 feat(python,js): deletion operation on remote tables (#568) 2023-10-14 15:47:19 -07:00
Rok Mihevc
6d66404506 docs: switch python examples to be row based (#554) 2023-10-14 14:07:43 -07:00
Lei Xu
eff94ecea8 chore: bump lance to 0.8.5 (#561)
Bump lance to 0.5.8
2023-10-14 12:38:43 -07:00
Ayush Chaurasia
7dfb555fea [DOCS][PYTHON] Update embeddings API docs & Example (#516)
This PR adds an overview of embeddings docs:
- 2 ways to vectorize your data using lancedb - explicit & implicit
- explicit - manually vectorize your data using `wit_embedding` function
- Implicit - automatically vectorize your data as it comes by ingesting
your embedding function details as table metadata
- Multi-modal example w/ disappearing embedding function
2023-10-14 07:56:07 +05:30
Lance Release
f762a669e7 Updating package-lock.json 2023-10-13 22:27:48 +00:00
Lance Release
0bdc7140dd Updating package-lock.json 2023-10-13 21:24:05 +00:00
Lance Release
8f6e955b24 Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:54 +00:00
Lance Release
1096da09da [python] Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:47 +00:00
Ayush Chaurasia
683824f1e9 Add cohere embedding function (#550) 2023-10-13 16:27:34 +05:30
Will Jones
db7bdefe77 feat: cleanup and compaction (#518)
#488
2023-10-11 12:49:12 -07:00
Ayush Chaurasia
e41894b071 [Docs] Improve visibility of table ops (#553)
A little verbose, but better than being non-discoverable 
![Screenshot from 2023-10-11
16-26-02](https://github.com/lancedb/lancedb/assets/15766192/9ba539a7-0cf8-4d9e-94e7-ce5d37c35df0)
2023-10-11 12:20:46 -07:00
Chang She
e1ae2bcbd8 feat: add to_list and to_pandas api's (#556)
Add `to_list` to return query results as list of python dict (so we're
not too pandas-centric). Closes #555

Add `to_pandas` API and add deprecation warning on `to_df`. Closes #545

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-11 12:18:55 -07:00
Ankur Goyal
ababc3f8ec Use query.limit(..) in README (#543)
If you run the README javascript example in typescript, it complains
that the type of limit is a function and cannot be set to a number.
2023-10-11 11:54:14 -07:00
Ayush Chaurasia
a1377afcaa feat: telemetry, error tracking, CLI & config manager (#538)
Co-authored-by: Lance Release <lance-dev@lancedb.com>
Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: rmeng <rob@lancedb.com>
Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Rok Mihevc <rok@mihevc.org>
2023-10-08 23:11:39 +05:30
397 changed files with 11230 additions and 42325 deletions

22
.bumpversion.cfg Normal file
View File

@@ -0,0 +1,22 @@
[bumpversion]
current_version = 0.4.15
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:nodejs/package.json]
[bumpversion:file:nodejs/npm/darwin-x64/package.json]
[bumpversion:file:nodejs/npm/darwin-arm64/package.json]
[bumpversion:file:nodejs/npm/linux-x64-gnu/package.json]
[bumpversion:file:nodejs/npm/linux-arm64-gnu/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/lancedb/Cargo.toml]

View File

@@ -1,110 +0,0 @@
[tool.bumpversion]
current_version = "0.11.0-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
(?P<patch>0|[1-9]\\d*)
(?:-(?P<pre_l>[a-zA-Z-]+)\\.(?P<pre_n>0|[1-9]\\d*))?
"""
serialize = [
"{major}.{minor}.{patch}-{pre_l}.{pre_n}",
"{major}.{minor}.{patch}",
]
search = "{current_version}"
replace = "{new_version}"
regex = false
ignore_missing_version = false
ignore_missing_files = false
tag = true
sign_tags = false
tag_name = "v{new_version}"
tag_message = "Bump version: {current_version} → {new_version}"
allow_dirty = true
commit = true
message = "Bump version: {current_version} → {new_version}"
commit_args = ""
# Java maven files
pre_commit_hooks = [
"""
NEW_VERSION="${BVHOOK_NEW_MAJOR}.${BVHOOK_NEW_MINOR}.${BVHOOK_NEW_PATCH}"
if [ ! -z "$BVHOOK_NEW_PRE_L" ] && [ ! -z "$BVHOOK_NEW_PRE_N" ]; then
NEW_VERSION="${NEW_VERSION}-${BVHOOK_NEW_PRE_L}.${BVHOOK_NEW_PRE_N}"
fi
echo "Constructed new version: $NEW_VERSION"
cd java && mvn versions:set -DnewVersion=$NEW_VERSION && mvn versions:commit
# Check for any modified but unstaged pom.xml files
MODIFIED_POMS=$(git ls-files -m | grep pom.xml)
if [ ! -z "$MODIFIED_POMS" ]; then
echo "The following pom.xml files were modified but not staged. Adding them now:"
echo "$MODIFIED_POMS" | while read -r file; do
git add "$file"
echo "Added: $file"
done
fi
""",
]
[tool.bumpversion.parts.pre_l]
optional_value = "final"
values = ["beta", "final"]
[[tool.bumpversion.files]]
filename = "node/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
[[tool.bumpversion.files]]
filename = "nodejs/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# nodejs binary packages
[[tool.bumpversion.files]]
glob = "nodejs/npm/*/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# vectodb node binary packages
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-arm64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-arm64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-x64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-x64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
# Cargo files
# ------------
[[tool.bumpversion.files]]
filename = "rust/ffi/node/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "rust/lancedb/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "nodejs/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""

33
.github/labeler.yml vendored
View File

@@ -1,33 +0,0 @@
version: 1
appendOnly: true
# Labels are applied based on conventional commits standard
# https://www.conventionalcommits.org/en/v1.0.0/
# These labels are later used in release notes. See .github/release.yml
labels:
# If the PR title has an ! before the : it will be considered a breaking change
# For example, `feat!: add new feature` will be considered a breaking change
- label: breaking-change
title: "^[^:]+!:.*"
- label: breaking-change
body: "BREAKING CHANGE"
- label: enhancement
title: "^feat(\\(.+\\))?!?:.*"
- label: bug
title: "^fix(\\(.+\\))?!?:.*"
- label: documentation
title: "^docs(\\(.+\\))?!?:.*"
- label: performance
title: "^perf(\\(.+\\))?!?:.*"
- label: ci
title: "^ci(\\(.+\\))?!?:.*"
- label: chore
title: "^(chore|test|build|style)(\\(.+\\))?!?:.*"
- label: Python
files:
- "^python\\/.*"
- label: Rust
files:
- "^rust\\/.*"
- label: typescript
files:
- "^node\\/.*"

View File

@@ -1,41 +0,0 @@
{
"ignore_labels": ["chore"],
"pr_template": "- ${{TITLE}} by @${{AUTHOR}} in ${{URL}}",
"categories": [
{
"title": "## 🏆 Highlights",
"labels": ["highlight"]
},
{
"title": "## 🛠 Breaking Changes",
"labels": ["breaking-change"]
},
{
"title": "## ⚠️ Deprecations ",
"labels": ["deprecation"]
},
{
"title": "## 🎉 New Features",
"labels": ["enhancement"]
},
{
"title": "## 🐛 Bug Fixes",
"labels": ["bug"]
},
{
"title": "## 📚 Documentation",
"labels": ["documentation"]
},
{
"title": "## 🚀 Performance Improvements",
"labels": ["performance"]
},
{
"title": "## Other Changes"
},
{
"title": "## 🔧 Build and CI",
"labels": ["ci"]
}
]
}

View File

@@ -14,10 +14,6 @@ inputs:
# Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false
default: "false"
manylinux:
description: "The manylinux version to build for"
required: false
default: "2_17"
runs:
using: "composite"
steps:
@@ -32,7 +28,7 @@ runs:
command: build
working-directory: python
target: x86_64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }}
manylinux: "2_17"
args: ${{ inputs.args }}
before-script-linux: |
set -e
@@ -46,9 +42,8 @@ runs:
with:
command: build
working-directory: python
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
target: aarch64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }}
manylinux: "2_24"
args: ${{ inputs.args }}
before-script-linux: |
set -e

View File

@@ -21,6 +21,5 @@ runs:
with:
command: build
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -26,7 +26,6 @@ runs:
with:
command: build
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
- uses: actions/upload-artifact@v3
with:

View File

@@ -1,20 +1,13 @@
name: Cargo Publish
on:
push:
tags-ignore:
# We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases.
- 'v*-beta*'
- '*-v*' # for example, python-vX.Y.Z
release:
types: [ published ]
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Up-to-date compilers needed for fp16kernels.
CC: gcc-12
CXX: g++-12
jobs:
build:

View File

@@ -1,81 +0,0 @@
name: PR Checks
on:
pull_request_target:
types: [opened, edited, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
labeler:
permissions:
pull-requests: write
name: Label PR
runs-on: ubuntu-latest
steps:
- uses: srvaroa/labeler@master
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
commitlint:
permissions:
pull-requests: write
name: Verify PR title / description conforms to semantic-release
runs-on: ubuntu-latest
steps:
- uses: actions/setup-node@v3
with:
node-version: "18"
# These rules are disabled because Github will always ensure there
# is a blank line between the title and the body and Github will
# word wrap the description field to ensure a reasonable max line
# length.
- run: npm install @commitlint/config-conventional
- run: >
echo 'module.exports = {
"rules": {
"body-max-line-length": [0, "always", Infinity],
"footer-max-line-length": [0, "always", Infinity],
"body-leading-blank": [0, "always"]
}
}' > .commitlintrc.js
- run: npx commitlint --extends @commitlint/config-conventional --verbose <<< $COMMIT_MSG
env:
COMMIT_MSG: >
${{ github.event.pull_request.title }}
${{ github.event.pull_request.body }}
- if: failure()
uses: actions/github-script@v6
with:
script: |
const message = `**ACTION NEEDED**
Lance follows the [Conventional Commits specification](https://www.conventionalcommits.org/en/v1.0.0/) for release automation.
The PR title and description are used as the merge commit message.\
Please update your PR title and description to match the specification.
For details on the error please inspect the "PR Title Check" action.
`
// Get list of current comments
const comments = await github.paginate(github.rest.issues.listComments, {
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number
});
// Check if this job already commented
for (const comment of comments) {
if (comment.body === message) {
return // Already commented
}
}
// Post the comment about Conventional Commits
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: message
})
core.setFailed(message)

View File

@@ -24,19 +24,15 @@ env:
jobs:
test-python:
name: Test doc python code
runs-on: ubuntu-24.04
runs-on: "buildjet-8vcpu-ubuntu-2204"
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y libssl-dev
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
@@ -60,7 +56,7 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: ubuntu-24.04
runs-on: "buildjet-8vcpu-ubuntu-2204"
timeout-minutes: 60
strategy:
fail-fast: false
@@ -76,13 +72,9 @@ jobs:
uses: actions/setup-node@v4
with:
node-version: 20
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y libssl-dev
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Rust cache
uses: swatinem/rust-cache@v2

View File

@@ -1,114 +0,0 @@
name: Build and publish Java packages
on:
release:
types: [released]
pull_request:
paths:
- .github/workflows/java-publish.yml
jobs:
macos-arm64:
name: Build on MacOS Arm64
runs-on: macos-14
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
brew install protobuf
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_darwin_aarch64.zip
path: target/release/liblancedb_jni.dylib
retention-days: 1
if-no-files-found: error
linux-arm64:
name: Build on Linux Arm64
runs-on: warp-ubuntu-2204-arm64-8x
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.79.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
rustflags: "-C debuginfo=1"
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_linux_aarch64.zip
path: target/release/liblancedb_jni.so
retention-days: 1
if-no-files-found: error
linux-x86:
runs-on: warp-ubuntu-2204-x64-8x
timeout-minutes: 30
needs: [macos-arm64, linux-arm64]
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Set up Java 8
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 8
cache: "maven"
server-id: ossrh
server-username: SONATYPE_USER
server-password: SONATYPE_TOKEN
gpg-private-key: ${{ secrets.GPG_PRIVATE_KEY }}
gpg-passphrase: ${{ secrets.GPG_PASSPHRASE }}
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Download artifact
uses: actions/download-artifact@v4
- name: Copy native libs
run: |
mkdir -p ./core/target/classes/nativelib/darwin-aarch64 ./core/target/classes/nativelib/linux-aarch64
cp ../liblancedb_jni_darwin_aarch64.zip/liblancedb_jni.dylib ./core/target/classes/nativelib/darwin-aarch64/liblancedb_jni.dylib
cp ../liblancedb_jni_linux_aarch64.zip/liblancedb_jni.so ./core/target/classes/nativelib/linux-aarch64/liblancedb_jni.so
- name: Dry run
if: github.event_name == 'pull_request'
run: |
mvn --batch-mode -DskipTests package
- name: Set github
run: |
git config --global user.email "LanceDB Github Runner"
git config --global user.name "dev+gha@lancedb.com"
- name: Publish with Java 8
if: github.event_name == 'release'
run: |
echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
export GPG_TTY=$(tty)
mvn --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}

View File

@@ -1,113 +0,0 @@
name: Build and Run Java JNI Tests
on:
push:
branches:
- main
paths:
- java/**
pull_request:
paths:
- java/**
- rust/**
- .github/workflows/java.yml
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1"
jobs:
linux-build-java-11:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
linux-build-java-17:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 17
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 17
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 17
run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
-XX:+IgnoreUnrecognizedVMOptions \
--add-opens=java.base/java.lang=ALL-UNNAMED \
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED \
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED \
--add-opens=java.base/java.io=ALL-UNNAMED \
--add-opens=java.base/java.net=ALL-UNNAMED \
--add-opens=java.base/java.nio=ALL-UNNAMED \
--add-opens=java.base/java.util=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED \
--add-opens=java.base/jdk.internal.ref=ALL-UNNAMED \
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED \
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED \
--add-opens=java.base/sun.security.action=ALL-UNNAMED \
--add-opens=java.base/sun.util.calendar=ALL-UNNAMED \
--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED \
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -1,62 +1,37 @@
name: Create release commit
# This workflow increments versions, tags the version, and pushes it.
# When a tag is pushed, another workflow is triggered that creates a GH release
# and uploads the binaries. This workflow is only for creating the tag.
# This script will enforce that a minor version is incremented if there are any
# breaking changes since the last minor increment. However, it isn't able to
# differentiate between breaking changes in Node versus Python. If you wish to
# bypass this check, you can manually increment the version and push the tag.
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: false
type: boolean
type:
description: 'What kind of release is this?'
required: true
default: 'preview'
default: "false"
type: choice
options:
- preview
- stable
python:
description: 'Make a Python release'
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: true
type: boolean
other:
description: 'Make a Node/Rust/Java release'
required: true
default: true
type: boolean
bump-minor:
description: 'Bump minor version'
required: true
default: false
type: boolean
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
make-release:
# Creates tag and GH release. The GH release will trigger the build and release jobs.
bump-version:
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Output Inputs
run: echo "${{ toJSON(github.event.inputs) }}"
- uses: actions/checkout@v4
- name: Check out main
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
# It's important we use our token here, as the default token will NOT
# trigger any workflows watching for new tags. See:
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Set git configs for bumpversion
shell: bash
run: |
@@ -66,34 +41,19 @@ jobs:
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump Python version
if: ${{ inputs.python }}
working-directory: python
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Bump version, create tag and commit
run: |
# Need to get the commit before bumping the version, so we can
# determine if there are breaking changes in the next step as well.
echo "COMMIT_BEFORE_BUMP=$(git rev-parse HEAD)" >> $GITHUB_ENV
pip install bump-my-version PyGithub packaging
bash ../ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} python-v
- name: Bump Node/Rust version
if: ${{ inputs.other }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
- name: Push new version tag
if: ${{ !inputs.dry_run }}
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
# Need to use PAT here too to trigger next workflow. See comment above.
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }}
branch: main
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
if: ${{ inputs.dry_run }} == "false"
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -107,7 +107,6 @@ jobs:
AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
ALLOW_HTTP: true
steps:
- uses: actions/checkout@v4
with:

View File

@@ -28,10 +28,6 @@ jobs:
run:
shell: bash
working-directory: nodejs
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps:
- uses: actions/checkout@v4
with:
@@ -52,7 +48,8 @@ jobs:
cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint-ci
npm run lint
npm run chkformat
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
@@ -84,12 +81,7 @@ jobs:
run: |
npm ci
npm run build
- name: Setup localstack
working-directory: .
run: docker compose up --detach --wait
- name: Test
env:
S3_TEST: "1"
run: npm run test
macos:
timeout-minutes: 30

View File

@@ -1,13 +1,11 @@
name: NPM Publish
on:
push:
tags:
- "v*"
release:
types: [published]
jobs:
node:
name: vectordb Typescript
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -40,7 +38,6 @@ jobs:
node/vectordb-*.tgz
node-macos:
name: vectordb ${{ matrix.config.arch }}
strategy:
matrix:
config:
@@ -71,7 +68,6 @@ jobs:
node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
name: lancedb ${{ matrix.config.arch }}
strategy:
matrix:
config:
@@ -102,7 +98,7 @@ jobs:
nodejs/dist/*.node
node-linux:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -114,11 +110,12 @@ jobs:
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: warp-ubuntu-latest-arm64-4x
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# To avoid OOM errors on ARM, we create a swap file.
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
@@ -142,7 +139,7 @@ jobs:
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -193,7 +190,6 @@ jobs:
!nodejs/dist/*.node
node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -227,7 +223,6 @@ jobs:
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -261,7 +256,6 @@ jobs:
nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
@@ -280,28 +274,12 @@ jobs:
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
fi
mv */*.tgz .
for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename
npm publish $filename
done
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
@@ -338,32 +316,11 @@ jobs:
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
# By default, things are published to the latest tag. This is what is
# installed by default if the user does not specify a version. This is
# good for stable releases, but for pre-releases, we want to publish to
# the "preview" tag so they can install with `npm install lancedb@preview`.
# See: https://medium.com/@mbostock/prereleases-and-npm-e778fc5e2420
run: |
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
npm publish --access public --tag preview
else
npm publish --access public
fi
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
run: npm publish --access public
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -374,13 +331,11 @@ jobs:
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
update-package-lock-nodejs:
needs: [release-nodejs]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -391,70 +346,4 @@ jobs:
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Extract version
id: extract_version
env:
GITHUB_REF: ${{ github.ref }}
run: |
set -e
echo "Extracting tag and version from $GITHUB_REF"
if [[ $GITHUB_REF =~ refs/tags/v(.*) ]]; then
VERSION=${BASH_REMATCH[1]}
TAG=v$VERSION
echo "tag=$TAG" >> $GITHUB_OUTPUT
echo "version=$VERSION" >> $GITHUB_OUTPUT
else
echo "Failed to extract version from $GITHUB_REF"
exit 1
fi
echo "Extracted version $VERSION from $GITHUB_REF"
if [[ $VERSION =~ beta ]]; then
echo "This is a beta release"
# Get last release (that is not this one)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^v \
| grep -vF "$TAG" \
| python ci/semver_sort.py v \
| tail -n 1)
else
echo "This is a stable release"
# Get last stable tag (ignore betas)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^v \
| grep -vF "$TAG" \
| grep -v beta \
| python ci/semver_sort.py v \
| tail -n 1)
fi
echo "Found from tag $FROM_TAG"
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
- name: Create Release Notes
id: release_notes
uses: mikepenz/release-changelog-builder-action@v4
with:
configuration: .github/release_notes.json
toTag: ${{ steps.extract_version.outputs.tag }}
fromTag: ${{ steps.extract_version.outputs.from_tag }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Create GH release
uses: softprops/action-gh-release@v2
with:
prerelease: ${{ contains('beta', github.ref) }}
tag_name: ${{ steps.extract_version.outputs.tag }}
token: ${{ secrets.GITHUB_TOKEN }}
generate_release_notes: false
name: Node/Rust LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.release_notes.outputs.changelog }}
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -1,28 +1,18 @@
name: PyPI Publish
on:
push:
tags:
- 'python-v*'
release:
types: [published]
jobs:
linux:
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
timeout-minutes: 60
strategy:
matrix:
config:
- platform: x86_64
manylinux: "2_17"
extra_args: ""
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
- platform: aarch64
manylinux: "2_24"
extra_args: ""
# We don't build fp16 kernels for aarch64, because it uses
# cross compilation image, which doesn't have a new enough compiler.
python-minor-version: ["8"]
platform:
- x86_64
- aarch64
runs-on: "ubuntu-22.04"
steps:
- uses: actions/checkout@v4
@@ -32,22 +22,22 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.8
python-version: 3.${{ matrix.python-minor-version }}
- uses: ./.github/workflows/build_linux_wheel
with:
python-minor-version: 8
args: "--release --strip ${{ matrix.config.extra_args }}"
arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip"
arm-build: ${{ matrix.platform == 'aarch64' }}
- uses: ./.github/workflows/upload_wheel
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
mac:
timeout-minutes: 60
runs-on: ${{ matrix.config.runner }}
strategy:
matrix:
python-minor-version: ["8"]
config:
- target: x86_64-apple-darwin
runner: macos-13
@@ -58,6 +48,7 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
fetch-depth: 0
lfs: true
- name: Set up Python
@@ -66,95 +57,36 @@ jobs:
python-version: 3.12
- uses: ./.github/workflows/build_mac_wheel
with:
python-minor-version: 8
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip --target ${{ matrix.config.target }}"
- uses: ./.github/workflows/upload_wheel
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
python-minor-version: ${{ matrix.python-minor-version }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
windows:
timeout-minutes: 60
runs-on: windows-latest
strategy:
matrix:
python-minor-version: ["8"]
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.8
python-version: 3.${{ matrix.python-minor-version }}
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: 8
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
gh-release:
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Extract version
id: extract_version
env:
GITHUB_REF: ${{ github.ref }}
run: |
set -e
echo "Extracting tag and version from $GITHUB_REF"
if [[ $GITHUB_REF =~ refs/tags/python-v(.*) ]]; then
VERSION=${BASH_REMATCH[1]}
TAG=python-v$VERSION
echo "tag=$TAG" >> $GITHUB_OUTPUT
echo "version=$VERSION" >> $GITHUB_OUTPUT
else
echo "Failed to extract version from $GITHUB_REF"
exit 1
fi
echo "Extracted version $VERSION from $GITHUB_REF"
if [[ $VERSION =~ beta ]]; then
echo "This is a beta release"
# Get last release (that is not this one)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^python-v \
| grep -vF "$TAG" \
| python ci/semver_sort.py python-v \
| tail -n 1)
else
echo "This is a stable release"
# Get last stable tag (ignore betas)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^python-v \
| grep -vF "$TAG" \
| grep -v beta \
| python ci/semver_sort.py python-v \
| tail -n 1)
fi
echo "Found from tag $FROM_TAG"
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
- name: Create Python Release Notes
id: python_release_notes
uses: mikepenz/release-changelog-builder-action@v4
with:
configuration: .github/release_notes.json
toTag: ${{ steps.extract_version.outputs.tag }}
fromTag: ${{ steps.extract_version.outputs.from_tag }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Create Python GH release
uses: softprops/action-gh-release@v2
with:
prerelease: ${{ contains('beta', github.ref) }}
tag_name: ${{ steps.extract_version.outputs.tag }}
token: ${{ secrets.GITHUB_TOKEN }}
generate_release_notes: false
name: Python LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.python_release_notes.outputs.changelog }}
python-minor-version: ${{ matrix.python-minor-version }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"

View File

@@ -0,0 +1,56 @@
name: Python - Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump version, create tag and commit
working-directory: python
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -33,11 +33,11 @@ jobs:
python-version: "3.11"
- name: Install ruff
run: |
pip install ruff==0.5.4
pip install ruff==0.2.2
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff check .
run: ruff .
doctest:
name: "Doctest"
timeout-minutes: 30
@@ -65,7 +65,7 @@ jobs:
workspaces: python
- name: Install
run: |
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests,dev,embeddings]
pip install -e .[tests,dev,embeddings]
pip install tantivy
pip install mlx
- name: Doctest
@@ -75,7 +75,7 @@ jobs:
timeout-minutes: 30
strategy:
matrix:
python-minor-version: ["9", "11"]
python-minor-version: ["8", "11"]
runs-on: "ubuntu-22.04"
defaults:
run:
@@ -99,8 +99,6 @@ jobs:
workspaces: python
- uses: ./.github/workflows/build_linux_wheel
- uses: ./.github/workflows/run_tests
with:
integration: true
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
@@ -189,7 +187,7 @@ jobs:
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install -e .[tests]
pip install tantivy
- name: Run tests
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/tests
run: pytest -m "not slow" -x -v --durations=30 python/tests

View File

@@ -5,27 +5,13 @@ inputs:
python-minor-version:
required: true
description: "8 9 10 11 12"
integration:
required: false
description: "Run integration tests"
default: "false"
runs:
using: "composite"
steps:
- name: Install lancedb
shell: bash
run: |
pip3 install --extra-index-url https://pypi.fury.io/lancedb/ $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: Setup localstack for integration tests
if: ${{ inputs.integration == 'true' }}
pip3 install $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: pytest
shell: bash
working-directory: .
run: docker compose up --detach --wait
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests

View File

@@ -26,14 +26,11 @@ env:
jobs:
lint:
timeout-minutes: 30
runs-on: ubuntu-24.04
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
working-directory: rust
steps:
- uses: actions/checkout@v4
with:
@@ -49,21 +46,14 @@ jobs:
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
run: cargo clippy --all --all-features -- -D warnings
linux:
timeout-minutes: 30
# To build all features, we need more disk space than is available
# on the free OSS github runner. This is mostly due to the the
# sentence-transformers feature.
runs-on: ubuntu-2404-4x-x64
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
@@ -76,15 +66,6 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
- name: Run tests
@@ -116,8 +97,7 @@ jobs:
- name: Build
run: cargo build --all-features
- name: Run tests
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
run: cargo test --all-features
windows:
runs-on: windows-2022
steps:
@@ -139,3 +119,4 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test

View File

@@ -2,12 +2,16 @@ name: upload-wheel
description: "Upload wheels to Pypi"
inputs:
pypi_token:
os:
required: true
description: "ubuntu-22.04 or macos-13"
repo:
required: false
description: "pypi or testpypi"
default: "pypi"
token:
required: true
description: "release token for the repo"
fury_token:
required: true
description: "release token for the fury repo"
runs:
using: "composite"
@@ -17,28 +21,9 @@ runs:
run: |
python -m pip install --upgrade pip
pip install twine
- name: Choose repo
shell: bash
id: choose_repo
run: |
if [ ${{ github.ref }} == "*beta*" ]; then
echo "repo=fury" >> $GITHUB_OUTPUT
else
echo "repo=pypi" >> $GITHUB_OUTPUT
fi
- name: Publish to PyPI
shell: bash
- name: Publish wheel
env:
FURY_TOKEN: ${{ inputs.fury_token }}
PYPI_TOKEN: ${{ inputs.pypi_token }}
run: |
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
echo "Uploading $WHEEL to Fury"
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
else
twine upload --repository ${{ steps.choose_repo.outputs.repo }} \
--username __token__ \
--password $PYPI_TOKEN \
target/wheels/lancedb-*.whl
fi
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ inputs.token }}
shell: bash
run: twine upload --repository ${{ inputs.repo }} target/wheels/lancedb-*.whl

3
.gitignore vendored
View File

@@ -4,10 +4,9 @@
**/__pycache__
.DS_Store
venv
.venv
.vscode
.zed
rust/target
rust/Cargo.lock

View File

@@ -10,12 +10,9 @@ repos:
rev: v0.2.2
hooks:
- id: ruff
- repo: local
- repo: https://github.com/pre-commit/mirrors-prettier
rev: v3.1.0
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
- id: prettier
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*

View File

@@ -1,11 +1,5 @@
[workspace]
members = [
"rust/ffi/node",
"rust/lancedb",
"nodejs",
"python",
"java/core/lancedb-jni",
]
members = ["rust/ffi/node", "rust/lancedb", "nodejs", "python"]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
@@ -20,37 +14,30 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.18.2", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.18.2" }
lance-linalg = { "version" = "=0.18.2" }
lance-table = { "version" = "=0.18.2" }
lance-testing = { "version" = "=0.18.2" }
lance-datafusion = { "version" = "=0.18.2" }
lance-encoding = { "version" = "=0.18.2" }
lance = { "version" = "=0.10.6", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.6" }
lance-linalg = { "version" = "=0.10.6" }
lance-testing = { "version" = "=0.10.6" }
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
arrow-data = "52.2"
arrow-ipc = "52.2"
arrow-ord = "52.2"
arrow-schema = "52.2"
arrow-arith = "52.2"
arrow-cast = "52.2"
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"
arrow-data = "50.0"
arrow-ipc = "50.0"
arrow-ord = "50.0"
arrow-schema = "50.0"
arrow-arith = "50.0"
arrow-cast = "50.0"
async-trait = "0"
chrono = "0.4.35"
datafusion-common = "41.0"
datafusion-physical-plan = "41.0"
half = { "version" = "=2.4.1", default-features = false, features = [
half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
moka = { version = "0.11", features = ["future"] }
object_store = "0.10.2"
object_store = "0.9.0"
pin-project = "1.0.7"
snafu = "0.7.4"
url = "2"
num-traits = "0.2"
rand = "0.8"
regex = "1.10"
lazy_static = "1"

View File

@@ -20,7 +20,7 @@
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
@@ -36,7 +36,7 @@ The key features of LanceDB include:
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -44,24 +44,26 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
**Javascript**
```shell
npm install @lancedb/lancedb
npm install vectordb
```
```javascript
import * as lancedb from "@lancedb/lancedb";
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
const table = await db.createTable({
name: 'vectors',
data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
```
**Python**
@@ -81,5 +83,5 @@ result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>

View File

@@ -18,4 +18,4 @@ docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build_vectordb.sh $ARCH
bash ci/manylinux_node/build.sh $ARCH

View File

@@ -4,9 +4,9 @@ ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
pushd ci/manylinux_nodejs
docker build \
-t lancedb-node-manylinux-$ARCH \
-t lancedb-nodejs-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
@@ -17,5 +17,5 @@ popd
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux-$ARCH \
bash ci/manylinux_node/build_lancedb.sh $ARCH
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH

View File

@@ -1,51 +0,0 @@
set -e
RELEASE_TYPE=${1:-"stable"}
BUMP_MINOR=${2:-false}
TAG_PREFIX=${3:-"v"} # Such as "python-v"
HEAD_SHA=${4:-$(git rev-parse HEAD)}
readonly SELF_DIR=$(cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
PREV_TAG=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
echo "Found previous tag $PREV_TAG"
# Initially, we don't want to tag if we are doing stable, because we will bump
# again later. See comment at end for why.
if [[ "$RELEASE_TYPE" == 'stable' ]]; then
BUMP_ARGS="--no-tag"
fi
# If last is stable and not bumping minor
if [[ $PREV_TAG != *beta* ]]; then
if [[ "$BUMP_MINOR" != "false" ]]; then
# X.Y.Z -> X.(Y+1).0-beta.0
bump-my-version bump -vv $BUMP_ARGS minor
else
# X.Y.Z -> X.Y.(Z+1)-beta.0
bump-my-version bump -vv $BUMP_ARGS patch
fi
else
if [[ "$BUMP_MINOR" != "false" ]]; then
# X.Y.Z-beta.N -> X.(Y+1).0-beta.0
bump-my-version bump -vv $BUMP_ARGS minor
else
# X.Y.Z-beta.N -> X.Y.Z-beta.(N+1)
bump-my-version bump -vv $BUMP_ARGS pre_n
fi
fi
# The above bump will always bump to a pre-release version. If we are releasing
# a stable version, bump the pre-release level ("pre_l") to make it stable.
if [[ $RELEASE_TYPE == 'stable' ]]; then
# X.Y.Z-beta.N -> X.Y.Z
bump-my-version bump -vv pre_l
fi
# Validate that we have incremented version appropriately for breaking changes
NEW_TAG=$(git describe --tags --exact-match HEAD)
NEW_VERSION=$(echo $NEW_TAG | sed "s/^$TAG_PREFIX//")
LAST_STABLE_RELEASE=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | grep -v beta | grep -vF "$NEW_TAG" | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
LAST_STABLE_VERSION=$(echo $LAST_STABLE_RELEASE | sed "s/^$TAG_PREFIX//")
python $SELF_DIR/check_breaking_changes.py $LAST_STABLE_RELEASE $HEAD_SHA $LAST_STABLE_VERSION $NEW_VERSION

View File

@@ -1,35 +0,0 @@
"""
Check whether there are any breaking changes in the PRs between the base and head commits.
If there are, assert that we have incremented the minor version.
"""
import argparse
import os
from packaging.version import parse
from github import Github
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("base")
parser.add_argument("head")
parser.add_argument("last_stable_version")
parser.add_argument("current_version")
args = parser.parse_args()
repo = Github(os.environ["GITHUB_TOKEN"]).get_repo(os.environ["GITHUB_REPOSITORY"])
commits = repo.compare(args.base, args.head).commits
prs = (pr for commit in commits for pr in commit.get_pulls())
for pr in prs:
if any(label.name == "breaking-change" for label in pr.labels):
print(f"Breaking change in PR: {pr.html_url}")
break
else:
print("No breaking changes found.")
exit(0)
last_stable_version = parse(args.last_stable_version)
current_version = parse(args.current_version)
if current_version.minor <= last_stable_version.minor:
print("Minor version is not greater than the last stable version.")
exit(1)

View File

@@ -4,7 +4,7 @@
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux_2_28_${ARCH}
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
@@ -18,8 +18,8 @@ COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user, but only if it doesn't exist
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.

View File

@@ -6,7 +6,7 @@
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1v \
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git

View File

@@ -8,7 +8,7 @@ install_node() {
source "$HOME"/.bashrc
nvm install --no-progress 18
nvm install --no-progress 16
}
install_rust() {

View File

@@ -0,0 +1,31 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

View File

@@ -0,0 +1,26 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,35 +0,0 @@
"""
Takes a list of semver strings and sorts them in ascending order.
"""
import sys
from packaging.version import parse, InvalidVersion
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("prefix", default="v")
args = parser.parse_args()
# Read the input from stdin
lines = sys.stdin.readlines()
# Parse the versions
versions = []
for line in lines:
line = line.strip()
try:
version_str = line.removeprefix(args.prefix)
version = parse(version_str)
except InvalidVersion:
# There are old tags that don't follow the semver format
print(f"Invalid version: {line}", file=sys.stderr)
continue
versions.append((line, version))
# Sort the versions
versions.sort(key=lambda x: x[1])
# Print the sorted versions as original strings
for line, _ in versions:
print(line)

View File

@@ -1,18 +1,18 @@
version: "3.9"
services:
localstack:
image: localstack/localstack:3.3
image: localstack/localstack:0.14
ports:
- 4566:4566
environment:
- SERVICES=s3,dynamodb,kms
- SERVICES=s3,dynamodb
- DEBUG=1
- LS_LOG=trace
- DOCKER_HOST=unix:///var/run/docker.sock
- AWS_ACCESS_KEY_ID=ACCESSKEY
- AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck:
test: [ "CMD", "curl", "-s", "http://localhost:4566/_localstack/health" ]
test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
interval: 5s
retries: 3
start_period: 10s

View File

@@ -26,7 +26,6 @@ theme:
- content.code.copy
- content.tabs.link
- content.action.edit
- content.tooltips
- toc.follow
- navigation.top
- navigation.tabs
@@ -34,10 +33,8 @@ theme:
- navigation.footer
- navigation.tracking
- navigation.instant
- content.footnote.tooltips
icon:
repo: fontawesome/brands/github
annotation: material/arrow-right-circle
custom_dir: overrides
plugins:
@@ -60,17 +57,20 @@ plugins:
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations: true
- ultralytics:
verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
markdown_extensions:
- admonition
- footnotes
- pymdownx.critic
- pymdownx.caret
- pymdownx.keys
- pymdownx.mark
- pymdownx.tilde
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
@@ -84,12 +84,7 @@ markdown_extensions:
- pymdownx.tabbed:
alternate_style: true
- md_in_html
- abbr
- attr_list
- pymdownx.snippets
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
nav:
- Home:
@@ -97,74 +92,26 @@ nav:
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building a vector index: ann_indexes.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Sync -> Async Migration Guide: migration.md
- 🧬 Managing embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
@@ -173,31 +120,20 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
@@ -207,27 +143,23 @@ nav:
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- 🔧 CLI & Config: cli_config.md
- 💭 FAQs: faq.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md
- 👾 JavaScript (lancedb): javascript/modules.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
@@ -235,64 +167,18 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Sync -> Async Migration Guide: migration.md
- Managing Embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
@@ -301,51 +187,33 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md
- LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Examples:
- examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- API reference:
- Overview: api_reference.md
- Python: python/python.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/globals.md
- Javascript (lancedb): js/modules.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- 👾 JavaScript: javascript/saas-modules.md
extra_css:
- styles/global.css
@@ -358,11 +226,3 @@ extra:
analytics:
provider: google
property: G-B7NFM40W74
social:
- icon: fontawesome/brands/github
link: https://github.com/lancedb/lancedb
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb

View File

@@ -1,487 +0,0 @@
openapi: 3.1.0
info:
version: 1.0.0
title: LanceDB Cloud API
description: |
LanceDB Cloud API is a RESTful API that allows users to access and modify data stored in LanceDB Cloud.
Table actions are considered temporary resource creations and all use POST method.
contact:
name: LanceDB support
url: https://lancedb.com
email: contact@lancedb.com
servers:
- url: https://{db}.{region}.api.lancedb.com
description: LanceDB Cloud REST endpoint.
variables:
db:
default: ""
description: the name of DB
region:
default: "us-east-1"
description: the service region of the DB
security:
- key_auth: []
components:
securitySchemes:
key_auth:
name: x-api-key
type: apiKey
in: header
parameters:
table_name:
name: name
in: path
description: name of the table
required: true
schema:
type: string
responses:
invalid_request:
description: Invalid request
content:
text/plain:
schema:
type: string
not_found:
description: Not found
content:
text/plain:
schema:
type: string
unauthorized:
description: Unauthorized
content:
text/plain:
schema:
type: string
requestBodies:
arrow_stream_buffer:
description: Arrow IPC stream buffer
required: true
content:
application/vnd.apache.arrow.stream:
schema:
type: string
format: binary
paths:
/v1/table/:
get:
description: List tables, optionally, with pagination.
tags:
- Tables
summary: List Tables
operationId: listTables
parameters:
- name: limit
in: query
description: Limits the number of items to return.
schema:
type: integer
- name: page_token
in: query
description: Specifies the starting position of the next query
schema:
type: string
responses:
"200":
description: Successfully returned a list of tables in the DB
content:
application/json:
schema:
type: object
properties:
tables:
type: array
items:
type: string
page_token:
type: string
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create/:
post:
description: Create a new table
summary: Create a new table
operationId: createTable
tags:
- Tables
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Table successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/query/:
post:
description: Vector Query
url: https://{db-uri}.{aws-region}.api.lancedb.com/v1/table/{name}/query/
tags:
- Data
summary: Vector Query
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
vector:
type: FixedSizeList
description: |
The targetted vector to search for. Required.
vector_column:
type: string
description: |
The column to query, it can be inferred from the schema if there is only one vector column.
prefilter:
type: boolean
description: |
Whether to prefilter the data. Optional.
k:
type: integer
description: |
The number of search results to return. Default is 10.
distance_type:
type: string
description: |
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
bypass_vector_index:
type: boolean
description: |
Whether to bypass vector index. Optional.
filter:
type: string
description: |
A filter expression that specifies the rows to query. Optional.
columns:
type: array
items:
type: string
description: |
The columns to return. Optional.
nprobe:
type: integer
description: |
The number of probes to use for search. Optional.
refine_factor:
type: integer
description: |
The refine factor to use for search. Optional.
default: null
fast_search:
type: boolean
description: |
Whether to use fast search. Optional.
default: false
required:
- vector
responses:
"200":
description: top k results if query is successfully executed
content:
application/json:
schema:
type: object
properties:
results:
type: array
items:
type: object
properties:
id:
type: integer
selected_col_1_to_return:
type: col_1_type
selected_col_n_to_return:
type: col_n_type
_distance:
type: float
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/insert/:
post:
description: Insert new data to the Table.
tags:
- Data
operationId: insertData
summary: Insert new data.
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/merge_insert/:
post:
description: Create a "merge insert" operation
This operation can add rows, update rows, and remove rows all in a single
transaction. See python method `lancedb.table.Table.merge_insert` for examples.
tags:
- Data
summary: Merge Insert
operationId: mergeInsert
parameters:
- $ref: "#/components/parameters/table_name"
- name: on
in: query
description: |
The column to use as the primary key for the merge operation.
required: true
schema:
type: string
- name: when_matched_update_all
in: query
description: |
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
required: false
schema:
type: boolean
- name: when_matched_update_all_filt
in: query
description: |
If present then only rows that satisfy the filter expression will
be updated
required: false
schema:
type: string
- name: when_not_matched_insert_all
in: query
description: |
Rows that exist only in the source table (new data) will be
inserted into the target table (old data).
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete
in: query
description: |
Rows that exist only in the target table (old data) will be
deleted. An optional condition (`when_not_matched_by_source_delete_filt`)
can be provided to limit what data is deleted.
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete_filt
in: query
description: |
The filter expression that specifies the rows to delete.
required: false
schema:
type: string
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Merge Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/delete/:
post:
description: Delete rows from a table.
tags:
- Data
summary: Delete rows from a table
operationId: deleteData
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
predicate:
type: string
description: |
A filter expression that specifies the rows to delete.
responses:
"200":
description: Delete successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/drop/:
post:
description: Drop a table
tags:
- Tables
summary: Drop a table
operationId: dropTable
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Drop successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/describe/:
post:
description: Describe a table and return Table Information.
tags:
- Tables
summary: Describe a table
operationId: describeTable
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Table information
content:
application/json:
schema:
type: object
properties:
table:
type: string
version:
type: integer
schema:
type: string
stats:
type: object
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/list/:
post:
description: List indexes of a table
tags:
- Tables
summary: List indexes of a table
operationId: listIndexes
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Available list of indexes on the table.
content:
application/json:
schema:
type: object
properties:
indexes:
type: array
items:
type: object
properties:
columns:
type: array
items:
type: string
index_name:
type: string
index_uuid:
type: string
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_index/:
post:
description: Create vector index on a Table
tags:
- Tables
summary: Create vector index on a Table
operationId: createIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
metric_type:
type: string
nullable: false
description: |
The metric type to use for the index. L2, Cosine, Dot are supported.
index_type:
type: string
responses:
"200":
description: Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_scalar_index/:
post:
description: Create a scalar index on a table
tags:
- Tables
summary: Create a scalar index on a table
operationId: createScalarIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
index_type:
type: string
required: false
responses:
"200":
description: Scalar Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"

View File

@@ -1,7 +1,6 @@
mkdocs==1.5.3
mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3
mkdocstrings[python]==0.25.2
griffe
mkdocs-render-swagger-plugin
mkdocstrings[python]==0.20.0
pydantic
mkdocs-ultralytics-plugin==0.0.44

View File

@@ -38,21 +38,7 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "TypeScript"
=== "@lancedb/lancedb"
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
```
=== "vectordb (deprecated)"
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
=== "Typescript"
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
@@ -164,15 +150,7 @@ There are a couple of parameters that can be used to fine-tune the search:
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search1"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
@@ -198,15 +176,7 @@ You can further filter the elements returned by a search using a where clause.
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search2"
```
=== "vectordb (deprecated)"
=== "Typescript"
```javascript
--8<-- "docs/src/ann_indexes.ts:search2"
@@ -230,15 +200,7 @@ You can select the columns returned by the query using a select clause.
...
```
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search3"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"

View File

@@ -4,5 +4,5 @@ The API reference for the LanceDB client SDKs are available at the following loc
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

Before

Width:  |  Height:  |  Size: 2.3 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.7 KiB

View File

@@ -1,22 +0,0 @@
<svg width="147" height="20" viewBox="0 0 147 20" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect x="0.5" y="0.5" width="145.482" height="19" rx="9.5" fill="white" stroke="#EFEFEF"/>
<path d="M14.1863 10.9251V12.7593H16.0205V10.9251H14.1863Z" fill="#FF3270"/>
<path d="M17.8707 10.9251V12.7593H19.7049V10.9251H17.8707Z" fill="#861FFF"/>
<path d="M14.1863 7.24078V9.07496H16.0205V7.24078H14.1863Z" fill="#097EFF"/>
<path fill-rule="evenodd" clip-rule="evenodd" d="M12.903 6.77179C12.903 6.32194 13.2676 5.95728 13.7175 5.95728C14.1703 5.95728 15.2556 5.95728 16.1094 5.95728C16.7538 5.95728 17.2758 6.47963 17.2758 7.12398V9.6698H19.8217C20.4661 9.6698 20.9884 10.1922 20.9884 10.8365C20.9884 11.6337 20.9884 12.4309 20.9884 13.2282C20.9884 13.678 20.6237 14.0427 20.1738 14.0427H17.3039H16.5874H13.7175C13.2676 14.0427 12.903 13.678 12.903 13.2282V9.71653V9.64174V6.77179ZM14.1863 7.24066V9.07485H16.0205V7.24066H14.1863ZM14.1863 12.7593V10.9251H16.0205V12.7593H14.1863ZM17.8708 12.7593V10.9251H19.705V12.7593H17.8708Z" fill="black"/>
<path d="M18.614 8.35468L20.7796 6.18905M20.7796 6.18905V7.66073M20.7796 6.18905L19.2724 6.18905" stroke="black" stroke-width="0.686298" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M31.6082 13.9838C30.8546 13.9838 30.1895 13.802 29.6132 13.4385C29.0368 13.066 28.5846 12.5429 28.2565 11.869C27.9373 11.1862 27.7777 10.3749 27.7777 9.43501C27.7777 8.49511 27.9373 7.69265 28.2565 7.02762C28.5846 6.3626 29.0368 5.85275 29.6132 5.49807C30.1895 5.14339 30.8546 4.96605 31.6082 4.96605C32.3708 4.96605 33.0403 5.14339 33.6166 5.49807C34.193 5.85275 34.6408 6.3626 34.96 7.02762C35.2881 7.69265 35.4521 8.49511 35.4521 9.43501C35.4521 10.3749 35.2881 11.1862 34.96 11.869C34.6408 12.5429 34.193 13.066 33.6166 13.4385C33.0403 13.802 32.3708 13.9838 31.6082 13.9838ZM31.6082 12.6404C32.291 12.6404 32.8363 12.3523 33.2442 11.7759C33.6521 11.1907 33.856 10.4104 33.856 9.43501C33.856 8.45964 33.6521 7.69708 33.2442 7.14733C32.8363 6.58871 32.291 6.3094 31.6082 6.3094C30.9255 6.3094 30.3802 6.58871 29.9723 7.14733C29.5644 7.69708 29.3605 8.45964 29.3605 9.43501C29.3605 10.4104 29.5644 11.1907 29.9723 11.7759C30.3802 12.3523 30.9255 12.6404 31.6082 12.6404Z" fill="#2C3236"/>
<path d="M37.0592 16.4045V7.29363H38.3227L38.4291 7.98526H38.4823C38.7572 7.75472 39.0631 7.55521 39.4 7.38674C39.7459 7.21826 40.0961 7.13403 40.4508 7.13403C41.2665 7.13403 41.8961 7.43551 42.3395 8.03846C42.7917 8.64142 43.0178 9.44831 43.0178 10.4591C43.0178 11.204 42.8848 11.8424 42.6188 12.3744C42.3528 12.8976 42.0069 13.2966 41.5813 13.5715C41.1646 13.8463 40.7124 13.9838 40.2247 13.9838C39.9409 13.9838 39.6572 13.9217 39.3734 13.7976C39.0897 13.6646 38.8148 13.4872 38.5488 13.2656L38.5887 14.3562V16.4045H37.0592ZM39.9055 12.7202C40.3399 12.7202 40.7035 12.5296 40.9961 12.1483C41.2887 11.767 41.435 11.2084 41.435 10.4724C41.435 9.81629 41.3242 9.30644 41.1025 8.94289C40.8808 8.57935 40.5217 8.39757 40.0252 8.39757C39.5641 8.39757 39.0853 8.64142 38.5887 9.1291V12.1749C38.8281 12.37 39.0587 12.5119 39.2803 12.6005C39.502 12.6803 39.7104 12.7202 39.9055 12.7202Z" fill="#2C3236"/>
<path d="M47.3598 13.9838C46.7568 13.9838 46.2115 13.8508 45.7238 13.5848C45.2361 13.3099 44.8504 12.9197 44.5667 12.4143C44.2829 11.9 44.141 11.2838 44.141 10.5656C44.141 9.85619 44.2829 9.24437 44.5667 8.73009C44.8593 8.2158 45.2361 7.82122 45.6972 7.54634C46.1583 7.27147 46.6415 7.13403 47.147 7.13403C47.741 7.13403 48.2376 7.26703 48.6366 7.53304C49.0356 7.79018 49.3371 8.15373 49.541 8.62368C49.745 9.08476 49.847 9.62122 49.847 10.233C49.847 10.5523 49.8248 10.8005 49.7805 10.9779H45.6307C45.7016 11.5542 45.91 12.002 46.2558 12.3212C46.6016 12.6404 47.0361 12.8 47.5593 12.8C47.843 12.8 48.1046 12.7601 48.344 12.6803C48.5923 12.5917 48.8361 12.472 49.0755 12.3212L49.5942 13.2789C49.2839 13.4828 48.9381 13.6513 48.5568 13.7843C48.1755 13.9173 47.7765 13.9838 47.3598 13.9838ZM45.6174 9.94043H48.5169C48.5169 9.43501 48.4061 9.04043 48.1844 8.75669C47.9627 8.46408 47.6302 8.31777 47.1869 8.31777C46.8056 8.31777 46.4642 8.45964 46.1627 8.74339C45.8701 9.01826 45.6883 9.41728 45.6174 9.94043Z" fill="#2C3236"/>
<path d="M51.3078 13.8242V7.29363H52.5714L52.6778 8.17147H52.731C53.0236 7.88772 53.3428 7.64388 53.6886 7.43994C54.0344 7.236 54.429 7.13403 54.8724 7.13403C55.5728 7.13403 56.0827 7.36014 56.4019 7.81235C56.7211 8.26457 56.8807 8.90299 56.8807 9.72762V13.8242H55.3512V9.92713C55.3512 9.38624 55.2714 9.00496 55.1118 8.78329C54.9522 8.56161 54.6906 8.45078 54.327 8.45078C54.0433 8.45078 53.7906 8.52171 53.5689 8.66358C53.3561 8.79659 53.1123 8.99609 52.8374 9.2621V13.8242H51.3078Z" fill="#2C3236"/>
<path d="M61.4131 13.8242V7.29363H62.9426V13.8242H61.4131ZM62.1845 6.14979C61.9096 6.14979 61.6879 6.06999 61.5195 5.91038C61.351 5.75078 61.2668 5.53797 61.2668 5.27196C61.2668 5.01482 61.351 4.80644 61.5195 4.64684C61.6879 4.48723 61.9096 4.40743 62.1845 4.40743C62.4594 4.40743 62.6811 4.48723 62.8495 4.64684C63.018 4.80644 63.1022 5.01482 63.1022 5.27196C63.1022 5.53797 63.018 5.75078 62.8495 5.91038C62.6811 6.06999 62.4594 6.14979 62.1845 6.14979Z" fill="#2C3236"/>
<path d="M64.8941 13.8242V7.29363H66.1576L66.264 8.17147H66.3172C66.6098 7.88772 66.929 7.64388 67.2748 7.43994C67.6207 7.236 68.0152 7.13403 68.4586 7.13403C69.1591 7.13403 69.6689 7.36014 69.9881 7.81235C70.3074 8.26457 70.467 8.90299 70.467 9.72762V13.8242H68.9374V9.92713C68.9374 9.38624 68.8576 9.00496 68.698 8.78329C68.5384 8.56161 68.2768 8.45078 67.9133 8.45078C67.6295 8.45078 67.3768 8.52171 67.1551 8.66358C66.9423 8.79659 66.6985 8.99609 66.4236 9.2621V13.8242H64.8941Z" fill="#2C3236"/>
<path d="M75.1323 13.8242V5.12565H76.6752V8.62368H80.1998V5.12565H81.7427V13.8242H80.1998V9.96703H76.6752V13.8242H75.1323Z" fill="#2C3236"/>
<path d="M83.9517 13.8242V5.12565H89.2054V6.4291H85.4945V8.88969H88.6601V10.1931H85.4945V13.8242H83.9517Z" fill="#2C3236"/>
<path d="M95.9349 13.9838C95.3497 13.9838 94.7822 13.8729 94.2324 13.6513C93.6915 13.4296 93.2127 13.1148 92.796 12.7069L93.7004 11.6562C94.0108 11.9488 94.3654 12.1882 94.7645 12.3744C95.1635 12.5518 95.5625 12.6404 95.9615 12.6404C96.458 12.6404 96.8349 12.5385 97.092 12.3345C97.3492 12.1306 97.4778 11.8601 97.4778 11.5232C97.4778 11.1596 97.3492 10.8981 97.092 10.7385C96.8438 10.5789 96.5245 10.4148 96.1344 10.2463L94.9374 9.72762C94.6536 9.60348 94.3743 9.44388 94.0994 9.2488C93.8334 9.05373 93.6117 8.80546 93.4344 8.50398C93.2659 8.2025 93.1817 7.83895 93.1817 7.41334C93.1817 6.95225 93.3058 6.53994 93.5541 6.17639C93.8113 5.80398 94.1571 5.51137 94.5915 5.29856C95.0349 5.07689 95.5403 4.96605 96.1078 4.96605C96.6132 4.96605 97.1009 5.06802 97.5709 5.27196C98.0408 5.46703 98.4442 5.73304 98.7812 6.06999L97.9965 7.05423C97.7216 6.82368 97.429 6.64191 97.1186 6.5089C96.8172 6.3759 96.4802 6.3094 96.1078 6.3094C95.6999 6.3094 95.3674 6.4025 95.1103 6.58871C94.862 6.76605 94.7379 7.01432 94.7379 7.33353C94.7379 7.55521 94.7999 7.74142 94.9241 7.89215C95.0571 8.03403 95.23 8.15816 95.4428 8.26457C95.6556 8.36211 95.8817 8.45964 96.1211 8.55718L97.3048 9.0493C97.8191 9.27097 98.2403 9.56358 98.5684 9.92713C98.8965 10.2818 99.0605 10.7739 99.0605 11.4035C99.0605 11.8734 98.9364 12.3035 98.6881 12.6936C98.4398 13.0838 98.0807 13.3986 97.6108 13.638C97.1497 13.8685 96.591 13.9838 95.9349 13.9838Z" fill="#2C3236"/>
<path d="M100.509 16.4045V7.29363H101.773L101.879 7.98526H101.932C102.207 7.75472 102.513 7.55521 102.85 7.38674C103.196 7.21826 103.546 7.13403 103.901 7.13403C104.717 7.13403 105.346 7.43551 105.79 8.03846C106.242 8.64142 106.468 9.44831 106.468 10.4591C106.468 11.204 106.335 11.8424 106.069 12.3744C105.803 12.8976 105.457 13.2966 105.031 13.5715C104.615 13.8463 104.162 13.9838 103.675 13.9838C103.391 13.9838 103.107 13.9217 102.824 13.7976C102.54 13.6646 102.265 13.4872 101.999 13.2656L102.039 14.3562V16.4045H100.509ZM103.356 12.7202C103.79 12.7202 104.154 12.5296 104.446 12.1483C104.739 11.767 104.885 11.2084 104.885 10.4724C104.885 9.81629 104.774 9.30644 104.553 8.94289C104.331 8.57935 103.972 8.39757 103.475 8.39757C103.014 8.39757 102.535 8.64142 102.039 9.1291V12.1749C102.278 12.37 102.509 12.5119 102.73 12.6005C102.952 12.6803 103.16 12.7202 103.356 12.7202Z" fill="#2C3236"/>
<path d="M109.444 13.9838C108.876 13.9838 108.411 13.8064 108.047 13.4518C107.692 13.0971 107.515 12.636 107.515 12.0685C107.515 11.368 107.821 10.8271 108.433 10.4458C109.045 10.0557 110.02 9.78969 111.359 9.64782C111.35 9.30201 111.257 9.00496 111.08 8.75669C110.911 8.49954 110.605 8.37097 110.162 8.37097C109.843 8.37097 109.528 8.43304 109.218 8.55718C108.916 8.68132 108.619 8.83206 108.326 9.0094L107.768 7.98526C108.131 7.75472 108.539 7.55521 108.991 7.38674C109.452 7.21826 109.94 7.13403 110.454 7.13403C111.27 7.13403 111.878 7.37787 112.277 7.86555C112.685 8.34437 112.888 9.04043 112.888 9.95373V13.8242H111.625L111.518 13.1059H111.465C111.173 13.3542 110.858 13.5626 110.521 13.7311C110.193 13.8995 109.834 13.9838 109.444 13.9838ZM109.936 12.7867C110.202 12.7867 110.441 12.7247 110.654 12.6005C110.876 12.4675 111.111 12.2902 111.359 12.0685V10.6055C110.472 10.7207 109.856 10.8936 109.51 11.1242C109.164 11.3458 108.991 11.6207 108.991 11.9488C108.991 12.2414 109.08 12.4542 109.257 12.5872C109.435 12.7202 109.661 12.7867 109.936 12.7867Z" fill="#2C3236"/>
<path d="M117.446 13.9838C116.851 13.9838 116.315 13.8508 115.836 13.5848C115.366 13.3099 114.989 12.9197 114.706 12.4143C114.431 11.9 114.293 11.2838 114.293 10.5656C114.293 9.83846 114.444 9.2222 114.746 8.71679C115.047 8.2025 115.446 7.81235 115.943 7.54634C116.448 7.27147 116.989 7.13403 117.565 7.13403C117.982 7.13403 118.346 7.20496 118.656 7.34684C118.966 7.48871 119.241 7.66161 119.48 7.86555L118.736 8.86309C118.567 8.71235 118.394 8.59708 118.217 8.51728C118.04 8.42861 117.849 8.38427 117.645 8.38427C117.122 8.38427 116.692 8.58378 116.355 8.98279C116.027 9.38181 115.863 9.9094 115.863 10.5656C115.863 11.2128 116.022 11.736 116.342 12.135C116.67 12.534 117.091 12.7335 117.605 12.7335C117.862 12.7335 118.102 12.6803 118.323 12.5739C118.554 12.4587 118.762 12.3256 118.948 12.1749L119.574 13.1857C119.272 13.4518 118.935 13.6513 118.563 13.7843C118.19 13.9173 117.818 13.9838 117.446 13.9838Z" fill="#2C3236"/>
<path d="M123.331 13.9838C122.728 13.9838 122.183 13.8508 121.695 13.5848C121.207 13.3099 120.822 12.9197 120.538 12.4143C120.254 11.9 120.112 11.2838 120.112 10.5656C120.112 9.85619 120.254 9.24437 120.538 8.73009C120.83 8.2158 121.207 7.82122 121.668 7.54634C122.13 7.27147 122.613 7.13403 123.118 7.13403C123.712 7.13403 124.209 7.26703 124.608 7.53304C125.007 7.79018 125.308 8.15373 125.512 8.62368C125.716 9.08476 125.818 9.62122 125.818 10.233C125.818 10.5523 125.796 10.8005 125.752 10.9779H121.602C121.673 11.5542 121.881 12.002 122.227 12.3212C122.573 12.6404 123.007 12.8 123.53 12.8C123.814 12.8 124.076 12.7601 124.315 12.6803C124.563 12.5917 124.807 12.472 125.047 12.3212L125.565 13.2789C125.255 13.4828 124.909 13.6513 124.528 13.7843C124.147 13.9173 123.748 13.9838 123.331 13.9838ZM121.589 9.94043H124.488C124.488 9.43501 124.377 9.04043 124.156 8.75669C123.934 8.46408 123.601 8.31777 123.158 8.31777C122.777 8.31777 122.435 8.45964 122.134 8.74339C121.841 9.01826 121.66 9.41728 121.589 9.94043Z" fill="#2C3236"/>
<path d="M129.101 13.9838C128.658 13.9838 128.215 13.8995 127.771 13.7311C127.328 13.5537 126.947 13.3365 126.627 13.0793L127.346 12.0951C127.638 12.3168 127.931 12.4941 128.223 12.6271C128.516 12.7601 128.826 12.8266 129.154 12.8266C129.509 12.8266 129.771 12.7513 129.939 12.6005C130.108 12.4498 130.192 12.2636 130.192 12.0419C130.192 11.8557 130.121 11.705 129.979 11.5897C129.846 11.4656 129.673 11.3591 129.46 11.2705C129.248 11.1729 129.026 11.0798 128.795 10.9912C128.512 10.8848 128.228 10.7562 127.944 10.6055C127.669 10.4458 127.443 10.2463 127.266 10.0069C127.088 9.75866 127 9.45274 127 9.0892C127 8.51284 127.213 8.04289 127.638 7.67935C128.064 7.3158 128.64 7.13403 129.367 7.13403C129.828 7.13403 130.241 7.21383 130.604 7.37344C130.968 7.53304 131.282 7.71482 131.548 7.91876L130.844 8.84979C130.613 8.68132 130.378 8.54831 130.139 8.45078C129.908 8.34437 129.664 8.29117 129.407 8.29117C129.079 8.29117 128.835 8.36211 128.676 8.50398C128.516 8.63698 128.436 8.80545 128.436 9.0094C128.436 9.26654 128.569 9.46161 128.835 9.59462C129.101 9.72762 129.412 9.85619 129.766 9.98033C130.068 10.0867 130.36 10.2197 130.644 10.3793C130.928 10.5301 131.163 10.7296 131.349 10.9779C131.544 11.2261 131.642 11.5542 131.642 11.9621C131.642 12.5207 131.424 12.9995 130.99 13.3986C130.555 13.7887 129.926 13.9838 129.101 13.9838Z" fill="#2C3236"/>
</svg>

Before

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>

Before

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -16,60 +16,11 @@
pip install lancedb
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb
```
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "vectordb (deprecated)"
=== "Typescript"
```shell
npm install vectordb
```
!!! note "Bundling `vectordb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "Rust"
@@ -93,43 +44,6 @@
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
### Preview releases
Stable releases are created about every 2 weeks. For the latest features and bug
fixes, you can install the preview release. These releases receive the same
level of testing as stable releases, but are not guaranteed to be available for
more than 6 months after they are released. Once your application is stable, we
recommend switching to stable releases.
=== "Python"
```shell
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb@preview
```
=== "vectordb (deprecated)"
```shell
npm install vectordb@preview
```
=== "Rust"
We don't push preview releases to crates.io, but you can referent the tag
in GitHub within your Cargo dependencies:
```toml
[dependencies]
lancedb = { git = "https://github.com/lancedb/lancedb.git", tag = "vX.Y.Z-beta.N" }
```
## Connect to a database
=== "Python"
@@ -149,23 +63,24 @@ recommend switching to stable releases.
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
=== "Typescript"
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "docs/src/basic_legacy.ts:import"
--8<-- "nodejs/examples/basic.ts:connect"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:open_db"
```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust"
```rust
@@ -207,22 +122,14 @@ table.
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_table"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode:"overwrite"`
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Rust"
@@ -243,9 +150,6 @@ table.
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
!!! info "Automatic embedding generation with Embedding API"
When working with embedding models, it is recommended to use the LanceDB embedding API to automatically create vector representation of the data and queries in the background. See the [quickstart example](#using-the-embedding-api) or the embedding API [guide](./embeddings/)
### Create an empty table
Sometimes you may not have the data to insert into the table at creation time.
@@ -260,18 +164,7 @@ similar to a `CREATE TABLE` statement in SQL.
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
!!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
@@ -294,20 +187,12 @@ Once created, you can open a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:open_table"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
```rust
@@ -323,16 +208,9 @@ If you forget the name of your table, you can always get a listing of all table
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
=== "Javascript"
```typescript
--8<-- "nodejs/examples/basic.ts:table_names"
```
=== "vectordb (deprecated)"
```typescript
```javascript
console.log(await db.tableNames());
```
@@ -353,14 +231,7 @@ After a table has been created, you can always add more data to it as follows:
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:add_data"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
@@ -385,14 +256,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
This returns a pandas DataFrame with the results.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:vector_search"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
@@ -425,14 +289,7 @@ LanceDB allows you to create an ANN index on a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_index"
```
=== "vectordb (deprecated)"
=== "Typescript"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
@@ -464,15 +321,7 @@ This can delete any number of rows that match the filter.
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:delete_rows"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
@@ -493,13 +342,7 @@ simple or complex as needed. To see what expressions are supported, see the
Read more: [lancedb.table.Table.delete][]
=== "Typescript[^1]"
=== "@lancedb/lancedb"
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
=== "vectordb (deprecated)"
=== "Javascript"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
@@ -522,15 +365,7 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:drop_table"
```
=== "vectordb (deprecated)"
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
@@ -545,40 +380,22 @@ Use the `drop_table()` method on the database to remove a table.
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack"
## Using the Embedding API
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/index.md).
## What's next
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,14 +1,6 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import {
Schema,
Field,
Float32,
FixedSizeList,
Int32,
Float16,
} from "apache-arrow";
import * as arrow from "apache-arrow";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
@@ -28,33 +20,9 @@ const example = async () => {
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite },
{ writeMode: lancedb.WriteMode.Overwrite }
);
// --8<-- [end:create_table]
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable({
name: "myTableWithSchema",
data,
schema,
});
// --8<-- [end:create_table_with_schema]
}
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
@@ -74,35 +42,33 @@ const example = async () => {
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
{
// --8<-- [start:create_f16_table]
const dim = 16;
const total = 10;
const schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
new Field("name", new Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
vector: Array.from(Array(dim), Math.random)
})),
{ schema },
);
const table = await db.createTable("f16_tbl", data);
{ f16_schema }
)
const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table]
}
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();

51
docs/src/cli_config.md Normal file
View File

@@ -0,0 +1,51 @@
# CLI & Config
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console.
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command.
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
### Get usage help
```
lancedb diagnostics --help
```
### Disable diagnostics
```
lancedb diagnostics --disabled
```
### Enable diagnostics
```
lancedb diagnostics --enabled
```

View File

@@ -1 +0,0 @@
!!swagger ../../openapi.yml!!

View File

@@ -1,92 +0,0 @@
# Understanding HNSW index
Approximate Nearest Neighbor (ANN) search is a method for finding data points near a given point in a dataset, though not always the exact nearest one. HNSW is one of the most accurate and fastest Approximate Nearest Neighbour search algorithms, Its beneficial in high-dimensional spaces where finding the same nearest neighbor would be too slow and costly
[Jump to usage](#usage)
There are three main types of ANN search algorithms:
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
* * **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
HNSW also combines this with the ideas behind a classic 1-dimensional search data structure: the skip list.
## k-Nearest Neighbor Graphs and k-approximate Nearest neighbor Graphs
The k-nearest neighbor graph actually predates its use for ANN search. Its construction is quite simple:
* Each vector in the dataset is given an associated vertex.
* Each vertex has outgoing edges to its k nearest neighbors. That is, the k closest other vertices by Euclidean distance between the two corresponding vectors. This can be thought of as a "friend list" for the vertex.
* For some applications (including nearest-neighbor search), the incoming edges are also added.
Eventually, it was realized that the following greedy search method over such a graph typically results in good approximate nearest neighbors:
* Given a query vector, start at some fixed "entry point" vertex (e.g. the approximate center node).
* Look at that vertex's neighbors. If any of them are closer to the query vector than the current vertex, then move to that vertex.
* Repeat until a local optimum is found.
The above algorithm also generalizes to e.g. top 10 approximate nearest neighbors.
Computing a k-nearest neighbor graph is actually quite slow, taking quadratic time in the dataset size. It was quickly realized that near-identical performance can be achieved using a k-approximate nearest neighbor graph. That is, instead of obtaining the k-nearest neighbors for each vertex, an approximate nearest neighbor search data structure is used to build much faster.
In fact, another data structure is not needed: This can be done "incrementally".
That is, if you start with a k-ANN graph for n-1 vertices, you can extend it to a k-ANN graph for n vertices as well by using the graph to obtain the k-ANN for the new vertex.
One downside of k-NN and k-ANN graphs alone is that one must typically build them with a large value of k to get decent results, resulting in a large index.
## HNSW: Hierarchical Navigable Small Worlds
HNSW builds on k-ANN in two main ways:
* Instead of getting the k-approximate nearest neighbors for a large value of k, it sparsifies the k-ANN graph using a carefully chosen "edge pruning" heuristic, allowing for the number of edges per vertex to be limited to a relatively small constant.
* The "entry point" vertex is chosen dynamically using a recursively constructed data structure on a subset of the data, similarly to a skip list.
This recursive structure can be thought of as separating into layers:
* At the bottom-most layer, an k-ANN graph on the whole dataset is present.
* At the second layer, a k-ANN graph on a fraction of the dataset (e.g. 10%) is present.
* At the Lth layer, a k-ANN graph is present. It is over a (constant) fraction (e.g. 10%) of the vectors/vertices present in the L-1th layer.
Then the greedy search routine operates as follows:
* At the top layer (using an arbitrary vertex as an entry point), use the greedy local search routine on the k-ANN graph to get an approximate nearest neighbor at that layer.
* Using the approximate nearest neighbor found in the previous layer as an entry point, find an approximate nearest neighbor in the next layer with the same method.
* Repeat until the bottom-most layer is reached. Then use the entry point to find multiple nearest neighbors (e.g. top 10).
## Usage
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index
```python
import lancedb
import numpy as np
uri = "/tmp/lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [
{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))
]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the HNSW index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(index_type=IVF_HNSW_SQ)
```
### Query the index
```python
# Search using a random 1536-dimensional embedding
tbl.search(np.random.random((1536))) \
.limit(2) \
.to_pandas()
```

View File

@@ -1,67 +0,0 @@
# Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -1,51 +0,0 @@
# Jina Embeddings : Multimodal
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -1,82 +0,0 @@
# OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```

View File

@@ -1,51 +0,0 @@
# AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -1,63 +0,0 @@
# Cohere Embeddings
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
Supported models are:
- embed-english-v3.0
- embed-multilingual-v3.0
- embed-english-light-v3.0
- embed-multilingual-light-v3.0
- embed-english-v2.0
- embed-english-light-v2.0
- embed-multilingual-v2.0
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types:
| Input Type | Description |
|-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector|
| | database for search use-cases. |
| "`search_query`" | Used for embeddings of search queries |
| | run against a vector DB |
| "`semantic_similarity`" | Specifies the given text will be used |
| | for Semantic Textual Similarity (STS) |
| "`classification`" | Used for embeddings passed through a |
| | text classifier. |
| "`clustering`" | Used for the embeddings run through a |
| | clustering algorithm |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -1,35 +0,0 @@
# Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Usage Example:
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -1,24 +0,0 @@
# Huggingface embedding models
We offer support for all Hugging Face models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`. Some Hugging Face models might require custom models defined on the HuggingFace Hub in their own modeling files. You may enable this by setting `trust_remote_code=True`. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
Example usage -
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add(df)
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -1,75 +0,0 @@
# IBM watsonx.ai Embeddings
Generate text embeddings using IBM's watsonx.ai platform.
## Supported Models
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
- `ibm/slate-125m-english-rtrvr`
- `ibm/slate-30m-english-rtrvr`
- `sentence-transformers/all-minilm-l12-v2`
- `intfloat/multilingual-e5-large`
## Parameters
The following parameters can be passed to the `create` method:
| Parameter | Type | Default Value | Description |
|------------|----------|----------------------------------|-----------------------------------------------------------|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
| url | str | None | Optional custom URL for the watsonx.ai instance |
| params | dict | None | Optional additional parameters for the embedding model |
## Usage Example
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
```
pip install ibm-watsonx-ai
```
Optionally set environment variables (if not passing credentials to `create` directly):
```sh
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
```
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
watsonx_embed = EmbeddingFunctionRegistry
.get_instance()
.get("watsonx")
.create(
name="ibm/slate-125m-english-rtrvr",
# Uncomment and set these if not using environment variables
# api_key="your_api_key_here",
# project_id="your_project_id_here",
# url="your_watsonx_url_here",
# params={...},
)
class TextModel(LanceModel):
text: str = watsonx_embed.SourceField()
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"},
]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
tbl.add(data)
rs = tbl.search("hello").limit(1).to_pandas()
print(rs)
```

View File

@@ -1,50 +0,0 @@
# Instructor Embeddings
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```

View File

@@ -1,39 +0,0 @@
# Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -1,37 +0,0 @@
# Ollama embeddings
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
| Parameter | Type | Default Value | Description |
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -1,34 +0,0 @@
# OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -1,174 +0,0 @@
# Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.

View File

@@ -15,9 +15,6 @@ There is another optional layer of abstraction available: `TextEmbeddingFunction
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
=== "Python"
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@@ -44,21 +41,10 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
return sentence_transformers.SentenceTransformer(name)
```
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
=== "Python"
```python
from lancedb.pydantic import LanceModel, Vector
@@ -75,22 +61,12 @@ Now you can use this embedding function to create your table schema and that's i
result = tbl.search("world").limit(5)
```
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
```
!!! note
NOTE:
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
=== "Python"
LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
```python
@register("open-clip")
@@ -234,7 +210,3 @@ You can also use the `EmbeddingFunction` interface to implement more complex wor
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```
=== "TypeScript"
Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!

View File

@@ -1,84 +1,491 @@
# 📚 Available Embedding Models
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models.
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models. 🚀
## Text embedding functions
Contains the text embedding functions registered by default.
Before jumping on the list of available models, let's understand how to get an embedding model initialized and configured to use in our code:
* Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential backoff.
* Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
!!! example "Example usage"
```python
model = get_registry()
.get("openai")
.create(name="text-embedding-ada-002")
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
Now let's understand the above syntax:
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
model = get_registry().get("model_id").create(...params)
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
**This👆 line effectively creates a configured instance of an `embedding function` with `model` of choice that is ready for use.**
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
- `get_registry()` : This function call returns an instance of a `EmbeddingFunctionRegistry` object. This registry manages the registration and retrieval of embedding functions.
- `.get("model_id")` : This method call on the registry object and retrieves the **embedding models functions** associated with the `"model_id"` (1) .
{ .annotate }
### OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
1. Hover over the names in table below to find out the `model_id` of different embedding functions.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
- `.create(...params)` : This method call is on the object returned by the `get` method. It instantiates an embedding model function using the **specified parameters**.
??? question "What parameters does the `.create(...params)` method accepts?"
**Checkout the documentation of specific embedding models (links in the table below👇) to know what parameters it takes**.
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("openai").create()
!!! tip "Moving on"
Now that we know how to get the **desired embedding model** and use it in our code, let's explore the comprehensive **list** of embedding models **supported by LanceDB**, in the tables below.
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
## Text Embedding Functions 📝
These functions are registered by default to handle text embeddings.
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
- 🔄 **Embedding functions** have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with **exponential backoff**.
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
- 🌕 Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
### Instructor Embeddings
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
🌟 **Available Text Embeddings**
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
| **Embedding** :material-information-outline:{ title="Hover over the name to find out the model_id" } | **Description** | **Documentation** |
|-----------|-------------|---------------|
| [**Sentence Transformers**](available_embedding_models/text_embedding_functions/sentence_transformers.md "sentence-transformers") | 🧠 **SentenceTransformers** is a Python framework for state-of-the-art sentence, text, and image embeddings. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/sbert_2.png" alt="Sentence Transformers Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/sentence_transformers.md)|
| [**Huggingface Models**](available_embedding_models/text_embedding_functions/huggingface_embedding.md "huggingface") |🤗 We offer support for all **Huggingface** models. The default model is `colbert-ir/colbertv2.0`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/hugging_face.png" alt="Huggingface Icon" width="130" height="35">](available_embedding_models/text_embedding_functions/huggingface_embedding.md) |
| [**Ollama Embeddings**](available_embedding_models/text_embedding_functions/ollama_embedding.md "ollama") | 🔍 Generate embeddings via the **Ollama** python library. Ollama supports embedding models, making it possible to build RAG apps. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/Ollama.png" alt="Ollama Icon" width="110" height="35">](available_embedding_models/text_embedding_functions/ollama_embedding.md)|
| [**OpenAI Embeddings**](available_embedding_models/text_embedding_functions/openai_embedding.md "openai")| 🔑 **OpenAIs** text embeddings measure the relatedness of text strings. **LanceDB** supports state-of-the-art embeddings from OpenAI. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openai.png" alt="OpenAI Icon" width="100" height="35">](available_embedding_models/text_embedding_functions/openai_embedding.md)|
| [**Instructor Embeddings**](available_embedding_models/text_embedding_functions/instructor_embedding.md "instructor") | 📚 **Instructor**: An instruction-finetuned text embedding model that can generate text embeddings tailored to any task and domains by simply providing the task instruction, without any finetuning. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/instructor_embedding.png" alt="Instructor Embedding Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/instructor_embedding.md) |
| [**Gemini Embeddings**](available_embedding_models/text_embedding_functions/gemini_embedding.md "gemini-text") | 🌌 Googles Gemini API generates state-of-the-art embeddings for words, phrases, and sentences. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/gemini.png" alt="Gemini Icon" width="95" height="35">](available_embedding_models/text_embedding_functions/gemini_embedding.md) |
| [**Cohere Embeddings**](available_embedding_models/text_embedding_functions/cohere_embedding.md "cohere") | 💬 This will help you get started with **Cohere** embedding models using LanceDB. Using cohere API requires cohere package. Install it via `pip`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/cohere.png" alt="Cohere Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/cohere_embedding.md) |
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
[st-key]: "sentence-transformers"
[hf-key]: "huggingface"
[ollama-key]: "ollama"
[openai-key]: "openai"
[instructor-key]: "instructor"
[gemini-key]: "gemini-text"
[cohere-key]: "cohere"
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
### Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
## Multi-modal Embedding Functions🖼
Usage Example:
Multi-modal embedding functions allow you to query your table using both images and text. 💬🖼️
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
🌐 **Available Multi-modal Embeddings**
| Embedding :material-information-outline:{ title="Hover over the name to find out the model_id" } | Description | Documentation |
|-----------|-------------|---------------|
| [**OpenClip Embeddings**](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md "open-clip") | 🎨 We support CLIP model embeddings using the open source alternative, **open-clip** which supports various customizations. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openclip_github.png" alt="openclip Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md) |
| [**Imagebind Embeddings**](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md "imageind") | 🌌 We have support for **imagebind model embeddings**. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/imagebind_meta.png" alt="imagebind Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md)|
| [**Jina Multi-modal Embeddings**](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md "jina") | 🔗 **Jina embeddings** can also be used to embed both **text** and **image** data, only some of the models support image data and you can check the detailed documentation. 👉 | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="jina Icon" width="90" height="35">](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md) |
model = get_registry().get("gemini-text").create()
!!! note
If you'd like to request support for additional **embedding functions**, please feel free to open an issue on our LanceDB [GitHub issue page](https://github.com/lancedb/lancedb/issues).
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.
### OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```
### Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -2,9 +2,6 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! Note "Embedding functions on LanceDB cloud"
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
@@ -29,32 +26,17 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "TypeScript"
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
import * as lancedb from '@lancedb/lancedb'
import { getRegistry } from '@lancedb/lancedb/embeddings'
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const func = getRegistry().get("openai").create({apiKey})
```
=== "Rust"
In the Rust SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
```toml
// Make sure to include the `openai` feature
[dependencies]
lancedb = {version = "*", features = ["openai"]}
```
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## 2. Define the data model or schema
@@ -64,13 +46,13 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
```python
class Pets(LanceModel):
vector: Vector(clip.ndims()) = clip.VectorField()
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "TypeScript"
=== "JavaScript"
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
@@ -89,18 +71,9 @@ the embeddings at all:
table.add([{"image_uri": u} for u in uris])
```
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
```
=== "vectordb (deprecated)"
```ts
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
@@ -140,19 +113,9 @@ need to worry about it when you query the table:
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "TypeScript"
=== "JavaScript"
=== "@lancedb/lancedb"
```ts
const results = await table.search("What's the best pizza topping?")
.limit(10)
.toArray()
```
=== "vectordb (deprecated)
```ts
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
@@ -186,7 +149,7 @@ You can also use the integration for adding utility operations in the schema. Fo
```python
class Pets(LanceModel):
vector: Vector(clip.ndims()) = clip.VectorField()
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
@property

View File

@@ -7,128 +7,8 @@ LanceDB supports 3 methods of working with embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. You can define your own [custom embedding function](./custom_embedding_function.md)
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
For python users, there is also a legacy [with_embeddings API](./legacy.md).
It is retained for compatibility and will be removed in a future version.
## Quickstart
To get started with embeddings, you can use the built-in embedding functions.
### OpenAI Embedding function
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<--- "rust/lancedb/examples/openai.rs:imports"
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
Coming Soon!
=== "Rust"
Coming Soon!
### Embedding function with LanceDB cloud
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
os.environ['OPENAI_API_KEY'] = "..."
db = lancedb.connect(
uri="db://....",
api_key="sk_...",
region="us-east-1"
)
func = get_registry().get("openai").create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -1,133 +0,0 @@
# Understand Embeddings
The term **dimension** is a synonym for the number of elements in a feature vector. Each feature can be thought of as a different axis in a geometric space.
High-dimensional data means there are many features(or attributes) in the data.
!!! example
1. An image is a data point and it might have thousands of dimensions because each pixel could be considered as a feature.
2. Text data, when represented by each word or character, can also lead to high dimensions, especially when considering all possible words in a language.
Embedding captures **meaning and relationships** within data by mapping high-dimensional data into a lower-dimensional space. It captures it by placing inputs that are more **similar in meaning** closer together in the **embedding space**.
## What are Vector Embeddings?
Vector embeddings is a way to convert complex data, like text, images, or audio into numerical coordinates (called vectors) that can be plotted in an n-dimensional space(embedding space).
The closer these data points are related in the real world, the closer their corresponding numerical coordinates (vectors) will be to each other in the embedding space. This proximity in the embedding space reflects their semantic similarities, allowing machines to intuitively understand and process the data in a way that mirrors human perception of relationships and meaning.
In a way, it captures the most important aspects of the data while ignoring the less important ones. As a result, tasks like searching for related content or identifying patterns become more efficient and accurate, as the embeddings make it possible to quantify how **closely related** different **data points** are and **reduce** the **computational complexity**.
??? question "Are vectors and embeddings the same thing?"
When we say “vectors” we mean - **list of numbers** that **represents the data**.
When we say “embeddings” we mean - **list of numbers** that **capture important details and relationships**.
Although the terms are often used interchangeably, “embeddings” highlight how the data is represented with meaning and structure, while “vector” simply refers to the numerical form of that representation.
## Embedding vs Indexing
We already saw that creating **embeddings** on data is a method of creating **vectors** for a **n-dimensional embedding space** that captures the meaning and relationships inherent in the data.
Once we have these **vectors**, indexing comes into play. Indexing is a method of organizing these vector embeddings, that allows us to quickly and efficiently locate and retrieve them from the entire dataset of vector embeddings.
## What types of data/objects can be embedded?
The following are common types of data that can be embedded:
1. **Text**: Text data includes sentences, paragraphs, documents, or any written content.
2. **Images**: Image data encompasses photographs, illustrations, or any visual content.
3. **Audio**: Audio data includes sounds, music, speech, or any auditory content.
4. **Video**: Video data consists of moving images and sound, which can convey complex information.
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model.
!!! tip "LanceDB vs Other traditional Vector DBs"
While many vector databases primarily focus on the storage and retrieval of vector embeddings, **LanceDB** uses **Lance file format** (operates on a disk-based architecture), which allows for the storage and management of not just embeddings but also **raw file data (bytes)**. This capability means that users can integrate various types of data, including images and text, alongside their vector embeddings in a unified system.
With the ability to store both vectors and associated file data, LanceDB enhances the querying process. Users can perform semantic searches that not only retrieve similar embeddings but also access related files and metadata, thus streamlining the workflow.
## How does embedding works?
As mentioned, after creating embedding, each data point is represented as a vector in a n-dimensional space (embedding space). The dimensionality of this space can vary depending on the complexity of the data and the specific embedding technique used.
Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar. To quantify this closeness, we use distance as a metric which can be measured in the following way -
1. **Euclidean Distance (L2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
2. **Cosine Similarity**: It measures the cosine of the angle between two vectors, providing a normalized measure of similarity based on their direction.
3. **Dot product**: It is calculated as the sum of the products of their corresponding components. To measure relatedness it considers both the magnitude and direction of the vectors.
## How do you create and store vector embeddings for your data?
1. **Creating embeddings**: Choose an embedding model, it can be a pre-trained model (open-source or commercial) or you can train a custom embedding model for your scenario. Then feed your preprocessed data into the chosen model to obtain embeddings.
??? question "Popular choices for embedding models"
For text data, popular choices are OpenAIs text-embedding models, Google Gemini text-embedding models, Coheres Embed models, and SentenceTransformers, etc.
For image data, popular choices are CLIP (Contrastive LanguageImage Pretraining), Imagebind embeddings by meta (supports audio, video, and image), and Jina multi-modal embeddings, etc.
2. **Storing vector embeddings**: This effectively requires **specialized databases** that can handle the complexity of vector data, as traditional databases often struggle with this task. Vector databases are designed specifically for storing and querying vector embeddings. They optimize for efficient nearest-neighbor searches and provide built-in indexing mechanisms.
!!! tip "Why LanceDB"
LanceDB **automates** the entire process of creating and storing embeddings for your data. LanceDB allows you to define and use **embedding functions**, which can be **pre-trained models** or **custom models**.
This enables you to **generate** embeddings tailored to the nature of your data (e.g., text, images) and **store** both the **original data** and **embeddings** in a **structured schema** thus providing efficient querying capabilities for similarity searches.
Let's quickly [get started](./index.md) and learn how to manage embeddings in LanceDB.
## Bonus: As a developer, what you can create using embeddings?
As a developer, you can create a variety of innovative applications using vector embeddings. Check out the following -
<div class="grid cards" markdown>
- __Chatbots__
---
Develop chatbots that utilize embeddings to retrieve relevant context and generate coherent, contextually aware responses to user queries.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/chatbot.md)
- __Recommendation Systems__
---
Develop systems that recommend content (such as articles, movies, or products) based on the similarity of keywords and descriptions, enhancing user experience.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/recommendersystem.md)
- __Vector Search__
---
Build powerful applications that harness the full potential of semantic search, enabling them to retrieve relevant data quickly and effectively.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/vector_search.md)
- __RAG Applications__
---
Combine the strengths of large language models (LLMs) with retrieval-based approaches to create more useful applications.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/rag.md)
- __Many more examples__
---
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications.
[:octicons-arrow-right-24: More](../examples/examples_python.md)
</div>

View File

@@ -1,22 +1,17 @@
# Overview : Python Examples
# Examples: Python
To help you get started, we provide some examples, projects, and applications that use the LanceDB Python API. These examples are designed to get you right into the code with minimal introduction, enabling you to move from an idea to a proof of concept in minutes.
To help you get started, we provide some examples, projects and applications that use the LanceDB Python API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
You can find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
**Introduction**
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications. You can also checkout our blog posts related to the particular example for deeper understanding.
| Explore | Description |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [**Build from Scratch with LanceDB** 🛠️🚀](python_examples/build_from_scratch.md) | Start building your **GenAI applications** from the **ground up** using **LanceDB's** efficient vector-based document retrieval capabilities! Get started quickly with a solid foundation. |
| [**Multimodal Search with LanceDB** 🤹‍♂️🔍](python_examples/multimodal.md) | Combine **text** and **image queries** to find the most relevant results using **LanceDBs multimodal** capabilities. Leverage the efficient vector-based similarity search. |
| [**RAG (Retrieval-Augmented Generation) with LanceDB** 🔓🧐](python_examples/rag.md) | Build RAG (Retrieval-Augmented Generation) with **LanceDB** for efficient **vector-based information retrieval** and more accurate responses from AI. |
| [**Vector Search: Efficient Retrieval** 🔓👀](python_examples/vector_search.md) | Use **LanceDB's** vector search capabilities to perform efficient and accurate **similarity searches**, enabling rapid discovery and retrieval of relevant documents in Large datasets. |
| [**Chatbot applications with LanceDB** 🤖](python_examples/chatbot.md) | Create **chatbots** that retrieves relevant context for **coherent and context-aware replies**, enhancing user experience through advanced conversational AI. |
| [**Evaluation: Assessing Text Performance with Precision** 📊💡](python_examples/evaluations.md) | Develop **evaluation** applications that allows you to input reference and candidate texts to **measure** their performance across various metrics. |
| [**AI Agents: Intelligent Collaboration** 🤖](python_examples/aiagent.md) | Enable **AI agents** to communicate and collaborate efficiently through dense vector representations, achieving shared goals seamlessly. |
| [**Recommender Systems: Personalized Discovery** 🍿📺](python_examples/recommendersystem.md) | Deliver **personalized experiences** by efficiently storing and querying item embeddings with **LanceDB's** powerful vector database capabilities. |
| **Miscellaneous Examples🌟** | Find other **unique examples** and **creative solutions** using **LanceDB**, showcasing the flexibility and broad applicability of the platform. |
| Example | Interactive Envs | Scripts |
|-------- | ---------------- | ------ |
| | | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |

View File

@@ -8,15 +8,9 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
* 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon)
## Python Applications powered by LanceDB
## Applications powered by LanceDB
| Project Name | Description |
| --- | --- |
| **Ultralytics Explorer 🚀**<br>[![Ultralytics](https://img.shields.io/badge/Ultralytics-Docs-green?labelColor=0f3bc4&style=flat-square&logo=https://cdn.prod.website-files.com/646dd1f1a3703e451ba81ecc/64994922cf2a6385a4bf4489_UltralyticsYOLO_mark_blue.svg&link=https://docs.ultralytics.com/datasets/explorer/)](https://docs.ultralytics.com/datasets/explorer/)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
| **Website Chatbot🤖**<br>[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&amp;env=OPENAI_API_KEY&amp;envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&amp;project-name=lancedb-vercel-chatbot&amp;repository-name=lancedb-vercel-chatbot&amp;demo-title=LanceDB%20Chatbot%20Demo&amp;demo-description=Demo%20website%20chatbot%20with%20LanceDB.&amp;demo-url=https%3A%2F%2Flancedb.vercel.app&amp;demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
## Nodejs Applications powered by LanceDB
| Project Name | Description |
| --- | --- |
| **Langchain Writing Assistant✍ **<br>[![Github](../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/tree/main/applications/node/lanchain_writing_assistant) | - **📂 Data Source Integration**: Use your own data by specifying data source file, and the app instantly processes it to provide insights. <br>- **🧠 Intelligent Suggestions**: Powered by LangChain.js and LanceDB, it improves writing productivity and accuracy. <br>- **💡 Enhanced Writing Experience**: It delivers real-time contextual insights and factual suggestions while the user writes. |
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -1,27 +0,0 @@
# AI Agents: Intelligent Collaboration🤖
Think of a platform where AI Agents can seamlessly exchange information, coordinate over tasks, and achieve shared targets with great efficiency💻📈.
## Vector-Based Coordination: The Technical Advantage
Leveraging LanceDB's vector-based capabilities, we can enable **AI agents 🤖** to communicate and collaborate through dense vector representations. AI agents can exchange information, coordinate on a task or work towards a common goal, just by giving queries📝.
| **AI Agents** | **Description** | **Links** |
|:--------------|:----------------|:----------|
| **AI Agents: Reducing Hallucinationt📊** | 🤖💡 **Reduce AI hallucinations** using Critique-Based Contexting! Learn by Simplifying and Automating tedious workflows by going through fitness trainer agent example.💪 | [![Github](../../assets/github.svg)][hullucination_github] <br>[![Open In Collab](../../assets/colab.svg)][hullucination_colab] <br>[![Python](../../assets/python.svg)][hullucination_python] <br>[![Ghost](../../assets/ghost.svg)][hullucination_ghost] |
| **AI Trends Searcher: CrewAI🔍** | 🔍️ Learn about **CrewAI Agents** ! Utilize the features of CrewAI - Role-based Agents, Task Management, and Inter-agent Delegation ! Make AI agents work together to do tricky stuff 😺| [![Github](../../assets/github.svg)][trend_github] <br>[![Open In Collab](../../assets/colab.svg)][trend_colab] <br>[![Ghost](../../assets/ghost.svg)][trend_ghost] |
| **SuperAgent Autogen🤖** | 💻 AI interactions with the Super Agent! Integrating **Autogen**, **LanceDB**, **LangChain**, **LiteLLM**, and **Ollama** to create AI agent that excels in understanding and processing complex queries.🤖 | [![Github](../../assets/github.svg)][superagent_github] <br>[![Open In Collab](../../assets/colab.svg)][superagent_colab] |
[hullucination_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents
[hullucination_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb
[hullucination_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.py
[hullucination_ghost]: https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f/
[trend_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI
[trend_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI/CrewAI_AI_Trends.ipynb
[trend_ghost]: https://blog.lancedb.com/track-ai-trends-crewai-agents-rag/
[superagent_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen
[superagent_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen/main.ipynb

View File

@@ -1,13 +0,0 @@
# **Build from Scratch with LanceDB 🛠️🚀**
Start building your GenAI applications from the ground up using **LanceDB's** efficient vector-based document retrieval capabilities! 📑
**Get Started in Minutes ⏱️**
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to **proof of concept** quickly with applied examples. Get started and see what you can create! 💻
| **Build From Scratch** | **Description** | **Links** |
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)]() |
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |

View File

@@ -1,41 +0,0 @@
**Chatbot applications with LanceDB 🤖**
====================================================================
Create innovative chatbot applications that utilizes LanceDB for efficient vector-based response generation! 🌐✨
**Introduction 👋✨**
Users can input their queries, allowing the chatbot to retrieve relevant context seamlessly. 🔍📚 This enables the generation of coherent and context-aware replies that enhance user experience. 🌟🤝 Dive into the world of advanced conversational AI and streamline interactions with powerful data management! 🚀💡
| **Chatbot** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Databricks DBRX Website Bot ⚡️** | Engage with the **Hogwarts chatbot**, that uses Open-source RAG with **DBRX**, **LanceDB** and **LLama-index with Hugging Face Embeddings**, to provide interactive and engaging user experiences. ✨ | [![GitHub](../../assets/github.svg)][databricks_github] <br>[![Python](../../assets/python.svg)][databricks_python] |
| **CLI SDK Manual Chatbot Locally 💻** | CLI chatbot for SDK/hardware documents using **Local RAG** with **LLama3**, **Ollama**, **LanceDB**, and **Openhermes Embeddings**, built with **Phidata** Assistant and Knowledge Base 🤖 | [![GitHub](../../assets/github.svg)][clisdk_github] <br>[![Python](../../assets/python.svg)][clisdk_python] |
| **Youtube Transcript Search QA Bot 📹** | Search through **youtube transcripts** using natural language with a Q&A bot, leveraging **LanceDB** for effortless data storage and management 💬 | [![GitHub](../../assets/github.svg)][youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][youtube_colab] <br>[![Python](../../assets/python.svg)][youtube_python] |
| **Code Documentation Q&A Bot with LangChain 🤖** | Query your own documentation easily using questions in natural language with a Q&A bot, powered by **LangChain** and **LanceDB**, demonstrated with **Numpy 1.26 docs** 📚 | [![GitHub](../../assets/github.svg)][docs_github] <br>[![Open In Collab](../../assets/colab.svg)][docs_colab] <br>[![Python](../../assets/python.svg)][docs_python] |
| **Context-aware Chatbot using Llama 2 & LanceDB 🤖** | Build **conversational AI** with a **context-aware chatbot**, powered by **Llama 2**, **LanceDB**, and **LangChain**, that enables intuitive and meaningful conversations with your data 📚💬 | [![GitHub](../../assets/github.svg)][aware_github] <br>[![Open In Collab](../../assets/colab.svg)][aware_colab] <br>[![Ghost](../../assets/ghost.svg)][aware_ghost] |
| **Chat with csv using Hybrid Search 📊** | **Chat** application that interacts with **CSV** and **Excel files** using **LanceDBs** hybrid search capabilities, performing direct operations on large-scale columnar data efficiently 🚀 | [![GitHub](../../assets/github.svg)][csv_github] <br>[![Open In Collab](../../assets/colab.svg)][csv_colab] <br>[![Ghost](../../assets/ghost.svg)][csv_ghost] |
[databricks_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot
[databricks_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot/main.py
[clisdk_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally
[clisdk_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally/assistant.py
[youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot
[youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.ipynb
[youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.py
[docs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot
[docs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb
[docs_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.py
[aware_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
[csv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file/main.ipynb
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/

View File

@@ -1,21 +0,0 @@
**Evaluation: Assessing Text Performance with Precision 📊💡**
====================================================================
Evaluation is a comprehensive tool designed to measure the performance of text-based inputs, enabling data-driven optimization and improvement 📈.
**Text Evaluation 101 📚**
Using robust framework for assessing reference and candidate texts across various metrics📊, ensure that the text outputs are high-quality and meet specific requirements and standards📝.
| **Evaluation** | **Description** | **Links** |
| -------------- | --------------- | --------- |
| **Evaluating Prompts with Prompttools 🤖** | Compare, visualize & evaluate **embedding functions** (incl. OpenAI) across metrics like latency & custom evaluation 📈📊 | [![Github](../../assets/github.svg)][prompttools_github] <br>[![Open In Collab](../../assets/colab.svg)][prompttools_colab] |
| **Evaluating RAG with RAGAs and GPT-4o 📊** | Evaluate **RAG pipelines** with cutting-edge metrics and tools, integrate with CI/CD for continuous performance checks, and generate responses with GPT-4o 🤖📈 | [![Github](../../assets/github.svg)][RAGAs_github] <br>[![Open In Collab](../../assets/colab.svg)][RAGAs_colab] |
[prompttools_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts
[prompttools_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb
[RAGAs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs
[RAGAs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb

View File

@@ -1,28 +0,0 @@
# **Multimodal Search with LanceDB 🤹‍♂️🔍**
Using LanceDB's multimodal capabilities, combine text and image queries to find the most relevant results in your corpus ! 🔓💡
**Explore the Future of Search 🚀**
LanceDB supports multimodal search by indexing and querying vector representations of text and image data 🤖. This enables efficient retrieval of relevant documents and images using vector-based similarity search 📊. The platform facilitates cross-modal search, allowing for text-image and image-text retrieval, and supports scalable indexing of high-dimensional vector spaces 💻.
| **Multimodal** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Multi-Modal Search with **CLIP** and **LanceDB** Using **DiffusionDB** Data for Combined Text and Image Understanding ! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search **Youtube videos** using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Learn how **Cambrian-1** works, using an example of **Vision-Centric** exploration on images found through vector search ! Work on **Flickr-8k** dataset 🔎 | [![Kaggle](https://img.shields.io/badge/Kaggle-035a7d?style=for-the-badge&logo=kaggle&logoColor=white)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
[Clip_diffusionDB_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.ipynb
[Clip_diffusionDB_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.py
[Clip_diffusionDB_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
[Clip_youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search
[Clip_youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb
[Clip_youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.py
[Clip_youtube_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/

View File

@@ -1,83 +0,0 @@
**RAG (Retrieval-Augmented Generation) with LanceDB 🔓🧐**
====================================================================
Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution for efficient vector-based information retrieval 📊.
**Experience the Future of Search 🔄**
🤖 RAG enables AI to **retrieve** relevant information from external sources and use it to **generate** more accurate and context-specific responses. 💻 LanceDB provides a robust framework for integrating LLMs with external knowledge sources 📝.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| **RAG with Matryoshka Embeddings and LlamaIndex** 🪆🔗 | Utilize **Matryoshka embeddings** and **LlamaIndex** to improve the efficiency and accuracy of your RAG models. 📈✨ | [![Github](../../assets/github.svg)][matryoshka_github] <br>[![Open In Collab](../../assets/colab.svg)][matryoshka_colab] |
| **Improve RAG with Re-ranking** 📈🔄 | Enhance your RAG applications by implementing **re-ranking strategies** for more relevant document retrieval. 📚🔍 | [![Github](../../assets/github.svg)][rag_reranking_github] <br>[![Open In Collab](../../assets/colab.svg)][rag_reranking_colab] <br>[![Ghost](../../assets/ghost.svg)][rag_reranking_ghost] |
| **Instruct-Multitask** 🧠🎯 | Integrate the **Instruct Embedding Model** with LanceDB to streamline your embedding API, reducing redundant code and overhead. 🌐📊 | [![Github](../../assets/github.svg)][instruct_multitask_github] <br>[![Open In Collab](../../assets/colab.svg)][instruct_multitask_colab] <br>[![Python](../../assets/python.svg)][instruct_multitask_python] <br>[![Ghost](../../assets/ghost.svg)][instruct_multitask_ghost] |
| **Improve RAG with HyDE** 🌌🔍 | Use **Hypothetical Document Embeddings** for efficient, accurate, and unsupervised dense retrieval. 📄🔍 | [![Github](../../assets/github.svg)][hyde_github] <br>[![Open In Collab](../../assets/colab.svg)][hyde_colab]<br>[![Ghost](../../assets/ghost.svg)][hyde_ghost] |
| **Improve RAG with LOTR** 🧙‍♂️📜 | Enhance RAG with **Lord of the Retriever (LOTR)** to address 'Lost in the Middle' challenges, especially in medical data. 🌟📜 | [![Github](../../assets/github.svg)][lotr_github] <br>[![Open In Collab](../../assets/colab.svg)][lotr_colab] <br>[![Ghost](../../assets/ghost.svg)][lotr_ghost] |
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [![Github](../../assets/github.svg)][parent_doc_retriever_github] <br>[![Open In Collab](../../assets/colab.svg)][parent_doc_retriever_colab] <br>[![Ghost](../../assets/ghost.svg)][parent_doc_retriever_ghost] |
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[![Github](../../assets/github.svg)][corrective_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][corrective_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][corrective_rag_ghost] |
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [![Github](../../assets/github.svg)][compression_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][compression_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][compression_rag_ghost] |
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to **academic papers**, focusing on **ArXiv papers**, with **F**orward-**L**ooking **A**ctive **RE**trieval augmented generation.🚀🌟 | [![Github](../../assets/github.svg)][flare_github] <br>[![Open In Collab](../../assets/colab.svg)][flare_colab] <br>[![Ghost](../../assets/ghost.svg)][flare_ghost] |
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like **Cross Encoders**, **ColBERT v2**, and **FlashRank** for improved document retrieval precision and recall 🔍📈 | [![Github](../../assets/github.svg)][query_github] <br>[![Open In Collab](../../assets/colab.svg)][query_colab] |
| **RAG Fusion** ⚡🌐 | Build RAG Fusion, utilize the **RRF algorithm** to rerank documents based on user queries ! Use **LanceDB** as vector database to store and retrieve documents related to queries via **OPENAI Embeddings**⚡🌐 | [![Github](../../assets/github.svg)][fusion_github] <br>[![Open In Collab](../../assets/colab.svg)][fusion_colab] |
| **Agentic RAG** 🤖📚 | Build autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, that enables proactive and informed decision-making 🤖📚 | [![Github](../../assets/github.svg)][agentic_github] <br>[![Open In Collab](../../assets/colab.svg)][agentic_colab] |
[matryoshka_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex
[matryoshka_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex/RAG_with_MatryoshkaEmbedding_and_Llamaindex.ipynb
[rag_reranking_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking
[rag_reranking_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking/main.ipynb
[rag_reranking_ghost]: https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544
[instruct_multitask_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask
[instruct_multitask_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.ipynb
[instruct_multitask_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.py
[instruct_multitask_ghost]: https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543
[hyde_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE
[hyde_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb
[hyde_ghost]: https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb
[lotr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR
[lotr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR/main.ipynb
[lotr_ghost]: https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35
[parent_doc_retriever_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever
[parent_doc_retriever_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever/main.ipynb
[parent_doc_retriever_ghost]: https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6
[corrective_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph
[corrective_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb
[corrective_rag_ghost]: https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
[compression_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG
[compression_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb
[compression_rag_ghost]: https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/
[flare_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb

View File

@@ -1,37 +0,0 @@
**Recommender Systems: Personalized Discovery🍿📺**
==============================================================
Deliver personalized experiences with Recommender Systems. 🎁
**Technical Overview📜**
🔍️ LanceDB's powerful vector database capabilities can efficiently store and query item embeddings. Recommender Systems can utilize it and provide personalized recommendations based on user preferences 🤝 and item features 📊 and therefore enhance the user experience.🗂️
| **Recommender System** | **Description** | **Links** |
| ---------------------- | --------------- | --------- |
| **Movie Recommender System🎬** | 🤝 Use **collaborative filtering** to predict user preferences, assuming similar users will like similar movies, and leverage **Singular Value Decomposition** (SVD) from Numpy for precise matrix factorization and accurate recommendations📊 | [![Github](../../assets/github.svg)][movie_github] <br>[![Open In Collab](../../assets/colab.svg)][movie_colab] <br>[![Python](../../assets/python.svg)][movie_python] |
| **🎥 Movie Recommendation with Genres** | 🔍 Creates movie embeddings using **Doc2Vec**, capturing genre and characteristic nuances, and leverages VectorDB for efficient storage and querying, enabling accurate genre classification and personalized movie recommendations through **similarity searches**🎥 | [![Github](../../assets/github.svg)][genre_github] <br>[![Open In Collab](../../assets/colab.svg)][genre_colab] <br>[![Ghost](../../assets/ghost.svg)][genre_ghost] |
| **🛍️ Product Recommender using Collaborative Filtering and LanceDB** | 📈 Using **Collaborative Filtering** and **LanceDB** to analyze your past purchases, recommends products based on user's past purchases. Demonstrated with the Instacart dataset in our example🛒 | [![Github](../../assets/github.svg)][product_github] <br>[![Open In Collab](../../assets/colab.svg)][product_colab] <br>[![Python](../../assets/python.svg)][product_python] |
| **🔍 Arxiv Search with OpenCLIP and LanceDB** | 💡 Build a semantic search engine for **Arxiv papers** using **LanceDB**, and benchmarks its performance against traditional keyword-based search on **Nomic's Atlas**, to demonstrate the power of semantic search in finding relevant research papers📚 | [![Github](../../assets/github.svg)][arxiv_github] <br>[![Open In Collab](../../assets/colab.svg)][arxiv_colab] <br>[![Python](../../assets/python.svg)][arxiv_python] |
| **Food Recommendation System🍴** | 🍔 Build a food recommendation system with **LanceDB**, featuring vector-based recommendations, full-text search, hybrid search, and reranking model integration for personalized and accurate food suggestions👌 | [![Github](../../assets/github.svg)][food_github] <br>[![Open In Collab](../../assets/colab.svg)][food_colab] |
[movie_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender
[movie_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb
[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
[genre_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
[product_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.ipynb
[product_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.py
[arxiv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender
[arxiv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.ipynb
[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
[food_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation/main.ipynb

View File

@@ -1,80 +0,0 @@
**Vector Search: Efficient Retrieval 🔓👀**
====================================================================
Vector search with LanceDB, is a solution for efficient and accurate similarity searches in large datasets 📊.
**Vector Search Capabilities in LanceDB🔝**
LanceDB implements vector search algorithms for efficient document retrieval and analysis 📊. This enables fast and accurate discovery of relevant documents, leveraging dense vector representations 🤖. The platform supports scalable indexing and querying of high-dimensional vector spaces, facilitating precise document matching and retrieval 📈.
| **Vector Search** | **Description** | **Links** |
|:-----------------|:---------------|:---------|
| **Inbuilt Hybrid Search 🔄** | Perform hybrid search in **LanceDB** by combining the results of semantic and full-text search via a reranking algorithm of your choice 📊 | [![Github](../../assets/github.svg)][inbuilt_hybrid_search_github] <br>[![Open In Collab](../../assets/colab.svg)][inbuilt_hybrid_search_colab] |
| **Hybrid Search with BM25 and LanceDB 💡** | Use **Synergizes BM25's** keyword-focused precision (term frequency, document length normalization, bias-free retrieval) with **LanceDB's** semantic understanding (contextual analysis, query intent alignment) for nuanced search results in complex datasets 📈 | [![Github](../../assets/github.svg)][BM25_github] <br>[![Open In Collab](../../assets/colab.svg)][BM25_colab] <br>[![Ghost](../../assets/ghost.svg)][BM25_ghost] |
| **NER-powered Semantic Search 🔎** | Extract and identify essential information from text with Named Entity Recognition **(NER)** methods: Dictionary-Based, Rule-Based, and Deep Learning-Based, to accurately extract and categorize entities, enabling precise semantic search results 🗂️ | [![Github](../../assets/github.svg)][NER_github] <br>[![Open In Collab](../../assets/colab.svg)][NER_colab] <br>[![Ghost](../../assets/ghost.svg)][NER_ghost]|
| **Audio Similarity Search using Vector Embeddings 🎵** | Create vector **embeddings of audio files** to find similar audio content, enabling efficient audio similarity search and retrieval in **LanceDB's** vector store 📻 |[![Github](../../assets/github.svg)][audio_search_github] <br>[![Open In Collab](../../assets/colab.svg)][audio_search_colab] <br>[![Python](../../assets/python.svg)][audio_search_python]|
| **LanceDB Embeddings API: Multi-lingual Semantic Search 🌎** | Build a universal semantic search table with **LanceDB's Embeddings API**, supporting multiple languages (e.g., English, French) using **cohere's** multi-lingual model, for accurate cross-lingual search results 📄 | [![Github](../../assets/github.svg)][mls_github] <br>[![Open In Collab](../../assets/colab.svg)][mls_colab] <br>[![Python](../../assets/python.svg)][mls_python] |
| **Facial Recognition: Face Embeddings 🤖** | Detect, crop, and embed faces using Facenet, then store and query face embeddings in **LanceDB** for efficient facial recognition and top-K matching results 👥 | [![Github](../../assets/github.svg)][fr_github] <br>[![Open In Collab](../../assets/colab.svg)][fr_colab] |
| **Sentiment Analysis: Hotel Reviews 🏨** | Analyze customer sentiments towards the hotel industry using **BERT models**, storing sentiment labels, scores, and embeddings in **LanceDB**, enabling queries on customer opinions and potential areas for improvement 💬 | [![Github](../../assets/github.svg)][sentiment_analysis_github] <br>[![Open In Collab](../../assets/colab.svg)][sentiment_analysis_colab] <br>[![Ghost](../../assets/ghost.svg)][sentiment_analysis_ghost] |
| **Vector Arithmetic with LanceDB ⚖️** | Perform **vector arithmetic** on embeddings, enabling complex relationships and nuances in data to be captured, and simplifying the process of retrieving semantically similar results 📊 | [![Github](../../assets/github.svg)][arithmetic_github] <br>[![Open In Collab](../../assets/colab.svg)][arithmetic_colab] <br>[![Ghost](../../assets/ghost.svg)][arithmetic_ghost] |
| **Imagebind Demo 🖼️** | Explore the multi-modal capabilities of **Imagebind** through a Gradio app, use **LanceDB API** for seamless image search and retrieval experiences 📸 | [![Github](../../assets/github.svg)][imagebind_github] <br> [![Open in Spaces](../../assets/open_hf_space.svg)][imagebind_huggingface] |
| **Search Engine using SAM & CLIP 🔍** | Build a search engine within an image using **SAM** and **CLIP** models, enabling object-level search and retrieval, with LanceDB indexing and search capabilities to find the closest match between image embeddings and user queries 📸 | [![Github](../../assets/github.svg)][swi_github] <br>[![Open In Collab](../../assets/colab.svg)][swi_colab] <br>[![Ghost](../../assets/ghost.svg)][swi_ghost] |
| **Zero Shot Object Localization and Detection with CLIP 🔎** | Perform object detection on images using **OpenAI's CLIP**, enabling zero-shot localization and detection of objects, with capabilities to split images into patches, parse with CLIP, and plot bounding boxes 📊 | [![Github](../../assets/github.svg)][zsod_github] <br>[![Open In Collab](../../assets/colab.svg)][zsod_colab] |
| **Accelerate Vector Search with OpenVINO 🚀** | Boost vector search applications using **OpenVINO**, achieving significant speedups with **CLIP** for text-to-image and image-to-image searching, through PyTorch model optimization, FP16 and INT8 format conversion, and quantization with **OpenVINO NNCF** 📈 | [![Github](../../assets/github.svg)][openvino_github] <br>[![Open In Collab](../../assets/colab.svg)][openvino_colab] <br>[![Ghost](../../assets/ghost.svg)][openvino_ghost] |
| **Zero-Shot Image Classification with CLIP and LanceDB 📸** | Achieve zero-shot image classification using **CLIP** and **LanceDB**, enabling models to classify images without prior training on specific use cases, unlocking flexible and adaptable image classification capabilities 🔓 | [![Github](../../assets/github.svg)][zsic_github] <br>[![Open In Collab](../../assets/colab.svg)][zsic_colab] <br>[![Ghost](../../assets/ghost.svg)][zsic_ghost] |
[inbuilt_hybrid_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Inbuilt-Hybrid-Search
[inbuilt_hybrid_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Inbuilt-Hybrid-Search/Inbuilt_Hybrid_Search_with_LanceDB.ipynb
[BM25_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Hybrid_search_bm25_lancedb
[BM25_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Hybrid_search_bm25_lancedb/main.ipynb
[BM25_ghost]: https://blog.lancedb.com/hybrid-search-combining-bm25-and-semantic-search-for-better-results-with-lan-1358038fe7e6
[NER_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.py
[mls_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.ipynb
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.py
[fr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/facial_recognition
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/facial_recognition/main.ipynb
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
[sentiment_analysis_ghost]: https://blog.lancedb.com/sentiment-analysis-using-lancedb-2da3cb1e3fa6
[arithmetic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Vector-Arithmetic-with-LanceDB
[arithmetic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Vector-Arithmetic-with-LanceDB/main.ipynb
[arithmetic_ghost]: https://blog.lancedb.com/vector-arithmetic-with-lancedb-an-intro-to-vector-embeddings/
[imagebind_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/imagebind_demo
[imagebind_huggingface]: https://huggingface.co/spaces/raghavd99/imagebind2
[swi_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip
[swi_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip/main.ipynb
[swi_ghost]: https://blog.lancedb.com/search-within-an-image-331b54e4285e
[zsod_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-object-detection-CLIP
[zsod_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-object-detection-CLIP/zero_shot_object_detection_clip.ipynb
[openvino_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
[zsic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification/main.ipynb
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/

View File

@@ -25,8 +25,8 @@ s3://eto-public/datasets/sift/vec_data.lance
Then, we can write a quick Python script to populate our LanceDB Table:
```python
import lance
sift_dataset = lance.dataset("/path/to/local/vec_data.lance")
import pylance
sift_dataset = pylance.dataset("/path/to/local/vec_data.lance")
df = sift_dataset.to_table().to_pandas()
import lancedb

View File

@@ -1,14 +1,10 @@
# Full-text search
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes query parser and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
A hybrid search solution combining vector and full-text search is also on the way.
## Installation (Only for Tantivy-based FTS)
!!! note
No need to install the tantivy dependency if using native FTS
## Installation
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
@@ -19,9 +15,7 @@ pip install tantivy==0.20.1
## Example
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
=== "Python"
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search.
```python
import lancedb
@@ -36,101 +30,39 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
```
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
## Create FTS index on single column
The FTS index must be created before you can search via keywords.
```python
table.create_fts_index("text")
```
To search an FTS index via keywords, LanceDB's `table.search` accepts a string as input:
```python
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
=== "TypeScript"
This returns the result as a list of dictionaries as follows.
```typescript
import * as lancedb from "@lancedb/lancedb";
const uri = "data/sample-lancedb"
const db = await lancedb.connect(uri);
const data = [
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
];
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
await tbl.createIndex("text", {
config: lancedb.Index.fts(),
});
await tbl
.search("puppy", queryType="fts")
.select(["text"])
.limit(10)
.toArray();
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
```
=== "Rust"
```rust
let uri = "data/sample-lancedb";
let db = connect(uri).execute().await?;
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
let tbl = db
.create_table("my_table", initial_data)
.execute()
.await?;
tbl
.create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
.execute()
.await?;
tbl
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
.limit(10)
.execute()
.await?;
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
For now, this is supported in tantivy way only.
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
=== "use_tantivy=True"
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
=== "use_tantivy=True"
```python
table.create_fts_index(["text1", "text2"])
```
=== "use_tantivy=False"
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
Note that the search API call does not change - you can search over all indexed columns at once.
## Filtering
@@ -139,48 +71,19 @@ Currently the LanceDB full text search feature supports *post-filtering*, meanin
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
=== "TypeScript"
```typescript
await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.toArray();
```
=== "Rust"
```rust
table
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
## Sorting
!!! warning "Warn"
Sorting is available for only Tantivy-based FTS
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
```python
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
```
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
(table.search("terms", ordering_field_name="sort_by_field")
.limit(20)
@@ -204,9 +107,6 @@ table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["
## Phrase queries vs. terms queries
!!! warning "Warn"
Lance-based FTS doesn't support queries using boolean operators `OR`, `AND`.
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
@@ -233,15 +133,14 @@ enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations (Only for Tantivy-based FTS)
## Configurations
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
@@ -255,8 +154,6 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
## Current limitations
For that Tantivy-based FTS:
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.

View File

@@ -1,108 +0,0 @@
# Building Scalar Index
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
over scalar columns.
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
although only the first few layers of the btree are cached in memory.
It will perform well on columns with a large number of unique values and few rows per value.
- `BITMAP`: this index stores a bitmap for each unique value in the column.
This index is useful for columns with a finite number of unique values and many rows per value.
For example, columns that represent "categories", "labels", or "tags"
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
| Data Type | Filter | Index Type |
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
=== "Python"
```python
import lancedb
books = [
{"book_id": 1, "publisher": "plenty of books", "tags": ["fantasy", "adventure"]},
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]}
]
db = lancedb.connect("./db")
table = db.create_table("books", books)
table.create_scalar_index("book_id") # BTree by default
table.create_scalar_index("publisher", index_type="BITMAP")
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data");
const tbl = await db.openTable("my_vectors");
await tbl.create_index("book_id");
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
```
For example, the following scan will be faster if the column `my_col` has a scalar index:
=== "Python"
```python
import lancedb
table = db.open_table("books")
my_df = table.search().where("book_id = 2").to_pandas()
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data");
const tbl = await db.openTable("books");
await tbl
.query()
.where("book_id = 2")
.limit(10)
.toArray();
```
Scalar indices can also speed up scans containing a vector search or full text search, and a prefilter:
=== "Python"
```python
import lancedb
data = [
{"book_id": 1, "vector": [1, 2]},
{"book_id": 2, "vector": [3, 4]},
{"book_id": 3, "vector": [5, 6]}
]
table = db.create_table("book_with_embeddings", data)
(
table.search([1, 2])
.where("book_id != 3", prefilter=True)
.to_pandas()
)
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data/lance");
const tbl = await db.openTable("book_with_embeddings");
await tbl.search(Array(1536).fill(1.2))
.where("book_id != 3") // prefilter is default behavior.
.limit(10)
.toArray();
```

View File

@@ -32,232 +32,41 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
db = lancedb.connect("az://bucket/path")
```
=== "TypeScript"
=== "@lancedb/lancedb"
=== "JavaScript"
AWS S3:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("az://bucket/path");
```
=== "vectordb (deprecated)"
AWS S3:
```ts
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```ts
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```ts
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path");
```
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`:
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided using environment variables. In general, these environment variables are the same as those used by the respective cloud SDKs. The sections below describe the environment variables that can be used to configure each object store.
```bash
export TIMEOUT=60s
```
LanceDB OSS uses the [object-store](https://docs.rs/object_store/latest/object_store/) Rust crate for object store access. There are general environment variables that can be used to configure the object store, such as the request timeout and proxy configuration. See the [object_store ClientConfigKey](https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html) doc for available configuration options. The environment variables that can be set are the snake-cased versions of these variable names. For example, to set `ProxyUrl` use the environment variable `PROXY_URL`. (Don't let the Rust docs intimidate you! We link to them so you can see an up-to-date list of the available options.)
!!! note "`storage_options` availability"
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
It is not yet supported in the Python synchronous API.
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
Getting even more specific, you can set the `timeout` for only a particular table:
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async("s3://bucket/path")
table = await db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
=== "TypeScript"
=== "@lancedb/lancedb"
<!-- skip-test -->
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
=== "vectordb (deprecated)"
<!-- skip-test -->
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
!!! info "Storage option casing"
The storage option keys are case-insensitive. So `connect_timeout` and `CONNECT_TIMEOUT` are the same setting. Usually lowercase is used in the `storage_options` argument and uppercase is used for environment variables. In the `lancedb` Node package, the keys can also be provided in `camelCase` capitalization. For example, `connectTimeout` is equivalent to `connect_timeout`.
### General configuration
There are several options that can be set for all object stores, mostly related to network client configuration.
<!-- from here: https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html -->
| Key | Description |
|----------------------------|--------------------------------------------------------------------------------------------------|
| `allow_http` | Allow non-TLS, i.e. non-HTTPS connections. Default: `False`. |
| `allow_invalid_certificates`| Skip certificate validation on HTTPS connections. Default: `False`. |
| `connect_timeout` | Timeout for only the connect phase of a Client. Default: `5s`. |
| `timeout` | Timeout for the entire request, from connection until the response body has finished. Default: `30s`. |
| `user_agent` | User agent string to use in requests. |
| `proxy_url` | URL of a proxy server to use for requests. Default: `None`. |
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS.
These can be set as environment variables or passed in the `storage_options` parameter:
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` environment variables.
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
The following keys can be used as both environment variables or keys in the `storage_options` parameter:
| Key | Description |
|------------------------------------|------------------------------------------------------------------------------------------------------|
| `aws_region` / `region` | The AWS region the bucket is in. This can be automatically detected when using AWS S3, but must be specified for S3-compatible stores. |
| `aws_access_key_id` / `access_key_id` | The AWS access key ID to use. |
| `aws_secret_access_key` / `secret_access_key` | The AWS secret access key to use. |
| `aws_session_token` / `session_token` | The AWS session token to use. |
| `aws_endpoint` / `endpoint` | The endpoint to use for S3-compatible stores. |
| `aws_virtual_hosted_style_request` / `virtual_hosted_style_request` | Whether to use virtual hosted-style requests, where the bucket name is part of the endpoint. Meant to be used with `aws_endpoint`. Default: `False`. |
| `aws_s3_express` / `s3_express` | Whether to use S3 Express One Zone endpoints. Default: `False`. See more details below. |
| `aws_server_side_encryption` | The server-side encryption algorithm to use. Must be one of `"AES256"`, `"aws:kms"`, or `"aws:kms:dsse"`. Default: `None`. |
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
!!! tip "Automatic cleanup for failed writes"
@@ -335,349 +144,24 @@ For **read-only access**, LanceDB will need a policy such as:
}
```
#### DynamoDB Commit Store for concurrent writes
By default, S3 does not support concurrent writes. Having two or more processes
writing to the same table at the same time can lead to data corruption. This is
because S3, unlike other object stores, does not have any atomic put or copy
operation.
To enable concurrent writes, you can configure LanceDB to use a DynamoDB table
as a commit store. This table will be used to coordinate writes between
different processes. To enable this feature, you must modify your connection
URI to use the `s3+ddb` scheme and add a query parameter `ddbTableName` with the
name of the table to use.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
);
```
The DynamoDB table must be created with the following schema:
- Hash key: `base_uri` (string)
- Range key: `version` (number)
You can create this programmatically with:
=== "Python"
<!-- skip-test -->
```python
import boto3
dynamodb = boto3.client("dynamodb")
table = dynamodb.create_table(
TableName=table_name,
KeySchema=[
{"AttributeName": "base_uri", "KeyType": "HASH"},
{"AttributeName": "version", "KeyType": "RANGE"},
],
AttributeDefinitions=[
{"AttributeName": "base_uri", "AttributeType": "S"},
{"AttributeName": "version", "AttributeType": "N"},
],
ProvisionedThroughput={"ReadCapacityUnits": 1, "WriteCapacityUnits": 1},
)
```
=== "JavaScript"
<!-- skip-test -->
```javascript
import {
CreateTableCommand,
DynamoDBClient,
} from "@aws-sdk/client-dynamodb";
const dynamodb = new DynamoDBClient({
region: CONFIG.awsRegion,
credentials: {
accessKeyId: CONFIG.awsAccessKeyId,
secretAccessKey: CONFIG.awsSecretAccessKey,
},
endpoint: CONFIG.awsEndpoint,
});
const command = new CreateTableCommand({
TableName: table_name,
AttributeDefinitions: [
{
AttributeName: "base_uri",
AttributeType: "S",
},
{
AttributeName: "version",
AttributeType: "N",
},
],
KeySchema: [
{ AttributeName: "base_uri", KeyType: "HASH" },
{ AttributeName: "version", KeyType: "RANGE" },
],
ProvisionedThroughput: {
ReadCapacityUnits: 1,
WriteCapacityUnits: 1,
},
});
await client.send(command);
```
#### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint:
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables.
!!! tip "Local servers"
For local development, the server often has a `http` endpoint rather than a
secure `https` endpoint. In this case, you must also set the `ALLOW_HTTP`
environment variable to `true` to allow non-TLS connections, or pass the
storage option `allow_http` as `true`. If you do not do this, you will get
an error like `URL scheme is not allowed`.
#### S3 Express
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional configuration. Also, S3 Express endpoints only support connecting from an EC2 instance within the same region.
To configure LanceDB to use an S3 Express endpoint, you must set the storage option `s3_express`. The bucket name in your table URI should **include the suffix**.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
<!-- TODO: we should also document the use of S3 Express once we fully support it -->
### Google Cloud Storage
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. Alternatively, you can pass the path to the JSON file in the `storage_options`:
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. There are several aliases for this environment variable, documented [here](https://docs.rs/object_store/latest/object_store/gcp/struct.GoogleCloudStorageBuilder.html#method.from_env).
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
!!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
The following keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
| Key | Description |
|---------------------------------------|----------------------------------------------|
| ``google_service_account`` / `service_account` | Path to the service account JSON file. |
| ``google_service_account_key`` | The serialized service account key. |
| ``google_application_credentials`` | Path to the application credentials. |
### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter:
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME` and ``AZURE_STORAGE_ACCOUNT_KEY`` environment variables. The full list of environment variables that can be set are documented [here](https://docs.rs/object_store/latest/object_store/azure/struct.MicrosoftAzureBuilder.html#method.from_env).
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
These keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html -->
| Key | Description |
|---------------------------------------|--------------------------------------------------------------------------------------------------|
| ``azure_storage_account_name`` | The name of the azure storage account. |
| ``azure_storage_account_key`` | The serialized service account key. |
| ``azure_client_id`` | Service principal client id for authorizing requests. |
| ``azure_client_secret`` | Service principal client secret for authorizing requests. |
| ``azure_tenant_id`` | Tenant id used in oauth flows. |
| ``azure_storage_sas_key`` | Shared access signature. The signature is expected to be percent-encoded, much like they are provided in the azure storage explorer or azure portal. |
| ``azure_storage_token`` | Bearer token. |
| ``azure_storage_use_emulator`` | Use object store with azurite storage emulator. |
| ``azure_endpoint`` | Override the endpoint used to communicate with blob storage. |
| ``azure_use_fabric_endpoint`` | Use object store with url scheme account.dfs.fabric.microsoft.com. |
| ``azure_msi_endpoint`` | Endpoint to request a imds managed identity token. |
| ``azure_object_id`` | Object id for use with managed identity authentication. |
| ``azure_msi_resource_id`` | Msi resource id for use with managed identity authentication. |
| ``azure_federated_token_file`` | File containing token for Azure AD workload identity federation. |
| ``azure_use_azure_cli`` | Use azure cli for acquiring access token. |
| ``azure_disable_tagging`` | Disables tagging objects. This can be desirable if not supported by the backing store. |
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->

View File

@@ -8,40 +8,26 @@ This guide will show how to create tables, insert data into them, and update the
## Creating a LanceDB Table
Initialize a LanceDB connection and create a table
=== "Python"
Initialize a LanceDB connection and create a table using one of the many methods listed below.
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
=== "Javascript"
=== "Typescript[^1]"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
=== "@lancedb/lancedb"
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
=== "vectordb (deprecated)"
```typescript
```javascript
const lancedb = require("vectordb");
const arrow = require("apache-arrow");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
@@ -59,7 +45,6 @@ Initialize a LanceDB connection and create a table
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
@@ -78,70 +63,25 @@ Initialize a LanceDB connection and create a table
db.create_table("name", data, mode="overwrite")
```
=== "Typescript[^1]"
You can create a LanceDB table in JavaScript using an array of records as follows.
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/basic.ts:create_table"
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
```
!!! info "Note"
`createTable` supports an optional `existsOk` parameter. When set to true
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/basic_legacy.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use apache-arrow to declare a schema
```ts
--8<-- "docs/src/basic_legacy.ts:create_table_with_schema"
```
!!! warning
`existsOk` is not available in `vectordb`
If the table already exists, vectordb will raise an error by default.
You can use `writeMode: WriteMode.Overwrite` to overwrite the table.
But this will delete the existing table and create a new one with the same name.
Sometimes you want to make sure that you start fresh.
If you want to overwrite the table, you can pass in `writeMode: lancedb.WriteMode.Overwrite` to the createTable function.
```ts
const table = await con.createTable(tableName, data, {
writeMode: WriteMode.Overwrite
})
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
### From a Pandas DataFrame
@@ -159,7 +99,6 @@ db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
@@ -194,11 +133,10 @@ table = db.create_table("pl_table", data=data)
```
### From an Arrow Table
=== "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python"
```python
import pyarrows as pa
import numpy as np
@@ -222,17 +160,11 @@ LanceDB supports float16 data type!
tbl = db.create_table("f16_tbl", data, schema=schema)
```
=== "Typescript[^1]"
=== "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_f16_table"
```
=== "vectordb (deprecated)"
```typescript
```javascript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
@@ -397,25 +329,25 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
tbl = db.open_table("my_table")
```
=== "Typescript[^1]"
=== "JavaScript"
If you forget the name of your table, you can always get a listing of all table names.
```typescript
```javascript
console.log(await db.tableNames());
```
Then, you can open any existing tables.
```typescript
```javascript
const tbl = await db.openTable("my_table");
```
## Creating empty table
You can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
=== "Python"
In Python, you can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
```python
An empty table can be initialized via a PyArrow schema.
@@ -450,23 +382,9 @@ You can create an empty table for scenarios where you want to add data to the ta
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
## Adding to a table
After a table has been created, you can always add more data to it usind the `add` method
After a table has been created, you can always add more data to it using the various methods available.
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -534,27 +452,8 @@ After a table has been created, you can always add more data to it usind the `ad
tbl.add(pydantic_model_items)
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("~/tmp")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.5")
class Schema(LanceModel):
text: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField(default=None)
tbl = db.create_table("my_table", schema=Schema, mode="overwrite")
models = [Schema(text="hello"), Schema(text="world")]
tbl.add(models)
```
=== "Typescript[^1]"
=== "JavaScript"
```javascript
await tbl.add(
@@ -610,15 +509,15 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
# 0 3 [5.0, 6.0]
```
=== "Typescript[^1]"
=== "JavaScript"
```ts
```javascript
await tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```ts
```javascript
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
@@ -632,7 +531,7 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
### Delete from a list of values
```ts
```javascript
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
@@ -689,32 +588,11 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0]
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
API Reference: [lancedb.Table.update](../js/classes/Table.md/#update)
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({vector: [10, 10]}, { where: "x = 2"})
```
=== "vectordb (deprecated)"
=== "JavaScript/Typescript"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
```ts
```javascript
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
@@ -729,8 +607,6 @@ This can be used to update zero to all rows depending on how many rows match the
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
#### Updating using a sql query
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
@@ -750,15 +626,9 @@ This can be used to update zero to all rows depending on how many rows match the
2 3 [10.0, 10.0]
```
=== "Typescript[^1]"
=== "JavaScript/Typescript"
=== "@lancedb/lancedb"
Coming Soon!
=== "vectordb (deprecated)"
```ts
```javascript
await tbl.update({ valuesSql: { x: "x + 1" } })
```
@@ -766,31 +636,6 @@ This can be used to update zero to all rows depending on how many rows match the
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## Drop a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "TypeScript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Consistency
In LanceDB OSS, users can set the `read_consistency_interval` parameter on connections to achieve different levels of read consistency. This parameter determines how frequently the database synchronizes with the underlying storage system to check for updates made by other processes. If another process updates a table, the database will not see the changes until the next synchronization.
@@ -835,18 +680,18 @@ There are three possible settings for `read_consistency_interval`:
table.checkout_latest()
```
=== "Typescript[^1]"
=== "JavaScript/Typescript"
To set strong consistency, use `0`:
```ts
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```ts
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
```
@@ -858,5 +703,3 @@ There are three possible settings for `read_consistency_interval`:
## What's next?
Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,131 +0,0 @@
## Improving retriever performance
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
* Using different query types
* Using hybrid search
* Fine-tuning the embedding models
* Using different embedding models
Using different embedding models is something that's very specific to the use case and the data. So we will not discuss it here. In this section, we will discuss the first three techniques.
!!! note "Note"
We'll be using a simple metric called "hit-rate" for evaluating the performance of the retriever across this guide. Hit-rate is the percentage of queries for which the retriever returned the correct answer in the top-k results. For example, if the retriever returned the correct answer in the top-3 results for 70% of the queries, then the hit-rate@3 is 0.7.
## The dataset
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv)
### Using different query types
Let's setup the embeddings and the dataset first. We'll use the LanceDB's `huggingface` embeddings integration for this guide.
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import Vector, LanceModel
db = lancedb.connect("~/lancedb/query_types")
df = pd.read_csv("data_qa.csv")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.")
class Schema(LanceModel):
context: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField()
table = db.create_table("qa", schema=Schema)
table.add(df[["context"]].to_dict(orient="records"))
queries = df["query"].tolist()
```
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset.
* <b> Vector Search: </b>
```python
table.search(quries[0], query_type="vector").limit(5).to_pandas()
```
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement.
```python
table.search(quries[0]).limit(5).to_pandas()
```
Vector or semantic search is useful when you want to find documents that are similar to the query in terms of meaning.
---
* <b> Full-text Search: </b>
FTS requires creating an index on the column you want to search on. `replace=True` will replace the existing index if it exists.
Once the index is created, you can search using the `fts` query type.
```python
table.create_fts_index("context", replace=True)
table.search(quries[0], query_type="fts").limit(5).to_pandas()
```
Full-text search is useful when you want to find documents that contain the query terms.
---
* <b> Hybrid Search: </b>
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset.
```python
table.search(quries[0], query_type="hybrid").limit(5).to_pandas()
```
Hybrid search requires a reranker to combine and rank the results from vector and full-text search. We'll cover reranking as a concept in the next section.
Hybrid search is useful when you want to combine the benefits of both vector and full-text search.
!!! note "Note"
By default, it uses `LinearCombinationReranker` that combines the scores from vector and full-text search using a weighted linear combination. It is the simplest reranker implementation available in LanceDB. You can also use other rerankers like `CrossEncoderReranker` or `CohereReranker` for reranking the results.
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/)
### Hit rate evaluation results
Now that we have seen how to run different query types on the dataset, let's evaluate the hit-rate of each query type on the dataset.
For brevity, the entire evaluation script is not shown here. You can find the complete evaluation and benchmarking utility scripts [here](https://github.com/lancedb/ragged).
Here are the hit-rate results for the dataset:
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.645 |
**Choosing query type** is very specific to the use case and the data. This synthetic dataset has been generated to be semantically challenging, i.e, the queries don't have a lot of keywords in common with the context. So, vector search performs better than full-text search. However, in real-world scenarios, full-text search might perform better than vector search. Hybrid search is a good choice when you want to combine the benefits of both vector and full-text search.
### Evaluation results on other datasets
The hit-rate results can vary based on the dataset and the query type. Here are the hit-rate results for the other datasets using the same embedding function.
* <b> SQuAD Dataset: </b>
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.822 |
| Full-text Search | 0.835 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.8874 |
* <b> Uber10K sec filing Dataset: </b>
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.608 |
| Full-text Search | 0.82 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.80 |
In these standard datasets, FTS seems to perform much better than vector search because the queries have a lot of keywords in common with the context. So, in general choosing the query type is very specific to the use case and the data.

View File

@@ -1,80 +0,0 @@
Continuing from the previous section, we can now rerank the results using more complex rerankers.
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows:
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker()
table.search(quries[0], query_type="hybrid").rerank(reranker=reranker).limit(5).to_pandas()
```
Based on the `query_type`, the `rerank()` function can accept other arguments as well. For example, hybrid search accepts a `normalize` param to determine the score normalization method.
!!! note "Note"
LanceDB provides a `Reranker` base class that can be extended to implement custom rerankers. Each reranker must implement the `rerank_hybrid` method. `rerank_vector` and `rerank_fts` methods are optional. For example, the `LinearCombinationReranker` only implements the `rerank_hybrid` method and so it can only be used for reranking hybrid search results.
## Choosing a Reranker
There are many rerankers available in LanceDB like `CrossEncoderReranker`, `CohereReranker`, and `ColBERT`. The choice of reranker depends on the dataset and the application. You can even implement you own custom reranker by extending the `Reranker` class. For more details about each available reranker and performance comparison, refer to the [rerankers](https://lancedb.github.io/lancedb/reranking/) documentation.
In this example, we'll use the `CohereReranker` to rerank the search results. It requires `cohere` to be installed and `COHERE_API_KEY` to be set in the environment. To get your API key, sign up on [Cohere](https://cohere.ai/).
```python
from lancedb.rerankers import CohereReranker
# use Cohere reranker v3
reranker = CohereReranker(model_name="rerank-english-v3.0") # default model is "rerank-english-v2.0"
```
### Reranking search results
Now we can rerank all query type results using the `CohereReranker`:
```python
# rerank hybrid search results
table.search(quries[0], query_type="hybrid").rerank(reranker=reranker).limit(5).to_pandas()
# rerank vector search results
table.search(quries[0], query_type="vector").rerank(reranker=reranker).limit(5).to_pandas()
# rerank fts search results
table.search(quries[0], query_type="fts").rerank(reranker=reranker).limit(5).to_pandas()
```
Each reranker can accept additional arguments. For example, `CohereReranker` accepts `top_k` and `batch_size` params to control the number of documents to rerank and the batch size for reranking respectively. Similarly, a custom reranker can accept any number of arguments based on the implementation. For example, a reranker can accept a `filter` that implements some custom logic to filter out documents before reranking.
## Results
Let us take a look at the same datasets from the previous sections, using the same embedding table but with Cohere reranker applied to all query types.
!!! note "Note"
When reranking fts or vector search results, the search results are over-fetched by a factor of 2 and then reranked. From the reranked set, `top_k` (5 in this case) results are taken. This is done because reranking will have no effect on the hit-rate if we only fetch the `top_k` results.
### Synthetic LLama2 paper dataset
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector | 0.640 |
| FTS | 0.595 |
| Reranked vector | 0.677 |
| Reranked fts | 0.672 |
| Hybrid | 0.759 |
### SQuAD Dataset
### Uber10K sec filing Dataset
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector | 0.608 |
| FTS | 0.824 |
| Reranked vector | 0.671 |
| Reranked fts | 0.843 |
| Hybrid | 0.849 |

View File

@@ -1,82 +0,0 @@
## Finetuning the Embedding Model
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
We'll use the same dataset as in the previous sections. Start off by splitting the dataset into training and validation sets:
```python
from sklearn.model_selection import train_test_split
train_df, validation_df = train_test_split("data_qa.csv", test_size=0.2, random_state=42)
train_df.to_csv("data_train.csv", index=False)
validation_df.to_csv("data_val.csv", index=False)
```
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
from llama_index.finetuning import generate_qa_embedding_pairs
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
def load_corpus(file):
loader = PagedCSVReader(encoding="utf-8")
docs = loader.load_data(file=Path(file))
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(docs)
return nodes
from llama_index.llms.openai import OpenAI
train_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes, verbose=False
)
val_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes, verbose=False
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en-v1.5",
model_output_path="tuned_model",
val_dataset=val_dataset,
)
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder. This al
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
On performing the same hit-rate evaluation as before, we see a significant improvement in the hit-rate across all query types.
### Baseline
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.677 |
| Reranked Full-text Search | 0.672 |
| Hybrid Search (w/ CohereReranker) | 0.759|
### Fine-tuned model ( 2 iterations )
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.672 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.754 |
| Reranked Full-text Search | 0.672|
| Hybrid Search (w/ CohereReranker) | 0.768 |

View File

@@ -5,9 +5,7 @@ Hybrid Search is a broad (often misused) term. It can mean anything from combini
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.

View File

@@ -43,32 +43,200 @@ table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
!!! Note
You can also pass the vector and text query manually. This is useful if you're not using the embedding API or if you're using a separate embedder service.
### Explicitly passing the vector and text query
```python
vector_query = [0.1, 0.2, 0.3, 0.4, 0.5]
text_query = "flower moon"
results = table.search(query_type="hybrid")
.vector(vector_query)
.text(text_query)
.limit(5)
.to_pandas()
```
By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion score, to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `RRF()`.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
The reranker to use. If not specified, the default reranker is used.
## Available Rerankers
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method.
Go to [Rerankers](../reranking/index.md) to learn more about using the available rerankers and implementing custom rerankers.
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
### Linear Combination Reranker
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
* `fill`: `float`, default `1.0`:
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
* `return_score` : str, default `"relevance"`
options are "relevance" or "all"
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
### Cohere Reranker
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
```python
from lancedb.rerankers import CohereReranker
reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `top_n` : str, default `None`
The number of results to return. If None, will return all results.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### Cross Encoder Reranker
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
```python
from lancedb.rerankers import CrossEncoderReranker
reranker = CrossEncoderReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `device` : str, default `None`
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
```python
from lancedb.rerankers import Reranker
import pyarrow as pa
class MyReranker(Reranker):
def __init__(self, param1, param2, ..., return_score="relevance"):
super().__init__(return_score)
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results
# ...
# Return the combined results
return combined_result
```
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

View File

@@ -1,142 +0,0 @@
# dlt
[dlt](https://dlthub.com/docs/intro) is an open-source library that you can add to your Python scripts to load data from various and often messy data sources into well-structured, live datasets. dlt's [integration with LanceDB](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb) lets you ingest data from any source (databases, APIs, CSVs, dataframes, JSONs, and more) into LanceDB with a few lines of simple python code. The integration enables automatic normalization of nested data, schema inference, incremental loading and embedding the data. dlt also has integrations with several other tools like dbt, airflow, dagster etc. that can be inserted into your LanceDB workflow.
## How to ingest data into LanceDB
In this example, we will be fetching movie information from the [Open Movie Database (OMDb) API](https://www.omdbapi.com/) and loading it into a local LanceDB instance. To implement it, you will need an API key for the OMDb API (which can be created freely [here](https://www.omdbapi.com/apikey.aspx)).
1. **Install `dlt` with LanceDB extras:**
```sh
pip install dlt[lancedb]
```
2. **Inside an empty directory, initialize a `dlt` project with:**
```sh
dlt init rest_api lancedb
```
This will add all the files necessary to create a `dlt` pipeline that can ingest data from any REST API (ex: OMDb API) and load into LanceDB.
```text
├── .dlt
│ ├── config.toml
│ └── secrets.toml
├── rest_api
├── rest_api_pipeline.py
└── requirements.txt
```
dlt has a list of pre-built [sources](https://dlthub.com/docs/dlt-ecosystem/verified-sources/) like [SQL databases](https://dlthub.com/docs/dlt-ecosystem/verified-sources/sql_database), [REST APIs](https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api), [Google Sheets](https://dlthub.com/docs/dlt-ecosystem/verified-sources/google_sheets), [Notion](https://dlthub.com/docs/dlt-ecosystem/verified-sources/notion) etc., that can be used out-of-the-box by running `dlt init <source_name> lancedb`. Since dlt is a python library, it is also very easy to modify these pre-built sources or to write your own custom source from scratch.
3. **Specify necessary credentials and/or embedding model details:**
In order to fetch data from the OMDb API, you will need to pass a valid API key into your pipeline. Depending on whether you're using LanceDB OSS or LanceDB cloud, you also may need to provide the necessary credentials to connect to the LanceDB instance. These can be pasted inside `.dlt/sercrets.toml`.
dlt's LanceDB integration also allows you to automatically embed the data during ingestion. Depending on the embedding model chosen, you may need to paste the necessary credentials inside `.dlt/sercrets.toml`:
```toml
[sources.rest_api]
api_key = "api_key" # Enter the API key for the OMDb API
[destination.lancedb]
embedding_model_provider = "sentence-transformers"
embedding_model = "all-MiniLM-L6-v2"
[destination.lancedb.credentials]
uri = ".lancedb"
api_key = "api_key" # API key to connect to LanceDB Cloud. Leave out if you are using LanceDB OSS.
embedding_model_provider_api_key = "embedding_model_provider_api_key" # Not needed for providers that don't need authentication (ollama, sentence-transformers).
```
See [here](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb#configure-the-destination) for more information and for a list of available models and model providers.
4. **Write the pipeline code inside `rest_api_pipeline.py`:**
The following code shows how you can configure dlt's REST API source to connect to the [OMDb API](https://www.omdbapi.com/), fetch all movies with the word "godzilla" in the title, and load it into a LanceDB table. The REST API source allows you to pull data from any API with minimal code, to learn more read the [dlt docs](https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api).
```python
# Import necessary modules
import dlt
from rest_api import rest_api_source
# Configure the REST API source
movies_source = rest_api_source(
{
"client": {
"base_url": "https://www.omdbapi.com/",
"auth": { # authentication strategy for the OMDb API
"type": "api_key",
"name": "apikey",
"api_key": dlt.secrets["sources.rest_api.api_token"], # read API credentials directly from secrets.toml
"location": "query"
},
"paginator": { # pagination strategy for the OMDb API
"type": "page_number",
"base_page": 1,
"total_path": "totalResults",
"maximum_page": 5
}
},
"resources": [ # list of API endpoints to request
{
"name": "movie_search",
"endpoint": {
"path": "/",
"params": {
"s": "godzilla",
"type": "movie"
}
}
}
]
})
if __name__ == "__main__":
# Create a pipeline object
pipeline = dlt.pipeline(
pipeline_name='movies_pipeline',
destination='lancedb', # this tells dlt to load the data into LanceDB
dataset_name='movies_data_pipeline',
)
# Run the pipeline
load_info = pipeline.run(movies_source)
# pretty print the information on data that was loaded
print(load_info)
```
The script above will ingest the data into LanceDB as it is, i.e. without creating any embeddings. If we want to embed one of the fields (for example, `"Title"` that contains the movie titles), then we will use dlt's `lancedb_adapter` and modify the script as follows:
- Add the following import statement:
```python
from dlt.destinations.adapters import lancedb_adapter
```
- Modify the pipeline run like this:
```python
load_info = pipeline.run(
lancedb_adapter(
movies_source,
embed="Title",
)
)
```
This will use the embedding model specified inside `.dlt/secrets.toml` to embed the field `"Title"`.
5. **Install necessary dependencies:**
```sh
pip install -r requirements.txt
```
Note: You may need to install the dependencies for your embedding models separately.
```sh
pip install sentence-transformers
```
6. **Run the pipeline:**
Finally, running the following command will ingest the data into your LanceDB instance.
```sh
python custom_source.py
```
For more information and advanced usage of dlt's LanceDB integration, read [the dlt documentation](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb).

View File

@@ -13,7 +13,7 @@ Get started using these examples and quick links.
| Integrations | |
|---|---:|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://lancedb.github.io/lancedb/integrations/langchain/) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/docs/integrations/vectorstores/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|

View File

@@ -1,201 +0,0 @@
# Langchain
![Illustration](../assets/langchain.png)
## Quick Start
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
```python
import os
from langchain.document_loaders import TextLoader
from langchain.vectorstores import LanceDB
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
os.environ["OPENAI_API_KEY"] = "sk-..."
loader = TextLoader("../../modules/state_of_the_union.txt") # Replace with your data path
documents = loader.load()
documents = CharacterTextSplitter().split_documents(documents)
embeddings = OpenAIEmbeddings()
docsearch = LanceDB.from_documents(documents, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
```
## Documentation
In the above example `LanceDB` vector store class object is created using `from_documents()` method which is a `classmethod` and returns the initialized class object.
You can also use `LanceDB.from_texts(texts: List[str],embedding: Embeddings)` class method.
The exhaustive list of parameters for `LanceDB` vector store are :
- `connection`: (Optional) `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
- `embedding`: Langchain embedding model.
- `vector_key`: (Optional) Column name to use for vector's in the table. Defaults to `'vector'`.
- `id_key`: (Optional) Column name to use for id's in the table. Defaults to `'id'`.
- `text_key`: (Optional) Column name to use for text in the table. Defaults to `'text'`.
- `table_name`: (Optional) Name of your table in the database. Defaults to `'vectorstore'`.
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
- `reranker`: (Optional) The reranker to use for LanceDB.
- `relevance_score_fn`: (Optional[Callable[[float], float]]) Langchain relevance score function to be used. Defaults to `None`.
```python
db_url = "db://lang_test" # url of db you created
api_key = "xxxxx" # your API key
region="us-east-1-dev" # your selected region
vector_store = LanceDB(
uri=db_url,
api_key=api_key, #(dont include for local API)
region=region, #(dont include for local API)
embedding=embeddings,
table_name='langchain_test' #Optional
)
```
### Methods
##### add_texts()
- `texts`: `Iterable` of strings to add to the vectorstore.
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
- `ids`: Optional `list` of ids to associate with the texts.
- `kwargs`: `Any`
This method adds texts and stores respective embeddings automatically.
```python
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
#Additionaly, to explore the table you can load it into a df or save it in a csv file:
tbl = vector_store.get_table()
print("tbl:", tbl)
pd_df = tbl.to_pandas()
pd_df.to_csv("docsearch.csv", index=False)
# you can also create a new vector store object using an older connection object:
vector_store = LanceDB(connection=tbl, embedding=embeddings)
```
##### create_index()
- `col_name`: `Optional[str] = None`
- `vector_col`: `Optional[str] = None`
- `num_partitions`: `Optional[int] = 256`
- `num_sub_vectors`: `Optional[int] = 96`
- `index_cache_size`: `Optional[int] = None`
This method creates an index for the vector store. For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
```python
# for creating vector index
vector_store.create_index(vector_col='vector', metric = 'cosine')
# for creating scalar index(for non-vector columns)
vector_store.create_index(col_name='text')
```
##### similarity_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `fts`: `Optional[bool] = False`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Return documents most similar to the query without relevance scores
```python
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
```
##### similarity_search_by_vector()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Returns documents most similar to the query vector.
```python
docs = docsearch.similarity_search_by_vector(query)
print(docs[0].page_content)
```
##### similarity_search_with_score()
- `query`: `str`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
Returns documents most similar to the query string with relevance scores, gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
```python
docs = docsearch.similarity_search_with_relevance_scores(query)
print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### similarity_search_by_vector_with_relevance_scores()
- `embedding`: `List[float]`
- `k`: `Optional[int] = None`
- `filter`: `Optional[Dict[str, str]] = None`
- `name`: `Optional[str] = None`
- `kwargs`: `Any`
Return documents most similar to the query vector with relevance scores.
Relevance score
```python
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
print("relevance score - ", docs[0][1])
print("text- ", docs[0][0].page_content[:1000])
```
##### max_marginal_relevance_search()
- `query`: `str`
- `k`: `Optional[int] = None`
- `fetch_k` : Number of Documents to fetch to pass to MMR algorithm, `Optional[int] = None`
- `lambda_mult`: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5. `float = 0.5`
- `filter`: `Optional[Dict[str, str]] = None`
- `kwargs`: `Any`
Returns docs selected using the maximal marginal relevance(MMR).
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
```python
result = docsearch.max_marginal_relevance_search(
query="text"
)
result_texts = [doc.page_content for doc in result]
print(result_texts)
## search by vector :
result = docsearch.max_marginal_relevance_search_by_vector(
embeddings.embed_query("text")
)
result_texts = [doc.page_content for doc in result]
print(result_texts)
```
##### add_images()
- `uris` : File path to the image. `List[str]`.
- `metadatas` : Optional list of metadatas. `(Optional[List[dict]], optional)`
- `ids` : Optional list of IDs. `(Optional[List[str]], optional)`
Adds images by automatically creating their embeddings and adds them to the vectorstore.
```python
vec_store.add_images(uris=image_uris)
# here image_uris are local fs paths to the images.
```

View File

@@ -1,142 +0,0 @@
# Llama-Index
![Illustration](../assets/llama-index.jpg)
## Quick start
You would need to install the integration via `pip install llama-index-vector-stores-lancedb` in order to use it.
You can run the below script to try it out :
```python
import logging
import sys
# Uncomment to see debug logs
# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
# logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, Document, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.lancedb import LanceDBVectorStore
import textwrap
import openai
openai.api_key = "sk-..."
documents = SimpleDirectoryReader("./data/your-data-dir/").load_data()
print("Document ID:", documents[0].doc_id, "Document Hash:", documents[0].hash)
## For LanceDB cloud :
# vector_store = LanceDBVectorStore(
# uri="db://db_name", # your remote DB URI
# api_key="sk_..", # lancedb cloud api key
# region="your-region" # the region you configured
# ...
# )
vector_store = LanceDBVectorStore(
uri="./lancedb", mode="overwrite", query_type="vector"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
lance_filter = "metadata.file_name = 'paul_graham_essay.txt' "
retriever = index.as_retriever(vector_store_kwargs={"where": lance_filter})
response = retriever.retrieve("What did the author do growing up?")
```
Checkout Complete example here - [LlamaIndex demo](../notebooks/LlamaIndex_example.ipynb)
### Filtering
For metadata filtering, you can use a Lance SQL-like string filter as demonstrated in the example above. Additionally, you can also filter using the `MetadataFilters` class from LlamaIndex:
```python
from llama_index.core.vector_stores import (
MetadataFilters,
FilterOperator,
FilterCondition,
MetadataFilter,
)
query_filters = MetadataFilters(
filters=[
MetadataFilter(
key="creation_date", operator=FilterOperator.EQ, value="2024-05-23"
),
MetadataFilter(
key="file_size", value=75040, operator=FilterOperator.GT
),
],
condition=FilterCondition.AND,
)
```
### Hybrid Search
For complete documentation, refer [here](https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/). This example uses the `colbert` reranker. Make sure to install necessary dependencies for the reranker you choose.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
vector_store._add_reranker(reranker)
query_engine = index.as_query_engine(
filters=query_filters,
vector_store_kwargs={
"query_type": "hybrid",
}
)
response = query_engine.query("How much did Viaweb charge per month?")
```
In the above snippet, you can change/specify query_type again when creating the engine/retriever.
## API reference
The exhaustive list of parameters for `LanceDBVectorStore` vector store are :
- `connection`: Optional, `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
- `uri`: Optional[str], the uri of your database. Defaults to `"/tmp/lancedb"`.
- `table_name` : Optional[str], Name of your table in the database. Defaults to `"vectors"`.
- `table`: Optional[Any], `lancedb.db.LanceTable` object to be passed. Defaults to `None`.
- `vector_column_name`: Optional[Any], Column name to use for vector's in the table. Defaults to `'vector'`.
- `doc_id_key`: Optional[str], Column name to use for document id's in the table. Defaults to `'doc_id'`.
- `text_key`: Optional[str], Column name to use for text in the table. Defaults to `'text'`.
- `api_key`: Optional[str], API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: Optional[str], Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `nprobes` : Optional[int], Set the number of probes to use. Only applicable if ANN index is created on the table else its ignored. Defaults to `20`.
- `refine_factor` : Optional[int], Refine the results by reading extra elements and re-ranking them in memory. Defaults to `None`.
- `reranker`: Optional[Any], The reranker to use for LanceDB.
Defaults to `None`.
- `overfetch_factor`: Optional[int], The factor by which to fetch more results.
Defaults to `1`.
- `mode`: Optional[str], The mode to use for LanceDB.
Defaults to `"overwrite"`.
- `query_type`:Optional[str], The type of query to use for LanceDB.
Defaults to `"vector"`.
### Methods
- __from_table(cls, table: lancedb.db.LanceTable) -> `LanceDBVectorStore`__ : (class method) Creates instance from lancedb table.
- **_add_reranker(self, reranker: lancedb.rerankers.Reranker) -> `None`** : Add a reranker to an existing vector store.
- Usage :
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
vector_store._add_reranker(reranker)
```
- **_table_exists(self, tbl_name: `Optional[str]` = `None`) -> `bool`** : Returns `True` if `tbl_name` exists in database.
- __create_index(
self, scalar: `Optional[bool]` = False, col_name: `Optional[str]` = None, num_partitions: `Optional[int]` = 256, num_sub_vectors: `Optional[int]` = 96, index_cache_size: `Optional[int]` = None, metric: `Optional[str]` = "L2",
) -> `None`__ : Creates a scalar(for non-vector cols) or a vector index on a table.
Make sure your vector column has enough data before creating an index on it.
- __add(self, nodes: `List[BaseNode]`, **add_kwargs: `Any`, ) -> `List[str]`__ :
adds Nodes to the table
- **delete(self, ref_doc_id: `str`) -> `None`**: Delete nodes using with node_ids.
- **delete_nodes(self, node_ids: `List[str]`) -> `None`** : Delete nodes using with node_ids.
- __query(
self,
query: `VectorStoreQuery`,
**kwargs: `Any`,
) -> `VectorStoreQueryResult`__:
Query index(`VectorStoreIndex`) for top k most similar nodes. Accepts llamaIndex `VectorStoreQuery` object.

View File

@@ -1,383 +0,0 @@
**phidata** is a framework for building **AI Assistants** with long-term memory, contextual knowledge, and the ability to take actions using function calling. It helps turn general-purpose LLMs into specialized assistants tailored to your use case by extending its capabilities using **memory**, **knowledge**, and **tools**.
- **Memory**: Stores chat history in a **database** and enables LLMs to have long-term conversations.
- **Knowledge**: Stores information in a **vector database** and provides LLMs with business context. (Here we will use LanceDB)
- **Tools**: Enable LLMs to take actions like pulling data from an **API**, **sending emails** or **querying a database**, etc.
![example](https://raw.githubusercontent.com/lancedb/assets/refs/heads/main/docs/assets/integration/phidata_assistant.png)
Memory & knowledge make LLMs smarter while tools make them autonomous.
LanceDB is a vector database and its integration into phidata makes it easy for us to provide a **knowledge base** to LLMs. It enables us to store information as [embeddings](../embeddings/understanding_embeddings.md) and search for the **results** similar to ours using **query**.
??? Question "What is Knowledge Base?"
Knowledge Base is a database of information that the Assistant can search to improve its responses. This information is stored in a vector database and provides LLMs with business context, which makes them respond in a context-aware manner.
While any type of storage can act as a knowledge base, vector databases offer the best solution for retrieving relevant results from dense information quickly.
Let's see how using LanceDB inside phidata helps in making LLM more useful:
## Prerequisites: install and import necessary dependencies
**Create a virtual environment**
1. install virtualenv package
```python
pip install virtualenv
```
2. Create a directory for your project and go to the directory and create a virtual environment inside it.
```python
mkdir phi
```
```python
cd phi
```
```python
python -m venv phidata_
```
**Activating virtual environment**
1. from inside the project directory, run the following command to activate the virtual environment.
```python
phidata_/Scripts/activate
```
**Install the following packages in the virtual environment**
```python
pip install lancedb phidata youtube_transcript_api openai ollama pandas numpy
```
**Create python files and import necessary libraries**
You need to create two files - `transcript.py` and `ollama_assistant.py` or `openai_assistant.py`
=== "openai_assistant.py"
```python
import os, openai
from rich.prompt import Prompt
from phi.assistant import Assistant
from phi.knowledge.text import TextKnowledgeBase
from phi.vectordb.lancedb import LanceDb
from phi.llm.openai import OpenAIChat
from phi.embedder.openai import OpenAIEmbedder
from transcript import extract_transcript
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# The code below creates a file "transcript.txt" in the directory, the txt file will be used below
youtube_url = "https://www.youtube.com/watch?v=Xs33-Gzl8Mo"
segment_duration = 20
transcript_text,dict_transcript = extract_transcript(youtube_url,segment_duration)
```
=== "ollama_assistant.py"
```python
from rich.prompt import Prompt
from phi.assistant import Assistant
from phi.knowledge.text import TextKnowledgeBase
from phi.vectordb.lancedb import LanceDb
from phi.llm.ollama import Ollama
from phi.embedder.ollama import OllamaEmbedder
from transcript import extract_transcript
# The code below creates a file "transcript.txt" in the directory, the txt file will be used below
youtube_url = "https://www.youtube.com/watch?v=Xs33-Gzl8Mo"
segment_duration = 20
transcript_text,dict_transcript = extract_transcript(youtube_url,segment_duration)
```
=== "transcript.py"
``` python
from youtube_transcript_api import YouTubeTranscriptApi
import re
def smodify(seconds):
hours, remainder = divmod(seconds, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{int(hours):02}:{int(minutes):02}:{int(seconds):02}"
def extract_transcript(youtube_url,segment_duration):
# Extract video ID from the URL
video_id = re.search(r'(?<=v=)[\w-]+', youtube_url)
if not video_id:
video_id = re.search(r'(?<=be/)[\w-]+', youtube_url)
if not video_id:
return None
video_id = video_id.group(0)
# Attempt to fetch the transcript
try:
# Try to get the official transcript
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
except Exception:
# If no official transcript is found, try to get auto-generated transcript
try:
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
for transcript in transcript_list:
transcript = transcript.translate('en').fetch()
except Exception:
return None
# Format the transcript into 120s chunks
transcript_text,dict_transcript = format_transcript(transcript,segment_duration)
# Open the file in write mode, which creates it if it doesn't exist
with open("transcript.txt", "w",encoding="utf-8") as file:
file.write(transcript_text)
return transcript_text,dict_transcript
def format_transcript(transcript,segment_duration):
chunked_transcript = []
chunk_dict = []
current_chunk = []
current_time = 0
# 2 minutes in seconds
start_time_chunk = 0 # To track the start time of the current chunk
for segment in transcript:
start_time = segment['start']
end_time_x = start_time + segment['duration']
text = segment['text']
# Add text to the current chunk
current_chunk.append(text)
# Update the current time with the duration of the current segment
# The duration of the current segment is given by segment['start'] - start_time_chunk
if current_chunk:
current_time = start_time - start_time_chunk
# If current chunk duration reaches or exceeds 2 minutes, save the chunk
if current_time >= segment_duration:
# Use the start time of the first segment in the current chunk as the timestamp
chunked_transcript.append(f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}] " + " ".join(current_chunk))
current_chunk = re.sub(r'[\xa0\n]', lambda x: '' if x.group() == '\xa0' else ' ', "\n".join(current_chunk))
chunk_dict.append({"timestamp":f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}]", "text": "".join(current_chunk)})
current_chunk = [] # Reset the chunk
start_time_chunk = start_time + segment['duration'] # Update the start time for the next chunk
current_time = 0 # Reset current time
# Add any remaining text in the last chunk
if current_chunk:
chunked_transcript.append(f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}] " + " ".join(current_chunk))
current_chunk = re.sub(r'[\xa0\n]', lambda x: '' if x.group() == '\xa0' else ' ', "\n".join(current_chunk))
chunk_dict.append({"timestamp":f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}]", "text": "".join(current_chunk)})
return "\n\n".join(chunked_transcript), chunk_dict
```
!!! warning
If creating Ollama assistant, download and install Ollama [from here](https://ollama.com/) and then run the Ollama instance in the background. Also, download the required models using `ollama pull <model-name>`. Check out the models [here](https://ollama.com/library)
**Run the following command to deactivate the virtual environment if needed**
```python
deactivate
```
## **Step 1** - Create a Knowledge Base for AI Assistant using LanceDB
=== "openai_assistant.py"
```python
# Create knowledge Base with OpenAIEmbedder in LanceDB
knowledge_base = TextKnowledgeBase(
path="transcript.txt",
vector_db=LanceDb(
embedder=OpenAIEmbedder(api_key = openai.api_key),
table_name="transcript_documents",
uri="./t3mp/.lancedb",
),
num_documents = 10
)
```
=== "ollama_assistant.py"
```python
# Create knowledge Base with OllamaEmbedder in LanceDB
knowledge_base = TextKnowledgeBase(
path="transcript.txt",
vector_db=LanceDb(
embedder=OllamaEmbedder(model="nomic-embed-text",dimensions=768),
table_name="transcript_documents",
uri="./t2mp/.lancedb",
),
num_documents = 10
)
```
Check out the list of **embedders** supported by **phidata** and their usage [here](https://docs.phidata.com/embedder/introduction).
Here we have used `TextKnowledgeBase`, which loads text/docx files to the knowledge base.
Let's see all the parameters that `TextKnowledgeBase` takes -
| Name| Type | Purpose | Default |
|:----|:-----|:--------|:--------|
|`path`|`Union[str, Path]`| Path to text file(s). It can point to a single text file or a directory of text files.| provided by user |
|`formats`|`List[str]`| File formats accepted by this knowledge base. |`[".txt"]`|
|`vector_db`|`VectorDb`| Vector Database for the Knowledge Base. phidata provides a wrapper around many vector DBs, you can import it like this - `from phi.vectordb.lancedb import LanceDb` | provided by user |
|`num_documents`|`int`| Number of results (documents/vectors) that vector search should return. |`5`|
|`reader`|`TextReader`| phidata provides many types of reader objects which read data, clean it and create chunks of data, encapsulate each chunk inside an object of the `Document` class, and return **`List[Document]`**. | `TextReader()` |
|`optimize_on`|`int`| It is used to specify the number of documents on which to optimize the vector database. Supposed to create an index. |`1000`|
??? Tip "Wonder! What is `Document` class?"
We know that, before storing the data in vectorDB, we need to split the data into smaller chunks upon which embeddings will be created and these embeddings along with the chunks will be stored in vectorDB. When the user queries over the vectorDB, some of these embeddings will be returned as the result based on the semantic similarity with the query.
When the user queries over vectorDB, the queries are converted into embeddings, and a nearest neighbor search is performed over these query embeddings which returns the embeddings that correspond to most semantically similar chunks(parts of our data) present in vectorDB.
Here, a “Document” is a class in phidata. Since there is an option to let phidata create and manage embeddings, it splits our data into smaller chunks(as expected). It does not directly create embeddings on it. Instead, it takes each chunk and encapsulates it inside the object of the `Document` class along with various other metadata related to the chunk. Then embeddings are created on these `Document` objects and stored in vectorDB.
```python
class Document(BaseModel):
"""Model for managing a document"""
content: str # <--- here data of chunk is stored
id: Optional[str] = None
name: Optional[str] = None
meta_data: Dict[str, Any] = {}
embedder: Optional[Embedder] = None
embedding: Optional[List[float]] = None
usage: Optional[Dict[str, Any]] = None
```
However, using phidata you can load many other types of data in the knowledge base(other than text). Check out [phidata Knowledge Base](https://docs.phidata.com/knowledge/introduction) for more information.
Let's dig deeper into the `vector_db` parameter and see what parameters `LanceDb` takes -
| Name| Type | Purpose | Default |
|:----|:-----|:--------|:--------|
|`embedder`|`Embedder`| phidata provides many Embedders that abstract the interaction with embedding APIs and utilize it to generate embeddings. Check out other embedders [here](https://docs.phidata.com/embedder/introduction) | `OpenAIEmbedder` |
|`distance`|`List[str]`| The choice of distance metric used to calculate the similarity between vectors, which directly impacts search results and performance in vector databases. |`Distance.cosine`|
|`connection`|`lancedb.db.LanceTable`| LanceTable can be accessed through `.connection`. You can connect to an existing table of LanceDB, created outside of phidata, and utilize it. If not provided, it creates a new table using `table_name` parameter and adds it to `connection`. |`None`|
|`uri`|`str`| It specifies the directory location of **LanceDB database** and establishes a connection that can be used to interact with the database. | `"/tmp/lancedb"` |
|`table_name`|`str`| If `connection` is not provided, it initializes and connects to a new **LanceDB table** with a specified(or default) name in the database present at `uri`. |`"phi"`|
|`nprobes`|`int`| It refers to the number of partitions that the search algorithm examines to find the nearest neighbors of a given query vector. Higher values will yield better recall (more likely to find vectors if they exist) at the expense of latency. |`20`|
!!! note
Since we just initialized the KnowledgeBase. The VectorDB table that corresponds to this Knowledge Base is not yet populated with our data. It will be populated in **Step 3**, once we perform the `load` operation.
You can check the state of the LanceDB table using - `knowledge_base.vector_db.connection.to_pandas()`
Now that the Knowledge Base is initialized, , we can go to **step 2**.
## **Step 2** - Create an assistant with our choice of LLM and reference to the knowledge base.
=== "openai_assistant.py"
```python
# define an assistant with gpt-4o-mini llm and reference to the knowledge base created above
assistant = Assistant(
llm=OpenAIChat(model="gpt-4o-mini", max_tokens=1000, temperature=0.3,api_key = openai.api_key),
description="""You are an Expert in explaining youtube video transcripts. You are a bot that takes transcript of a video and answer the question based on it.
This is transcript for the above timestamp: {relevant_document}
The user input is: {user_input}
generate highlights only when asked.
When asked to generate highlights from the video, understand the context for each timestamp and create key highlight points, answer in following way -
[timestamp] - highlight 1
[timestamp] - highlight 2
... so on
Your task is to understand the user question, and provide an answer using the provided contexts. Your answers are correct, high-quality, and written by an domain expert. If the provided context does not contain the answer, simply state,'The provided context does not have the answer.'""",
knowledge_base=knowledge_base,
add_references_to_prompt=True,
)
```
=== "ollama_assistant.py"
```python
# define an assistant with llama3.1 llm and reference to the knowledge base created above
assistant = Assistant(
llm=Ollama(model="llama3.1"),
description="""You are an Expert in explaining youtube video transcripts. You are a bot that takes transcript of a video and answer the question based on it.
This is transcript for the above timestamp: {relevant_document}
The user input is: {user_input}
generate highlights only when asked.
When asked to generate highlights from the video, understand the context for each timestamp and create key highlight points, answer in following way -
[timestamp] - highlight 1
[timestamp] - highlight 2
... so on
Your task is to understand the user question, and provide an answer using the provided contexts. Your answers are correct, high-quality, and written by an domain expert. If the provided context does not contain the answer, simply state,'The provided context does not have the answer.'""",
knowledge_base=knowledge_base,
add_references_to_prompt=True,
)
```
Assistants add **memory**, **knowledge**, and **tools** to LLMs. Here we will add only **knowledge** in this example.
Whenever we will give a query to LLM, the assistant will retrieve relevant information from our **Knowledge Base**(table in LanceDB) and pass it to LLM along with the user query in a structured way.
- The `add_references_to_prompt=True` always adds information from the knowledge base to the prompt, regardless of whether it is relevant to the question.
To know more about an creating assistant in phidata, check out [phidata docs](https://docs.phidata.com/assistants/introduction) here.
## **Step 3** - Load data to Knowledge Base.
```python
# load out data into the knowledge_base (populating the LanceTable)
assistant.knowledge_base.load(recreate=False)
```
The above code loads the data to the Knowledge Base(LanceDB Table) and now it is ready to be used by the assistant.
| Name| Type | Purpose | Default |
|:----|:-----|:--------|:--------|
|`recreate`|`bool`| If True, it drops the existing table and recreates the table in the vectorDB. |`False`|
|`upsert`|`bool`| If True and the vectorDB supports upsert, it will upsert documents to the vector db. | `False` |
|`skip_existing`|`bool`| If True, skips documents that already exist in the vectorDB when inserting. |`True`|
??? tip "What is upsert?"
Upsert is a database operation that combines "update" and "insert". It updates existing records if a document with the same identifier does exist, or inserts new records if no matching record exists. This is useful for maintaining the most current information without manually checking for existence.
During the Load operation, phidata directly interacts with the LanceDB library and performs the loading of the table with our data in the following steps -
1. **Creates** and **initializes** the table if it does not exist.
2. Then it **splits** our data into smaller **chunks**.
??? question "How do they create chunks?"
**phidata** provides many types of **Knowledge Bases** based on the type of data. Most of them :material-information-outline:{ title="except LlamaIndexKnowledgeBase and LangChainKnowledgeBase"} has a property method called `document_lists` of type `Iterator[List[Document]]`. During the load operation, this property method is invoked. It traverses on the data provided by us (in this case, a text file(s)) using `reader`. Then it **reads**, **creates chunks**, and **encapsulates** each chunk inside a `Document` object and yields **lists of `Document` objects** that contain our data.
3. Then **embeddings** are created on these chunks are **inserted** into the LanceDB Table
??? question "How do they insert your data as different rows in LanceDB Table?"
The chunks of your data are in the form - **lists of `Document` objects**. It was yielded in the step above.
for each `Document` in `List[Document]`, it does the following operations:
- Creates embedding on `Document`.
- Cleans the **content attribute**(chunks of our data is here) of `Document`.
- Prepares data by creating `id` and loading `payload` with the metadata related to this chunk. (1)
{ .annotate }
1. Three columns will be added to the table - `"id"`, `"vector"`, and `"payload"` (payload contains various metadata including **`content`**)
- Then add this data to LanceTable.
4. Now the internal state of `knowledge_base` is changed (embeddings are created and loaded in the table ) and it **ready to be used by assistant**.
## **Step 4** - Start a cli chatbot with access to the Knowledge base
```python
# start cli chatbot with knowledge base
assistant.print_response("Ask me about something from the knowledge base")
while True:
message = Prompt.ask(f"[bold] :sunglasses: User [/bold]")
if message in ("exit", "bye"):
break
assistant.print_response(message, markdown=True)
```
For more information and amazing cookbooks of phidata, read the [phidata documentation](https://docs.phidata.com/introduction) and also visit [LanceDB x phidata docmentation](https://docs.phidata.com/vectordb/lancedb).

View File

@@ -1,73 +1,13 @@
# FiftyOne
FiftyOne is an open source toolkit that enables users to curate better data and build better models. It includes tools for data exploration, visualization, and management, as well as features for collaboration and sharing.
Any developers, data scientists, and researchers who work with computer vision and machine learning can use FiftyOne to improve the quality of their datasets and deliver insights about their models.
FiftyOne is an open source toolkit for building high-quality datasets and computer vision models. It provides an API to create LanceDB tables and run similarity queries, both programmatically in Python and via point-and-click in the App.
![example](../assets/voxel.gif)
**FiftyOne** provides an API to create LanceDB tables and run similarity queries, both **programmatically in Python** and via **point-and-click in the App**.
## Basic recipe
Let's get started and see how to use **LanceDB** to create a **similarity index** on your FiftyOne datasets.
## Overview
**[Embeddings](../embeddings/understanding_embeddings.md)** are foundational to all of the **vector search** features. In FiftyOne, embeddings are managed by the [**FiftyOne Brain**](https://docs.voxel51.com/user_guide/brain.html) that provides powerful machine learning techniques designed to transform how you curate your data from an art into a measurable science.
!!!question "Have you ever wanted to find the images most similar to an image in your dataset?"
The **FiftyOne Brain** makes computing **visual similarity** really easy. You can compute the similarity of samples in your dataset using an embedding model and store the results in the **brain key**.
You can then sort your samples by similarity or use this information to find potential duplicate images.
Here we will be doing the following :
1. **Create Index** - In order to run similarity queries against our media, we need to **index** the data. We can do this via the `compute_similarity()` function.
- In the function, specify the **model** you want to use to generate the embedding vectors, and what **vector search engine** you want to use on the **backend** (here LanceDB).
!!!tip
You can also give the similarity index a name(`brain_key`), which is useful if you want to run vector searches against multiple indexes.
2. **Query** - Once you have generated your similarity index, you can query your dataset with `sort_by_similarity()`. The query can be any of the following:
- An ID (sample or patch)
- A query vector of same dimension as the index
- A list of IDs (samples or patches)
- A text prompt (search semantically)
## Prerequisites: install necessary dependencies
1. **Create and activate a virtual environment**
Install virtualenv package and run the following command in your project directory.
```python
python -m venv fiftyone_
```
From inside the project directory run the following to activate the virtual environment.
=== "Windows"
```python
fiftyone_/Scripts/activate
```
=== "macOS/Linux"
```python
source fiftyone_/Scripts/activate
```
2. **Install the following packages in the virtual environment**
To install FiftyOne, ensure you have activated any virtual environment that you are using, then run
```python
pip install fiftyone
```
## Understand basic workflow
The basic workflow shown below uses LanceDB to create a similarity index on your FiftyOne datasets:
The basic workflow shown below uses LanceDB to create a similarity index on your FiftyOne
datasets:
1. Load a dataset into FiftyOne.
@@ -79,10 +19,14 @@ The basic workflow shown below uses LanceDB to create a similarity index on your
5. If desired, delete the table.
## Quick Example
The example below demonstrates this workflow.
Let's jump on a quick example that demonstrates this workflow.
!!! Note
Install the LanceDB Python client to run the code shown below.
```
pip install lancedb
```
```python
@@ -92,10 +36,7 @@ import fiftyone.zoo as foz
# Step 1: Load your data into FiftyOne
dataset = foz.load_zoo_dataset("quickstart")
```
Make sure you install torch ([guide here](https://pytorch.org/get-started/locally/)) before proceeding.
```python
# Steps 2 and 3: Compute embeddings and create a similarity index
lancedb_index = fob.compute_similarity(
dataset,
@@ -104,11 +45,8 @@ lancedb_index = fob.compute_similarity(
backend="lancedb",
)
```
!!! note
Running the code above will download the clip model (2.6Gb)
Once the similarity index has been generated, we can query our data in FiftyOne by specifying the `brain_key`:
Once the similarity index has been generated, we can query our data in FiftyOne
by specifying the `brain_key`:
```python
# Step 4: Query your data
@@ -118,22 +56,7 @@ view = dataset.sort_by_similarity(
brain_key="lancedb_index",
k=10, # limit to 10 most similar samples
)
```
The returned result are of type - `DatasetView`.
!!! note
`DatasetView` does not hold its contents in-memory. Views simply store the rule(s) that are applied to extract the content of interest from the underlying Dataset when the view is iterated/aggregated on.
This means, for example, that the contents of a `DatasetView` may change as the underlying Dataset is modified.
??? question "Can you query a view instead of dataset?"
Yes, you can also query a view.
Performing a similarity search on a `DatasetView` will only return results from the view; if the view contains samples that were not included in the index, they will never be included in the result.
This means that you can index an entire Dataset once and then perform searches on subsets of the dataset by constructing views that contain the images of interest.
```python
# Step 5 (optional): Cleanup
# Delete the LanceDB table
@@ -143,90 +66,4 @@ lancedb_index.cleanup()
dataset.delete_brain_run("lancedb_index")
```
## Using LanceDB backend
By default, calling `compute_similarity()` or `sort_by_similarity()` will use an sklearn backend.
To use the LanceDB backend, simply set the optional `backend` parameter of `compute_similarity()` to `"lancedb"`:
```python
import fiftyone.brain as fob
#... rest of the code
fob.compute_similarity(..., backend="lancedb", ...)
```
Alternatively, you can configure FiftyOne to use the LanceDB backend by setting the following environment variable.
In your terminal, set the environment variable using:
=== "Windows"
```python
$Env:FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND="lancedb" //powershell
set FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND=lancedb //cmd
```
=== "macOS/Linux"
```python
export FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND=lancedb
```
!!! note
This will only run during the terminal session. Once terminal is closed, environment variable is deleted.
Alternatively, you can **permanently** configure FiftyOne to use the LanceDB backend creating a `brain_config.json` at `~/.fiftyone/brain_config.json`. The JSON file may contain any desired subset of config fields that you wish to customize.
```json
{
"default_similarity_backend": "lancedb"
}
```
This will override the default `brain_config` and will set it according to your customization. You can check the configuration by running the following code :
```python
import fiftyone.brain as fob
# Print your current brain config
print(fob.brain_config)
```
## LanceDB config parameters
The LanceDB backend supports query parameters that can be used to customize your similarity queries. These parameters include:
| Name| Purpose | Default |
|:----|:--------|:--------|
|**table_name**|The name of the LanceDB table to use. If none is provided, a new table will be created|`None`|
|**metric**|The embedding distance metric to use when creating a new table. The supported values are ("cosine", "euclidean")|`"cosine"`|
|**uri**| The database URI to use. In this Database URI, tables will be created. |`"/tmp/lancedb"`|
There are two ways to specify/customize the parameters:
1. **Using `brain_config.json` file**
```json
{
"similarity_backends": {
"lancedb": {
"table_name": "your-table",
"metric": "euclidean",
"uri": "/tmp/lancedb"
}
}
}
```
2. **Directly passing to `compute_similarity()` to configure a specific new index** :
```python
lancedb_index = fob.compute_similarity(
...
backend="lancedb",
brain_key="lancedb_index",
table_name="your-table",
metric="euclidean",
uri="/tmp/lancedb",
)
```
For a much more in depth walkthrough of the integration, visit the LanceDB x Voxel51 [docs page](https://docs.voxel51.com/integrations/lancedb.html).

Some files were not shown because too many files have changed in this diff Show More