mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-24 05:49:57 +00:00
Compare commits
6 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
144b7f5d54 | ||
|
|
edc9b9adec | ||
|
|
d11b2a6975 | ||
|
|
980aa70e2d | ||
|
|
d83e5a0208 | ||
|
|
16a6b9ce8f |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.14.1-beta.3"
|
||||
current_version = "0.14.1-beta.4"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
4
.github/workflows/upload_wheel/action.yml
vendored
4
.github/workflows/upload_wheel/action.yml
vendored
@@ -22,7 +22,7 @@ runs:
|
||||
shell: bash
|
||||
id: choose_repo
|
||||
run: |
|
||||
if [ ${{ github.ref }} == "*beta*" ]; then
|
||||
if [[ ${{ github.ref }} == *beta* ]]; then
|
||||
echo "repo=fury" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "repo=pypi" >> $GITHUB_OUTPUT
|
||||
@@ -33,7 +33,7 @@ runs:
|
||||
FURY_TOKEN: ${{ inputs.fury_token }}
|
||||
PYPI_TOKEN: ${{ inputs.pypi_token }}
|
||||
run: |
|
||||
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
|
||||
if [[ ${{ steps.choose_repo.outputs.repo }} == fury ]]; then
|
||||
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
|
||||
echo "Uploading $WHEEL to Fury"
|
||||
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
|
||||
|
||||
16
Cargo.toml
16
Cargo.toml
@@ -23,14 +23,14 @@ rust-version = "1.80.0" # TO
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.21.0", "features" = [
|
||||
"dynamodb",
|
||||
], git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.3" }
|
||||
lance-io = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.3" }
|
||||
lance-index = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.3" }
|
||||
lance-linalg = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.3" }
|
||||
lance-table = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.3" }
|
||||
lance-testing = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.3" }
|
||||
lance-datafusion = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.3" }
|
||||
lance-encoding = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.3" }
|
||||
], git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
|
||||
lance-io = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
|
||||
lance-index = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
|
||||
lance-linalg = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
|
||||
lance-table = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
|
||||
lance-testing = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
|
||||
lance-datafusion = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
|
||||
lance-encoding = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "53.2", optional = false }
|
||||
arrow-array = "53.2"
|
||||
|
||||
@@ -141,14 +141,6 @@ recommend switching to stable releases.
|
||||
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
|
||||
```
|
||||
|
||||
!!! note "Asynchronous Python API"
|
||||
|
||||
The asynchronous Python API is new and has some slight differences compared
|
||||
to the synchronous API. Feel free to start using the asynchronous version.
|
||||
Once all features have migrated we will start to move the synchronous API to
|
||||
use the same syntax as the asynchronous API. To help with this migration we
|
||||
have created a [migration guide](migration.md) detailing the differences.
|
||||
|
||||
=== "Typescript[^1]"
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
@@ -1,81 +1,14 @@
|
||||
# Rust-backed Client Migration Guide
|
||||
|
||||
In an effort to ensure all clients have the same set of capabilities we have begun migrating the
|
||||
python and node clients onto a common Rust base library. In python, this new client is part of
|
||||
the same lancedb package, exposed as an asynchronous client. Once the asynchronous client has
|
||||
reached full functionality we will begin migrating the synchronous library to be a thin wrapper
|
||||
around the asynchronous client.
|
||||
In an effort to ensure all clients have the same set of capabilities we have
|
||||
migrated the Python and Node clients onto a common Rust base library. In Python,
|
||||
both the synchronous and asynchronous clients are based on this implementation.
|
||||
In Node, the new client is available as `@lancedb/lancedb`, which replaces
|
||||
the existing `vectordb` package.
|
||||
|
||||
This guide describes the differences between the two APIs and will hopefully assist users
|
||||
This guide describes the differences between the two Node APIs and will hopefully assist users
|
||||
that would like to migrate to the new API.
|
||||
|
||||
## Python
|
||||
### Closeable Connections
|
||||
|
||||
The Connection now has a `close` method. You can call this when
|
||||
you are done with the connection to eagerly free resources. Currently
|
||||
this is limited to freeing/closing the HTTP connection for remote
|
||||
connections. In the future we may add caching or other resources to
|
||||
native connections so this is probably a good practice even if you
|
||||
aren't using remote connections.
|
||||
|
||||
In addition, the connection can be used as a context manager which may
|
||||
be a more convenient way to ensure the connection is closed.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
async def my_async_fn():
|
||||
with await lancedb.connect_async("my_uri") as db:
|
||||
print(await db.table_names())
|
||||
```
|
||||
|
||||
It is not mandatory to call the `close` method. If you do not call it
|
||||
then the connection will be closed when the object is garbage collected.
|
||||
|
||||
### Closeable Table
|
||||
|
||||
The Table now also has a `close` method, similar to the connection. This
|
||||
can be used to eagerly free the cache used by a Table object. Similar to
|
||||
the connection, it can be used as a context manager and it is not mandatory
|
||||
to call the `close` method.
|
||||
|
||||
#### Changes to Table APIs
|
||||
|
||||
- Previously `Table.schema` was a property. Now it is an async method.
|
||||
- The method `Table.__len__` was removed and `len(table)` will no longer
|
||||
work. Use `Table.count_rows` instead.
|
||||
|
||||
#### Creating Indices
|
||||
|
||||
The `Table.create_index` method is now used for creating both vector indices
|
||||
and scalar indices. It currently requires a column name to be specified (the
|
||||
column to index). Vector index defaults are now smarter and scale better with
|
||||
the size of the data.
|
||||
|
||||
To specify index configuration details you will need to specify which kind of
|
||||
index you are using.
|
||||
|
||||
#### Querying
|
||||
|
||||
The `Table.search` method has been renamed to `AsyncTable.vector_search` for
|
||||
clarity.
|
||||
|
||||
### Features not yet supported
|
||||
|
||||
The following features are not yet supported by the asynchronous API. However,
|
||||
we plan to support them soon.
|
||||
|
||||
- You cannot specify an embedding function when creating or opening a table.
|
||||
You must calculate embeddings yourself if using the asynchronous API
|
||||
- The merge insert operation is not supported in the asynchronous API
|
||||
- Cleanup / compact / optimize indices are not supported in the asynchronous API
|
||||
- add / alter columns is not supported in the asynchronous API
|
||||
- The asynchronous API does not yet support any full text search or reranking
|
||||
search
|
||||
- Remote connections to LanceDb Cloud are not yet supported.
|
||||
- The method Table.head is not yet supported.
|
||||
|
||||
## TypeScript/JavaScript
|
||||
|
||||
For JS/TS users, we offer a brand new SDK [@lancedb/lancedb](https://www.npmjs.com/package/@lancedb/lancedb)
|
||||
|
||||
@@ -47,6 +47,8 @@ is also an [asynchronous API client](#connections-asynchronous).
|
||||
|
||||
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
|
||||
|
||||
::: lancedb.embeddings.base.EmbeddingFunctionConfig
|
||||
|
||||
::: lancedb.embeddings.base.EmbeddingFunction
|
||||
|
||||
::: lancedb.embeddings.base.TextEmbeddingFunction
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.14.1-beta.3</version>
|
||||
<version>0.14.1-beta.4</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.14.1-beta.3</version>
|
||||
<version>0.14.1-beta.4</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>LanceDB Parent</name>
|
||||
|
||||
20
node/package-lock.json
generated
20
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -52,14 +52,14 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.3"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.4"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"private": false,
|
||||
"main": "dist/index.js",
|
||||
@@ -92,13 +92,13 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.3",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.3"
|
||||
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.4",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.4"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "lancedb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.14.1-beta.3"
|
||||
version = "0.14.1-beta.4"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
"ann"
|
||||
],
|
||||
"private": false,
|
||||
"version": "0.14.1-beta.3",
|
||||
"version": "0.14.1-beta.4",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.17.1-beta.4"
|
||||
current_version = "0.17.1-beta.5"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.17.1-beta.4"
|
||||
version = "0.17.1-beta.5"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
|
||||
@@ -3,7 +3,7 @@ name = "lancedb"
|
||||
# version in Cargo.toml
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.21.0b3",
|
||||
"pylance==0.21.0b4",
|
||||
"tqdm>=4.27.0",
|
||||
"pydantic>=1.10",
|
||||
"packaging",
|
||||
|
||||
@@ -70,7 +70,7 @@ def connect(
|
||||
default configuration is used.
|
||||
storage_options: dict, optional
|
||||
Additional options for the storage backend. See available options at
|
||||
https://lancedb.github.io/lancedb/guides/storage/
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -82,11 +82,13 @@ def connect(
|
||||
|
||||
For object storage, use a URI prefix:
|
||||
|
||||
>>> db = lancedb.connect("s3://my-bucket/lancedb")
|
||||
>>> db = lancedb.connect("s3://my-bucket/lancedb",
|
||||
... storage_options={"aws_access_key_id": "***"})
|
||||
|
||||
Connect to LanceDB cloud:
|
||||
|
||||
>>> db = lancedb.connect("db://my_database", api_key="ldb_...")
|
||||
>>> db = lancedb.connect("db://my_database", api_key="ldb_...",
|
||||
... client_config={"retry_config": {"retries": 5}})
|
||||
|
||||
Returns
|
||||
-------
|
||||
@@ -164,7 +166,7 @@ async def connect_async(
|
||||
default configuration is used.
|
||||
storage_options: dict, optional
|
||||
Additional options for the storage backend. See available options at
|
||||
https://lancedb.github.io/lancedb/guides/storage/
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
@@ -2,19 +2,8 @@ from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import pyarrow as pa
|
||||
|
||||
class Index:
|
||||
@staticmethod
|
||||
def ivf_pq(
|
||||
distance_type: Optional[str],
|
||||
num_partitions: Optional[int],
|
||||
num_sub_vectors: Optional[int],
|
||||
max_iterations: Optional[int],
|
||||
sample_rate: Optional[int],
|
||||
) -> Index: ...
|
||||
@staticmethod
|
||||
def btree() -> Index: ...
|
||||
|
||||
class Connection(object):
|
||||
uri: str
|
||||
async def table_names(
|
||||
self, start_after: Optional[str], limit: Optional[int]
|
||||
) -> list[str]: ...
|
||||
@@ -46,9 +35,7 @@ class Table:
|
||||
async def add(self, data: pa.RecordBatchReader, mode: str) -> None: ...
|
||||
async def update(self, updates: Dict[str, str], where: Optional[str]) -> None: ...
|
||||
async def count_rows(self, filter: Optional[str]) -> int: ...
|
||||
async def create_index(
|
||||
self, column: str, config: Optional[Index], replace: Optional[bool]
|
||||
): ...
|
||||
async def create_index(self, column: str, config, replace: Optional[bool]): ...
|
||||
async def version(self) -> int: ...
|
||||
async def checkout(self, version): ...
|
||||
async def checkout_latest(self): ...
|
||||
|
||||
@@ -23,3 +23,6 @@ class BackgroundEventLoop:
|
||||
|
||||
def run(self, future):
|
||||
return asyncio.run_coroutine_threadsafe(future, self.loop).result()
|
||||
|
||||
|
||||
LOOP = BackgroundEventLoop()
|
||||
|
||||
@@ -17,10 +17,11 @@ from abc import abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
|
||||
|
||||
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
|
||||
from overrides import EnforceOverrides, override
|
||||
|
||||
from lancedb.common import data_to_reader, sanitize_uri, validate_schema
|
||||
from lancedb.background_loop import BackgroundEventLoop
|
||||
from lancedb.background_loop import LOOP
|
||||
|
||||
from ._lancedb import connect as lancedb_connect
|
||||
from .table import (
|
||||
@@ -43,8 +44,6 @@ if TYPE_CHECKING:
|
||||
from .common import DATA, URI
|
||||
from .embeddings import EmbeddingFunctionConfig
|
||||
|
||||
LOOP = BackgroundEventLoop()
|
||||
|
||||
|
||||
class DBConnection(EnforceOverrides):
|
||||
"""An active LanceDB connection interface."""
|
||||
@@ -82,6 +81,10 @@ class DBConnection(EnforceOverrides):
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||
*,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
data_storage_version: Optional[str] = None,
|
||||
enable_v2_manifest_paths: Optional[bool] = None,
|
||||
) -> Table:
|
||||
"""Create a [Table][lancedb.table.Table] in the database.
|
||||
|
||||
@@ -119,6 +122,24 @@ class DBConnection(EnforceOverrides):
|
||||
One of "error", "drop", "fill".
|
||||
fill_value: float
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
storage_options: dict, optional
|
||||
Additional options for the storage backend. Options already set on the
|
||||
connection will be inherited by the table, but can be overridden here.
|
||||
See available options at
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
data_storage_version: optional, str, default "stable"
|
||||
The version of the data storage format to use. Newer versions are more
|
||||
efficient but require newer versions of lance to read. The default is
|
||||
"stable" which will use the legacy v2 version. See the user guide
|
||||
for more details.
|
||||
enable_v2_manifest_paths: bool, optional, default False
|
||||
Use the new V2 manifest paths. These paths provide more efficient
|
||||
opening of datasets with many versions on object stores. WARNING:
|
||||
turning this on will make the dataset unreadable for older versions
|
||||
of LanceDB (prior to 0.13.0). To migrate an existing dataset, instead
|
||||
use the
|
||||
[Table.migrate_manifest_paths_v2][lancedb.table.Table.migrate_v2_manifest_paths]
|
||||
method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
@@ -140,7 +161,7 @@ class DBConnection(EnforceOverrides):
|
||||
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
||||
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
||||
>>> db.create_table("my_table", data)
|
||||
LanceTable(connection=..., name="my_table")
|
||||
LanceTable(name='my_table', version=1, ...)
|
||||
>>> db["my_table"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -161,7 +182,7 @@ class DBConnection(EnforceOverrides):
|
||||
... "long": [-122.7, -74.1]
|
||||
... })
|
||||
>>> db.create_table("table2", data)
|
||||
LanceTable(connection=..., name="table2")
|
||||
LanceTable(name='table2', version=1, ...)
|
||||
>>> db["table2"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -184,7 +205,7 @@ class DBConnection(EnforceOverrides):
|
||||
... pa.field("long", pa.float32())
|
||||
... ])
|
||||
>>> db.create_table("table3", data, schema = custom_schema)
|
||||
LanceTable(connection=..., name="table3")
|
||||
LanceTable(name='table3', version=1, ...)
|
||||
>>> db["table3"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -218,7 +239,7 @@ class DBConnection(EnforceOverrides):
|
||||
... pa.field("price", pa.float32()),
|
||||
... ])
|
||||
>>> db.create_table("table4", make_batches(), schema=schema)
|
||||
LanceTable(connection=..., name="table4")
|
||||
LanceTable(name='table4', version=1, ...)
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
@@ -226,7 +247,13 @@ class DBConnection(EnforceOverrides):
|
||||
def __getitem__(self, name: str) -> LanceTable:
|
||||
return self.open_table(name)
|
||||
|
||||
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
|
||||
def open_table(
|
||||
self,
|
||||
name: str,
|
||||
*,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
index_cache_size: Optional[int] = None,
|
||||
) -> Table:
|
||||
"""Open a Lance Table in the database.
|
||||
|
||||
Parameters
|
||||
@@ -243,6 +270,11 @@ class DBConnection(EnforceOverrides):
|
||||
This cache applies to the entire opened table, across all indices.
|
||||
Setting this value higher will increase performance on larger datasets
|
||||
at the expense of more RAM
|
||||
storage_options: dict, optional
|
||||
Additional options for the storage backend. Options already set on the
|
||||
connection will be inherited by the table, but can be overridden here.
|
||||
See available options at
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
|
||||
Returns
|
||||
-------
|
||||
@@ -309,15 +341,15 @@ class LanceDBConnection(DBConnection):
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
|
||||
... {"vector": [0.5, 1.3], "b": 4}])
|
||||
LanceTable(connection=..., name="my_table")
|
||||
LanceTable(name='my_table', version=1, ...)
|
||||
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
|
||||
LanceTable(connection=..., name="another_table")
|
||||
LanceTable(name='another_table', version=1, ...)
|
||||
>>> sorted(db.table_names())
|
||||
['another_table', 'my_table']
|
||||
>>> len(db)
|
||||
2
|
||||
>>> db["my_table"]
|
||||
LanceTable(connection=..., name="my_table")
|
||||
LanceTable(name='my_table', version=1, ...)
|
||||
>>> "my_table" in db
|
||||
True
|
||||
>>> db.drop_table("my_table")
|
||||
@@ -363,7 +395,7 @@ class LanceDBConnection(DBConnection):
|
||||
self._conn = AsyncConnection(LOOP.run(do_connect()))
|
||||
|
||||
def __repr__(self) -> str:
|
||||
val = f"{self.__class__.__name__}({self._uri}"
|
||||
val = f"{self.__class__.__name__}(uri={self._uri!r}"
|
||||
if self.read_consistency_interval is not None:
|
||||
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
|
||||
val += ")"
|
||||
@@ -403,6 +435,10 @@ class LanceDBConnection(DBConnection):
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||
*,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
data_storage_version: Optional[str] = None,
|
||||
enable_v2_manifest_paths: Optional[bool] = None,
|
||||
) -> LanceTable:
|
||||
"""Create a table in the database.
|
||||
|
||||
@@ -424,12 +460,19 @@ class LanceDBConnection(DBConnection):
|
||||
on_bad_vectors=on_bad_vectors,
|
||||
fill_value=fill_value,
|
||||
embedding_functions=embedding_functions,
|
||||
storage_options=storage_options,
|
||||
data_storage_version=data_storage_version,
|
||||
enable_v2_manifest_paths=enable_v2_manifest_paths,
|
||||
)
|
||||
return tbl
|
||||
|
||||
@override
|
||||
def open_table(
|
||||
self, name: str, *, index_cache_size: Optional[int] = None
|
||||
self,
|
||||
name: str,
|
||||
*,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
index_cache_size: Optional[int] = None,
|
||||
) -> LanceTable:
|
||||
"""Open a table in the database.
|
||||
|
||||
@@ -442,7 +485,12 @@ class LanceDBConnection(DBConnection):
|
||||
-------
|
||||
A LanceTable object representing the table.
|
||||
"""
|
||||
return LanceTable.open(self, name, index_cache_size=index_cache_size)
|
||||
return LanceTable.open(
|
||||
self,
|
||||
name,
|
||||
storage_options=storage_options,
|
||||
index_cache_size=index_cache_size,
|
||||
)
|
||||
|
||||
@override
|
||||
def drop_table(self, name: str, ignore_missing: bool = False):
|
||||
@@ -524,6 +572,10 @@ class AsyncConnection(object):
|
||||
Any attempt to use the connection after it is closed will result in an error."""
|
||||
self._inner.close()
|
||||
|
||||
@property
|
||||
def uri(self) -> str:
|
||||
return self._inner.uri
|
||||
|
||||
async def table_names(
|
||||
self, *, start_after: Optional[str] = None, limit: Optional[int] = None
|
||||
) -> Iterable[str]:
|
||||
@@ -557,6 +609,7 @@ class AsyncConnection(object):
|
||||
fill_value: Optional[float] = None,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
*,
|
||||
embedding_functions: List[EmbeddingFunctionConfig] = None,
|
||||
data_storage_version: Optional[str] = None,
|
||||
use_legacy_format: Optional[bool] = None,
|
||||
enable_v2_manifest_paths: Optional[bool] = None,
|
||||
@@ -601,7 +654,7 @@ class AsyncConnection(object):
|
||||
Additional options for the storage backend. Options already set on the
|
||||
connection will be inherited by the table, but can be overridden here.
|
||||
See available options at
|
||||
https://lancedb.github.io/lancedb/guides/storage/
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
data_storage_version: optional, str, default "stable"
|
||||
The version of the data storage format to use. Newer versions are more
|
||||
efficient but require newer versions of lance to read. The default is
|
||||
@@ -730,6 +783,17 @@ class AsyncConnection(object):
|
||||
"""
|
||||
metadata = None
|
||||
|
||||
if embedding_functions is not None:
|
||||
# If we passed in embedding functions explicitly
|
||||
# then we'll override any schema metadata that
|
||||
# may was implicitly specified by the LanceModel schema
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
metadata = registry.get_table_metadata(embedding_functions)
|
||||
|
||||
data, schema = sanitize_create_table(
|
||||
data, schema, metadata, on_bad_vectors, fill_value
|
||||
)
|
||||
|
||||
# Defining defaults here and not in function prototype. In the future
|
||||
# these defaults will move into rust so better to keep them as None.
|
||||
if on_bad_vectors is None:
|
||||
@@ -791,7 +855,7 @@ class AsyncConnection(object):
|
||||
Additional options for the storage backend. Options already set on the
|
||||
connection will be inherited by the table, but can be overridden here.
|
||||
See available options at
|
||||
https://lancedb.github.io/lancedb/guides/storage/
|
||||
<https://lancedb.github.io/lancedb/guides/storage/>
|
||||
index_cache_size: int, default 256
|
||||
Set the size of the index cache, specified as a number of entries
|
||||
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
from typing import Optional
|
||||
from dataclasses import dataclass
|
||||
from typing import Literal, Optional
|
||||
|
||||
from ._lancedb import (
|
||||
Index as LanceDbIndex,
|
||||
)
|
||||
from ._lancedb import (
|
||||
IndexConfig,
|
||||
)
|
||||
@@ -29,6 +27,7 @@ lang_mapping = {
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class BTree:
|
||||
"""Describes a btree index configuration
|
||||
|
||||
@@ -50,10 +49,10 @@ class BTree:
|
||||
the block size may be added in the future.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._inner = LanceDbIndex.btree()
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class Bitmap:
|
||||
"""Describe a Bitmap index configuration.
|
||||
|
||||
@@ -73,10 +72,10 @@ class Bitmap:
|
||||
requires 128 / 8 * 1Bi bytes on disk.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._inner = LanceDbIndex.bitmap()
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class LabelList:
|
||||
"""Describe a LabelList index configuration.
|
||||
|
||||
@@ -87,41 +86,57 @@ class LabelList:
|
||||
For example, it works with `tags`, `categories`, `keywords`, etc.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._inner = LanceDbIndex.label_list()
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class FTS:
|
||||
"""Describe a FTS index configuration.
|
||||
|
||||
`FTS` is a full-text search index that can be used on `String` columns
|
||||
|
||||
For example, it works with `title`, `description`, `content`, etc.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
with_position : bool, default True
|
||||
Whether to store the position of the token in the document. Setting this
|
||||
to False can reduce the size of the index and improve indexing speed,
|
||||
but it will disable support for phrase queries.
|
||||
base_tokenizer : str, default "simple"
|
||||
The base tokenizer to use for tokenization. Options are:
|
||||
- "simple": Splits text by whitespace and punctuation.
|
||||
- "whitespace": Split text by whitespace, but not punctuation.
|
||||
- "raw": No tokenization. The entire text is treated as a single token.
|
||||
language : str, default "English"
|
||||
The language to use for tokenization.
|
||||
max_token_length : int, default 40
|
||||
The maximum token length to index. Tokens longer than this length will be
|
||||
ignored.
|
||||
lower_case : bool, default True
|
||||
Whether to convert the token to lower case. This makes queries case-insensitive.
|
||||
stem : bool, default False
|
||||
Whether to stem the token. Stemming reduces words to their root form.
|
||||
For example, in English "running" and "runs" would both be reduced to "run".
|
||||
remove_stop_words : bool, default False
|
||||
Whether to remove stop words. Stop words are common words that are often
|
||||
removed from text before indexing. For example, in English "the" and "and".
|
||||
ascii_folding : bool, default False
|
||||
Whether to fold ASCII characters. This converts accented characters to
|
||||
their ASCII equivalent. For example, "café" would be converted to "cafe".
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
with_position: bool = True,
|
||||
base_tokenizer: str = "simple",
|
||||
language: str = "English",
|
||||
max_token_length: Optional[int] = 40,
|
||||
lower_case: bool = True,
|
||||
stem: bool = False,
|
||||
remove_stop_words: bool = False,
|
||||
ascii_folding: bool = False,
|
||||
):
|
||||
self._inner = LanceDbIndex.fts(
|
||||
with_position=with_position,
|
||||
base_tokenizer=base_tokenizer,
|
||||
language=language,
|
||||
max_token_length=max_token_length,
|
||||
lower_case=lower_case,
|
||||
stem=stem,
|
||||
remove_stop_words=remove_stop_words,
|
||||
ascii_folding=ascii_folding,
|
||||
)
|
||||
with_position: bool = True
|
||||
base_tokenizer: Literal["simple", "raw", "whitespace"] = "simple"
|
||||
language: str = "English"
|
||||
max_token_length: Optional[int] = 40
|
||||
lower_case: bool = True
|
||||
stem: bool = False
|
||||
remove_stop_words: bool = False
|
||||
ascii_folding: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class HnswPq:
|
||||
"""Describe a HNSW-PQ index configuration.
|
||||
|
||||
@@ -232,30 +247,17 @@ class HnswPq:
|
||||
search phase.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
distance_type: Optional[str] = None,
|
||||
num_partitions: Optional[int] = None,
|
||||
num_sub_vectors: Optional[int] = None,
|
||||
num_bits: Optional[int] = None,
|
||||
max_iterations: Optional[int] = None,
|
||||
sample_rate: Optional[int] = None,
|
||||
m: Optional[int] = None,
|
||||
ef_construction: Optional[int] = None,
|
||||
):
|
||||
self._inner = LanceDbIndex.hnsw_pq(
|
||||
distance_type=distance_type,
|
||||
num_partitions=num_partitions,
|
||||
num_sub_vectors=num_sub_vectors,
|
||||
num_bits=num_bits,
|
||||
max_iterations=max_iterations,
|
||||
sample_rate=sample_rate,
|
||||
m=m,
|
||||
ef_construction=ef_construction,
|
||||
)
|
||||
distance_type: Literal["l2", "cosine", "dot"] = "l2"
|
||||
num_partitions: Optional[int] = None
|
||||
num_sub_vectors: Optional[int] = None
|
||||
num_bits: int = 8
|
||||
max_iterations: int = 50
|
||||
sample_rate: int = 256
|
||||
m: int = 20
|
||||
ef_construction: int = 300
|
||||
|
||||
|
||||
@dataclass
|
||||
class HnswSq:
|
||||
"""Describe a HNSW-SQ index configuration.
|
||||
|
||||
@@ -345,26 +347,15 @@ class HnswSq:
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
distance_type: Optional[str] = None,
|
||||
num_partitions: Optional[int] = None,
|
||||
max_iterations: Optional[int] = None,
|
||||
sample_rate: Optional[int] = None,
|
||||
m: Optional[int] = None,
|
||||
ef_construction: Optional[int] = None,
|
||||
):
|
||||
self._inner = LanceDbIndex.hnsw_sq(
|
||||
distance_type=distance_type,
|
||||
num_partitions=num_partitions,
|
||||
max_iterations=max_iterations,
|
||||
sample_rate=sample_rate,
|
||||
m=m,
|
||||
ef_construction=ef_construction,
|
||||
)
|
||||
distance_type: Literal["l2", "cosine", "dot"] = "l2"
|
||||
num_partitions: Optional[int] = None
|
||||
max_iterations: int = 50
|
||||
sample_rate: int = 256
|
||||
m: int = 20
|
||||
ef_construction: int = 300
|
||||
|
||||
|
||||
@dataclass
|
||||
class IvfPq:
|
||||
"""Describes an IVF PQ Index
|
||||
|
||||
@@ -387,120 +378,103 @@ class IvfPq:
|
||||
|
||||
Note that training an IVF PQ index on a large dataset is a slow operation and
|
||||
currently is also a memory intensive operation.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
distance_type: str, default "L2"
|
||||
The distance metric used to train the index
|
||||
|
||||
This is used when training the index to calculate the IVF partitions
|
||||
(vectors are grouped in partitions with similar vectors according to this
|
||||
distance type) and to calculate a subvector's code during quantization.
|
||||
|
||||
The distance type used to train an index MUST match the distance type used
|
||||
to search the index. Failure to do so will yield inaccurate results.
|
||||
|
||||
The following distance types are available:
|
||||
|
||||
"l2" - Euclidean distance. This is a very common distance metric that
|
||||
accounts for both magnitude and direction when determining the distance
|
||||
between vectors. L2 distance has a range of [0, ∞).
|
||||
|
||||
"cosine" - Cosine distance. Cosine distance is a distance metric
|
||||
calculated from the cosine similarity between two vectors. Cosine
|
||||
similarity is a measure of similarity between two non-zero vectors of an
|
||||
inner product space. It is defined to equal the cosine of the angle
|
||||
between them. Unlike L2, the cosine distance is not affected by the
|
||||
magnitude of the vectors. Cosine distance has a range of [0, 2].
|
||||
|
||||
Note: the cosine distance is undefined when one (or both) of the vectors
|
||||
are all zeros (there is no direction). These vectors are invalid and may
|
||||
never be returned from a vector search.
|
||||
|
||||
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
|
||||
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
|
||||
L2 norm is 1), then dot distance is equivalent to the cosine distance.
|
||||
num_partitions: int, default sqrt(num_rows)
|
||||
The number of IVF partitions to create.
|
||||
|
||||
This value should generally scale with the number of rows in the dataset.
|
||||
By default the number of partitions is the square root of the number of
|
||||
rows.
|
||||
|
||||
If this value is too large then the first part of the search (picking the
|
||||
right partition) will be slow. If this value is too small then the second
|
||||
part of the search (searching within a partition) will be slow.
|
||||
num_sub_vectors: int, default is vector dimension / 16
|
||||
Number of sub-vectors of PQ.
|
||||
|
||||
This value controls how much the vector is compressed during the
|
||||
quantization step. The more sub vectors there are the less the vector is
|
||||
compressed. The default is the dimension of the vector divided by 16. If
|
||||
the dimension is not evenly divisible by 16 we use the dimension divded by
|
||||
8.
|
||||
|
||||
The above two cases are highly preferred. Having 8 or 16 values per
|
||||
subvector allows us to use efficient SIMD instructions.
|
||||
|
||||
If the dimension is not visible by 8 then we use 1 subvector. This is not
|
||||
ideal and will likely result in poor performance.
|
||||
num_bits: int, default 8
|
||||
Number of bits to encode each sub-vector.
|
||||
|
||||
This value controls how much the sub-vectors are compressed. The more bits
|
||||
the more accurate the index but the slower search. The default is 8
|
||||
bits. Only 4 and 8 are supported.
|
||||
max_iterations: int, default 50
|
||||
Max iteration to train kmeans.
|
||||
|
||||
When training an IVF PQ index we use kmeans to calculate the partitions.
|
||||
This parameter controls how many iterations of kmeans to run.
|
||||
|
||||
Increasing this might improve the quality of the index but in most cases
|
||||
these extra iterations have diminishing returns.
|
||||
|
||||
The default value is 50.
|
||||
sample_rate: int, default 256
|
||||
The rate used to calculate the number of training vectors for kmeans.
|
||||
|
||||
When an IVF PQ index is trained, we need to calculate partitions. These
|
||||
are groups of vectors that are similar to each other. To do this we use an
|
||||
algorithm called kmeans.
|
||||
|
||||
Running kmeans on a large dataset can be slow. To speed this up we run
|
||||
kmeans on a random sample of the data. This parameter controls the size of
|
||||
the sample. The total number of vectors used to train the index is
|
||||
`sample_rate * num_partitions`.
|
||||
|
||||
Increasing this value might improve the quality of the index but in most
|
||||
cases the default should be sufficient.
|
||||
|
||||
The default value is 256.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
distance_type: Optional[str] = None,
|
||||
num_partitions: Optional[int] = None,
|
||||
num_sub_vectors: Optional[int] = None,
|
||||
num_bits: Optional[int] = None,
|
||||
max_iterations: Optional[int] = None,
|
||||
sample_rate: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
Create an IVF PQ index config
|
||||
|
||||
Parameters
|
||||
----------
|
||||
distance_type: str, default "L2"
|
||||
The distance metric used to train the index
|
||||
|
||||
This is used when training the index to calculate the IVF partitions
|
||||
(vectors are grouped in partitions with similar vectors according to this
|
||||
distance type) and to calculate a subvector's code during quantization.
|
||||
|
||||
The distance type used to train an index MUST match the distance type used
|
||||
to search the index. Failure to do so will yield inaccurate results.
|
||||
|
||||
The following distance types are available:
|
||||
|
||||
"l2" - Euclidean distance. This is a very common distance metric that
|
||||
accounts for both magnitude and direction when determining the distance
|
||||
between vectors. L2 distance has a range of [0, ∞).
|
||||
|
||||
"cosine" - Cosine distance. Cosine distance is a distance metric
|
||||
calculated from the cosine similarity between two vectors. Cosine
|
||||
similarity is a measure of similarity between two non-zero vectors of an
|
||||
inner product space. It is defined to equal the cosine of the angle
|
||||
between them. Unlike L2, the cosine distance is not affected by the
|
||||
magnitude of the vectors. Cosine distance has a range of [0, 2].
|
||||
|
||||
Note: the cosine distance is undefined when one (or both) of the vectors
|
||||
are all zeros (there is no direction). These vectors are invalid and may
|
||||
never be returned from a vector search.
|
||||
|
||||
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
|
||||
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
|
||||
L2 norm is 1), then dot distance is equivalent to the cosine distance.
|
||||
num_partitions: int, default sqrt(num_rows)
|
||||
The number of IVF partitions to create.
|
||||
|
||||
This value should generally scale with the number of rows in the dataset.
|
||||
By default the number of partitions is the square root of the number of
|
||||
rows.
|
||||
|
||||
If this value is too large then the first part of the search (picking the
|
||||
right partition) will be slow. If this value is too small then the second
|
||||
part of the search (searching within a partition) will be slow.
|
||||
num_sub_vectors: int, default is vector dimension / 16
|
||||
Number of sub-vectors of PQ.
|
||||
|
||||
This value controls how much the vector is compressed during the
|
||||
quantization step. The more sub vectors there are the less the vector is
|
||||
compressed. The default is the dimension of the vector divided by 16. If
|
||||
the dimension is not evenly divisible by 16 we use the dimension divded by
|
||||
8.
|
||||
|
||||
The above two cases are highly preferred. Having 8 or 16 values per
|
||||
subvector allows us to use efficient SIMD instructions.
|
||||
|
||||
If the dimension is not visible by 8 then we use 1 subvector. This is not
|
||||
ideal and will likely result in poor performance.
|
||||
num_bits: int, default 8
|
||||
Number of bits to encode each sub-vector.
|
||||
|
||||
This value controls how much the sub-vectors are compressed. The more bits
|
||||
the more accurate the index but the slower search. The default is 8
|
||||
bits. Only 4 and 8 are supported.
|
||||
max_iterations: int, default 50
|
||||
Max iteration to train kmeans.
|
||||
|
||||
When training an IVF PQ index we use kmeans to calculate the partitions.
|
||||
This parameter controls how many iterations of kmeans to run.
|
||||
|
||||
Increasing this might improve the quality of the index but in most cases
|
||||
these extra iterations have diminishing returns.
|
||||
|
||||
The default value is 50.
|
||||
sample_rate: int, default 256
|
||||
The rate used to calculate the number of training vectors for kmeans.
|
||||
|
||||
When an IVF PQ index is trained, we need to calculate partitions. These
|
||||
are groups of vectors that are similar to each other. To do this we use an
|
||||
algorithm called kmeans.
|
||||
|
||||
Running kmeans on a large dataset can be slow. To speed this up we run
|
||||
kmeans on a random sample of the data. This parameter controls the size of
|
||||
the sample. The total number of vectors used to train the index is
|
||||
`sample_rate * num_partitions`.
|
||||
|
||||
Increasing this value might improve the quality of the index but in most
|
||||
cases the default should be sufficient.
|
||||
|
||||
The default value is 256.
|
||||
"""
|
||||
if distance_type is not None:
|
||||
distance_type = distance_type.lower()
|
||||
self._inner = LanceDbIndex.ivf_pq(
|
||||
distance_type=distance_type,
|
||||
num_partitions=num_partitions,
|
||||
num_sub_vectors=num_sub_vectors,
|
||||
num_bits=num_bits,
|
||||
max_iterations=max_iterations,
|
||||
sample_rate=sample_rate,
|
||||
)
|
||||
distance_type: Literal["l2", "cosine", "dot"] = "l2"
|
||||
num_partitions: Optional[int] = None
|
||||
num_sub_vectors: Optional[int] = None
|
||||
num_bits: int = 8
|
||||
max_iterations: int = 50
|
||||
sample_rate: int = 256
|
||||
|
||||
|
||||
__all__ = ["BTree", "IvfPq", "IndexConfig"]
|
||||
__all__ = ["BTree", "IvfPq", "HnswPq", "HnswSq", "IndexConfig"]
|
||||
|
||||
@@ -121,7 +121,13 @@ class RemoteDBConnection(DBConnection):
|
||||
return LOOP.run(self._conn.table_names(start_after=page_token, limit=limit))
|
||||
|
||||
@override
|
||||
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
|
||||
def open_table(
|
||||
self,
|
||||
name: str,
|
||||
*,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
index_cache_size: Optional[int] = None,
|
||||
) -> Table:
|
||||
"""Open a Lance Table in the database.
|
||||
|
||||
Parameters
|
||||
|
||||
@@ -16,6 +16,8 @@ import logging
|
||||
from functools import cached_property
|
||||
from typing import Dict, Iterable, List, Optional, Union, Literal
|
||||
|
||||
from lancedb._lancedb import IndexConfig
|
||||
from lancedb.embeddings.base import EmbeddingFunctionConfig
|
||||
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfPq, LabelList
|
||||
from lancedb.remote.db import LOOP
|
||||
import pyarrow as pa
|
||||
@@ -25,7 +27,7 @@ from lancedb.merge import LanceMergeInsertBuilder
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
|
||||
from ..query import LanceVectorQueryBuilder, LanceQueryBuilder
|
||||
from ..table import AsyncTable, Query, Table
|
||||
from ..table import AsyncTable, IndexStatistics, Query, Table
|
||||
|
||||
|
||||
class RemoteTable(Table):
|
||||
@@ -62,7 +64,7 @@ class RemoteTable(Table):
|
||||
return LOOP.run(self._table.version())
|
||||
|
||||
@cached_property
|
||||
def embedding_functions(self) -> dict:
|
||||
def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]:
|
||||
"""
|
||||
Get the embedding functions for the table
|
||||
|
||||
@@ -94,11 +96,11 @@ class RemoteTable(Table):
|
||||
def checkout_latest(self):
|
||||
return LOOP.run(self._table.checkout_latest())
|
||||
|
||||
def list_indices(self):
|
||||
def list_indices(self) -> Iterable[IndexConfig]:
|
||||
"""List all the indices on the table"""
|
||||
return LOOP.run(self._table.list_indices())
|
||||
|
||||
def index_stats(self, index_uuid: str):
|
||||
def index_stats(self, index_uuid: str) -> Optional[IndexStatistics]:
|
||||
"""List all the stats of a specified index"""
|
||||
return LOOP.run(self._table.index_stats(index_uuid))
|
||||
|
||||
@@ -515,6 +517,16 @@ class RemoteTable(Table):
|
||||
def drop_columns(self, columns: Iterable[str]):
|
||||
return LOOP.run(self._table.drop_columns(columns))
|
||||
|
||||
def uses_v2_manifest_paths(self) -> bool:
|
||||
raise NotImplementedError(
|
||||
"uses_v2_manifest_paths() is not supported on the LanceDB Cloud"
|
||||
)
|
||||
|
||||
def migrate_v2_manifest_paths(self):
|
||||
raise NotImplementedError(
|
||||
"migrate_v2_manifest_paths() is not supported on the LanceDB Cloud"
|
||||
)
|
||||
|
||||
|
||||
def add_index(tbl: pa.Table, i: int) -> pa.Table:
|
||||
return tbl.add_column(
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -314,3 +314,15 @@ def deprecated(func):
|
||||
def validate_table_name(name: str):
|
||||
"""Verify the table name is valid."""
|
||||
native_validate_table_name(name)
|
||||
|
||||
|
||||
def add_note(base_exception: BaseException, note: str):
|
||||
if hasattr(base_exception, "add_note"):
|
||||
base_exception.add_note(note)
|
||||
elif isinstance(base_exception.args[0], str):
|
||||
base_exception.args = (
|
||||
base_exception.args[0] + "\n" + note,
|
||||
*base_exception.args[1:],
|
||||
)
|
||||
else:
|
||||
raise ValueError("Cannot add note to exception")
|
||||
|
||||
32
python/python/tests/conftest.py
Normal file
32
python/python/tests/conftest.py
Normal file
@@ -0,0 +1,32 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
from datetime import timedelta
|
||||
from lancedb.db import AsyncConnection, DBConnection
|
||||
import lancedb
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
|
||||
# Use an in-memory database for most tests.
|
||||
@pytest.fixture
|
||||
def mem_db() -> DBConnection:
|
||||
return lancedb.connect("memory://")
|
||||
|
||||
|
||||
# Use a temporary directory when we need to inspect the database files.
|
||||
@pytest.fixture
|
||||
def tmp_db(tmp_path) -> DBConnection:
|
||||
return lancedb.connect(tmp_path)
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def mem_db_async() -> AsyncConnection:
|
||||
return await lancedb.connect_async("memory://")
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def tmp_db_async(tmp_path) -> AsyncConnection:
|
||||
return await lancedb.connect_async(
|
||||
tmp_path, read_consistency_interval=timedelta(seconds=0)
|
||||
)
|
||||
@@ -98,7 +98,7 @@ def test_ingest_pd(tmp_path):
|
||||
assert db.open_table("test").name == db["test"].name
|
||||
|
||||
|
||||
def test_ingest_iterator(tmp_path):
|
||||
def test_ingest_iterator(mem_db: lancedb.DBConnection):
|
||||
class PydanticSchema(LanceModel):
|
||||
vector: Vector(2)
|
||||
item: str
|
||||
@@ -156,8 +156,7 @@ def test_ingest_iterator(tmp_path):
|
||||
]
|
||||
|
||||
def run_tests(schema):
|
||||
db = lancedb.connect(tmp_path)
|
||||
tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite")
|
||||
tbl = mem_db.create_table("table2", make_batches(), schema=schema)
|
||||
tbl.to_pandas()
|
||||
assert tbl.search([3.1, 4.1]).limit(1).to_pandas()["_distance"][0] == 0.0
|
||||
assert tbl.search([5.9, 26.5]).limit(1).to_pandas()["_distance"][0] == 0.0
|
||||
@@ -165,15 +164,14 @@ def test_ingest_iterator(tmp_path):
|
||||
tbl.add(make_batches())
|
||||
assert tbl_len == 50
|
||||
assert len(tbl) == tbl_len * 2
|
||||
assert len(tbl.list_versions()) == 3
|
||||
db.drop_database()
|
||||
assert len(tbl.list_versions()) == 2
|
||||
mem_db.drop_database()
|
||||
|
||||
run_tests(arrow_schema)
|
||||
run_tests(PydanticSchema)
|
||||
|
||||
|
||||
def test_table_names(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
def test_table_names(tmp_db: lancedb.DBConnection):
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
@@ -181,10 +179,10 @@ def test_table_names(tmp_path):
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
db.create_table("test2", data=data)
|
||||
db.create_table("test1", data=data)
|
||||
db.create_table("test3", data=data)
|
||||
assert db.table_names() == ["test1", "test2", "test3"]
|
||||
tmp_db.create_table("test2", data=data)
|
||||
tmp_db.create_table("test1", data=data)
|
||||
tmp_db.create_table("test3", data=data)
|
||||
assert tmp_db.table_names() == ["test1", "test2", "test3"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -209,8 +207,7 @@ async def test_table_names_async(tmp_path):
|
||||
assert await db.table_names(start_after="test1") == ["test2", "test3"]
|
||||
|
||||
|
||||
def test_create_mode(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
def test_create_mode(tmp_db: lancedb.DBConnection):
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
@@ -218,10 +215,10 @@ def test_create_mode(tmp_path):
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
db.create_table("test", data=data)
|
||||
tmp_db.create_table("test", data=data)
|
||||
|
||||
with pytest.raises(Exception):
|
||||
db.create_table("test", data=data)
|
||||
tmp_db.create_table("test", data=data)
|
||||
|
||||
new_data = pd.DataFrame(
|
||||
{
|
||||
@@ -230,13 +227,11 @@ def test_create_mode(tmp_path):
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
tbl = db.create_table("test", data=new_data, mode="overwrite")
|
||||
tbl = tmp_db.create_table("test", data=new_data, mode="overwrite")
|
||||
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
|
||||
|
||||
|
||||
def test_create_table_from_iterator(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
|
||||
def test_create_table_from_iterator(mem_db: lancedb.DBConnection):
|
||||
def gen_data():
|
||||
for _ in range(10):
|
||||
yield pa.RecordBatch.from_arrays(
|
||||
@@ -248,14 +243,12 @@ def test_create_table_from_iterator(tmp_path):
|
||||
["vector", "item", "price"],
|
||||
)
|
||||
|
||||
table = db.create_table("test", data=gen_data())
|
||||
table = mem_db.create_table("test", data=gen_data())
|
||||
assert table.count_rows() == 10
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_table_from_iterator_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
|
||||
async def test_create_table_from_iterator_async(mem_db_async: lancedb.AsyncConnection):
|
||||
def gen_data():
|
||||
for _ in range(10):
|
||||
yield pa.RecordBatch.from_arrays(
|
||||
@@ -267,12 +260,11 @@ async def test_create_table_from_iterator_async(tmp_path):
|
||||
["vector", "item", "price"],
|
||||
)
|
||||
|
||||
table = await db.create_table("test", data=gen_data())
|
||||
table = await mem_db_async.create_table("test", data=gen_data())
|
||||
assert await table.count_rows() == 10
|
||||
|
||||
|
||||
def test_create_exist_ok(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
def test_create_exist_ok(tmp_db: lancedb.DBConnection):
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
@@ -280,13 +272,13 @@ def test_create_exist_ok(tmp_path):
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
tbl = db.create_table("test", data=data)
|
||||
tbl = tmp_db.create_table("test", data=data)
|
||||
|
||||
with pytest.raises(OSError):
|
||||
db.create_table("test", data=data)
|
||||
with pytest.raises(ValueError):
|
||||
tmp_db.create_table("test", data=data)
|
||||
|
||||
# open the table but don't add more rows
|
||||
tbl2 = db.create_table("test", data=data, exist_ok=True)
|
||||
tbl2 = tmp_db.create_table("test", data=data, exist_ok=True)
|
||||
assert tbl.name == tbl2.name
|
||||
assert tbl.schema == tbl2.schema
|
||||
assert len(tbl) == len(tbl2)
|
||||
@@ -298,7 +290,7 @@ def test_create_exist_ok(tmp_path):
|
||||
pa.field("price", pa.float64()),
|
||||
]
|
||||
)
|
||||
tbl3 = db.create_table("test", schema=schema, exist_ok=True)
|
||||
tbl3 = tmp_db.create_table("test", schema=schema, exist_ok=True)
|
||||
assert tbl3.schema == schema
|
||||
|
||||
bad_schema = pa.schema(
|
||||
@@ -310,7 +302,7 @@ def test_create_exist_ok(tmp_path):
|
||||
]
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
db.create_table("test", schema=bad_schema, exist_ok=True)
|
||||
tmp_db.create_table("test", schema=bad_schema, exist_ok=True)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -325,26 +317,24 @@ async def test_connect(tmp_path):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_close(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
assert db.is_open()
|
||||
db.close()
|
||||
assert not db.is_open()
|
||||
async def test_close(mem_db_async: lancedb.AsyncConnection):
|
||||
assert mem_db_async.is_open()
|
||||
mem_db_async.close()
|
||||
assert not mem_db_async.is_open()
|
||||
|
||||
with pytest.raises(RuntimeError, match="is closed"):
|
||||
await db.table_names()
|
||||
await mem_db_async.table_names()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_context_manager(tmp_path):
|
||||
with await lancedb.connect_async(tmp_path) as db:
|
||||
async def test_context_manager():
|
||||
with await lancedb.connect_async("memory://") as db:
|
||||
assert db.is_open()
|
||||
assert not db.is_open()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mode_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
async def test_create_mode_async(tmp_db_async: lancedb.AsyncConnection):
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
@@ -352,10 +342,10 @@ async def test_create_mode_async(tmp_path):
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
await db.create_table("test", data=data)
|
||||
await tmp_db_async.create_table("test", data=data)
|
||||
|
||||
with pytest.raises(ValueError, match="already exists"):
|
||||
await db.create_table("test", data=data)
|
||||
await tmp_db_async.create_table("test", data=data)
|
||||
|
||||
new_data = pd.DataFrame(
|
||||
{
|
||||
@@ -364,15 +354,14 @@ async def test_create_mode_async(tmp_path):
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
_tbl = await db.create_table("test", data=new_data, mode="overwrite")
|
||||
_tbl = await tmp_db_async.create_table("test", data=new_data, mode="overwrite")
|
||||
|
||||
# MIGRATION: to_pandas() is not available in async
|
||||
# assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_exist_ok_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
async def test_create_exist_ok_async(tmp_db_async: lancedb.AsyncConnection):
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
@@ -380,13 +369,13 @@ async def test_create_exist_ok_async(tmp_path):
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
tbl = await db.create_table("test", data=data)
|
||||
tbl = await tmp_db_async.create_table("test", data=data)
|
||||
|
||||
with pytest.raises(ValueError, match="already exists"):
|
||||
await db.create_table("test", data=data)
|
||||
await tmp_db_async.create_table("test", data=data)
|
||||
|
||||
# open the table but don't add more rows
|
||||
tbl2 = await db.create_table("test", data=data, exist_ok=True)
|
||||
tbl2 = await tmp_db_async.create_table("test", data=data, exist_ok=True)
|
||||
assert tbl.name == tbl2.name
|
||||
assert await tbl.schema() == await tbl2.schema()
|
||||
|
||||
@@ -397,7 +386,7 @@ async def test_create_exist_ok_async(tmp_path):
|
||||
pa.field("price", pa.float64()),
|
||||
]
|
||||
)
|
||||
tbl3 = await db.create_table("test", schema=schema, exist_ok=True)
|
||||
tbl3 = await tmp_db_async.create_table("test", schema=schema, exist_ok=True)
|
||||
assert await tbl3.schema() == schema
|
||||
|
||||
# Migration: When creating a table, but the table already exists, but
|
||||
@@ -448,13 +437,12 @@ async def test_create_table_v2_manifest_paths_async(tmp_path):
|
||||
assert re.match(r"\d{20}\.manifest", manifest)
|
||||
|
||||
|
||||
def test_open_table_sync(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
db.create_table("test", data=[{"id": 0}])
|
||||
assert db.open_table("test").count_rows() == 1
|
||||
assert db.open_table("test", index_cache_size=0).count_rows() == 1
|
||||
with pytest.raises(FileNotFoundError, match="does not exist"):
|
||||
db.open_table("does_not_exist")
|
||||
def test_open_table_sync(tmp_db: lancedb.DBConnection):
|
||||
tmp_db.create_table("test", data=[{"id": 0}])
|
||||
assert tmp_db.open_table("test").count_rows() == 1
|
||||
assert tmp_db.open_table("test", index_cache_size=0).count_rows() == 1
|
||||
with pytest.raises(ValueError, match="Table 'does_not_exist' was not found"):
|
||||
tmp_db.open_table("does_not_exist")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -494,8 +482,7 @@ async def test_open_table(tmp_path):
|
||||
await db.open_table("does_not_exist")
|
||||
|
||||
|
||||
def test_delete_table(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
def test_delete_table(tmp_db: lancedb.DBConnection):
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
@@ -503,26 +490,25 @@ def test_delete_table(tmp_path):
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
db.create_table("test", data=data)
|
||||
tmp_db.create_table("test", data=data)
|
||||
|
||||
with pytest.raises(Exception):
|
||||
db.create_table("test", data=data)
|
||||
tmp_db.create_table("test", data=data)
|
||||
|
||||
assert db.table_names() == ["test"]
|
||||
assert tmp_db.table_names() == ["test"]
|
||||
|
||||
db.drop_table("test")
|
||||
assert db.table_names() == []
|
||||
tmp_db.drop_table("test")
|
||||
assert tmp_db.table_names() == []
|
||||
|
||||
db.create_table("test", data=data)
|
||||
assert db.table_names() == ["test"]
|
||||
tmp_db.create_table("test", data=data)
|
||||
assert tmp_db.table_names() == ["test"]
|
||||
|
||||
# dropping a table that does not exist should pass
|
||||
# if ignore_missing=True
|
||||
db.drop_table("does_not_exist", ignore_missing=True)
|
||||
tmp_db.drop_table("does_not_exist", ignore_missing=True)
|
||||
|
||||
|
||||
def test_drop_database(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
def test_drop_database(tmp_db: lancedb.DBConnection):
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
@@ -537,51 +523,50 @@ def test_drop_database(tmp_path):
|
||||
"price": [12.0, 17.0],
|
||||
}
|
||||
)
|
||||
db.create_table("test", data=data)
|
||||
tmp_db.create_table("test", data=data)
|
||||
with pytest.raises(Exception):
|
||||
db.create_table("test", data=data)
|
||||
tmp_db.create_table("test", data=data)
|
||||
|
||||
assert db.table_names() == ["test"]
|
||||
assert tmp_db.table_names() == ["test"]
|
||||
|
||||
db.create_table("new_test", data=new_data)
|
||||
db.drop_database()
|
||||
assert db.table_names() == []
|
||||
tmp_db.create_table("new_test", data=new_data)
|
||||
tmp_db.drop_database()
|
||||
assert tmp_db.table_names() == []
|
||||
|
||||
# it should pass when no tables are present
|
||||
db.create_table("test", data=new_data)
|
||||
db.drop_table("test")
|
||||
assert db.table_names() == []
|
||||
db.drop_database()
|
||||
assert db.table_names() == []
|
||||
tmp_db.create_table("test", data=new_data)
|
||||
tmp_db.drop_table("test")
|
||||
assert tmp_db.table_names() == []
|
||||
tmp_db.drop_database()
|
||||
assert tmp_db.table_names() == []
|
||||
|
||||
# creating an empty database with schema
|
||||
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
|
||||
db.create_table("empty_table", schema=schema)
|
||||
tmp_db.create_table("empty_table", schema=schema)
|
||||
# dropping a empty database should pass
|
||||
db.drop_database()
|
||||
assert db.table_names() == []
|
||||
tmp_db.drop_database()
|
||||
assert tmp_db.table_names() == []
|
||||
|
||||
|
||||
def test_empty_or_nonexistent_table(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
def test_empty_or_nonexistent_table(mem_db: lancedb.DBConnection):
|
||||
with pytest.raises(Exception):
|
||||
db.create_table("test_with_no_data")
|
||||
mem_db.create_table("test_with_no_data")
|
||||
|
||||
with pytest.raises(Exception):
|
||||
db.open_table("does_not_exist")
|
||||
mem_db.open_table("does_not_exist")
|
||||
|
||||
schema = pa.schema([pa.field("a", pa.int64(), nullable=False)])
|
||||
test = db.create_table("test", schema=schema)
|
||||
test = mem_db.create_table("test", schema=schema)
|
||||
|
||||
class TestModel(LanceModel):
|
||||
a: int
|
||||
|
||||
test2 = db.create_table("test2", schema=TestModel)
|
||||
test2 = mem_db.create_table("test2", schema=TestModel)
|
||||
assert test.schema == test2.schema
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_in_v2_mode(tmp_path):
|
||||
async def test_create_in_v2_mode(mem_db_async: lancedb.AsyncConnection):
|
||||
def make_data():
|
||||
for i in range(10):
|
||||
yield pa.record_batch([pa.array([x for x in range(1024)])], names=["x"])
|
||||
@@ -591,10 +576,8 @@ async def test_create_in_v2_mode(tmp_path):
|
||||
|
||||
schema = pa.schema([pa.field("x", pa.int64())])
|
||||
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
|
||||
# Create table in v1 mode
|
||||
tbl = await db.create_table(
|
||||
tbl = await mem_db_async.create_table(
|
||||
"test", data=make_data(), schema=schema, data_storage_version="legacy"
|
||||
)
|
||||
|
||||
@@ -610,7 +593,7 @@ async def test_create_in_v2_mode(tmp_path):
|
||||
assert not await is_in_v2_mode(tbl)
|
||||
|
||||
# Create table in v2 mode
|
||||
tbl = await db.create_table(
|
||||
tbl = await mem_db_async.create_table(
|
||||
"test_v2", data=make_data(), schema=schema, use_legacy_format=False
|
||||
)
|
||||
|
||||
@@ -622,7 +605,7 @@ async def test_create_in_v2_mode(tmp_path):
|
||||
assert await is_in_v2_mode(tbl)
|
||||
|
||||
# Create empty table in v2 mode and add data
|
||||
tbl = await db.create_table(
|
||||
tbl = await mem_db_async.create_table(
|
||||
"test_empty_v2", data=None, schema=schema, use_legacy_format=False
|
||||
)
|
||||
await tbl.add(make_table())
|
||||
@@ -630,7 +613,7 @@ async def test_create_in_v2_mode(tmp_path):
|
||||
assert await is_in_v2_mode(tbl)
|
||||
|
||||
# Create empty table uses v1 mode by default
|
||||
tbl = await db.create_table(
|
||||
tbl = await mem_db_async.create_table(
|
||||
"test_empty_v2_default", data=None, schema=schema, data_storage_version="legacy"
|
||||
)
|
||||
await tbl.add(make_table())
|
||||
@@ -638,18 +621,17 @@ async def test_create_in_v2_mode(tmp_path):
|
||||
assert not await is_in_v2_mode(tbl)
|
||||
|
||||
|
||||
def test_replace_index(tmp_path):
|
||||
db = lancedb.connect(uri=tmp_path)
|
||||
table = db.create_table(
|
||||
def test_replace_index(mem_db: lancedb.DBConnection):
|
||||
table = mem_db.create_table(
|
||||
"test",
|
||||
[
|
||||
{"vector": np.random.rand(128), "item": "foo", "price": float(i)}
|
||||
for i in range(1000)
|
||||
{"vector": np.random.rand(32), "item": "foo", "price": float(i)}
|
||||
for i in range(512)
|
||||
],
|
||||
)
|
||||
table.create_index(
|
||||
num_partitions=2,
|
||||
num_sub_vectors=4,
|
||||
num_sub_vectors=2,
|
||||
)
|
||||
|
||||
with pytest.raises(Exception):
|
||||
@@ -660,27 +642,26 @@ def test_replace_index(tmp_path):
|
||||
)
|
||||
|
||||
table.create_index(
|
||||
num_partitions=2,
|
||||
num_sub_vectors=4,
|
||||
num_partitions=1,
|
||||
num_sub_vectors=2,
|
||||
replace=True,
|
||||
index_cache_size=10,
|
||||
)
|
||||
|
||||
|
||||
def test_prefilter_with_index(tmp_path):
|
||||
db = lancedb.connect(uri=tmp_path)
|
||||
def test_prefilter_with_index(mem_db: lancedb.DBConnection):
|
||||
data = [
|
||||
{"vector": np.random.rand(128), "item": "foo", "price": float(i)}
|
||||
for i in range(1000)
|
||||
{"vector": np.random.rand(32), "item": "foo", "price": float(i)}
|
||||
for i in range(512)
|
||||
]
|
||||
sample_key = data[100]["vector"]
|
||||
table = db.create_table(
|
||||
table = mem_db.create_table(
|
||||
"test",
|
||||
data,
|
||||
)
|
||||
table.create_index(
|
||||
num_partitions=2,
|
||||
num_sub_vectors=4,
|
||||
num_sub_vectors=2,
|
||||
)
|
||||
table = (
|
||||
table.search(sample_key)
|
||||
@@ -691,13 +672,12 @@ def test_prefilter_with_index(tmp_path):
|
||||
assert table.num_rows == 1
|
||||
|
||||
|
||||
def test_create_table_with_invalid_names(tmp_path):
|
||||
db = lancedb.connect(uri=tmp_path)
|
||||
def test_create_table_with_invalid_names(tmp_db: lancedb.DBConnection):
|
||||
data = [{"vector": np.random.rand(128), "item": "foo"} for i in range(10)]
|
||||
with pytest.raises(ValueError):
|
||||
db.create_table("foo/bar", data)
|
||||
tmp_db.create_table("foo/bar", data)
|
||||
with pytest.raises(ValueError):
|
||||
db.create_table("foo bar", data)
|
||||
tmp_db.create_table("foo bar", data)
|
||||
with pytest.raises(ValueError):
|
||||
db.create_table("foo$$bar", data)
|
||||
db.create_table("foo.bar", data)
|
||||
tmp_db.create_table("foo$$bar", data)
|
||||
tmp_db.create_table("foo.bar", data)
|
||||
|
||||
@@ -15,10 +15,12 @@ import random
|
||||
from unittest import mock
|
||||
|
||||
import lancedb as ldb
|
||||
from lancedb.db import DBConnection
|
||||
from lancedb.index import FTS
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from utils import exception_output
|
||||
|
||||
pytest.importorskip("lancedb.fts")
|
||||
tantivy = pytest.importorskip("tantivy")
|
||||
@@ -458,3 +460,44 @@ def test_syntax(table):
|
||||
table.search('the cats OR dogs were not really "pets" at all').phrase_query().limit(
|
||||
10
|
||||
).to_list()
|
||||
|
||||
|
||||
def test_language(mem_db: DBConnection):
|
||||
sentences = [
|
||||
"Il n'y a que trois routes qui traversent la ville.",
|
||||
"Je veux prendre la route vers l'est.",
|
||||
"Je te retrouve au café au bout de la route.",
|
||||
]
|
||||
data = [{"text": s} for s in sentences]
|
||||
table = mem_db.create_table("test", data=data)
|
||||
|
||||
with pytest.raises(ValueError) as e:
|
||||
table.create_fts_index("text", use_tantivy=False, language="klingon")
|
||||
|
||||
assert exception_output(e) == (
|
||||
"ValueError: LanceDB does not support the requested language: 'klingon'\n"
|
||||
"Supported languages: Arabic, Danish, Dutch, English, Finnish, French, "
|
||||
"German, Greek, Hungarian, Italian, Norwegian, Portuguese, Romanian, "
|
||||
"Russian, Spanish, Swedish, Tamil, Turkish"
|
||||
)
|
||||
|
||||
table.create_fts_index(
|
||||
"text",
|
||||
use_tantivy=False,
|
||||
language="French",
|
||||
stem=True,
|
||||
ascii_folding=True,
|
||||
remove_stop_words=True,
|
||||
)
|
||||
|
||||
# Can get "routes" and "route" from the same root
|
||||
results = table.search("route", query_type="fts").limit(5).to_list()
|
||||
assert len(results) == 3
|
||||
|
||||
# Can find "café", without needing to provide accent
|
||||
results = table.search("cafe", query_type="fts").limit(5).to_list()
|
||||
assert len(results) == 1
|
||||
|
||||
# Stop words -> no results
|
||||
results = table.search("la", query_type="fts").limit(5).to_list()
|
||||
assert len(results) == 0
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
11
python/python/tests/utils.py
Normal file
11
python/python/tests/utils.py
Normal file
@@ -0,0 +1,11 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import pytest
|
||||
|
||||
|
||||
def exception_output(e_info: pytest.ExceptionInfo):
|
||||
import traceback
|
||||
|
||||
# skip traceback part, since it's not worth checking in tests
|
||||
lines = traceback.format_exception_only(e_info.type, e_info.value)
|
||||
return "".join(lines).strip()
|
||||
@@ -58,6 +58,11 @@ impl Connection {
|
||||
self.inner.take();
|
||||
}
|
||||
|
||||
#[getter]
|
||||
pub fn uri(&self) -> PyResult<String> {
|
||||
self.get_inner().map(|inner| inner.uri().to_string())
|
||||
}
|
||||
|
||||
#[pyo3(signature = (start_after=None, limit=None))]
|
||||
pub fn table_names(
|
||||
self_: PyRef<'_, Self>,
|
||||
|
||||
@@ -12,224 +12,153 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::sync::Mutex;
|
||||
|
||||
use lancedb::index::scalar::FtsIndexBuilder;
|
||||
use lancedb::{
|
||||
index::{
|
||||
scalar::BTreeIndexBuilder,
|
||||
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
|
||||
Index as LanceDbIndex,
|
||||
},
|
||||
DistanceType,
|
||||
use lancedb::index::{
|
||||
scalar::{BTreeIndexBuilder, FtsIndexBuilder, TokenizerConfig},
|
||||
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
|
||||
Index as LanceDbIndex,
|
||||
};
|
||||
use pyo3::{
|
||||
exceptions::{PyKeyError, PyRuntimeError, PyValueError},
|
||||
pyclass, pymethods, IntoPy, PyObject, PyResult, Python,
|
||||
exceptions::{PyKeyError, PyValueError},
|
||||
intern, pyclass, pymethods,
|
||||
types::PyAnyMethods,
|
||||
Bound, FromPyObject, IntoPy, PyAny, PyObject, PyResult, Python,
|
||||
};
|
||||
|
||||
use crate::util::parse_distance_type;
|
||||
|
||||
#[pyclass]
|
||||
pub struct Index {
|
||||
inner: Mutex<Option<LanceDbIndex>>,
|
||||
}
|
||||
|
||||
impl Index {
|
||||
pub fn consume(&self) -> PyResult<LanceDbIndex> {
|
||||
self.inner
|
||||
.lock()
|
||||
.unwrap()
|
||||
.take()
|
||||
.ok_or_else(|| PyRuntimeError::new_err("cannot use an Index more than once"))
|
||||
pub fn class_name<'a>(ob: &'a Bound<'_, PyAny>) -> PyResult<&'a str> {
|
||||
let full_name: &str = ob
|
||||
.getattr(intern!(ob.py(), "__class__"))?
|
||||
.getattr(intern!(ob.py(), "__name__"))?
|
||||
.extract()?;
|
||||
match full_name.rsplit_once('.') {
|
||||
Some((_, name)) => Ok(name),
|
||||
None => Ok(full_name),
|
||||
}
|
||||
}
|
||||
|
||||
#[pymethods]
|
||||
impl Index {
|
||||
#[pyo3(signature = (distance_type=None, num_partitions=None, num_sub_vectors=None,num_bits=None, max_iterations=None, sample_rate=None))]
|
||||
#[staticmethod]
|
||||
pub fn ivf_pq(
|
||||
distance_type: Option<String>,
|
||||
num_partitions: Option<u32>,
|
||||
num_sub_vectors: Option<u32>,
|
||||
num_bits: Option<u32>,
|
||||
max_iterations: Option<u32>,
|
||||
sample_rate: Option<u32>,
|
||||
) -> PyResult<Self> {
|
||||
let mut ivf_pq_builder = IvfPqIndexBuilder::default();
|
||||
if let Some(distance_type) = distance_type {
|
||||
let distance_type = match distance_type.as_str() {
|
||||
"l2" => Ok(DistanceType::L2),
|
||||
"cosine" => Ok(DistanceType::Cosine),
|
||||
"dot" => Ok(DistanceType::Dot),
|
||||
_ => Err(PyValueError::new_err(format!(
|
||||
"Invalid distance type '{}'. Must be one of l2, cosine, or dot",
|
||||
distance_type
|
||||
))),
|
||||
}?;
|
||||
ivf_pq_builder = ivf_pq_builder.distance_type(distance_type);
|
||||
pub fn extract_index_params(source: &Option<Bound<'_, PyAny>>) -> PyResult<LanceDbIndex> {
|
||||
if let Some(source) = source {
|
||||
match class_name(source)? {
|
||||
"BTree" => Ok(LanceDbIndex::BTree(BTreeIndexBuilder::default())),
|
||||
"Bitmap" => Ok(LanceDbIndex::Bitmap(Default::default())),
|
||||
"LabelList" => Ok(LanceDbIndex::LabelList(Default::default())),
|
||||
"FTS" => {
|
||||
let params = source.extract::<FtsParams>()?;
|
||||
let inner_opts = TokenizerConfig::default()
|
||||
.base_tokenizer(params.base_tokenizer)
|
||||
.language(¶ms.language)
|
||||
.map_err(|_| PyValueError::new_err(format!("LanceDB does not support the requested language: '{}'", params.language)))?
|
||||
.lower_case(params.lower_case)
|
||||
.max_token_length(params.max_token_length)
|
||||
.remove_stop_words(params.remove_stop_words)
|
||||
.stem(params.stem)
|
||||
.ascii_folding(params.ascii_folding);
|
||||
let mut opts = FtsIndexBuilder::default()
|
||||
.with_position(params.with_position);
|
||||
opts.tokenizer_configs = inner_opts;
|
||||
Ok(LanceDbIndex::FTS(opts))
|
||||
},
|
||||
"IvfPq" => {
|
||||
let params = source.extract::<IvfPqParams>()?;
|
||||
let distance_type = parse_distance_type(params.distance_type)?;
|
||||
let mut ivf_pq_builder = IvfPqIndexBuilder::default()
|
||||
.distance_type(distance_type)
|
||||
.max_iterations(params.max_iterations)
|
||||
.sample_rate(params.sample_rate)
|
||||
.num_bits(params.num_bits);
|
||||
if let Some(num_partitions) = params.num_partitions {
|
||||
ivf_pq_builder = ivf_pq_builder.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(num_sub_vectors) = params.num_sub_vectors {
|
||||
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
|
||||
}
|
||||
Ok(LanceDbIndex::IvfPq(ivf_pq_builder))
|
||||
},
|
||||
"HnswPq" => {
|
||||
let params = source.extract::<IvfHnswPqParams>()?;
|
||||
let distance_type = parse_distance_type(params.distance_type)?;
|
||||
let mut hnsw_pq_builder = IvfHnswPqIndexBuilder::default()
|
||||
.distance_type(distance_type)
|
||||
.max_iterations(params.max_iterations)
|
||||
.sample_rate(params.sample_rate)
|
||||
.num_edges(params.m)
|
||||
.ef_construction(params.ef_construction)
|
||||
.num_bits(params.num_bits);
|
||||
if let Some(num_partitions) = params.num_partitions {
|
||||
hnsw_pq_builder = hnsw_pq_builder.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(num_sub_vectors) = params.num_sub_vectors {
|
||||
hnsw_pq_builder = hnsw_pq_builder.num_sub_vectors(num_sub_vectors);
|
||||
}
|
||||
Ok(LanceDbIndex::IvfHnswPq(hnsw_pq_builder))
|
||||
},
|
||||
"HnswSq" => {
|
||||
let params = source.extract::<IvfHnswSqParams>()?;
|
||||
let distance_type = parse_distance_type(params.distance_type)?;
|
||||
let mut hnsw_sq_builder = IvfHnswSqIndexBuilder::default()
|
||||
.distance_type(distance_type)
|
||||
.max_iterations(params.max_iterations)
|
||||
.sample_rate(params.sample_rate)
|
||||
.num_edges(params.m)
|
||||
.ef_construction(params.ef_construction);
|
||||
if let Some(num_partitions) = params.num_partitions {
|
||||
hnsw_sq_builder = hnsw_sq_builder.num_partitions(num_partitions);
|
||||
}
|
||||
Ok(LanceDbIndex::IvfHnswSq(hnsw_sq_builder))
|
||||
},
|
||||
not_supported => Err(PyValueError::new_err(format!(
|
||||
"Invalid index type '{}'. Must be one of BTree, Bitmap, LabelList, FTS, IvfPq, IvfHnswPq, or IvfHnswSq",
|
||||
not_supported
|
||||
))),
|
||||
}
|
||||
if let Some(num_partitions) = num_partitions {
|
||||
ivf_pq_builder = ivf_pq_builder.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(num_sub_vectors) = num_sub_vectors {
|
||||
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
|
||||
}
|
||||
if let Some(num_bits) = num_bits {
|
||||
ivf_pq_builder = ivf_pq_builder.num_bits(num_bits);
|
||||
}
|
||||
if let Some(max_iterations) = max_iterations {
|
||||
ivf_pq_builder = ivf_pq_builder.max_iterations(max_iterations);
|
||||
}
|
||||
if let Some(sample_rate) = sample_rate {
|
||||
ivf_pq_builder = ivf_pq_builder.sample_rate(sample_rate);
|
||||
}
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::IvfPq(ivf_pq_builder))),
|
||||
})
|
||||
} else {
|
||||
Ok(LanceDbIndex::Auto)
|
||||
}
|
||||
}
|
||||
|
||||
#[staticmethod]
|
||||
pub fn btree() -> PyResult<Self> {
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
|
||||
})
|
||||
}
|
||||
#[derive(FromPyObject)]
|
||||
struct FtsParams {
|
||||
with_position: bool,
|
||||
base_tokenizer: String,
|
||||
language: String,
|
||||
max_token_length: Option<usize>,
|
||||
lower_case: bool,
|
||||
stem: bool,
|
||||
remove_stop_words: bool,
|
||||
ascii_folding: bool,
|
||||
}
|
||||
|
||||
#[staticmethod]
|
||||
pub fn bitmap() -> PyResult<Self> {
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::Bitmap(Default::default()))),
|
||||
})
|
||||
}
|
||||
#[derive(FromPyObject)]
|
||||
struct IvfPqParams {
|
||||
distance_type: String,
|
||||
num_partitions: Option<u32>,
|
||||
num_sub_vectors: Option<u32>,
|
||||
num_bits: u32,
|
||||
max_iterations: u32,
|
||||
sample_rate: u32,
|
||||
}
|
||||
|
||||
#[staticmethod]
|
||||
pub fn label_list() -> PyResult<Self> {
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::LabelList(Default::default()))),
|
||||
})
|
||||
}
|
||||
#[derive(FromPyObject)]
|
||||
struct IvfHnswPqParams {
|
||||
distance_type: String,
|
||||
num_partitions: Option<u32>,
|
||||
num_sub_vectors: Option<u32>,
|
||||
num_bits: u32,
|
||||
max_iterations: u32,
|
||||
sample_rate: u32,
|
||||
m: u32,
|
||||
ef_construction: u32,
|
||||
}
|
||||
|
||||
#[pyo3(signature = (with_position=None, base_tokenizer=None, language=None, max_token_length=None, lower_case=None, stem=None, remove_stop_words=None, ascii_folding=None))]
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
#[staticmethod]
|
||||
pub fn fts(
|
||||
with_position: Option<bool>,
|
||||
base_tokenizer: Option<String>,
|
||||
language: Option<String>,
|
||||
max_token_length: Option<usize>,
|
||||
lower_case: Option<bool>,
|
||||
stem: Option<bool>,
|
||||
remove_stop_words: Option<bool>,
|
||||
ascii_folding: Option<bool>,
|
||||
) -> Self {
|
||||
let mut opts = FtsIndexBuilder::default();
|
||||
if let Some(with_position) = with_position {
|
||||
opts = opts.with_position(with_position);
|
||||
}
|
||||
if let Some(base_tokenizer) = base_tokenizer {
|
||||
opts.tokenizer_configs = opts.tokenizer_configs.base_tokenizer(base_tokenizer);
|
||||
}
|
||||
if let Some(language) = language {
|
||||
opts.tokenizer_configs = opts.tokenizer_configs.language(&language).unwrap();
|
||||
}
|
||||
opts.tokenizer_configs = opts.tokenizer_configs.max_token_length(max_token_length);
|
||||
if let Some(lower_case) = lower_case {
|
||||
opts.tokenizer_configs = opts.tokenizer_configs.lower_case(lower_case);
|
||||
}
|
||||
if let Some(stem) = stem {
|
||||
opts.tokenizer_configs = opts.tokenizer_configs.stem(stem);
|
||||
}
|
||||
if let Some(remove_stop_words) = remove_stop_words {
|
||||
opts.tokenizer_configs = opts.tokenizer_configs.remove_stop_words(remove_stop_words);
|
||||
}
|
||||
if let Some(ascii_folding) = ascii_folding {
|
||||
opts.tokenizer_configs = opts.tokenizer_configs.ascii_folding(ascii_folding);
|
||||
}
|
||||
Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::FTS(opts))),
|
||||
}
|
||||
}
|
||||
|
||||
#[pyo3(signature = (distance_type=None, num_partitions=None, num_sub_vectors=None,num_bits=None, max_iterations=None, sample_rate=None, m=None, ef_construction=None))]
|
||||
#[staticmethod]
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn hnsw_pq(
|
||||
distance_type: Option<String>,
|
||||
num_partitions: Option<u32>,
|
||||
num_sub_vectors: Option<u32>,
|
||||
num_bits: Option<u32>,
|
||||
max_iterations: Option<u32>,
|
||||
sample_rate: Option<u32>,
|
||||
m: Option<u32>,
|
||||
ef_construction: Option<u32>,
|
||||
) -> PyResult<Self> {
|
||||
let mut hnsw_pq_builder = IvfHnswPqIndexBuilder::default();
|
||||
if let Some(distance_type) = distance_type {
|
||||
let distance_type = parse_distance_type(distance_type)?;
|
||||
hnsw_pq_builder = hnsw_pq_builder.distance_type(distance_type);
|
||||
}
|
||||
if let Some(num_partitions) = num_partitions {
|
||||
hnsw_pq_builder = hnsw_pq_builder.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(num_sub_vectors) = num_sub_vectors {
|
||||
hnsw_pq_builder = hnsw_pq_builder.num_sub_vectors(num_sub_vectors);
|
||||
}
|
||||
if let Some(num_bits) = num_bits {
|
||||
hnsw_pq_builder = hnsw_pq_builder.num_bits(num_bits);
|
||||
}
|
||||
if let Some(max_iterations) = max_iterations {
|
||||
hnsw_pq_builder = hnsw_pq_builder.max_iterations(max_iterations);
|
||||
}
|
||||
if let Some(sample_rate) = sample_rate {
|
||||
hnsw_pq_builder = hnsw_pq_builder.sample_rate(sample_rate);
|
||||
}
|
||||
if let Some(m) = m {
|
||||
hnsw_pq_builder = hnsw_pq_builder.num_edges(m);
|
||||
}
|
||||
if let Some(ef_construction) = ef_construction {
|
||||
hnsw_pq_builder = hnsw_pq_builder.ef_construction(ef_construction);
|
||||
}
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::IvfHnswPq(hnsw_pq_builder))),
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (distance_type=None, num_partitions=None, max_iterations=None, sample_rate=None, m=None, ef_construction=None))]
|
||||
#[staticmethod]
|
||||
pub fn hnsw_sq(
|
||||
distance_type: Option<String>,
|
||||
num_partitions: Option<u32>,
|
||||
max_iterations: Option<u32>,
|
||||
sample_rate: Option<u32>,
|
||||
m: Option<u32>,
|
||||
ef_construction: Option<u32>,
|
||||
) -> PyResult<Self> {
|
||||
let mut hnsw_sq_builder = IvfHnswSqIndexBuilder::default();
|
||||
if let Some(distance_type) = distance_type {
|
||||
let distance_type = parse_distance_type(distance_type)?;
|
||||
hnsw_sq_builder = hnsw_sq_builder.distance_type(distance_type);
|
||||
}
|
||||
if let Some(num_partitions) = num_partitions {
|
||||
hnsw_sq_builder = hnsw_sq_builder.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(max_iterations) = max_iterations {
|
||||
hnsw_sq_builder = hnsw_sq_builder.max_iterations(max_iterations);
|
||||
}
|
||||
if let Some(sample_rate) = sample_rate {
|
||||
hnsw_sq_builder = hnsw_sq_builder.sample_rate(sample_rate);
|
||||
}
|
||||
if let Some(m) = m {
|
||||
hnsw_sq_builder = hnsw_sq_builder.num_edges(m);
|
||||
}
|
||||
if let Some(ef_construction) = ef_construction {
|
||||
hnsw_sq_builder = hnsw_sq_builder.ef_construction(ef_construction);
|
||||
}
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::IvfHnswSq(hnsw_sq_builder))),
|
||||
})
|
||||
}
|
||||
#[derive(FromPyObject)]
|
||||
struct IvfHnswSqParams {
|
||||
distance_type: String,
|
||||
num_partitions: Option<u32>,
|
||||
max_iterations: u32,
|
||||
sample_rate: u32,
|
||||
m: u32,
|
||||
ef_construction: u32,
|
||||
}
|
||||
|
||||
#[pyclass(get_all)]
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
use arrow::RecordBatchStream;
|
||||
use connection::{connect, Connection};
|
||||
use env_logger::Env;
|
||||
use index::{Index, IndexConfig};
|
||||
use index::IndexConfig;
|
||||
use pyo3::{
|
||||
pymodule,
|
||||
types::{PyModule, PyModuleMethods},
|
||||
@@ -40,7 +40,6 @@ pub fn _lancedb(_py: Python, m: &Bound<'_, PyModule>) -> PyResult<()> {
|
||||
env_logger::init_from_env(env);
|
||||
m.add_class::<Connection>()?;
|
||||
m.add_class::<Table>()?;
|
||||
m.add_class::<Index>()?;
|
||||
m.add_class::<IndexConfig>()?;
|
||||
m.add_class::<Query>()?;
|
||||
m.add_class::<VectorQuery>()?;
|
||||
|
||||
@@ -19,7 +19,7 @@ use pyo3_async_runtimes::tokio::future_into_py;
|
||||
|
||||
use crate::{
|
||||
error::PythonErrorExt,
|
||||
index::{Index, IndexConfig},
|
||||
index::{extract_index_params, IndexConfig},
|
||||
query::Query,
|
||||
};
|
||||
|
||||
@@ -177,14 +177,10 @@ impl Table {
|
||||
pub fn create_index<'a>(
|
||||
self_: PyRef<'a, Self>,
|
||||
column: String,
|
||||
index: Option<&Index>,
|
||||
index: Option<Bound<'_, PyAny>>,
|
||||
replace: Option<bool>,
|
||||
) -> PyResult<Bound<'a, PyAny>> {
|
||||
let index = if let Some(index) = index {
|
||||
index.consume()?
|
||||
} else {
|
||||
lancedb::index::Index::Auto
|
||||
};
|
||||
let index = extract_index_params(&index)?;
|
||||
let mut op = self_.inner_ref()?.create_index(&[column], index);
|
||||
if let Some(replace) = replace {
|
||||
op = op.replace(replace);
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-node"
|
||||
version = "0.14.1-beta.3"
|
||||
version = "0.14.1-beta.4"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
edition.workspace = true
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb"
|
||||
version = "0.14.1-beta.3"
|
||||
version = "0.14.1-beta.4"
|
||||
edition.workspace = true
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
|
||||
@@ -1050,6 +1050,8 @@ impl ConnectionInternal for Database {
|
||||
write_params.enable_v2_manifest_paths =
|
||||
options.enable_v2_manifest_paths.unwrap_or_default();
|
||||
|
||||
let data_schema = data.schema();
|
||||
|
||||
match NativeTable::create(
|
||||
&table_uri,
|
||||
&options.name,
|
||||
@@ -1069,7 +1071,18 @@ impl ConnectionInternal for Database {
|
||||
CreateTableMode::ExistOk(callback) => {
|
||||
let builder = OpenTableBuilder::new(options.parent, options.name);
|
||||
let builder = (callback)(builder);
|
||||
builder.execute().await
|
||||
let table = builder.execute().await?;
|
||||
|
||||
let table_schema = table.schema().await?;
|
||||
|
||||
if table_schema != data_schema {
|
||||
return Err(Error::Schema {
|
||||
message: "Provided schema does not match existing table schema"
|
||||
.to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
Ok(table)
|
||||
}
|
||||
CreateTableMode::Overwrite => unreachable!(),
|
||||
},
|
||||
|
||||
@@ -77,5 +77,5 @@ impl FtsIndexBuilder {
|
||||
}
|
||||
}
|
||||
|
||||
use lance_index::scalar::inverted::TokenizerConfig;
|
||||
pub use lance_index::scalar::inverted::TokenizerConfig;
|
||||
pub use lance_index::scalar::FullTextSearchQuery;
|
||||
|
||||
Reference in New Issue
Block a user