Compare commits

...

15 Commits

Author SHA1 Message Date
Lance Release
27404c8623 Bump version: 0.17.1-beta.7 → 0.17.1 2024-12-24 18:37:28 +00:00
Lance Release
f181c7e77f Bump version: 0.17.1-beta.6 → 0.17.1-beta.7 2024-12-24 18:37:27 +00:00
BubbleCal
e70fd4fecc feat: support IVF_FLAT, binary vectors and hamming distance (#1955)
binary vectors and hamming distance can work on only IVF_FLAT, so
introduce them all in this PR.

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-24 10:36:20 -08:00
verma nakul
ac0068b80e feat(python): add ignore_missing to the async drop_table() method (#1953)
- feat(db): add `ignore_missing` to async `drop_table` method

Fixes #1951

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:47 -08:00
Hezi Zisman
ebac960571 feat(python): add bypass_vector_index to sync api (#1947)
Hi lancedb team,

This PR adds the `bypass_vector_index` logic to the sync API, as
described in [Issue
#535](https://github.com/lancedb/lancedb/issues/535). (Closes #535).

Iv'e implemented it only for the regular vector search. If you think it
should also be supported for FTS, Hybrid, or Empty queries and for the
cloud solution, please let me know, and I’ll be happy to extend it.

Since there’s no `CONTRIBUTING.md` or contribution guidelines, I opted
for the simplest implementation to get this started.

Looking forward to your feedback!

Thanks!

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:26 -08:00
Lance Release
59b57055e7 Updating package-lock.json 2024-12-19 19:40:28 +00:00
Lance Release
591c8de8fc Updating package-lock.json 2024-12-19 19:40:13 +00:00
Lance Release
f835ff310f Bump version: 0.14.1-beta.5 → 0.14.1-beta.6 2024-12-19 19:39:41 +00:00
Lance Release
cf8c2edaf4 Bump version: 0.17.1-beta.5 → 0.17.1-beta.6 2024-12-19 19:39:08 +00:00
Will Jones
61a714a459 docs: improve optimization docs (#1957)
* Add `See Also` section to `cleanup_old_files` and `compact_files` so
they know it's linked to `optimize`.
* Fixes link to `compact_files` arguments
* Improves formatting of note.
2024-12-19 10:55:11 -08:00
Will Jones
5ddd84cec0 feat: upgrade lance to 0.21.0-beta.5 (#1961) 2024-12-19 10:54:59 -08:00
Will Jones
27ef0bb0a2 ci(rust): check MSRV and upgrade toolchain (#1960)
* Upgrades our toolchain file to v1.83.0, since many dependencies now
have MSRV of 1.81.0
* Reverts Rust changes from #1946 that were working around this in a
dumb way
* Adding an MSRV check
* Reduce MSRV back to 1.78.0
2024-12-19 08:43:25 -08:00
Will Jones
25402ba6ec chore: update lockfiles (#1946) 2024-12-18 08:43:33 -08:00
Lance Release
37c359ed40 Updating package-lock.json 2024-12-13 22:38:04 +00:00
Lance Release
06cdf00987 Bump version: 0.14.1-beta.4 → 0.14.1-beta.5 2024-12-13 22:37:41 +00:00
47 changed files with 648 additions and 119 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.14.1-beta.4"
current_version = "0.14.1-beta.6"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -97,3 +97,7 @@ jobs:
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -571,7 +571,7 @@ jobs:
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
@@ -589,7 +589,7 @@ jobs:
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs

View File

@@ -185,7 +185,7 @@ jobs:
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
@@ -238,3 +238,41 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --target aarch64-pc-windows-msvc
cargo test --target aarch64-pc-windows-msvc
msrv:
# Check the minimum supported Rust version
name: MSRV Check - Rust v${{ matrix.msrv }}
runs-on: ubuntu-24.04
strategy:
matrix:
msrv: ["1.78.0"] # This should match up with rust-version in Cargo.toml
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
submodules: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install ${{ matrix.msrv }}
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ matrix.msrv }}
- name: Downgrade dependencies
# These packages have newer requirements for MSRV
run: |
cargo update -p aws-sdk-bedrockruntime --precise 1.64.0
cargo update -p aws-sdk-dynamodb --precise 1.55.0
cargo update -p aws-config --precise 1.5.10
cargo update -p aws-sdk-kms --precise 1.51.0
cargo update -p aws-sdk-s3 --precise 1.65.0
cargo update -p aws-sdk-sso --precise 1.50.0
cargo update -p aws-sdk-ssooidc --precise 1.51.0
cargo update -p aws-sdk-sts --precise 1.51.0
cargo update -p home --precise 0.5.9
- name: cargo +${{ matrix.msrv }} check
run: cargo check --workspace --tests --benches --all-features

View File

@@ -18,19 +18,19 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.21.0", "features" = [
"dynamodb",
], git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
lance-io = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
lance-index = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
lance-linalg = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
lance-table = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
lance-testing = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
lance-datafusion = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
lance-encoding = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.4" }
], git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-io = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-index = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-linalg = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-table = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-testing = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-datafusion = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-encoding = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
# Note that this one does not include pyarrow
arrow = { version = "53.2", optional = false }
arrow-array = "53.2"

View File

@@ -62,6 +62,7 @@ plugins:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- https://lancedb.github.io/lance/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations: true

View File

@@ -129,8 +129,12 @@ lists the indices that LanceDb supports.
::: lancedb.index.LabelList
::: lancedb.index.FTS
::: lancedb.index.IvfPq
::: lancedb.index.IvfFlat
## Querying (Asynchronous)
Queries allow you to return data from your database. Basic queries can be

View File

@@ -17,4 +17,8 @@ pip install lancedb
## Table
::: lancedb.remote.table.RemoteTable
options:
filters:
- "!cleanup_old_versions"
- "!compact_files"
- "!optimize"

View File

@@ -13,11 +13,15 @@ A vector search finds the approximate or exact nearest neighbors to a given quer
Distance metrics are a measure of the similarity between a pair of vectors.
Currently, LanceDB supports the following metrics:
| Metric | Description |
| -------- | --------------------------------------------------------------------------- |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
| Metric | Description |
| --------- | --------------------------------------------------------------------------- |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
| `hamming` | [Hamming Distance](https://en.wikipedia.org/wiki/Hamming_distance) |
!!! note
The `hamming` metric is only available for binary vectors.
## Exhaustive search (kNN)
@@ -107,6 +111,31 @@ an ANN search means that using an index often involves a trade-off between recal
See the [IVF_PQ index](./concepts/index_ivfpq.md) for a deeper description of how `IVF_PQ`
indexes work in LanceDB.
## Binary vector
LanceDB supports binary vectors as a data type, and has the ability to search binary vectors with hamming distance. The binary vectors are stored as uint8 arrays (every 8 bits are stored as a byte):
!!! note
The dim of the binary vector must be a multiple of 8. A vector of dim 128 will be stored as a uint8 array of size 16.
=== "Python"
=== "sync API"
```python
--8<-- "python/python/tests/docs/test_binary_vector.py:imports"
--8<-- "python/python/tests/docs/test_binary_vector.py:sync_binary_vector"
```
=== "async API"
```python
--8<-- "python/python/tests/docs/test_binary_vector.py:imports"
--8<-- "python/python/tests/docs/test_binary_vector.py:async_binary_vector"
```
## Output search results
LanceDB returns vector search results via different formats commonly used in python.

View File

@@ -16,6 +16,7 @@ excluded_globs = [
"../src/concepts/*.md",
"../src/ann_indexes.md",
"../src/basic.md",
"../src/search.md",
"../src/hybrid_search/hybrid_search.md",
"../src/reranking/*.md",
"../src/guides/tuning_retrievers/*.md",

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.14.1-beta.4</version>
<version>0.14.1-beta.6</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.14.1-beta.4</version>
<version>0.14.1-beta.6</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

20
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"cpu": [
"x64",
"arm64"
@@ -52,14 +52,14 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.4",
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.4",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.4",
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.4",
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.4",
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.4",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.4",
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.4"
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.6",
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.6",
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.6",
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.6",
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.6",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.6",
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.6"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
@@ -92,13 +92,13 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.4",
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.4",
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.4",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.4",
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.4",
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.4",
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.4",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.4"
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.6",
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.6",
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.6",
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.6",
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.6",
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.6",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.6"
}
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.14.1-beta.4"
version = "0.14.1-beta.6"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.14.0",
"version": "0.14.1-beta.6",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.14.0",
"version": "0.14.1-beta.6",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.14.1-beta.4",
"version": "0.14.1-beta.6",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -5,8 +5,9 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<Dista
"l2" => Ok(DistanceType::L2),
"cosine" => Ok(DistanceType::Cosine),
"dot" => Ok(DistanceType::Dot),
"hamming" => Ok(DistanceType::Hamming),
_ => Err(napi::Error::from_reason(format!(
"Invalid distance type '{}'. Must be one of l2, cosine, or dot",
"Invalid distance type '{}'. Must be one of l2, cosine, dot, or hamming",
distance_type.as_ref()
))),
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.17.1-beta.5"
current_version = "0.17.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.17.1-beta.5"
version = "0.17.1"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -3,7 +3,7 @@ name = "lancedb"
# version in Cargo.toml
dependencies = [
"deprecation",
"pylance==0.21.0b4",
"pylance==0.21.0b5",
"tqdm>=4.27.0",
"pydantic>=1.10",
"packaging",

View File

@@ -18,12 +18,12 @@ from pathlib import Path
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
from overrides import EnforceOverrides, override
from overrides import EnforceOverrides, override # type: ignore
from lancedb.common import data_to_reader, sanitize_uri, validate_schema
from lancedb.background_loop import LOOP
from ._lancedb import connect as lancedb_connect
from ._lancedb import connect as lancedb_connect # type: ignore
from .table import (
AsyncTable,
LanceTable,
@@ -503,13 +503,7 @@ class LanceDBConnection(DBConnection):
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
try:
LOOP.run(self._conn.drop_table(name))
except ValueError as e:
if not ignore_missing:
raise e
if f"Table '{name}' was not found" not in str(e):
raise e
LOOP.run(self._conn.drop_table(name, ignore_missing=ignore_missing))
@override
def drop_database(self):
@@ -886,15 +880,23 @@ class AsyncConnection(object):
"""
await self._inner.rename_table(old_name, new_name)
async def drop_table(self, name: str):
async def drop_table(self, name: str, *, ignore_missing: bool = False):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
await self._inner.drop_table(name)
try:
await self._inner.drop_table(name)
except ValueError as e:
if not ignore_missing:
raise e
if f"Table '{name}' was not found" not in str(e):
raise e
async def drop_database(self):
"""

View File

@@ -355,6 +355,97 @@ class HnswSq:
ef_construction: int = 300
@dataclass
class IvfFlat:
"""Describes an IVF Flat Index
This index stores raw vectors.
These vectors are grouped into partitions of similar vectors.
Each partition keeps track of a centroid which is
the average value of all vectors in the group.
Attributes
----------
distance_type: str, default "L2"
The distance metric used to train the index
This is used when training the index to calculate the IVF partitions
(vectors are grouped in partitions with similar vectors according to this
distance type) and to calculate a subvector's code during quantization.
The distance type used to train an index MUST match the distance type used
to search the index. Failure to do so will yield inaccurate results.
The following distance types are available:
"l2" - Euclidean distance. This is a very common distance metric that
accounts for both magnitude and direction when determining the distance
between vectors. L2 distance has a range of [0, ∞).
"cosine" - Cosine distance. Cosine distance is a distance metric
calculated from the cosine similarity between two vectors. Cosine
similarity is a measure of similarity between two non-zero vectors of an
inner product space. It is defined to equal the cosine of the angle
between them. Unlike L2, the cosine distance is not affected by the
magnitude of the vectors. Cosine distance has a range of [0, 2].
Note: the cosine distance is undefined when one (or both) of the vectors
are all zeros (there is no direction). These vectors are invalid and may
never be returned from a vector search.
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance.
"hamming" - Hamming distance. Hamming distance is a distance metric
calculated as the number of positions at which the corresponding bits are
different. Hamming distance has a range of [0, vector dimension].
num_partitions: int, default sqrt(num_rows)
The number of IVF partitions to create.
This value should generally scale with the number of rows in the dataset.
By default the number of partitions is the square root of the number of
rows.
If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
max_iterations: int, default 50
Max iteration to train kmeans.
When training an IVF PQ index we use kmeans to calculate the partitions.
This parameter controls how many iterations of kmeans to run.
Increasing this might improve the quality of the index but in most cases
these extra iterations have diminishing returns.
The default value is 50.
sample_rate: int, default 256
The rate used to calculate the number of training vectors for kmeans.
When an IVF PQ index is trained, we need to calculate partitions. These
are groups of vectors that are similar to each other. To do this we use an
algorithm called kmeans.
Running kmeans on a large dataset can be slow. To speed this up we run
kmeans on a random sample of the data. This parameter controls the size of
the sample. The total number of vectors used to train the index is
`sample_rate * num_partitions`.
Increasing this value might improve the quality of the index but in most
cases the default should be sufficient.
The default value is 256.
"""
distance_type: Literal["l2", "cosine", "dot", "hamming"] = "l2"
num_partitions: Optional[int] = None
max_iterations: int = 50
sample_rate: int = 256
@dataclass
class IvfPq:
"""Describes an IVF PQ Index
@@ -477,4 +568,4 @@ class IvfPq:
sample_rate: int = 256
__all__ = ["BTree", "IvfPq", "HnswPq", "HnswSq", "IndexConfig"]
__all__ = ["BTree", "IvfFlat", "IvfPq", "HnswPq", "HnswSq", "IndexConfig"]

View File

@@ -126,6 +126,9 @@ class Query(pydantic.BaseModel):
ef: Optional[int] = None
# Default is true. Set to false to enforce a brute force search.
use_index: bool = True
class LanceQueryBuilder(ABC):
"""An abstract query builder. Subclasses are defined for vector search,
@@ -253,6 +256,7 @@ class LanceQueryBuilder(ABC):
self._vector = None
self._text = None
self._ef = None
self._use_index = True
@deprecation.deprecated(
deprecated_in="0.3.1",
@@ -511,6 +515,7 @@ class LanceQueryBuilder(ABC):
"metric": self._metric,
"nprobes": self._nprobes,
"refine_factor": self._refine_factor,
"use_index": self._use_index,
},
prefilter=self._prefilter,
filter=self._str_query,
@@ -729,6 +734,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
offset=self._offset,
fast_search=self._fast_search,
ef=self._ef,
use_index=self._use_index,
)
result_set = self._table._execute_query(query, batch_size)
if self._reranker is not None:
@@ -802,6 +808,24 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._str_query = query_string if query_string is not None else self._str_query
return self
def bypass_vector_index(self) -> LanceVectorQueryBuilder:
"""
If this is called then any vector index is skipped
An exhaustive (flat) search will be performed. The query vector will
be compared to every vector in the table. At high scales this can be
expensive. However, this is often still useful. For example, skipping
the vector index can give you ground truth results which you can use to
calculate your recall to select an appropriate value for nprobes.
Returns
-------
LanceVectorQueryBuilder
The LanceVectorQueryBuilder object.
"""
self._use_index = False
return self
class LanceFtsQueryBuilder(LanceQueryBuilder):
"""A builder for full text search for LanceDB."""
@@ -1108,6 +1132,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._vector_query.refine_factor(self._refine_factor)
if self._ef:
self._vector_query.ef(self._ef)
if not self._use_index:
self._vector_query.bypass_vector_index()
with ThreadPoolExecutor() as executor:
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
@@ -1323,6 +1349,24 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._text = text
return self
def bypass_vector_index(self) -> LanceHybridQueryBuilder:
"""
If this is called then any vector index is skipped
An exhaustive (flat) search will be performed. The query vector will
be compared to every vector in the table. At high scales this can be
expensive. However, this is often still useful. For example, skipping
the vector index can give you ground truth results which you can use to
calculate your recall to select an appropriate value for nprobes.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._use_index = False
return self
class AsyncQueryBase(object):
def __init__(self, inner: Union[LanceQuery | LanceVectorQuery]):

View File

@@ -15,6 +15,7 @@ from datetime import timedelta
import logging
from functools import cached_property
from typing import Dict, Iterable, List, Optional, Union, Literal
import warnings
from lancedb._lancedb import IndexConfig
from lancedb.embeddings.base import EmbeddingFunctionConfig
@@ -481,16 +482,28 @@ class RemoteTable(Table):
)
def cleanup_old_versions(self, *_):
"""cleanup_old_versions() is not supported on the LanceDB cloud"""
raise NotImplementedError(
"cleanup_old_versions() is not supported on the LanceDB cloud"
"""
cleanup_old_versions() is a no-op on LanceDB Cloud.
Tables are automatically cleaned up and optimized.
"""
warnings.warn(
"cleanup_old_versions() is a no-op on LanceDB Cloud. "
"Tables are automatically cleaned up and optimized."
)
pass
def compact_files(self, *_):
"""compact_files() is not supported on the LanceDB cloud"""
raise NotImplementedError(
"compact_files() is not supported on the LanceDB cloud"
"""
compact_files() is a no-op on LanceDB Cloud.
Tables are automatically compacted and optimized.
"""
warnings.warn(
"compact_files() is a no-op on LanceDB Cloud. "
"Tables are automatically compacted and optimized."
)
pass
def optimize(
self,
@@ -498,12 +511,16 @@ class RemoteTable(Table):
cleanup_older_than: Optional[timedelta] = None,
delete_unverified: bool = False,
):
"""optimize() is not supported on the LanceDB cloud.
Indices are optimized automatically."""
raise NotImplementedError(
"optimize() is not supported on the LanceDB cloud. "
"""
optimize() is a no-op on LanceDB Cloud.
Indices are optimized automatically.
"""
warnings.warn(
"optimize() is a no-op on LanceDB Cloud. "
"Indices are optimized automatically."
)
pass
def count_rows(self, filter: Optional[str] = None) -> int:
return LOOP.run(self._table.count_rows(filter))

View File

@@ -34,7 +34,7 @@ from lance.dependencies import _check_for_hugging_face
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from .index import BTree, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
from .merge import LanceMergeInsertBuilder
from .pydantic import LanceModel, model_to_dict
from .query import (
@@ -433,7 +433,9 @@ class Table(ABC):
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
*,
index_type: Literal["IVF_PQ", "IVF_HNSW_SQ", "IVF_HNSW_PQ"] = "IVF_PQ",
index_type: Literal[
"IVF_FLAT", "IVF_PQ", "IVF_HNSW_SQ", "IVF_HNSW_PQ"
] = "IVF_PQ",
num_bits: int = 8,
max_iterations: int = 50,
sample_rate: int = 256,
@@ -446,8 +448,9 @@ class Table(ABC):
----------
metric: str, default "L2"
The distance metric to use when creating the index.
Valid values are "L2", "cosine", or "dot".
Valid values are "L2", "cosine", "dot", or "hamming".
L2 is euclidean distance.
Hamming is available only for binary vectors.
num_partitions: int, default 256
The number of IVF partitions to use when creating the index.
Default is 256.
@@ -917,9 +920,6 @@ class Table(ABC):
"""
Clean up old versions of the table, freeing disk space.
Note: This function is not available in LanceDb Cloud (since LanceDb
Cloud manages cleanup for you automatically)
Parameters
----------
older_than: timedelta, default None
@@ -936,21 +936,38 @@ class Table(ABC):
CleanupStats
The stats of the cleanup operation, including how many bytes were
freed.
See Also
--------
[Table.optimize][lancedb.table.Table.optimize]: A more comprehensive
optimization operation that includes cleanup as well as other operations.
Notes
-----
This function is not available in LanceDb Cloud (since LanceDB
Cloud manages cleanup for you automatically)
"""
@abstractmethod
def compact_files(self, *args, **kwargs):
"""
Run the compaction process on the table.
Note: This function is not available in LanceDb Cloud (since LanceDb
Cloud manages compaction for you automatically)
This can be run after making several small appends to optimize the table
for faster reads.
Arguments are passed onto :meth:`lance.dataset.DatasetOptimizer.compact_files`.
Arguments are passed onto Lance's
[compact_files][lance.dataset.DatasetOptimizer.compact_files].
For most cases, the default should be fine.
See Also
--------
[Table.optimize][lancedb.table.Table.optimize]: A more comprehensive
optimization operation that includes cleanup as well as other operations.
Notes
-----
This function is not available in LanceDB Cloud (since LanceDB
Cloud manages compaction for you automatically)
"""
@abstractmethod
@@ -1394,7 +1411,9 @@ class LanceTable(Table):
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
num_bits: int = 8,
index_type: Literal["IVF_PQ", "IVF_HNSW_SQ", "IVF_HNSW_PQ"] = "IVF_PQ",
index_type: Literal[
"IVF_FLAT", "IVF_PQ", "IVF_HNSW_SQ", "IVF_HNSW_PQ"
] = "IVF_PQ",
max_iterations: int = 50,
sample_rate: int = 256,
m: int = 20,
@@ -1418,6 +1437,13 @@ class LanceTable(Table):
)
self.checkout_latest()
return
elif index_type == "IVF_FLAT":
config = IvfFlat(
distance_type=metric,
num_partitions=num_partitions,
max_iterations=max_iterations,
sample_rate=sample_rate,
)
elif index_type == "IVF_PQ":
config = IvfPq(
distance_type=metric,
@@ -2605,7 +2631,7 @@ class AsyncTable:
*,
replace: Optional[bool] = None,
config: Optional[
Union[IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS]
Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS]
] = None,
):
"""Create an index to speed up queries
@@ -2634,7 +2660,7 @@ class AsyncTable:
"""
if config is not None:
if not isinstance(
config, (IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS)
config, (IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS)
):
raise TypeError(
"config must be an instance of IvfPq, HnswPq, HnswSq, BTree,"
@@ -2798,6 +2824,8 @@ class AsyncTable:
async_query = async_query.column(query.vector_column)
if query.ef:
async_query = async_query.ef(query.ef)
if not query.use_index:
async_query = async_query.bypass_vector_index()
if not query.prefilter:
async_query = async_query.postfilter()

View File

@@ -0,0 +1,44 @@
import shutil
# --8<-- [start:imports]
import lancedb
import numpy as np
import pytest
# --8<-- [end:imports]
shutil.rmtree("data/binary_lancedb", ignore_errors=True)
def test_binary_vector():
# --8<-- [start:sync_binary_vector]
db = lancedb.connect("data/binary_lancedb")
data = [
{
"id": i,
"vector": np.random.randint(0, 256, size=16),
}
for i in range(1024)
]
tbl = db.create_table("my_binary_vectors", data=data)
query = np.random.randint(0, 256, size=16)
tbl.search(query).to_arrow()
# --8<-- [end:sync_binary_vector]
db.drop_table("my_binary_vectors")
@pytest.mark.asyncio
async def test_binary_vector_async():
# --8<-- [start:async_binary_vector]
db = await lancedb.connect_async("data/binary_lancedb")
data = [
{
"id": i,
"vector": np.random.randint(0, 256, size=16),
}
for i in range(1024)
]
tbl = await db.create_table("my_binary_vectors", data=data)
query = np.random.randint(0, 256, size=16)
await tbl.query().nearest_to(query).to_arrow()
# --8<-- [end:async_binary_vector]
await db.drop_table("my_binary_vectors")

View File

@@ -508,6 +508,32 @@ def test_delete_table(tmp_db: lancedb.DBConnection):
tmp_db.drop_table("does_not_exist", ignore_missing=True)
@pytest.mark.asyncio
async def test_delete_table_async(tmp_db: lancedb.DBConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
tmp_db.create_table("test", data=data)
with pytest.raises(Exception):
tmp_db.create_table("test", data=data)
assert tmp_db.table_names() == ["test"]
tmp_db.drop_table("test")
assert tmp_db.table_names() == []
tmp_db.create_table("test", data=data)
assert tmp_db.table_names() == ["test"]
tmp_db.drop_table("does_not_exist", ignore_missing=True)
def test_drop_database(tmp_db: lancedb.DBConnection):
data = pd.DataFrame(
{
@@ -681,3 +707,25 @@ def test_create_table_with_invalid_names(tmp_db: lancedb.DBConnection):
with pytest.raises(ValueError):
tmp_db.create_table("foo$$bar", data)
tmp_db.create_table("foo.bar", data)
def test_bypass_vector_index_sync(tmp_db: lancedb.DBConnection):
data = [{"vector": np.random.rand(32)} for _ in range(512)]
sample_key = data[100]["vector"]
table = tmp_db.create_table(
"test",
data,
)
table.create_index(
num_partitions=2,
num_sub_vectors=2,
)
plan_with_index = table.search(sample_key).explain_plan(verbose=True)
assert "ANN" in plan_with_index
plan_without_index = (
table.search(sample_key).bypass_vector_index().explain_plan(verbose=True)
)
assert "KNN" in plan_without_index

View File

@@ -8,7 +8,7 @@ import pyarrow as pa
import pytest
import pytest_asyncio
from lancedb import AsyncConnection, AsyncTable, connect_async
from lancedb.index import BTree, IvfPq, Bitmap, LabelList, HnswPq, HnswSq
from lancedb.index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq
@pytest_asyncio.fixture
@@ -42,6 +42,27 @@ async def some_table(db_async):
)
@pytest_asyncio.fixture
async def binary_table(db_async):
data = [
{
"id": i,
"vector": [i] * 128,
}
for i in range(NROWS)
]
return await db_async.create_table(
"binary_table",
data,
schema=pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.uint8(), 128)),
]
),
)
@pytest.mark.asyncio
async def test_create_scalar_index(some_table: AsyncTable):
# Can create
@@ -143,3 +164,27 @@ async def test_create_hnswsq_index(some_table: AsyncTable):
await some_table.create_index("vector", config=HnswSq(num_partitions=10))
indices = await some_table.list_indices()
assert len(indices) == 1
@pytest.mark.asyncio
async def test_create_index_with_binary_vectors(binary_table: AsyncTable):
await binary_table.create_index(
"vector", config=IvfFlat(distance_type="hamming", num_partitions=10)
)
indices = await binary_table.list_indices()
assert len(indices) == 1
assert indices[0].index_type == "IvfFlat"
assert indices[0].columns == ["vector"]
assert indices[0].name == "vector_idx"
stats = await binary_table.index_stats("vector_idx")
assert stats.index_type == "IVF_FLAT"
assert stats.distance_type == "hamming"
assert stats.num_indexed_rows == await binary_table.count_rows()
assert stats.num_unindexed_rows == 0
assert stats.num_indices == 1
# the dataset contains vectors with all values from 0 to 255
for v in range(256):
res = await binary_table.query().nearest_to([v] * 128).to_arrow()
assert res["id"][0].as_py() == v

View File

@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use lancedb::index::vector::IvfFlatIndexBuilder;
use lancedb::index::{
scalar::{BTreeIndexBuilder, FtsIndexBuilder, TokenizerConfig},
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
@@ -59,6 +60,18 @@ pub fn extract_index_params(source: &Option<Bound<'_, PyAny>>) -> PyResult<Lance
opts.tokenizer_configs = inner_opts;
Ok(LanceDbIndex::FTS(opts))
},
"IvfFlat" => {
let params = source.extract::<IvfFlatParams>()?;
let distance_type = parse_distance_type(params.distance_type)?;
let mut ivf_flat_builder = IvfFlatIndexBuilder::default()
.distance_type(distance_type)
.max_iterations(params.max_iterations)
.sample_rate(params.sample_rate);
if let Some(num_partitions) = params.num_partitions {
ivf_flat_builder = ivf_flat_builder.num_partitions(num_partitions);
}
Ok(LanceDbIndex::IvfFlat(ivf_flat_builder))
},
"IvfPq" => {
let params = source.extract::<IvfPqParams>()?;
let distance_type = parse_distance_type(params.distance_type)?;
@@ -129,6 +142,14 @@ struct FtsParams {
ascii_folding: bool,
}
#[derive(FromPyObject)]
struct IvfFlatParams {
distance_type: String,
num_partitions: Option<u32>,
max_iterations: u32,
sample_rate: u32,
}
#[derive(FromPyObject)]
struct IvfPqParams {
distance_type: String,

View File

@@ -43,8 +43,9 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> PyResult<DistanceT
"l2" => Ok(DistanceType::L2),
"cosine" => Ok(DistanceType::Cosine),
"dot" => Ok(DistanceType::Dot),
"hamming" => Ok(DistanceType::Hamming),
_ => Err(PyValueError::new_err(format!(
"Invalid distance type '{}'. Must be one of l2, cosine, or dot",
"Invalid distance type '{}'. Must be one of l2, cosine, dot, or hamming",
distance_type.as_ref()
))),
}

View File

@@ -1,2 +1,2 @@
[toolchain]
channel = "1.80.0"
channel = "1.83.0"

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.14.1-beta.4"
version = "0.14.1-beta.6"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,13 +1,13 @@
[package]
name = "lancedb"
version = "0.14.1-beta.4"
version = "0.14.1-beta.6"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
rust-version = "1.75"
rust-version.workspace = true
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

View File

@@ -17,6 +17,7 @@ use std::sync::Arc;
use scalar::FtsIndexBuilder;
use serde::Deserialize;
use serde_with::skip_serializing_none;
use vector::IvfFlatIndexBuilder;
use crate::{table::TableInternal, DistanceType, Error, Result};
@@ -56,6 +57,9 @@ pub enum Index {
/// Full text search index using bm25.
FTS(FtsIndexBuilder),
/// IVF index
IvfFlat(IvfFlatIndexBuilder),
/// IVF index with Product Quantization
IvfPq(IvfPqIndexBuilder),
@@ -106,6 +110,8 @@ impl IndexBuilder {
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub enum IndexType {
// Vector
#[serde(alias = "IVF_FLAT")]
IvfFlat,
#[serde(alias = "IVF_PQ")]
IvfPq,
#[serde(alias = "IVF_HNSW_PQ")]
@@ -127,6 +133,7 @@ pub enum IndexType {
impl std::fmt::Display for IndexType {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
Self::IvfFlat => write!(f, "IVF_FLAT"),
Self::IvfPq => write!(f, "IVF_PQ"),
Self::IvfHnswPq => write!(f, "IVF_HNSW_PQ"),
Self::IvfHnswSq => write!(f, "IVF_HNSW_SQ"),
@@ -147,6 +154,7 @@ impl std::str::FromStr for IndexType {
"BITMAP" => Ok(Self::Bitmap),
"LABEL_LIST" | "LABELLIST" => Ok(Self::LabelList),
"FTS" | "INVERTED" => Ok(Self::FTS),
"IVF_FLAT" => Ok(Self::IvfFlat),
"IVF_PQ" => Ok(Self::IvfPq),
"IVF_HNSW_PQ" => Ok(Self::IvfHnswPq),
"IVF_HNSW_SQ" => Ok(Self::IvfHnswSq),

View File

@@ -162,6 +162,43 @@ macro_rules! impl_hnsw_params_setter {
};
}
/// Builder for an IVF Flat index.
///
/// This index stores raw vectors. These vectors are grouped into partitions of similar vectors.
/// Each partition keeps track of a centroid which is the average value of all vectors in the group.
///
/// During a query the centroids are compared with the query vector to find the closest partitions.
/// The raw vectors in these partitions are then searched to find the closest vectors.
///
/// The partitioning process is called IVF and the `num_partitions` parameter controls how many groups to create.
///
/// Note that training an IVF Flat index on a large dataset is a slow operation and currently is also a memory intensive operation.
#[derive(Debug, Clone)]
pub struct IvfFlatIndexBuilder {
pub(crate) distance_type: DistanceType,
// IVF
pub(crate) num_partitions: Option<u32>,
pub(crate) sample_rate: u32,
pub(crate) max_iterations: u32,
}
impl Default for IvfFlatIndexBuilder {
fn default() -> Self {
Self {
distance_type: DistanceType::L2,
num_partitions: None,
sample_rate: 256,
max_iterations: 50,
}
}
}
impl IvfFlatIndexBuilder {
impl_distance_type_setter!();
impl_ivf_params_setter!();
}
/// Builder for an IVF PQ index.
///
/// This index stores a compressed (quantized) copy of every vector. These vectors

View File

@@ -339,7 +339,7 @@ pub trait QueryBase {
fn limit(self, limit: usize) -> Self;
/// Set the offset of the query.
///
/// By default, it fetches starting with the first row.
/// This method can be used to skip the first `offset` rows.
fn offset(self, offset: usize) -> Self;

View File

@@ -18,9 +18,9 @@ use std::path::Path;
use std::sync::Arc;
use arrow::array::AsArray;
use arrow::datatypes::Float32Type;
use arrow::datatypes::{Float32Type, UInt8Type};
use arrow_array::{RecordBatchIterator, RecordBatchReader};
use arrow_schema::{Field, Schema, SchemaRef};
use arrow_schema::{DataType, Field, Schema, SchemaRef};
use async_trait::async_trait;
use datafusion_physical_plan::display::DisplayableExecutionPlan;
use datafusion_physical_plan::projection::ProjectionExec;
@@ -58,8 +58,8 @@ use crate::embeddings::{EmbeddingDefinition, EmbeddingRegistry, MaybeEmbedded, M
use crate::error::{Error, Result};
use crate::index::scalar::FtsIndexBuilder;
use crate::index::vector::{
suggested_num_partitions_for_hnsw, IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder,
IvfPqIndexBuilder, VectorIndex,
suggested_num_partitions_for_hnsw, IvfFlatIndexBuilder, IvfHnswPqIndexBuilder,
IvfHnswSqIndexBuilder, IvfPqIndexBuilder, VectorIndex,
};
use crate::index::IndexStatistics;
use crate::index::{
@@ -1306,6 +1306,44 @@ impl NativeTable {
.collect())
}
async fn create_ivf_flat_index(
&self,
index: IvfFlatIndexBuilder,
field: &Field,
replace: bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
message: format!(
"An IVF Flat index cannot be created on the column `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let num_partitions = if let Some(n) = index.num_partitions {
n
} else {
suggested_num_partitions(self.count_rows(None).await?)
};
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_flat(
num_partitions as usize,
index.distance_type.into(),
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_ivf_pq_index(
&self,
index: IvfPqIndexBuilder,
@@ -1778,6 +1816,10 @@ impl TableInternal for NativeTable {
Index::Bitmap(_) => self.create_bitmap_index(field, opts).await,
Index::LabelList(_) => self.create_label_list_index(field, opts).await,
Index::FTS(fts_opts) => self.create_fts_index(field, fts_opts, opts.replace).await,
Index::IvfFlat(ivf_flat) => {
self.create_ivf_flat_index(ivf_flat, field, opts.replace)
.await
}
Index::IvfPq(ivf_pq) => self.create_ivf_pq_index(ivf_pq, field, opts.replace).await,
Index::IvfHnswPq(ivf_hnsw_pq) => {
self.create_ivf_hnsw_pq_index(ivf_hnsw_pq, field, opts.replace)
@@ -1848,14 +1890,21 @@ impl TableInternal for NativeTable {
message: format!("Column {} not found in dataset schema", column),
})?;
if let arrow_schema::DataType::FixedSizeList(f, dim) = field.data_type() {
if !f.data_type().is_floating() {
return Err(Error::InvalidInput {
message: format!(
"The data type of the vector column '{}' is not a floating point type",
column
),
});
let mut is_binary = false;
if let arrow_schema::DataType::FixedSizeList(element, dim) = field.data_type() {
match element.data_type() {
e_type if e_type.is_floating() => {}
e_type if *e_type == DataType::UInt8 => {
is_binary = true;
}
_ => {
return Err(Error::InvalidInput {
message: format!(
"The data type of the vector column '{}' is not a floating point type",
column
),
});
}
}
if dim != query_vector.len() as i32 {
return Err(Error::InvalidInput {
@@ -1870,12 +1919,22 @@ impl TableInternal for NativeTable {
}
}
let query_vector = query_vector.as_primitive::<Float32Type>();
scanner.nearest(
&column,
query_vector,
query.base.limit.unwrap_or(DEFAULT_TOP_K),
)?;
if is_binary {
let query_vector = arrow::compute::cast(&query_vector, &DataType::UInt8)?;
let query_vector = query_vector.as_primitive::<UInt8Type>();
scanner.nearest(
&column,
query_vector,
query.base.limit.unwrap_or(DEFAULT_TOP_K),
)?;
} else {
let query_vector = query_vector.as_primitive::<Float32Type>();
scanner.nearest(
&column,
query_vector,
query.base.limit.unwrap_or(DEFAULT_TOP_K),
)?;
}
}
scanner.limit(
query.base.limit.map(|limit| limit as i64),

View File

@@ -110,7 +110,7 @@ pub(crate) fn default_vector_column(schema: &Schema, dim: Option<i32>) -> Result
.iter()
.filter_map(|field| match field.data_type() {
arrow_schema::DataType::FixedSizeList(f, d)
if f.data_type().is_floating()
if (f.data_type().is_floating() || f.data_type() == &DataType::UInt8)
&& dim.map(|expect| *d == expect).unwrap_or(true) =>
{
Some(field.name())
@@ -171,7 +171,9 @@ pub fn supported_fts_data_type(dtype: &DataType) -> bool {
pub fn supported_vector_data_type(dtype: &DataType) -> bool {
match dtype {
DataType::FixedSizeList(inner, _) => DataType::is_floating(inner.data_type()),
DataType::FixedSizeList(inner, _) => {
DataType::is_floating(inner.data_type()) || *inner.data_type() == DataType::UInt8
}
_ => false,
}
}