Compare commits

...

21 Commits

Author SHA1 Message Date
Lance Release
a022368426 [python] Bump version: 0.2.6 → 0.3.0 2023-10-03 21:48:22 +00:00
Lei Xu
8b815ef5a8 chore: upgrade lance to 0.8.1 (#536)
Bump to lance 0.8.1 for both javascript and python sdk
2023-10-03 14:29:18 -07:00
Tan Li
e4c3a9346c [doc] make the tensor width differnt from height (#533) 2023-10-03 00:55:16 -07:00
Prashanth Rao
1d1f8964d2 [DOCS][PYTHON] Update docs for clarity (#531)
I only modified those docs pages that are untouched in existing unmerged
PRs, so hopefully there are no merge conflicts!

1. The `tantivy-py` version specified in the docs doesn't work (pip
install fails), but with the latest version of pip and wheel installed
on my Mac, I was able to just `pip install tantivy` and FTS works great
for me. I updated the docs page to include this in
7ca4b757ce but can always modify to
another specific version in case this breaks any tests.
2. The `.add()` method for Python should take in a list of dicts as the
first option (to also align with the JS API), and additionally, users
can pass an existing pandas DataFrame to add to a table. Hope this makes
sense.
3. I've had multiple conversations with users who are unclear that the
terms "exhaustive", "flat" and "KNN" are all the same kind of search, so
I've updated the verbiage of this section to clarify this.
4. Fixed typos and improved clarity in the ANN indexes page.
2023-10-03 09:46:53 +05:30
Lance Release
d326146a40 [python] Bump version: 0.2.5 → 0.2.6 2023-10-01 17:48:59 +00:00
Chang She
693bca1eba feat(python): expose prefilter to lancedb (#522)
We have experimental support for prefiltering (without ANN) in pylance.
This means that we can now apply a filter BEFORE vector search is
performed. This can be done via the `.where(filter_string,
prefilter=True)` kwargs of the query.

Limitations:
- When connecting to LanceDB cloud, `prefilter=True` will raise
NotImplemented
- When an ANN index is present, `prefilter=True` will raise
NotImplemented
- This option is not available for full text search query
- This option is not available for empty search query (just
filter/project)

Additional changes in this PR:
- Bump pylance version to v0.8.0 which supports the experimental
prefiltering.

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-01 10:34:12 -07:00
Will Jones
343e274ea5 fix: define minimum dependency versions (#515)
Closes #513

For each of these, I found the minimum version that would allow the unit
tests to pass.
2023-09-29 09:04:49 -07:00
Rob Meng
a695fb8030 fix import attr to use import attrs (#510)
Thanks to #508, I used `attr` instead of the correct package `attrs`

s/attr/attrs
2023-09-23 00:30:56 -04:00
Hynek Schlawack
bc8670d7af [Python] Fix attrs dependency (#508)
The `attr` project is unrelated to `attrs` that also provides the `attr`
namespace (see also <https://hynek.me/articles/import-attrs/>).

It used to _usually_ work, because attrs is a dependency of aiohttp and
somehow took precedence over `attr`'s `attr`.

Yes, sorry, it's a mess.
2023-09-21 12:35:34 -04:00
Lance Release
74004161ff [python] Bump version: 0.2.4 → 0.2.5 2023-09-19 16:43:06 +00:00
Lance Release
34ddb1de6d Updating package-lock.json 2023-09-19 13:48:20 +00:00
Lance Release
1029fc9cb0 Updating package-lock.json 2023-09-19 12:19:23 +00:00
Lance Release
31c5df6d99 Bump version: 0.2.5 → 0.2.6 2023-09-19 12:19:05 +00:00
Rob Meng
dbf37a0434 fix: upgrade lance to 0.7.5 and add tests for searching empty dataset (#505)
This PR upgrade lance to `0.7.5`, which include fixes for searching an
empty dataset.

This PR also adds two tests in node SDK to make sure searching empty
dataset do no throw

Co-authored-by: rmeng <rob@lancedb.com>
2023-09-18 22:12:11 -07:00
Chang She
f20f19b804 feat: improve pydantic 1.x compat (#503) 2023-09-18 19:01:30 -07:00
Chang She
55207ce844 feat: add lancedb.__version__ (#504) 2023-09-18 18:51:51 -07:00
Chang She
c21f9cdda0 ci: fix docs build (#496)
python/python.md contains typos in the class references

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-09-18 13:07:21 -07:00
Rob Meng
bc38abb781 refactor connection string processing (#500)
in #486 `connect` started converting path into uri. However, the PR
didn't handle relative path and appended `file://` to relative path.

This PR changes the parsing strat to be more rational. If a path is
provided instead of url, we do not try anythinng special.

engine and engine params may only be specified when a url with schema is
provided

Co-authored-by: rmeng <rob@lancedb.com>
2023-09-18 12:38:00 -07:00
Rob Meng
731f86e44c add health check to wait for all service ready before next step (#501)
aws integration tests are flaky because we didn't wait for the services
to become healthy. (we only waited for the localstack service, this PR
adds wait for sub services)
2023-09-18 15:17:45 -04:00
Chang She
31dad71c94 multi-modal embedding-function (#484) 2023-09-16 21:23:51 -04:00
Will Jones
9585f550b3 fix: increase S3 timeouts (#494)
Closes #493
2023-09-15 20:21:34 -07:00
41 changed files with 1052 additions and 361 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.2.5 current_version = 0.2.6
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -9,6 +9,7 @@ on:
- node/** - node/**
- rust/ffi/node/** - rust/ffi/node/**
- .github/workflows/node.yml - .github/workflows/node.yml
- docker-compose.yml
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
@@ -133,7 +134,7 @@ jobs:
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- name: start local stack - name: start local stack
run: docker compose -f ../docker-compose.yml up -d run: docker compose -f ../docker-compose.yml up -d --wait
- name: create s3 - name: create s3
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
- name: create ddb - name: create ddb

View File

@@ -38,7 +38,7 @@ jobs:
- name: isort - name: isort
run: isort --check --diff --quiet . run: isort --check --diff --quiet .
- name: Run tests - name: Run tests
run: pytest -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest
run: pytest --doctest-modules lancedb run: pytest --doctest-modules lancedb
mac: mac:
@@ -65,4 +65,34 @@ jobs:
- name: Black - name: Black
run: black --check --diff --no-color --quiet . run: black --check --diff --no-color --quiet .
- name: Run tests - name: Run tests
run: pytest -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb

View File

@@ -5,8 +5,8 @@ exclude = ["python"]
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.7.4", "features" = ["dynamodb"] } lance = { "version" = "=0.8.1", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.7.4" } lance-linalg = { "version" = "=0.8.1" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "43.0.0", optional = false } arrow = { version = "43.0.0", optional = false }
arrow-array = "43.0" arrow-array = "43.0"

View File

@@ -13,3 +13,6 @@ services:
- AWS_SECRET_ACCESS_KEY=SECRETKEY - AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck: healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ] test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
interval: 5s
retries: 3
start_period: 10s

View File

@@ -154,28 +154,28 @@ You can select the columns returned by the query using a select clause.
## FAQ ## FAQ
### When is it necessary to create an ANN vector index. ### When is it necessary to create an ANN vector index?
`LanceDB` has manually tuned SIMD code for computing vector distances. `LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary. For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index. For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take. ### How big is my index, and how many memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code. In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers. For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index. ### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
`num_partitions` is used to decide how many partitions the first level `IVF` index uses. `num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall. On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because `num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency. more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

View File

@@ -123,9 +123,15 @@ After a table has been created, you can always add more data to it using
=== "Python" === "Python"
```python ```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]) # Option 1: Add a list of dicts to a table
tbl.add(df) data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
``` ```
=== "Javascript" === "Javascript"

View File

@@ -6,17 +6,19 @@ to make this available for JS as well.
## Installation ## Installation
To use full text search, you must install optional dependency tantivy-py: To use full text search, you must install the dependency `tantivy-py`:
# tantivy 0.19.2 # tantivy 0.20.1
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 ```sh
pip install tantivy==0.20.1
```
## Quickstart ## Quickstart
Assume: Assume:
1. `table` is a LanceDB Table 1. `table` is a LanceDB Table
2. `text` is the name of the Table column that we want to index 2. `text` is the name of the `Table` column that we want to index
For example, For example,

View File

@@ -42,7 +42,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
import pandas as pd import pandas as pd
data = pd.DataFrame({ data = pd.DataFrame({
"vector": [[1.1, 1.2], [0.2, 1.8]], "vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1], "lat": [45.5, 40.1],
"long": [-122.7, -74.1] "long": [-122.7, -74.1]
}) })
@@ -56,7 +56,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```python ```python
custom_schema = pa.schema([ custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()), pa.field("lat", pa.float32()),
pa.field("long", pa.float32()) pa.field("long", pa.float32())
]) ])
@@ -70,8 +70,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```python ```python
table = pa.Table.from_arrays( table = pa.Table.from_arrays(
[ [
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 2)), pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]), pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]), pa.array([10.0, 20.0]),
], ],
@@ -84,7 +84,17 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
``` ```
### From Pydantic Models ### From Pydantic Models
LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel via pydantic_to_schema() method. When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a pyarrow schema or a specialized
pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns:
movie_id, vector, genres, title, and imdb_id. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python ```python
from lancedb.pydantic import Vector, LanceModel from lancedb.pydantic import Vector, LanceModel
@@ -121,8 +131,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
for i in range(5): for i in range(5):
yield pa.RecordBatch.from_arrays( yield pa.RecordBatch.from_arrays(
[ [
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 2)), pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]), pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]), pa.array([10.0, 20.0]),
], ],
@@ -130,7 +140,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
) )
schema = pa.schema([ schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()), pa.field("item", pa.utf8()),
pa.field("price", pa.float32()), pa.field("price", pa.float32()),
]) ])

View File

@@ -26,15 +26,19 @@ pip install lancedb
## Embeddings ## Embeddings
::: lancedb.embeddings.with_embeddings
::: lancedb.embeddings.functions.EmbeddingFunctionRegistry ::: lancedb.embeddings.functions.EmbeddingFunctionRegistry
::: lancedb.embeddings.functions.EmbeddingFunctionModel ::: lancedb.embeddings.functions.EmbeddingFunction
::: lancedb.embeddings.functions.TextEmbeddingFunctionModel ::: lancedb.embeddings.functions.TextEmbeddingFunction
::: lancedb.embeddings.functions.SentenceTransformerEmbeddingFunction ::: lancedb.embeddings.functions.SentenceTransformerEmbeddings
::: lancedb.embeddings.functions.OpenAIEmbeddings
::: lancedb.embeddings.functions.OpenClipEmbeddings
::: lancedb.embeddings.with_embeddings
## Context ## Context

View File

@@ -25,8 +25,8 @@ Currently, we support the following metrics:
### Flat Search ### Flat Search
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column If you do not create a vector index, LanceDB would need to exhaustively scan the entire vector column (via `Flat Search`)
and compute the distance for each vector in order to find the closest matches. and compute the distance for *every* vector in order to find the closest matches. This is effectively a KNN search.
<!-- Setup Code <!-- Setup Code
@@ -110,7 +110,7 @@ as well.
To accelerate vector retrievals, it is common to build vector indices. To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity or distance metrics. search vector data based on their similarity via the chosen distance metric.
By constructing a vector index, you can reduce the search space and avoid the need By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column. for brute-force scanning of the entire vector column.

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.2.5", "version": "0.2.6",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.2.5", "version": "0.2.6",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.5", "@lancedb/vectordb-darwin-arm64": "0.2.6",
"@lancedb/vectordb-darwin-x64": "0.2.5", "@lancedb/vectordb-darwin-x64": "0.2.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.5", "@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
"@lancedb/vectordb-linux-x64-gnu": "0.2.5", "@lancedb/vectordb-linux-x64-gnu": "0.2.6",
"@lancedb/vectordb-win32-x64-msvc": "0.2.5" "@lancedb/vectordb-win32-x64-msvc": "0.2.6"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -317,9 +317,9 @@
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": { "node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
"integrity": "sha512-V4206SajkMN3o+bBFBAYJq5emlrjevitP0g8RFfVlmj/LS38i8k4uvSe1bICQ2amUrYkL/Jw4ktYn19NRfTU+g==", "integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -329,9 +329,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
"integrity": "sha512-orePizgXCbTJbDJ4bMMnYh/4OgmWDBbHShNxHKQobcX+NgWTexmR0lV1WNOG+DtczBiGH422e3gHJ+xhTO13vg==", "integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -341,9 +341,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
"integrity": "sha512-xIMNwsFGOHeY9EUWCHhUAcA2sCHZ5Lim0sc42uuUOeWayyH+HeR6ZWReptDQRuAoJHqQeag9qcqteE0AZPDTEw==", "integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -353,9 +353,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
"integrity": "sha512-Qr8dbHavtE+Zfd45kEORJQe01kRWhMF703gk8zhtZhskDUBCfqm3ap22JIux58tASxVcBqY8EtUFojfYGnQVvA==", "integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -365,9 +365,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
"integrity": "sha512-jTqkR9HRfbjxhUrlTfveNkJ78tlpVXeNn3BS4wBm4VIsPd75jminKBRYtrlQCWyHusqrUQedKny4hhG1CuNUkg==", "integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -4869,33 +4869,33 @@
} }
}, },
"@lancedb/vectordb-darwin-arm64": { "@lancedb/vectordb-darwin-arm64": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
"integrity": "sha512-V4206SajkMN3o+bBFBAYJq5emlrjevitP0g8RFfVlmj/LS38i8k4uvSe1bICQ2amUrYkL/Jw4ktYn19NRfTU+g==", "integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-darwin-x64": { "@lancedb/vectordb-darwin-x64": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
"integrity": "sha512-orePizgXCbTJbDJ4bMMnYh/4OgmWDBbHShNxHKQobcX+NgWTexmR0lV1WNOG+DtczBiGH422e3gHJ+xhTO13vg==", "integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-arm64-gnu": { "@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
"integrity": "sha512-xIMNwsFGOHeY9EUWCHhUAcA2sCHZ5Lim0sc42uuUOeWayyH+HeR6ZWReptDQRuAoJHqQeag9qcqteE0AZPDTEw==", "integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-x64-gnu": { "@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
"integrity": "sha512-Qr8dbHavtE+Zfd45kEORJQe01kRWhMF703gk8zhtZhskDUBCfqm3ap22JIux58tASxVcBqY8EtUFojfYGnQVvA==", "integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-win32-x64-msvc": { "@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.5", "version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
"integrity": "sha512-jTqkR9HRfbjxhUrlTfveNkJ78tlpVXeNn3BS4wBm4VIsPd75jminKBRYtrlQCWyHusqrUQedKny4hhG1CuNUkg==", "integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
"optional": true "optional": true
}, },
"@neon-rs/cli": { "@neon-rs/cli": {

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.2.5", "version": "0.2.6",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.5", "@lancedb/vectordb-darwin-arm64": "0.2.6",
"@lancedb/vectordb-darwin-x64": "0.2.5", "@lancedb/vectordb-darwin-x64": "0.2.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.5", "@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
"@lancedb/vectordb-linux-x64-gnu": "0.2.5", "@lancedb/vectordb-linux-x64-gnu": "0.2.6",
"@lancedb/vectordb-win32-x64-msvc": "0.2.5" "@lancedb/vectordb-win32-x64-msvc": "0.2.6"
} }
} }

View File

@@ -24,7 +24,7 @@ chai.use(chaiAsPromised)
describe('LanceDB AWS Integration test', function () { describe('LanceDB AWS Integration test', function () {
it('s3+ddb schema is processed correctly', async function () { it('s3+ddb schema is processed correctly', async function () {
this.timeout(5000) this.timeout(15000)
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet // WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
// THE API WILL CHANGE // THE API WILL CHANGE

View File

@@ -19,7 +19,7 @@ import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index' import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index' import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index'
import { Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray } from 'apache-arrow' import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow'
const expect = chai.expect const expect = chai.expect
const assert = chai.assert const assert = chai.assert
@@ -258,6 +258,36 @@ describe('LanceDB client', function () {
}) })
}) })
describe('when searching an empty dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when searching an empty-after-delete dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }])
await table.delete('vector IS NOT NULL')
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when creating a vector index', function () { describe('when creating a vector index', function () {
it('overwrite all records in a table', async function () { it('overwrite all records in a table', async function () {
const uri = await createTestDB(32, 300) const uri = await createTestDB(32, 300)

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.2.4 current_version = 0.3.0
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -11,12 +11,15 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import importlib.metadata
from typing import Optional from typing import Optional
from .db import URI, DBConnection, LanceDBConnection from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection from .remote.db import RemoteDBConnection
from .schema import vector from .schema import vector
__version__ = importlib.metadata.version("lancedb")
def connect( def connect(
uri: URI, uri: URI,

View File

@@ -1,9 +1,9 @@
import os import os
import pyarrow as pa import numpy as np
import pytest import pytest
from lancedb.embeddings import EmbeddingFunctionModel, EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionRegistry, TextEmbeddingFunction
# import lancedb so we don't have to in every example # import lancedb so we don't have to in every example
@@ -22,17 +22,19 @@ def doctest_setup(monkeypatch, tmpdir):
registry = EmbeddingFunctionRegistry.get_instance() registry = EmbeddingFunctionRegistry.get_instance()
@registry.register() @registry.register("test")
class MockEmbeddingFunction(EmbeddingFunctionModel): class MockTextEmbeddingFunction(TextEmbeddingFunction):
def __call__(self, data): """
if isinstance(data, str): Return the hash of the first 10 characters
data = [data] """
elif isinstance(data, pa.ChunkedArray):
data = data.combine_chunks().to_pylist()
elif isinstance(data, pa.Array):
data = data.to_pylist()
return [self.embed(row) for row in data] def generate_embeddings(self, texts):
return [self._compute_one_embedding(row) for row in texts]
def embed(self, row): def _compute_one_embedding(self, row):
return [float(hash(c)) for c in row[:10]] emb = np.array([float(hash(c)) for c in row[:10]])
emb /= np.linalg.norm(emb)
return emb
def ndims(self):
return 10

View File

@@ -22,7 +22,7 @@ import pyarrow as pa
from pyarrow import fs from pyarrow import fs
from .common import DATA, URI from .common import DATA, URI
from .embeddings import EmbeddingFunctionModel from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel from .pydantic import LanceModel
from .table import LanceTable, Table from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme from .util import fs_from_uri, get_uri_location, get_uri_scheme
@@ -290,7 +290,7 @@ class LanceDBConnection(DBConnection):
mode: str = "create", mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionModel]] = None, embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> LanceTable: ) -> LanceTable:
"""Create a table in the database. """Create a table in the database.

View File

@@ -13,10 +13,12 @@
from .functions import ( from .functions import (
REGISTRY, EmbeddingFunction,
EmbeddingFunctionModel, EmbeddingFunctionConfig,
EmbeddingFunctionRegistry, EmbeddingFunctionRegistry,
SentenceTransformerEmbeddingFunction, OpenAIEmbeddings,
TextEmbeddingFunctionModel, OpenClipEmbeddings,
SentenceTransformerEmbeddings,
TextEmbeddingFunction,
) )
from .utils import with_embeddings from .utils import with_embeddings

View File

@@ -10,43 +10,79 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import concurrent.futures
import importlib
import io
import json import json
import os
import socket
import urllib.error
import urllib.parse as urlparse
import urllib.request
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Optional, Union from typing import Dict, List, Optional, Union
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
from cachetools import cached from cachetools import cached
from pydantic import BaseModel from pydantic import BaseModel, Field, PrivateAttr
from tqdm import tqdm
class EmbeddingFunctionRegistry: class EmbeddingFunctionRegistry:
""" """
This is a singleton class used to register embedding functions This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry.
Examples
--------
>>> registry = EmbeddingFunctionRegistry.get_instance()
>>> @registry.register("my-embedding-function")
... class MyEmbeddingFunction(EmbeddingFunction):
... def ndims(self) -> int:
... return 128
...
... def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
... return self.compute_source_embeddings(query, *args, **kwargs)
...
... def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
... return [np.random.rand(self.ndims()) for _ in range(len(texts))]
...
>>> registry.get("my-embedding-function")
<class 'lancedb.embeddings.functions.MyEmbeddingFunction'>
""" """
@classmethod @classmethod
def get_instance(cls): def get_instance(cls):
return REGISTRY return __REGISTRY__
def __init__(self): def __init__(self):
self._functions = {} self._functions = {}
def register(self): def register(self, alias: str = None):
""" """
This creates a decorator that can be used to register This creates a decorator that can be used to register
an EmbeddingFunctionModel. an EmbeddingFunction.
Parameters
----------
alias : Optional[str]
a human friendly name for the embedding function. If not
provided, the class name will be used.
""" """
# This is a decorator for a class that inherits from BaseModel # This is a decorator for a class that inherits from BaseModel
# It adds the class to the registry # It adds the class to the registry
def decorator(cls): def decorator(cls):
if not issubclass(cls, EmbeddingFunctionModel): if not issubclass(cls, EmbeddingFunction):
raise TypeError("Must be a subclass of EmbeddingFunctionModel") raise TypeError("Must be a subclass of EmbeddingFunction")
if cls.__name__ in self._functions: if cls.__name__ in self._functions:
raise KeyError(f"{cls.__name__} was already registered") raise KeyError(f"{cls.__name__} was already registered")
self._functions[cls.__name__] = cls key = alias or cls.__name__
self._functions[key] = cls
cls.__embedding_function_registry_alias__ = alias
return cls return cls
return decorator return decorator
@@ -57,13 +93,22 @@ class EmbeddingFunctionRegistry:
""" """
self._functions = {} self._functions = {}
def load(self, name: str): def get(self, name: str):
""" """
Fetch an embedding function class by name Fetch an embedding function class by name
Parameters
----------
name : str
The name of the embedding function to fetch
Either the alias or the class name if no alias was provided
during registration
""" """
return self._functions[name] return self._functions[name]
def parse_functions(self, metadata: Optional[dict]) -> dict: def parse_functions(
self, metadata: Optional[Dict[bytes, bytes]]
) -> Dict[str, "EmbeddingFunctionConfig"]:
""" """
Parse the metadata from an arrow table and Parse the metadata from an arrow table and
return a mapping of the vector column to the return a mapping of the vector column to the
@@ -71,9 +116,9 @@ class EmbeddingFunctionRegistry:
Parameters Parameters
---------- ----------
metadata : Optional[dict] metadata : Optional[Dict[bytes, bytes]]
The metadata from an arrow table. Note that The metadata from an arrow table. Note that
the keys and values are bytes. the keys and values are bytes (pyarrow api)
Returns Returns
------- -------
@@ -86,68 +131,94 @@ class EmbeddingFunctionRegistry:
return {} return {}
serialized = metadata[b"embedding_functions"] serialized = metadata[b"embedding_functions"]
raw_list = json.loads(serialized.decode("utf-8")) raw_list = json.loads(serialized.decode("utf-8"))
functions = {} return {
for obj in raw_list: obj["vector_column"]: EmbeddingFunctionConfig(
model = self.load(obj["schema"]["title"]) vector_column=obj["vector_column"],
functions[obj["model"]["vector_column"]] = model(**obj["model"]) source_column=obj["source_column"],
return functions function=self.get(obj["name"])(**obj["model"]),
)
for obj in raw_list
}
def function_to_metadata(self, func): def function_to_metadata(self, conf: "EmbeddingFunctionConfig"):
""" """
Convert the given embedding function and source / vector column configs Convert the given embedding function and source / vector column configs
into a config dictionary that can be serialized into arrow metadata into a config dictionary that can be serialized into arrow metadata
""" """
schema = func.model_json_schema() func = conf.function
json_data = func.model_dump() name = getattr(
func, "__embedding_function_registry_alias__", func.__class__.__name__
)
json_data = func.safe_model_dump()
return { return {
"schema": schema, "name": name,
"model": json_data, "model": json_data,
"source_column": conf.source_column,
"vector_column": conf.vector_column,
} }
def get_table_metadata(self, func_list): def get_table_metadata(self, func_list):
""" """
Convert a list of embedding functions and source / vector column configs Convert a list of embedding functions and source / vector configs
into a config dictionary that can be serialized into arrow metadata into a config dictionary that can be serialized into arrow metadata
""" """
if func_list is None or len(func_list) == 0:
return None
json_data = [self.function_to_metadata(func) for func in func_list] json_data = [self.function_to_metadata(func) for func in func_list]
# Note that metadata dictionary values must be bytes so we need to json dump then utf8 encode # Note that metadata dictionary values must be bytes
# so we need to json dump then utf8 encode
metadata = json.dumps(json_data, indent=2).encode("utf-8") metadata = json.dumps(json_data, indent=2).encode("utf-8")
return {"embedding_functions": metadata} return {"embedding_functions": metadata}
REGISTRY = EmbeddingFunctionRegistry() # Global instance
__REGISTRY__ = EmbeddingFunctionRegistry()
class EmbeddingFunctionModel(BaseModel, ABC):
"""
A callable ABC for embedding functions
"""
source_column: Optional[str]
vector_column: str
@abstractmethod
def __call__(self, *args, **kwargs) -> List[np.array]:
pass
TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray] TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
]
class TextEmbeddingFunctionModel(EmbeddingFunctionModel): class EmbeddingFunction(BaseModel, ABC):
""" """
A callable ABC for embedding functions that take text as input An ABC for embedding functions.
All concrete embedding functions must implement the following:
1. compute_query_embeddings() which takes a query and returns a list of embeddings
2. get_source_embeddings() which returns a list of embeddings for the source column
For text data, the two will be the same. For multi-modal data, the source column
might be images and the vector column might be text.
3. ndims method which returns the number of dimensions of the vector column
""" """
def __call__(self, texts: TEXT, *args, **kwargs) -> List[np.array]: _ndims: int = PrivateAttr()
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts) @classmethod
def create(cls, **kwargs):
"""
Create an instance of the embedding function
"""
return cls(**kwargs)
@abstractmethod
def compute_query_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query
"""
pass
@abstractmethod
def compute_source_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database
"""
pass
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]: def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
""" """
Sanitize the input to the embedding function. This is called Sanitize the input to the embedding function.
before generate_embeddings() and is useful for stripping
whitespace, lowercasing, etc.
""" """
if isinstance(texts, str): if isinstance(texts, str):
texts = [texts] texts = [texts]
@@ -157,6 +228,78 @@ class TextEmbeddingFunctionModel(EmbeddingFunctionModel):
texts = texts.combine_chunks().to_pylist() texts = texts.combine_chunks().to_pylist()
return texts return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION
if PYDANTIC_VERSION.major < 2:
return dict(self)
return self.model_dump()
@abstractmethod
def ndims(self):
"""
Return the dimensions of the vector column
"""
pass
def SourceField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the source column for this embedding function
"""
return Field(json_schema_extra={"source_column_for": self}, **kwargs)
def VectorField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the target vector column for this embedding function
"""
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
class EmbeddingFunctionConfig(BaseModel):
"""
This model encapsulates the configuration for a embedding function
in a lancedb table. It holds the embedding function, the source column,
and the vector column
"""
vector_column: str
source_column: str
function: EmbeddingFunction
class TextEmbeddingFunction(EmbeddingFunction):
"""
A callable ABC for embedding functions that take text as input
"""
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, *args, **kwargs)
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
@abstractmethod @abstractmethod
def generate_embeddings( def generate_embeddings(
self, texts: Union[List[str], np.ndarray] self, texts: Union[List[str], np.ndarray]
@@ -167,15 +310,25 @@ class TextEmbeddingFunctionModel(EmbeddingFunctionModel):
pass pass
@REGISTRY.register() # @EmbeddingFunctionRegistry.get_instance().register(name) doesn't work in 3.8
class SentenceTransformerEmbeddingFunction(TextEmbeddingFunctionModel): register = lambda name: EmbeddingFunctionRegistry.get_instance().register(name)
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
""" """
An embedding function that uses the sentence-transformers library An embedding function that uses the sentence-transformers library
https://huggingface.co/sentence-transformers
""" """
name: str = "all-MiniLM-L6-v2" name: str = "all-MiniLM-L6-v2"
device: str = "cpu" device: str = "cpu"
normalize: bool = False normalize: bool = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
@property @property
def embedding_model(self): def embedding_model(self):
@@ -186,6 +339,11 @@ class SentenceTransformerEmbeddingFunction(TextEmbeddingFunctionModel):
""" """
return self.__class__.get_embedding_model(self.name, self.device) return self.__class__.get_embedding_model(self.name, self.device)
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings( def generate_embeddings(
self, texts: Union[List[str], np.ndarray] self, texts: Union[List[str], np.ndarray]
) -> List[np.array]: ) -> List[np.array]:
@@ -220,9 +378,201 @@ class SentenceTransformerEmbeddingFunction(TextEmbeddingFunctionModel):
TODO: use lru_cache instead with a reasonable/configurable maxsize TODO: use lru_cache instead with a reasonable/configurable maxsize
""" """
try: sentence_transformers = cls.safe_import(
from sentence_transformers import SentenceTransformer "sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(name, device=device)
return SentenceTransformer(name, device=device)
except ImportError: @register("openai")
raise ValueError("Please install sentence_transformers") class OpenAIEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the OpenAI API
https://platform.openai.com/docs/guides/embeddings
"""
name: str = "text-embedding-ada-002"
def ndims(self):
# TODO don't hardcode this
return 1536
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
openai = self.safe_import("openai")
rs = openai.Embedding.create(input=texts, model=self.name)["data"]
return [v["embedding"] for v in rs]
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the OpenClip API
For multi-modal text-to-image search
https://github.com/mlfoundations/open_clip
"""
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in tqdm(futures)]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor.to(self.device))
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
def url_retrieve(url: str):
"""
Parameters
----------
url: str
URL to download from
"""
try:
with urllib.request.urlopen(url) as conn:
return conn.read()
except (socket.gaierror, urllib.error.URLError) as err:
raise ConnectionError("could not download {} due to {}".format(url, err))

View File

@@ -26,6 +26,8 @@ import pyarrow as pa
import pydantic import pydantic
import semver import semver
from .embeddings import EmbeddingFunctionRegistry
PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__) PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__)
try: try:
from pydantic_core import CoreSchema, core_schema from pydantic_core import CoreSchema, core_schema
@@ -126,7 +128,7 @@ def Vector(
def validate(cls, v): def validate(cls, v):
if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim: if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim:
raise TypeError("A list of numbers or numpy.ndarray is needed") raise TypeError("A list of numbers or numpy.ndarray is needed")
return v return cls(v)
if PYDANTIC_VERSION < (2, 0): if PYDANTIC_VERSION < (2, 0):
@@ -236,27 +238,18 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
>>> from typing import List, Optional >>> from typing import List, Optional
>>> import pydantic >>> import pydantic
>>> from lancedb.pydantic import pydantic_to_schema >>> from lancedb.pydantic import pydantic_to_schema
...
>>> class InnerModel(pydantic.BaseModel):
... a: str
... b: Optional[float]
>>>
>>> class FooModel(pydantic.BaseModel): >>> class FooModel(pydantic.BaseModel):
... id: int ... id: int
... s: Optional[str] = None ... s: str
... vec: List[float] ... vec: List[float]
... li: List[int] ... li: List[int]
... inner: InnerModel ...
>>> schema = pydantic_to_schema(FooModel) >>> schema = pydantic_to_schema(FooModel)
>>> assert schema == pa.schema([ >>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False), ... pa.field("id", pa.int64(), False),
... pa.field("s", pa.utf8(), True), ... pa.field("s", pa.utf8(), False),
... pa.field("vec", pa.list_(pa.float64()), False), ... pa.field("vec", pa.list_(pa.float64()), False),
... pa.field("li", pa.list_(pa.int64()), False), ... pa.field("li", pa.list_(pa.int64()), False),
... pa.field("inner", pa.struct([
... pa.field("a", pa.utf8(), False),
... pa.field("b", pa.float64(), True),
... ]), False),
... ]) ... ])
""" """
fields = _pydantic_model_to_fields(model) fields = _pydantic_model_to_fields(model)
@@ -290,13 +283,58 @@ class LanceModel(pydantic.BaseModel):
""" """
Get the Arrow Schema for this model. Get the Arrow Schema for this model.
""" """
return pydantic_to_schema(cls) schema = pydantic_to_schema(cls)
functions = cls.parse_embedding_functions()
if len(functions) > 0:
metadata = EmbeddingFunctionRegistry.get_instance().get_table_metadata(
functions
)
schema = schema.with_metadata(metadata)
return schema
@classmethod @classmethod
def field_names(cls) -> List[str]: def field_names(cls) -> List[str]:
""" """
Get the field names of this model. Get the field names of this model.
""" """
return list(cls.safe_get_fields().keys())
@classmethod
def safe_get_fields(cls):
if PYDANTIC_VERSION.major < 2: if PYDANTIC_VERSION.major < 2:
return list(cls.__fields__.keys()) return cls.__fields__
return list(cls.model_fields.keys()) return cls.model_fields
@classmethod
def parse_embedding_functions(cls) -> List["EmbeddingFunctionConfig"]:
"""
Parse the embedding functions from this model.
"""
from .embeddings import EmbeddingFunctionConfig
vec_and_function = []
for name, field_info in cls.safe_get_fields().items():
func = get_extras(field_info, "vector_column_for")
if func is not None:
vec_and_function.append([name, func])
configs = []
for vec, func in vec_and_function:
for source, field_info in cls.safe_get_fields().items():
src_func = get_extras(field_info, "source_column_for")
if src_func == func:
configs.append(
EmbeddingFunctionConfig(
source_column=source, vector_column=vec, function=func
)
)
return configs
def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
"""
Get the extra metadata from a Pydantic FieldInfo.
"""
if PYDANTIC_VERSION.major >= 2:
return (field_info.json_schema_extra or {}).get(key)
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)

View File

@@ -38,6 +38,9 @@ class Query(pydantic.BaseModel):
# sql filter to refine the query with # sql filter to refine the query with
filter: Optional[str] = None filter: Optional[str] = None
# if True then apply the filter before vector search
prefilter: bool = False
# top k results to return # top k results to return
k: int k: int
@@ -60,13 +63,15 @@ class LanceQueryBuilder(ABC):
def create( def create(
cls, cls,
table: "lancedb.table.Table", table: "lancedb.table.Table",
query: Optional[Union[np.ndarray, str]], query: Optional[Union[np.ndarray, str, "PIL.Image.Image"]],
query_type: str, query_type: str,
vector_column_name: str, vector_column_name: str,
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
if query is None: if query is None:
return LanceEmptyQueryBuilder(table) return LanceEmptyQueryBuilder(table)
# convert "auto" query_type to "vector" or "fts"
# and convert the query to vector if needed
query, query_type = cls._resolve_query( query, query_type = cls._resolve_query(
table, query, query_type, vector_column_name table, query, query_type, vector_column_name
) )
@@ -90,30 +95,27 @@ class LanceQueryBuilder(ABC):
# otherwise raise TypeError # otherwise raise TypeError
if query_type == "fts": if query_type == "fts":
if not isinstance(query, str): if not isinstance(query, str):
raise TypeError( raise TypeError(f"'fts' queries must be a string: {type(query)}")
f"Query type is 'fts' but query is not a string: {type(query)}"
)
return query, query_type return query, query_type
elif query_type == "vector": elif query_type == "vector":
# If query_type is vector, then query must be a list or np.ndarray.
# otherwise raise TypeError
if not isinstance(query, (list, np.ndarray)): if not isinstance(query, (list, np.ndarray)):
raise TypeError( conf = table.embedding_functions.get(vector_column_name)
f"Query type is 'vector' but query is not a list or np.ndarray: {type(query)}" if conf is not None:
) query = conf.function.compute_query_embeddings(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
return query, query_type return query, query_type
elif query_type == "auto": elif query_type == "auto":
if isinstance(query, (list, np.ndarray)): if isinstance(query, (list, np.ndarray)):
return query, "vector" return query, "vector"
elif isinstance(query, str): else:
func = table.embedding_functions.get(vector_column_name, None) conf = table.embedding_functions.get(vector_column_name)
if func is not None: if conf is not None:
query = func(query)[0] query = conf.function.compute_query_embeddings(query)[0]
return query, "vector" return query, "vector"
else: else:
return query, "fts" return query, "fts"
else:
raise TypeError("Query must be a list, np.ndarray, or str")
else: else:
raise ValueError( raise ValueError(
f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}" f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}"
@@ -163,7 +165,7 @@ class LanceQueryBuilder(ABC):
for row in self.to_arrow().to_pylist() for row in self.to_arrow().to_pylist()
] ]
def limit(self, limit: int) -> LanceVectorQueryBuilder: def limit(self, limit: int) -> LanceQueryBuilder:
"""Set the maximum number of results to return. """Set the maximum number of results to return.
Parameters Parameters
@@ -173,13 +175,13 @@ class LanceQueryBuilder(ABC):
Returns Returns
------- -------
LanceVectorQueryBuilder LanceQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._limit = limit self._limit = limit
return self return self
def select(self, columns: list) -> LanceVectorQueryBuilder: def select(self, columns: list) -> LanceQueryBuilder:
"""Set the columns to return. """Set the columns to return.
Parameters Parameters
@@ -189,13 +191,13 @@ class LanceQueryBuilder(ABC):
Returns Returns
------- -------
LanceVectorQueryBuilder LanceQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._columns = columns self._columns = columns
return self return self
def where(self, where: str) -> LanceVectorQueryBuilder: def where(self, where) -> LanceQueryBuilder:
"""Set the where clause. """Set the where clause.
Parameters Parameters
@@ -205,7 +207,7 @@ class LanceQueryBuilder(ABC):
Returns Returns
------- -------
LanceVectorQueryBuilder LanceQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._where = where self._where = where
@@ -238,7 +240,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
def __init__( def __init__(
self, self,
table: "lancedb.table.Table", table: "lancedb.table.Table",
query: Union[np.ndarray, list], query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str = VECTOR_COLUMN_NAME, vector_column: str = VECTOR_COLUMN_NAME,
): ):
super().__init__(table) super().__init__(table)
@@ -247,6 +249,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._nprobes = 20 self._nprobes = 20
self._refine_factor = None self._refine_factor = None
self._vector_column = vector_column self._vector_column = vector_column
self._prefilter = False
def metric(self, metric: Literal["L2", "cosine"]) -> LanceVectorQueryBuilder: def metric(self, metric: Literal["L2", "cosine"]) -> LanceVectorQueryBuilder:
"""Set the distance metric to use. """Set the distance metric to use.
@@ -321,6 +324,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
query = Query( query = Query(
vector=vector, vector=vector,
filter=self._where, filter=self._where,
prefilter=self._prefilter,
k=self._limit, k=self._limit,
metric=self._metric, metric=self._metric,
columns=self._columns, columns=self._columns,
@@ -330,6 +334,30 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
) )
return self._table._execute_query(query) return self._table._execute_query(query)
def where(self, where: str, prefilter: bool = False) -> LanceVectorQueryBuilder:
"""Set the where clause.
Parameters
----------
where: str
The where clause.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future. Currently this is only supported
in OSS and can only be used with a table that does not have an ANN
index.
Returns
-------
LanceQueryBuilder
The LanceQueryBuilder object.
"""
self._where = where
self._prefilter = prefilter
return self
class LanceFtsQueryBuilder(LanceQueryBuilder): class LanceFtsQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "lancedb.table.Table", query: str): def __init__(self, table: "lancedb.table.Table", query: str):

View File

@@ -14,7 +14,7 @@
import abc import abc
from typing import List, Optional from typing import List, Optional
import attr import attrs
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel from pydantic import BaseModel
@@ -44,7 +44,7 @@ class VectorQuery(BaseModel):
refine_factor: Optional[int] = None refine_factor: Optional[int] = None
@attr.define @attrs.define
class VectorQueryResult: class VectorQueryResult:
# for now the response is directly seralized into a pandas dataframe # for now the response is directly seralized into a pandas dataframe
tbl: pa.Table tbl: pa.Table

View File

@@ -16,7 +16,7 @@ import functools
from typing import Any, Callable, Dict, Optional, Union from typing import Any, Callable, Dict, Optional, Union
import aiohttp import aiohttp
import attr import attrs
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel from pydantic import BaseModel
@@ -43,14 +43,14 @@ async def _read_ipc(resp: aiohttp.ClientResponse) -> pa.Table:
return reader.read_all() return reader.read_all()
@attr.define(slots=False) @attrs.define(slots=False)
class RestfulLanceDBClient: class RestfulLanceDBClient:
db_name: str db_name: str
region: str region: str
api_key: Credential api_key: Credential
host_override: Optional[str] = attr.field(default=None) host_override: Optional[str] = attrs.field(default=None)
closed: bool = attr.field(default=False, init=False) closed: bool = attrs.field(default=False, init=False)
@functools.cached_property @functools.cached_property
def session(self) -> aiohttp.ClientSession: def session(self) -> aiohttp.ClientSession:

View File

@@ -18,10 +18,9 @@ from urllib.parse import urlparse
import pyarrow as pa import pyarrow as pa
from lancedb.common import DATA from ..common import DATA
from lancedb.db import DBConnection from ..db import DBConnection
from lancedb.table import Table, _sanitize_data from ..table import Table, _sanitize_data
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient

View File

@@ -98,6 +98,8 @@ class RemoteTable(Table):
return LanceVectorQueryBuilder(self, query, vector_column_name) return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
if query.prefilter:
raise NotImplementedError("Cloud support for prefiltering is coming soon")
result = self._conn._client.query(self._name, query) result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow() return self._conn._loop.run_until_complete(result).to_arrow()

View File

@@ -28,7 +28,8 @@ from lance.dataset import ReaderLike
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionModel, EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionRegistry
from .embeddings.functions import EmbeddingFunctionConfig
from .pydantic import LanceModel from .pydantic import LanceModel
from .query import LanceQueryBuilder, Query from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas from .util import fs_from_uri, safe_import_pandas
@@ -81,15 +82,16 @@ def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schem
vector column to the table. vector column to the table.
""" """
functions = EmbeddingFunctionRegistry.get_instance().parse_functions(metadata) functions = EmbeddingFunctionRegistry.get_instance().parse_functions(metadata)
for vector_col, func in functions.items(): for vector_column, conf in functions.items():
if vector_col not in data.column_names: func = conf.function
col_data = func(data[func.source_column]) if vector_column not in data.column_names:
col_data = func.compute_source_embeddings(data[conf.source_column])
if schema is not None: if schema is not None:
dtype = schema.field(vector_col).type dtype = schema.field(vector_column).type
else: else:
dtype = pa.list_(pa.float32(), len(col_data[0])) dtype = pa.list_(pa.float32(), len(col_data[0]))
data = data.append_column( data = data.append_column(
pa.field(vector_col, type=dtype), pa.array(col_data, type=dtype) pa.field(vector_column, type=dtype), pa.array(col_data, type=dtype)
) )
return data return data
@@ -230,7 +232,7 @@ class Table(ABC):
@abstractmethod @abstractmethod
def search( def search(
self, self,
query: Optional[Union[VEC, str]] = None, query: Optional[Union[VEC, str, "PIL.Image.Image"]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
@@ -239,7 +241,7 @@ class Table(ABC):
Parameters Parameters
---------- ----------
query: str, list, np.ndarray, default None query: str, list, np.ndarray, PIL.Image.Image, default None
The query to search for. If None then The query to search for. If None then
the select/where/limit clauses are applied to filter the select/where/limit clauses are applied to filter
the table the table
@@ -249,6 +251,8 @@ class Table(ABC):
"vector", "fts", or "auto" "vector", "fts", or "auto"
If "auto" then the query type is inferred from the query; If "auto" then the query type is inferred from the query;
If `query` is a list/np.ndarray then the query type is "vector"; If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found.
If `query` is a string, then the query type is "vector" if the If `query` is a string, then the query type is "vector" if the
table has embedding functions else the query type is "fts" table has embedding functions else the query type is "fts"
@@ -524,6 +528,9 @@ class LanceTable(Table):
fill_value: float = 0.0, fill_value: float = 0.0,
): ):
"""Add data to the table. """Add data to the table.
If vector columns are missing and the table
has embedding functions, then the vector columns
are automatically computed and added.
Parameters Parameters
---------- ----------
@@ -617,12 +624,6 @@ class LanceTable(Table):
) )
self._reset_dataset() self._reset_dataset()
def _get_embedding_function_for_source_col(self, column_name: str):
for k, v in self.embedding_functions.items():
if v.source_column == column_name:
return v
return None
@cached_property @cached_property
def embedding_functions(self) -> dict: def embedding_functions(self) -> dict:
""" """
@@ -640,7 +641,7 @@ class LanceTable(Table):
def search( def search(
self, self,
query: Optional[Union[VEC, str]] = None, query: Optional[Union[VEC, str, "PIL.Image.Image"]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
@@ -649,7 +650,7 @@ class LanceTable(Table):
Parameters Parameters
---------- ----------
query: str, list, np.ndarray, or None query: str, list, np.ndarray, a PIL Image or None
The query to search for. If None then The query to search for. If None then
the select/where/limit clauses are applied to filter the select/where/limit clauses are applied to filter
the table the table
@@ -658,9 +659,11 @@ class LanceTable(Table):
query_type: str, default "auto" query_type: str, default "auto"
"vector", "fts", or "auto" "vector", "fts", or "auto"
If "auto" then the query type is inferred from the query; If "auto" then the query type is inferred from the query;
If the query is a list/np.ndarray then the query type is "vector"; If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found.
If the query is a string, then the query type is "vector" if the If the query is a string, then the query type is "vector" if the
table has embedding functions else the query type is "fts" table has embedding functions, else the query type is "fts"
Returns Returns
------- -------
@@ -684,7 +687,7 @@ class LanceTable(Table):
mode="create", mode="create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: List[EmbeddingFunctionModel] = None, embedding_functions: List[EmbeddingFunctionConfig] = None,
): ):
""" """
Create a new table. Create a new table.
@@ -727,10 +730,16 @@ class LanceTable(Table):
""" """
tbl = LanceTable(db, name) tbl = LanceTable(db, name)
if inspect.isclass(schema) and issubclass(schema, LanceModel): if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema
# note that it's possible this contains
# embedding function metadata already
schema = schema.to_arrow_schema() schema = schema.to_arrow_schema()
metadata = None metadata = None
if embedding_functions is not None: if embedding_functions is not None:
# If we passed in embedding functions explicitly
# then we'll override any schema metadata that
# may was implicitly specified by the LanceModel schema
registry = EmbeddingFunctionRegistry.get_instance() registry = EmbeddingFunctionRegistry.get_instance()
metadata = registry.get_table_metadata(embedding_functions) metadata = registry.get_table_metadata(embedding_functions)
@@ -835,9 +844,16 @@ class LanceTable(Table):
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance() ds = self.to_lance()
if query.prefilter:
for idx in ds.list_indices():
if query.vector_column in idx["fields"]:
raise NotImplementedError(
"Prefiltering for indexed vector column is coming soon."
)
return ds.to_table( return ds.to_table(
columns=query.columns, columns=query.columns,
filter=query.filter, filter=query.filter,
prefilter=query.prefilter,
nearest={ nearest={
"column": query.vector_column, "column": query.vector_column,
"q": query.vector, "q": query.vector,

View File

@@ -70,7 +70,11 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
Get a PyArrow FileSystem from a URI, handling extra environment variables. Get a PyArrow FileSystem from a URI, handling extra environment variables.
""" """
if get_uri_scheme(uri) == "s3": if get_uri_scheme(uri) == "s3":
fs = pa_fs.S3FileSystem(endpoint_override=os.environ.get("AWS_ENDPOINT")) fs = pa_fs.S3FileSystem(
endpoint_override=os.environ.get("AWS_ENDPOINT"),
request_timeout=30,
connect_timeout=30,
)
path = get_uri_location(uri) path = get_uri_location(uri)
return fs, path return fs, path

View File

@@ -1,14 +1,14 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.2.4" version = "0.3.0"
dependencies = [ dependencies = [
"pylance==0.7.4", "pylance==0.8.1",
"ratelimiter", "ratelimiter~=1.0",
"retry", "retry>=0.9.2",
"tqdm", "tqdm>=4.1.0",
"aiohttp", "aiohttp",
"pydantic", "pydantic>=1.10",
"attr", "attrs>=21.3.0",
"semver>=3.0", "semver>=3.0",
"cachetools" "cachetools"
] ]
@@ -44,9 +44,11 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb" repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio"] tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"]
dev = ["ruff", "pre-commit", "black"] dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip"]
[build-system] [build-system]
requires = ["setuptools", "wheel"] requires = ["setuptools", "wheel"]
@@ -54,3 +56,10 @@ build-backend = "setuptools.build_meta"
[tool.isort] [tool.isort]
profile = "black" profile = "black"
[tool.pytest.ini_options]
addopts = "--strict-markers"
markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"asyncio"
]

View File

@@ -136,11 +136,9 @@ def test_ingest_iterator(tmp_path):
def run_tests(schema): def run_tests(schema):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite") tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite")
tbl.to_pandas() tbl.to_pandas()
assert tbl.search([3.1, 4.1]).limit(1).to_df()["_distance"][0] == 0.0 assert tbl.search([3.1, 4.1]).limit(1).to_df()["_distance"][0] == 0.0
assert tbl.search([5.9, 26.5]).limit(1).to_df()["_distance"][0] == 0.0 assert tbl.search([5.9, 26.5]).limit(1).to_df()["_distance"][0] == 0.0
tbl_len = len(tbl) tbl_len = len(tbl)
tbl.add(make_batches()) tbl.add(make_batches())
assert tbl_len == 50 assert tbl_len == 50

View File

@@ -16,8 +16,12 @@ import lance
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
from lancedb.conftest import MockEmbeddingFunction from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.embeddings import EmbeddingFunctionRegistry, with_embeddings from lancedb.embeddings import (
EmbeddingFunctionConfig,
EmbeddingFunctionRegistry,
with_embeddings,
)
def mock_embed_func(input_data): def mock_embed_func(input_data):
@@ -54,8 +58,12 @@ def test_embedding_function(tmp_path):
"vector": [np.random.randn(10), np.random.randn(10)], "vector": [np.random.randn(10), np.random.randn(10)],
} }
) )
func = MockEmbeddingFunction(source_column="text", vector_column="vector") conf = EmbeddingFunctionConfig(
metadata = registry.get_table_metadata([func]) source_column="text",
vector_column="vector",
function=MockTextEmbeddingFunction(),
)
metadata = registry.get_table_metadata([conf])
table = table.replace_schema_metadata(metadata) table = table.replace_schema_metadata(metadata)
# Write it to disk # Write it to disk
@@ -65,14 +73,13 @@ def test_embedding_function(tmp_path):
ds = lance.dataset(tmp_path / "test.lance") ds = lance.dataset(tmp_path / "test.lance")
# can we get the serialized version back out? # can we get the serialized version back out?
functions = registry.parse_functions(ds.schema.metadata) configs = registry.parse_functions(ds.schema.metadata)
func = functions["vector"] conf = configs["vector"]
actual = func("hello world") func = conf.function
actual = func.compute_query_embeddings("hello world")
# We create an instance
expected_func = MockEmbeddingFunction(source_column="text", vector_column="vector")
# And we make sure we can call it # And we make sure we can call it
expected = expected_func("hello world") expected = func.compute_query_embeddings("hello world")
assert np.allclose(actual, expected) assert np.allclose(actual, expected)

View File

@@ -0,0 +1,125 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import numpy as np
import pandas as pd
import pytest
import requests
import lancedb
from lancedb.embeddings import EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector
# These are integration tests for embedding functions.
# They are slow because they require downloading models
# or connection to external api
@pytest.mark.slow
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
def test_sentence_transformer(alias, tmp_path):
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get(alias).create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
pd.DataFrame(
{
"text": [
"hello world",
"goodbye world",
"fizz",
"buzz",
"foo",
"bar",
"baz",
]
}
)
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
vec = func.compute_query_embeddings(query)[0]
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
assert actual.text == expected.text
assert actual.text == "hello world"
@pytest.mark.slow
def test_openclip(tmp_path):
from PIL import Image
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField()
image_bytes: bytes = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
vec_from_bytes: Vector(func.ndims()) = func.VectorField()
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == frombytes.label
assert np.allclose(actual.vector, frombytes.vector)
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == other.label
arrow_table = table.search().select(["vector", "vec_from_bytes"]).to_arrow()
assert np.allclose(
arrow_table["vector"].combine_chunks().values.to_numpy(),
arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(),
)

View File

@@ -38,6 +38,7 @@ class MockTable:
return ds.to_table( return ds.to_table(
columns=query.columns, columns=query.columns,
filter=query.filter, filter=query.filter,
prefilter=query.prefilter,
nearest={ nearest={
"column": query.vector_column, "column": query.vector_column,
"q": query.vector, "q": query.vector,
@@ -97,6 +98,25 @@ def test_query_builder_with_filter(table):
assert all(df["vector"].values[0] == [3, 4]) assert all(df["vector"].values[0] == [3, 4])
def test_query_builder_with_prefilter(table):
df = (
LanceVectorQueryBuilder(table, [0, 0], "vector")
.where("id = 2")
.limit(1)
.to_df()
)
assert len(df) == 0
df = (
LanceVectorQueryBuilder(table, [0, 0], "vector")
.where("id = 2", prefilter=True)
.limit(1)
.to_df()
)
assert df["id"].values[0] == 2
assert all(df["vector"].values[0] == [3, 4])
def test_query_builder_with_metric(table): def test_query_builder_with_metric(table):
query = [4, 8] query = [4, 8]
vector_column_name = "vector" vector_column_name = "vector"

View File

@@ -11,7 +11,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import attr import attrs
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
@@ -21,10 +21,10 @@ from aiohttp import web
from lancedb.remote.client import RestfulLanceDBClient, VectorQuery from lancedb.remote.client import RestfulLanceDBClient, VectorQuery
@attr.define @attrs.define
class MockLanceDBServer: class MockLanceDBServer:
runner: web.AppRunner = attr.field(init=False) runner: web.AppRunner = attrs.field(init=False)
site: web.TCPSite = attr.field(init=False) site: web.TCPSite = attrs.field(init=False)
async def query_handler(self, request: web.Request) -> web.Response: async def query_handler(self, request: web.Request) -> web.Response:
table_name = request.match_info["table_name"] table_name = request.match_info["table_name"]

View File

@@ -22,8 +22,9 @@ import pandas as pd
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from lancedb.conftest import MockEmbeddingFunction from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
from lancedb.table import LanceTable from lancedb.table import LanceTable
@@ -356,20 +357,23 @@ def test_create_with_embedding_function(db):
text: str text: str
vector: Vector(10) vector: Vector(10)
func = MockEmbeddingFunction(source_column="text", vector_column="vector") func = MockTextEmbeddingFunction()
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"] texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts, "vector": func(texts)}) df = pd.DataFrame({"text": texts, "vector": func.compute_source_embeddings(texts)})
conf = EmbeddingFunctionConfig(
source_column="text", vector_column="vector", function=func
)
table = LanceTable.create( table = LanceTable.create(
db, db,
"my_table", "my_table",
schema=MyTable, schema=MyTable,
embedding_functions=[func], embedding_functions=[conf],
) )
table.add(df) table.add(df)
query_str = "hi how are you?" query_str = "hi how are you?"
query_vector = func(query_str)[0] query_vector = func.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow() expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow() actual = table.search(query_str).limit(2).to_arrow()
@@ -377,17 +381,13 @@ def test_create_with_embedding_function(db):
def test_add_with_embedding_function(db): def test_add_with_embedding_function(db):
class MyTable(LanceModel): emb = EmbeddingFunctionRegistry.get_instance().get("test")()
text: str
vector: Vector(10)
func = MockEmbeddingFunction(source_column="text", vector_column="vector") class MyTable(LanceModel):
table = LanceTable.create( text: str = emb.SourceField()
db, vector: Vector(emb.ndims()) = emb.VectorField()
"my_table",
schema=MyTable, table = LanceTable.create(db, "my_table", schema=MyTable)
embedding_functions=[func],
)
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"] texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts}) df = pd.DataFrame({"text": texts})
@@ -397,7 +397,7 @@ def test_add_with_embedding_function(db):
table.add([{"text": t} for t in texts]) table.add([{"text": t} for t in texts])
query_str = "hi how are you?" query_str = "hi how are you?"
query_vector = func(query_str)[0] query_vector = emb.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow() expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow() actual = table.search(query_str).limit(2).to_arrow()

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.2.5" version = "0.2.6"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"

View File

@@ -12,8 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use lance::index::vector::ivf::IvfBuildParams; use lance::index::vector::{ivf::IvfBuildParams, pq::PQBuildParams};
use lance::index::vector::pq::PQBuildParams;
use lance_linalg::distance::MetricType; use lance_linalg::distance::MetricType;
use neon::context::FunctionContext; use neon::context::FunctionContext;
use neon::prelude::*; use neon::prelude::*;
@@ -79,11 +78,9 @@ fn get_index_params_builder(
num_partitions.map(|np| { num_partitions.map(|np| {
let max_iters = max_iters.unwrap_or(50); let max_iters = max_iters.unwrap_or(50);
let ivf_params = IvfBuildParams { let mut ivf_params = IvfBuildParams::default();
num_partitions: np, ivf_params.num_partitions = np;
max_iters, ivf_params.max_iters = max_iters;
centroids: None,
};
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.2.5" version = "0.2.6"
edition = "2021" edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"

View File

@@ -20,7 +20,7 @@ use lance::dataset::WriteParams;
use lance::io::object_store::ObjectStore; use lance::io::object_store::ObjectStore;
use snafu::prelude::*; use snafu::prelude::*;
use crate::error::{CreateDirSnafu, Error, InvalidTableNameSnafu, Result}; use crate::error::{CreateDirSnafu, InvalidTableNameSnafu, Result};
use crate::table::{ReadParams, Table}; use crate::table::{ReadParams, Table};
pub const LANCE_FILE_EXTENSION: &str = "lance"; pub const LANCE_FILE_EXTENSION: &str = "lance";
@@ -36,17 +36,6 @@ pub struct Database {
const LANCE_EXTENSION: &str = "lance"; const LANCE_EXTENSION: &str = "lance";
const ENGINE: &str = "engine"; const ENGINE: &str = "engine";
/// Parse a url, if it's not a valid url, assume it's a local file
/// and try to parse with file:// appended
fn parse_url(url: &str) -> Result<url::Url> {
match url::Url::parse(url) {
Ok(url) => Ok(url),
Err(_) => url::Url::parse(format!("file://{}", url).as_str()).map_err(|e| Error::Lance {
message: format!("Failed to parse uri: {}", e),
}),
}
}
/// A connection to LanceDB /// A connection to LanceDB
impl Database { impl Database {
/// Connects to LanceDB /// Connects to LanceDB
@@ -59,25 +48,11 @@ impl Database {
/// ///
/// * A [Database] object. /// * A [Database] object.
pub async fn connect(uri: &str) -> Result<Database> { pub async fn connect(uri: &str) -> Result<Database> {
// For a native (using lance directly) connection let parse_res = url::Url::parse(uri);
// The DB doesn't use any uri parameters, but lance does
// So we need to parse the uri, extract the query string, and progate it to lance
let mut url = parse_url(uri)?;
// special handling for windows
if url.scheme().len() == 1 && cfg!(windows) {
let (object_store, base_path) = ObjectStore::from_uri(uri).await?;
if object_store.is_local() {
Self::try_create_dir(uri).context(CreateDirSnafu { path: uri })?;
}
return Ok(Database {
uri: uri.to_string(),
query_string: None,
base_path,
object_store,
});
}
match parse_res {
Ok(url) if url.scheme().len() == 1 && cfg!(windows) => Self::open_path(uri).await,
Ok(mut url) => {
// iter thru the query params and extract the commit store param // iter thru the query params and extract the commit store param
let mut engine = None; let mut engine = None;
let mut filtered_querys = vec![]; let mut filtered_querys = vec![];
@@ -128,6 +103,22 @@ impl Database {
object_store, object_store,
}) })
} }
Err(_) => Self::open_path(uri).await,
}
}
async fn open_path(path: &str) -> Result<Database> {
let (object_store, base_path) = ObjectStore::from_uri(path).await?;
if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path: path })?;
}
Ok(Self {
uri: path.to_string(),
query_string: None,
base_path,
object_store,
})
}
/// Try to create a local directory to store the lancedb dataset /// Try to create a local directory to store the lancedb dataset
fn try_create_dir(path: &str) -> core::result::Result<(), std::io::Error> { fn try_create_dir(path: &str) -> core::result::Result<(), std::io::Error> {
@@ -240,6 +231,7 @@ impl Database {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use std::fs::create_dir_all; use std::fs::create_dir_all;
use tempfile::tempdir; use tempfile::tempdir;
use crate::database::Database; use crate::database::Database;
@@ -250,15 +242,29 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap(); let uri = tmp_dir.path().to_str().unwrap();
let db = Database::connect(uri).await.unwrap(); let db = Database::connect(uri).await.unwrap();
// file:// scheme should be automatically appended if not specified assert_eq!(db.uri, uri);
// windows path come with drive letter, so file:// won't be appended }
let expected = if cfg!(windows) {
uri.to_string()
} else {
format!("file://{}", uri)
};
assert_eq!(db.uri, expected); #[cfg(not(windows))]
#[tokio::test]
async fn test_connect_relative() {
let tmp_dir = tempdir().unwrap();
let uri = std::fs::canonicalize(tmp_dir.path().to_str().unwrap()).unwrap();
let mut relative_anacestors = vec![];
let current_dir = std::env::current_dir().unwrap();
let mut ancestors = current_dir.ancestors();
while let Some(_) = ancestors.next() {
relative_anacestors.push("..");
}
let relative_root = std::path::PathBuf::from(relative_anacestors.join("/"));
let relative_uri = relative_root.join(&uri);
let db = Database::connect(relative_uri.to_str().unwrap())
.await
.unwrap();
assert_eq!(db.uri, relative_uri.to_str().unwrap().to_string());
} }
#[tokio::test] #[tokio::test]

View File

@@ -190,9 +190,8 @@ impl Table {
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> { pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt; use lance::index::DatasetIndexExt;
let dataset = self let mut dataset = self.dataset.as_ref().clone();
.dataset dataset.create_index(
.create_index(
&[index_builder &[index_builder
.get_column() .get_column()
.unwrap_or(VECTOR_COLUMN_NAME.to_string()) .unwrap_or(VECTOR_COLUMN_NAME.to_string())