Compare commits

...

71 Commits

Author SHA1 Message Date
ayush chaurasia
1f8950653a fix 2025-04-23 18:36:46 +05:30
Ayush Chaurasia
d071268058 Update docs/src/guides/mcp.md
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-04-21 22:51:48 +05:30
ayush chaurasia
3f99313ec6 update 2025-04-09 11:46:44 +05:30
ayush chaurasia
8cb1665708 add basic MCP guide 2025-04-07 20:26:46 +05:30
Lance Release
6c6966600c Updating package-lock.json 2025-04-04 22:56:57 +00:00
Lance Release
2e170c3c7b Updating package-lock.json 2025-04-04 21:50:28 +00:00
Lance Release
fd92e651d1 Updating package-lock.json 2025-04-04 21:50:12 +00:00
Lance Release
c298482ee1 Bump version: 0.19.0-beta.4 → 0.19.0-beta.5 2025-04-04 21:49:53 +00:00
Lance Release
d59f64b5a3 Bump version: 0.22.0-beta.4 → 0.22.0-beta.5 2025-04-04 21:49:34 +00:00
fzowl
30ed8c4c43 fix: voyageai regression multimodal supercedes text models (#2268)
fix #2160
2025-04-04 14:45:56 -07:00
Will Jones
4a2cdbf299 ci: provide token for deprecate call (#2309)
This should prevent the failures we are seeing in Node release.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chore**
- Enhanced the package deprecation process with improved security
measures, ensuring smoother and more reliable updates during package
deprecation.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 14:44:58 -07:00
Will Jones
657843d9e9 perf: remove redundant checkout latest (#2310)
This bug was introduced in https://github.com/lancedb/lancedb/pull/2281

Likely introduced during a rebase when fixing merge conflicts.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Refactor**
- Updated the refresh process so that reloading now uses the existing
dataset version instead of automatically updating to the latest version.
This change may affect workflows that rely on immediate data updates
during refresh.
  
- **New Features**
- Introduced a new module for tracking I/O statistics in object store
operations, enhancing monitoring capabilities.
- Added a new test module to validate the functionality of the dataset
operations.

- **Bug Fixes**
- Reintroduced the `write_options` method in the `CreateTableBuilder`,
ensuring consistent functionality across different builder variants.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 12:56:02 -07:00
Will Jones
1cd76b8498 feat: add timeout to query execution options (#2288)
Closes #2287


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added configurable timeout support for query executions. Users can now
specify maximum wait times for queries, enhancing control over
long-running operations across various integrations.
- **Tests**
- Expanded test coverage to validate timeout behavior in both
synchronous and asynchronous query flows, ensuring timely error
responses when query execution exceeds the specified limit.
- Introduced a new test suite to verify query operations when a timeout
is reached, checking for appropriate error handling.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 12:34:41 -07:00
Lei Xu
a38f784081 chore: add numpy as dependency (#2308) 2025-04-04 10:33:39 -07:00
Will Jones
647dee4e94 ci: check release builds when we change dependencies (#2299)
The issue we fixed in https://github.com/lancedb/lancedb/pull/2296 was
caused by an upgrade in dependencies. This could have been caught if we
had run these CI jobs when we did the dependency change.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated our automated pipeline to trigger additional stability checks
when dependency configurations change, ensuring smoother build and
release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-03 16:19:00 -07:00
Lance Release
0844c2dd64 Updating package-lock.json 2025-04-02 21:23:50 +00:00
Lance Release
fd2692295c Updating package-lock.json 2025-04-02 21:23:34 +00:00
Lance Release
d4ea50fba1 Bump version: 0.19.0-beta.3 → 0.19.0-beta.4 2025-04-02 21:23:19 +00:00
Lance Release
0d42297cf8 Bump version: 0.22.0-beta.3 → 0.22.0-beta.4 2025-04-02 21:23:02 +00:00
Weston Pace
a6d4125cbf feat: upgrade lance to 0.25.3b2 (#2304)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
	- Updated core dependency versions to v0.25.3-beta.2.
	- Enabled additional functionality with a new "dynamodb" feature.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-02 14:22:30 -07:00
Lance Release
5c32a99e61 Updating package-lock.json 2025-04-02 09:28:46 +00:00
Lance Release
cefaa75b24 Updating package-lock.json 2025-04-02 09:28:30 +00:00
Lance Release
bd62c2384f Bump version: 0.19.0-beta.2 → 0.19.0-beta.3 2025-04-02 09:28:14 +00:00
Lance Release
f0bc08c0d7 Bump version: 0.22.0-beta.2 → 0.22.0-beta.3 2025-04-02 09:27:55 +00:00
BubbleCal
e52ac79c69 fix: can't do structured FTS in python (#2300)
missed to support it in `search()` API and there were some pydantic
errors

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Enhanced full-text search capabilities by incorporating additional
parameters, enabling more flexible query definitions.
- Extended table search functionality to support full-text queries
alongside existing search types.

- **Tests**
- Introduced new tests that validate both structured and conditional
full-text search behaviors.
- Expanded test coverage for various query types, including MatchQuery,
BoostQuery, MultiMatchQuery, and PhraseQuery.

- **Bug Fixes**
- Fixed a logic issue in query processing to ensure correct handling of
full-text search queries.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-02 17:27:15 +08:00
Will Jones
f091f57594 ci: fix lancedb musl builds (#2296)
Fixes #2255


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Enhanced the build process to improve performance and reliability
across Linux platforms.
  - Updated environment settings for more accurate compiler integration.
- Activated previously inactive build configurations to support advanced
feature support.
- Added support for the x86_64 architecture on Linux systems utilizing
the musl C library.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-01 14:44:27 -07:00
Lance Release
a997fd4108 Updating package-lock.json 2025-04-01 17:28:57 +00:00
Lance Release
1486514ccc Updating package-lock.json 2025-04-01 17:28:40 +00:00
Lance Release
a505bc3965 Bump version: 0.19.0-beta.1 → 0.19.0-beta.2 2025-04-01 17:28:21 +00:00
Lance Release
c1738250a3 Bump version: 0.22.0-beta.1 → 0.22.0-beta.2 2025-04-01 17:27:57 +00:00
Weston Pace
1ee63984f5 feat: allow FSB to be used for btree indices (#2297)
We recently allowed this for lance but there was a check in lancedb as
well that was preventing it

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added support for indexing fixed-size binary data using B-tree
structures for efficient data storage and retrieval.
- **Tests**
- Implemented automated tests to ensure the new binary indexing works
correctly and meets the expected configuration.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-01 10:27:22 -07:00
Lance Release
2eb2c8862a Updating package-lock.json 2025-04-01 14:27:26 +00:00
Lance Release
4ea8e178d3 Updating package-lock.json 2025-04-01 14:27:07 +00:00
Lance Release
e4485a630e Bump version: 0.19.0-beta.0 → 0.19.0-beta.1 2025-04-01 14:26:47 +00:00
Lance Release
fb95f9b3bd Bump version: 0.22.0-beta.0 → 0.22.0-beta.1 2025-04-01 14:26:28 +00:00
Weston Pace
625bab3f21 feat: update to lance 0.25.3b1 (#2294)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated dependency versions for improved performance and
compatibility.

- **New Features**
- Added support for structured full-text search with expanded query
types (e.g., match, phrase, boost, multi-match) and flexible input
formats.
- Introduced a new method to check server support for structural
full-text search features.
- Enhanced the query system with new classes and interfaces for handling
various full-text queries.
- Expanded the functionality of existing methods to accept more complex
query structures, including updates to method signatures.

- **Bug Fixes**
  - Improved error handling and reporting for full-text search queries.

- **Refactor**
- Enhanced query processing with streamlined input handling and improved
error reporting, ensuring more robust and consistent search results
across platforms.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2025-04-01 06:36:42 -07:00
Will Jones
e59f9382a0 ci: deprecate vectordb each release (#2292)
I released each time we published, the new package was no longer
deprecated. This re-deprecated the package after a new publish.
2025-03-31 12:03:04 -07:00
Lance Release
fdee7ba477 Updating package-lock.json 2025-03-30 19:09:17 +00:00
Lance Release
c44fa3abc4 Updating package-lock.json 2025-03-30 18:05:07 +00:00
Lance Release
fc43aac0ed Updating package-lock.json 2025-03-30 18:04:51 +00:00
Lance Release
e67cd0baf9 Bump version: 0.18.3-beta.0 → 0.19.0-beta.0 2025-03-30 18:04:32 +00:00
Lance Release
26dab93f2a Bump version: 0.21.3-beta.0 → 0.22.0-beta.0 2025-03-30 18:04:14 +00:00
LuQQiu
b9bdb8d937 fix: fix remote restore api to always checkout latest version (#2291)
Fix restore to always checkout latest version, following local restore
api implementation

a1d1833a40/rust/lancedb/src/table.rs (L1910)
Otherwise
table.create_table -> version 1
table.add_table -> version 2
table.checkout(1), table.restore() -> the version remains at 1 (should
checkout_latest inside restore method to update version to latest
version and allow write operation)
table.checkout_latest() -> version is 3
can do write operations
2025-03-29 22:46:57 -07:00
LuQQiu
a1d1833a40 feat: add analyze_plan api (#2280)
add analyze plan api to allow executing the queries and see runtime
metrics.
Which help identify the query IO overhead and help identify query
slowness
2025-03-28 14:28:52 -07:00
Will Jones
a547c523c2 feat!: change default read_consistency_interval=5s (#2281)
Previously, when we loaded the next version of the table, we would block
all reads with a write lock. Now, we only do that if
`read_consistency_interval=0`. Otherwise, we load the next version
asynchronously in the background. This should mean that
`read_consistency_interval > 0` won't have a meaningful impact on
latency.

Along with this change, I felt it was safe to change the default
consistency interval to 5 seconds. The current default is `None`, which
means we will **never** check for a new version by default. I think that
default is contrary to most users expectations.
2025-03-28 11:04:31 -07:00
Lance Release
dc8b75feab Updating package-lock.json 2025-03-28 17:15:17 +00:00
Lance Release
c1600cdc06 Updating package-lock.json 2025-03-28 16:04:01 +00:00
Lance Release
f5dee46970 Updating package-lock.json 2025-03-28 16:03:46 +00:00
Lance Release
346cbf8bf7 Bump version: 0.18.2-beta.0 → 0.18.3-beta.0 2025-03-28 16:03:31 +00:00
Lance Release
3c7dfe9f28 Bump version: 0.21.2-beta.0 → 0.21.3-beta.0 2025-03-28 16:03:17 +00:00
Lei Xu
f52d05d3fa feat: add columns using pyarrow schema (#2284) 2025-03-28 08:51:50 -07:00
vinoyang
c321cccc12 chore(java): make rust release to be a switch option (#2277) 2025-03-28 11:26:24 +08:00
LuQQiu
cba14a5743 feat: add restore remote api (#2282) 2025-03-27 16:33:52 -07:00
vinoyang
72057b743d chore(java): introduce spotless plugin (#2278) 2025-03-27 10:38:39 +08:00
LuQQiu
698f329598 feat: add explain plan remote api (#2263)
Add explain plan remote api
2025-03-26 11:22:40 -07:00
BubbleCal
79fa745130 feat: upgrade lance to v0.25.1-beta.3 (#2276)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-26 23:14:27 +08:00
vinoyang
2ad71bdeca fix(java): make test work for jdk8 (#2269) 2025-03-25 10:57:49 -07:00
vinoyang
7c13615096 fix(java): add .gitignore file (#2270) 2025-03-25 10:56:08 -07:00
Wyatt Alt
f882f5b69a fix: update Query pydoc (#2273)
Removes reference of nonexistent method.
2025-03-25 08:50:23 -07:00
Benjamin Clavié
a68311a893 fix: answerdotai rerankers argument passing (#2117)
This fixes an issue for people wishing to use different kinds of
rerankers in lancedb via AnswerDotAI rerankers. Currently, the arguments
are passed sequentially, but they don't match the[Reranker class
implementation](d604a8c47d/rerankers/reranker.py (L179)):
the second argument is expected to be an optional "lang" for default
models, while model_type should be passed explicitly.

The one line changes in this PR fixes it and enables the use of other
methods (eg LLMs-as-rerankers)
2025-03-24 12:31:59 +05:30
Ayush Chaurasia
846a5cea33 fix: handle light and dark mode logo (#2265) 2025-03-22 10:21:05 -07:00
QianZhu
e3dec647b5 docs: replace banner as an image (#2262) 2025-03-21 18:35:35 -07:00
QianZhu
c58104cecc docs: add banner for LanceDB Cloud in public beta (#2261) 2025-03-21 17:54:34 -07:00
QianZhu
b3b5362632 docs: replace Lancedb Cloud link (#2259)
* direct users to cloud.lancedb.com since LanceDB Cloud is in public
beta
* removed the `cast vector dimension` from alter columns as we don't
support it
2025-03-21 17:43:00 -07:00
Will Jones
abe06fee3d feat(python): warn on fork (#2258)
Closes #768
2025-03-21 17:18:10 -07:00
Will Jones
93a82fd371 ci: allow dry run on PR to Python release (#2245)
This just makes it easier to test in the future.
2025-03-21 16:14:32 -07:00
Will Jones
0d379e6ffa ci(node): setup URL so auth token is picked up (#2257)
Should fix failure seen here:
https://github.com/lancedb/lancedb/actions/runs/13999958170/job/39207039825
2025-03-21 16:14:24 -07:00
Lance Release
e1388bdfdd Updating package-lock.json 2025-03-21 20:46:53 +00:00
Lance Release
315a24c2bc Updating package-lock.json 2025-03-21 20:03:43 +00:00
Lance Release
6dd4cf6038 Updating package-lock.json 2025-03-21 20:03:27 +00:00
Lance Release
f97e751b3c Bump version: 0.18.1 → 0.18.2-beta.0 2025-03-21 20:02:59 +00:00
92 changed files with 4313 additions and 993 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.18.1"
current_version = "0.19.0-beta.5"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -43,7 +43,7 @@ jobs:
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.79.0"
toolchain: "1.81.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
@@ -97,7 +97,7 @@ jobs:
- name: Dry run
if: github.event_name == 'pull_request'
run: |
mvn --batch-mode -DskipTests package
mvn --batch-mode -DskipTests -Drust.release.build=true package
- name: Set github
run: |
git config --global user.email "LanceDB Github Runner"
@@ -108,7 +108,7 @@ jobs:
echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
export GPG_TTY=$(tty)
mvn --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
mvn --batch-mode -DskipTests -Drust.release.build=true -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}

View File

@@ -18,6 +18,7 @@ on:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/npm-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
@@ -130,29 +131,24 @@ jobs:
set -e &&
apt-get update &&
apt-get install -y protobuf-compiler pkg-config
# TODO: re-enable x64 musl builds. I could not figure out why, but it
# consistently made GHA runners non-responsive at the end of build. Example:
# https://github.com/lancedb/lancedb/actions/runs/13980431071/job/39144319470?pr=2250
# - target: x86_64-unknown-linux-musl
# # This one seems to need some extra memory
# host: ubuntu-2404-8x-x64
# # https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
# docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
# features: ","
# pre_build: |-
# set -e &&
# apk add protobuf-dev curl &&
# ln -s /usr/lib/gcc/x86_64-alpine-linux-musl/14.2.0/crtbeginS.o /usr/lib/crtbeginS.o &&
# ln -s /usr/lib/libgcc_s.so /usr/lib/libgcc.so
- target: x86_64-unknown-linux-musl
# This one seems to need some extra memory
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
features: fp16kernels
pre_build: |-
set -e &&
apk add protobuf-dev curl &&
ln -s /usr/lib/gcc/x86_64-alpine-linux-musl/14.2.0/crtbeginS.o /usr/lib/crtbeginS.o &&
ln -s /usr/lib/libgcc_s.so /usr/lib/libgcc.so &&
CC=gcc &&
CXX=g++
- target: aarch64-unknown-linux-gnu
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/debian-aarch64.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-debian-aarch64
# TODO: enable fp16kernels after https://github.com/lancedb/lance/pull/3559
features: ","
features: "fp16kernels"
pre_build: |-
set -e &&
apt-get update &&
@@ -170,8 +166,8 @@ jobs:
set -e &&
apk add protobuf-dev &&
rustup target add aarch64-unknown-linux-musl &&
export CC="/aarch64-linux-musl-cross/bin/aarch64-linux-musl-gcc" &&
export CXX="/aarch64-linux-musl-cross/bin/aarch64-linux-musl-g++"
export CC_aarch64_unknown_linux_musl=aarch64-linux-musl-gcc &&
export CXX_aarch64_unknown_linux_musl=aarch64-linux-musl-g++
name: build - ${{ matrix.settings.target }}
runs-on: ${{ matrix.settings.host }}
defaults:
@@ -331,6 +327,7 @@ jobs:
node-version: 20
cache: npm
cache-dependency-path: nodejs/package-lock.json
registry-url: "https://registry.npmjs.org"
- name: Install dependencies
run: npm ci
- uses: actions/download-artifact@v4
@@ -534,6 +531,12 @@ jobs:
for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename
done
- name: Deprecate
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
# We need to deprecate the old package to avoid confusion.
# Each time we publish a new version, it gets undeprecated.
run: npm deprecate vectordb "Use @lancedb/lancedb instead."
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}

View File

@@ -4,6 +4,11 @@ on:
push:
tags:
- 'python-v*'
pull_request:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/pypi-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
jobs:
linux:
@@ -46,6 +51,7 @@ jobs:
arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
@@ -75,6 +81,7 @@ jobs:
python-minor-version: 8
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
@@ -96,10 +103,12 @@ jobs:
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/python-v')
runs-on: ubuntu-latest
permissions:
contents: write

634
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,16 +21,16 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.25.0", "features" = [
lance = { "version" = "=0.25.3", "features" = [
"dynamodb",
], tag = "v0.25.0-beta.5", git = "https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.25.0", tag = "v0.25.0-beta.5", git = "https://github.com/lancedb/lance.git" }
lance-index = { version = "=0.25.0", tag = "v0.25.0-beta.5", git = "https://github.com/lancedb/lance.git" }
lance-linalg = { version = "=0.25.0", tag = "v0.25.0-beta.5", git = "https://github.com/lancedb/lance.git" }
lance-table = { version = "=0.25.0", tag = "v0.25.0-beta.5", git = "https://github.com/lancedb/lance.git" }
lance-testing = { version = "=0.25.0", tag = "v0.25.0-beta.5", git = "https://github.com/lancedb/lance.git" }
lance-datafusion = { version = "=0.25.0", tag = "v0.25.0-beta.5", git = "https://github.com/lancedb/lance.git" }
lance-encoding = { version = "=0.25.0", tag = "v0.25.0-beta.5", git = "https://github.com/lancedb/lance.git" }
], tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
lance-io = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
lance-index = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
lance-linalg = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
lance-table = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
lance-testing = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
lance-datafusion = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
lance-encoding = { version = "=0.25.3", tag = "v0.25.3-beta.2", git = "https://github.com/lancedb/lance" }
# Note that this one does not include pyarrow
arrow = { version = "54.1", optional = false }
arrow-array = "54.1"
@@ -41,12 +41,12 @@ arrow-schema = "54.1"
arrow-arith = "54.1"
arrow-cast = "54.1"
async-trait = "0"
datafusion = { version = "45.0", default-features = false }
datafusion-catalog = "45.0"
datafusion-common = { version = "45.0", default-features = false }
datafusion-execution = "45.0"
datafusion-expr = "45.0"
datafusion-physical-plan = "45.0"
datafusion = { version = "46.0", default-features = false }
datafusion-catalog = "46.0"
datafusion-common = { version = "46.0", default-features = false }
datafusion-execution = "46.0"
datafusion-expr = "46.0"
datafusion-physical-plan = "46.0"
env_logger = "0.11"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",

View File

@@ -1,9 +1,17 @@
<a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a>
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/user-attachments/assets/ac270358-333e-4bea-a132-acefaa94040e">
<source media="(prefers-color-scheme: light)" srcset="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0">
<img alt="LanceDB Logo" src="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0" width=300>
</picture>
**Developer-friendly, database for multimodal AI**
**Search More, Manage Less**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>

View File

@@ -162,6 +162,7 @@ nav:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Build MCP with LanceDB: guides/mcp.md
- 🧬 Managing embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
@@ -293,6 +294,7 @@ nav:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Build MCP with LanceDB: guides/mcp.md
- Managing Embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md

View File

@@ -2,7 +2,7 @@
LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
[Try out LanceDB Cloud (Public Beta)](https://cloud.lancedb.com){ .md-button .md-button--primary }
## Architecture

126
docs/src/guides/mcp.md Normal file
View File

@@ -0,0 +1,126 @@
# MCP server with LanceDB
The Model Context Protocol (MCP) is an open protocol that enables seamless integration between LLM applications and external data sources and tools. Whether you're building an AI-powered IDE, enhancing a chat interface, or creating custom AI workflows, MCP provides a standardized way to connect LLMs with the context they need.
With LanceDB, your MCP can be embedded in your application. Let's implement 2 simple MCP tools using LanceDB
1. Add data - add data to LanceDB
2. Retreive data - retrieve data from LanceDB
You need to install `mcp[cli]` python package.
First, let's define some configs:
```python
# mcp_server.py
LANCEDB_URI = "~/lancedb"
TABLE_NAME = "mcp_data"
EMBEDDING_FUNCTION = "sentence-transformers"
MODEL_NAME = "all-MiniLM-L6-v2"
```
Then initialize the table that we'll use to store and retreive data:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get(EMBEDDING_FUNCTION).create(model_name=MODEL_NAME)
class Schema(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
db = lancedb.connect(LANCEDB_URI)
if TABLE_NAME not in db.table_names():
db.create_table(TABLE_NAME, schema=Schema)
```
!!! Note "Using LanceDB cloud"
If you want to use LanceDB cloud, you'll need to set the uri to your remote table
instance and also provide a token. Every other functionality will remain the same
## Defining the tools
Tools let LLMs take actions through your server. There are other components like `resources` that allow you to expose certain data sources to LLMs. For our use case, we need to define tools that LLMs can call in order to inget or retrieve data
We'll use `FastMCP` interface of the MCP package. The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing.
```python
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("lancedb-example")
```
### Add data ingestion tool
This function takes a string as input and adds it to the LanceDB table.
```python
@mcp.tool()
async def ingest_data(content: str) -> str:
"""
Add a new memory to the vector database
Args:
content: Content of the memory
"""
tbl = db[TABLE_NAME]
tbl.add([
{"text": content}
])
return f"Added memory: {content}"
```
### Retreive data tool
```python
@mcp.tool()
async def retrieve_data(query: str, limit: int = 5) -> str:
"""
Search db using vector search
Args:
query: The search query
limit: Maximum number of results to return
"""
tbl = db[TABLE_NAME]
rs = tbl.search(query).limit(limit).to_list()
data = [
r["text"] for r in rs
]
if not data:
return "No relevant data found."
return "\n\n".join(data)
```
This function takes a string and limit as input and searches the LanceDB table for the most relevant memories.
## Install it on Claude desktop
To install this MCP, you can simply run this command and it'll be registered on you Claude desktop
```
mcp install mcp_server.py
```
You'll see logs similar to this:
```
[04/07/25 20:18:08] INFO Load pretrained SentenceTransformer: BAAI/bge-small-en-v1.5 SentenceTransformer.py:218
Batches: 100%|█████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 4.06it/s]
[04/07/25 20:18:11] INFO Added server 'lancedb' to Claude config claude.py:129
INFO Successfully installed lancedb in Claude app cli.py:467
```
Now simply fire up claude desktop and you can start using it.
1. If installed correctly, you'll `lancedb` in the MCP apps list
![Screenshot 2025-04-08 at 8 07 39 AM](https://github.com/user-attachments/assets/6dede8ae-7e39-4931-ae60-b57ce620b328)
2. You can now use the `ingest_data` tool to add data to the table. To do that, you can simply ask claude using natural language
![Screenshot 2025-04-08 at 8 10 37 AM](https://github.com/user-attachments/assets/0cd4df4e-98bb-4bf1-8566-1671eb310a1d)
3. Now you can start asking questions using the `retrieve_data` tool. It'll automatically search the table for relevant data. You should see something like this
![Screenshot 2025-04-08 at 8 11 49 AM](https://github.com/user-attachments/assets/71b5b232-601c-4864-9d52-9b84f16adad9)
4. Claude tries to set the params for tool calling on its own but you can also specify the details.
![Screenshot 2025-04-08 at 8 12 30 AM](https://github.com/user-attachments/assets/5f362bd1-b2fc-4145-8f1e-968d453bf615)
## Community examples
- Find a minimal LanceDB mcp server similar to this [here](https://github.com/kyryl-opens-ml/mcp-server-lancedb/blob/main/src/mcp_lance_db/server.py)
- You can find an implementation of a more complex MCP server that uses LanceDB to implement an advanced CodeQA feature [here](https://github.com/lancedb/MCPExample).

View File

@@ -942,28 +942,6 @@ rewriting the column, which can be a heavy operation.
```
**API Reference:** [lancedb.Table.alterColumns](../js/classes/Table.md/#altercolumns)
You can even cast the a vector column to a different dimension:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_basic.py:alter_columns_vector"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_basic.py:alter_columns_async_vector"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:alter_columns_vector"
```
### Dropping columns
You can drop columns from the table with the `drop_columns` method. This will
@@ -1023,9 +1001,11 @@ In LanceDB OSS, users can set the `read_consistency_interval` parameter on conne
There are three possible settings for `read_consistency_interval`:
1. **Unset (default)**: The database does not check for updates to tables made by other processes. This provides the best query performance, but means that clients may not see the most up-to-date data. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS.
3. **Custom interval (Eventual consistency)**: The database checks for updates at a custom interval, such as every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
1. **Unset**: The database does not check for updates to tables made by other processes. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS. For best performance, combine this setting with the storage option `new_table_enable_v2_manifest_paths` set to `true`.
3. **Custom interval (Eventual consistency, the default)**: The database checks for updates at a custom interval. By default, this is every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
You can always force a synchronization by calling `checkout_latest()` / `checkoutLatest()` on a table.
!!! tip "Consistency in LanceDB Cloud"
@@ -1063,7 +1043,21 @@ There are three possible settings for `read_consistency_interval`:
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_eventual_consistency"
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
For no consistency, use `None`:
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_no_consistency"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_no_consistency"
```
To manually check for updates you can use `checkout_latest`:
=== "Sync API"
@@ -1081,15 +1075,25 @@ There are three possible settings for `read_consistency_interval`:
To set strong consistency, use `0`:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const tbl = await db.openTable("my_table");
--8<-- "nodejs/examples/basic.test.ts:table_strong_consistency"
```
For eventual consistency, specify the update interval as seconds:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const tbl = await db.openTable("my_table");
--8<-- "nodejs/examples/basic.test.ts:table_eventual_consistency"
```
For no consistency, use `null`:
```ts
--8<-- "nodejs/examples/basic.test.ts:table_no_consistency"
```
To manually check for updates you can use `checkoutLatest`:
```ts
--8<-- "nodejs/examples/basic.test.ts:table_checkout_latest"
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007

View File

@@ -23,7 +23,7 @@ LanceDB **OSS** is an **open-source**, batteries-included embedded vector databa
LanceDB **Cloud** is a SaaS (software-as-a-service) solution that runs serverless in the cloud, making the storage clearly separated from compute. It's designed to be cost-effective and highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
[Try out LanceDB Cloud (Public Beta) Now](https://cloud.lancedb.com){ .md-button .md-button--primary }
## Why use LanceDB?

View File

@@ -0,0 +1,75 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BoostQuery
# Class: BoostQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BoostQuery()
```ts
new BoostQuery(
positive,
negative,
negativeBoost): BoostQuery
```
Creates an instance of BoostQuery.
#### Parameters
* **positive**: [`FullTextQuery`](../interfaces/FullTextQuery.md)
The positive query that boosts the relevance score.
* **negative**: [`FullTextQuery`](../interfaces/FullTextQuery.md)
The negative query that reduces the relevance score.
* **negativeBoost**: `number`
The factor by which the negative query reduces the score.
#### Returns
[`BoostQuery`](BoostQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)

View File

@@ -0,0 +1,83 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MatchQuery
# Class: MatchQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new MatchQuery()
```ts
new MatchQuery(
query,
column,
boost,
fuzziness,
maxExpansions): MatchQuery
```
Creates an instance of MatchQuery.
#### Parameters
* **query**: `string`
The text query to search for.
* **column**: `string`
The name of the column to search within.
* **boost**: `number` = `1.0`
(Optional) The boost factor to influence the relevance score of this query. Default is `1.0`.
* **fuzziness**: `number` = `0`
(Optional) The allowed edit distance for fuzzy matching. Default is `0`.
* **maxExpansions**: `number` = `50`
(Optional) The maximum number of terms to consider for fuzzy matching. Default is `50`.
#### Returns
[`MatchQuery`](MatchQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)

View File

@@ -0,0 +1,77 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MultiMatchQuery
# Class: MultiMatchQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new MultiMatchQuery()
```ts
new MultiMatchQuery(
query,
columns,
boosts): MultiMatchQuery
```
Creates an instance of MultiMatchQuery.
#### Parameters
* **query**: `string`
The text query to search for across multiple columns.
* **columns**: `string`[]
An array of column names to search within.
* **boosts**: `number`[] = `...`
(Optional) An array of boost factors corresponding to each column. Default is an array of 1.0 for each column.
The `boosts` array should have the same length as `columns`. If not provided, all columns will have a default boost of 1.0.
If the length of `boosts` is less than `columns`, it will be padded with 1.0s.
#### Returns
[`MultiMatchQuery`](MultiMatchQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)

View File

@@ -0,0 +1,69 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / PhraseQuery
# Class: PhraseQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new PhraseQuery()
```ts
new PhraseQuery(query, column): PhraseQuery
```
Creates an instance of `PhraseQuery`.
#### Parameters
* **query**: `string`
The phrase to search for in the specified column.
* **column**: `string`
The name of the column to search within.
#### Returns
[`PhraseQuery`](PhraseQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)

View File

@@ -30,6 +30,53 @@ protected inner: Query | Promise<Query>;
## Methods
### analyzePlan()
```ts
analyzePlan(): Promise<string>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`Promise`&lt;`string`&gt;
A query execution plan with runtime metrics for each step.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`analyzePlan`](QueryBase.md#analyzeplan)
***
### execute()
```ts
@@ -159,7 +206,7 @@ fullTextSearch(query, options?): this
#### Parameters
* **query**: `string`
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **options?**: `Partial`&lt;[`FullTextSearchOptions`](../interfaces/FullTextSearchOptions.md)&gt;
@@ -262,7 +309,7 @@ nearestToText(query, columns?): Query
#### Parameters
* **query**: `string`
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **columns?**: `string`[]

View File

@@ -36,6 +36,49 @@ protected inner: NativeQueryType | Promise<NativeQueryType>;
## Methods
### analyzePlan()
```ts
analyzePlan(): Promise<string>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`Promise`&lt;`string`&gt;
A query execution plan with runtime metrics for each step.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
```
***
### execute()
```ts
@@ -149,7 +192,7 @@ fullTextSearch(query, options?): this
#### Parameters
* **query**: `string`
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **options?**: `Partial`&lt;[`FullTextSearchOptions`](../interfaces/FullTextSearchOptions.md)&gt;

View File

@@ -48,6 +48,53 @@ addQueryVector(vector): VectorQuery
***
### analyzePlan()
```ts
analyzePlan(): Promise<string>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`Promise`&lt;`string`&gt;
A query execution plan with runtime metrics for each step.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`analyzePlan`](QueryBase.md#analyzeplan)
***
### bypassVectorIndex()
```ts
@@ -300,7 +347,7 @@ fullTextSearch(query, options?): this
#### Parameters
* **query**: `string`
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **options?**: `Partial`&lt;[`FullTextSearchOptions`](../interfaces/FullTextSearchOptions.md)&gt;

View File

@@ -0,0 +1,46 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FullTextQueryType
# Enumeration: FullTextQueryType
Enum representing the types of full-text queries supported.
- `Match`: Performs a full-text search for terms in the query string.
- `MatchPhrase`: Searches for an exact phrase match in the text.
- `Boost`: Boosts the relevance score of specific terms in the query.
- `MultiMatch`: Searches across multiple fields for the query terms.
## Enumeration Members
### Boost
```ts
Boost: "boost";
```
***
### Match
```ts
Match: "match";
```
***
### MatchPhrase
```ts
MatchPhrase: "match_phrase";
```
***
### MultiMatch
```ts
MultiMatch: "multi_match";
```

View File

@@ -9,12 +9,20 @@
- [embedding](namespaces/embedding/README.md)
- [rerankers](namespaces/rerankers/README.md)
## Enumerations
- [FullTextQueryType](enumerations/FullTextQueryType.md)
## Classes
- [BoostQuery](classes/BoostQuery.md)
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [MatchQuery](classes/MatchQuery.md)
- [MergeInsertBuilder](classes/MergeInsertBuilder.md)
- [MultiMatchQuery](classes/MultiMatchQuery.md)
- [PhraseQuery](classes/PhraseQuery.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
@@ -33,6 +41,7 @@
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [FtsOptions](interfaces/FtsOptions.md)
- [FullTextQuery](interfaces/FullTextQuery.md)
- [FullTextSearchOptions](interfaces/FullTextSearchOptions.md)
- [HnswPqOptions](interfaces/HnswPqOptions.md)
- [HnswSqOptions](interfaces/HnswSqOptions.md)

View File

@@ -44,7 +44,7 @@ for testing purposes.
### readConsistencyInterval?
```ts
optional readConsistencyInterval: number;
optional readConsistencyInterval: null | number;
```
(For LanceDB OSS only): The interval, in seconds, at which to check for

View File

@@ -0,0 +1,35 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FullTextQuery
# Interface: FullTextQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;

View File

@@ -20,3 +20,13 @@ The maximum number of rows to return in a single batch
Batches may have fewer rows if the underlying data is stored
in smaller chunks.
***
### timeoutMs?
```ts
optional timeoutMs: number;
```
Timeout for query execution in milliseconds

View File

@@ -8,6 +8,11 @@ For trouble shooting, the best place to ask is in our Discord, under the relevan
language channel. By asking in the language-specific channel, it makes it more
likely that someone who knows the answer will see your question.
## Common issues
* Multiprocessing with `fork` is not supported. You should use `spawn` instead.
* Data returned by queries may not reflect the most recent writes, depending on configuration. LanceDB uses eventual consistency by default. See [consistency](/docs/src/guides/tables.md#consistency) for more information.
## Enabling logging
To provide more information, especially for LanceDB Cloud related issues, enable
@@ -31,3 +36,9 @@ print the resolved query plan. You can use the `explain_plan` method to do this:
* Python Sync: [LanceQueryBuilder.explain_plan][lancedb.query.LanceQueryBuilder.explain_plan]
* Python Async: [AsyncQueryBase.explain_plan][lancedb.query.AsyncQueryBase.explain_plan]
* Node @lancedb/lancedb: [LanceQueryBuilder.explainPlan](/lancedb/js/classes/QueryBase/#explainplan)
To understand how a query was actually executed—including metrics like execution time, number of rows processed, I/O stats, and more—use the analyze_plan method. This executes the query and returns a physical execution plan annotated with runtime metrics, making it especially helpful for performance tuning and debugging.
* Python Sync: [LanceQueryBuilder.analyze_plan][lancedb.query.LanceQueryBuilder.analyze_plan]
* Python Async: [AsyncQueryBase.analyze_plan][lancedb.query.AsyncQueryBase.analyze_plan]
* Node @lancedb/lancedb: [LanceQueryBuilder.analyzePlan](/lancedb/js/classes/QueryBase/#analyzePlan)

3
java/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
*.iml
.java-version

View File

@@ -8,13 +8,16 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.18.1-final.0</version>
<version>0.19.0-beta.5</version>
<relativePath>../pom.xml</relativePath>
</parent>
<artifactId>lancedb-core</artifactId>
<name>LanceDB Core</name>
<packaging>jar</packaging>
<properties>
<rust.release.build>false</rust.release.build>
</properties>
<dependencies>
<dependency>
@@ -68,7 +71,7 @@
</goals>
<configuration>
<path>lancedb-jni</path>
<release>true</release>
<release>${rust.release.build}</release>
<!-- Copy native libraries to target/classes for runtime access -->
<copyTo>${project.build.directory}/classes/nativelib</copyTo>
<copyWithPlatformDir>true</copyWithPlatformDir>

View File

@@ -1,16 +1,25 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.lancedb.lancedb;
import io.questdb.jar.jni.JarJniLoader;
import java.io.Closeable;
import java.util.List;
import java.util.Optional;
/**
* Represents LanceDB database.
*/
/** Represents LanceDB database. */
public class Connection implements Closeable {
static {
JarJniLoader.loadLib(Connection.class, "/nativelib", "lancedb_jni");
@@ -18,14 +27,11 @@ public class Connection implements Closeable {
private long nativeConnectionHandle;
/**
* Connect to a LanceDB instance.
*/
/** Connect to a LanceDB instance. */
public static native Connection connect(String uri);
/**
* Get the names of all tables in the database. The names are sorted in
* ascending order.
* Get the names of all tables in the database. The names are sorted in ascending order.
*
* @return the table names
*/
@@ -34,8 +40,7 @@ public class Connection implements Closeable {
}
/**
* Get the names of filtered tables in the database. The names are sorted in
* ascending order.
* Get the names of filtered tables in the database. The names are sorted in ascending order.
*
* @param limit The number of results to return.
* @return the table names
@@ -45,12 +50,11 @@ public class Connection implements Closeable {
}
/**
* Get the names of filtered tables in the database. The names are sorted in
* ascending order.
* Get the names of filtered tables in the database. The names are sorted in ascending order.
*
* @param startAfter If present, only return names that come lexicographically after the supplied
* value. This can be combined with limit to implement pagination
* by setting this to the last table name from the previous page.
* value. This can be combined with limit to implement pagination by setting this to the last
* table name from the previous page.
* @return the table names
*/
public List<String> tableNames(String startAfter) {
@@ -58,12 +62,11 @@ public class Connection implements Closeable {
}
/**
* Get the names of filtered tables in the database. The names are sorted in
* ascending order.
* Get the names of filtered tables in the database. The names are sorted in ascending order.
*
* @param startAfter If present, only return names that come lexicographically after the supplied
* value. This can be combined with limit to implement pagination
* by setting this to the last table name from the previous page.
* value. This can be combined with limit to implement pagination by setting this to the last
* table name from the previous page.
* @param limit The number of results to return.
* @return the table names
*/
@@ -72,22 +75,19 @@ public class Connection implements Closeable {
}
/**
* Get the names of filtered tables in the database. The names are sorted in
* ascending order.
* Get the names of filtered tables in the database. The names are sorted in ascending order.
*
* @param startAfter If present, only return names that come lexicographically after the supplied
* value. This can be combined with limit to implement pagination
* by setting this to the last table name from the previous page.
* value. This can be combined with limit to implement pagination by setting this to the last
* table name from the previous page.
* @param limit The number of results to return.
* @return the table names
*/
public native List<String> tableNames(
Optional<String> startAfter, Optional<Integer> limit);
public native List<String> tableNames(Optional<String> startAfter, Optional<Integer> limit);
/**
* Closes this connection and releases any system resources associated with it. If
* the connection is
* already closed, then invoking this method has no effect.
* Closes this connection and releases any system resources associated with it. If the connection
* is already closed, then invoking this method has no effect.
*/
@Override
public void close() {
@@ -98,8 +98,7 @@ public class Connection implements Closeable {
}
/**
* Native method to release the Lance connection resources associated with the
* given handle.
* Native method to release the Lance connection resources associated with the given handle.
*
* @param handle The native handle to the connection resource.
*/

View File

@@ -1,27 +1,35 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.lancedb.lancedb;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
import java.nio.file.Path;
import java.util.List;
import java.net.URL;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.io.TempDir;
import java.net.URL;
import java.nio.file.Path;
import java.util.List;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
public class ConnectionTest {
private static final String[] TABLE_NAMES = {
"dataset_version",
"new_empty_dataset",
"test",
"write_stream"
"dataset_version", "new_empty_dataset", "test", "write_stream"
};
@TempDir
static Path tempDir; // Temporary directory for the tests
@TempDir static Path tempDir; // Temporary directory for the tests
private static URL lanceDbURL;
@BeforeAll
@@ -53,18 +61,21 @@ public class ConnectionTest {
@Test
void tableNamesStartAfter() {
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
assertTableNamesStartAfter(conn, TABLE_NAMES[0], 3, TABLE_NAMES[1], TABLE_NAMES[2], TABLE_NAMES[3]);
assertTableNamesStartAfter(
conn, TABLE_NAMES[0], 3, TABLE_NAMES[1], TABLE_NAMES[2], TABLE_NAMES[3]);
assertTableNamesStartAfter(conn, TABLE_NAMES[1], 2, TABLE_NAMES[2], TABLE_NAMES[3]);
assertTableNamesStartAfter(conn, TABLE_NAMES[2], 1, TABLE_NAMES[3]);
assertTableNamesStartAfter(conn, TABLE_NAMES[3], 0);
assertTableNamesStartAfter(conn, "a_dataset", 4, TABLE_NAMES[0], TABLE_NAMES[1], TABLE_NAMES[2], TABLE_NAMES[3]);
assertTableNamesStartAfter(
conn, "a_dataset", 4, TABLE_NAMES[0], TABLE_NAMES[1], TABLE_NAMES[2], TABLE_NAMES[3]);
assertTableNamesStartAfter(conn, "o_dataset", 2, TABLE_NAMES[2], TABLE_NAMES[3]);
assertTableNamesStartAfter(conn, "v_dataset", 1, TABLE_NAMES[3]);
assertTableNamesStartAfter(conn, "z_dataset", 0);
}
}
private void assertTableNamesStartAfter(Connection conn, String startAfter, int expectedSize, String... expectedNames) {
private void assertTableNamesStartAfter(
Connection conn, String startAfter, int expectedSize, String... expectedNames) {
List<String> tableNames = conn.tableNames(startAfter);
assertEquals(expectedSize, tableNames.size());
for (int i = 0; i < expectedNames.length; i++) {
@@ -74,7 +85,7 @@ public class ConnectionTest {
@Test
void tableNamesLimit() {
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
for (int i = 0; i <= TABLE_NAMES.length; i++) {
List<String> tableNames = conn.tableNames(i);
assertEquals(i, tableNames.size());

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.18.1-final.0</version>
<version>0.19.0-beta.5</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>
@@ -29,6 +29,25 @@
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<arrow.version>15.0.0</arrow.version>
<spotless.skip>false</spotless.skip>
<spotless.version>2.30.0</spotless.version>
<spotless.java.googlejavaformat.version>1.7</spotless.java.googlejavaformat.version>
<spotless.delimiter>package</spotless.delimiter>
<spotless.license.header>
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
</spotless.license.header>
</properties>
<modules>
@@ -127,7 +146,8 @@
<configuration>
<configLocation>google_checks.xml</configLocation>
<consoleOutput>true</consoleOutput>
<failsOnError>true</failsOnError>
<failsOnError>false</failsOnError>
<failOnViolation>false</failOnViolation>
<violationSeverity>warning</violationSeverity>
<linkXRef>false</linkXRef>
</configuration>
@@ -141,6 +161,10 @@
</execution>
</executions>
</plugin>
<plugin>
<groupId>com.diffplug.spotless</groupId>
<artifactId>spotless-maven-plugin</artifactId>
</plugin>
</plugins>
<pluginManagement>
<plugins>
@@ -166,7 +190,6 @@
<artifactId>maven-surefire-plugin</artifactId>
<version>3.2.5</version>
<configuration>
<argLine>--add-opens=java.base/java.nio=ALL-UNNAMED</argLine>
<forkNode
implementation="org.apache.maven.plugin.surefire.extensions.SurefireForkNodeFactory" />
<useSystemClassLoader>false</useSystemClassLoader>
@@ -180,6 +203,54 @@
<artifactId>maven-install-plugin</artifactId>
<version>2.5.2</version>
</plugin>
<plugin>
<groupId>com.diffplug.spotless</groupId>
<artifactId>spotless-maven-plugin</artifactId>
<version>${spotless.version}</version>
<configuration>
<skip>${spotless.skip}</skip>
<upToDateChecking>
<enabled>true</enabled>
</upToDateChecking>
<java>
<includes>
<include>src/main/java/**/*.java</include>
<include>src/test/java/**/*.java</include>
</includes>
<googleJavaFormat>
<version>${spotless.java.googlejavaformat.version}</version>
<style>GOOGLE</style>
</googleJavaFormat>
<importOrder>
<order>com.lancedb.lance,,javax,java,\#</order>
</importOrder>
<removeUnusedImports />
</java>
<scala>
<includes>
<include>src/main/scala/**/*.scala</include>
<include>src/main/scala-*/**/*.scala</include>
<include>src/test/scala/**/*.scala</include>
<include>src/test/scala-*/**/*.scala</include>
</includes>
</scala>
<licenseHeader>
<content>${spotless.license.header}</content>
<delimiter>${spotless.delimiter}</delimiter>
</licenseHeader>
</configuration>
<executions>
<execution>
<id>spotless-check</id>
<phase>validate</phase>
<goals>
<goal>apply</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</pluginManagement>
</build>

51
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.18.1",
"@lancedb/vectordb-darwin-x64": "0.18.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.18.1",
"@lancedb/vectordb-linux-x64-gnu": "0.18.1",
"@lancedb/vectordb-win32-x64-msvc": "0.18.1"
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.5",
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.5",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.5",
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.5",
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.5"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -327,9 +327,9 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.18.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.18.1.tgz",
"integrity": "sha512-LAuaIfANAingnc4yxZ142kidY6KDkTzWDVidfG4847MO/eKk029A8zbhxkMHdSyTe1cNTBr7fYDfc7/LtHrhFQ==",
"version": "0.19.0-beta.5",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.19.0-beta.5.tgz",
"integrity": "sha512-NuJVGaV4b6XgH3dlkCEquvtGM1cY5sIJE5M/LgJ3HYYvAbco/seBQM5AHTV/7CULoPEY9eQeJZOj9fWP5oQLYQ==",
"cpu": [
"arm64"
],
@@ -340,9 +340,9 @@
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.18.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.18.1.tgz",
"integrity": "sha512-6weTuzYZNv0z5vX7D6TSjDG47anw9NQ6cqxXTiZp2u99qaiuKj1EVxsRrDNIknspqKQ+YKwOLKwRum5VuLnHkQ==",
"version": "0.19.0-beta.5",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.19.0-beta.5.tgz",
"integrity": "sha512-hbadwvQcUgKJfluUHhN+mx+XeFRwTuh9mD0L3Tf3t3BkDTxyHpEG5WNgOpWrh6e1RU6zW54CoCyQuSEaVqGgGw==",
"cpu": [
"x64"
],
@@ -353,9 +353,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.18.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.18.1.tgz",
"integrity": "sha512-MowuP2eVNx9p0Fw6qi9O20liKxUy3c3YugOVs0eo8h1fpbSlXx2bIA40JgyzIjiX0QICIt9IzLCideIZduPc1A==",
"version": "0.19.0-beta.5",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.19.0-beta.5.tgz",
"integrity": "sha512-fu/EOYLr3mx76/SP4dEgbq0vSYHfuTf68lVl5/tL6eIb1Purz42l22+jNKLJ/S3Plase2SkXdxyY90K2Y/CvSg==",
"cpu": [
"arm64"
],
@@ -366,9 +366,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.18.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.18.1.tgz",
"integrity": "sha512-E9Qtdstr5aTMuRzi4WdKAvQKrNaXuCdiUYph2D4tanawftn3cZVHjbQu63nRphmBKAqzuJ4vcIsYLnFbzM/CtA==",
"version": "0.19.0-beta.5",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.19.0-beta.5.tgz",
"integrity": "sha512-pzb8fl5M8155sc/mEFnKmuh9rCfQohHBlb+j+5qNMe84AyygQ8Me1H3b1h9fOkUPu2Y168zYfuGkjNv4Bjm9eA==",
"cpu": [
"x64"
],
@@ -379,9 +379,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.18.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.18.1.tgz",
"integrity": "sha512-ILXHvq2s28U6I6mv1UK9LRuXGMXKTidztlRGDUeSCLBKQy033xOUnBBIOMQiS1IDsFMcJTGLTvr5nPemKI2NyQ==",
"version": "0.19.0-beta.5",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.19.0-beta.5.tgz",
"integrity": "sha512-5z6BSfTuZYJdDL2wwRrEQlnfluahzaUH2U7vj3i4ik4zaAwvaYcrjmdYCTLRYhFscUqzxd2pVFHbfRYe+maYzA==",
"cpu": [
"x64"
],
@@ -1184,9 +1184,10 @@
}
},
"node_modules/axios": {
"version": "1.7.7",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.7.7.tgz",
"integrity": "sha512-S4kL7XrjgBmvdGut0sN3yJxqYzrDOnivkBiN0OFs6hLiUam3UPvswUo0kqGyhqUZGEOytHyumEdXsAkgCOUf3Q==",
"version": "1.8.4",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.8.4.tgz",
"integrity": "sha512-eBSYY4Y68NNlHbHBMdeDmKNtDgXWhQsJcGqzO3iLUM0GraQFSS9cVgPX5I9b3lbdFKyYoAEGAZF1DwhTaljNAw==",
"license": "MIT",
"dependencies": {
"follow-redirects": "^1.15.6",
"form-data": "^4.0.0",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
@@ -89,10 +89,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.18.1",
"@lancedb/vectordb-darwin-arm64": "0.18.1",
"@lancedb/vectordb-linux-x64-gnu": "0.18.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.18.1",
"@lancedb/vectordb-win32-x64-msvc": "0.18.1"
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.5",
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.5",
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.5",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.5",
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.5"
}
}

View File

@@ -110,7 +110,7 @@ describe('LanceDB Mirrored Store Integration test', function () {
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.equal(files.length, 1, `Found files: ${files.map(f => f.name)}`)
assert.isTrue(files[0].name.endsWith('.lance'))
})

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.18.1"
version = "0.19.0-beta.5"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -17,7 +17,7 @@ describe("when connecting", () => {
it("should connect", async () => {
const db = await connect(tmpDir.name);
expect(db.display()).toBe(
`ListingDatabase(uri=${tmpDir.name}, read_consistency_interval=None)`,
`ListingDatabase(uri=${tmpDir.name}, read_consistency_interval=5s)`,
);
});

View File

@@ -58,7 +58,7 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
it("be displayable", async () => {
expect(table.display()).toMatch(
/NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
/NativeTable\(some_table, uri=.*, read_consistency_interval=5s\)/,
);
table.close();
expect(table.display()).toBe("ClosedTable(some_table)");
@@ -633,6 +633,23 @@ describe("When creating an index", () => {
expect(plan2).not.toMatch("LanceScan");
});
it("should be able to run analyze plan", async () => {
await tbl.createIndex("vec");
await tbl.add([
{
id: 300,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
tags: [],
},
]);
const plan = await tbl.query().nearestTo(queryVec).analyzePlan();
expect(plan).toMatch("AnalyzeExec");
expect(plan).toMatch("metrics=");
});
it("should be able to query with row id", async () => {
const results = await tbl
.query()
@@ -850,6 +867,44 @@ describe("When creating an index", () => {
});
});
describe("When querying a table", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => tmpDir.removeCallback());
it("should throw an error when timeout is reached", async () => {
const db = await connect(tmpDir.name);
const data = makeArrowTable([
{ text: "a", vector: [0.1, 0.2] },
{ text: "b", vector: [0.3, 0.4] },
]);
const table = await db.createTable("test", data);
await table.createIndex("text", { config: Index.fts() });
await expect(
table.query().where("text != 'a'").toArray({ timeoutMs: 0 }),
).rejects.toThrow("Query timeout");
await expect(
table.query().nearestTo([0.0, 0.0]).toArrow({ timeoutMs: 0 }),
).rejects.toThrow("Query timeout");
await expect(
table.search("a", "fts").toArray({ timeoutMs: 0 }),
).rejects.toThrow("Query timeout");
await expect(
table
.query()
.nearestToText("a")
.nearestTo([0.0, 0.0])
.toArrow({ timeoutMs: 0 }),
).rejects.toThrow("Query timeout");
});
});
describe("Read consistency interval", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
@@ -1346,6 +1401,30 @@ describe("when calling explainPlan", () => {
});
});
describe("when calling analyzePlan", () => {
let tmpDir: tmp.DirResult;
let table: Table;
let queryVec: number[];
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const con = await connect(tmpDir.name);
table = await con.createTable("vectors", [{ id: 1, vector: [1.1, 0.9] }]);
});
afterEach(() => {
tmpDir.removeCallback();
});
it("retrieves runtime metrics", async () => {
queryVec = Array(2)
.fill(1)
.map(() => Math.random());
const plan = await table.query().nearestTo(queryVec).analyzePlan();
console.log("Query Plan:\n", plan); // <--- Print the plan
expect(plan).toMatch("AnalyzeExec");
});
});
describe("column name options", () => {
let tmpDir: tmp.DirResult;
let table: Table;

View File

@@ -202,5 +202,35 @@ test("basic table examples", async () => {
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}
const uri = databaseDir;
await db.createTable("my_table", [{ id: 1 }, { id: 2 }]);
{
// --8<-- [start:table_strong_consistency]
const db = await lancedb.connect({ uri, readConsistencyInterval: 0 });
const tbl = await db.openTable("my_table");
// --8<-- [end:table_strong_consistency]
}
{
// --8<-- [start:table_eventual_consistency]
const db = await lancedb.connect({ uri, readConsistencyInterval: 5 });
const tbl = await db.openTable("my_table");
// --8<-- [end:table_eventual_consistency]
}
{
// --8<-- [start:table_no_consistency]
const db = await lancedb.connect({ uri, readConsistencyInterval: null });
const tbl = await db.openTable("my_table");
// --8<-- [end:table_no_consistency]
}
{
// --8<-- [start:table_checkout_latest]
const tbl = await db.openTable("my_table");
// (Other writes happen to test_table_async from another process)
// Check for updates
tbl.checkoutLatest();
// --8<-- [end:table_checkout_latest]
}
});
});

View File

@@ -47,6 +47,12 @@ export {
QueryExecutionOptions,
FullTextSearchOptions,
RecordBatchIterator,
FullTextQuery,
MatchQuery,
PhraseQuery,
BoostQuery,
MultiMatchQuery,
FullTextQueryType,
} from "./query";
export {

View File

@@ -17,6 +17,7 @@ import {
VectorQuery as NativeVectorQuery,
} from "./native";
import { Reranker } from "./rerankers";
export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
private promisedInner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator;
@@ -62,7 +63,7 @@ class RecordBatchIterable<
// biome-ignore lint/suspicious/noExplicitAny: skip
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> {
return new RecordBatchIterator(
this.inner.execute(this.options?.maxBatchLength),
this.inner.execute(this.options?.maxBatchLength, this.options?.timeoutMs),
);
}
}
@@ -78,6 +79,11 @@ export interface QueryExecutionOptions {
* in smaller chunks.
*/
maxBatchLength?: number;
/**
* Timeout for query execution in milliseconds
*/
timeoutMs?: number;
}
/**
@@ -152,7 +158,7 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
}
fullTextSearch(
query: string,
query: string | FullTextQuery,
options?: Partial<FullTextSearchOptions>,
): this {
let columns: string[] | null = null;
@@ -164,9 +170,18 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
}
}
this.doCall((inner: NativeQueryType) =>
inner.fullTextSearch(query, columns),
);
this.doCall((inner: NativeQueryType) => {
if (typeof query === "string") {
inner.fullTextSearch({
query: query,
columns: columns,
});
} else {
// If query is a FullTextQuery object, convert it to a dict
const queryObj = query.toDict();
inner.fullTextSearch(queryObj);
}
});
return this;
}
@@ -273,9 +288,11 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
options?: Partial<QueryExecutionOptions>,
): Promise<NativeBatchIterator> {
if (this.inner instanceof Promise) {
return this.inner.then((inner) => inner.execute(options?.maxBatchLength));
return this.inner.then((inner) =>
inner.execute(options?.maxBatchLength, options?.timeoutMs),
);
} else {
return this.inner.execute(options?.maxBatchLength);
return this.inner.execute(options?.maxBatchLength, options?.timeoutMs);
}
}
@@ -348,6 +365,43 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
return this.inner.explainPlan(verbose);
}
}
/**
* Executes the query and returns the physical query plan annotated with runtime metrics.
*
* This is useful for debugging and performance analysis, as it shows how the query was executed
* and includes metrics such as elapsed time, rows processed, and I/O statistics.
*
* @example
* import * as lancedb from "@lancedb/lancedb"
*
* const db = await lancedb.connect("./.lancedb");
* const table = await db.createTable("my_table", [
* { vector: [1.1, 0.9], id: "1" },
* ]);
*
* const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
*
* Example output (with runtime metrics inlined):
* AnalyzeExec verbose=true, metrics=[]
* ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
* Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
* CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
* GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
* FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
* SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
* KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
* LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
*
* @returns A query execution plan with runtime metrics for each step.
*/
async analyzePlan(): Promise<string> {
if (this.inner instanceof Promise) {
return this.inner.then((inner) => inner.analyzePlan());
} else {
return this.inner.analyzePlan();
}
}
}
/**
@@ -681,8 +735,167 @@ export class Query extends QueryBase<NativeQuery> {
}
}
nearestToText(query: string, columns?: string[]): Query {
this.doCall((inner) => inner.fullTextSearch(query, columns));
nearestToText(query: string | FullTextQuery, columns?: string[]): Query {
this.doCall((inner) => {
if (typeof query === "string") {
inner.fullTextSearch({
query: query,
columns: columns,
});
} else {
const queryObj = query.toDict();
inner.fullTextSearch(queryObj);
}
});
return this;
}
}
/**
* Enum representing the types of full-text queries supported.
*
* - `Match`: Performs a full-text search for terms in the query string.
* - `MatchPhrase`: Searches for an exact phrase match in the text.
* - `Boost`: Boosts the relevance score of specific terms in the query.
* - `MultiMatch`: Searches across multiple fields for the query terms.
*/
export enum FullTextQueryType {
Match = "match",
MatchPhrase = "match_phrase",
Boost = "boost",
MultiMatch = "multi_match",
}
/**
* Represents a full-text query interface.
* This interface defines the structure and behavior for full-text queries,
* including methods to retrieve the query type and convert the query to a dictionary format.
*/
export interface FullTextQuery {
queryType(): FullTextQueryType;
toDict(): Record<string, unknown>;
}
export class MatchQuery implements FullTextQuery {
/**
* Creates an instance of MatchQuery.
*
* @param query - The text query to search for.
* @param column - The name of the column to search within.
* @param boost - (Optional) The boost factor to influence the relevance score of this query. Default is `1.0`.
* @param fuzziness - (Optional) The allowed edit distance for fuzzy matching. Default is `0`.
* @param maxExpansions - (Optional) The maximum number of terms to consider for fuzzy matching. Default is `50`.
*/
constructor(
private query: string,
private column: string,
private boost: number = 1.0,
private fuzziness: number = 0,
private maxExpansions: number = 50,
) {}
queryType(): FullTextQueryType {
return FullTextQueryType.Match;
}
toDict(): Record<string, unknown> {
return {
[this.queryType()]: {
[this.column]: {
query: this.query,
boost: this.boost,
fuzziness: this.fuzziness,
// biome-ignore lint/style/useNamingConvention: use underscore for consistency with the other APIs
max_expansions: this.maxExpansions,
},
},
};
}
}
export class PhraseQuery implements FullTextQuery {
/**
* Creates an instance of `PhraseQuery`.
*
* @param query - The phrase to search for in the specified column.
* @param column - The name of the column to search within.
*/
constructor(
private query: string,
private column: string,
) {}
queryType(): FullTextQueryType {
return FullTextQueryType.MatchPhrase;
}
toDict(): Record<string, unknown> {
return {
[this.queryType()]: {
[this.column]: this.query,
},
};
}
}
export class BoostQuery implements FullTextQuery {
/**
* Creates an instance of BoostQuery.
*
* @param positive - The positive query that boosts the relevance score.
* @param negative - The negative query that reduces the relevance score.
* @param negativeBoost - The factor by which the negative query reduces the score.
*/
constructor(
private positive: FullTextQuery,
private negative: FullTextQuery,
private negativeBoost: number,
) {}
queryType(): FullTextQueryType {
return FullTextQueryType.Boost;
}
toDict(): Record<string, unknown> {
return {
[this.queryType()]: {
positive: this.positive.toDict(),
negative: this.negative.toDict(),
// biome-ignore lint/style/useNamingConvention: use underscore for consistency with the other APIs
negative_boost: this.negativeBoost,
},
};
}
}
export class MultiMatchQuery implements FullTextQuery {
/**
* Creates an instance of MultiMatchQuery.
*
* @param query - The text query to search for across multiple columns.
* @param columns - An array of column names to search within.
* @param boosts - (Optional) An array of boost factors corresponding to each column. Default is an array of 1.0 for each column.
*
* The `boosts` array should have the same length as `columns`. If not provided, all columns will have a default boost of 1.0.
* If the length of `boosts` is less than `columns`, it will be padded with 1.0s.
*/
constructor(
private query: string,
private columns: string[],
private boosts: number[] = columns.map(() => 1.0),
) {}
queryType(): FullTextQueryType {
return FullTextQueryType.MultiMatch;
}
toDict(): Record<string, unknown> {
return {
[this.queryType()]: {
query: this.query,
columns: this.columns,
boost: this.boosts,
},
};
}
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

252
nodejs/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.18.1",
"version": "0.19.0-beta.5",
"cpu": [
"x64",
"arm64"
@@ -2304,89 +2304,20 @@
}
},
"node_modules/@babel/code-frame": {
"version": "7.23.5",
"resolved": "https://registry.npmjs.org/@babel/code-frame/-/code-frame-7.23.5.tgz",
"integrity": "sha512-CgH3s1a96LipHCmSUmYFPwY7MNx8C3avkq7i4Wl3cfa662ldtUe4VM1TPXX70pfmrlWTb6jLqTYrZyT2ZTJBgA==",
"version": "7.26.2",
"resolved": "https://registry.npmjs.org/@babel/code-frame/-/code-frame-7.26.2.tgz",
"integrity": "sha512-RJlIHRueQgwWitWgF8OdFYGZX328Ax5BCemNGlqHfplnRT9ESi8JkFlvaVYbS+UubVY6dpv87Fs2u5M29iNFVQ==",
"dev": true,
"license": "MIT",
"dependencies": {
"@babel/highlight": "^7.23.4",
"chalk": "^2.4.2"
"@babel/helper-validator-identifier": "^7.25.9",
"js-tokens": "^4.0.0",
"picocolors": "^1.0.0"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/code-frame/node_modules/ansi-styles": {
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
"dev": true,
"dependencies": {
"color-convert": "^1.9.0"
},
"engines": {
"node": ">=4"
}
},
"node_modules/@babel/code-frame/node_modules/chalk": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
"dev": true,
"dependencies": {
"ansi-styles": "^3.2.1",
"escape-string-regexp": "^1.0.5",
"supports-color": "^5.3.0"
},
"engines": {
"node": ">=4"
}
},
"node_modules/@babel/code-frame/node_modules/color-convert": {
"version": "1.9.3",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
"dev": true,
"dependencies": {
"color-name": "1.1.3"
}
},
"node_modules/@babel/code-frame/node_modules/color-name": {
"version": "1.1.3",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==",
"dev": true
},
"node_modules/@babel/code-frame/node_modules/escape-string-regexp": {
"version": "1.0.5",
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==",
"dev": true,
"engines": {
"node": ">=0.8.0"
}
},
"node_modules/@babel/code-frame/node_modules/has-flag": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==",
"dev": true,
"engines": {
"node": ">=4"
}
},
"node_modules/@babel/code-frame/node_modules/supports-color": {
"version": "5.5.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
"dev": true,
"dependencies": {
"has-flag": "^3.0.0"
},
"engines": {
"node": ">=4"
}
},
"node_modules/@babel/compat-data": {
"version": "7.23.5",
"resolved": "https://registry.npmjs.org/@babel/compat-data/-/compat-data-7.23.5.tgz",
@@ -2589,19 +2520,21 @@
}
},
"node_modules/@babel/helper-string-parser": {
"version": "7.23.4",
"resolved": "https://registry.npmjs.org/@babel/helper-string-parser/-/helper-string-parser-7.23.4.tgz",
"integrity": "sha512-803gmbQdqwdf4olxrX4AJyFBV/RTr3rSmOj0rKwesmzlfhYNDEs+/iOcznzpNWlJlIlTJC2QfPFcHB6DlzdVLQ==",
"version": "7.25.9",
"resolved": "https://registry.npmjs.org/@babel/helper-string-parser/-/helper-string-parser-7.25.9.tgz",
"integrity": "sha512-4A/SCr/2KLd5jrtOMFzaKjVtAei3+2r/NChoBNoZ3EyP/+GlhoaEGoWOZUmFmoITP7zOJyHIMm+DYRd8o3PvHA==",
"dev": true,
"license": "MIT",
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-validator-identifier": {
"version": "7.22.20",
"resolved": "https://registry.npmjs.org/@babel/helper-validator-identifier/-/helper-validator-identifier-7.22.20.tgz",
"integrity": "sha512-Y4OZ+ytlatR8AI+8KZfKuL5urKp7qey08ha31L8b3BwewJAoJamTzyvxPR/5D+KkdJCGPq/+8TukHBlY10FX9A==",
"version": "7.25.9",
"resolved": "https://registry.npmjs.org/@babel/helper-validator-identifier/-/helper-validator-identifier-7.25.9.tgz",
"integrity": "sha512-Ed61U6XJc3CVRfkERJWDz4dJwKe7iLmmJsbOGu9wSloNSFttHV0I8g6UAgb7qnK5ly5bGLPd4oXZlxCdANBOWQ==",
"dev": true,
"license": "MIT",
"engines": {
"node": ">=6.9.0"
}
@@ -2616,109 +2549,28 @@
}
},
"node_modules/@babel/helpers": {
"version": "7.23.8",
"resolved": "https://registry.npmjs.org/@babel/helpers/-/helpers-7.23.8.tgz",
"integrity": "sha512-KDqYz4PiOWvDFrdHLPhKtCThtIcKVy6avWD2oG4GEvyQ+XDZwHD4YQd+H2vNMnq2rkdxsDkU82T+Vk8U/WXHRQ==",
"version": "7.27.0",
"resolved": "https://registry.npmjs.org/@babel/helpers/-/helpers-7.27.0.tgz",
"integrity": "sha512-U5eyP/CTFPuNE3qk+WZMxFkp/4zUzdceQlfzf7DdGdhp+Fezd7HD+i8Y24ZuTMKX3wQBld449jijbGq6OdGNQg==",
"dev": true,
"license": "MIT",
"dependencies": {
"@babel/template": "^7.22.15",
"@babel/traverse": "^7.23.7",
"@babel/types": "^7.23.6"
"@babel/template": "^7.27.0",
"@babel/types": "^7.27.0"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/highlight": {
"version": "7.23.4",
"resolved": "https://registry.npmjs.org/@babel/highlight/-/highlight-7.23.4.tgz",
"integrity": "sha512-acGdbYSfp2WheJoJm/EBBBLh/ID8KDc64ISZ9DYtBmC8/Q204PZJLHyzeB5qMzJ5trcOkybd78M4x2KWsUq++A==",
"dev": true,
"dependencies": {
"@babel/helper-validator-identifier": "^7.22.20",
"chalk": "^2.4.2",
"js-tokens": "^4.0.0"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/highlight/node_modules/ansi-styles": {
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
"dev": true,
"dependencies": {
"color-convert": "^1.9.0"
},
"engines": {
"node": ">=4"
}
},
"node_modules/@babel/highlight/node_modules/chalk": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
"dev": true,
"dependencies": {
"ansi-styles": "^3.2.1",
"escape-string-regexp": "^1.0.5",
"supports-color": "^5.3.0"
},
"engines": {
"node": ">=4"
}
},
"node_modules/@babel/highlight/node_modules/color-convert": {
"version": "1.9.3",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
"dev": true,
"dependencies": {
"color-name": "1.1.3"
}
},
"node_modules/@babel/highlight/node_modules/color-name": {
"version": "1.1.3",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==",
"dev": true
},
"node_modules/@babel/highlight/node_modules/escape-string-regexp": {
"version": "1.0.5",
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==",
"dev": true,
"engines": {
"node": ">=0.8.0"
}
},
"node_modules/@babel/highlight/node_modules/has-flag": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==",
"dev": true,
"engines": {
"node": ">=4"
}
},
"node_modules/@babel/highlight/node_modules/supports-color": {
"version": "5.5.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
"dev": true,
"dependencies": {
"has-flag": "^3.0.0"
},
"engines": {
"node": ">=4"
}
},
"node_modules/@babel/parser": {
"version": "7.23.6",
"resolved": "https://registry.npmjs.org/@babel/parser/-/parser-7.23.6.tgz",
"integrity": "sha512-Z2uID7YJ7oNvAI20O9X0bblw7Qqs8Q2hFy0R9tAfnfLkp5MW0UH9eUvnDSnFwKZ0AvgS1ucqR4KzvVHgnke1VQ==",
"version": "7.27.0",
"resolved": "https://registry.npmjs.org/@babel/parser/-/parser-7.27.0.tgz",
"integrity": "sha512-iaepho73/2Pz7w2eMS0Q5f83+0RKI7i4xmiYeBmDzfRVbQtTOG7Ts0S4HzJVsTMGI9keU8rNfuZr8DKfSt7Yyg==",
"dev": true,
"license": "MIT",
"dependencies": {
"@babel/types": "^7.27.0"
},
"bin": {
"parser": "bin/babel-parser.js"
},
@@ -2904,14 +2756,15 @@
}
},
"node_modules/@babel/template": {
"version": "7.22.15",
"resolved": "https://registry.npmjs.org/@babel/template/-/template-7.22.15.tgz",
"integrity": "sha512-QPErUVm4uyJa60rkI73qneDacvdvzxshT3kksGqlGWYdOTIUOwJ7RDUL8sGqslY1uXWSL6xMFKEXDS3ox2uF0w==",
"version": "7.27.0",
"resolved": "https://registry.npmjs.org/@babel/template/-/template-7.27.0.tgz",
"integrity": "sha512-2ncevenBqXI6qRMukPlXwHKHchC7RyMuu4xv5JBXRfOGVcTy1mXCD12qrp7Jsoxll1EV3+9sE4GugBVRjT2jFA==",
"dev": true,
"license": "MIT",
"dependencies": {
"@babel/code-frame": "^7.22.13",
"@babel/parser": "^7.22.15",
"@babel/types": "^7.22.15"
"@babel/code-frame": "^7.26.2",
"@babel/parser": "^7.27.0",
"@babel/types": "^7.27.0"
},
"engines": {
"node": ">=6.9.0"
@@ -2948,14 +2801,14 @@
}
},
"node_modules/@babel/types": {
"version": "7.23.6",
"resolved": "https://registry.npmjs.org/@babel/types/-/types-7.23.6.tgz",
"integrity": "sha512-+uarb83brBzPKN38NX1MkB6vb6+mwvR6amUulqAE7ccQw1pEl+bCia9TbdG1lsnFP7lZySvUn37CHyXQdfTwzg==",
"version": "7.27.0",
"resolved": "https://registry.npmjs.org/@babel/types/-/types-7.27.0.tgz",
"integrity": "sha512-H45s8fVLYjbhFH62dIJ3WtmJ6RSPt/3DRO0ZcT2SUiYiQyz3BLVb9ADEnLl91m74aQPS3AzzeajZHYOalWe3bg==",
"dev": true,
"license": "MIT",
"dependencies": {
"@babel/helper-string-parser": "^7.23.4",
"@babel/helper-validator-identifier": "^7.22.20",
"to-fast-properties": "^2.0.0"
"@babel/helper-string-parser": "^7.25.9",
"@babel/helper-validator-identifier": "^7.25.9"
},
"engines": {
"node": ">=6.9.0"
@@ -5550,10 +5403,11 @@
"devOptional": true
},
"node_modules/axios": {
"version": "1.7.7",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.7.7.tgz",
"integrity": "sha512-S4kL7XrjgBmvdGut0sN3yJxqYzrDOnivkBiN0OFs6hLiUam3UPvswUo0kqGyhqUZGEOytHyumEdXsAkgCOUf3Q==",
"version": "1.8.4",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.8.4.tgz",
"integrity": "sha512-eBSYY4Y68NNlHbHBMdeDmKNtDgXWhQsJcGqzO3iLUM0GraQFSS9cVgPX5I9b3lbdFKyYoAEGAZF1DwhTaljNAw==",
"dev": true,
"license": "MIT",
"dependencies": {
"follow-redirects": "^1.15.6",
"form-data": "^4.0.0",
@@ -7869,7 +7723,8 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/js-tokens/-/js-tokens-4.0.0.tgz",
"integrity": "sha512-RdJUflcE3cUzKiMqQgsCu06FPu9UdIJO0beYbPhHN4k6apgJtifcoCtT9bcxOpYBtpD2kCM6Sbzg4CausW/PKQ==",
"dev": true
"dev": true,
"license": "MIT"
},
"node_modules/js-yaml": {
"version": "3.14.1",
@@ -9360,15 +9215,6 @@
"integrity": "sha512-3f0uOEAQwIqGuWW2MVzYg8fV/QNnc/IpuJNG837rLuczAaLVHslWHZQj4IGiEl5Hs3kkbhwL9Ab7Hrsmuj+Smw==",
"dev": true
},
"node_modules/to-fast-properties": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/to-fast-properties/-/to-fast-properties-2.0.0.tgz",
"integrity": "sha512-/OaKK0xYrs3DmxRYqL/yDc+FxFUVYhDlXMhRmv3z915w2HF1tnN1omB354j8VUGO/hbRzyD6Y3sA7v7GS/ceog==",
"dev": true,
"engines": {
"node": ">=4"
}
},
"node_modules/to-regex-range": {
"version": "5.0.1",
"resolved": "https://registry.npmjs.org/to-regex-range/-/to-regex-range-5.0.1.tgz",

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.18.1",
"version": "0.19.0-beta.5",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
@@ -29,6 +29,7 @@
"aarch64-apple-darwin",
"x86_64-unknown-linux-gnu",
"aarch64-unknown-linux-gnu",
"x86_64-unknown-linux-musl",
"aarch64-unknown-linux-musl",
"x86_64-pc-windows-msvc",
"aarch64-pc-windows-msvc"

View File

@@ -48,8 +48,16 @@ impl Connection {
pub async fn new(uri: String, options: ConnectionOptions) -> napi::Result<Self> {
let mut builder = ConnectBuilder::new(&uri);
if let Some(interval) = options.read_consistency_interval {
builder =
builder.read_consistency_interval(std::time::Duration::from_secs_f64(interval));
match interval {
Either::A(seconds) => {
builder = builder.read_consistency_interval(Some(
std::time::Duration::from_secs_f64(seconds),
));
}
Either::B(_) => {
builder = builder.read_consistency_interval(None);
}
}
}
if let Some(storage_options) = options.storage_options {
for (key, value) in storage_options {

View File

@@ -4,6 +4,7 @@
use std::collections::HashMap;
use env_logger::Env;
use napi::{bindgen_prelude::Null, Either};
use napi_derive::*;
mod connection;
@@ -18,7 +19,6 @@ mod table;
mod util;
#[napi(object)]
#[derive(Debug)]
pub struct ConnectionOptions {
/// (For LanceDB OSS only): The interval, in seconds, at which to check for
/// updates to the table from other processes. If None, then consistency is not
@@ -29,7 +29,7 @@ pub struct ConnectionOptions {
/// has passed since the last check, then the table will be checked for updates.
/// Note: this consistency only applies to read operations. Write operations are
/// always consistent.
pub read_consistency_interval: Option<f64>,
pub read_consistency_interval: Option<Either<f64, Null>>,
/// (For LanceDB OSS only): configuration for object storage.
///
/// The available options are described at https://lancedb.github.io/lancedb/guides/storage/

View File

@@ -3,7 +3,7 @@
use std::sync::Arc;
use lancedb::index::scalar::FullTextSearchQuery;
use lancedb::index::scalar::{FtsQuery, FullTextSearchQuery, MatchQuery, PhraseQuery};
use lancedb::query::ExecutableQuery;
use lancedb::query::Query as LanceDbQuery;
use lancedb::query::QueryBase;
@@ -18,7 +18,7 @@ use crate::error::NapiErrorExt;
use crate::iterator::RecordBatchIterator;
use crate::rerankers::Reranker;
use crate::rerankers::RerankerCallbacks;
use crate::util::parse_distance_type;
use crate::util::{parse_distance_type, parse_fts_query};
#[napi]
pub struct Query {
@@ -38,9 +38,53 @@ impl Query {
}
#[napi]
pub fn full_text_search(&mut self, query: String, columns: Option<Vec<String>>) {
let query = FullTextSearchQuery::new(query).columns(columns);
pub fn full_text_search(&mut self, query: napi::JsUnknown) -> napi::Result<()> {
let query = unsafe { query.cast::<napi::JsObject>() };
let query = if let Some(query_text) = query.get::<_, String>("query").transpose() {
let mut query_text = query_text?;
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
let is_phrase =
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
if is_phrase {
// Remove the surrounding quotes for phrase queries
query_text = query_text[1..query_text.len() - 1].to_string();
}
let query: FtsQuery = match (is_phrase, is_multi_match) {
(false, _) => MatchQuery::new(query_text).into(),
(true, false) => PhraseQuery::new(query_text).into(),
(true, true) => {
return Err(napi::Error::from_reason(
"Phrase queries cannot be used with multiple columns.",
));
}
};
let mut query = FullTextSearchQuery::new_query(query);
if let Some(cols) = columns {
if !cols.is_empty() {
query = query.with_columns(&cols).map_err(|e| {
napi::Error::from_reason(format!(
"Failed to set full text search columns: {}",
e
))
})?;
}
}
query
} else if let Some(query) = query.get::<_, napi::JsObject>("query")? {
let query = parse_fts_query(&query)?;
FullTextSearchQuery::new_query(query)
} else {
return Err(napi::Error::from_reason(
"Invalid full text search query object".to_string(),
));
};
self.inner = self.inner.clone().full_text_search(query);
Ok(())
}
#[napi]
@@ -87,11 +131,15 @@ impl Query {
pub async fn execute(
&self,
max_batch_length: Option<u32>,
timeout_ms: Option<u32>,
) -> napi::Result<RecordBatchIterator> {
let mut execution_opts = QueryExecutionOptions::default();
if let Some(max_batch_length) = max_batch_length {
execution_opts.max_batch_length = max_batch_length;
}
if let Some(timeout_ms) = timeout_ms {
execution_opts.timeout = Some(std::time::Duration::from_millis(timeout_ms as u64))
}
let inner_stream = self
.inner
.execute_with_options(execution_opts)
@@ -114,6 +162,16 @@ impl Query {
))
})
}
#[napi(catch_unwind)]
pub async fn analyze_plan(&self) -> napi::Result<String> {
self.inner.analyze_plan().await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to execute analyze plan: {}",
convert_error(&e)
))
})
}
}
#[napi]
@@ -185,9 +243,53 @@ impl VectorQuery {
}
#[napi]
pub fn full_text_search(&mut self, query: String, columns: Option<Vec<String>>) {
let query = FullTextSearchQuery::new(query).columns(columns);
pub fn full_text_search(&mut self, query: napi::JsUnknown) -> napi::Result<()> {
let query = unsafe { query.cast::<napi::JsObject>() };
let query = if let Some(query_text) = query.get::<_, String>("query").transpose() {
let mut query_text = query_text?;
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
let is_phrase =
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
if is_phrase {
// Remove the surrounding quotes for phrase queries
query_text = query_text[1..query_text.len() - 1].to_string();
}
let query: FtsQuery = match (is_phrase, is_multi_match) {
(false, _) => MatchQuery::new(query_text).into(),
(true, false) => PhraseQuery::new(query_text).into(),
(true, true) => {
return Err(napi::Error::from_reason(
"Phrase queries cannot be used with multiple columns.",
));
}
};
let mut query = FullTextSearchQuery::new_query(query);
if let Some(cols) = columns {
if !cols.is_empty() {
query = query.with_columns(&cols).map_err(|e| {
napi::Error::from_reason(format!(
"Failed to set full text search columns: {}",
e
))
})?;
}
}
query
} else if let Some(query) = query.get::<_, napi::JsObject>("query")? {
let query = parse_fts_query(&query)?;
FullTextSearchQuery::new_query(query)
} else {
return Err(napi::Error::from_reason(
"Invalid full text search query object".to_string(),
));
};
self.inner = self.inner.clone().full_text_search(query);
Ok(())
}
#[napi]
@@ -232,11 +334,15 @@ impl VectorQuery {
pub async fn execute(
&self,
max_batch_length: Option<u32>,
timeout_ms: Option<u32>,
) -> napi::Result<RecordBatchIterator> {
let mut execution_opts = QueryExecutionOptions::default();
if let Some(max_batch_length) = max_batch_length {
execution_opts.max_batch_length = max_batch_length;
}
if let Some(timeout_ms) = timeout_ms {
execution_opts.timeout = Some(std::time::Duration::from_millis(timeout_ms as u64))
}
let inner_stream = self
.inner
.execute_with_options(execution_opts)
@@ -259,4 +365,14 @@ impl VectorQuery {
))
})
}
#[napi(catch_unwind)]
pub async fn analyze_plan(&self) -> napi::Result<String> {
self.inner.analyze_plan().await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to execute analyze plan: {}",
convert_error(&e)
))
})
}
}

View File

@@ -1,6 +1,7 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use lancedb::index::scalar::{BoostQuery, FtsQuery, MatchQuery, MultiMatchQuery, PhraseQuery};
use lancedb::DistanceType;
pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<DistanceType> {
@@ -15,3 +16,144 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<Dista
))),
}
}
pub fn parse_fts_query(query: &napi::JsObject) -> napi::Result<FtsQuery> {
let query_type = query
.get_property_names()?
.get_element::<napi::JsString>(0)?;
let query_type = query_type.into_utf8()?.into_owned()?;
let query_value =
query
.get::<_, napi::JsObject>(&query_type)?
.ok_or(napi::Error::from_reason(format!(
"query value {} not found",
query_type
)))?;
match query_type.as_str() {
"match" => {
let column = query_value
.get_property_names()?
.get_element::<napi::JsString>(0)?
.into_utf8()?
.into_owned()?;
let params =
query_value
.get::<_, napi::JsObject>(&column)?
.ok_or(napi::Error::from_reason(format!(
"column {} not found",
column
)))?;
let query = params
.get::<_, napi::JsString>("query")?
.ok_or(napi::Error::from_reason("query not found"))?
.into_utf8()?
.into_owned()?;
let boost = params
.get::<_, napi::JsNumber>("boost")?
.ok_or(napi::Error::from_reason("boost not found"))?
.get_double()? as f32;
let fuzziness = params
.get::<_, napi::JsNumber>("fuzziness")?
.map(|f| f.get_uint32())
.transpose()?;
let max_expansions = params
.get::<_, napi::JsNumber>("max_expansions")?
.ok_or(napi::Error::from_reason("max_expansions not found"))?
.get_uint32()? as usize;
let query = MatchQuery::new(query)
.with_column(Some(column))
.with_boost(boost)
.with_fuzziness(fuzziness)
.with_max_expansions(max_expansions);
Ok(query.into())
}
"match_phrase" => {
let column = query_value
.get_property_names()?
.get_element::<napi::JsString>(0)?
.into_utf8()?
.into_owned()?;
let query = query_value
.get::<_, napi::JsString>(&column)?
.ok_or(napi::Error::from_reason(format!(
"column {} not found",
column
)))?
.into_utf8()?
.into_owned()?;
let query = PhraseQuery::new(query).with_column(Some(column));
Ok(query.into())
}
"boost" => {
let positive = query_value
.get::<_, napi::JsObject>("positive")?
.ok_or(napi::Error::from_reason("positive not found"))?;
let negative = query_value
.get::<_, napi::JsObject>("negative")?
.ok_or(napi::Error::from_reason("negative not found"))?;
let negative_boost = query_value
.get::<_, napi::JsNumber>("negative_boost")?
.ok_or(napi::Error::from_reason("negative_boost not found"))?
.get_double()? as f32;
let positive = parse_fts_query(&positive)?;
let negative = parse_fts_query(&negative)?;
let query = BoostQuery::new(positive, negative, Some(negative_boost));
Ok(query.into())
}
"multi_match" => {
let query = query_value
.get::<_, napi::JsString>("query")?
.ok_or(napi::Error::from_reason("query not found"))?
.into_utf8()?
.into_owned()?;
let columns_array = query_value
.get::<_, napi::JsTypedArray>("columns")?
.ok_or(napi::Error::from_reason("columns not found"))?;
let columns_num = columns_array.get_array_length()?;
let mut columns = Vec::with_capacity(columns_num as usize);
for i in 0..columns_num {
let column = columns_array
.get_element::<napi::JsString>(i)?
.into_utf8()?
.into_owned()?;
columns.push(column);
}
let boost_array = query_value
.get::<_, napi::JsTypedArray>("boost")?
.ok_or(napi::Error::from_reason("boost not found"))?;
if boost_array.get_array_length()? != columns_num {
return Err(napi::Error::from_reason(format!(
"boost array length ({}) does not match columns length ({})",
boost_array.get_array_length()?,
columns_num
)));
}
let mut boost = Vec::with_capacity(columns_num as usize);
for i in 0..columns_num {
let b = boost_array.get_element::<napi::JsNumber>(i)?.get_double()? as f32;
boost.push(b);
}
let query =
MultiMatchQuery::try_new_with_boosts(query, columns, boost).map_err(|e| {
napi::Error::from_reason(format!("Error creating MultiMatchQuery: {}", e))
})?;
Ok(query.into())
}
_ => Err(napi::Error::from_reason(format!(
"Unsupported query type: {}",
query_type
))),
}
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.21.2-beta.0"
current_version = "0.22.0-beta.5"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.21.2-beta.0"
version = "0.22.0-beta.5"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -4,11 +4,12 @@ name = "lancedb"
dynamic = ["version"]
dependencies = [
"deprecation",
"tqdm>=4.27.0",
"numpy",
"overrides>=0.7",
"packaging",
"pyarrow>=14",
"pydantic>=1.10",
"packaging",
"overrides>=0.7",
"tqdm>=4.27.0",
]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
@@ -55,6 +56,7 @@ tests = [
"tantivy",
"pyarrow-stubs",
"pylance>=0.23.2",
"requests",
]
dev = [
"ruff",

View File

@@ -7,6 +7,7 @@ import os
from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta
from typing import Dict, Optional, Union, Any
import warnings
__version__ = importlib.metadata.version("lancedb")
@@ -25,7 +26,7 @@ def connect(
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
storage_options: Optional[Dict[str, str]] = None,
@@ -48,9 +49,8 @@ def connect(
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. If None, then consistency is not checked. For strong consistency,
set this to zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
@@ -121,7 +121,7 @@ async def connect_async(
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
client_config: Optional[Union[ClientConfig, Dict[str, Any]]] = None,
storage_options: Optional[Dict[str, str]] = None,
) -> AsyncConnection:
@@ -142,9 +142,8 @@ async def connect_async(
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. If None, then consistency is not checked. For strong consistency,
set this to zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
@@ -213,3 +212,13 @@ __all__ = [
"RemoteDBConnection",
"__version__",
]
def __warn_on_fork():
warnings.warn(
"lance is not fork-safe. If you are using multiprocessing, use spawn instead.",
)
if hasattr(os, "register_at_fork"):
os.register_at_fork(before=__warn_on_fork)

View File

@@ -1,3 +1,4 @@
from datetime import timedelta
from typing import Dict, List, Optional, Tuple, Any, Union, Literal
import pyarrow as pa
@@ -48,10 +49,11 @@ class Table:
async def version(self) -> int: ...
async def checkout(self, version: int): ...
async def checkout_latest(self): ...
async def restore(self): ...
async def restore(self, version: Optional[int] = None): ...
async def list_indices(self) -> list[IndexConfig]: ...
async def delete(self, filter: str): ...
async def add_columns(self, columns: list[tuple[str, str]]) -> None: ...
async def add_columns_with_schema(self, schema: pa.Schema) -> None: ...
async def alter_columns(self, columns: list[dict[str, Any]]) -> None: ...
async def optimize(
self,
@@ -93,7 +95,11 @@ class Query:
def postfilter(self): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> FTSQuery: ...
async def execute(self, max_batch_length: Optional[int]) -> RecordBatchStream: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
async def explain_plan(self, verbose: Optional[bool]) -> str: ...
async def analyze_plan(self) -> str: ...
def to_query_request(self) -> PyQueryRequest: ...
class FTSQuery:
@@ -107,8 +113,9 @@ class FTSQuery:
def get_query(self) -> str: ...
def add_query_vector(self, query_vec: pa.Array) -> None: ...
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
async def execute(self, max_batch_length: Optional[int]) -> RecordBatchStream: ...
async def explain_plan(self) -> str: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
def to_query_request(self) -> PyQueryRequest: ...
class VectorQuery:

View File

@@ -6,6 +6,7 @@ from __future__ import annotations
from abc import abstractmethod
from pathlib import Path
from datetime import timedelta
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
@@ -32,7 +33,6 @@ import deprecation
if TYPE_CHECKING:
import pyarrow as pa
from .pydantic import LanceModel
from datetime import timedelta
from ._lancedb import Connection as LanceDbConnection
from .common import DATA, URI
@@ -318,9 +318,8 @@ class LanceDBConnection(DBConnection):
The root uri of the database.
read_consistency_interval: timedelta, default None
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. If None, then consistency is not checked. For strong consistency,
set this to zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
@@ -352,7 +351,7 @@ class LanceDBConnection(DBConnection):
self,
uri: URI,
*,
read_consistency_interval: Optional[timedelta] = None,
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
storage_options: Optional[Dict[str, str]] = None,
):
if not isinstance(uri, Path):

View File

@@ -1,9 +1,12 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import base64
import os
from typing import ClassVar, TYPE_CHECKING, List, Union
from typing import ClassVar, TYPE_CHECKING, List, Union, Any
from pathlib import Path
from urllib.parse import urlparse
from io import BytesIO
import numpy as np
import pyarrow as pa
@@ -11,12 +14,100 @@ import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help, IMAGES
from .utils import api_key_not_found_help, IMAGES, TEXT
if TYPE_CHECKING:
import PIL
def is_valid_url(text):
try:
parsed = urlparse(text)
return bool(parsed.scheme) and bool(parsed.netloc)
except Exception:
return False
def transform_input(input_data: Union[str, bytes, Path]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(input_data, str):
if is_valid_url(input_data):
content = {"type": "image_url", "image_url": input_data}
else:
content = {"type": "text", "text": input_data}
elif isinstance(input_data, PIL.Image.Image):
buffered = BytesIO()
input_data.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
content = {
"type": "image_base64",
"image_base64": "data:image/jpeg;base64," + img_str,
}
elif isinstance(input_data, bytes):
img = PIL.Image.open(BytesIO(input_data))
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
content = {
"type": "image_base64",
"image_base64": "data:image/jpeg;base64," + img_str,
}
elif isinstance(input_data, Path):
img = PIL.Image.open(input_data)
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
content = {
"type": "image_base64",
"image_base64": "data:image/jpeg;base64," + img_str,
}
else:
raise ValueError("Each input should be either str, bytes, Path or Image.")
return {"content": [content]}
def sanitize_multimodal_input(inputs: Union[TEXT, IMAGES]) -> List[Any]:
"""
Sanitize the input to the embedding function.
"""
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(inputs, (str, bytes, Path, PIL.Image.Image)):
inputs = [inputs]
elif isinstance(inputs, pa.Array):
inputs = inputs.to_pylist()
elif isinstance(inputs, pa.ChunkedArray):
inputs = inputs.combine_chunks().to_pylist()
else:
raise ValueError(
f"Input type {type(inputs)} not allowed with multimodal model."
)
if not all(isinstance(x, (str, bytes, Path, PIL.Image.Image)) for x in inputs):
raise ValueError("Each input should be either str, bytes, Path or Image.")
return [transform_input(i) for i in inputs]
def sanitize_text_input(inputs: TEXT) -> List[str]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(inputs, str):
inputs = [inputs]
elif isinstance(inputs, pa.Array):
inputs = inputs.to_pylist()
elif isinstance(inputs, pa.ChunkedArray):
inputs = inputs.combine_chunks().to_pylist()
else:
raise ValueError(f"Input type {type(inputs)} not allowed with text model.")
if not all(isinstance(x, str) for x in inputs):
raise ValueError("Each input should be str.")
return inputs
@register("voyageai")
class VoyageAIEmbeddingFunction(EmbeddingFunction):
"""
@@ -74,6 +165,11 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
]
multimodal_embedding_models: list = ["voyage-multimodal-3"]
def _is_multimodal_model(self, model_name: str):
return (
model_name in self.multimodal_embedding_models or "multimodal" in model_name
)
def ndims(self):
if self.name == "voyage-3-lite":
return 512
@@ -85,55 +181,12 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
"voyage-finance-2",
"voyage-multilingual-2",
"voyage-law-2",
"voyage-multimodal-3",
]:
return 1024
else:
raise ValueError(f"Model {self.name} not supported")
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def generate_text_embeddings(self, text: str, **kwargs) -> np.ndarray:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
input_type: Optional[str]
truncation: Optional[bool]
"""
client = VoyageAIEmbeddingFunction._get_client()
if self.name in self.text_embedding_models:
rs = client.embed(texts=[text], model=self.name, **kwargs)
elif self.name in self.multimodal_embedding_models:
rs = client.multimodal_embed(inputs=[[text]], model=self.name, **kwargs)
else:
raise ValueError(
f"Model {self.name} not supported to generate text embeddings"
)
return rs.embeddings[0]
def generate_image_embedding(
self, image: "PIL.Image.Image", **kwargs
) -> np.ndarray:
rs = VoyageAIEmbeddingFunction._get_client().multimodal_embed(
inputs=[[image]], model=self.name, **kwargs
)
return rs.embeddings[0]
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
@@ -144,23 +197,52 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
Returns
-------
List[np.array]: the list of embeddings
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query, input_type="query")]
client = VoyageAIEmbeddingFunction._get_client()
if self._is_multimodal_model(self.name):
result = client.multimodal_embed(
inputs=[[query]], model=self.name, input_type="query", **kwargs
)
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query, input_type="query")]
else:
raise TypeError("Only text PIL images supported as query")
result = client.embed(
texts=[query], model=self.name, input_type="query", **kwargs
)
return [result.embeddings[0]]
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
self, inputs: Union[TEXT, IMAGES], *args, **kwargs
) -> List[np.array]:
images = self.sanitize_input(images)
return [
self.generate_image_embedding(img, input_type="document") for img in images
]
"""
Compute the embeddings for the inputs
Parameters
----------
inputs : Union[TEXT, IMAGES]
The inputs to embed. The input can be either str, bytes, Path (to an image),
PIL.Image or list of these.
Returns
-------
List[np.array]: the list of embeddings
"""
client = VoyageAIEmbeddingFunction._get_client()
if self._is_multimodal_model(self.name):
inputs = sanitize_multimodal_input(inputs)
result = client.multimodal_embed(
inputs=inputs, model=self.name, input_type="document", **kwargs
)
else:
inputs = sanitize_text_input(inputs)
result = client.embed(
texts=inputs, model=self.name, input_type="document", **kwargs
)
return result.embeddings
@staticmethod
def _get_client():

View File

@@ -4,7 +4,10 @@
from __future__ import annotations
from abc import ABC, abstractmethod
import abc
from concurrent.futures import ThreadPoolExecutor
from enum import Enum
from datetime import timedelta
from typing import (
TYPE_CHECKING,
Dict,
@@ -83,6 +86,213 @@ def ensure_vector_query(
return val
class FullTextQueryType(Enum):
MATCH = "match"
MATCH_PHRASE = "match_phrase"
BOOST = "boost"
MULTI_MATCH = "multi_match"
class FullTextQuery(abc.ABC, pydantic.BaseModel):
@abc.abstractmethod
def query_type(self) -> FullTextQueryType:
"""
Get the query type of the query.
Returns
-------
str
The type of the query.
"""
@abc.abstractmethod
def to_dict(self) -> dict:
"""
Convert the query to a dictionary.
Returns
-------
dict
The query as a dictionary.
"""
class MatchQuery(FullTextQuery):
query: str
column: str
boost: float = 1.0
fuzziness: int = 0
max_expansions: int = 50
def __init__(
self,
query: str,
column: str,
*,
boost: float = 1.0,
fuzziness: int = 0,
max_expansions: int = 50,
):
"""
Match query for full-text search.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
boost : float, default 1.0
The boost factor for the query.
The score of each matching document is multiplied by this value.
fuzziness : int, optional
The maximum edit distance for each term in the match query.
Defaults to 0 (exact match).
If None, fuzziness is applied automatically by the rules:
- 0 for terms with length <= 2
- 1 for terms with length <= 5
- 2 for terms with length > 5
max_expansions : int, optional
The maximum number of terms to consider for fuzzy matching.
Defaults to 50.
"""
super().__init__(
query=query,
column=column,
boost=boost,
fuzziness=fuzziness,
max_expansions=max_expansions,
)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH
def to_dict(self) -> dict:
return {
"match": {
self.column: {
"query": self.query,
"boost": self.boost,
"fuzziness": self.fuzziness,
"max_expansions": self.max_expansions,
}
}
}
class PhraseQuery(FullTextQuery):
query: str
column: str
def __init__(self, query: str, column: str):
"""
Phrase query for full-text search.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
"""
super().__init__(query=query, column=column)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH_PHRASE
def to_dict(self) -> dict:
return {
"match_phrase": {
self.column: self.query,
}
}
class BoostQuery(FullTextQuery):
positive: FullTextQuery
negative: FullTextQuery
negative_boost: float = 0.5
def __init__(
self,
positive: FullTextQuery,
negative: FullTextQuery,
*,
negative_boost: float = 0.5,
):
"""
Boost query for full-text search.
Parameters
----------
positive : dict
The positive query object.
negative : dict
The negative query object.
negative_boost : float
The boost factor for the negative query.
"""
super().__init__(
positive=positive, negative=negative, negative_boost=negative_boost
)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.BOOST
def to_dict(self) -> dict:
return {
"boost": {
"positive": self.positive.to_dict(),
"negative": self.negative.to_dict(),
"negative_boost": self.negative_boost,
}
}
class MultiMatchQuery(FullTextQuery):
query: str
columns: list[str]
boosts: list[float]
def __init__(
self,
query: str,
columns: list[str],
*,
boosts: Optional[list[float]] = None,
):
"""
Multi-match query for full-text search.
Parameters
----------
query : str | list[Query]
If a string, the query string to match against.
columns : list[str]
The list of columns to match against.
boosts : list[float], optional
The list of boost factors for each column. If not provided,
all columns will have the same boost factor.
"""
if boosts is None:
boosts = [1.0] * len(columns)
super().__init__(query=query, columns=columns, boosts=boosts)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MULTI_MATCH
def to_dict(self) -> dict:
return {
"multi_match": {
"query": self.query,
"columns": self.columns,
"boost": self.boosts,
}
}
class FullTextSearchQuery(pydantic.BaseModel):
"""A LanceDB Full Text Search Query
@@ -92,27 +302,23 @@ class FullTextSearchQuery(pydantic.BaseModel):
The columns to search
If None, then the table should select the column automatically.
query: str
The query to search for
limit: Optional[int] = None
The limit on the number of results to return
wand_factor: Optional[float] = None
The wand factor to use for the search
query: str | FullTextQuery
If a string, it is treated as a MatchQuery.
If a FullTextQuery object, it is used directly.
"""
columns: Optional[List[str]] = None
query: str
limit: Optional[int] = None
wand_factor: Optional[float] = None
query: Union[str, FullTextQuery]
class Query(pydantic.BaseModel):
"""A LanceDB Query
Queries are constructed by the `Table.search` and `Table.query` methods. This
class is a python representation of the query. Normally you will not need to
interact with this class directly. You can build up a query and execute it using
collection methods such as `to_batches()`, `to_arrow()`, `to_pandas()`, etc.
Queries are constructed by the `Table.search` method. This class is a
python representation of the query. Normally you will not need to interact
with this class directly. You can build up a query and execute it using
collection methods such as `to_batches()`, `to_arrow()`, `to_pandas()`,
etc.
However, you can use the `to_query()` method to get the underlying query object.
This can be useful for serializing a query or using it in a different context.
@@ -356,7 +562,7 @@ class LanceQueryBuilder(ABC):
table, query, vector_column_name, fts_columns=fts_columns
)
if isinstance(query, str):
if isinstance(query, (str, FullTextQuery)):
# fts
return LanceFtsQueryBuilder(
table,
@@ -381,8 +587,10 @@ class LanceQueryBuilder(ABC):
# If query_type is fts, then query must be a string.
# otherwise raise TypeError
if query_type == "fts":
if not isinstance(query, str):
raise TypeError(f"'fts' queries must be a string: {type(query)}")
if not isinstance(query, (str, FullTextQuery)):
raise TypeError(
f"'fts' query must be a string or FullTextQuery: {type(query)}"
)
return query, query_type
elif query_type == "vector":
query = cls._query_to_vector(table, query, vector_column_name)
@@ -443,7 +651,12 @@ class LanceQueryBuilder(ABC):
"""
return self.to_pandas()
def to_pandas(self, flatten: Optional[Union[int, bool]] = None) -> "pd.DataFrame":
def to_pandas(
self,
flatten: Optional[Union[int, bool]] = None,
*,
timeout: Optional[timedelta] = None,
) -> "pd.DataFrame":
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
@@ -457,12 +670,15 @@ class LanceQueryBuilder(ABC):
If flatten is an integer, flatten the nested columns up to the
specified depth.
If unspecified, do not flatten the nested columns.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
tbl = flatten_columns(self.to_arrow(), flatten)
tbl = flatten_columns(self.to_arrow(timeout=timeout), flatten)
return tbl.to_pandas()
@abstractmethod
def to_arrow(self) -> pa.Table:
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
"""
Execute the query and return the results as an
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
@@ -470,34 +686,65 @@ class LanceQueryBuilder(ABC):
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vectors.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
raise NotImplementedError
@abstractmethod
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.RecordBatchReader:
def to_batches(
self,
/,
batch_size: Optional[int] = None,
*,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader:
"""
Execute the query and return the results as a pyarrow
[RecordBatchReader](https://arrow.apache.org/docs/python/generated/pyarrow.RecordBatchReader.html)
Parameters
----------
batch_size: int
The maximum number of selected records in a RecordBatch object.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
raise NotImplementedError
def to_list(self) -> List[dict]:
def to_list(self, *, timeout: Optional[timedelta] = None) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
"""
return self.to_arrow().to_pylist()
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
return self.to_arrow(timeout=timeout).to_pylist()
def to_pydantic(
self, model: Type[LanceModel], *, timeout: Optional[timedelta] = None
) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
Returns
-------
@@ -505,19 +752,25 @@ class LanceQueryBuilder(ABC):
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow().to_pylist()
for row in self.to_arrow(timeout=timeout).to_pylist()
]
def to_polars(self) -> "pl.DataFrame":
def to_polars(self, *, timeout: Optional[timedelta] = None) -> "pl.DataFrame":
"""
Execute the query and return the results as a Polars DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
import polars as pl
return pl.from_arrow(self.to_arrow())
return pl.from_arrow(self.to_arrow(timeout=timeout))
def limit(self, limit: Union[int, None]) -> Self:
"""Set the maximum number of results to return.
@@ -656,7 +909,45 @@ class LanceQueryBuilder(ABC):
-------
plan : str
""" # noqa: E501
return self._table._explain_plan(self.to_query_object())
return self._table._explain_plan(self.to_query_object(), verbose=verbose)
def analyze_plan(self) -> str:
"""
Run the query and return its execution plan with runtime metrics.
This returns detailed metrics for each step, such as elapsed time,
rows processed, bytes read, and I/O stats. It is useful for debugging
and performance tuning.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [99.0, 99]}])
>>> query = [100, 100]
>>> plan = table.search(query).analyze_plan()
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[...], metrics=[...]
GlobalLimitExec: skip=0, fetch=10, metrics=[...]
FilterExec: _distance@2 IS NOT NULL,
metrics=[output_rows=..., elapsed_compute=...]
SortExec: TopK(fetch=10), expr=[...],
preserve_partitioning=[...],
metrics=[output_rows=..., elapsed_compute=..., row_replacements=...]
KNNVectorDistance: metric=l2,
metrics=[output_rows=..., elapsed_compute=..., output_batches=...]
LanceScan: uri=..., projection=[vector], row_id=true,
row_addr=false, ordered=false,
metrics=[output_rows=..., elapsed_compute=...,
bytes_read=..., iops=..., requests=...]
Returns
-------
plan : str
The physical query execution plan with runtime metrics.
"""
return self._table._analyze_plan(self.to_query_object())
def vector(self, vector: Union[np.ndarray, list]) -> Self:
"""Set the vector to search for.
@@ -673,13 +964,14 @@ class LanceQueryBuilder(ABC):
"""
raise NotImplementedError
def text(self, text: str) -> Self:
def text(self, text: str | FullTextQuery) -> Self:
"""Set the text to search for.
Parameters
----------
text: str
The text to search for.
text: str | FullTextQuery
If a string, it is treated as a MatchQuery.
If a FullTextQuery object, it is used directly.
Returns
-------
@@ -893,7 +1185,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._refine_factor = refine_factor
return self
def to_arrow(self) -> pa.Table:
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
"""
Execute the query and return the results as an
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
@@ -901,8 +1193,14 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vectors.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
return self.to_batches().read_all()
return self.to_batches(timeout=timeout).read_all()
def to_query_object(self) -> Query:
"""
@@ -932,7 +1230,13 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
bypass_vector_index=self._bypass_vector_index,
)
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.RecordBatchReader:
def to_batches(
self,
/,
batch_size: Optional[int] = None,
*,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader:
"""
Execute the query and return the result as a RecordBatchReader object.
@@ -940,6 +1244,9 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
----------
batch_size: int
The maximum number of selected records in a RecordBatch object.
timeout: timedelta, default None
The maximum time to wait for the query to complete.
If None, wait indefinitely.
Returns
-------
@@ -949,7 +1256,9 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
if isinstance(vector[0], np.ndarray):
vector = [v.tolist() for v in vector]
query = self.to_query_object()
result_set = self._table._execute_query(query, batch_size)
result_set = self._table._execute_query(
query, batch_size=batch_size, timeout=timeout
)
if self._reranker is not None:
rs_table = result_set.read_all()
result_set = self._reranker.rerank_vector(self._str_query, rs_table)
@@ -1045,7 +1354,7 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
def __init__(
self,
table: "Table",
query: str,
query: str | FullTextQuery,
ordering_field_name: Optional[str] = None,
fts_columns: Optional[Union[str, List[str]]] = None,
):
@@ -1088,7 +1397,7 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
offset=self._offset,
)
def to_arrow(self) -> pa.Table:
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
path, fs, exist = self._table._get_fts_index_path()
if exist:
return self.tantivy_to_arrow()
@@ -1100,14 +1409,16 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
"Use tantivy-based index instead for now."
)
query = self.to_query_object()
results = self._table._execute_query(query)
results = self._table._execute_query(query, timeout=timeout)
results = results.read_all()
if self._reranker is not None:
results = self._reranker.rerank_fts(self._query, results)
check_reranker_result(results)
return results
def to_batches(self, /, batch_size: Optional[int] = None):
def to_batches(
self, /, batch_size: Optional[int] = None, timeout: Optional[timedelta] = None
):
raise NotImplementedError("to_batches on an FTS query")
def tantivy_to_arrow(self) -> pa.Table:
@@ -1212,8 +1523,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
class LanceEmptyQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pa.Table:
return self.to_batches().read_all()
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
return self.to_batches(timeout=timeout).read_all()
def to_query_object(self) -> Query:
return Query(
@@ -1224,9 +1535,11 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
offset=self._offset,
)
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.RecordBatchReader:
def to_batches(
self, /, batch_size: Optional[int] = None, timeout: Optional[timedelta] = None
) -> pa.RecordBatchReader:
query = self.to_query_object()
return self._table._execute_query(query, batch_size)
return self._table._execute_query(query, batch_size=batch_size, timeout=timeout)
def rerank(self, reranker: Reranker) -> LanceEmptyQueryBuilder:
"""Rerank the results using the specified reranker.
@@ -1259,7 +1572,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
def __init__(
self,
table: "Table",
query: Optional[str] = None,
query: Optional[Union[str, FullTextQuery]] = None,
vector_column: Optional[str] = None,
fts_columns: Optional[Union[str, List[str]]] = None,
):
@@ -1289,8 +1602,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
text_query = text or query
if text_query is None:
raise ValueError("Text query must be provided for hybrid search.")
if not isinstance(text_query, str):
raise ValueError("Text query must be a string")
if not isinstance(text_query, (str, FullTextQuery)):
raise ValueError("Text query must be a string or FullTextQuery")
return vector_query, text_query
@@ -1314,7 +1627,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
def to_query_object(self) -> Query:
raise NotImplementedError("to_query_object not yet supported on a hybrid query")
def to_arrow(self) -> pa.Table:
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
vector_query, fts_query = self._validate_query(
self._query, self._vector, self._text
)
@@ -1357,9 +1670,11 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._reranker = RRFReranker()
with ThreadPoolExecutor() as executor:
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
fts_future = executor.submit(
self._fts_query.with_row_id(True).to_arrow, timeout=timeout
)
vector_future = executor.submit(
self._vector_query.with_row_id(True).to_arrow
self._vector_query.with_row_id(True).to_arrow, timeout=timeout
)
fts_results = fts_future.result()
vector_results = vector_future.result()
@@ -1446,7 +1761,9 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
return results
def to_batches(self):
def to_batches(
self, /, batch_size: Optional[int] = None, timeout: Optional[timedelta] = None
):
raise NotImplementedError("to_batches not yet supported on a hybrid query")
@staticmethod
@@ -1652,7 +1969,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._vector = vector
return self
def text(self, text: str) -> LanceHybridQueryBuilder:
def text(self, text: str | FullTextQuery) -> LanceHybridQueryBuilder:
self._text = text
return self
@@ -1810,7 +2127,10 @@ class AsyncQueryBase(object):
return self
async def to_batches(
self, *, max_batch_length: Optional[int] = None
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> AsyncRecordBatchReader:
"""
Execute the query and return the results as an Apache Arrow RecordBatchReader.
@@ -1823,34 +2143,56 @@ class AsyncQueryBase(object):
If not specified, a default batch length is used.
It is possible for batches to be smaller than the provided length if the
underlying data is stored in smaller chunks.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return AsyncRecordBatchReader(await self._inner.execute(max_batch_length))
return AsyncRecordBatchReader(
await self._inner.execute(max_batch_length, timeout)
)
async def to_arrow(self) -> pa.Table:
async def to_arrow(self, timeout: Optional[timedelta] = None) -> pa.Table:
"""
Execute the query and collect the results into an Apache Arrow Table.
This method will collect all results into memory before returning. If
you expect a large number of results, you may want to use
[to_batches][lancedb.query.AsyncQueryBase.to_batches]
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
batch_iter = await self.to_batches()
batch_iter = await self.to_batches(timeout=timeout)
return pa.Table.from_batches(
await batch_iter.read_all(), schema=batch_iter.schema
)
async def to_list(self) -> List[dict]:
async def to_list(self, timeout: Optional[timedelta] = None) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return (await self.to_arrow()).to_pylist()
return (await self.to_arrow(timeout=timeout)).to_pylist()
async def to_pandas(
self, flatten: Optional[Union[int, bool]] = None
self,
flatten: Optional[Union[int, bool]] = None,
timeout: Optional[timedelta] = None,
) -> "pd.DataFrame":
"""
Execute the query and collect the results into a pandas DataFrame.
@@ -1879,10 +2221,19 @@ class AsyncQueryBase(object):
If flatten is an integer, flatten the nested columns up to the
specified depth.
If unspecified, do not flatten the nested columns.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return (flatten_columns(await self.to_arrow(), flatten)).to_pandas()
return (
flatten_columns(await self.to_arrow(timeout=timeout), flatten)
).to_pandas()
async def to_polars(self) -> "pl.DataFrame":
async def to_polars(
self,
timeout: Optional[timedelta] = None,
) -> "pl.DataFrame":
"""
Execute the query and collect the results into a Polars DataFrame.
@@ -1891,6 +2242,13 @@ class AsyncQueryBase(object):
[to_batches][lancedb.query.AsyncQueryBase.to_batches] and convert each batch to
polars separately.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
Examples
--------
@@ -1906,7 +2264,7 @@ class AsyncQueryBase(object):
"""
import polars as pl
return pl.from_arrow(await self.to_arrow())
return pl.from_arrow(await self.to_arrow(timeout=timeout))
async def explain_plan(self, verbose: Optional[bool] = False):
"""Return the execution plan for this query.
@@ -1940,6 +2298,15 @@ class AsyncQueryBase(object):
""" # noqa: E501
return await self._inner.explain_plan(verbose)
async def analyze_plan(self):
"""Execute the query and display with runtime metrics.
Returns
-------
plan : str
"""
return await self._inner.analyze_plan()
class AsyncQuery(AsyncQueryBase):
def __init__(self, inner: LanceQuery):
@@ -2040,7 +2407,7 @@ class AsyncQuery(AsyncQueryBase):
)
def nearest_to_text(
self, query: str, columns: Union[str, List[str], None] = None
self, query: str | FullTextQuery, columns: Union[str, List[str], None] = None
) -> AsyncFTSQuery:
"""
Find the documents that are most relevant to the given text query.
@@ -2066,9 +2433,13 @@ class AsyncQuery(AsyncQueryBase):
columns = [columns]
if columns is None:
columns = []
return AsyncFTSQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
if isinstance(query, str):
return AsyncFTSQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
# FullTextQuery object
return AsyncFTSQuery(self._inner.nearest_to_text({"query": query.to_dict()}))
class AsyncFTSQuery(AsyncQueryBase):
@@ -2164,9 +2535,12 @@ class AsyncFTSQuery(AsyncQueryBase):
)
async def to_batches(
self, *, max_batch_length: Optional[int] = None
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> AsyncRecordBatchReader:
reader = await super().to_batches()
reader = await super().to_batches(timeout=timeout)
results = pa.Table.from_batches(await reader.read_all(), reader.schema)
if self._reranker:
results = self._reranker.rerank_fts(self.get_query(), results)
@@ -2351,7 +2725,7 @@ class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
return self
def nearest_to_text(
self, query: str, columns: Union[str, List[str], None] = None
self, query: str | FullTextQuery, columns: Union[str, List[str], None] = None
) -> AsyncHybridQuery:
"""
Find the documents that are most relevant to the given text query,
@@ -2381,14 +2755,21 @@ class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
columns = [columns]
if columns is None:
columns = []
return AsyncHybridQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
if isinstance(query, str):
return AsyncHybridQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
# FullTextQuery object
return AsyncHybridQuery(self._inner.nearest_to_text({"query": query.to_dict()}))
async def to_batches(
self, *, max_batch_length: Optional[int] = None
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> AsyncRecordBatchReader:
reader = await super().to_batches()
reader = await super().to_batches(timeout=timeout)
results = pa.Table.from_batches(await reader.read_all(), reader.schema)
if self._reranker:
results = self._reranker.rerank_vector(self._query_string, results)
@@ -2444,7 +2825,10 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
return self
async def to_batches(
self, *, max_batch_length: Optional[int] = None
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> AsyncRecordBatchReader:
fts_query = AsyncFTSQuery(self._inner.to_fts_query())
vec_query = AsyncVectorQuery(self._inner.to_vector_query())
@@ -2456,8 +2840,8 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
vec_query.with_row_id()
fts_results, vector_results = await asyncio.gather(
fts_query.to_arrow(),
vec_query.to_arrow(),
fts_query.to_arrow(timeout=timeout),
vec_query.to_arrow(timeout=timeout),
)
result = LanceHybridQueryBuilder._combine_hybrid_results(
@@ -2509,7 +2893,7 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
Returns
-------
plan
plan : str
""" # noqa: E501
results = ["Vector Search Plan:"]
@@ -2518,3 +2902,23 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
results.append(await self._inner.to_fts_query().explain_plan(verbose))
return "\n".join(results)
async def analyze_plan(self):
"""
Execute the query and return the physical execution plan with runtime metrics.
This runs both the vector and FTS (full-text search) queries and returns
detailed metrics for each step of execution—such as rows processed,
elapsed time, I/O stats, and more. Its useful for debugging and
performance analysis.
Returns
-------
plan : str
"""
results = ["Vector Search Query:"]
results.append(await self._inner.to_vector_query().analyze_plan())
results.append("FTS Search Query:")
results.append(await self._inner.to_fts_query().analyze_plan())
return "\n".join(results)

View File

@@ -87,6 +87,9 @@ class RemoteTable(Table):
def checkout_latest(self):
return LOOP.run(self._table.checkout_latest())
def restore(self, version: Optional[int] = None):
return LOOP.run(self._table.restore(version))
def list_indices(self) -> Iterable[IndexConfig]:
"""List all the indices on the table"""
return LOOP.run(self._table.list_indices())
@@ -352,9 +355,15 @@ class RemoteTable(Table):
)
def _execute_query(
self, query: Query, batch_size: Optional[int] = None
self,
query: Query,
*,
batch_size: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader:
async_iter = LOOP.run(self._table._execute_query(query, batch_size=batch_size))
async_iter = LOOP.run(
self._table._execute_query(query, batch_size=batch_size, timeout=timeout)
)
def iter_sync():
try:
@@ -365,6 +374,12 @@ class RemoteTable(Table):
return pa.RecordBatchReader.from_batches(async_iter.schema, iter_sync())
def _explain_plan(self, query: Query, verbose: Optional[bool] = False) -> str:
return LOOP.run(self._table._explain_plan(query, verbose))
def _analyze_plan(self, query: Query) -> str:
return LOOP.run(self._table._analyze_plan(query))
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
"""Returns a [`LanceMergeInsertBuilder`][lancedb.merge.LanceMergeInsertBuilder]
that can be used to create a "merge insert" operation.

View File

@@ -42,7 +42,9 @@ class AnswerdotaiRerankers(Reranker):
rerankers = attempt_import_or_raise(
"rerankers"
) # import here for faster ops later
self.reranker = rerankers.Reranker(model_name, model_type, **kwargs)
self.reranker = rerankers.Reranker(
model_name=model_name, model_type=model_type, **kwargs
)
def _rerank(self, result_set: pa.Table, query: str):
docs = result_set[self.column].to_pylist()

View File

@@ -52,6 +52,7 @@ from .query import (
AsyncHybridQuery,
AsyncQuery,
AsyncVectorQuery,
FullTextQuery,
LanceEmptyQueryBuilder,
LanceFtsQueryBuilder,
LanceHybridQueryBuilder,
@@ -919,7 +920,9 @@ class Table(ABC):
@abstractmethod
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
query: Optional[
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
] = None,
vector_column_name: Optional[str] = None,
query_type: QueryType = "auto",
ordering_field_name: Optional[str] = None,
@@ -1004,9 +1007,19 @@ class Table(ABC):
@abstractmethod
def _execute_query(
self, query: Query, batch_size: Optional[int] = None
self,
query: Query,
*,
batch_size: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader: ...
@abstractmethod
def _explain_plan(self, query: Query, verbose: Optional[bool] = False) -> str: ...
@abstractmethod
def _analyze_plan(self, query: Query) -> str: ...
@abstractmethod
def _do_merge(
self,
@@ -1262,16 +1275,21 @@ class Table(ABC):
"""
@abstractmethod
def add_columns(self, transforms: Dict[str, str]):
def add_columns(
self, transforms: Dict[str, str] | pa.Field | List[pa.Field] | pa.Schema
):
"""
Add new columns with defined values.
Parameters
----------
transforms: Dict[str, str]
transforms: Dict[str, str], pa.Field, List[pa.Field], pa.Schema
A map of column name to a SQL expression to use to calculate the
value of the new column. These expressions will be evaluated for
each row in the table, and can reference existing columns.
Alternatively, a pyarrow Field or Schema can be provided to add
new columns with the specified data types. The new columns will
be initialized with null values.
"""
@abstractmethod
@@ -1339,6 +1357,21 @@ class Table(ABC):
It can also be used to undo a `[Self::checkout]` operation
"""
@abstractmethod
def restore(self, version: Optional[int] = None):
"""Restore a version of the table. This is an in-place operation.
This creates a new version where the data is equivalent to the
specified previous version. Data is not copied (as of python-v0.2.1).
Parameters
----------
version : int, default None
The version to restore. If unspecified then restores the currently
checked out version. If the currently checked out version is the
latest version then this is a no-op.
"""
@abstractmethod
def list_versions(self) -> List[Dict[str, Any]]:
"""List all versions of the table"""
@@ -2013,7 +2046,9 @@ class LanceTable(Table):
@overload
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
query: Optional[
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
] = None,
vector_column_name: Optional[str] = None,
query_type: Literal["hybrid"] = "hybrid",
ordering_field_name: Optional[str] = None,
@@ -2032,7 +2067,9 @@ class LanceTable(Table):
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
query: Optional[
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
] = None,
vector_column_name: Optional[str] = None,
query_type: QueryType = "auto",
ordering_field_name: Optional[str] = None,
@@ -2279,9 +2316,15 @@ class LanceTable(Table):
LOOP.run(self._table.update(values, where=where, updates_sql=values_sql))
def _execute_query(
self, query: Query, batch_size: Optional[int] = None
self,
query: Query,
*,
batch_size: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader:
async_iter = LOOP.run(self._table._execute_query(query, batch_size))
async_iter = LOOP.run(
self._table._execute_query(query, batch_size=batch_size, timeout=timeout)
)
def iter_sync():
try:
@@ -2292,8 +2335,11 @@ class LanceTable(Table):
return pa.RecordBatchReader.from_batches(async_iter.schema, iter_sync())
def _explain_plan(self, query: Query) -> str:
return LOOP.run(self._table._explain_plan(query))
def _explain_plan(self, query: Query, verbose: Optional[bool] = False) -> str:
return LOOP.run(self._table._explain_plan(query, verbose))
def _analyze_plan(self, query: Query) -> str:
return LOOP.run(self._table._analyze_plan(query))
def _do_merge(
self,
@@ -2442,7 +2488,9 @@ class LanceTable(Table):
"""
return LOOP.run(self._table.index_stats(index_name))
def add_columns(self, transforms: Dict[str, str]):
def add_columns(
self, transforms: Dict[str, str] | pa.field | List[pa.field] | pa.Schema
):
LOOP.run(self._table.add_columns(transforms))
def alter_columns(self, *alterations: Iterable[Dict[str, str]]):
@@ -3103,7 +3151,9 @@ class AsyncTable:
@overload
async def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
query: Optional[
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
] = None,
vector_column_name: Optional[str] = None,
query_type: Literal["vector"] = ...,
ordering_field_name: Optional[str] = None,
@@ -3112,7 +3162,9 @@ class AsyncTable:
async def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
query: Optional[
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
] = None,
vector_column_name: Optional[str] = None,
query_type: QueryType = "auto",
ordering_field_name: Optional[str] = None,
@@ -3222,6 +3274,8 @@ class AsyncTable:
if is_embedding(query):
vector_query = query
query_type = "vector"
elif isinstance(query, FullTextQuery):
query_type = "fts"
elif isinstance(query, str):
try:
(
@@ -3342,13 +3396,15 @@ class AsyncTable:
async_query = async_query.nearest_to_text(
query.full_text_query.query, query.full_text_query.columns
)
if query.full_text_query.limit is not None:
async_query = async_query.limit(query.full_text_query.limit)
return async_query
async def _execute_query(
self, query: Query, batch_size: Optional[int] = None
self,
query: Query,
*,
batch_size: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader:
# The sync table calls into this method, so we need to map the
# query to the async version of the query and run that here. This is only
@@ -3356,12 +3412,19 @@ class AsyncTable:
async_query = self._sync_query_to_async(query)
return await async_query.to_batches(max_batch_length=batch_size)
return await async_query.to_batches(
max_batch_length=batch_size, timeout=timeout
)
async def _explain_plan(self, query: Query) -> str:
async def _explain_plan(self, query: Query, verbose: Optional[bool]) -> str:
# This method is used by the sync table
async_query = self._sync_query_to_async(query)
return await async_query.explain_plan()
return await async_query.explain_plan(verbose)
async def _analyze_plan(self, query: Query) -> str:
# This method is used by the sync table
async_query = self._sync_query_to_async(query)
return await async_query.analyze_plan()
async def _do_merge(
self,
@@ -3501,7 +3564,9 @@ class AsyncTable:
return await self._inner.update(updates_sql, where)
async def add_columns(self, transforms: dict[str, str]):
async def add_columns(
self, transforms: dict[str, str] | pa.field | List[pa.field] | pa.Schema
):
"""
Add new columns with defined values.
@@ -3511,8 +3576,19 @@ class AsyncTable:
A map of column name to a SQL expression to use to calculate the
value of the new column. These expressions will be evaluated for
each row in the table, and can reference existing columns.
Alternatively, you can pass a pyarrow field or schema to add
new columns with NULLs.
"""
await self._inner.add_columns(list(transforms.items()))
if isinstance(transforms, pa.Field):
transforms = [transforms]
if isinstance(transforms, list) and all(
{isinstance(f, pa.Field) for f in transforms}
):
transforms = pa.schema(transforms)
if isinstance(transforms, pa.Schema):
await self._inner.add_columns_with_schema(transforms)
else:
await self._inner.add_columns(list(transforms.items()))
async def alter_columns(self, *alterations: Iterable[dict[str, Any]]):
"""
@@ -3610,7 +3686,7 @@ class AsyncTable:
"""
await self._inner.checkout_latest()
async def restore(self):
async def restore(self, version: Optional[int] = None):
"""
Restore the table to the currently checked out version
@@ -3623,7 +3699,7 @@ class AsyncTable:
Once the operation concludes the table will no longer be in a checked
out state and the read_consistency_interval, if any, will apply.
"""
await self._inner.restore()
await self._inner.restore(version)
async def optimize(
self,

View File

@@ -315,6 +315,11 @@ def test_table():
db = lancedb.connect(uri, read_consistency_interval=timedelta(seconds=5))
tbl = db.open_table("test_table")
# --8<-- [end:table_eventual_consistency]
# --8<-- [start:table_no_consistency]
uri = "data/sample-lancedb"
db = lancedb.connect(uri, read_consistency_interval=None)
tbl = db.open_table("test_table")
# --8<-- [end:table_no_consistency]
# --8<-- [start:table_checkout_latest]
tbl = db.open_table("test_table")
@@ -562,13 +567,19 @@ async def test_table_async():
async_db = await lancedb.connect_async(uri, read_consistency_interval=timedelta(0))
async_tbl = await async_db.open_table("test_table_async")
# --8<-- [end:table_async_strong_consistency]
# --8<-- [start:table_async_ventual_consistency]
# --8<-- [start:table_async_eventual_consistency]
uri = "data/sample-lancedb"
async_db = await lancedb.connect_async(
uri, read_consistency_interval=timedelta(seconds=5)
)
async_tbl = await async_db.open_table("test_table_async")
# --8<-- [end:table_async_eventual_consistency]
# --8<-- [start:table_async_no_consistency]
uri = "data/sample-lancedb"
async_db = await lancedb.connect_async(uri, read_consistency_interval=None)
async_tbl = await async_db.open_table("test_table_async")
# --8<-- [end:table_async_no_consistency]
# --8<-- [start:table_async_checkout_latest]
async_tbl = await async_db.open_table("test_table_async")

View File

@@ -3,7 +3,6 @@
import re
from datetime import timedelta
import os
import lancedb
@@ -299,13 +298,11 @@ def test_create_exist_ok(tmp_db: lancedb.DBConnection):
@pytest.mark.asyncio
async def test_connect(tmp_path):
db = await lancedb.connect_async(tmp_path)
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=None)"
db = await lancedb.connect_async(
tmp_path, read_consistency_interval=timedelta(seconds=5)
)
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=5s)"
db = await lancedb.connect_async(tmp_path, read_consistency_interval=None)
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=None)"
@pytest.mark.asyncio
async def test_close(mem_db_async: lancedb.AsyncConnection):
@@ -453,7 +450,7 @@ async def test_open_table(tmp_path):
assert tbl.name == "test"
assert (
re.search(
r"NativeTable\(test, uri=.*test\.lance, read_consistency_interval=None\)",
r"NativeTable\(test, uri=.*test\.lance, read_consistency_interval=5s\)",
str(tbl),
)
is not None

View File

@@ -12,6 +12,7 @@ import pyarrow as pa
import pytest
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
import requests
# These are integration tests for embedding functions.
# They are slow because they require downloading models
@@ -516,3 +517,61 @@ def test_voyageai_embedding_function():
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
)
def test_voyageai_multimodal_embedding_function():
voyageai = (
get_registry().get("voyageai").create(name="voyage-multimodal-3", max_retries=0)
)
class Images(LanceModel):
label: str
image_uri: str = voyageai.SourceField() # image uri as the source
image_bytes: bytes = voyageai.SourceField() # image bytes as the source
vector: Vector(voyageai.ndims()) = voyageai.VectorField() # vector column
vec_from_bytes: Vector(voyageai.ndims()) = (
voyageai.VectorField()
) # Another vector column
db = lancedb.connect("~/lancedb")
table = db.create_table("test", schema=Images, mode="overwrite")
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
assert len(table.to_pandas()["vector"][0]) == voyageai.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
)
def test_voyageai_multimodal_embedding_text_function():
voyageai = (
get_registry().get("voyageai").create(name="voyage-multimodal-3", max_retries=0)
)
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()

View File

@@ -20,6 +20,7 @@ from unittest import mock
import lancedb as ldb
from lancedb.db import DBConnection
from lancedb.index import FTS
from lancedb.query import BoostQuery, MatchQuery, MultiMatchQuery, PhraseQuery
import numpy as np
import pandas as pd
import pytest
@@ -178,11 +179,47 @@ def test_search_fts(table, use_tantivy):
results = table.search("puppy").select(["id", "text"]).to_list()
assert len(results) == 10
if not use_tantivy:
# Test with a query
results = (
table.search(MatchQuery("puppy", "text"))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
# Test boost query
results = (
table.search(
BoostQuery(
MatchQuery("puppy", "text"),
MatchQuery("runs", "text"),
)
)
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
# Test multi match query
table.create_fts_index("text2", use_tantivy=use_tantivy)
results = (
table.search(MultiMatchQuery("puppy", ["text", "text2"]))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
@pytest.mark.asyncio
async def test_fts_select_async(async_table):
tbl = await async_table
await tbl.create_index("text", config=FTS())
await tbl.create_index("text2", config=FTS())
results = (
await tbl.query()
.nearest_to_text("puppy")
@@ -193,6 +230,54 @@ async def test_fts_select_async(async_table):
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test with FullTextQuery
results = (
await tbl.query()
.nearest_to_text(MatchQuery("puppy", "text"))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test with BoostQuery
results = (
await tbl.query()
.nearest_to_text(
BoostQuery(
MatchQuery("puppy", "text"),
MatchQuery("runs", "text"),
)
)
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test with MultiMatchQuery
results = (
await tbl.query()
.nearest_to_text(MultiMatchQuery("puppy", ["text", "text2"]))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test with search() API
results = (
await (await tbl.search(MatchQuery("puppy", "text")))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
def test_search_fts_phrase_query(table):
table.create_fts_index("text", use_tantivy=False, with_position=False)
@@ -207,6 +292,13 @@ def test_search_fts_phrase_query(table):
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
# Test with a query
phrase_results = (
table.search(PhraseQuery("puppy runs", "text")).limit(100).to_list()
)
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
@pytest.mark.asyncio
async def test_search_fts_phrase_query_async(async_table):
@@ -227,6 +319,16 @@ async def test_search_fts_phrase_query_async(async_table):
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
# Test with a query
phrase_results = (
await async_table.query()
.nearest_to_text(PhraseQuery("puppy runs", "text"))
.limit(100)
.to_list()
)
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
def test_search_fts_specify_column(table):
table.create_fts_index("text", use_tantivy=False)

View File

@@ -114,6 +114,16 @@ async def test_explain_plan(table: AsyncTable):
assert "LanceScan" in plan
@pytest.mark.asyncio
async def test_analyze_plan(table: AsyncTable):
res = await (
table.query().nearest_to_text("dog").nearest_to([0.1, 0.1]).analyze_plan()
)
assert "AnalyzeExec" in res
assert "metrics=" in res
def test_normalize_scores():
cases = [
(pa.array([0.1, 0.4]), pa.array([0.0, 1.0])),

View File

@@ -31,6 +31,7 @@ async def some_table(db_async):
{
"id": list(range(NROWS)),
"vector": sample_fixed_size_list_array(NROWS, DIM),
"fsb": pa.array([bytes([i]) for i in range(NROWS)], pa.binary(1)),
"tags": [
[f"tag{random.randint(0, 8)}" for _ in range(2)] for _ in range(NROWS)
],
@@ -85,6 +86,16 @@ async def test_create_scalar_index(some_table: AsyncTable):
assert len(indices) == 0
@pytest.mark.asyncio
async def test_create_fixed_size_binary_index(some_table: AsyncTable):
await some_table.create_index("fsb", config=BTree())
indices = await some_table.list_indices()
assert str(indices) == '[Index(BTree, columns=["fsb"], name="fsb_idx")]'
assert len(indices) == 1
assert indices[0].index_type == "BTree"
assert indices[0].columns == ["fsb"]
@pytest.mark.asyncio
async def test_create_bitmap_index(some_table: AsyncTable):
await some_table.create_index("id", config=Bitmap())

View File

@@ -511,7 +511,8 @@ def test_query_builder_with_different_vector_column():
columns=["b"],
vector_column="foo_vector",
),
None,
batch_size=None,
timeout=None,
)
@@ -702,6 +703,20 @@ async def test_fast_search_async(tmp_path):
assert "LanceScan" not in plan
def test_analyze_plan(table):
q = LanceVectorQueryBuilder(table, [0, 0], "vector")
res = q.analyze_plan()
assert "AnalyzeExec" in res
assert "metrics=" in res
@pytest.mark.asyncio
async def test_analyze_plan_async(table_async: AsyncTable):
res = await table_async.query().nearest_to(pa.array([1, 2])).analyze_plan()
assert "AnalyzeExec" in res
assert "metrics=" in res
def test_explain_plan(table):
q = LanceVectorQueryBuilder(table, [0, 0], "vector")
plan = q.explain_plan(verbose=True)
@@ -1062,3 +1077,67 @@ async def test_query_serialization_async(table_async: AsyncTable):
full_text_query=FullTextSearchQuery(columns=[], query="foo"),
with_row_id=False,
)
def test_query_timeout(tmp_path):
# Use local directory instead of memory:// to add a bit of latency to
# operations so a timeout of zero will trigger exceptions.
db = lancedb.connect(tmp_path)
data = pa.table(
{
"text": ["a", "b"],
"vector": pa.FixedSizeListArray.from_arrays(
pc.random(4).cast(pa.float32()), 2
),
}
)
table = db.create_table("test", data)
table.create_fts_index("text", use_tantivy=False)
with pytest.raises(Exception, match="Query timeout"):
table.search().where("text = 'a'").to_list(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
table.search([0.0, 0.0]).to_arrow(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
table.search("a", query_type="fts").to_pandas(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
table.search(query_type="hybrid").vector([0.0, 0.0]).text("a").to_arrow(
timeout=timedelta(0)
)
@pytest.mark.asyncio
async def test_query_timeout_async(tmp_path):
db = await lancedb.connect_async(tmp_path)
data = pa.table(
{
"text": ["a", "b"],
"vector": pa.FixedSizeListArray.from_arrays(
pc.random(4).cast(pa.float32()), 2
),
}
)
table = await db.create_table("test", data)
await table.create_index("text", config=FTS())
with pytest.raises(Exception, match="Query timeout"):
await table.query().where("text != 'a'").to_list(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
await table.vector_search([0.0, 0.0]).to_arrow(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
await (await table.search("a", query_type="fts")).to_pandas(
timeout=timedelta(0)
)
with pytest.raises(Exception, match="Query timeout"):
await (
table.query()
.nearest_to_text("a")
.nearest_to([0.0, 0.0])
.to_list(timeout=timedelta(0))
)

View File

@@ -444,6 +444,16 @@ def test_query_sync_fts():
"prefilter": True,
"with_row_id": True,
"version": None,
} or body == {
"full_text_query": {
"query": "puppy",
"columns": ["description", "name"],
},
"k": 42,
"vector": [],
"prefilter": True,
"with_row_id": True,
"version": None,
}
return pa.table({"id": [1, 2, 3]})

View File

@@ -32,7 +32,11 @@ def test_basic(mem_db: DBConnection):
table = mem_db.create_table("test", data=data)
assert table.name == "test"
assert "LanceTable(name='test', version=1, _conn=LanceDBConnection(" in repr(table)
assert (
"LanceTable(name='test', version=1, "
"read_consistency_interval=datetime.timedelta(seconds=5), "
"_conn=LanceDBConnection("
) in repr(table)
expected_schema = pa.schema(
{
"vector": pa.list_(pa.float32(), 2),
@@ -1384,6 +1388,37 @@ async def test_add_columns_async(mem_db_async: AsyncConnection):
assert data["new_col"].to_pylist() == [2, 3]
@pytest.mark.asyncio
async def test_add_columns_with_schema(mem_db_async: AsyncConnection):
data = pa.table({"id": [0, 1]})
table = await mem_db_async.create_table("my_table", data=data)
await table.add_columns(
[pa.field("x", pa.int64()), pa.field("vector", pa.list_(pa.float32(), 8))]
)
assert await table.schema() == pa.schema(
[
pa.field("id", pa.int64()),
pa.field("x", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 8)),
]
)
table = await mem_db_async.create_table("table2", data=data)
await table.add_columns(
pa.schema(
[pa.field("y", pa.int64()), pa.field("emb", pa.list_(pa.float32(), 8))]
)
)
assert await table.schema() == pa.schema(
[
pa.field("id", pa.int64()),
pa.field("y", pa.int64()),
pa.field("emb", pa.list_(pa.float32(), 8)),
]
)
def test_alter_columns(mem_db: DBConnection):
data = pa.table({"id": [0, 1]})
table = mem_db.create_table("my_table", data=data)

View File

@@ -204,7 +204,9 @@ pub fn connect(
}
if let Some(read_consistency_interval) = read_consistency_interval {
let read_consistency_interval = Duration::from_secs_f64(read_consistency_interval);
builder = builder.read_consistency_interval(read_consistency_interval);
builder = builder.read_consistency_interval(Some(read_consistency_interval));
} else {
builder = builder.read_consistency_interval(None);
}
if let Some(storage_options) = storage_options {
builder = builder.storage_options(storage_options);

View File

@@ -2,25 +2,26 @@
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::Arc;
use std::time::Duration;
use arrow::array::make_array;
use arrow::array::Array;
use arrow::array::ArrayData;
use arrow::pyarrow::FromPyArrow;
use arrow::pyarrow::IntoPyArrow;
use lancedb::index::scalar::FullTextSearchQuery;
use lancedb::index::scalar::{FtsQuery, FullTextSearchQuery, MatchQuery, PhraseQuery};
use lancedb::query::QueryExecutionOptions;
use lancedb::query::QueryFilter;
use lancedb::query::{
ExecutableQuery, Query as LanceDbQuery, QueryBase, Select, VectorQuery as LanceDbVectorQuery,
};
use lancedb::table::AnyQuery;
use pyo3::exceptions::PyNotImplementedError;
use pyo3::exceptions::PyRuntimeError;
use pyo3::exceptions::{PyNotImplementedError, PyValueError};
use pyo3::prelude::{PyAnyMethods, PyDictMethods};
use pyo3::pymethods;
use pyo3::types::PyDict;
use pyo3::types::PyList;
use pyo3::types::{PyDict, PyString};
use pyo3::Bound;
use pyo3::IntoPyObject;
use pyo3::PyAny;
@@ -31,7 +32,7 @@ use pyo3_async_runtimes::tokio::future_into_py;
use crate::arrow::RecordBatchStream;
use crate::error::PythonErrorExt;
use crate::util::parse_distance_type;
use crate::util::{parse_distance_type, parse_fts_query};
// Python representation of full text search parameters
#[derive(Clone)]
@@ -46,8 +47,8 @@ pub struct PyFullTextSearchQuery {
impl From<FullTextSearchQuery> for PyFullTextSearchQuery {
fn from(query: FullTextSearchQuery) -> Self {
PyFullTextSearchQuery {
columns: query.columns,
query: query.query,
columns: query.columns().into_iter().collect(),
query: query.query.query().to_owned(),
limit: query.limit,
wand_factor: query.wand_factor,
}
@@ -236,29 +237,69 @@ impl Query {
}
pub fn nearest_to_text(&mut self, query: Bound<'_, PyDict>) -> PyResult<FTSQuery> {
let query_text = query
let fts_query = query
.get_item("query")?
.ok_or(PyErr::new::<PyRuntimeError, _>(
"Query text is required for nearest_to_text",
))?
.extract::<String>()?;
let columns = query
.get_item("columns")?
.map(|columns| columns.extract::<Vec<String>>())
.transpose()?;
))?;
let fts_query = FullTextSearchQuery::new(query_text).columns(columns);
let query = if let Ok(query_text) = fts_query.downcast::<PyString>() {
let mut query_text = query_text.to_string();
let columns = query
.get_item("columns")?
.map(|columns| columns.extract::<Vec<String>>())
.transpose()?;
let is_phrase =
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
if is_phrase {
// Remove the surrounding quotes for phrase queries
query_text = query_text[1..query_text.len() - 1].to_string();
}
let query: FtsQuery = match (is_phrase, is_multi_match) {
(false, _) => MatchQuery::new(query_text).into(),
(true, false) => PhraseQuery::new(query_text).into(),
(true, true) => {
return Err(PyValueError::new_err(
"Phrase queries cannot be used with multiple columns.",
));
}
};
let mut query = FullTextSearchQuery::new_query(query);
if let Some(cols) = columns {
if !cols.is_empty() {
query = query.with_columns(&cols).map_err(|e| {
PyValueError::new_err(format!(
"Failed to set full text search columns: {}",
e
))
})?;
}
}
query
} else if let Ok(query) = fts_query.downcast::<PyDict>() {
let query = parse_fts_query(query)?;
FullTextSearchQuery::new_query(query)
} else {
return Err(PyValueError::new_err(
"query must be a string or a Query object",
));
};
Ok(FTSQuery {
fts_query,
inner: self.inner.clone(),
fts_query: query,
})
}
#[pyo3(signature = (max_batch_length=None))]
#[pyo3(signature = (max_batch_length=None, timeout=None))]
pub fn execute(
self_: PyRef<'_, Self>,
max_batch_length: Option<u32>,
timeout: Option<Duration>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
@@ -266,12 +307,15 @@ impl Query {
if let Some(max_batch_length) = max_batch_length {
opts.max_batch_length = max_batch_length;
}
if let Some(timeout) = timeout {
opts.timeout = Some(timeout);
}
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
Ok(RecordBatchStream::new(inner_stream))
})
}
fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
@@ -281,6 +325,16 @@ impl Query {
})
}
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.analyze_plan()
.await
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
})
}
pub fn to_query_request(&self) -> PyQueryRequest {
PyQueryRequest::from(AnyQuery::Query(self.inner.clone().into_request()))
}
@@ -327,10 +381,11 @@ impl FTSQuery {
self.inner = self.inner.clone().postfilter();
}
#[pyo3(signature = (max_batch_length=None))]
#[pyo3(signature = (max_batch_length=None, timeout=None))]
pub fn execute(
self_: PyRef<'_, Self>,
max_batch_length: Option<u32>,
timeout: Option<Duration>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_
.inner
@@ -342,6 +397,9 @@ impl FTSQuery {
if let Some(max_batch_length) = max_batch_length {
opts.max_batch_length = max_batch_length;
}
if let Some(timeout) = timeout {
opts.timeout = Some(timeout);
}
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
Ok(RecordBatchStream::new(inner_stream))
})
@@ -365,8 +423,18 @@ impl FTSQuery {
})
}
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.analyze_plan()
.await
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
})
}
pub fn get_query(&self) -> String {
self.fts_query.query.clone()
self.fts_query.query.query().to_owned()
}
pub fn to_query_request(&self) -> PyQueryRequest {
@@ -454,10 +522,11 @@ impl VectorQuery {
self.inner = self.inner.clone().bypass_vector_index()
}
#[pyo3(signature = (max_batch_length=None))]
#[pyo3(signature = (max_batch_length=None, timeout=None))]
pub fn execute(
self_: PyRef<'_, Self>,
max_batch_length: Option<u32>,
timeout: Option<Duration>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
@@ -465,12 +534,15 @@ impl VectorQuery {
if let Some(max_batch_length) = max_batch_length {
opts.max_batch_length = max_batch_length;
}
if let Some(timeout) = timeout {
opts.timeout = Some(timeout);
}
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
Ok(RecordBatchStream::new(inner_stream))
})
}
fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
@@ -480,6 +552,16 @@ impl VectorQuery {
})
}
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.analyze_plan()
.await
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
})
}
pub fn nearest_to_text(&mut self, query: Bound<'_, PyDict>) -> PyResult<HybridQuery> {
let base_query = self.inner.clone().into_plain();
let fts_query = Query::new(base_query).nearest_to_text(query)?;

View File

@@ -1,9 +1,11 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::{collections::HashMap, sync::Arc};
use arrow::{
datatypes::DataType,
datatypes::{DataType, Schema},
ffi_stream::ArrowArrayStreamReader,
pyarrow::{FromPyArrow, ToPyArrow},
pyarrow::{FromPyArrow, PyArrowType, ToPyArrow},
};
use lancedb::table::{
AddDataMode, ColumnAlteration, Duration, NewColumnTransform, OptimizeAction, OptimizeOptions,
@@ -16,7 +18,6 @@ use pyo3::{
Bound, FromPyObject, PyAny, PyRef, PyResult, Python,
};
use pyo3_async_runtimes::tokio::future_into_py;
use std::collections::HashMap;
use crate::{
error::PythonErrorExt,
@@ -303,12 +304,16 @@ impl Table {
})
}
pub fn restore(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
#[pyo3(signature = (version=None))]
pub fn restore(self_: PyRef<'_, Self>, version: Option<u64>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(
self_.py(),
async move { inner.restore().await.infer_error() },
)
future_into_py(self_.py(), async move {
if let Some(version) = version {
inner.checkout(version).await.infer_error()?;
}
inner.restore().await.infer_error()
})
}
pub fn query(&self) -> Query {
@@ -440,6 +445,20 @@ impl Table {
})
}
pub fn add_columns_with_schema(
self_: PyRef<'_, Self>,
schema: PyArrowType<Schema>,
) -> PyResult<Bound<'_, PyAny>> {
let arrow_schema = &schema.0;
let transform = NewColumnTransform::AllNulls(Arc::new(arrow_schema.clone()));
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
inner.add_columns(transform, None).await.infer_error()?;
Ok(())
})
}
pub fn alter_columns<'a>(
self_: PyRef<'a, Self>,
alterations: Vec<Bound<PyDict>>,

View File

@@ -3,11 +3,15 @@
use std::sync::Mutex;
use lancedb::index::scalar::{BoostQuery, FtsQuery, MatchQuery, MultiMatchQuery, PhraseQuery};
use lancedb::DistanceType;
use pyo3::prelude::{PyAnyMethods, PyDictMethods, PyListMethods};
use pyo3::types::PyDict;
use pyo3::{
exceptions::{PyRuntimeError, PyValueError},
pyfunction, PyResult,
};
use pyo3::{Bound, PyAny};
/// A wrapper around a rust builder
///
@@ -59,3 +63,116 @@ pub fn validate_table_name(table_name: &str) -> PyResult<()> {
lancedb::utils::validate_table_name(table_name)
.map_err(|e| PyValueError::new_err(e.to_string()))
}
pub fn parse_fts_query(query: &Bound<'_, PyDict>) -> PyResult<FtsQuery> {
let query_type = query.keys().get_item(0)?.extract::<String>()?;
let query_value = query
.get_item(&query_type)?
.ok_or(PyValueError::new_err(format!(
"Query type {} not found",
query_type
)))?;
let query_value = query_value.downcast::<PyDict>()?;
match query_type.as_str() {
"match" => {
let column = query_value.keys().get_item(0)?.extract::<String>()?;
let params = query_value
.get_item(&column)?
.ok_or(PyValueError::new_err(format!(
"column {} not found",
column
)))?;
let params = params.downcast::<PyDict>()?;
let query = params
.get_item("query")?
.ok_or(PyValueError::new_err("query not found"))?
.extract::<String>()?;
let boost = params
.get_item("boost")?
.ok_or(PyValueError::new_err("boost not found"))?
.extract::<f32>()?;
let fuzziness = params
.get_item("fuzziness")?
.ok_or(PyValueError::new_err("fuzziness not found"))?
.extract::<Option<u32>>()?;
let max_expansions = params
.get_item("max_expansions")?
.ok_or(PyValueError::new_err("max_expansions not found"))?
.extract::<usize>()?;
let query = MatchQuery::new(query)
.with_column(Some(column))
.with_boost(boost)
.with_fuzziness(fuzziness)
.with_max_expansions(max_expansions);
Ok(query.into())
}
"match_phrase" => {
let column = query_value.keys().get_item(0)?.extract::<String>()?;
let query = query_value
.get_item(&column)?
.ok_or(PyValueError::new_err(format!(
"column {} not found",
column
)))?
.extract::<String>()?;
let query = PhraseQuery::new(query).with_column(Some(column));
Ok(query.into())
}
"boost" => {
let positive: Bound<'_, PyAny> = query_value
.get_item("positive")?
.ok_or(PyValueError::new_err("positive not found"))?;
let positive = positive.downcast::<PyDict>()?;
let negative = query_value
.get_item("negative")?
.ok_or(PyValueError::new_err("negative not found"))?;
let negative = negative.downcast::<PyDict>()?;
let negative_boost = query_value
.get_item("negative_boost")?
.ok_or(PyValueError::new_err("negative_boost not found"))?
.extract::<f32>()?;
let positive_query = parse_fts_query(positive)?;
let negative_query = parse_fts_query(negative)?;
let query = BoostQuery::new(positive_query, negative_query, Some(negative_boost));
Ok(query.into())
}
"multi_match" => {
let query = query_value
.get_item("query")?
.ok_or(PyValueError::new_err("query not found"))?
.extract::<String>()?;
let columns = query_value
.get_item("columns")?
.ok_or(PyValueError::new_err("columns not found"))?
.extract::<Vec<String>>()?;
let boost = query_value
.get_item("boost")?
.ok_or(PyValueError::new_err("boost not found"))?
.extract::<Vec<f32>>()?;
let query =
MultiMatchQuery::try_new_with_boosts(query, columns, boost).map_err(|e| {
PyValueError::new_err(format!("Error creating MultiMatchQuery: {}", e))
})?;
Ok(query.into())
}
_ => Err(PyValueError::new_err(format!(
"Unsupported query type: {}",
query_type
))),
}
}

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.18.1"
version = "0.19.0-beta.5"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -60,7 +60,7 @@ fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
let mut conn_builder = connect(&path).storage_options(storage_options);
if let Some(interval) = read_consistency_interval {
conn_builder = conn_builder.read_consistency_interval(interval);
conn_builder = conn_builder.read_consistency_interval(Some(interval));
}
rt.spawn(async move {
let database = conn_builder.execute().await;

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.18.1"
version = "0.19.0-beta.5"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true

View File

@@ -12,7 +12,7 @@ use super::{
Catalog, CatalogOptions, CreateDatabaseMode, CreateDatabaseRequest, DatabaseNamesRequest,
OpenDatabaseRequest,
};
use crate::connection::ConnectRequest;
use crate::connection::{ConnectRequest, DEFAULT_READ_CONSISTENCY_INTERVAL};
use crate::database::listing::{ListingDatabase, ListingDatabaseOptions};
use crate::database::{Database, DatabaseOptions};
use crate::error::{CreateDirSnafu, Error, Result};
@@ -214,7 +214,7 @@ impl Catalog for ListingCatalog {
uri: db_uri,
#[cfg(feature = "remote")]
client_config: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
options: Default::default(),
};
@@ -241,7 +241,7 @@ impl Catalog for ListingCatalog {
uri: db_path.to_string(),
#[cfg(feature = "remote")]
client_config: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
options: Default::default(),
};
@@ -311,7 +311,7 @@ mod tests {
#[cfg(feature = "remote")]
client_config: Default::default(),
options: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
};
let catalog = ListingCatalog::connect(&request).await.unwrap();

View File

@@ -36,6 +36,9 @@ pub use lance_encoding::version::LanceFileVersion;
#[cfg(feature = "remote")]
use lance_io::object_store::StorageOptions;
pub(crate) const DEFAULT_READ_CONSISTENCY_INTERVAL: Option<std::time::Duration> =
Some(std::time::Duration::from_secs(5));
/// A builder for configuring a [`Connection::table_names`] operation
pub struct TableNamesBuilder {
parent: Arc<dyn Database>,
@@ -139,12 +142,6 @@ impl CreateTableBuilder<true> {
}
}
/// Apply the given write options when writing the initial data
pub fn write_options(mut self, write_options: WriteOptions) -> Self {
self.request.write_options = write_options;
self
}
/// Execute the create table operation
pub async fn execute(self) -> Result<Table> {
let embedding_registry = self.embedding_registry.clone();
@@ -226,6 +223,12 @@ impl<const HAS_DATA: bool> CreateTableBuilder<HAS_DATA> {
self
}
/// Apply the given write options when writing the initial data
pub fn write_options(mut self, write_options: WriteOptions) -> Self {
self.request.write_options = write_options;
self
}
/// Set an option for the storage layer.
///
/// Options already set on the connection will be inherited by the table,
@@ -618,14 +621,15 @@ pub struct ConnectRequest {
/// The interval at which to check for updates from other processes.
///
/// If None, then consistency is not checked. For performance
/// reasons, this is the default. For strong consistency, set this to
/// If None, then consistency is not checked. For strong consistency, set this to
/// zero seconds. Then every read will check for updates from other
/// processes. As a compromise, you can set this to a non-zero timedelta
/// for eventual consistency. If more than that interval has passed since
/// the last check, then the table will be checked for updates. Note: this
/// consistency only applies to read operations. Write operations are
/// always consistent.
///
/// The default is 5 seconds.
pub read_consistency_interval: Option<std::time::Duration>,
}
@@ -643,7 +647,7 @@ impl ConnectBuilder {
uri: uri.to_string(),
#[cfg(feature = "remote")]
client_config: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
options: HashMap::new(),
},
embedding_registry: None,
@@ -782,8 +786,7 @@ impl ConnectBuilder {
/// The interval at which to check for updates from other processes. This
/// only affects LanceDB OSS.
///
/// If left unset, consistency is not checked. For maximum read
/// performance, this is the default. For strong consistency, set this to
/// If left unset, consistency is not checked. For strong consistency, set this to
/// zero seconds. Then every read will check for updates from other processes.
/// As a compromise, set this to a non-zero duration for eventual consistency.
/// If more than that duration has passed since the last read, the read will
@@ -792,13 +795,15 @@ impl ConnectBuilder {
/// This only affects read operations. Write operations are always
/// consistent.
///
/// The default is 5 seconds.
///
/// LanceDB Cloud uses eventual consistency under the hood, and is not
/// currently configurable.
pub fn read_consistency_interval(
mut self,
read_consistency_interval: std::time::Duration,
read_consistency_interval: Option<std::time::Duration>,
) -> Self {
self.request.read_consistency_interval = Some(read_consistency_interval);
self.request.read_consistency_interval = read_consistency_interval;
self
}
@@ -882,7 +887,7 @@ impl CatalogConnectBuilder {
uri: uri.to_string(),
#[cfg(feature = "remote")]
client_config: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
options: HashMap::new(),
},
}

View File

@@ -80,5 +80,6 @@ impl FtsIndexBuilder {
}
}
pub use lance_index::scalar::inverted::query::*;
pub use lance_index::scalar::inverted::TokenizerConfig;
pub use lance_index::scalar::FullTextSearchQuery;

View File

@@ -14,6 +14,9 @@ use object_store::{
use async_trait::async_trait;
#[cfg(test)]
pub mod io_tracking;
#[derive(Debug)]
struct MirroringObjectStore {
primary: Arc<dyn ObjectStore>,

View File

@@ -0,0 +1,237 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::{
fmt::{Display, Formatter},
sync::{Arc, Mutex},
};
use bytes::Bytes;
use futures::stream::BoxStream;
use lance::io::WrappingObjectStore;
use object_store::{
path::Path, GetOptions, GetResult, ListResult, MultipartUpload, ObjectMeta, ObjectStore,
PutMultipartOpts, PutOptions, PutPayload, PutResult, Result as OSResult, UploadPart,
};
#[derive(Debug, Default)]
pub struct IoStats {
pub read_iops: u64,
pub read_bytes: u64,
pub write_iops: u64,
pub write_bytes: u64,
}
impl Display for IoStats {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{:#?}", self)
}
}
#[derive(Debug, Clone)]
pub struct IoTrackingStore {
target: Arc<dyn ObjectStore>,
stats: Arc<Mutex<IoStats>>,
}
impl Display for IoTrackingStore {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{:#?}", self)
}
}
#[derive(Debug, Default, Clone)]
pub struct IoStatsHolder(Arc<Mutex<IoStats>>);
impl IoStatsHolder {
pub fn incremental_stats(&self) -> IoStats {
std::mem::take(&mut self.0.lock().expect("failed to lock IoStats"))
}
}
impl WrappingObjectStore for IoStatsHolder {
fn wrap(&self, target: Arc<dyn ObjectStore>) -> Arc<dyn ObjectStore> {
Arc::new(IoTrackingStore {
target,
stats: self.0.clone(),
})
}
}
impl IoTrackingStore {
pub fn new_wrapper() -> (Arc<dyn WrappingObjectStore>, Arc<Mutex<IoStats>>) {
let stats = Arc::new(Mutex::new(IoStats::default()));
(Arc::new(IoStatsHolder(stats.clone())), stats)
}
fn record_read(&self, num_bytes: u64) {
let mut stats = self.stats.lock().unwrap();
stats.read_iops += 1;
stats.read_bytes += num_bytes;
}
fn record_write(&self, num_bytes: u64) {
let mut stats = self.stats.lock().unwrap();
stats.write_iops += 1;
stats.write_bytes += num_bytes;
}
}
#[async_trait::async_trait]
#[deny(clippy::missing_trait_methods)]
impl ObjectStore for IoTrackingStore {
async fn put(&self, location: &Path, bytes: PutPayload) -> OSResult<PutResult> {
self.record_write(bytes.content_length() as u64);
self.target.put(location, bytes).await
}
async fn put_opts(
&self,
location: &Path,
bytes: PutPayload,
opts: PutOptions,
) -> OSResult<PutResult> {
self.record_write(bytes.content_length() as u64);
self.target.put_opts(location, bytes, opts).await
}
async fn put_multipart(&self, location: &Path) -> OSResult<Box<dyn MultipartUpload>> {
let target = self.target.put_multipart(location).await?;
Ok(Box::new(IoTrackingMultipartUpload {
target,
stats: self.stats.clone(),
}))
}
async fn put_multipart_opts(
&self,
location: &Path,
opts: PutMultipartOpts,
) -> OSResult<Box<dyn MultipartUpload>> {
let target = self.target.put_multipart_opts(location, opts).await?;
Ok(Box::new(IoTrackingMultipartUpload {
target,
stats: self.stats.clone(),
}))
}
async fn get(&self, location: &Path) -> OSResult<GetResult> {
let result = self.target.get(location).await;
if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes as u64);
}
result
}
async fn get_opts(&self, location: &Path, options: GetOptions) -> OSResult<GetResult> {
let result = self.target.get_opts(location, options).await;
if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes as u64);
}
result
}
async fn get_range(&self, location: &Path, range: std::ops::Range<usize>) -> OSResult<Bytes> {
let result = self.target.get_range(location, range).await;
if let Ok(result) = &result {
self.record_read(result.len() as u64);
}
result
}
async fn get_ranges(
&self,
location: &Path,
ranges: &[std::ops::Range<usize>],
) -> OSResult<Vec<Bytes>> {
let result = self.target.get_ranges(location, ranges).await;
if let Ok(result) = &result {
self.record_read(result.iter().map(|b| b.len() as u64).sum());
}
result
}
async fn head(&self, location: &Path) -> OSResult<ObjectMeta> {
self.record_read(0);
self.target.head(location).await
}
async fn delete(&self, location: &Path) -> OSResult<()> {
self.record_write(0);
self.target.delete(location).await
}
fn delete_stream<'a>(
&'a self,
locations: BoxStream<'a, OSResult<Path>>,
) -> BoxStream<'a, OSResult<Path>> {
self.target.delete_stream(locations)
}
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, OSResult<ObjectMeta>> {
self.record_read(0);
self.target.list(prefix)
}
fn list_with_offset(
&self,
prefix: Option<&Path>,
offset: &Path,
) -> BoxStream<'_, OSResult<ObjectMeta>> {
self.record_read(0);
self.target.list_with_offset(prefix, offset)
}
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> OSResult<ListResult> {
self.record_read(0);
self.target.list_with_delimiter(prefix).await
}
async fn copy(&self, from: &Path, to: &Path) -> OSResult<()> {
self.record_write(0);
self.target.copy(from, to).await
}
async fn rename(&self, from: &Path, to: &Path) -> OSResult<()> {
self.record_write(0);
self.target.rename(from, to).await
}
async fn rename_if_not_exists(&self, from: &Path, to: &Path) -> OSResult<()> {
self.record_write(0);
self.target.rename_if_not_exists(from, to).await
}
async fn copy_if_not_exists(&self, from: &Path, to: &Path) -> OSResult<()> {
self.record_write(0);
self.target.copy_if_not_exists(from, to).await
}
}
#[derive(Debug)]
struct IoTrackingMultipartUpload {
target: Box<dyn MultipartUpload>,
stats: Arc<Mutex<IoStats>>,
}
#[async_trait::async_trait]
impl MultipartUpload for IoTrackingMultipartUpload {
async fn abort(&mut self) -> OSResult<()> {
self.target.abort().await
}
async fn complete(&mut self) -> OSResult<PutResult> {
self.target.complete().await
}
fn put_part(&mut self, payload: PutPayload) -> UploadPart {
{
let mut stats = self.stats.lock().unwrap();
stats.write_iops += 1;
stats.write_bytes += payload.content_length() as u64;
}
self.target.put_part(payload)
}
}

View File

@@ -1,8 +1,8 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::future::Future;
use std::sync::Arc;
use std::{future::Future, time::Duration};
use arrow::compute::concat_batches;
use arrow_array::{make_array, Array, Float16Array, Float32Array, Float64Array};
@@ -25,6 +25,7 @@ use crate::error::{Error, Result};
use crate::rerankers::rrf::RRFReranker;
use crate::rerankers::{check_reranker_result, NormalizeMethod, Reranker};
use crate::table::BaseTable;
use crate::utils::TimeoutStream;
use crate::DistanceType;
use crate::{arrow::SendableRecordBatchStream, table::AnyQuery};
@@ -525,12 +526,15 @@ pub struct QueryExecutionOptions {
///
/// By default, this is 1024
pub max_batch_length: u32,
/// Max duration to wait for the query to execute before timing out.
pub timeout: Option<Duration>,
}
impl Default for QueryExecutionOptions {
fn default() -> Self {
Self {
max_batch_length: 1024,
timeout: None,
}
}
}
@@ -579,6 +583,15 @@ pub trait ExecutableQuery {
) -> impl Future<Output = Result<SendableRecordBatchStream>> + Send;
fn explain_plan(&self, verbose: bool) -> impl Future<Output = Result<String>> + Send;
fn analyze_plan(&self) -> impl Future<Output = Result<String>> + Send {
self.analyze_plan_with_options(QueryExecutionOptions::default())
}
fn analyze_plan_with_options(
&self,
options: QueryExecutionOptions,
) -> impl Future<Output = Result<String>> + Send;
}
/// A query filter that can be applied to a query
@@ -765,6 +778,11 @@ impl ExecutableQuery for Query {
let query = AnyQuery::Query(self.request.clone());
self.parent.explain_plan(&query, verbose).await
}
async fn analyze_plan_with_options(&self, options: QueryExecutionOptions) -> Result<String> {
let query = AnyQuery::Query(self.request.clone());
self.parent.analyze_plan(&query, options).await
}
}
/// A request for a nearest-neighbors search into a table
@@ -993,7 +1011,10 @@ impl VectorQuery {
self
}
pub async fn execute_hybrid(&self) -> Result<SendableRecordBatchStream> {
pub async fn execute_hybrid(
&self,
options: QueryExecutionOptions,
) -> Result<SendableRecordBatchStream> {
// clone query and specify we want to include row IDs, which can be needed for reranking
let mut fts_query = Query::new(self.parent.clone());
fts_query.request = self.request.base.clone();
@@ -1002,7 +1023,10 @@ impl VectorQuery {
let mut vector_query = self.clone().with_row_id();
vector_query.request.base.full_text_search = None;
let (fts_results, vec_results) = try_join!(fts_query.execute(), vector_query.execute())?;
let (fts_results, vec_results) = try_join!(
fts_query.execute_with_options(options.clone()),
vector_query.inner_execute_with_options(options)
)?;
let (fts_results, vec_results) = try_join!(
fts_results.try_collect::<Vec<_>>(),
@@ -1042,7 +1066,7 @@ impl VectorQuery {
})?;
let mut results = reranker
.rerank_hybrid(&fts_query.query, vec_results, fts_results)
.rerank_hybrid(&fts_query.query.query(), vec_results, fts_results)
.await?;
check_reranker_result(&results)?;
@@ -1060,6 +1084,20 @@ impl VectorQuery {
RecordBatchStreamAdapter::new(results.schema(), stream::iter([Ok(results)])),
))
}
async fn inner_execute_with_options(
&self,
options: QueryExecutionOptions,
) -> Result<SendableRecordBatchStream> {
let plan = self.create_plan(options.clone()).await?;
let inner = execute_plan(plan, Default::default())?;
let inner = if let Some(timeout) = options.timeout {
TimeoutStream::new_boxed(inner, timeout)
} else {
inner
};
Ok(DatasetRecordBatchStream::new(inner).into())
}
}
impl ExecutableQuery for VectorQuery {
@@ -1073,22 +1111,24 @@ impl ExecutableQuery for VectorQuery {
options: QueryExecutionOptions,
) -> Result<SendableRecordBatchStream> {
if self.request.base.full_text_search.is_some() {
let hybrid_result = async move { self.execute_hybrid().await }.boxed().await?;
let hybrid_result = async move { self.execute_hybrid(options).await }
.boxed()
.await?;
return Ok(hybrid_result);
}
Ok(SendableRecordBatchStream::from(
DatasetRecordBatchStream::new(execute_plan(
self.create_plan(options).await?,
Default::default(),
)?),
))
self.inner_execute_with_options(options).await
}
async fn explain_plan(&self, verbose: bool) -> Result<String> {
let query = AnyQuery::VectorQuery(self.request.clone());
self.parent.explain_plan(&query, verbose).await
}
async fn analyze_plan_with_options(&self, options: QueryExecutionOptions) -> Result<String> {
let query = AnyQuery::VectorQuery(self.request.clone());
self.parent.analyze_plan(&query, options).await
}
}
impl HasQuery for VectorQuery {
@@ -1370,6 +1410,31 @@ mod tests {
}
}
#[tokio::test]
async fn test_analyze_plan() {
let tmp_dir = tempdir().unwrap();
let table = make_test_table(&tmp_dir).await;
let result = table.query().analyze_plan().await.unwrap();
assert!(result.contains("metrics="));
}
#[tokio::test]
async fn test_analyze_plan_with_options() {
let tmp_dir = tempdir().unwrap();
let table = make_test_table(&tmp_dir).await;
let result = table
.query()
.analyze_plan_with_options(QueryExecutionOptions {
max_batch_length: 10,
..Default::default()
})
.await
.unwrap();
assert!(result.contains("metrics="));
}
fn assert_plan_exists(plan: &Arc<dyn ExecutionPlan>, name: &str) -> bool {
if plan.name() == name {
return true;

View File

@@ -13,7 +13,7 @@ use reqwest::{
use crate::error::{Error, Result};
use crate::remote::db::RemoteOptions;
const REQUEST_ID_HEADER: &str = "x-request-id";
const REQUEST_ID_HEADER: HeaderName = HeaderName::from_static("x-request-id");
/// Configuration for the LanceDB Cloud HTTP client.
#[derive(Clone, Debug)]
@@ -299,7 +299,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
) -> Result<HeaderMap> {
let mut headers = HeaderMap::new();
headers.insert(
"x-api-key",
HeaderName::from_static("x-api-key"),
HeaderValue::from_str(api_key).map_err(|_| Error::InvalidInput {
message: "non-ascii api key provided".to_string(),
})?,
@@ -307,7 +307,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
if region == "local" {
let host = format!("{}.local.api.lancedb.com", db_name);
headers.insert(
"Host",
http::header::HOST,
HeaderValue::from_str(&host).map_err(|_| Error::InvalidInput {
message: format!("non-ascii database name '{}' provided", db_name),
})?,
@@ -315,7 +315,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
}
if has_host_override {
headers.insert(
"x-lancedb-database",
HeaderName::from_static("x-lancedb-database"),
HeaderValue::from_str(db_name).map_err(|_| Error::InvalidInput {
message: format!("non-ascii database name '{}' provided", db_name),
})?,
@@ -323,7 +323,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
}
if db_prefix.is_some() {
headers.insert(
"x-lancedb-database-prefix",
HeaderName::from_static("x-lancedb-database-prefix"),
HeaderValue::from_str(db_prefix.unwrap()).map_err(|_| Error::InvalidInput {
message: format!(
"non-ascii database prefix '{}' provided",
@@ -335,7 +335,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
if let Some(v) = options.0.get("account_name") {
headers.insert(
"x-azure-storage-account-name",
HeaderName::from_static("x-azure-storage-account-name"),
HeaderValue::from_str(v).map_err(|_| Error::InvalidInput {
message: format!("non-ascii storage account name '{}' provided", db_name),
})?,
@@ -343,7 +343,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
}
if let Some(v) = options.0.get("azure_storage_account_name") {
headers.insert(
"x-azure-storage-account-name",
HeaderName::from_static("x-azure-storage-account-name"),
HeaderValue::from_str(v).map_err(|_| Error::InvalidInput {
message: format!("non-ascii storage account name '{}' provided", db_name),
})?,

View File

@@ -52,6 +52,10 @@ impl ServerVersion {
pub fn support_multivector(&self) -> bool {
self.0 >= semver::Version::new(0, 2, 0)
}
pub fn support_structural_fts(&self) -> bool {
self.0 >= semver::Version::new(0, 3, 0)
}
}
pub const OPT_REMOTE_PREFIX: &str = "remote_database_";

View File

@@ -20,7 +20,7 @@ use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
use datafusion_physical_plan::{ExecutionPlan, RecordBatchStream, SendableRecordBatchStream};
use futures::TryStreamExt;
use http::header::CONTENT_TYPE;
use http::StatusCode;
use http::{HeaderName, StatusCode};
use lance::arrow::json::{JsonDataType, JsonSchema};
use lance::dataset::scanner::DatasetRecordBatchStream;
use lance::dataset::{ColumnAlteration, NewColumnTransform, Version};
@@ -44,6 +44,8 @@ use super::client::{HttpSend, RestfulLanceDbClient, Sender};
use super::db::ServerVersion;
use super::ARROW_STREAM_CONTENT_TYPE;
const REQUEST_TIMEOUT_HEADER: HeaderName = HeaderName::from_static("x-request-timeout-ms");
#[derive(Debug)]
pub struct RemoteTable<S: HttpSend = Sender> {
#[allow(dead_code)]
@@ -155,7 +157,11 @@ impl<S: HttpSend> RemoteTable<S> {
Ok(Box::pin(RecordBatchStreamAdapter::new(schema, stream)))
}
fn apply_query_params(body: &mut serde_json::Value, params: &QueryRequest) -> Result<()> {
fn apply_query_params(
&self,
body: &mut serde_json::Value,
params: &QueryRequest,
) -> Result<()> {
body["prefilter"] = params.prefilter.into();
if let Some(offset) = params.offset {
body["offset"] = serde_json::Value::Number(serde_json::Number::from(offset));
@@ -209,10 +215,17 @@ impl<S: HttpSend> RemoteTable<S> {
message: "Wand factor is not yet supported in LanceDB Cloud".into(),
});
}
body["full_text_query"] = serde_json::json!({
"columns": full_text_search.columns,
"query": full_text_search.query,
})
if self.server_version.support_structural_fts() {
body["full_text_query"] = serde_json::json!({
"query": full_text_search.query.clone(),
});
} else {
body["full_text_query"] = serde_json::json!({
"columns": full_text_search.columns().into_iter().collect::<Vec<_>>(),
"query": full_text_search.query.query(),
})
}
}
Ok(())
@@ -223,7 +236,7 @@ impl<S: HttpSend> RemoteTable<S> {
mut body: serde_json::Value,
query: &VectorQueryRequest,
) -> Result<Vec<serde_json::Value>> {
Self::apply_query_params(&mut body, &query.base)?;
self.apply_query_params(&mut body, &query.base)?;
// Apply general parameters, before we dispatch based on number of query vectors.
body["distance_type"] = serde_json::json!(query.distance_type.unwrap_or_default());
@@ -321,28 +334,25 @@ impl<S: HttpSend> RemoteTable<S> {
async fn execute_query(
&self,
query: &AnyQuery,
_options: QueryExecutionOptions,
options: &QueryExecutionOptions,
) -> Result<Vec<Pin<Box<dyn RecordBatchStream + Send>>>> {
let request = self.client.post(&format!("/v1/table/{}/query/", self.name));
let mut request = self.client.post(&format!("/v1/table/{}/query/", self.name));
let version = self.current_version().await;
let mut body = serde_json::json!({ "version": version });
if let Some(timeout) = options.timeout {
// Client side timeout
request = request.timeout(timeout);
// Also send to server, so it can abort the query if it takes too long.
// (If it doesn't fit into u64, it's not worth sending anyways.)
if let Ok(timeout_ms) = u64::try_from(timeout.as_millis()) {
request = request.header(REQUEST_TIMEOUT_HEADER, timeout_ms);
}
}
let requests = match query {
AnyQuery::Query(query) => {
Self::apply_query_params(&mut body, query)?;
// Empty vector can be passed if no vector search is performed.
body["vector"] = serde_json::Value::Array(Vec::new());
vec![request.json(&body)]
}
AnyQuery::VectorQuery(query) => {
let bodies = self.apply_vector_query_params(body, query)?;
bodies
.into_iter()
.map(|body| request.try_clone().unwrap().json(&body))
.collect()
}
};
let query_bodies = self.prepare_query_bodies(query).await?;
let requests: Vec<reqwest::RequestBuilder> = query_bodies
.into_iter()
.map(|body| request.try_clone().unwrap().json(&body))
.collect();
let futures = requests.into_iter().map(|req| async move {
let (request_id, response) = self.client.send(req, true).await?;
@@ -351,6 +361,22 @@ impl<S: HttpSend> RemoteTable<S> {
let streams = futures::future::try_join_all(futures).await?;
Ok(streams)
}
async fn prepare_query_bodies(&self, query: &AnyQuery) -> Result<Vec<serde_json::Value>> {
let version = self.current_version().await;
let base_body = serde_json::json!({ "version": version });
match query {
AnyQuery::Query(query) => {
let mut body = base_body.clone();
self.apply_query_params(&mut body, query)?;
// Empty vector can be passed if no vector search is performed.
body["vector"] = serde_json::Value::Array(Vec::new());
Ok(vec![body])
}
AnyQuery::VectorQuery(query) => self.apply_vector_query_params(base_body, query),
}
}
}
#[derive(Deserialize)]
@@ -422,10 +448,17 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
Ok(())
}
async fn restore(&self) -> Result<()> {
self.check_mutable().await?;
Err(Error::NotSupported {
message: "restore is not supported on LanceDB cloud.".into(),
})
let mut request = self
.client
.post(&format!("/v1/table/{}/restore/", self.name));
let version = self.current_version().await;
let body = serde_json::json!({ "version": version });
request = request.json(&body);
let (request_id, response) = self.client.send(request, true).await?;
self.check_table_response(&request_id, response).await?;
self.checkout_latest().await?;
Ok(())
}
async fn list_versions(&self) -> Result<Vec<Version>> {
@@ -522,7 +555,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
query: &AnyQuery,
options: QueryExecutionOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
let streams = self.execute_query(query, options).await?;
let streams = self.execute_query(query, &options).await?;
if streams.len() == 1 {
let stream = streams.into_iter().next().unwrap();
Ok(Arc::new(OneShotExec::new(stream)))
@@ -538,9 +571,9 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
async fn query(
&self,
query: &AnyQuery,
_options: QueryExecutionOptions,
options: QueryExecutionOptions,
) -> Result<DatasetRecordBatchStream> {
let streams = self.execute_query(query, _options).await?;
let streams = self.execute_query(query, &options).await?;
if streams.len() == 1 {
Ok(DatasetRecordBatchStream::new(
@@ -559,6 +592,94 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
)?))
}
}
async fn explain_plan(&self, query: &AnyQuery, verbose: bool) -> Result<String> {
let base_request = self
.client
.post(&format!("/v1/table/{}/explain_plan/", self.name));
let query_bodies = self.prepare_query_bodies(query).await?;
let requests: Vec<reqwest::RequestBuilder> = query_bodies
.into_iter()
.map(|query_body| {
let explain_request = serde_json::json!({
"verbose": verbose,
"query": query_body
});
base_request.try_clone().unwrap().json(&explain_request)
})
.collect::<Vec<_>>();
let futures = requests.into_iter().map(|req| async move {
let (request_id, response) = self.client.send(req, true).await?;
let response = self.check_table_response(&request_id, response).await?;
let body = response.text().await.err_to_http(request_id.clone())?;
serde_json::from_str(&body).map_err(|e| Error::Http {
source: format!("Failed to parse explain plan: {}", e).into(),
request_id,
status_code: None,
})
});
let plan_texts = futures::future::try_join_all(futures).await?;
let final_plan = if plan_texts.len() > 1 {
plan_texts
.into_iter()
.enumerate()
.map(|(i, plan)| format!("--- Plan #{} ---\n{}", i + 1, plan))
.collect::<Vec<_>>()
.join("\n\n")
} else {
plan_texts.into_iter().next().unwrap_or_default()
};
Ok(final_plan)
}
async fn analyze_plan(
&self,
query: &AnyQuery,
_options: QueryExecutionOptions,
) -> Result<String> {
let request = self
.client
.post(&format!("/v1/table/{}/analyze_plan/", self.name));
let query_bodies = self.prepare_query_bodies(query).await?;
let requests: Vec<reqwest::RequestBuilder> = query_bodies
.into_iter()
.map(|body| request.try_clone().unwrap().json(&body))
.collect();
let futures = requests.into_iter().map(|req| async move {
let (request_id, response) = self.client.send(req, true).await?;
let response = self.check_table_response(&request_id, response).await?;
let body = response.text().await.err_to_http(request_id.clone())?;
serde_json::from_str(&body).map_err(|e| Error::Http {
source: format!("Failed to execute analyze plan: {}", e).into(),
request_id,
status_code: None,
})
});
let analyze_result_texts = futures::future::try_join_all(futures).await?;
let final_analyze = if analyze_result_texts.len() > 1 {
analyze_result_texts
.into_iter()
.enumerate()
.map(|(i, plan)| format!("--- Query #{} ---\n{}", i + 1, plan))
.collect::<Vec<_>>()
.join("\n\n")
} else {
analyze_result_texts.into_iter().next().unwrap_or_default()
};
Ok(final_analyze)
}
async fn update(&self, update: UpdateBuilder) -> Result<u64> {
self.check_mutable().await?;
let request = self
@@ -581,6 +702,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
Ok(0) // TODO: support returning number of modified rows once supported in SaaS.
}
async fn delete(&self, predicate: &str) -> Result<()> {
self.check_mutable().await?;
let body = serde_json::json!({ "predicate": predicate });
@@ -938,6 +1060,7 @@ mod tests {
use arrow_schema::{DataType, Field, Schema};
use chrono::{DateTime, Utc};
use futures::{future::BoxFuture, StreamExt, TryFutureExt};
use lance_index::scalar::inverted::query::MatchQuery;
use lance_index::scalar::FullTextSearchQuery;
use reqwest::Body;
use rstest::rstest;
@@ -1584,7 +1707,18 @@ mod tests {
"prefilter": true,
"version": null
});
assert_eq!(body, expected_body);
let expected_body_2 = serde_json::json!({
"full_text_query": {
"columns": ["b","a"],
"query": "hello world",
},
"k": 10,
"vector": [],
"with_row_id": true,
"prefilter": true,
"version": null
});
assert!(body == expected_body || body == expected_body_2);
let data = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
@@ -1603,7 +1737,8 @@ mod tests {
.query()
.full_text_search(
FullTextSearchQuery::new("hello world".into())
.columns(Some(vec!["a".into(), "b".into()])),
.with_columns(&["a".into(), "b".into()])
.unwrap(),
)
.with_row_id()
.limit(10)
@@ -1612,6 +1747,66 @@ mod tests {
.unwrap();
}
#[tokio::test]
async fn test_query_structured_fts() {
let table =
Table::new_with_handler_version("my_table", semver::Version::new(0, 3, 0), |request| {
assert_eq!(request.method(), "POST");
assert_eq!(request.url().path(), "/v1/table/my_table/query/");
assert_eq!(
request.headers().get("Content-Type").unwrap(),
JSON_CONTENT_TYPE
);
let body = request.body().unwrap().as_bytes().unwrap();
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
let expected_body = serde_json::json!({
"full_text_query": {
"query": {
"match": {
"terms": "hello world",
"column": "a",
"boost": 1.0,
"fuzziness": 0,
"max_expansions": 50,
},
}
},
"k": 10,
"vector": [],
"with_row_id": true,
"prefilter": true,
"version": null
});
assert_eq!(body, expected_body);
let data = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap();
let response_body = write_ipc_file(&data);
http::Response::builder()
.status(200)
.header(CONTENT_TYPE, ARROW_FILE_CONTENT_TYPE)
.body(response_body)
.unwrap()
});
let _ = table
.query()
.full_text_search(FullTextSearchQuery::new_query(
MatchQuery::new("hello world".to_owned())
.with_column(Some("a".to_owned()))
.into(),
))
.with_row_id()
.limit(10)
.execute()
.await
.unwrap();
}
#[rstest]
#[case(DEFAULT_SERVER_VERSION.clone())]
#[case(semver::Version::new(0, 2, 0))]

View File

@@ -33,7 +33,7 @@ use lance::dataset::{
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
use lance::index::vector::utils::infer_vector_dim;
use lance::io::WrappingObjectStore;
use lance_datafusion::exec::execute_plan;
use lance_datafusion::exec::{analyze_plan as lance_analyze_plan, execute_plan};
use lance_datafusion::utils::StreamingWriteSource;
use lance_index::vector::hnsw::builder::HnswBuildParams;
use lance_index::vector::ivf::IvfBuildParams;
@@ -68,7 +68,7 @@ use crate::query::{
use crate::utils::{
default_vector_column, supported_bitmap_data_type, supported_btree_data_type,
supported_fts_data_type, supported_label_list_data_type, supported_vector_data_type,
PatchReadParam, PatchWriteParam,
PatchReadParam, PatchWriteParam, TimeoutStream,
};
use self::dataset::DatasetConsistencyWrapper;
@@ -433,6 +433,12 @@ pub trait BaseTable: std::fmt::Display + std::fmt::Debug + Send + Sync {
Ok(format!("{}", display.indent(verbose)))
}
async fn analyze_plan(
&self,
query: &AnyQuery,
options: QueryExecutionOptions,
) -> Result<String>;
/// Add new records to the table.
async fn add(
&self,
@@ -1769,11 +1775,14 @@ impl NativeTable {
query: &AnyQuery,
options: QueryExecutionOptions,
) -> Result<DatasetRecordBatchStream> {
let plan = self.create_plan(query, options).await?;
Ok(DatasetRecordBatchStream::new(execute_plan(
plan,
Default::default(),
)?))
let plan = self.create_plan(query, options.clone()).await?;
let inner = execute_plan(plan, Default::default())?;
let inner = if let Some(timeout) = options.timeout {
TimeoutStream::new_boxed(inner, timeout)
} else {
inner
};
Ok(DatasetRecordBatchStream::new(inner))
}
/// Check whether the table uses V2 manifest paths.
@@ -2192,6 +2201,15 @@ impl BaseTable for NativeTable {
self.generic_query(query, options).await
}
async fn analyze_plan(
&self,
query: &AnyQuery,
options: QueryExecutionOptions,
) -> Result<String> {
let plan = self.create_plan(query, options).await?;
Ok(lance_analyze_plan(plan, Default::default()).await?)
}
async fn merge_insert(
&self,
params: MergeInsertBuilder,
@@ -2611,7 +2629,7 @@ mod tests {
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let conn = connect(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -2694,7 +2712,7 @@ mod tests {
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let conn = connect(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -2891,7 +2909,7 @@ mod tests {
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let conn = connect(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -3462,7 +3480,8 @@ mod tests {
let mut conn2 = ConnectBuilder::new(uri);
if let Some(interval) = interval {
conn2 = conn2.read_consistency_interval(std::time::Duration::from_millis(interval));
conn2 = conn2
.read_consistency_interval(Some(std::time::Duration::from_millis(interval)));
}
let conn2 = conn2.execute().await.unwrap();
let table2 = conn2.open_table("my_table").execute().await.unwrap();
@@ -3498,7 +3517,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -3519,7 +3538,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -3594,7 +3613,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -3656,7 +3675,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();

View File

@@ -7,6 +7,7 @@ use std::{
time::{self, Duration, Instant},
};
use futures::FutureExt;
use lance::Dataset;
use tokio::sync::{RwLock, RwLockReadGuard, RwLockWriteGuard};
@@ -22,13 +23,16 @@ pub struct DatasetConsistencyWrapper(Arc<RwLock<DatasetRef>>);
///
/// The dataset is lazily loaded, and starts off as None. On the first access,
/// the dataset is loaded.
#[derive(Debug, Clone)]
#[derive(Debug)]
enum DatasetRef {
/// In this mode, the dataset is always the latest version.
Latest {
dataset: Dataset,
read_consistency_interval: Option<Duration>,
last_consistency_check: Option<time::Instant>,
/// A background task loading the next version of the dataset. This happens
/// in the background so as not to block the current thread.
refresh_task: Option<tokio::task::JoinHandle<Result<Dataset>>>,
},
/// In this mode, the dataset is a specific version. It cannot be mutated.
TimeTravel { dataset: Dataset, version: u64 },
@@ -41,9 +45,18 @@ impl DatasetRef {
Self::Latest {
dataset,
last_consistency_check,
refresh_task,
..
} => {
dataset.checkout_latest().await?;
// Replace the refresh task
if let Some(refresh_task) = refresh_task {
refresh_task.abort();
}
let mut new_dataset = dataset.clone();
refresh_task.replace(tokio::spawn(async move {
new_dataset.checkout_latest().await?;
Ok(new_dataset)
}));
last_consistency_check.replace(Instant::now());
}
Self::TimeTravel { dataset, version } => {
@@ -57,26 +70,24 @@ impl DatasetRef {
matches!(self, Self::Latest { .. })
}
async fn need_reload(&self) -> Result<bool> {
Ok(match self {
Self::Latest { dataset, .. } => {
dataset.latest_version_id().await? != dataset.version().version
}
Self::TimeTravel { dataset, version } => dataset.version().version != *version,
})
fn strong_consistency(&self) -> bool {
matches!(
self,
Self::Latest { read_consistency_interval: Some(interval), .. }
if interval.as_nanos() == 0
)
}
async fn as_latest(&mut self, read_consistency_interval: Option<Duration>) -> Result<()> {
match self {
Self::Latest { .. } => Ok(()),
Self::TimeTravel { dataset, .. } => {
dataset
.checkout_version(dataset.latest_version_id().await?)
.await?;
dataset.checkout_latest().await?;
*self = Self::Latest {
dataset: dataset.clone(),
read_consistency_interval,
last_consistency_check: Some(Instant::now()),
refresh_task: None,
};
Ok(())
}
@@ -114,13 +125,74 @@ impl DatasetRef {
match self {
Self::Latest {
dataset: ref mut ds,
refresh_task,
last_consistency_check,
..
} => {
*ds = dataset;
if let Some(refresh_task) = refresh_task {
refresh_task.abort();
}
*refresh_task = None;
*last_consistency_check = Some(Instant::now());
}
_ => unreachable!("Dataset should be in latest mode at this point"),
}
}
/// Wait for the background refresh task to complete.
async fn await_refresh(&mut self) -> Result<()> {
if let Self::Latest {
refresh_task: Some(refresh_task),
read_consistency_interval,
..
} = self
{
let dataset = refresh_task.await.expect("Refresh task panicked")?;
*self = Self::Latest {
dataset,
read_consistency_interval: *read_consistency_interval,
last_consistency_check: Some(Instant::now()),
refresh_task: None,
};
}
Ok(())
}
/// Check if background refresh task is done, and if so, update the dataset.
fn check_refresh(&mut self) -> Result<()> {
if let Self::Latest {
refresh_task: Some(refresh_task),
read_consistency_interval,
..
} = self
{
if refresh_task.is_finished() {
let dataset = refresh_task
.now_or_never()
.unwrap()
.expect("Refresh task panicked")?;
*self = Self::Latest {
dataset,
read_consistency_interval: *read_consistency_interval,
last_consistency_check: Some(Instant::now()),
refresh_task: None,
};
}
}
Ok(())
}
fn refresh_is_ready(&self) -> bool {
matches!(
self,
Self::Latest {
refresh_task: Some(refresh_task),
..
}
if refresh_task.is_finished()
)
}
}
impl DatasetConsistencyWrapper {
@@ -130,6 +202,7 @@ impl DatasetConsistencyWrapper {
dataset,
read_consistency_interval,
last_consistency_check: Some(Instant::now()),
refresh_task: None,
})))
}
@@ -188,18 +261,9 @@ impl DatasetConsistencyWrapper {
}
pub async fn reload(&self) -> Result<()> {
if !self.0.read().await.need_reload().await? {
return Ok(());
}
let mut write_guard = self.0.write().await;
// on lock escalation -- check if someone else has already reloaded
if !write_guard.need_reload().await? {
return Ok(());
}
// actually need reloading
write_guard.reload().await
write_guard.reload().await?;
write_guard.await_refresh().await
}
/// Returns the version, if in time travel mode, or None otherwise
@@ -245,9 +309,26 @@ impl DatasetConsistencyWrapper {
/// Ensures that the dataset is loaded and up-to-date with consistency and
/// version parameters.
async fn ensure_up_to_date(&self) -> Result<()> {
// We may have previously created a background task to fetch the new
// version of the dataset. If that task is done, we should update the
// dataset.
{
let read_guard = self.0.read().await;
if read_guard.refresh_is_ready() {
drop(read_guard);
self.0.write().await.check_refresh()?;
}
}
if !self.is_up_to_date().await? {
self.reload().await?;
}
// If we are in strong consistency mode, we should await the refresh task.
if self.0.read().await.strong_consistency() {
self.0.write().await.await_refresh().await?;
}
Ok(())
}
}
@@ -290,3 +371,48 @@ impl DerefMut for DatasetWriteGuard<'_> {
}
}
}
#[cfg(test)]
mod tests {
use arrow_schema::{DataType, Field, Schema};
use lance::{dataset::WriteParams, io::ObjectStoreParams};
use super::*;
use crate::{connect, io::object_store::io_tracking::IoStatsHolder, table::WriteOptions};
#[tokio::test]
async fn test_iops_open_strong_consistency() {
let db = connect("memory://")
.read_consistency_interval(Some(Duration::ZERO))
.execute()
.await
.expect("Failed to connect to database");
let io_stats = IoStatsHolder::default();
let schema = Arc::new(Schema::new(vec![Field::new("id", DataType::Int32, false)]));
let table = db
.create_empty_table("test", schema)
.write_options(WriteOptions {
lance_write_params: Some(WriteParams {
store_params: Some(ObjectStoreParams {
object_store_wrapper: Some(Arc::new(io_stats.clone())),
..Default::default()
}),
..Default::default()
}),
})
.execute()
.await
.unwrap();
io_stats.incremental_stats();
// We should only need 1 read IOP to check the schema: looking for the
// latest version.
table.schema().await.unwrap();
let stats = io_stats.incremental_stats();
assert_eq!(stats.read_iops, 1);
}
}

View File

@@ -3,14 +3,20 @@
use std::sync::Arc;
use arrow_schema::{DataType, Schema};
use arrow_array::RecordBatch;
use arrow_schema::{DataType, Schema, SchemaRef};
use datafusion_common::{DataFusionError, Result as DataFusionResult};
use datafusion_execution::RecordBatchStream;
use futures::{FutureExt, Stream};
use lance::arrow::json::JsonDataType;
use lance::dataset::{ReadParams, WriteParams};
use lance::index::vector::utils::infer_vector_dim;
use lance::io::{ObjectStoreParams, WrappingObjectStore};
use lazy_static::lazy_static;
use std::pin::Pin;
use crate::error::{Error, Result};
use datafusion_physical_plan::SendableRecordBatchStream;
lazy_static! {
static ref TABLE_NAME_REGEX: regex::Regex = regex::Regex::new(r"^[a-zA-Z0-9_\-\.]+$").unwrap();
@@ -135,6 +141,7 @@ pub fn supported_btree_data_type(dtype: &DataType) -> bool {
| DataType::Date32
| DataType::Date64
| DataType::Timestamp(_, _)
| DataType::FixedSizeBinary(_)
)
}
@@ -177,11 +184,97 @@ pub fn string_to_datatype(s: &str) -> Option<DataType> {
(&json_type).try_into().ok()
}
enum TimeoutState {
NotStarted {
timeout: std::time::Duration,
},
Started {
deadline: Pin<Box<tokio::time::Sleep>>,
timeout: std::time::Duration,
},
Completed,
}
/// A `Stream` wrapper that implements a timeout.
///
/// The timeout starts when the first `poll_next` is called. As soon as the timeout
/// duration has passed, the stream will return an `Err` indicating a timeout error
/// for the next poll.
pub struct TimeoutStream {
inner: SendableRecordBatchStream,
state: TimeoutState,
}
impl TimeoutStream {
pub fn new(inner: SendableRecordBatchStream, timeout: std::time::Duration) -> Self {
Self {
inner,
state: TimeoutState::NotStarted { timeout },
}
}
pub fn new_boxed(
inner: SendableRecordBatchStream,
timeout: std::time::Duration,
) -> SendableRecordBatchStream {
Box::pin(Self::new(inner, timeout))
}
fn timeout_error(timeout: &std::time::Duration) -> DataFusionError {
DataFusionError::Execution(format!("Query timeout after {} ms", timeout.as_millis()))
}
}
impl RecordBatchStream for TimeoutStream {
fn schema(&self) -> SchemaRef {
self.inner.schema()
}
}
impl Stream for TimeoutStream {
type Item = DataFusionResult<RecordBatch>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
match &mut self.state {
TimeoutState::NotStarted { timeout } => {
if timeout.is_zero() {
return std::task::Poll::Ready(Some(Err(Self::timeout_error(timeout))));
}
let deadline = Box::pin(tokio::time::sleep(*timeout));
self.state = TimeoutState::Started {
deadline,
timeout: *timeout,
};
self.poll_next(cx)
}
TimeoutState::Started { deadline, timeout } => match deadline.poll_unpin(cx) {
std::task::Poll::Ready(_) => {
let err = Self::timeout_error(timeout);
self.state = TimeoutState::Completed;
std::task::Poll::Ready(Some(Err(err)))
}
std::task::Poll::Pending => {
let inner = Pin::new(&mut self.inner);
inner.poll_next(cx)
}
},
TimeoutState::Completed => std::task::Poll::Ready(None),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow_array::Int32Array;
use arrow_schema::Field;
use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
use futures::{stream, StreamExt};
use tokio::time::sleep;
use arrow_schema::{DataType, Field};
use super::*;
#[test]
fn test_guess_default_column() {
@@ -248,4 +341,85 @@ mod tests {
let expected = DataType::Int32;
assert_eq!(string_to_datatype(string), Some(expected));
}
fn sample_batch() -> RecordBatch {
let schema = Arc::new(Schema::new(vec![Field::new(
"col1",
DataType::Int32,
false,
)]));
RecordBatch::try_new(
schema.clone(),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap()
}
#[tokio::test]
async fn test_timeout_stream() {
let batch = sample_batch();
let schema = batch.schema();
let mock_stream = stream::iter(vec![Ok(batch.clone()), Ok(batch.clone())]);
let sendable_stream: SendableRecordBatchStream =
Box::pin(RecordBatchStreamAdapter::new(schema.clone(), mock_stream));
let timeout_duration = std::time::Duration::from_millis(10);
let mut timeout_stream = TimeoutStream::new(sendable_stream, timeout_duration);
// Poll the stream to get the first batch
let first_result = timeout_stream.next().await;
assert!(first_result.is_some());
assert!(first_result.unwrap().is_ok());
// Sleep for the timeout duration
sleep(timeout_duration).await;
// Poll the stream again and ensure it returns a timeout error
let second_result = timeout_stream.next().await.unwrap();
assert!(second_result.is_err());
assert!(second_result
.unwrap_err()
.to_string()
.contains("Query timeout"));
}
#[tokio::test]
async fn test_timeout_stream_zero_duration() {
let batch = sample_batch();
let schema = batch.schema();
let mock_stream = stream::iter(vec![Ok(batch.clone()), Ok(batch.clone())]);
let sendable_stream: SendableRecordBatchStream =
Box::pin(RecordBatchStreamAdapter::new(schema.clone(), mock_stream));
// Setup similar to test_timeout_stream
let timeout_duration = std::time::Duration::from_secs(0);
let mut timeout_stream = TimeoutStream::new(sendable_stream, timeout_duration);
// First poll should immediately return a timeout error
let result = timeout_stream.next().await.unwrap();
assert!(result.is_err());
assert!(result.unwrap_err().to_string().contains("Query timeout"));
}
#[tokio::test]
async fn test_timeout_stream_completes_normally() {
let batch = sample_batch();
let schema = batch.schema();
let mock_stream = stream::iter(vec![Ok(batch.clone()), Ok(batch.clone())]);
let sendable_stream: SendableRecordBatchStream =
Box::pin(RecordBatchStreamAdapter::new(schema.clone(), mock_stream));
// Setup a stream with 2 batches
// Use a longer timeout that won't trigger
let timeout_duration = std::time::Duration::from_secs(1);
let mut timeout_stream = TimeoutStream::new(sendable_stream, timeout_duration);
// Both polls should return data normally
assert!(timeout_stream.next().await.unwrap().is_ok());
assert!(timeout_stream.next().await.unwrap().is_ok());
// Stream should be empty now
assert!(timeout_stream.next().await.is_none());
}
}