Compare commits

...

162 Commits

Author SHA1 Message Date
Lance Release
c625b6f2b2 Bump version: 0.24.0-beta.0 → 0.24.0 2025-06-20 05:46:05 +00:00
Lance Release
bec8fe6547 Bump version: 0.23.1-beta.2 → 0.24.0-beta.0 2025-06-20 05:46:04 +00:00
BubbleCal
dc1150c011 chore: upgrade lance to 0.30.0 (#2451)
lance [release
details](https://github.com/lancedb/lance/releases/tag/v0.30.0)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency specifications to use exact version numbers instead
of referencing a git repository and tag.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-20 11:27:20 +08:00
Will Jones
afaefc6264 ci: fix package lock again (#2449)
We are able to push commits over here:
cb7293e073/.github/workflows/make-release-commit.yml (L88-L95)

So I think it's safe to assume this will work.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workflow configuration to improve authentication and branch
targeting for automated release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-19 08:51:48 -07:00
BubbleCal
cb70ff8cee feat!: switch default FTS to native lance FTS (#2428)
This switches the default FTS to native lance FTS for Python sync table
API, the other APIs have switched to native implementation already

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The default behavior for creating a full-text search index now uses
the new implementation rather than the legacy one.
- **Bug Fixes**
- Improved handling and error messages for phrase queries in full-text
search.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-19 10:38:34 +08:00
BubbleCal
cbb5a841b1 feat: support prefix matching and must_not clause (#2441) 2025-06-19 10:32:32 +08:00
Lance Release
c72f6770fd Bump version: 0.20.1-beta.1 → 0.20.1-beta.2 2025-06-18 23:33:57 +00:00
Lance Release
e5a80a5e86 Bump version: 0.23.1-beta.1 → 0.23.1-beta.2 2025-06-18 23:33:05 +00:00
Will Jones
8d0a7fad1f ci: try again to fix node lockfiles (#2445)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to explicitly check out the main branch
during the publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:45:39 -07:00
LuQQiu
b80d4d0134 chore: update Lance to v0.30.0-beta.1 (#2444)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:15:39 -07:00
satya-nutella
9645fe52c2 fix: improve error handling and embedding logic in arrow.ts (#2433)
- Enhanced error messages for schema inference failures to suggest
providing an explicit schema.
- Updated embedding application logic to check for existing destination
columns, allowing for filling embeddings in columns that are all null.
- Added comments for clarity on handling existing columns during
embedding application.

Fixes https://github.com/lancedb/lancedb/issues/2183

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
  - Improved error messages for schema inference to enhance readability.
- Prevented redundant embedding application by skipping columns that
already contain data, avoiding unnecessary errors and computations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 12:45:11 -07:00
Lance Release
b77314168d Bump version: 0.20.1-beta.0 → 0.20.1-beta.1 2025-06-17 23:22:50 +00:00
Lance Release
e08d45e090 Bump version: 0.23.1-beta.0 → 0.23.1-beta.1 2025-06-17 23:22:00 +00:00
Will Jones
2e3ddb8382 ci: fix lockfile failure for vectordb node (#2443)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated release workflow to set a specific Git user name and email for
automated commits during the package publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 15:14:11 -07:00
Wyatt Alt
627ca4c810 chore: update lance to v0.29.1-beta.2 (#2442)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to use a newer version of the Lance
library.
- **New Features**
- Added support for a new query occurrence type labeled "MUST NOT" in
search filters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 14:02:13 -07:00
Lance Release
f8dae4ffe9 Bump version: 0.20.0 → 0.20.1-beta.0 2025-06-16 16:30:14 +00:00
Lance Release
9eb6119468 Bump version: 0.23.0 → 0.23.1-beta.0 2025-06-16 16:29:22 +00:00
Weston Pace
59b57e30ed feat: add maximum and minimum nprobes properties (#2430)
This exposes the maximum_nprobes and minimum_nprobes feature that was
added in https://github.com/lancedb/lance/pull/3903

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying minimum and maximum probe counts in
vector search queries, allowing finer control over search behavior.
- Users can now independently set minimum and maximum probes for vector
and hybrid queries via new methods and parameters in Python, Node.js,
and Rust APIs.

- **Bug Fixes**
- Improved parameter validation to ensure correct usage of minimum and
maximum probe values.

- **Tests**
- Expanded test coverage to validate correct handling, serialization,
and error cases for the new probe parameters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-13 15:18:29 -07:00
BubbleCal
fec8d58f06 feat: support a bunch or FTS features in JS SDK (#2431)
- operator for match query
- slop for phrase query
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for boolean full-text search queries with AND/OR
logic and occurrence conditions.
- Added operator options for match and multi-match queries to control
term combination logic.
- Enabled phrase queries to specify proximity (slop) for flexible phrase
matching.
- Added new enumerations (`Operator`, `Occur`) and the `BooleanQuery`
class for enhanced query expressiveness.

- **Bug Fixes**
- Improved validation and error handling for invalid operator and
occurrence inputs in full-text queries.

- **Tests**
- Expanded test coverage with new cases for boolean queries and
operator-based full-text searches.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-12 17:04:19 +08:00
BubbleCal
84ded9d678 feat: support new FTS features in python SDK (#2411)
- AND operator
- phrase query slop param
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for combining full-text search queries using AND/OR
operators, enabling more flexible query composition.
- Introduced new query types and parameters, including boolean queries,
operator selection, occurrence constraints, and phrase slop for advanced
search scenarios.
- Enhanced asynchronous search to accept rich full-text query objects
directly.

- **Bug Fixes**
- Improved handling and validation of full-text search queries in both
synchronous and asynchronous search operations.

- **Tests**
- Updated and expanded tests to cover new full-text query types and
their usage in search functions.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-06 14:33:46 +08:00
Wyatt Alt
65696d9713 chore: update lance in lancedb (#2424)
This updates lance to v0.29.1-beta.1.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies for improved consistency and
reliability. No changes to user-facing functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 19:06:51 -07:00
Will Jones
e2f2ea32e4 ci: fix vectordb release (#2422)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to include an additional step for
improved process reliability. No changes to user-facing functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 17:06:02 -07:00
Lance Release
d5f2eca754 Bump version: 0.20.0-beta.3 → 0.20.0 2025-06-04 21:08:31 +00:00
Lance Release
7fa455a8a5 Bump version: 0.20.0-beta.2 → 0.20.0-beta.3 2025-06-04 21:07:59 +00:00
Lance Release
8f42b5874e Bump version: 0.23.0-beta.3 → 0.23.0 2025-06-04 21:07:39 +00:00
Lance Release
274f19f560 Bump version: 0.23.0-beta.2 → 0.23.0-beta.3 2025-06-04 21:07:38 +00:00
Will Jones
fbcbc75b5b feat: upgrade lance to stable version (#2420)
Adds a script to change the lance dependency easily. To make this
change, I just had to run:

```bash
python ci/set_lance_version.py stable
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added a script to automate updating the Lance package version in
project dependencies.
- **Chores**
- Updated workflows to improve lockfile management and automate updates
during releases and publishing.
- Switched Lance dependencies from git-based references to fixed version
numbers for improved stability.
- Enhanced lockfile update script with an option to amend commits and
quieter output.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-04 13:34:30 -07:00
Will Jones
008f389bd0 ci: commit updated Cargo.lock (#2418)
Follow up to #2416

Forgot to do `git add`.
Also need to delete old actions updating package lock.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
  - Removed legacy workflows related to updating package lock files.
- Improved the update lockfiles script to ensure updated lockfiles are
always included in amended commits.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 08:40:38 -07:00
Lance Release
91af6518d9 Updating package-lock.json 2025-06-04 07:15:07 +00:00
Lance Release
af6819762c Updating package-lock.json 2025-06-04 07:14:50 +00:00
Lance Release
7acece493d Bump version: 0.20.0-beta.1 → 0.20.0-beta.2 2025-06-04 07:14:39 +00:00
Lance Release
20e017fedc Bump version: 0.23.0-beta.1 → 0.23.0-beta.2 2025-06-04 07:13:44 +00:00
Jack Ye
74e578b3c8 feat: upgrade lance to v0.29.0-beta.2 (#2419)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated various internal dependencies to newer versions for improved
stability and compatibility.
  - Increased the version number for the Python package.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 15:16:26 -07:00
Lance Release
d92d9eb3d2 Updating package-lock.json 2025-06-03 16:28:18 +00:00
Lance Release
b6cdce7bc9 Updating package-lock.json 2025-06-03 16:28:02 +00:00
Lance Release
316b406265 Bump version: 0.20.0-beta.0 → 0.20.0-beta.1 2025-06-03 16:27:53 +00:00
Lance Release
8825c7c1dd Bump version: 0.23.0-beta.0 → 0.23.0-beta.1 2025-06-03 16:26:58 +00:00
David Myriel
81c85ff702 docs: announcement for Documentation (#2410)
Just letting people know where to look starting June 1st. 

Both docsites should be pointing to lancedb.github.io/documentation.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added a notification banner to the documentation site informing users
about a new URL for accessing the latest documentation starting June
1st, 2025. The message includes a clickable link that opens in a new
tab.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-03 08:55:02 -07:00
Will Jones
570f2154d5 ci: automatically update Cargo.lock (#2416)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workflow to ignore changes in the `Cargo.lock` file during
documentation checks, reducing unnecessary workflow failures.
- Enhanced release process by adding automated lockfile updates for
Node.js and Rust components.
- Removed an obsolete package-lock update job from the publishing
workflow to streamline releases.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 07:49:21 -07:00
Lance Release
0525c055fc Updating package-lock.json 2025-05-31 04:29:20 +00:00
Lance Release
38d11291da Updating package-lock.json 2025-05-31 03:48:11 +00:00
Lance Release
258e682574 Updating package-lock.json 2025-05-31 03:47:55 +00:00
Lance Release
d7afa600b8 Bump version: 0.19.2-beta.0 → 0.20.0-beta.0 2025-05-31 03:47:37 +00:00
Lance Release
5c7303ab2e Bump version: 0.22.2-beta.0 → 0.23.0-beta.0 2025-05-31 03:47:13 +00:00
Will Jones
5895ef4039 ci: revert unnecessary version bump (#2415)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Downgraded version numbers for the Node.js, Python, and Rust packages.
No other user-facing changes were made.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 16:51:14 -07:00
Jack Ye
0528cd858a fix: avoid failing list_indices for any unknown index (#2413)
Closes #2412 

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved the reliability of listing indices by logging warnings for
errors and skipping problematic entries, ensuring successful results are
returned.
- Internal indices used for optimization are now excluded from the
visible list of indices.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 14:43:12 -07:00
Jack Ye
6582f43422 feat: upgrade lance to v0.29.0-beta.1 (#2414)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility. No user-facing changes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 13:47:41 -07:00
BubbleCal
5c7f63388d feat!: upgrade lance to v0.28.0 (#2404)
this introduces some breaking changes in terms of rust API of creating
FTS index, and the default index params changed

Signed-off-by: BubbleCal <bubble-cal@outlook.com>

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Updated default settings for full-text search (FTS) index creation:
stemming, stop word removal, and ASCII folding are now enabled by
default, while token position storage is disabled by default.

- **Refactor**
- Simplified and streamlined the configuration and handling of FTS index
parameters for improved maintainability and consistency across
interfaces.
- Enhanced serialization and request construction for FTS index
parameters to reduce manual handling and improve code clarity.
- Improved test coverage by explicitly enabling positional indexing in
FTS tests to support phrase queries.

- **Chores**
- Upgraded all internal dependencies related to FTS indexing to the
latest version for enhanced compatibility and performance.
- Updated package versions for Node.js, Python, and Rust components to
the latest beta releases.
- Improved CI workflows by adding Rust toolchain setup with formatting
and linting tools.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-29 15:19:24 -07:00
Renato Marroquin
d0bc671cac docs: add example for querying a lance table with SQL (#2389)
Adds example for querying a dataset with SQL

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added new guides on querying LanceDB tables using SQL with DuckDB and
Apache Datafusion.
- Included detailed instructions for integrating LanceDB with Datafusion
in Python.
- Updated navigation to include Datafusion and SQL querying
documentation.
- Improved formatting in TypeScript and vectordb update examples for
consistency.

- **Tests**
- Added a new test demonstrating SQL querying on Lance tables via
DataFusion integration.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-05-29 06:14:38 -07:00
David Myriel
d37e17593d [doc] Add New Readme Page (#2405)
Added a new readme for better navigation, updated language and more
detail

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Updated the README with a modernized header, improved structure, and
clearer descriptions of features and architecture.
- Expanded and reorganized key features and product offerings for better
clarity.
- Simplified installation instructions and added a table of SDK
interfaces with documentation links.
- Enhanced community and contributor sections with new visuals and links
to social and support channels.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-27 17:45:17 +02:00
Lance Release
cb726d370e Updating package-lock.json 2025-05-23 22:36:54 +00:00
Lance Release
23ee132546 Updating package-lock.json 2025-05-23 21:58:58 +00:00
Lance Release
7fa090d330 Updating package-lock.json 2025-05-23 21:58:43 +00:00
Lance Release
07bc1c5397 Bump version: 0.19.1 → 0.19.2-beta.0 2025-05-23 21:58:31 +00:00
Lance Release
d7a9dbb9fc Bump version: 0.22.1 → 0.22.2-beta.0 2025-05-23 21:58:17 +00:00
Jack Ye
00487afc7d feat: upgrade lance to v0.27.3-beta.2 (#2403)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved compatibility and
stability. No changes to user-facing features.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-23 14:53:13 -07:00
BubbleCal
1902d65aad docs: update the num_partitions recommendation (#2401) 2025-05-23 23:45:37 +08:00
Lance Release
c4fbb65b8e Updating package-lock.json 2025-05-22 07:06:03 +00:00
Lance Release
875ed7ae6f Updating package-lock.json 2025-05-22 05:58:59 +00:00
Lance Release
95a46a57ba Updating package-lock.json 2025-05-22 05:58:43 +00:00
Lance Release
51561e31a0 Bump version: 0.19.1-beta.6 → 0.19.1 2025-05-22 05:58:05 +00:00
Lance Release
7b19120578 Bump version: 0.19.1-beta.5 → 0.19.1-beta.6 2025-05-22 05:58:00 +00:00
Lance Release
745c34a6a9 Bump version: 0.22.1-beta.6 → 0.22.1 2025-05-22 05:57:20 +00:00
Lance Release
db8fa2454d Bump version: 0.22.1-beta.5 → 0.22.1-beta.6 2025-05-22 05:57:20 +00:00
Lei Xu
a67a7b4b42 chore: use stable lance (#2398)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies to use a stable release version for
improved consistency and reliability. No changes to application features
or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-21 22:34:29 -07:00
Lei Xu
496846e532 chore: bump lance version (#2397)
- Bump lance version and prepare a new release.
- Bump rust toolchain to 1.86, because GHA ubuntu does not have 1.83
`cargo-fmt` anymore
2025-05-21 14:15:55 -07:00
Ayush Chaurasia
dadcfebf8e docs: add logos in genkit docs page (#2391)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added an integration banner image to the beginning of the
Genkitx-LanceDB documentation.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-20 01:40:12 +05:30
Lance Release
67033dbd7f Updating package-lock.json 2025-05-16 00:25:41 +00:00
Lance Release
05a85cfc2a Updating package-lock.json 2025-05-15 23:44:27 +00:00
Lance Release
40c5d3d72b Updating package-lock.json 2025-05-15 23:44:10 +00:00
Lance Release
198f0f80c6 Bump version: 0.19.1-beta.4 → 0.19.1-beta.5 2025-05-15 23:43:32 +00:00
Lance Release
e3f2fd3892 Bump version: 0.22.1-beta.4 → 0.22.1-beta.5 2025-05-15 23:42:46 +00:00
Wyatt Alt
f401ccc599 chore: update lance to 0.27.1-beta.1 (#2388)
This is for fe14671f1

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to newer versions for improved stability
and performance. No changes to features or functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-15 16:09:01 -07:00
Ayush Chaurasia
81b59139f8 docs: add genkit integration docs (#2383)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added a comprehensive guide for integrating LanceDB with Genkit,
including installation instructions, setup, indexing, retrieval, and
building a custom RAG pipeline with example code and screenshots.
- Updated the documentation navigation to include the new Genkit
integration, making it accessible from the site menu.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-12 18:18:07 +05:30
ayush chaurasia
1026781ab6 Revert "update"
This reverts commit 9c699b8cd9.
2025-05-11 21:04:59 +05:30
ayush chaurasia
9c699b8cd9 update 2025-05-11 21:01:53 +05:30
Lance Release
34bec59bc3 Updating package-lock.json 2025-05-08 21:34:37 +00:00
Lance Release
a5fbbf0d66 Updating package-lock.json 2025-05-08 20:20:18 +00:00
Lance Release
b42721167b Updating package-lock.json 2025-05-08 20:20:00 +00:00
Lance Release
543dec9ff0 Bump version: 0.19.1-beta.3 → 0.19.1-beta.4 2025-05-08 20:19:17 +00:00
Lance Release
04f962f6b0 Bump version: 0.22.1-beta.3 → 0.22.1-beta.4 2025-05-08 20:18:40 +00:00
LuQQiu
19e896ff69 chore: add default for result structs (#2377)
add default for result structs, when values are not provided, will go
with the default values

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Improved internal handling of table operation results to support
default values. No changes to user-facing features or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:09:11 -07:00
Will Jones
272e4103b2 feat: provide timeout parameter for merge_insert (#2378)
Provides the ability to set a timeout for merge insert. The default
underlying timeout is however long the first attempt takes, or if there
are multiple attempts, 30 seconds. This has two use cases:

1. Make the timeout shorter, when you want to fail if it takes too long.
2. Allow taking more time to do retries.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying a timeout when performing merge insert
operations in Python, Node.js, and Rust APIs.
- Introduced a new option to control the maximum allowed execution time
for merge inserts, including retry timeout handling.

- **Documentation**
- Updated and added documentation to describe the new timeout option and
its usage in APIs.

- **Tests**
- Added and updated tests to verify correct timeout behavior during
merge insert operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:07:05 -07:00
Wyatt Alt
75c257ebb6 fix: return IndexNotExist on remote drop index 404 (#2380)
Prior to this commit, attempting to drop an index that did not exist
would return a TableNotFound error stating that the target table does
not exist -- even when it did exist. Instead, we now return an
IndexNotFound error.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved error handling when attempting to drop a non-existent index,
providing a more accurate error message.
- **Tests**
- Added a test to verify correct error reporting when dropping an index
that does not exist.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:24:05 -07:00
Wyatt Alt
9ee152eb42 fix: support __len__ on remote table (#2379)
This moves the __len__ method from LanceTable and RemoteTable to Table
so that child classes don't need to implement their own. In the process,
it fixes the implementation of RemoteTable's length method, which was
previously missing a return statement.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Refactor**
- Centralized the table length functionality in the base table class,
simplifying subclass behavior.
- Removed redundant or non-functional length methods from specific table
classes.

- **Tests**
- Added a new test to verify correct table length reporting for remote
tables.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:23:39 -07:00
LuQQiu
c9ae1b1737 fix: add restore with tag in python and nodejs API (#2374)
add restore with tag API in python and nodejs API and add tests to guard
them

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The restore functionality now supports using version tags in addition
to numeric version identifiers, allowing you to revert tables to a state
marked by a tag.
- **Bug Fixes**
  - Restoring with an unknown tag now properly raises an error.
- **Documentation**
- Updated documentation and examples to clarify that restore accepts
both version numbers and tags.
- **Tests**
- Added new tests to verify restore behavior with version tags and error
handling for unknown tags.
  - Added tests for checkout and restore operations involving tags.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-06 16:12:58 -07:00
Lance Release
89dc80c42a Updating package-lock.json 2025-05-06 03:53:49 +00:00
Wyatt Alt
7b020ac799 chore: run cargo update (#2376) 2025-05-05 20:26:42 -07:00
Lance Release
529e774bbb Updating package-lock.json 2025-05-06 02:45:45 +00:00
Lance Release
7c12239305 Updating package-lock.json 2025-05-06 02:45:29 +00:00
Lance Release
d83424d6b4 Bump version: 0.19.1-beta.2 → 0.19.1-beta.3 2025-05-06 02:45:06 +00:00
Lance Release
8bf89f887c Bump version: 0.22.1-beta.2 → 0.22.1-beta.3 2025-05-06 02:44:39 +00:00
LuQQiu
b2160b2304 fix: fix backward compatibility with the add API (#2375)
add API originally returns a struct with request_id, add backward
compatibility for that

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of empty server responses for various data
operations to ensure consistent behavior across server versions.
- Added default values to version and numeric fields to prevent errors
when response data is incomplete.

- **Tests**
- Expanded tests to cover multiple server response scenarios, validating
correct version handling in data operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 19:26:27 -07:00
Lance Release
1bb82597be Updating package-lock.json 2025-05-06 01:21:13 +00:00
Lance Release
e4eee38b3c Updating package-lock.json 2025-05-06 00:09:39 +00:00
Lance Release
64fc2be503 Updating package-lock.json 2025-05-06 00:09:19 +00:00
Lance Release
dc8054e90d Bump version: 0.19.1-beta.1 → 0.19.1-beta.2 2025-05-06 00:08:55 +00:00
Lance Release
1684940946 Bump version: 0.22.1-beta.1 → 0.22.1-beta.2 2025-05-06 00:08:29 +00:00
LuQQiu
695813463c chore: reduce unneeded API calls for return version for write operations and improve test (#2373)
Reduce the duplicate code for remote write operation testing.
Avoid double call to remote to get version info, just return 0 instead
of suddenly adding extra API calls for end users when they are using old
servers.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added version tracking to table operation results, allowing users to
see the commit version associated with add, update, delete, merge, and
column modification operations.
- **Bug Fixes**
- Improved compatibility with legacy servers by standardizing version
information as zero when the server does not return a version.
- **Documentation**
- Clarified the meaning of the version field in operation results,
especially for cases involving legacy server responses.
- **Tests**
- Enhanced test coverage to verify correct behavior with both legacy and
modern server responses.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 16:47:19 -07:00
LuQQiu
ed594b0f76 feat: return version for all write operations (#2368)
return version info for all write operations (add, update, merge_insert
and column modification operations)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Table modification operations (add, update, delete, merge,
add/alter/drop columns) now return detailed result objects including
version numbers and operation statistics.
- Result objects provide clearer feedback such as rows affected and new
table version after each operation.

- **Documentation**
- Updated documentation to describe new result objects and their fields
for all relevant table operations.
- Added documentation for new result interfaces and updated method
return types in Node.js and Python APIs.

- **Tests**
- Enhanced test coverage to assert correctness of returned versioning
and operation metadata after table modifications.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 14:25:34 -07:00
Will Jones
cee2b5ea42 chore: upgrade pyarrow pin (#2192)
Closes #2191


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the required version of the pyarrow package to version 16 or
higher.
- Adjusted automated testing workflows to install pyarrow version 16 for
compatibility checks.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 11:23:13 -07:00
Alex Pilon
f315f9665a feat: implement bindings to return merge stats (#2367)
Based on this comment:
https://github.com/lancedb/lancedb/issues/2228#issuecomment-2730463075
and https://github.com/lancedb/lance/pull/2357

Here is my attempt at implementing bindings for returning merge stats
from a `merge_insert.execute` call for lancedb.

Note: I have almost no idea what I am doing in Rust but tried to follow
existing code patterns and pay attention to compiler hints.
- The change in nodejs binding appeared to be necessary to get
compilation to work, presumably this could actual work properly by
returning some kind of NAPI JS object of the stats data?
- I am unsure of what to do with the remote/table.rs changes -
necessarily for compilation to work; I assume this is related to LanceDB
cloud, but unsure the best way to handle that at this point.

Proof of function:

```python
import pandas as pd
import lancedb


db = lancedb.connect("/tmp/test.db")

test_data = pd.DataFrame(
    {
        "title": ["Hello", "Test Document", "Example", "Data Sample", "Last One"],
        "id": [1, 2, 3, 4, 5],
        "content": [
            "World",
            "This is a test",
            "Another example",
            "More test data",
            "Final entry",
        ],
    }
)

table = db.create_table("documents", data=test_data, exist_ok=True, mode="overwrite")

update_data = pd.DataFrame(
    {
        "title": [
            "Hello, World",
            "Test Document, it's good",
            "Example",
            "Data Sample",
            "Last One",
            "New One",
        ],
        "id": [1, 2, 3, 4, 5, 6],
        "content": [
            "World",
            "This is a test",
            "Another example",
            "More test data",
            "Final entry",
            "New content",
        ],
    }
)

stats = (
    table.merge_insert(on="id")
    .when_matched_update_all()
    .when_not_matched_insert_all()
    .execute(update_data)
)

print(stats)
```

returns

```
{'num_inserted_rows': 1, 'num_updated_rows': 5, 'num_deleted_rows': 0}
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Merge-insert operations now return detailed statistics, including
counts of inserted, updated, and deleted rows.
- **Bug Fixes**
- Tests updated to validate returned merge-insert statistics for
accuracy.
- **Documentation**
- Method documentation improved to reflect new return values and clarify
merge operation results.
- Added documentation for the new `MergeStats` interface detailing
operation statistics.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-01 10:00:20 -07:00
Andrew C. Oliver
5deb26bc8b fix: prevent embedded objects from returning null in all of their fields (#2355)
metadata{filename=xyz} filename would be there structurally, but ALWAYS
null.

I didn't include this as a file but it may be useful for understanding
the problem for people searching on this issue so I'm including it here
as documentation. Before this patch any field that is more than 1 deep
is accepted but returns null values for subfields when queried.

```js
const lancedb = require('@lancedb/lancedb');

// Debug logger
function debug(message, data) {
  console.log(`[TEST] ${message}`, data !== undefined ? data : '');
}

// Log when our unwrapArrowObject is called
const kParent = Symbol.for("parent");
const kRowIndex = Symbol.for("rowIndex");

// Override console.log for our test
const originalConsoleLog = console.log;
console.log = function() {
  // Filter out noisy logs
  if (arguments[0] && typeof arguments[0] === 'string' && arguments[0].includes('[INFO] [LanceDB]')) {
    originalConsoleLog.apply(console, arguments);
  }
  originalConsoleLog.apply(console, arguments);
};

async function main() {
  debug('Starting test...');
  
  // Connect to the database
  debug('Connecting to database...');
  const db = await lancedb.connect('./.lancedb');
  
  // Try to open an existing table, or create a new one if it doesn't exist
  let table;
  try {
    table = await db.openTable('test_nested_fields');
    debug('Opened existing table');
  } catch (e) {
    debug('Creating new table...');
    
    // Create test data with nested metadata structure
    const data = [
      {
        id: 'test1',
        vector: [1, 2, 3],
        metadata: {
          filePath: "/path/to/file1.ts",
          startLine: 10,
          endLine: 20,
          text: "function test() { return true; }"
        }
      },
      {
        id: 'test2',
        vector: [4, 5, 6],
        metadata: {
          filePath: "/path/to/file2.ts",
          startLine: 30,
          endLine: 40,
          text: "function test2() { return false; }"
        }
      }
    ];
    
    debug('Data to be inserted:', JSON.stringify(data, null, 2));
    
    // Create the table
    table = await db.createTable('test_nested_fields', data);
    debug('Table created successfully');
  }
  
  // Query the table and get results
  debug('Querying table...');
  const results = await table.search([1, 2, 3]).limit(10).toArray();
  
  // Log the results
  debug('Number of results:', results.length);
  
  if (results.length > 0) {
    const firstResult = results[0];
    debug('First result properties:', Object.keys(firstResult));
    
    // Check if metadata is accessible and what properties it has
    if (firstResult.metadata) {
      debug('Metadata properties:', Object.keys(firstResult.metadata));
      debug('Metadata filePath:', firstResult.metadata.filePath);
      debug('Metadata startLine:', firstResult.metadata.startLine);
      
      // Destructure to see if that helps
      const { filePath, startLine, endLine, text } = firstResult.metadata;
      debug('Destructured values:', { filePath, startLine, endLine, text });
      
      // Check if it's a proxy object
      debug('Result is proxy?', Object.getPrototypeOf(firstResult) === Object.prototype ? false : true);
      debug('Metadata is proxy?', Object.getPrototypeOf(firstResult.metadata) === Object.prototype ? false : true);
    } else {
      debug('Metadata is not accessible!');
    }
  }
  
  // Close the database
  await db.close();
}

main().catch(e => {
  console.error('Error:', e);
}); 
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of nested struct fields to ensure accurate
preservation of values during serialization and deserialization.
- Enhanced robustness when accessing nested object properties, reducing
errors with missing or null values.

- **Tests**
- Added tests to verify correct handling of nested struct fields through
serialization and deserialization.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-01 09:38:55 -07:00
Lance Release
3cc670ac38 Updating package-lock.json 2025-04-29 23:21:19 +00:00
Lance Release
4ade3e31e2 Updating package-lock.json 2025-04-29 22:19:46 +00:00
Lance Release
a222d2cd91 Updating package-lock.json 2025-04-29 22:19:30 +00:00
Lance Release
508e621f3d Bump version: 0.19.1-beta.0 → 0.19.1-beta.1 2025-04-29 22:19:14 +00:00
Lance Release
a1a0472f3f Bump version: 0.22.1-beta.0 → 0.22.1-beta.1 2025-04-29 22:18:53 +00:00
Wyatt Alt
3425a6d339 feat: upgrade lance to v0.27.0-beta.2 (#2364)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated dependencies for related components to use the latest version
from a specific repository source. No changes to features or public
functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-29 14:59:56 -07:00
Ryan Green
af54e0ce06 feat: add table stats API (#2363)
* Add a new "table stats" API to expose basic table and fragment
statistics with local and remote table implementations

### Questions
* This is using `calculate_data_stats` to determine total bytes in the
table. This seems like a potentially expensive operation - are there any
concerns about performance for large datasets?

### Notes
* bytes_on_disk seems to be stored at the column level but there does
not seem to be a way to easily calculate total bytes per fragment. This
may need to be added in lance before we can support fragment size
(bytes) statistics.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added a method to retrieve comprehensive table statistics, including
total rows, index counts, storage size, and detailed fragment size
metrics such as minimum, maximum, mean, and percentiles.
- Enabled fetching of table statistics from remote sources through
asynchronous requests.
- Extended table interfaces across Python, Rust, and Node.js to support
synchronous and asynchronous retrieval of table statistics.
- **Tests**
- Introduced tests to verify the accuracy of the new table statistics
feature for both populated and empty tables.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-29 15:19:08 -02:30
Lance Release
089905fe8f Updating package-lock.json 2025-04-28 19:13:36 +00:00
Lance Release
554939e5d2 Updating package-lock.json 2025-04-28 17:20:58 +00:00
Lance Release
7a13814922 Updating package-lock.json 2025-04-28 17:20:42 +00:00
Lance Release
e9f25f6a12 Bump version: 0.19.0 → 0.19.1-beta.0 2025-04-28 17:20:26 +00:00
Lance Release
419a433244 Bump version: 0.22.0 → 0.22.1-beta.0 2025-04-28 17:20:10 +00:00
LuQQiu
a9311c4dc0 feat: add list/create/delete/update/checkout tag API (#2353)
add the tag related API to list existing tags, attach tag to a version,
update the tag version, delete tag, get the version of the tag, and
checkout the version that the tag bounded to.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced table version tagging, allowing users to create, update,
delete, and list human-readable tags for specific table versions.
  - Enabled checking out a table by either version number or tag name.
- Added new interfaces for tag management in both Python and Node.js
APIs, supporting synchronous and asynchronous workflows.

- **Bug Fixes**
  - None.

- **Documentation**
- Updated documentation to describe the new tagging features, including
usage examples.

- **Tests**
- Added comprehensive tests for tag creation, updating, deletion,
listing, and version checkout by tag in both Python and Node.js
environments.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-28 10:04:46 -07:00
LuQQiu
178bcf9c90 fix: hybrid search explain plan analyze plan (#2360)
Fix hybrid search explain plan analyze plan API

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added options to view the execution plan and analyze the runtime
performance of hybrid queries.
- **Refactor**
- Improved internal handling of query setup for better modularity and
maintainability.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-27 18:39:43 -07:00
Lance Release
b9be092cb1 Updating package-lock.json 2025-04-25 22:05:57 +00:00
Lance Release
e8c0c52315 Updating package-lock.json 2025-04-25 21:17:03 +00:00
Lance Release
a60fa0d3b7 Updating package-lock.json 2025-04-25 21:16:48 +00:00
Lance Release
726d629b9b Bump version: 0.19.0-beta.12 → 0.19.0 2025-04-25 21:16:30 +00:00
Lance Release
b493f56dee Bump version: 0.19.0-beta.11 → 0.19.0-beta.12 2025-04-25 21:16:25 +00:00
Lance Release
a8b5ad7e74 Bump version: 0.22.0-beta.12 → 0.22.0 2025-04-25 21:16:07 +00:00
Lance Release
f8f6264883 Bump version: 0.22.0-beta.11 → 0.22.0-beta.12 2025-04-25 21:16:07 +00:00
Will Jones
d8517117f1 feat: upgrade Lance to v0.26.0 (#2359)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.26.0

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency management to use published crate versions for
improved reliability and maintainability.
- Added a temporary workaround for build issues by pinning a specific
version of a dependency.
- **Refactor**
- Improved resource management and concurrency by updating internal
ownership models for object storage components.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-25 13:59:12 -07:00
Lance Release
ab66dd5ed2 Updating package-lock.json 2025-04-25 06:04:06 +00:00
Lance Release
cbb9a7877c Updating package-lock.json 2025-04-25 05:02:47 +00:00
Lance Release
b7fc223535 Updating package-lock.json 2025-04-25 05:02:32 +00:00
Lance Release
1fdaf7a1a4 Bump version: 0.19.0-beta.10 → 0.19.0-beta.11 2025-04-25 05:02:16 +00:00
Lance Release
d11819c90c Bump version: 0.22.0-beta.10 → 0.22.0-beta.11 2025-04-25 05:01:57 +00:00
BubbleCal
9b902272f1 fix: sync hybrid search ignores the distance range params (#2356)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for distance range filtering in hybrid vector queries,
allowing users to specify lower and upper bounds for search results.

- **Tests**
- Introduced new tests to validate distance range filtering and
reranking in both synchronous and asynchronous hybrid query scenarios.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-25 13:01:22 +08:00
Will Jones
8c0622fa2c fix: remote limit to avoid "Limit must be non-negative" (#2354)
To workaround this issue: https://github.com/lancedb/lancedb/issues/2211

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of large query parameters to prevent potential
overflow issues when using the "k" parameter in queries.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-24 15:04:06 -07:00
Philip Meier
2191f948c3 fix: add missing pydantic model config compat (#2316)
Fixes #2315.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Refactor**
- Enhanced query processing to maintain smooth functionality across
different dependency versions, ensuring improved stability and
performance.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 14:46:10 -07:00
Will Jones
acc3b03004 ci: fix docs deploy (#2351)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Improved CI workflow for documentation builds by optimizing Rust build
settings and updating the runner environment.
  - Fixed a typo in a workflow step name.
- Streamlined caching steps to reduce redundancy and improve efficiency.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 13:55:34 -07:00
Lance Release
7f091b8c8e Updating package-lock.json 2025-04-22 19:16:43 +00:00
Lance Release
c19bdd9a24 Updating package-lock.json 2025-04-22 18:24:16 +00:00
Lance Release
dad0ff5cd2 Updating package-lock.json 2025-04-22 18:23:59 +00:00
Lance Release
a705621067 Bump version: 0.19.0-beta.9 → 0.19.0-beta.10 2025-04-22 18:23:39 +00:00
Lance Release
39614fdb7d Bump version: 0.22.0-beta.9 → 0.22.0-beta.10 2025-04-22 18:23:17 +00:00
Ryan Green
96d534d4bc feat: add retries to remote client for requests with stream bodies (#2349)
Closes https://github.com/lancedb/lancedb/issues/2307
* Adds retries to remote operations with stream bodies (add,
merge_insert)
* Change default retryable status codes to 409, 429, 500, 502, 503, 504
* Don't retry add or merge_insert operations on 5xx responses

Notes:
* Supporting retries on stream bodies means we have to buffer the body
into memory so it can be cloned on retry. This will impact memory use
patterns for the remote client. This buffering can be disabled by
disabling retries (i.e. setting retries to 0 in RetryConfig)
* It does not seem that retry config can be specified by env vars as the
documentation suggests. I added a follow-up issue
[here](https://github.com/lancedb/lancedb/issues/2350)



<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Enhanced retry support for remote requests with configurable limits
and exponential backoff with jitter.
- Added robust retry logic for streaming data uploads, enabling retries
with buffered data to ensure reliability.

- **Bug Fixes**
- Improved error handling and retry behavior for HTTP status codes 409
and 504.

- **Refactor**
- Centralized and modularized HTTP request sending and retry logic
across remote database and table operations.
  - Streamlined request ID management for improved traceability.
- Simplified error message construction in index waiting functionality.

- **Tests**
  - Added a test verifying merge-insert retries on HTTP 409 responses.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 15:40:44 -02:30
Lance Release
5051d30d09 Updating package-lock.json 2025-04-21 23:55:43 +00:00
Lance Release
db853c4041 Updating package-lock.json 2025-04-21 22:50:56 +00:00
Lance Release
76d1d22bdc Updating package-lock.json 2025-04-21 22:50:40 +00:00
Lance Release
d8746c61c6 Bump version: 0.19.0-beta.8 → 0.19.0-beta.9 2025-04-21 22:50:20 +00:00
Lance Release
1a66df2627 Bump version: 0.22.0-beta.8 → 0.22.0-beta.9 2025-04-21 22:49:59 +00:00
Will Jones
44670076c1 fix: move timeout to avoid retries (#2347)
I added a timeout to query execution options in
https://github.com/lancedb/lancedb/pull/2288. However, this was send to
the request timeout, but the retry implementation is unaware of this
timeout. So once the query timed out, a retry would be triggered.
Instead, this PR changes it so the timeout happens outside the retry
loop.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved query timeout handling to provide clearer error messages and
more reliable cancellation if a query takes too long to complete.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 14:27:04 -07:00
Will Jones
92f0b16e46 fix(python): make sure pandas is optional (#2346)
Fixes #2344


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Tests**
- Updated tests to use PyArrow Tables instead of pandas DataFrames where
possible, reducing reliance on pandas.
- Tests that require pandas are now automatically skipped if pandas is
not installed.
- **Chores**
- Improved workflow to uninstall both pylance and pandas in a specific
test step.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 13:42:13 -07:00
Eileen Noonan
1620ba3508 docs: make table.update() nodejs guide consistent with API documentation (#2334)
The docs in the Guide here do not match the [API reference]
(https://lancedb.github.io/lancedb/js/classes/Table/#updateopts) for the
nodejs client.

I am writing an Elixir wrapper over the typescript library (Rust
forthcoming!) and confirmed in testing that the API reference is correct
vs the Guide.

Following the Guide docs, the error I got was:

"lance error: Invalid user input: Schema error: No field named bar.
Valid fields are foo. For a query of:

await table.update({foo: "buzz"}, { where: "foo = 'bar'"});
Over a table with a schema of just {foo: Utf8}.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Reformatted a code snippet in the guide to enhance readability by
splitting it into multiple lines for improved clarity.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 08:38:16 -07:00
Ryan Green
3ae90dde80 feat: add new table API to wait for async indexing (#2338)
* Add new wait_for_index() table operation that polls until indices are
created/fully indexed
* Add an optional wait timeout parameter to all create_index operations
* Python and NodeJS interfaces

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Added optional waiting for index creation completion with configurable
timeout.
- Introduced methods to poll and wait for indices to be fully built
across sync and async tables.
  - Extended index creation APIs to accept a wait timeout parameter.
- **Bug Fixes**
- Added a new timeout error variant for improved error reporting on
index operations.
- **Tests**
- Added tests covering successful index readiness waiting, timeout
scenarios, and missing index cases.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 08:41:21 -02:30
Magnus
4f07fea6df feat: add ColPali embedding support with MultiVector type (#2170)
This PR adds ColPali support with ColPaliEmbeddings class (tagged
"colpali") using ColQwen2.5 for multi-vector text/image embeddings. Also
added MultiVector Pydantic type to handle the vector lists.

I've added some integration test for the embedding model and some unit
test for the new Pydantic type. Could be a template for other ColPali
variants as well. or until transformers🤗 starts supporting it.


Still `TODO`:

- [ ] Documentation
- [ ] Add an example

_Could also allow Image as query, but didn't work well when testing it._

[ColPali-Engine](https://github.com/illuin-tech/colpali) version:
0.3.9.dev17+g3faee24

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for ColPali-based multimodal multi-vector
embeddings for both text and images.
- Added a new embedding class for generating multi-vector embeddings,
configurable for various model and processing options.
- Added a new Pydantic type for multi-vector embeddings, supporting
validation and schema generation for lists of fixed-dimension vectors.

- **Bug Fixes**
- Ensured proper asynchronous index creation in query tests for improved
reliability.

- **Tests**
- Added integration tests for ColPali embeddings, including
text-to-image search and validation of multi-vector fields.
- Added comprehensive tests for the new multi-vector Pydantic type,
covering schema, validation, and default value behavior.

- **Chores**
  - Updated optional dependencies to include the ColPali engine.
  - Added utility to check for availability of flash attention support.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 11:47:37 +08:00
Lance Release
3d7d82cf86 Updating package-lock.json 2025-04-17 23:13:37 +00:00
Lance Release
edc4e40a7b Updating package-lock.json 2025-04-17 22:16:36 +00:00
Lance Release
ca3806a02f Updating package-lock.json 2025-04-17 22:16:20 +00:00
Lance Release
35cff12e31 Bump version: 0.19.0-beta.7 → 0.19.0-beta.8 2025-04-17 22:16:02 +00:00
Lance Release
c6c20cb2bd Bump version: 0.22.0-beta.7 → 0.22.0-beta.8 2025-04-17 22:15:46 +00:00
Weston Pace
26080ee4c1 feat: add prewarm_index function (#2342)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added the ability to prewarm (load into memory) table indexes via new
methods in Python, Node.js, and Rust APIs, potentially reducing
cold-start query latency.
- **Bug Fixes**
- Ensured prewarming an index does not interfere with subsequent search
operations.
- **Tests**
- Introduced new test cases to verify full-text search index creation,
prewarming, and search functionalities in both Python and Node.js.
- **Chores**
  - Updated dependencies for improved compatibility and performance.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2025-04-17 15:14:36 -07:00
Guspan Tanadi
ef3a2b5357 docs: intended path relative links (#2321)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Updated the link in the documentation to correctly reference the
workflow file, ensuring accurate navigation from the current context.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
2025-04-16 13:12:09 -07:00
Adam Azzam
c42a201389 docs: remove trailing commas from AWS IAM Policies (#2324)
Before:

<img width="1173" alt="Screenshot 2025-04-08 at 10 58 50 AM"
src="https://github.com/user-attachments/assets/e5c69c45-ab68-488f-9c7f-e12f7ecbfaab"
/>

After:
<img width="1136" alt="Screenshot 2025-04-08 at 10 58 58 AM"
src="https://github.com/user-attachments/assets/108c11ea-09b3-49b5-9a50-b880e72a0270"
/>


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Updated JSON policy examples in the storage guides to correct
formatting issues and enhance syntax clarity for readers.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-16 13:09:21 -07:00
Lance Release
24e42ccd4d Updating package-lock.json 2025-04-15 05:29:37 +00:00
Lance Release
8a50944061 Updating package-lock.json 2025-04-15 04:11:16 +00:00
Lance Release
40e066bc7c Updating package-lock.json 2025-04-15 04:11:00 +00:00
Lance Release
b3ad105fa0 Bump version: 0.19.0-beta.6 → 0.19.0-beta.7 2025-04-15 04:10:43 +00:00
131 changed files with 8933 additions and 2488 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.19.0-beta.6" current_version = "0.20.1-beta.2"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

View File

@@ -18,17 +18,24 @@ concurrency:
group: "pages" group: "pages"
cancel-in-progress: true cancel-in-progress: true
env:
# This reduces the disk space needed for the build
RUSTFLAGS: "-C debuginfo=0"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
jobs: jobs:
# Single deploy job since we're just deploying # Single deploy job since we're just deploying
build: build:
environment: environment:
name: github-pages name: github-pages
url: ${{ steps.deployment.outputs.page_url }} url: ${{ steps.deployment.outputs.page_url }}
runs-on: buildjet-8vcpu-ubuntu-2204 runs-on: ubuntu-24.04
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Install dependecies needed for ubuntu - name: Install dependencies needed for ubuntu
run: | run: |
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default rustup update && rustup default
@@ -38,6 +45,7 @@ jobs:
python-version: "3.10" python-version: "3.10"
cache: "pip" cache: "pip"
cache-dependency-path: "docs/requirements.txt" cache-dependency-path: "docs/requirements.txt"
- uses: Swatinem/rust-cache@v2
- name: Build Python - name: Build Python
working-directory: python working-directory: python
run: | run: |
@@ -49,7 +57,6 @@ jobs:
node-version: 20 node-version: 20
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install node dependencies - name: Install node dependencies
working-directory: node working-directory: node
run: | run: |

View File

@@ -35,6 +35,9 @@ jobs:
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: java/core/lancedb-jni workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt - name: Run cargo fmt
run: cargo fmt --check run: cargo fmt --check
working-directory: ./java/core/lancedb-jni working-directory: ./java/core/lancedb-jni
@@ -68,6 +71,9 @@ jobs:
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: java/core/lancedb-jni workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt - name: Run cargo fmt
run: cargo fmt --check run: cargo fmt --check
working-directory: ./java/core/lancedb-jni working-directory: ./java/core/lancedb-jni
@@ -110,4 +116,3 @@ jobs:
-Djdk.reflect.useDirectMethodHandle=false \ -Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true" -Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -84,6 +84,7 @@ jobs:
run: | run: |
pip install bump-my-version PyGithub packaging pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh --amend
- name: Push new version tag - name: Push new version tag
if: ${{ !inputs.dry_run }} if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master uses: ad-m/github-push-action@master
@@ -92,11 +93,3 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }} branch: ${{ github.ref }}
tags: true tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -47,6 +47,9 @@ jobs:
run: | run: |
sudo apt update sudo apt update
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- name: Lint - name: Lint
run: | run: |
cargo fmt --all -- --check cargo fmt --all -- --check
@@ -113,7 +116,7 @@ jobs:
set -e set -e
npm ci npm ci
npm run docs npm run docs
if ! git diff --exit-code; then if ! git diff --exit-code -- . ':(exclude)Cargo.lock'; then
echo "Docs need to be updated" echo "Docs need to be updated"
echo "Run 'npm run docs', fix any warnings, and commit the changes." echo "Run 'npm run docs', fix any warnings, and commit the changes."
exit 1 exit 1

View File

@@ -505,6 +505,8 @@ jobs:
name: vectordb NPM Publish name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-windows] needs: [node, node-macos, node-linux-gnu, node-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
permissions:
contents: write
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
@@ -537,6 +539,20 @@ jobs:
# We need to deprecate the old package to avoid confusion. # We need to deprecate the old package to avoid confusion.
# Each time we publish a new version, it gets undeprecated. # Each time we publish a new version, it gets undeprecated.
run: npm deprecate vectordb "Use @lancedb/lancedb instead." run: npm deprecate vectordb "Use @lancedb/lancedb instead."
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
- name: Update package-lock.json
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
bash ci/update_lockfiles.sh
- name: Push new commit
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
- name: Notify Slack Action - name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0 uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }} if: ${{ always() }}
@@ -546,21 +562,3 @@ jobs:
notification_title: "{workflow} is failing" notification_title: "{workflow} is failing"
env: env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }} SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -136,9 +136,9 @@ jobs:
- uses: ./.github/workflows/run_tests - uses: ./.github/workflows/run_tests
with: with:
integration: true integration: true
- name: Test without pylance - name: Test without pylance or pandas
run: | run: |
pip uninstall -y pylance pip uninstall -y pylance pandas
pytest -vv python/tests/test_table.py pytest -vv python/tests/test_table.py
# Make sure wheels are not included in the Rust cache # Make sure wheels are not included in the Rust cache
- name: Delete wheels - name: Delete wheels
@@ -228,6 +228,7 @@ jobs:
- name: Install lancedb - name: Install lancedb
run: | run: |
pip install "pydantic<2" pip install "pydantic<2"
pip install pyarrow==16
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests] pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install tantivy pip install tantivy
- name: Run tests - name: Run tests

View File

@@ -24,8 +24,8 @@ runs:
- name: pytest (with integration) - name: pytest (with integration)
shell: bash shell: bash
if: ${{ inputs.integration == 'true' }} if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -x -v --durations=30 python/python/tests run: pytest -m "not slow" -vv --durations=30 python/python/tests
- name: pytest (no integration tests) - name: pytest (no integration tests)
shell: bash shell: bash
if: ${{ inputs.integration != 'true' }} if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests run: pytest -m "not slow and not s3_test" -vv --durations=30 python/python/tests

View File

@@ -40,6 +40,9 @@ jobs:
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust
@@ -160,8 +163,8 @@ jobs:
strategy: strategy:
matrix: matrix:
target: target:
- x86_64-pc-windows-msvc - x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc - aarch64-pc-windows-msvc
defaults: defaults:
run: run:
working-directory: rust/lancedb working-directory: rust/lancedb

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,33 +0,0 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

2013
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,34 +21,32 @@ categories = ["database-implementations"]
rust-version = "1.78.0" rust-version = "1.78.0"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.25.3", "features" = [ lance = { "version" = "=0.30.0", "features" = ["dynamodb"] }
"dynamodb", lance-io = "=0.30.0"
], tag = "v0.25.3-beta.4", git = "https://github.com/lancedb/lance" } lance-index = "=0.30.0"
lance-io = { version = "=0.25.3", tag = "v0.25.3-beta.4", git = "https://github.com/lancedb/lance" } lance-linalg = "=0.30.0"
lance-index = { version = "=0.25.3", tag = "v0.25.3-beta.4", git = "https://github.com/lancedb/lance" } lance-table = "=0.30.0"
lance-linalg = { version = "=0.25.3", tag = "v0.25.3-beta.4", git = "https://github.com/lancedb/lance" } lance-testing = "=0.30.0"
lance-table = { version = "=0.25.3", tag = "v0.25.3-beta.4", git = "https://github.com/lancedb/lance" } lance-datafusion = "=0.30.0"
lance-testing = { version = "=0.25.3", tag = "v0.25.3-beta.4", git = "https://github.com/lancedb/lance" } lance-encoding = "=0.30.0"
lance-datafusion = { version = "=0.25.3", tag = "v0.25.3-beta.4", git = "https://github.com/lancedb/lance" }
lance-encoding = { version = "=0.25.3", tag = "v0.25.3-beta.4", git = "https://github.com/lancedb/lance" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "54.1", optional = false } arrow = { version = "55.1", optional = false }
arrow-array = "54.1" arrow-array = "55.1"
arrow-data = "54.1" arrow-data = "55.1"
arrow-ipc = "54.1" arrow-ipc = "55.1"
arrow-ord = "54.1" arrow-ord = "55.1"
arrow-schema = "54.1" arrow-schema = "55.1"
arrow-arith = "54.1" arrow-arith = "55.1"
arrow-cast = "54.1" arrow-cast = "55.1"
async-trait = "0" async-trait = "0"
datafusion = { version = "46.0", default-features = false } datafusion = { version = "47.0", default-features = false }
datafusion-catalog = "46.0" datafusion-catalog = "47.0"
datafusion-common = { version = "46.0", default-features = false } datafusion-common = { version = "47.0", default-features = false }
datafusion-execution = "46.0" datafusion-execution = "47.0"
datafusion-expr = "46.0" datafusion-expr = "47.0"
datafusion-physical-plan = "46.0" datafusion-physical-plan = "47.0"
env_logger = "0.11" env_logger = "0.11"
half = { "version" = "=2.4.1", default-features = false, features = [ half = { "version" = "=2.5.0", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
futures = "0" futures = "0"
@@ -59,19 +57,16 @@ pin-project = "1.0.7"
snafu = "0.8" snafu = "0.8"
url = "2" url = "2"
num-traits = "0.2" num-traits = "0.2"
rand = "0.8" rand = "0.9"
regex = "1.10" regex = "1.10"
lazy_static = "1" lazy_static = "1"
semver = "1.0.25" semver = "1.0.25"
# Temporary pins to work around downstream issues # Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b # https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.39" chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684 # https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0" base64ct = "=1.6.0"
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13 # Workaround for: https://github.com/eira-fransham/crunchy/issues/13
crunchy = "=0.2.2" crunchy = "=0.2.2"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306 # Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0" bytemuck_derive = ">=1.8.1, <1.9.0"

129
README.md
View File

@@ -1,94 +1,97 @@
<a href="https://cloud.lancedb.com" target="_blank"> <a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;"> <img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a> </a>
<div align="center"> <div align="center">
<p align="center">
<picture> [![LanceDB](docs/src/assets/hero-header.png)](https://lancedb.com)
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/user-attachments/assets/ac270358-333e-4bea-a132-acefaa94040e"> [![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
<source media="(prefers-color-scheme: light)" srcset="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0"> [![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
<img alt="LanceDB Logo" src="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0" width=300> [![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
</picture> [![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
**Search More, Manage Less**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a> <img src="docs/src/assets/lancedb.png" alt="LanceDB" width="50%">
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
</p> # **The Multimodal AI Lakehouse**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec"> [**How to Install** ](#how-to-install) ✦ [**Detailed Documentation**](https://lancedb.github.io/lancedb/) ✦ [**Tutorials and Recipes**](https://github.com/lancedb/vectordb-recipes/tree/main) ✦ [**Contributors**](#contributors)
**The ultimate multimodal data platform for AI/ML applications.**
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease.
LanceDB is a central location where developers can build, train and analyze their AI workloads.
</p>
</div> </div>
<hr /> <br>
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings. ## **Demo: Multimodal Search by Keyword, Vector or with SQL**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
The key features of LanceDB include: ## **Star LanceDB to get updates!**
* Production-scale vector search with no servers to manage. <details>
<summary>⭐ Click here ⭐ to see how fast we're growing!</summary>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
<img width="100%" src="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
</picture>
</details>
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more). ## **Key Features**:
* Support for vector similarity search, full-text search and SQL. - **Fast Vector Search**: Search billions of vectors in milliseconds with state-of-the-art indexing.
- **Comprehensive Search**: Support for vector similarity search, full-text search and SQL.
- **Multimodal Support**: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- **Advanced Features**: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
* Native Python and Javascript/Typescript support. ### **Products**:
- **Open Source & Local**: 100% open source, runs locally or in your cloud. No vendor lock-in.
- **Cloud and Enterprise**: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. ### **Ecosystem**:
- **Columnar Storage**: Built on the Lance columnar format for efficient storage and analytics.
- **Seamless Integration**: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- **Rich Ecosystem**: Integrations with [**LangChain** 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [**LlamaIndex** 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* GPU support in building vector index(*). ## **How to Install**:
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way. Follow the [Quickstart](https://lancedb.github.io/lancedb/basic/) doc to set up LanceDB locally.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads. **API & SDK:** We also support Python, Typescript and Rust SDKs
## Quick Start | Interface | Documentation |
|-----------|---------------|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
**Javascript** ## **Join Us and Contribute**
```shell
npm install @lancedb/lancedb
```
```javascript We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb"); If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our [**Discord**](https://discord.gg/G5DcmnZWKB) server.
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 }, [**Check out the GitHub Issues**](https://github.com/lancedb/lancedb/issues) if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'}); ## **Contributors**
<a href="https://github.com/lancedb/lancedb/graphs/contributors">
<img src="https://contrib.rocks/image?repo=lancedb/lancedb" />
</a>
const query = table.vectorSearch([0.1, 0.3]).limit(2); ## **Stay in Touch With Us**
const results = await query.toArray(); <div align="center">
// You can also search for rows by specific criteria without involving a vector search. </br>
const rowsByCriteria = await table.query().where("price >= 10").toArray();
```
**Python** [![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
```shell [![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
pip install lancedb [![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
``` [![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
```python </div>
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>

174
ci/set_lance_version.py Normal file
View File

@@ -0,0 +1,174 @@
import argparse
import sys
import json
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
version = version_line.split(" ")[1].strip()
return version
def get_latest_preview_version() -> str:
lance_tags = run_command(
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[(.*?)\]', line)
if match:
features_str = match.group(1)
return [f.strip('"') for f in features_str.split(",")]
return []
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
new_lines.append(line_updater(line))
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
update_cargo_toml(line_updater)
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
elif args.version == "local":
set_local_version()
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
else:
set_stable_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)

30
ci/update_lockfiles.sh Executable file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env bash
set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building
cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
pushd node || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -2,7 +2,7 @@
LanceDB docs are deployed to https://lancedb.github.io/lancedb/. LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml) Docs is built and deployed automatically by [Github Actions](../.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features. unreleased features.

View File

@@ -193,6 +193,7 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md - Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain: - LangChain:
- LangChain 🔗: integrations/langchain.md - LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb - LangChain demo: notebooks/langchain_demo.ipynb
@@ -205,6 +206,7 @@ nav:
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md - dlt: integrations/dlt.md
- phidata: integrations/phidata.md - phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- 🎯 Examples: - 🎯 Examples:
- Overview: examples/index.md - Overview: examples/index.md
- 🐍 Python: - 🐍 Python:
@@ -247,6 +249,7 @@ nav:
- Data management: concepts/data_management.md - Data management: concepts/data_management.md
- Guides: - Guides:
- Working with tables: guides/tables.md - Working with tables: guides/tables.md
- Working with SQL: guides/sql_querying.md
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search (native): fts.md - Full-text search (native): fts.md
@@ -323,6 +326,7 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md - Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain 🦜️🔗↗: integrations/langchain.md - LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb - LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md - LlamaIndex 🦙↗: integrations/llamaIndex.md
@@ -331,6 +335,7 @@ nav:
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md - dlt: integrations/dlt.md
- phidata: integrations/phidata.md - phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- Examples: - Examples:
- examples/index.md - examples/index.md
- 🐍 Python: - 🐍 Python:

View File

@@ -0,0 +1,5 @@
{% extends "base.html" %}
{% block announce %}
📚 Starting June 1st, 2025, please use <a href="https://lancedb.github.io/documentation" target="_blank" rel="noopener noreferrer">lancedb.github.io/documentation</a> for the latest docs.
{% endblock %}

View File

@@ -291,7 +291,7 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
`num_partitions` is used to decide how many partitions the first level `IVF` index uses. `num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall. On `SIFT-1M` dataset, our benchmark shows that keeping each partition 4K-8K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because `num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

BIN
docs/src/assets/lancedb.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

View File

@@ -0,0 +1,68 @@
You can use DuckDB and Apache Datafusion to query your LanceDB tables using SQL.
This guide will show how to query Lance tables them using both.
We will re-use the dataset [created previously](./pandas_and_pyarrow.md):
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
table = db.create_table("pd_table", data=data)
```
## Querying a LanceDB Table with DuckDb
The `to_lance` method converts the LanceDB table to a `LanceDataset`, which is accessible to DuckDB through the Arrow compatibility layer.
To query the resulting Lance dataset in DuckDB, all you need to do is reference the dataset by the same name in your SQL query.
```python
import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table")
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
## Querying a LanceDB Table with Apache Datafusion
Have the required imports before doing any querying.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-session-context"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-ffi-dataset"
```
Register the table created with the Datafusion session context.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:lance_sql_basic"
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```

View File

@@ -342,7 +342,7 @@ For **read and write access**, LanceDB will need a policy such as:
"Action": [ "Action": [
"s3:PutObject", "s3:PutObject",
"s3:GetObject", "s3:GetObject",
"s3:DeleteObject", "s3:DeleteObject"
], ],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*" "Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
}, },
@@ -374,7 +374,7 @@ For **read-only access**, LanceDB will need a policy such as:
{ {
"Effect": "Allow", "Effect": "Allow",
"Action": [ "Action": [
"s3:GetObject", "s3:GetObject"
], ],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*" "Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
}, },

View File

@@ -765,7 +765,10 @@ This can be used to update zero to all rows depending on how many rows match the
]; ];
const tbl = await db.createTable("my_table", data) const tbl = await db.createTable("my_table", data)
await tbl.update({vector: [10, 10]}, { where: "x = 2"}) await tbl.update({
values: { vector: [10, 10] },
where: "x = 2"
});
``` ```
=== "vectordb (deprecated)" === "vectordb (deprecated)"
@@ -784,7 +787,10 @@ This can be used to update zero to all rows depending on how many rows match the
]; ];
const tbl = await db.createTable("my_table", data) const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} }) await tbl.update({
where: "x = 2",
values: { vector: [10, 10] }
});
``` ```
#### Updating using a sql query #### Updating using a sql query

View File

@@ -0,0 +1,183 @@
### genkitx-lancedb
This is a lancedb plugin for genkit framework. It allows you to use LanceDB for ingesting and rereiving data using genkit framework.
![integration-banner-genkit](https://github.com/user-attachments/assets/a6cc28af-98e9-4425-b87c-7ab139bd7893)
### Installation
```bash
pnpm install genkitx-lancedb
```
### Usage
Adding LanceDB plugin to your genkit instance.
```ts
import { lancedbIndexerRef, lancedb, lancedbRetrieverRef, WriteMode } from 'genkitx-lancedb';
import { textEmbedding004, vertexAI } from '@genkit-ai/vertexai';
import { gemini } from '@genkit-ai/vertexai';
import { z, genkit } from 'genkit';
import { Document } from 'genkit/retriever';
import { chunk } from 'llm-chunk';
import { readFile } from 'fs/promises';
import path from 'path';
import pdf from 'pdf-parse/lib/pdf-parse';
const ai = genkit({
plugins: [
// vertexAI provides the textEmbedding004 embedder
vertexAI(),
// the local vector store requires an embedder to translate from text to vector
lancedb([
{
dbUri: '.db', // optional lancedb uri, default to .db
tableName: 'table', // optional table name, default to table
embedder: textEmbedding004,
},
]),
],
});
```
You can run this app with the following command:
```bash
genkit start -- tsx --watch src/index.ts
```
This'll add LanceDB as a retriever and indexer to the genkit instance. You can see it in the GUI view
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/e752f7f4-785b-4797-a11e-72ab06a531b7" />
**Testing retrieval on a sample table**
Let's see the raw retrieval results
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/b8d356ed-8421-4790-8fc0-d6af563b9657" />
On running this query, you'll 5 results fetched from the lancedb table, where each result looks something like this:
<img width="1417" alt="Screenshot 2025-05-11 at 7 21 18PM" src="https://github.com/user-attachments/assets/77429525-36e2-4da6-a694-e58c1cf9eb83" />
## Creating a custom RAG flow
Now that we've seen how you can use LanceDB for in a genkit pipeline, let's refine the flow and create a RAG. A RAG flow will consist of an index and a retreiver with its outputs postprocessed an fed into an LLM for final response
### Creating custom indexer flows
You can also create custom indexer flows, utilizing more options and features provided by LanceDB.
```ts
export const menuPdfIndexer = lancedbIndexerRef({
// Using all defaults, for dbUri, tableName, and embedder, etc
});
const chunkingConfig = {
minLength: 1000,
maxLength: 2000,
splitter: 'sentence',
overlap: 100,
delimiters: '',
} as any;
async function extractTextFromPdf(filePath: string) {
const pdfFile = path.resolve(filePath);
const dataBuffer = await readFile(pdfFile);
const data = await pdf(dataBuffer);
return data.text;
}
export const indexMenu = ai.defineFlow(
{
name: 'indexMenu',
inputSchema: z.string().describe('PDF file path'),
outputSchema: z.void(),
},
async (filePath: string) => {
filePath = path.resolve(filePath);
// Read the pdf.
const pdfTxt = await ai.run('extract-text', () =>
extractTextFromPdf(filePath)
);
// Divide the pdf text into segments.
const chunks = await ai.run('chunk-it', async () =>
chunk(pdfTxt, chunkingConfig)
);
// Convert chunks of text into documents to store in the index.
const documents = chunks.map((text) => {
return Document.fromText(text, { filePath });
});
// Add documents to the index.
await ai.index({
indexer: menuPdfIndexer,
documents,
options: {
writeMode: WriteMode.Overwrite,
} as any
});
}
);
```
<img width="1316" alt="Screenshot 2025-05-11 at 8 35 56PM" src="https://github.com/user-attachments/assets/e2a20ce4-d1d0-4fa2-9a84-f2cc26e3a29f" />
In your console, you can see the logs
<img width="511" alt="Screenshot 2025-05-11 at 7 19 14PM" src="https://github.com/user-attachments/assets/243f26c5-ed38-40b6-b661-002f40f0423a" />
### Creating custom retriever flows
You can also create custom retriever flows, utilizing more options and features provided by LanceDB.
```ts
export const menuRetriever = lancedbRetrieverRef({
tableName: "table", // Use the same table name as the indexer.
displayName: "Menu", // Use a custom display name.
export const menuQAFlow = ai.defineFlow(
{ name: "Menu", inputSchema: z.string(), outputSchema: z.string() },
async (input: string) => {
// retrieve relevant documents
const docs = await ai.retrieve({
retriever: menuRetriever,
query: input,
options: {
k: 3,
},
});
const extractedContent = docs.map(doc => {
if (doc.content && Array.isArray(doc.content) && doc.content.length > 0) {
if (doc.content[0].media && doc.content[0].media.url) {
return doc.content[0].media.url;
}
}
return "No content found";
});
console.log("Extracted content:", extractedContent);
const { text } = await ai.generate({
model: gemini('gemini-2.0-flash'),
prompt: `
You are acting as a helpful AI assistant that can answer
questions about the food available on the menu at Genkit Grub Pub.
Use only the context provided to answer the question.
If you don't know, do not make up an answer.
Do not add or change items on the menu.
Context:
${extractedContent.join('\n\n')}
Question: ${input}`,
docs,
});
return text;
}
);
```
Now using our retrieval flow, we can ask question about the ingsted PDF
<img width="1306" alt="Screenshot 2025-05-11 at 7 18 45PM" src="https://github.com/user-attachments/assets/86c66b13-7c12-4d5f-9d81-ae36bfb1c346" />

View File

@@ -0,0 +1,53 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BooleanQuery
# Class: BooleanQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BooleanQuery()
```ts
new BooleanQuery(queries): BooleanQuery
```
Creates an instance of BooleanQuery.
#### Parameters
* **queries**: [[`Occur`](../enumerations/Occur.md), [`FullTextQuery`](../interfaces/FullTextQuery.md)][]
An array of (Occur, FullTextQuery objects) to combine.
Occur specifies whether the query must match, or should match.
#### Returns
[`BooleanQuery`](BooleanQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -40,6 +40,7 @@ Creates an instance of MatchQuery.
- `boost`: The boost factor for the query (default is 1.0). - `boost`: The boost factor for the query (default is 1.0).
- `fuzziness`: The fuzziness level for the query (default is 0). - `fuzziness`: The fuzziness level for the query (default is 0).
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50). - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
* **options.boost?**: `number` * **options.boost?**: `number`
@@ -47,6 +48,8 @@ Creates an instance of MatchQuery.
* **options.maxExpansions?**: `number` * **options.maxExpansions?**: `number`
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
#### Returns #### Returns
[`MatchQuery`](MatchQuery.md) [`MatchQuery`](MatchQuery.md)

View File

@@ -33,20 +33,22 @@ Construct a MergeInsertBuilder. __Internal use only.__
### execute() ### execute()
```ts ```ts
execute(data): Promise<void> execute(data, execOptions?): Promise<MergeResult>
``` ```
Executes the merge insert operation Executes the merge insert operation
Nothing is returned but the `Table` is updated
#### Parameters #### Parameters
* **data**: [`Data`](../type-aliases/Data.md) * **data**: [`Data`](../type-aliases/Data.md)
* **execOptions?**: `Partial`&lt;[`WriteExecutionOptions`](../interfaces/WriteExecutionOptions.md)&gt;
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`MergeResult`](../interfaces/MergeResult.md)&gt;
the merge result
*** ***

View File

@@ -38,9 +38,12 @@ Creates an instance of MultiMatchQuery.
* **options?** * **options?**
Optional parameters for the multi-match query. Optional parameters for the multi-match query.
- `boosts`: An array of boost factors for each column (default is 1.0 for all). - `boosts`: An array of boost factors for each column (default is 1.0 for all).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
* **options.boosts?**: `number`[] * **options.boosts?**: `number`[]
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
#### Returns #### Returns
[`MultiMatchQuery`](MultiMatchQuery.md) [`MultiMatchQuery`](MultiMatchQuery.md)

View File

@@ -19,7 +19,10 @@ including methods to retrieve the query type and convert the query to a dictiona
### new PhraseQuery() ### new PhraseQuery()
```ts ```ts
new PhraseQuery(query, column): PhraseQuery new PhraseQuery(
query,
column,
options?): PhraseQuery
``` ```
Creates an instance of `PhraseQuery`. Creates an instance of `PhraseQuery`.
@@ -32,6 +35,12 @@ Creates an instance of `PhraseQuery`.
* **column**: `string` * **column**: `string`
The name of the column to search within. The name of the column to search within.
* **options?**
Optional parameters for the phrase query.
- `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
* **options.slop?**: `number`
#### Returns #### Returns
[`PhraseQuery`](PhraseQuery.md) [`PhraseQuery`](PhraseQuery.md)

View File

@@ -40,7 +40,7 @@ Returns the name of the table
### add() ### add()
```ts ```ts
abstract add(data, options?): Promise<void> abstract add(data, options?): Promise<AddResult>
``` ```
Insert records into this Table. Insert records into this Table.
@@ -54,14 +54,17 @@ Insert records into this Table.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`AddResult`](../interfaces/AddResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table
*** ***
### addColumns() ### addColumns()
```ts ```ts
abstract addColumns(newColumnTransforms): Promise<void> abstract addColumns(newColumnTransforms): Promise<AddColumnsResult>
``` ```
Add new columns with defined values. Add new columns with defined values.
@@ -76,14 +79,17 @@ Add new columns with defined values.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`AddColumnsResult`](../interfaces/AddColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after adding the columns.
*** ***
### alterColumns() ### alterColumns()
```ts ```ts
abstract alterColumns(columnAlterations): Promise<void> abstract alterColumns(columnAlterations): Promise<AlterColumnsResult>
``` ```
Alter the name or nullability of columns. Alter the name or nullability of columns.
@@ -96,7 +102,10 @@ Alter the name or nullability of columns.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`AlterColumnsResult`](../interfaces/AlterColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after altering the columns.
*** ***
@@ -117,8 +126,8 @@ wish to return to standard mode, call `checkoutLatest`.
#### Parameters #### Parameters
* **version**: `number` * **version**: `string` \| `number`
The version to checkout The version to checkout, could be version number or tag
#### Returns #### Returns
@@ -252,7 +261,7 @@ await table.createIndex("my_float_col");
### delete() ### delete()
```ts ```ts
abstract delete(predicate): Promise<void> abstract delete(predicate): Promise<DeleteResult>
``` ```
Delete the rows that satisfy the predicate. Delete the rows that satisfy the predicate.
@@ -263,7 +272,10 @@ Delete the rows that satisfy the predicate.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`DeleteResult`](../interfaces/DeleteResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table
*** ***
@@ -284,7 +296,7 @@ Return a brief description of the table
### dropColumns() ### dropColumns()
```ts ```ts
abstract dropColumns(columnNames): Promise<void> abstract dropColumns(columnNames): Promise<DropColumnsResult>
``` ```
Drop one or more columns from the dataset Drop one or more columns from the dataset
@@ -303,7 +315,10 @@ then call ``cleanup_files`` to remove the old files.
#### Returns #### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`DropColumnsResult`](../interfaces/DropColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after dropping the columns.
*** ***
@@ -454,6 +469,28 @@ Modeled after ``VACUUM`` in PostgreSQL.
*** ***
### prewarmIndex()
```ts
abstract prewarmIndex(name): Promise<void>
```
Prewarm an index in the table.
#### Parameters
* **name**: `string`
The name of the index.
This will load the index into memory. This may reduce the cold-start time for
future queries. If the index does not fit in the cache then this call may be
wasteful.
#### Returns
`Promise`&lt;`void`&gt;
***
### query() ### query()
```ts ```ts
@@ -593,6 +630,50 @@ of the given query
*** ***
### stats()
```ts
abstract stats(): Promise<TableStatistics>
```
Returns table and fragment statistics
#### Returns
`Promise`&lt;[`TableStatistics`](../interfaces/TableStatistics.md)&gt;
The table and fragment statistics
***
### tags()
```ts
abstract tags(): Promise<Tags>
```
Get a tags manager for this table.
Tags allow you to label specific versions of a table with a human-readable name.
The returned tags manager can be used to list, create, update, or delete tags.
#### Returns
`Promise`&lt;[`Tags`](Tags.md)&gt;
A tags manager for this table
#### Example
```typescript
const tagsManager = await table.tags();
await tagsManager.create("v1", 1);
const tags = await tagsManager.list();
console.log(tags); // { "v1": { version: 1, manifestSize: ... } }
```
***
### toArrow() ### toArrow()
```ts ```ts
@@ -612,7 +693,7 @@ Return the table as an arrow table
#### update(opts) #### update(opts)
```ts ```ts
abstract update(opts): Promise<void> abstract update(opts): Promise<UpdateResult>
``` ```
Update existing records in the Table Update existing records in the Table
@@ -623,7 +704,10 @@ Update existing records in the Table
##### Returns ##### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object containing
the number of rows updated and the new version number
##### Example ##### Example
@@ -634,7 +718,7 @@ table.update({where:"x = 2", values:{"vector": [10, 10]}})
#### update(opts) #### update(opts)
```ts ```ts
abstract update(opts): Promise<void> abstract update(opts): Promise<UpdateResult>
``` ```
Update existing records in the Table Update existing records in the Table
@@ -645,7 +729,10 @@ Update existing records in the Table
##### Returns ##### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object containing
the number of rows updated and the new version number
##### Example ##### Example
@@ -656,7 +743,7 @@ table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
#### update(updates, options) #### update(updates, options)
```ts ```ts
abstract update(updates, options?): Promise<void> abstract update(updates, options?): Promise<UpdateResult>
``` ```
Update existing records in the Table Update existing records in the Table
@@ -679,10 +766,6 @@ repeatedly calilng this method.
* **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt; * **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
the the
columns to update columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
* **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt; * **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control additional options to control
@@ -690,7 +773,15 @@ repeatedly calilng this method.
##### Returns ##### Returns
`Promise`&lt;`void`&gt; `Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object
containing the number of rows updated and the new version number
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
*** ***
@@ -731,3 +822,26 @@ Retrieve the version of the table
#### Returns #### Returns
`Promise`&lt;`number`&gt; `Promise`&lt;`number`&gt;
***
### waitForIndex()
```ts
abstract waitForIndex(indexNames, timeoutSeconds): Promise<void>
```
Waits for asynchronous indexing to complete on the table.
#### Parameters
* **indexNames**: `string`[]
The name of the indices to wait for
* **timeoutSeconds**: `number`
The number of seconds to wait before timing out
This will raise an error if the indices are not created and fully indexed within the timeout.
#### Returns
`Promise`&lt;`void`&gt;

View File

@@ -0,0 +1,35 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / TagContents
# Class: TagContents
## Constructors
### new TagContents()
```ts
new TagContents(): TagContents
```
#### Returns
[`TagContents`](TagContents.md)
## Properties
### manifestSize
```ts
manifestSize: number;
```
***
### version
```ts
version: number;
```

View File

@@ -0,0 +1,99 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Tags
# Class: Tags
## Constructors
### new Tags()
```ts
new Tags(): Tags
```
#### Returns
[`Tags`](Tags.md)
## Methods
### create()
```ts
create(tag, version): Promise<void>
```
#### Parameters
* **tag**: `string`
* **version**: `number`
#### Returns
`Promise`&lt;`void`&gt;
***
### delete()
```ts
delete(tag): Promise<void>
```
#### Parameters
* **tag**: `string`
#### Returns
`Promise`&lt;`void`&gt;
***
### getVersion()
```ts
getVersion(tag): Promise<number>
```
#### Parameters
* **tag**: `string`
#### Returns
`Promise`&lt;`number`&gt;
***
### list()
```ts
list(): Promise<Record<string, TagContents>>
```
#### Returns
`Promise`&lt;`Record`&lt;`string`, [`TagContents`](TagContents.md)&gt;&gt;
***
### update()
```ts
update(tag, version): Promise<void>
```
#### Parameters
* **tag**: `string`
* **version**: `number`
#### Returns
`Promise`&lt;`void`&gt;

View File

@@ -15,6 +15,14 @@ Enum representing the types of full-text queries supported.
## Enumeration Members ## Enumeration Members
### Boolean
```ts
Boolean: "boolean";
```
***
### Boost ### Boost
```ts ```ts

View File

@@ -0,0 +1,28 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Occur
# Enumeration: Occur
Enum representing the occurrence of terms in full-text queries.
- `Must`: The term must be present in the document.
- `Should`: The term should contribute to the document score, but is not required.
## Enumeration Members
### Must
```ts
Must: "MUST";
```
***
### Should
```ts
Should: "SHOULD";
```

View File

@@ -0,0 +1,28 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Operator
# Enumeration: Operator
Enum representing the logical operators used in full-text queries.
- `And`: All terms must match.
- `Or`: At least one term must match.
## Enumeration Members
### And
```ts
And: "AND";
```
***
### Or
```ts
Or: "OR";
```

View File

@@ -12,9 +12,12 @@
## Enumerations ## Enumerations
- [FullTextQueryType](enumerations/FullTextQueryType.md) - [FullTextQueryType](enumerations/FullTextQueryType.md)
- [Occur](enumerations/Occur.md)
- [Operator](enumerations/Operator.md)
## Classes ## Classes
- [BooleanQuery](classes/BooleanQuery.md)
- [BoostQuery](classes/BoostQuery.md) - [BoostQuery](classes/BoostQuery.md)
- [Connection](classes/Connection.md) - [Connection](classes/Connection.md)
- [Index](classes/Index.md) - [Index](classes/Index.md)
@@ -27,19 +30,28 @@
- [QueryBase](classes/QueryBase.md) - [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md) - [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md) - [Table](classes/Table.md)
- [TagContents](classes/TagContents.md)
- [Tags](classes/Tags.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md) - [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md) - [VectorQuery](classes/VectorQuery.md)
## Interfaces ## Interfaces
- [AddColumnsResult](interfaces/AddColumnsResult.md)
- [AddColumnsSql](interfaces/AddColumnsSql.md) - [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md) - [AddDataOptions](interfaces/AddDataOptions.md)
- [AddResult](interfaces/AddResult.md)
- [AlterColumnsResult](interfaces/AlterColumnsResult.md)
- [ClientConfig](interfaces/ClientConfig.md) - [ClientConfig](interfaces/ClientConfig.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md) - [ColumnAlteration](interfaces/ColumnAlteration.md)
- [CompactionStats](interfaces/CompactionStats.md) - [CompactionStats](interfaces/CompactionStats.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md) - [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md) - [CreateTableOptions](interfaces/CreateTableOptions.md)
- [DeleteResult](interfaces/DeleteResult.md)
- [DropColumnsResult](interfaces/DropColumnsResult.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md) - [ExecutableQuery](interfaces/ExecutableQuery.md)
- [FragmentStatistics](interfaces/FragmentStatistics.md)
- [FragmentSummaryStats](interfaces/FragmentSummaryStats.md)
- [FtsOptions](interfaces/FtsOptions.md) - [FtsOptions](interfaces/FtsOptions.md)
- [FullTextQuery](interfaces/FullTextQuery.md) - [FullTextQuery](interfaces/FullTextQuery.md)
- [FullTextSearchOptions](interfaces/FullTextSearchOptions.md) - [FullTextSearchOptions](interfaces/FullTextSearchOptions.md)
@@ -50,6 +62,7 @@
- [IndexStatistics](interfaces/IndexStatistics.md) - [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfFlatOptions](interfaces/IvfFlatOptions.md) - [IvfFlatOptions](interfaces/IvfFlatOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md) - [IvfPqOptions](interfaces/IvfPqOptions.md)
- [MergeResult](interfaces/MergeResult.md)
- [OpenTableOptions](interfaces/OpenTableOptions.md) - [OpenTableOptions](interfaces/OpenTableOptions.md)
- [OptimizeOptions](interfaces/OptimizeOptions.md) - [OptimizeOptions](interfaces/OptimizeOptions.md)
- [OptimizeStats](interfaces/OptimizeStats.md) - [OptimizeStats](interfaces/OptimizeStats.md)
@@ -57,9 +70,12 @@
- [RemovalStats](interfaces/RemovalStats.md) - [RemovalStats](interfaces/RemovalStats.md)
- [RetryConfig](interfaces/RetryConfig.md) - [RetryConfig](interfaces/RetryConfig.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md) - [TableNamesOptions](interfaces/TableNamesOptions.md)
- [TableStatistics](interfaces/TableStatistics.md)
- [TimeoutConfig](interfaces/TimeoutConfig.md) - [TimeoutConfig](interfaces/TimeoutConfig.md)
- [UpdateOptions](interfaces/UpdateOptions.md) - [UpdateOptions](interfaces/UpdateOptions.md)
- [UpdateResult](interfaces/UpdateResult.md)
- [Version](interfaces/Version.md) - [Version](interfaces/Version.md)
- [WriteExecutionOptions](interfaces/WriteExecutionOptions.md)
## Type Aliases ## Type Aliases

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / AddColumnsResult
# Interface: AddColumnsResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / AddResult
# Interface: AddResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / AlterColumnsResult
# Interface: AlterColumnsResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / DeleteResult
# Interface: DeleteResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / DropColumnsResult
# Interface: DropColumnsResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,37 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FragmentStatistics
# Interface: FragmentStatistics
## Properties
### lengths
```ts
lengths: FragmentSummaryStats;
```
Statistics on the number of rows in the table fragments
***
### numFragments
```ts
numFragments: number;
```
The number of fragments in the table
***
### numSmallFragments
```ts
numSmallFragments: number;
```
The number of uncompacted fragments in the table

View File

@@ -0,0 +1,77 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FragmentSummaryStats
# Interface: FragmentSummaryStats
## Properties
### max
```ts
max: number;
```
The number of rows in the fragment with the most rows
***
### mean
```ts
mean: number;
```
The mean number of rows in the fragments
***
### min
```ts
min: number;
```
The number of rows in the fragment with the fewest rows
***
### p25
```ts
p25: number;
```
The 25th percentile of number of rows in the fragments
***
### p50
```ts
p50: number;
```
The 50th percentile of number of rows in the fragments
***
### p75
```ts
p75: number;
```
The 75th percentile of number of rows in the fragments
***
### p99
```ts
p99: number;
```
The 99th percentile of number of rows in the fragments

View File

@@ -39,3 +39,11 @@ and the same name, then an error will be returned. This is true even if
that index is out of date. that index is out of date.
The default is true The default is true
***
### waitTimeoutSeconds?
```ts
optional waitTimeoutSeconds: number;
```

View File

@@ -0,0 +1,39 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MergeResult
# Interface: MergeResult
## Properties
### numDeletedRows
```ts
numDeletedRows: number;
```
***
### numInsertedRows
```ts
numInsertedRows: number;
```
***
### numUpdatedRows
```ts
numUpdatedRows: number;
```
***
### version
```ts
version: number;
```

View File

@@ -0,0 +1,47 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / TableStatistics
# Interface: TableStatistics
## Properties
### fragmentStats
```ts
fragmentStats: FragmentStatistics;
```
Statistics on table fragments
***
### numIndices
```ts
numIndices: number;
```
The number of indices in the table
***
### numRows
```ts
numRows: number;
```
The number of rows in the table
***
### totalBytes
```ts
totalBytes: number;
```
The total number of bytes in the table

View File

@@ -0,0 +1,23 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / UpdateResult
# Interface: UpdateResult
## Properties
### rowsUpdated
```ts
rowsUpdated: number;
```
***
### version
```ts
version: number;
```

View File

@@ -0,0 +1,26 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteExecutionOptions
# Interface: WriteExecutionOptions
## Properties
### timeoutMs?
```ts
optional timeoutMs: number;
```
Maximum time to run the operation before cancelling it.
By default, there is a 30-second timeout that is only enforced after the
first attempt. This is to prevent spending too long retrying to resolve
conflicts. For example, if a write attempt takes 20 seconds and fails,
the second attempt will be cancelled after 10 seconds, hitting the
30-second timeout. However, a write that takes one hour and succeeds on the
first attempt will not be cancelled.
When this is set, the timeout is enforced on all attempts, including the first.

View File

@@ -0,0 +1,53 @@
# Apache Datafusion
In Python, LanceDB tables can also be queried with [Apache Datafusion](https://datafusion.apache.org/), an extensible query engine written in Rust that uses Apache Arrow as its in-memory format. This means you can write complex SQL queries to analyze your data in LanceDB.
This integration is done via [Datafusion FFI](https://docs.rs/datafusion-ffi/latest/datafusion_ffi/), which provides a native integration between LanceDB and Datafusion.
The Datafusion FFI allows to pass down column selections and basic filters to LanceDB, reducing the amount of scanned data when executing your query. Additionally, the integration allows streaming data from LanceDB tables which allows to do aggregation larger-than-memory.
We can demonstrate this by first installing `datafusion` and `lancedb`.
```shell
pip install datafusion lancedb
```
We will re-use the dataset [created previously](./pandas_and_pyarrow.md):
```python
import lancedb
from datafusion import SessionContext
from lance import FFILanceTableProvider
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
lance_table = db.create_table("lance_table", data)
ctx = SessionContext()
ffi_lance_table = FFILanceTableProvider(
lance_table.to_lance(), with_row_id=True, with_row_addr=True
)
ctx.register_table_provider("ffi_lance_table", ffi_lance_table)
```
The `to_lance` method converts the LanceDB table to a `LanceDataset`, which is accessible to Datafusion through the Datafusion FFI integration layer.
To query the resulting Lance dataset in Datafusion, you first need to register the dataset with Datafusion and then just reference it by the same name in your SQL query.
```python
ctx.table("ffi_lance_table")
ctx.sql("SELECT * FROM ffi_lance_table")
```
```
┌─────────────┬─────────┬────────┬─────────────────┬─────────────────┐
│ vector │ item │ price │ _rowid │ _rowaddr │
│ float[] │ varchar │ double │ bigint unsigned │ bigint unsigned │
├─────────────┼─────────┼────────┼─────────────────┼─────────────────┤
│ [3.1, 4.1] │ foo │ 10.0 │ 0 │ 0 │
│ [5.9, 26.5] │ bar │ 20.0 │ 1 │ 1 │
└─────────────┴─────────┴────────┴─────────────────┴─────────────────┘
```

View File

@@ -7,3 +7,4 @@ tantivy==0.20.1
--extra-index-url https://download.pytorch.org/whl/cpu --extra-index-url https://download.pytorch.org/whl/cpu
torch torch
polars>=0.19, <=1.3.0 polars>=0.19, <=1.3.0
datafusion

View File

@@ -8,7 +8,7 @@
<parent> <parent>
<groupId>com.lancedb</groupId> <groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId> <artifactId>lancedb-parent</artifactId>
<version>0.19.0-beta.6</version> <version>0.20.1-beta.2</version>
<relativePath>../pom.xml</relativePath> <relativePath>../pom.xml</relativePath>
</parent> </parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId> <groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId> <artifactId>lancedb-parent</artifactId>
<version>0.19.0-beta.6</version> <version>0.20.1-beta.2</version>
<packaging>pom</packaging> <packaging>pom</packaging>
<name>LanceDB Parent</name> <name>LanceDB Parent</name>

49
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.6", "@lancedb/vectordb-darwin-arm64": "0.20.1-beta.2",
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.6", "@lancedb/vectordb-darwin-x64": "0.20.1-beta.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.6", "@lancedb/vectordb-linux-arm64-gnu": "0.20.1-beta.2",
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.6", "@lancedb/vectordb-linux-x64-gnu": "0.20.1-beta.2",
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.6" "@lancedb/vectordb-win32-x64-msvc": "0.20.1-beta.2"
}, },
"peerDependencies": { "peerDependencies": {
"@apache-arrow/ts": "^14.0.2", "@apache-arrow/ts": "^14.0.2",
@@ -327,65 +327,60 @@
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": { "node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.19.0-beta.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.20.1-beta.2.tgz",
"integrity": "sha512-fujUe3Gt1n1vgxXMDaUatZEQICh9VAmj1CJK/gQCMZo9ky/MH1TnxP0nA6hN7fkRvl28C2Ms2adlTdlnTxLSlw==", "integrity": "sha512-mqi0yI+ZwBTydaDy1FRHAUZwrWS28u6tbHTe1s4uSrmERbVI6PfmoPR+NZWWAp6ZhlseSdl/+yeI4imk11rQSw==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"darwin" "darwin"
] ]
}, },
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.19.0-beta.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.20.1-beta.2.tgz",
"integrity": "sha512-ZKUvPwKvnK5WfyCR3Asbm1XXXA5JWYfDVD2ovPU/mv/rqoroYEpxm7TH1OG8AQ8bvBmrCmPc0sPJP5kijd6BFg==", "integrity": "sha512-m8EYYA8JZIeNsJqQsBDUMu6r31/u7FzpjonJ4Y+CjapVl6UdvI65KUkeL2dYrFao++RuIoaiqcm3e7gRgFZpXQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"darwin" "darwin"
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.19.0-beta.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.20.1-beta.2.tgz",
"integrity": "sha512-m4DuGCEhEAy+EtamSBMF1ujiVkpJD3ybF/Yp1pYYo9FTFThczAeRiyUg7diRZYfahZExKsATj62PqHXNVo8x9A==", "integrity": "sha512-3Og2+bk4GlWmMO1Yg2HBfeb5zrOMLaIHD7bEqQ4+6yw4IckAaV+ke05H0tyyqmOVrOQ0LpvtXgD7pPztjm9r9A==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"linux" "linux"
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.19.0-beta.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.20.1-beta.2.tgz",
"integrity": "sha512-npUR23GZJDVfkPUPtaxLuYUeqyAQ/vcp4R7RjCSdBo+hJNiQAG4TX31YAE8OKnOGskEO7XJ3BgEAxM+upiNmnA==", "integrity": "sha512-mwTQyA/FBoU/FkPuvCNBZG3y83gBN+iYoejehBH2HBkLUIcmlsDgSRZ1OQ+f9ijj12EMBCA11tBUPA9zhHzyrw==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"linux" "linux"
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.19.0-beta.6.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.20.1-beta.2.tgz",
"integrity": "sha512-Ebas+phT0D7NoB1e3lMZn5h7WVyT5pPIwO1Kk1cZ93V4zaxn2BQRwjLTLxJwR9G+emQoLv659Ze0NtnFuEbXaA==", "integrity": "sha512-VkjNpqhK3l3uHLLPmox+HrmKPMaZgV+qsGQWx0nfseGnSOEmXAWZWQFe0APVCQ9y0xTypQB0oH7eSOPZv2t4WQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
"license": "Apache-2.0",
"optional": true, "optional": true,
"os": [ "os": [
"win32" "win32"

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"private": false, "private": false,
"main": "dist/index.js", "main": "dist/index.js",
@@ -89,10 +89,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.6", "@lancedb/vectordb-darwin-x64": "0.20.1-beta.2",
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.6", "@lancedb/vectordb-darwin-arm64": "0.20.1-beta.2",
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.6", "@lancedb/vectordb-linux-x64-gnu": "0.20.1-beta.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.6", "@lancedb/vectordb-linux-arm64-gnu": "0.20.1-beta.2",
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.6" "@lancedb/vectordb-win32-x64-msvc": "0.20.1-beta.2"
} }
} }

View File

@@ -1,7 +1,7 @@
[package] [package]
name = "lancedb-nodejs" name = "lancedb-nodejs"
edition.workspace = true edition.workspace = true
version = "0.19.0-beta.6" version = "0.20.1-beta.2"
license.workspace = true license.workspace = true
description.workspace = true description.workspace = true
repository.workspace = true repository.workspace = true
@@ -28,6 +28,10 @@ napi-derive = "2.16.4"
lzma-sys = { version = "*", features = ["static"] } lzma-sys = { version = "*", features = ["static"] }
log.workspace = true log.workspace = true
# Workaround for build failure until we can fix it.
aws-lc-sys = "=0.28.0"
aws-lc-rs = "=1.13.0"
[build-dependencies] [build-dependencies]
napi-build = "2.1" napi-build = "2.1"

View File

@@ -374,6 +374,71 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(table2.numRows).toBe(4); expect(table2.numRows).toBe(4);
expect(table2.schema).toEqual(schema); expect(table2.schema).toEqual(schema);
}); });
it("should correctly retain values in nested struct fields", async function () {
// Define test data with nested struct
const testData = [
{
id: "doc1",
vector: [1, 2, 3],
metadata: {
filePath: "/path/to/file1.ts",
startLine: 10,
endLine: 20,
text: "function test() { return true; }",
},
},
{
id: "doc2",
vector: [4, 5, 6],
metadata: {
filePath: "/path/to/file2.ts",
startLine: 30,
endLine: 40,
text: "function test2() { return false; }",
},
},
];
// Create Arrow table from the data
const table = makeArrowTable(testData);
// Verify schema has the nested struct fields
const metadataField = table.schema.fields.find(
(f) => f.name === "metadata",
);
expect(metadataField).toBeDefined();
// biome-ignore lint/suspicious/noExplicitAny: accessing fields in different Arrow versions
const childNames = metadataField?.type.children.map((c: any) => c.name);
expect(childNames).toEqual([
"filePath",
"startLine",
"endLine",
"text",
]);
// Convert to buffer and back (simulating storage and retrieval)
const buf = await fromTableToBuffer(table);
const retrievedTable = tableFromIPC(buf);
// Verify the retrieved table has the same structure
const rows = [];
for (let i = 0; i < retrievedTable.numRows; i++) {
rows.push(retrievedTable.get(i));
}
// Check values in the first row
const firstRow = rows[0];
expect(firstRow.id).toBe("doc1");
expect(firstRow.vector.toJSON()).toEqual([1, 2, 3]);
// Verify metadata values are preserved (this is where the bug is)
expect(firstRow.metadata).toBeDefined();
expect(firstRow.metadata.filePath).toBe("/path/to/file1.ts");
expect(firstRow.metadata.startLine).toBe(10);
expect(firstRow.metadata.endLine).toBe(20);
expect(firstRow.metadata.text).toBe("function test() { return true; }");
});
}); });
class DummyEmbedding extends EmbeddingFunction<string> { class DummyEmbedding extends EmbeddingFunction<string> {
@@ -527,14 +592,14 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
).rejects.toThrow("column vector was missing"); ).rejects.toThrow("column vector was missing");
}); });
it("will provide a nice error if run twice", async function () { it("will skip embedding application if already applied", async function () {
const records = sampleRecords(); const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig); const table = await convertToTable(records, dummyEmbeddingConfig);
// fromTableToBuffer will try and apply the embeddings again // fromTableToBuffer will try and apply the embeddings again
await expect( // but should skip since the column already has non-null values
fromTableToBuffer(table, dummyEmbeddingConfig), const result = await fromTableToBuffer(table, dummyEmbeddingConfig);
).rejects.toThrow("already existed"); expect(result.byteLength).toBeGreaterThan(0);
}); });
}); });

View File

@@ -33,7 +33,13 @@ import {
register, register,
} from "../lancedb/embedding"; } from "../lancedb/embedding";
import { Index } from "../lancedb/indices"; import { Index } from "../lancedb/indices";
import { instanceOfFullTextQuery } from "../lancedb/query"; import {
BooleanQuery,
Occur,
Operator,
instanceOfFullTextQuery,
} from "../lancedb/query";
import exp = require("constants");
describe.each([arrow15, arrow16, arrow17, arrow18])( describe.each([arrow15, arrow16, arrow17, arrow18])(
"Given a table", "Given a table",
@@ -71,8 +77,33 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
await expect(table.countRows()).resolves.toBe(3); await expect(table.countRows()).resolves.toBe(3);
}); });
it("should overwrite data if asked", async () => { it("should show table stats", async () => {
await table.add([{ id: 1 }, { id: 2 }]); await table.add([{ id: 1 }, { id: 2 }]);
await table.add([{ id: 1 }]);
await expect(table.stats()).resolves.toEqual({
fragmentStats: {
lengths: {
max: 2,
mean: 1,
min: 1,
p25: 1,
p50: 2,
p75: 2,
p99: 2,
},
numFragments: 2,
numSmallFragments: 2,
},
numIndices: 0,
numRows: 3,
totalBytes: 24,
});
});
it("should overwrite data if asked", async () => {
const addRes = await table.add([{ id: 1 }, { id: 2 }]);
expect(addRes).toHaveProperty("version");
expect(addRes.version).toBe(2);
await table.add([{ id: 1 }], { mode: "overwrite" }); await table.add([{ id: 1 }], { mode: "overwrite" });
await expect(table.countRows()).resolves.toBe(1); await expect(table.countRows()).resolves.toBe(1);
}); });
@@ -88,7 +119,11 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
await table.add([{ id: 1 }]); await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1); expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0); expect(await table.countRows("id == 7")).toBe(0);
await table.update({ id: "7" }); const updateRes = await table.update({ id: "7" });
expect(updateRes).toHaveProperty("version");
expect(updateRes.version).toBe(3);
expect(updateRes).toHaveProperty("rowsUpdated");
expect(updateRes.rowsUpdated).toBe(1);
expect(await table.countRows("id == 1")).toBe(0); expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1); expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]); await table.add([{ id: 2 }]);
@@ -315,11 +350,17 @@ describe("merge insert", () => {
{ a: 3, b: "y" }, { a: 3, b: "y" },
{ a: 4, b: "z" }, { a: 4, b: "z" },
]; ];
await table const mergeInsertRes = await table
.mergeInsert("a") .mergeInsert("a")
.whenMatchedUpdateAll() .whenMatchedUpdateAll()
.whenNotMatchedInsertAll() .whenNotMatchedInsertAll()
.execute(newData); .execute(newData, { timeoutMs: 10_000 });
expect(mergeInsertRes).toHaveProperty("version");
expect(mergeInsertRes.version).toBe(2);
expect(mergeInsertRes.numInsertedRows).toBe(1);
expect(mergeInsertRes.numUpdatedRows).toBe(2);
expect(mergeInsertRes.numDeletedRows).toBe(0);
const expected = [ const expected = [
{ a: 1, b: "a" }, { a: 1, b: "a" },
{ a: 2, b: "x" }, { a: 2, b: "x" },
@@ -337,10 +378,12 @@ describe("merge insert", () => {
{ a: 3, b: "y" }, { a: 3, b: "y" },
{ a: 4, b: "z" }, { a: 4, b: "z" },
]; ];
await table const mergeInsertRes = await table
.mergeInsert("a") .mergeInsert("a")
.whenMatchedUpdateAll({ where: "target.b = 'b'" }) .whenMatchedUpdateAll({ where: "target.b = 'b'" })
.execute(newData); .execute(newData);
expect(mergeInsertRes).toHaveProperty("version");
expect(mergeInsertRes.version).toBe(2);
const expected = [ const expected = [
{ a: 1, b: "a" }, { a: 1, b: "a" },
@@ -425,6 +468,20 @@ describe("merge insert", () => {
res = res.sort((a, b) => a.a - b.a); res = res.sort((a, b) => a.a - b.a);
expect(res).toEqual(expected); expect(res).toEqual(expected);
}); });
test("timeout", async () => {
const newData = [
{ a: 2, b: "x" },
{ a: 4, b: "z" },
];
await expect(
table
.mergeInsert("a")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute(newData, { timeoutMs: 0 }),
).rejects.toThrow("merge insert timed out");
});
}); });
describe("When creating an index", () => { describe("When creating an index", () => {
@@ -502,11 +559,46 @@ describe("When creating an index", () => {
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow(); rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1); expect(rst.numRows).toBe(1);
// test nprobes
rst = await tbl.query().nearestTo(queryVec).limit(2).nprobes(50).toArrow();
expect(rst.numRows).toBe(2);
rst = await tbl
.query()
.nearestTo(queryVec)
.limit(2)
.minimumNprobes(15)
.toArrow();
expect(rst.numRows).toBe(2);
rst = await tbl
.query()
.nearestTo(queryVec)
.limit(2)
.minimumNprobes(10)
.maximumNprobes(20)
.toArrow();
expect(rst.numRows).toBe(2);
expect(() => tbl.query().nearestTo(queryVec).minimumNprobes(0)).toThrow(
"Invalid input, minimum_nprobes must be greater than 0",
);
expect(() => tbl.query().nearestTo(queryVec).maximumNprobes(5)).toThrow(
"Invalid input, maximum_nprobes must be greater than minimum_nprobes",
);
await tbl.dropIndex("vec_idx"); await tbl.dropIndex("vec_idx");
const indices2 = await tbl.listIndices(); const indices2 = await tbl.listIndices();
expect(indices2.length).toBe(0); expect(indices2.length).toBe(0);
}); });
it("should wait for index readiness", async () => {
// Create an index and then wait for it to be ready
await tbl.createIndex("vec");
const indices = await tbl.listIndices();
expect(indices.length).toBeGreaterThan(0);
const idxName = indices[0].name;
await expect(tbl.waitForIndex([idxName], 5)).resolves.toBeUndefined();
});
it("should search with distance range", async () => { it("should search with distance range", async () => {
await tbl.createIndex("vec"); await tbl.createIndex("vec");
@@ -824,6 +916,7 @@ describe("When creating an index", () => {
// Only build index over v1 // Only build index over v1
await tbl.createIndex("vec", { await tbl.createIndex("vec", {
config: Index.ivfPq({ numPartitions: 2, numSubVectors: 2 }), config: Index.ivfPq({ numPartitions: 2, numSubVectors: 2 }),
waitTimeoutSeconds: 30,
}); });
const rst = await tbl const rst = await tbl
@@ -990,15 +1083,19 @@ describe("schema evolution", function () {
{ id: 1n, vector: [0.1, 0.2] }, { id: 1n, vector: [0.1, 0.2] },
]); ]);
// Can create a non-nullable column only through addColumns at the moment. // Can create a non-nullable column only through addColumns at the moment.
await table.addColumns([ const addColumnsRes = await table.addColumns([
{ name: "price", valueSql: "cast(10.0 as double)" }, { name: "price", valueSql: "cast(10.0 as double)" },
]); ]);
expect(addColumnsRes).toHaveProperty("version");
expect(addColumnsRes.version).toBe(2);
expect(await table.schema()).toEqual(schema); expect(await table.schema()).toEqual(schema);
await table.alterColumns([ const alterColumnsRes = await table.alterColumns([
{ path: "id", rename: "new_id" }, { path: "id", rename: "new_id" },
{ path: "price", nullable: true }, { path: "price", nullable: true },
]); ]);
expect(alterColumnsRes).toHaveProperty("version");
expect(alterColumnsRes.version).toBe(3);
const expectedSchema = new Schema([ const expectedSchema = new Schema([
new Field("new_id", new Int64(), true), new Field("new_id", new Int64(), true),
@@ -1116,7 +1213,9 @@ describe("schema evolution", function () {
const table = await con.createTable("vectors", [ const table = await con.createTable("vectors", [
{ id: 1n, vector: [0.1, 0.2] }, { id: 1n, vector: [0.1, 0.2] },
]); ]);
await table.dropColumns(["vector"]); const dropColumnsRes = await table.dropColumns(["vector"]);
expect(dropColumnsRes).toHaveProperty("version");
expect(dropColumnsRes.version).toBe(2);
const expectedSchema = new Schema([new Field("id", new Int64(), true)]); const expectedSchema = new Schema([new Field("id", new Int64(), true)]);
expect(await table.schema()).toEqual(expectedSchema); expect(await table.schema()).toEqual(expectedSchema);
@@ -1168,6 +1267,99 @@ describe("when dealing with versioning", () => {
}); });
}); });
describe("when dealing with tags", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => {
tmpDir.removeCallback();
});
it("can manage tags", async () => {
const conn = await connect(tmpDir.name, {
readConsistencyInterval: 0,
});
const table = await conn.createTable("my_table", [
{ id: 1n, vector: [0.1, 0.2] },
]);
expect(await table.version()).toBe(1);
await table.add([{ id: 2n, vector: [0.3, 0.4] }]);
expect(await table.version()).toBe(2);
const tagsManager = await table.tags();
const initialTags = await tagsManager.list();
expect(Object.keys(initialTags).length).toBe(0);
const tag1 = "tag1";
await tagsManager.create(tag1, 1);
expect(await tagsManager.getVersion(tag1)).toBe(1);
const tagsAfterFirst = await tagsManager.list();
expect(Object.keys(tagsAfterFirst).length).toBe(1);
expect(tagsAfterFirst).toHaveProperty(tag1);
expect(tagsAfterFirst[tag1].version).toBe(1);
await tagsManager.create("tag2", 2);
expect(await tagsManager.getVersion("tag2")).toBe(2);
const tagsAfterSecond = await tagsManager.list();
expect(Object.keys(tagsAfterSecond).length).toBe(2);
expect(tagsAfterSecond).toHaveProperty(tag1);
expect(tagsAfterSecond[tag1].version).toBe(1);
expect(tagsAfterSecond).toHaveProperty("tag2");
expect(tagsAfterSecond["tag2"].version).toBe(2);
await table.add([{ id: 3n, vector: [0.5, 0.6] }]);
await tagsManager.update(tag1, 3);
expect(await tagsManager.getVersion(tag1)).toBe(3);
await tagsManager.delete("tag2");
const tagsAfterDelete = await tagsManager.list();
expect(Object.keys(tagsAfterDelete).length).toBe(1);
expect(tagsAfterDelete).toHaveProperty(tag1);
expect(tagsAfterDelete[tag1].version).toBe(3);
await table.add([{ id: 4n, vector: [0.7, 0.8] }]);
expect(await table.version()).toBe(4);
await table.checkout(tag1);
expect(await table.version()).toBe(3);
await table.checkoutLatest();
expect(await table.version()).toBe(4);
});
it("can checkout and restore tags", async () => {
const conn = await connect(tmpDir.name, {
readConsistencyInterval: 0,
});
const table = await conn.createTable("my_table", [
{ id: 1n, vector: [0.1, 0.2] },
]);
expect(await table.version()).toBe(1);
expect(await table.countRows()).toBe(1);
const tagsManager = await table.tags();
const tag1 = "tag1";
await tagsManager.create(tag1, 1);
await table.add([{ id: 2n, vector: [0.3, 0.4] }]);
const tag2 = "tag2";
await tagsManager.create(tag2, 2);
expect(await table.version()).toBe(2);
await table.checkout(tag1);
expect(await table.version()).toBe(1);
await table.restore();
expect(await table.version()).toBe(3);
expect(await table.countRows()).toBe(1);
await table.add([{ id: 3n, vector: [0.5, 0.6] }]);
expect(await table.countRows()).toBe(2);
});
});
describe("when optimizing a dataset", () => { describe("when optimizing a dataset", () => {
let tmpDir: tmp.DirResult; let tmpDir: tmp.DirResult;
let table: Table; let table: Table;
@@ -1312,7 +1504,7 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(results2[0].text).toBe(data[1].text); expect(results2[0].text).toBe(data[1].text);
}); });
test("full text index on list", async () => { test("prewarm full text search index", async () => {
const db = await connect(tmpDir.name); const db = await connect(tmpDir.name);
const data = [ const data = [
{ text: ["lance database", "the", "search"], vector: [0.1, 0.2, 0.3] }, { text: ["lance database", "the", "search"], vector: [0.1, 0.2, 0.3] },
@@ -1326,6 +1518,30 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
config: Index.fts(), config: Index.fts(),
}); });
// For the moment, we just confirm we can call prewarmIndex without error
// and still search it afterwards
await table.prewarmIndex("text_idx");
const results = await table.search("lance").toArray();
expect(results.length).toBe(3);
});
test("full text index on list", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: ["lance database", "the", "search"], vector: [0.1, 0.2, 0.3] },
{ text: ["lance database"], vector: [0.4, 0.5, 0.6] },
{ text: ["lance", "search"], vector: [0.7, 0.8, 0.9] },
{ text: ["database", "search"], vector: [1.0, 1.1, 1.2] },
{ text: ["unrelated", "doc"], vector: [1.3, 1.4, 1.5] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts({
withPosition: true,
}),
});
const results = await table.search("lance").toArray(); const results = await table.search("lance").toArray();
expect(results.length).toBe(3); expect(results.length).toBe(3);
@@ -1346,6 +1562,18 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
const results = await table.search("hello").toArray(); const results = await table.search("hello").toArray();
expect(results[0].text).toBe(data[0].text); expect(results[0].text).toBe(data[0].text);
const results2 = await table
.search(new MatchQuery("hello world", "text"))
.toArray();
expect(results2.length).toBe(2);
const results3 = await table
.search(
new MatchQuery("hello world", "text", { operator: Operator.And }),
)
.toArray();
expect(results3.length).toBe(1);
}); });
test("full text search without lowercase", async () => { test("full text search without lowercase", async () => {
@@ -1376,7 +1604,9 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
]; ];
const table = await db.createTable("test", data); const table = await db.createTable("test", data);
await table.createIndex("text", { await table.createIndex("text", {
config: Index.fts(), config: Index.fts({
withPosition: true,
}),
}); });
const results = await table.search("world").toArray(); const results = await table.search("world").toArray();
@@ -1420,6 +1650,60 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(resultSet.has("fob")).toBe(true); expect(resultSet.has("fob")).toBe(true);
expect(resultSet.has("fo")).toBe(true); expect(resultSet.has("fo")).toBe(true);
expect(resultSet.has("food")).toBe(true); expect(resultSet.has("food")).toBe(true);
const prefixResults = await table
.search(
new MatchQuery("foo", "text", { fuzziness: 3, prefixLength: 3 }),
)
.toArray();
expect(prefixResults.length).toBe(2);
const resultSet2 = new Set(prefixResults.map((r) => r.text));
expect(resultSet2.has("foo")).toBe(true);
expect(resultSet2.has("food")).toBe(true);
});
test("full text search boolean query", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "The cat and dog are playing" },
{ text: "The cat is sleeping" },
{ text: "The dog is barking" },
{ text: "The dog chases the cat" },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts({ withPosition: false }),
});
const shouldResults = await table
.search(
new BooleanQuery([
[Occur.Should, new MatchQuery("cat", "text")],
[Occur.Should, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(shouldResults.length).toBe(4);
const mustResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.Must, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustResults.length).toBe(2);
const mustNotResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.MustNot, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustNotResults.length).toBe(1);
}); });
test.each([ test.each([

View File

@@ -417,7 +417,9 @@ function inferSchema(
} else { } else {
const inferredType = inferType(value, path, opts); const inferredType = inferType(value, path, opts);
if (inferredType === undefined) { if (inferredType === undefined) {
throw new Error(`Failed to infer data type for field ${path.join(".")} at row ${rowI}. \ throw new Error(`Failed to infer data type for field ${path.join(
".",
)} at row ${rowI}. \
Consider providing an explicit schema.`); Consider providing an explicit schema.`);
} }
pathTree.set(path, inferredType); pathTree.set(path, inferredType);
@@ -639,8 +641,9 @@ function transposeData(
): Vector { ): Vector {
if (field.type instanceof Struct) { if (field.type instanceof Struct) {
const childFields = field.type.children; const childFields = field.type.children;
const fullPath = [...path, field.name];
const childVectors = childFields.map((child) => { const childVectors = childFields.map((child) => {
return transposeData(data, child, [...path, child.name]); return transposeData(data, child, fullPath);
}); });
const structData = makeData({ const structData = makeData({
type: field.type, type: field.type,
@@ -652,7 +655,14 @@ function transposeData(
const values = data.map((datum) => { const values = data.map((datum) => {
let current: unknown = datum; let current: unknown = datum;
for (const key of valuesPath) { for (const key of valuesPath) {
if (isObject(current) && Object.hasOwn(current, key)) { if (current == null) {
return null;
}
if (
isObject(current) &&
(Object.hasOwn(current, key) || key in current)
) {
current = current[key]; current = current[key];
} else { } else {
return null; return null;
@@ -791,11 +801,17 @@ async function applyEmbeddingsFromMetadata(
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`, `Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
); );
} }
// Check if destination column exists and handle accordingly
if (columns[destColumn] !== undefined) { if (columns[destColumn] !== undefined) {
throw new Error( const existingColumn = columns[destColumn];
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`, // If the column exists but is all null, we can fill it with embeddings
); if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application
continue;
}
} }
if (table.batches.length > 1) { if (table.batches.length > 1) {
throw new Error( throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch", "Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
@@ -895,11 +911,23 @@ async function applyEmbeddings<T>(
); );
} }
} else { } else {
// Check if destination column exists and handle accordingly
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) { if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error( const existingColumn = newColumns[destColumn];
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`, // If the column exists but is all null, we can fill it with embeddings
); if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application and return table as-is
let newTable = new ArrowTable(newColumns);
if (schema != null) {
newTable = alignTable(newTable, schema as Schema);
}
return new ArrowTable(
new Schema(newTable.schema.fields, schemaMetadata),
newTable.batches,
);
}
} }
if (table.batches.length > 1) { if (table.batches.length > 1) {
throw new Error( throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch", "Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",

View File

@@ -23,6 +23,18 @@ export {
OptimizeStats, OptimizeStats,
CompactionStats, CompactionStats,
RemovalStats, RemovalStats,
TableStatistics,
FragmentStatistics,
FragmentSummaryStats,
Tags,
TagContents,
MergeResult,
AddResult,
AddColumnsResult,
AlterColumnsResult,
DeleteResult,
DropColumnsResult,
UpdateResult,
} from "./native.js"; } from "./native.js";
export { export {
@@ -52,7 +64,10 @@ export {
PhraseQuery, PhraseQuery,
BoostQuery, BoostQuery,
MultiMatchQuery, MultiMatchQuery,
BooleanQuery,
FullTextQueryType, FullTextQueryType,
Operator,
Occur,
} from "./query"; } from "./query";
export { export {
@@ -74,7 +89,7 @@ export {
ColumnAlteration, ColumnAlteration,
} from "./table"; } from "./table";
export { MergeInsertBuilder } from "./merge"; export { MergeInsertBuilder, WriteExecutionOptions } from "./merge";
export * as embedding from "./embedding"; export * as embedding from "./embedding";
export * as rerankers from "./rerankers"; export * as rerankers from "./rerankers";

View File

@@ -681,4 +681,6 @@ export interface IndexOptions {
* The default is true * The default is true
*/ */
replace?: boolean; replace?: boolean;
waitTimeoutSeconds?: number;
} }

View File

@@ -1,7 +1,7 @@
// SPDX-License-Identifier: Apache-2.0 // SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors // SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { Data, Schema, fromDataToBuffer } from "./arrow"; import { Data, Schema, fromDataToBuffer } from "./arrow";
import { NativeMergeInsertBuilder } from "./native"; import { MergeResult, NativeMergeInsertBuilder } from "./native";
/** A builder used to create and run a merge insert operation */ /** A builder used to create and run a merge insert operation */
export class MergeInsertBuilder { export class MergeInsertBuilder {
@@ -73,9 +73,12 @@ export class MergeInsertBuilder {
/** /**
* Executes the merge insert operation * Executes the merge insert operation
* *
* Nothing is returned but the `Table` is updated * @returns {Promise<MergeResult>} the merge result
*/ */
async execute(data: Data): Promise<void> { async execute(
data: Data,
execOptions?: Partial<WriteExecutionOptions>,
): Promise<MergeResult> {
let schema: Schema; let schema: Schema;
if (this.#schema instanceof Promise) { if (this.#schema instanceof Promise) {
schema = await this.#schema; schema = await this.#schema;
@@ -83,7 +86,28 @@ export class MergeInsertBuilder {
} else { } else {
schema = this.#schema; schema = this.#schema;
} }
if (execOptions?.timeoutMs !== undefined) {
this.#native.setTimeout(execOptions.timeoutMs);
}
const buffer = await fromDataToBuffer(data, undefined, schema); const buffer = await fromDataToBuffer(data, undefined, schema);
await this.#native.execute(buffer); return await this.#native.execute(buffer);
} }
} }
export interface WriteExecutionOptions {
/**
* Maximum time to run the operation before cancelling it.
*
* By default, there is a 30-second timeout that is only enforced after the
* first attempt. This is to prevent spending too long retrying to resolve
* conflicts. For example, if a write attempt takes 20 seconds and fails,
* the second attempt will be cancelled after 10 seconds, hitting the
* 30-second timeout. However, a write that takes one hour and succeeds on the
* first attempt will not be cancelled.
*
* When this is set, the timeout is enforced on all attempts, including the first.
*/
timeoutMs?: number;
}

View File

@@ -448,6 +448,10 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
* For best results we recommend tuning this parameter with a benchmark against * For best results we recommend tuning this parameter with a benchmark against
* your actual data to find the smallest possible value that will still give * your actual data to find the smallest possible value that will still give
* you the desired recall. * you the desired recall.
*
* For more fine grained control over behavior when you have a very narrow filter
* you can use `minimumNprobes` and `maximumNprobes`. This method sets both
* the minimum and maximum to the same value.
*/ */
nprobes(nprobes: number): VectorQuery { nprobes(nprobes: number): VectorQuery {
super.doCall((inner) => inner.nprobes(nprobes)); super.doCall((inner) => inner.nprobes(nprobes));
@@ -455,6 +459,33 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
return this; return this;
} }
/**
* Set the minimum number of probes used.
*
* This controls the minimum number of partitions that will be searched. This
* parameter will impact every query against a vector index, regardless of the
* filter. See `nprobes` for more details. Higher values will increase recall
* but will also increase latency.
*/
minimumNprobes(minimumNprobes: number): VectorQuery {
super.doCall((inner) => inner.minimumNprobes(minimumNprobes));
return this;
}
/**
* Set the maximum number of probes used.
*
* This controls the maximum number of partitions that will be searched. If this
* number is greater than minimumNprobes then the excess partitions will _only_ be
* searched if we have not found enough results. This can be useful when there is
* a narrow filter to allow these queries to spend more time searching and avoid
* potential false negatives.
*/
maximumNprobes(maximumNprobes: number): VectorQuery {
super.doCall((inner) => inner.maximumNprobes(maximumNprobes));
return this;
}
/* /*
* Set the distance range to use * Set the distance range to use
* *
@@ -762,6 +793,31 @@ export enum FullTextQueryType {
MatchPhrase = "match_phrase", MatchPhrase = "match_phrase",
Boost = "boost", Boost = "boost",
MultiMatch = "multi_match", MultiMatch = "multi_match",
Boolean = "boolean",
}
/**
* Enum representing the logical operators used in full-text queries.
*
* - `And`: All terms must match.
* - `Or`: At least one term must match.
*/
export enum Operator {
And = "AND",
Or = "OR",
}
/**
* Enum representing the occurrence of terms in full-text queries.
*
* - `Must`: The term must be present in the document.
* - `Should`: The term should contribute to the document score, but is not required.
* - `MustNot`: The term must not be present in the document.
*/
export enum Occur {
Should = "SHOULD",
Must = "MUST",
MustNot = "MUST_NOT",
} }
/** /**
@@ -791,6 +847,7 @@ export function instanceOfFullTextQuery(obj: any): obj is FullTextQuery {
export class MatchQuery implements FullTextQuery { export class MatchQuery implements FullTextQuery {
/** @ignore */ /** @ignore */
public readonly inner: JsFullTextQuery; public readonly inner: JsFullTextQuery;
/** /**
* Creates an instance of MatchQuery. * Creates an instance of MatchQuery.
* *
@@ -800,6 +857,8 @@ export class MatchQuery implements FullTextQuery {
* - `boost`: The boost factor for the query (default is 1.0). * - `boost`: The boost factor for the query (default is 1.0).
* - `fuzziness`: The fuzziness level for the query (default is 0). * - `fuzziness`: The fuzziness level for the query (default is 0).
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50). * - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
* - `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
*/ */
constructor( constructor(
query: string, query: string,
@@ -808,6 +867,8 @@ export class MatchQuery implements FullTextQuery {
boost?: number; boost?: number;
fuzziness?: number; fuzziness?: number;
maxExpansions?: number; maxExpansions?: number;
operator?: Operator;
prefixLength?: number;
}, },
) { ) {
let fuzziness = options?.fuzziness; let fuzziness = options?.fuzziness;
@@ -820,6 +881,8 @@ export class MatchQuery implements FullTextQuery {
options?.boost ?? 1.0, options?.boost ?? 1.0,
fuzziness, fuzziness,
options?.maxExpansions ?? 50, options?.maxExpansions ?? 50,
options?.operator ?? Operator.Or,
options?.prefixLength ?? 0,
); );
} }
@@ -836,9 +899,11 @@ export class PhraseQuery implements FullTextQuery {
* *
* @param query - The phrase to search for in the specified column. * @param query - The phrase to search for in the specified column.
* @param column - The name of the column to search within. * @param column - The name of the column to search within.
* @param options - Optional parameters for the phrase query.
* - `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
*/ */
constructor(query: string, column: string) { constructor(query: string, column: string, options?: { slop?: number }) {
this.inner = JsFullTextQuery.phraseQuery(query, column); this.inner = JsFullTextQuery.phraseQuery(query, column, options?.slop ?? 0);
} }
queryType(): FullTextQueryType { queryType(): FullTextQueryType {
@@ -889,18 +954,21 @@ export class MultiMatchQuery implements FullTextQuery {
* @param columns - An array of column names to search within. * @param columns - An array of column names to search within.
* @param options - Optional parameters for the multi-match query. * @param options - Optional parameters for the multi-match query.
* - `boosts`: An array of boost factors for each column (default is 1.0 for all). * - `boosts`: An array of boost factors for each column (default is 1.0 for all).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
*/ */
constructor( constructor(
query: string, query: string,
columns: string[], columns: string[],
options?: { options?: {
boosts?: number[]; boosts?: number[];
operator?: Operator;
}, },
) { ) {
this.inner = JsFullTextQuery.multiMatchQuery( this.inner = JsFullTextQuery.multiMatchQuery(
query, query,
columns, columns,
options?.boosts, options?.boosts,
options?.operator ?? Operator.Or,
); );
} }
@@ -908,3 +976,23 @@ export class MultiMatchQuery implements FullTextQuery {
return FullTextQueryType.MultiMatch; return FullTextQueryType.MultiMatch;
} }
} }
export class BooleanQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of BooleanQuery.
*
* @param queries - An array of (Occur, FullTextQuery objects) to combine.
* Occur specifies whether the query must match, or should match.
*/
constructor(queries: [Occur, FullTextQuery][]) {
this.inner = JsFullTextQuery.booleanQuery(
queries.map(([occur, query]) => [occur, query.inner]),
);
}
queryType(): FullTextQueryType {
return FullTextQueryType.Boolean;
}
}

View File

@@ -16,10 +16,18 @@ import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
import { IndexOptions } from "./indices"; import { IndexOptions } from "./indices";
import { MergeInsertBuilder } from "./merge"; import { MergeInsertBuilder } from "./merge";
import { import {
AddColumnsResult,
AddColumnsSql, AddColumnsSql,
AddResult,
AlterColumnsResult,
DeleteResult,
DropColumnsResult,
IndexConfig, IndexConfig,
IndexStatistics, IndexStatistics,
OptimizeStats, OptimizeStats,
TableStatistics,
Tags,
UpdateResult,
Table as _NativeTable, Table as _NativeTable,
} from "./native"; } from "./native";
import { import {
@@ -124,12 +132,19 @@ export abstract class Table {
/** /**
* Insert records into this Table. * Insert records into this Table.
* @param {Data} data Records to be inserted into the Table * @param {Data} data Records to be inserted into the Table
* @returns {Promise<AddResult>} A promise that resolves to an object
* containing the new version number of the table
*/ */
abstract add(data: Data, options?: Partial<AddDataOptions>): Promise<void>; abstract add(
data: Data,
options?: Partial<AddDataOptions>,
): Promise<AddResult>;
/** /**
* Update existing records in the Table * Update existing records in the Table
* @param opts.values The values to update. The keys are the column names and the values * @param opts.values The values to update. The keys are the column names and the values
* are the values to set. * are the values to set.
* @returns {Promise<UpdateResult>} A promise that resolves to an object containing
* the number of rows updated and the new version number
* @example * @example
* ```ts * ```ts
* table.update({where:"x = 2", values:{"vector": [10, 10]}}) * table.update({where:"x = 2", values:{"vector": [10, 10]}})
@@ -139,11 +154,13 @@ export abstract class Table {
opts: { opts: {
values: Map<string, IntoSql> | Record<string, IntoSql>; values: Map<string, IntoSql> | Record<string, IntoSql>;
} & Partial<UpdateOptions>, } & Partial<UpdateOptions>,
): Promise<void>; ): Promise<UpdateResult>;
/** /**
* Update existing records in the Table * Update existing records in the Table
* @param opts.valuesSql The values to update. The keys are the column names and the values * @param opts.valuesSql The values to update. The keys are the column names and the values
* are the values to set. The values are SQL expressions. * are the values to set. The values are SQL expressions.
* @returns {Promise<UpdateResult>} A promise that resolves to an object containing
* the number of rows updated and the new version number
* @example * @example
* ```ts * ```ts
* table.update({where:"x = 2", valuesSql:{"x": "x + 1"}}) * table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
@@ -153,7 +170,7 @@ export abstract class Table {
opts: { opts: {
valuesSql: Map<string, string> | Record<string, string>; valuesSql: Map<string, string> | Record<string, string>;
} & Partial<UpdateOptions>, } & Partial<UpdateOptions>,
): Promise<void>; ): Promise<UpdateResult>;
/** /**
* Update existing records in the Table * Update existing records in the Table
* *
@@ -171,6 +188,8 @@ export abstract class Table {
* repeatedly calilng this method. * repeatedly calilng this method.
* @param {Map<string, string> | Record<string, string>} updates - the * @param {Map<string, string> | Record<string, string>} updates - the
* columns to update * columns to update
* @returns {Promise<UpdateResult>} A promise that resolves to an object
* containing the number of rows updated and the new version number
* *
* Keys in the map should specify the name of the column to update. * Keys in the map should specify the name of the column to update.
* Values in the map provide the new value of the column. These can * Values in the map provide the new value of the column. These can
@@ -182,12 +201,16 @@ export abstract class Table {
abstract update( abstract update(
updates: Map<string, string> | Record<string, string>, updates: Map<string, string> | Record<string, string>,
options?: Partial<UpdateOptions>, options?: Partial<UpdateOptions>,
): Promise<void>; ): Promise<UpdateResult>;
/** Count the total number of rows in the dataset. */ /** Count the total number of rows in the dataset. */
abstract countRows(filter?: string): Promise<number>; abstract countRows(filter?: string): Promise<number>;
/** Delete the rows that satisfy the predicate. */ /**
abstract delete(predicate: string): Promise<void>; * Delete the rows that satisfy the predicate.
* @returns {Promise<DeleteResult>} A promise that resolves to an object
* containing the new version number of the table
*/
abstract delete(predicate: string): Promise<DeleteResult>;
/** /**
* Create an index to speed up queries. * Create an index to speed up queries.
* *
@@ -235,6 +258,30 @@ export abstract class Table {
*/ */
abstract dropIndex(name: string): Promise<void>; abstract dropIndex(name: string): Promise<void>;
/**
* Prewarm an index in the table.
*
* @param name The name of the index.
*
* This will load the index into memory. This may reduce the cold-start time for
* future queries. If the index does not fit in the cache then this call may be
* wasteful.
*/
abstract prewarmIndex(name: string): Promise<void>;
/**
* Waits for asynchronous indexing to complete on the table.
*
* @param indexNames The name of the indices to wait for
* @param timeoutSeconds The number of seconds to wait before timing out
*
* This will raise an error if the indices are not created and fully indexed within the timeout.
*/
abstract waitForIndex(
indexNames: string[],
timeoutSeconds: number,
): Promise<void>;
/** /**
* Create a {@link Query} Builder. * Create a {@link Query} Builder.
* *
@@ -317,15 +364,23 @@ export abstract class Table {
* the SQL expression to use to calculate the value of the new column. These * the SQL expression to use to calculate the value of the new column. These
* expressions will be evaluated for each row in the table, and can * expressions will be evaluated for each row in the table, and can
* reference existing columns in the table. * reference existing columns in the table.
* @returns {Promise<AddColumnsResult>} A promise that resolves to an object
* containing the new version number of the table after adding the columns.
*/ */
abstract addColumns(newColumnTransforms: AddColumnsSql[]): Promise<void>; abstract addColumns(
newColumnTransforms: AddColumnsSql[],
): Promise<AddColumnsResult>;
/** /**
* Alter the name or nullability of columns. * Alter the name or nullability of columns.
* @param {ColumnAlteration[]} columnAlterations One or more alterations to * @param {ColumnAlteration[]} columnAlterations One or more alterations to
* apply to columns. * apply to columns.
* @returns {Promise<AlterColumnsResult>} A promise that resolves to an object
* containing the new version number of the table after altering the columns.
*/ */
abstract alterColumns(columnAlterations: ColumnAlteration[]): Promise<void>; abstract alterColumns(
columnAlterations: ColumnAlteration[],
): Promise<AlterColumnsResult>;
/** /**
* Drop one or more columns from the dataset * Drop one or more columns from the dataset
* *
@@ -336,8 +391,10 @@ export abstract class Table {
* @param {string[]} columnNames The names of the columns to drop. These can * @param {string[]} columnNames The names of the columns to drop. These can
* be nested column references (e.g. "a.b.c") or top-level column names * be nested column references (e.g. "a.b.c") or top-level column names
* (e.g. "a"). * (e.g. "a").
* @returns {Promise<DropColumnsResult>} A promise that resolves to an object
* containing the new version number of the table after dropping the columns.
*/ */
abstract dropColumns(columnNames: string[]): Promise<void>; abstract dropColumns(columnNames: string[]): Promise<DropColumnsResult>;
/** Retrieve the version of the table */ /** Retrieve the version of the table */
abstract version(): Promise<number>; abstract version(): Promise<number>;
@@ -350,7 +407,7 @@ export abstract class Table {
* *
* Calling this method will set the table into time-travel mode. If you * Calling this method will set the table into time-travel mode. If you
* wish to return to standard mode, call `checkoutLatest`. * wish to return to standard mode, call `checkoutLatest`.
* @param {number} version The version to checkout * @param {number | string} version The version to checkout, could be version number or tag
* @example * @example
* ```typescript * ```typescript
* import * as lancedb from "@lancedb/lancedb" * import * as lancedb from "@lancedb/lancedb"
@@ -366,7 +423,8 @@ export abstract class Table {
* console.log(await table.version()); // 2 * console.log(await table.version()); // 2
* ``` * ```
*/ */
abstract checkout(version: number): Promise<void>; abstract checkout(version: number | string): Promise<void>;
/** /**
* Checkout the latest version of the table. _This is an in-place operation._ * Checkout the latest version of the table. _This is an in-place operation._
* *
@@ -380,6 +438,23 @@ export abstract class Table {
*/ */
abstract listVersions(): Promise<Version[]>; abstract listVersions(): Promise<Version[]>;
/**
* Get a tags manager for this table.
*
* Tags allow you to label specific versions of a table with a human-readable name.
* The returned tags manager can be used to list, create, update, or delete tags.
*
* @returns {Tags} A tags manager for this table
* @example
* ```typescript
* const tagsManager = await table.tags();
* await tagsManager.create("v1", 1);
* const tags = await tagsManager.list();
* console.log(tags); // { "v1": { version: 1, manifestSize: ... } }
* ```
*/
abstract tags(): Promise<Tags>;
/** /**
* Restore the table to the currently checked out version * Restore the table to the currently checked out version
* *
@@ -439,6 +514,13 @@ export abstract class Table {
* Use {@link Table.listIndices} to find the names of the indices. * Use {@link Table.listIndices} to find the names of the indices.
*/ */
abstract indexStats(name: string): Promise<IndexStatistics | undefined>; abstract indexStats(name: string): Promise<IndexStatistics | undefined>;
/** Returns table and fragment statistics
*
* @returns {TableStatistics} The table and fragment statistics
*
*/
abstract stats(): Promise<TableStatistics>;
} }
export class LocalTable extends Table { export class LocalTable extends Table {
@@ -478,12 +560,12 @@ export class LocalTable extends Table {
return tbl.schema; return tbl.schema;
} }
async add(data: Data, options?: Partial<AddDataOptions>): Promise<void> { async add(data: Data, options?: Partial<AddDataOptions>): Promise<AddResult> {
const mode = options?.mode ?? "append"; const mode = options?.mode ?? "append";
const schema = await this.schema(); const schema = await this.schema();
const buffer = await fromDataToBuffer(data, undefined, schema); const buffer = await fromDataToBuffer(data, undefined, schema);
await this.inner.add(buffer, mode); return await this.inner.add(buffer, mode);
} }
async update( async update(
@@ -496,7 +578,7 @@ export class LocalTable extends Table {
valuesSql: Map<string, string> | Record<string, string>; valuesSql: Map<string, string> | Record<string, string>;
} & Partial<UpdateOptions>), } & Partial<UpdateOptions>),
options?: Partial<UpdateOptions>, options?: Partial<UpdateOptions>,
) { ): Promise<UpdateResult> {
const isValues = const isValues =
"values" in optsOrUpdates && typeof optsOrUpdates.values !== "string"; "values" in optsOrUpdates && typeof optsOrUpdates.values !== "string";
const isValuesSql = const isValuesSql =
@@ -543,28 +625,44 @@ export class LocalTable extends Table {
columns = Object.entries(optsOrUpdates as Record<string, string>); columns = Object.entries(optsOrUpdates as Record<string, string>);
predicate = options?.where; predicate = options?.where;
} }
await this.inner.update(predicate, columns); return await this.inner.update(predicate, columns);
} }
async countRows(filter?: string): Promise<number> { async countRows(filter?: string): Promise<number> {
return await this.inner.countRows(filter); return await this.inner.countRows(filter);
} }
async delete(predicate: string): Promise<void> { async delete(predicate: string): Promise<DeleteResult> {
await this.inner.delete(predicate); return await this.inner.delete(predicate);
} }
async createIndex(column: string, options?: Partial<IndexOptions>) { async createIndex(column: string, options?: Partial<IndexOptions>) {
// Bit of a hack to get around the fact that TS has no package-scope. // Bit of a hack to get around the fact that TS has no package-scope.
// biome-ignore lint/suspicious/noExplicitAny: skip // biome-ignore lint/suspicious/noExplicitAny: skip
const nativeIndex = (options?.config as any)?.inner; const nativeIndex = (options?.config as any)?.inner;
await this.inner.createIndex(nativeIndex, column, options?.replace); await this.inner.createIndex(
nativeIndex,
column,
options?.replace,
options?.waitTimeoutSeconds,
);
} }
async dropIndex(name: string): Promise<void> { async dropIndex(name: string): Promise<void> {
await this.inner.dropIndex(name); await this.inner.dropIndex(name);
} }
async prewarmIndex(name: string): Promise<void> {
await this.inner.prewarmIndex(name);
}
async waitForIndex(
indexNames: string[],
timeoutSeconds: number,
): Promise<void> {
await this.inner.waitForIndex(indexNames, timeoutSeconds);
}
query(): Query { query(): Query {
return new Query(this.inner); return new Query(this.inner);
} }
@@ -623,11 +721,15 @@ export class LocalTable extends Table {
// TODO: Support BatchUDF // TODO: Support BatchUDF
async addColumns(newColumnTransforms: AddColumnsSql[]): Promise<void> { async addColumns(
await this.inner.addColumns(newColumnTransforms); newColumnTransforms: AddColumnsSql[],
): Promise<AddColumnsResult> {
return await this.inner.addColumns(newColumnTransforms);
} }
async alterColumns(columnAlterations: ColumnAlteration[]): Promise<void> { async alterColumns(
columnAlterations: ColumnAlteration[],
): Promise<AlterColumnsResult> {
const processedAlterations = columnAlterations.map((alteration) => { const processedAlterations = columnAlterations.map((alteration) => {
if (typeof alteration.dataType === "string") { if (typeof alteration.dataType === "string") {
return { return {
@@ -648,19 +750,22 @@ export class LocalTable extends Table {
} }
}); });
await this.inner.alterColumns(processedAlterations); return await this.inner.alterColumns(processedAlterations);
} }
async dropColumns(columnNames: string[]): Promise<void> { async dropColumns(columnNames: string[]): Promise<DropColumnsResult> {
await this.inner.dropColumns(columnNames); return await this.inner.dropColumns(columnNames);
} }
async version(): Promise<number> { async version(): Promise<number> {
return await this.inner.version(); return await this.inner.version();
} }
async checkout(version: number): Promise<void> { async checkout(version: number | string): Promise<void> {
await this.inner.checkout(version); if (typeof version === "string") {
return this.inner.checkoutTag(version);
}
return this.inner.checkout(version);
} }
async checkoutLatest(): Promise<void> { async checkoutLatest(): Promise<void> {
@@ -679,6 +784,10 @@ export class LocalTable extends Table {
await this.inner.restore(); await this.inner.restore();
} }
async tags(): Promise<Tags> {
return await this.inner.tags();
}
async optimize(options?: Partial<OptimizeOptions>): Promise<OptimizeStats> { async optimize(options?: Partial<OptimizeOptions>): Promise<OptimizeStats> {
let cleanupOlderThanMs; let cleanupOlderThanMs;
if ( if (
@@ -709,6 +818,11 @@ export class LocalTable extends Table {
} }
return stats; return stats;
} }
async stats(): Promise<TableStatistics> {
return await this.inner.stats();
}
mergeInsert(on: string | string[]): MergeInsertBuilder { mergeInsert(on: string | string[]): MergeInsertBuilder {
on = Array.isArray(on) ? on : [on]; on = Array.isArray(on) ? on : [on];
return new MergeInsertBuilder(this.inner.mergeInsert(on), this.schema()); return new MergeInsertBuilder(this.inner.mergeInsert(on), this.schema());

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-darwin-arm64", "name": "@lancedb/lancedb-darwin-arm64",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"os": ["darwin"], "os": ["darwin"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node", "main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-darwin-x64", "name": "@lancedb/lancedb-darwin-x64",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"os": ["darwin"], "os": ["darwin"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.darwin-x64.node", "main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-arm64-gnu", "name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"os": ["linux"], "os": ["linux"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node", "main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-arm64-musl", "name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"os": ["linux"], "os": ["linux"],
"cpu": ["arm64"], "cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node", "main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-x64-gnu", "name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"os": ["linux"], "os": ["linux"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node", "main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-linux-x64-musl", "name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"os": ["linux"], "os": ["linux"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node", "main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-win32-arm64-msvc", "name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"os": [ "os": [
"win32" "win32"
], ],

View File

@@ -1,6 +1,6 @@
{ {
"name": "@lancedb/lancedb-win32-x64-msvc", "name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"os": ["win32"], "os": ["win32"],
"cpu": ["x64"], "cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node", "main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{ {
"name": "@lancedb/lancedb", "name": "@lancedb/lancedb",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "@lancedb/lancedb", "name": "@lancedb/lancedb",
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"

View File

@@ -11,7 +11,7 @@
"ann" "ann"
], ],
"private": false, "private": false,
"version": "0.19.0-beta.6", "version": "0.20.1-beta.2",
"main": "dist/index.js", "main": "dist/index.js",
"exports": { "exports": {
".": "./dist/index.js", ".": "./dist/index.js",

View File

@@ -125,32 +125,30 @@ impl Index {
ascii_folding: Option<bool>, ascii_folding: Option<bool>,
) -> Self { ) -> Self {
let mut opts = FtsIndexBuilder::default(); let mut opts = FtsIndexBuilder::default();
let mut tokenizer_configs = opts.tokenizer_configs.clone();
if let Some(with_position) = with_position { if let Some(with_position) = with_position {
opts = opts.with_position(with_position); opts = opts.with_position(with_position);
} }
if let Some(base_tokenizer) = base_tokenizer { if let Some(base_tokenizer) = base_tokenizer {
tokenizer_configs = tokenizer_configs.base_tokenizer(base_tokenizer); opts = opts.base_tokenizer(base_tokenizer);
} }
if let Some(language) = language { if let Some(language) = language {
tokenizer_configs = tokenizer_configs.language(&language).unwrap(); opts = opts.language(&language).unwrap();
} }
if let Some(max_token_length) = max_token_length { if let Some(max_token_length) = max_token_length {
tokenizer_configs = tokenizer_configs.max_token_length(Some(max_token_length as usize)); opts = opts.max_token_length(Some(max_token_length as usize));
} }
if let Some(lower_case) = lower_case { if let Some(lower_case) = lower_case {
tokenizer_configs = tokenizer_configs.lower_case(lower_case); opts = opts.lower_case(lower_case);
} }
if let Some(stem) = stem { if let Some(stem) = stem {
tokenizer_configs = tokenizer_configs.stem(stem); opts = opts.stem(stem);
} }
if let Some(remove_stop_words) = remove_stop_words { if let Some(remove_stop_words) = remove_stop_words {
tokenizer_configs = tokenizer_configs.remove_stop_words(remove_stop_words); opts = opts.remove_stop_words(remove_stop_words);
} }
if let Some(ascii_folding) = ascii_folding { if let Some(ascii_folding) = ascii_folding {
tokenizer_configs = tokenizer_configs.ascii_folding(ascii_folding); opts = opts.ascii_folding(ascii_folding);
} }
opts.tokenizer_configs = tokenizer_configs;
Self { Self {
inner: Mutex::new(Some(LanceDbIndex::FTS(opts))), inner: Mutex::new(Some(LanceDbIndex::FTS(opts))),

View File

@@ -1,11 +1,13 @@
// SPDX-License-Identifier: Apache-2.0 // SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors // SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::time::Duration;
use lancedb::{arrow::IntoArrow, ipc::ipc_file_to_batches, table::merge::MergeInsertBuilder}; use lancedb::{arrow::IntoArrow, ipc::ipc_file_to_batches, table::merge::MergeInsertBuilder};
use napi::bindgen_prelude::*; use napi::bindgen_prelude::*;
use napi_derive::napi; use napi_derive::napi;
use crate::error::convert_error; use crate::{error::convert_error, table::MergeResult};
#[napi] #[napi]
#[derive(Clone)] #[derive(Clone)]
@@ -36,8 +38,13 @@ impl NativeMergeInsertBuilder {
this this
} }
#[napi]
pub fn set_timeout(&mut self, timeout: u32) {
self.inner.timeout(Duration::from_millis(timeout as u64));
}
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn execute(&self, buf: Buffer) -> napi::Result<()> { pub async fn execute(&self, buf: Buffer) -> napi::Result<MergeResult> {
let data = ipc_file_to_batches(buf.to_vec()) let data = ipc_file_to_batches(buf.to_vec())
.and_then(IntoArrow::into_arrow) .and_then(IntoArrow::into_arrow)
.map_err(|e| { .map_err(|e| {
@@ -46,12 +53,13 @@ impl NativeMergeInsertBuilder {
let this = self.clone(); let this = self.clone();
this.inner.execute(data).await.map_err(|e| { let res = this.inner.execute(data).await.map_err(|e| {
napi::Error::from_reason(format!( napi::Error::from_reason(format!(
"Failed to execute merge insert: {}", "Failed to execute merge insert: {}",
convert_error(&e) convert_error(&e)
)) ))
}) })?;
Ok(res.into())
} }
} }

View File

@@ -4,7 +4,8 @@
use std::sync::Arc; use std::sync::Arc;
use lancedb::index::scalar::{ use lancedb::index::scalar::{
BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, PhraseQuery, BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
Operator, PhraseQuery,
}; };
use lancedb::query::ExecutableQuery; use lancedb::query::ExecutableQuery;
use lancedb::query::Query as LanceDbQuery; use lancedb::query::Query as LanceDbQuery;
@@ -177,6 +178,31 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize); self.inner = self.inner.clone().nprobes(nprobe as usize);
} }
#[napi]
pub fn minimum_nprobes(&mut self, minimum_nprobe: u32) -> napi::Result<()> {
self.inner = self
.inner
.clone()
.minimum_nprobes(minimum_nprobe as usize)
.default_error()?;
Ok(())
}
#[napi]
pub fn maximum_nprobes(&mut self, maximum_nprobes: u32) -> napi::Result<()> {
let maximum_nprobes = if maximum_nprobes == 0 {
None
} else {
Some(maximum_nprobes as usize)
};
self.inner = self
.inner
.clone()
.maximum_nprobes(maximum_nprobes)
.default_error()?;
Ok(())
}
#[napi] #[napi]
pub fn distance_range(&mut self, lower_bound: Option<f64>, upper_bound: Option<f64>) { pub fn distance_range(&mut self, lower_bound: Option<f64>, upper_bound: Option<f64>) {
// napi doesn't support f32, so we have to convert to f32 // napi doesn't support f32, so we have to convert to f32
@@ -308,6 +334,8 @@ impl JsFullTextQuery {
boost: f64, boost: f64,
fuzziness: Option<u32>, fuzziness: Option<u32>,
max_expansions: u32, max_expansions: u32,
operator: String,
prefix_length: u32,
) -> napi::Result<Self> { ) -> napi::Result<Self> {
Ok(Self { Ok(Self {
inner: MatchQuery::new(query) inner: MatchQuery::new(query)
@@ -315,18 +343,28 @@ impl JsFullTextQuery {
.with_boost(boost as f32) .with_boost(boost as f32)
.with_fuzziness(fuzziness) .with_fuzziness(fuzziness)
.with_max_expansions(max_expansions as usize) .with_max_expansions(max_expansions as usize)
.with_operator(
Operator::try_from(operator.as_str()).map_err(|e| {
napi::Error::from_reason(format!("Invalid operator: {}", e))
})?,
)
.with_prefix_length(prefix_length)
.into(), .into(),
}) })
} }
#[napi(factory)] #[napi(factory)]
pub fn phrase_query(query: String, column: String) -> napi::Result<Self> { pub fn phrase_query(query: String, column: String, slop: u32) -> napi::Result<Self> {
Ok(Self { Ok(Self {
inner: PhraseQuery::new(query).with_column(Some(column)).into(), inner: PhraseQuery::new(query)
.with_column(Some(column))
.with_slop(slop)
.into(),
}) })
} }
#[napi(factory)] #[napi(factory)]
#[allow(clippy::use_self)] // NAPI doesn't allow Self here but clippy reports it
pub fn boost_query( pub fn boost_query(
positive: &JsFullTextQuery, positive: &JsFullTextQuery,
negative: &JsFullTextQuery, negative: &JsFullTextQuery,
@@ -347,20 +385,48 @@ impl JsFullTextQuery {
query: String, query: String,
columns: Vec<String>, columns: Vec<String>,
boosts: Option<Vec<f64>>, boosts: Option<Vec<f64>>,
operator: String,
) -> napi::Result<Self> { ) -> napi::Result<Self> {
let q = match boosts { let q = match boosts {
Some(boosts) => MultiMatchQuery::try_new_with_boosts( Some(boosts) => MultiMatchQuery::try_new(query, columns)
query, .and_then(|q| q.try_with_boosts(boosts.into_iter().map(|v| v as f32).collect())),
columns,
boosts.into_iter().map(|v| v as f32).collect(),
),
None => MultiMatchQuery::try_new(query, columns), None => MultiMatchQuery::try_new(query, columns),
} }
.map_err(|e| { .map_err(|e| {
napi::Error::from_reason(format!("Failed to create multi match query: {}", e)) napi::Error::from_reason(format!("Failed to create multi match query: {}", e))
})?; })?;
Ok(Self { inner: q.into() }) let operator = Operator::try_from(operator.as_str()).map_err(|e| {
napi::Error::from_reason(format!("Invalid operator for multi match query: {}", e))
})?;
Ok(Self {
inner: q.with_operator(operator).into(),
})
}
#[napi(factory)]
pub fn boolean_query(queries: Vec<(String, &JsFullTextQuery)>) -> napi::Result<Self> {
let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries {
let occur = Occur::try_from(occur.as_str())
.map_err(|e| napi::Error::from_reason(e.to_string()))?;
sub_queries.push((occur, q.inner.clone()));
}
Ok(Self {
inner: BooleanQuery::new(sub_queries).into(),
})
}
#[napi(getter)]
pub fn query_type(&self) -> String {
match self.inner {
FtsQuery::Match(_) => "match".to_string(),
FtsQuery::Phrase(_) => "phrase".to_string(),
FtsQuery::Boost(_) => "boost".to_string(),
FtsQuery::MultiMatch(_) => "multi_match".to_string(),
FtsQuery::Boolean(_) => "boolean".to_string(),
}
} }
} }

View File

@@ -75,7 +75,7 @@ impl Table {
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn add(&self, buf: Buffer, mode: String) -> napi::Result<()> { pub async fn add(&self, buf: Buffer, mode: String) -> napi::Result<AddResult> {
let batches = ipc_file_to_batches(buf.to_vec()) let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?; .map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
let mut op = self.inner_ref()?.add(batches); let mut op = self.inner_ref()?.add(batches);
@@ -88,7 +88,8 @@ impl Table {
return Err(napi::Error::from_reason(format!("Invalid mode: {}", mode))); return Err(napi::Error::from_reason(format!("Invalid mode: {}", mode)));
}; };
op.execute().await.default_error() let res = op.execute().await.default_error()?;
Ok(res.into())
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
@@ -101,8 +102,9 @@ impl Table {
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn delete(&self, predicate: String) -> napi::Result<()> { pub async fn delete(&self, predicate: String) -> napi::Result<DeleteResult> {
self.inner_ref()?.delete(&predicate).await.default_error() let res = self.inner_ref()?.delete(&predicate).await.default_error()?;
Ok(res.into())
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
@@ -111,6 +113,7 @@ impl Table {
index: Option<&Index>, index: Option<&Index>,
column: String, column: String,
replace: Option<bool>, replace: Option<bool>,
wait_timeout_s: Option<i64>,
) -> napi::Result<()> { ) -> napi::Result<()> {
let lancedb_index = if let Some(index) = index { let lancedb_index = if let Some(index) = index {
index.consume()? index.consume()?
@@ -121,6 +124,10 @@ impl Table {
if let Some(replace) = replace { if let Some(replace) = replace {
builder = builder.replace(replace); builder = builder.replace(replace);
} }
if let Some(timeout) = wait_timeout_s {
builder =
builder.wait_timeout(std::time::Duration::from_secs(timeout.try_into().unwrap()));
}
builder.execute().await.default_error() builder.execute().await.default_error()
} }
@@ -132,12 +139,38 @@ impl Table {
.default_error() .default_error()
} }
#[napi(catch_unwind)]
pub async fn prewarm_index(&self, index_name: String) -> napi::Result<()> {
self.inner_ref()?
.prewarm_index(&index_name)
.await
.default_error()
}
#[napi(catch_unwind)]
pub async fn wait_for_index(&self, index_names: Vec<String>, timeout_s: i64) -> Result<()> {
let timeout = std::time::Duration::from_secs(timeout_s.try_into().unwrap());
let index_names: Vec<&str> = index_names.iter().map(|s| s.as_str()).collect();
let slice: &[&str] = &index_names;
self.inner_ref()?
.wait_for_index(slice, timeout)
.await
.default_error()
}
#[napi(catch_unwind)]
pub async fn stats(&self) -> Result<TableStatistics> {
let stats = self.inner_ref()?.stats().await.default_error()?;
Ok(stats.into())
}
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn update( pub async fn update(
&self, &self,
only_if: Option<String>, only_if: Option<String>,
columns: Vec<(String, String)>, columns: Vec<(String, String)>,
) -> napi::Result<u64> { ) -> napi::Result<UpdateResult> {
let mut op = self.inner_ref()?.update(); let mut op = self.inner_ref()?.update();
if let Some(only_if) = only_if { if let Some(only_if) = only_if {
op = op.only_if(only_if); op = op.only_if(only_if);
@@ -145,7 +178,8 @@ impl Table {
for (column_name, value) in columns { for (column_name, value) in columns {
op = op.column(column_name, value); op = op.column(column_name, value);
} }
op.execute().await.default_error() let res = op.execute().await.default_error()?;
Ok(res.into())
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
@@ -159,21 +193,28 @@ impl Table {
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn add_columns(&self, transforms: Vec<AddColumnsSql>) -> napi::Result<()> { pub async fn add_columns(
&self,
transforms: Vec<AddColumnsSql>,
) -> napi::Result<AddColumnsResult> {
let transforms = transforms let transforms = transforms
.into_iter() .into_iter()
.map(|sql| (sql.name, sql.value_sql)) .map(|sql| (sql.name, sql.value_sql))
.collect::<Vec<_>>(); .collect::<Vec<_>>();
let transforms = NewColumnTransform::SqlExpressions(transforms); let transforms = NewColumnTransform::SqlExpressions(transforms);
self.inner_ref()? let res = self
.inner_ref()?
.add_columns(transforms, None) .add_columns(transforms, None)
.await .await
.default_error()?; .default_error()?;
Ok(()) Ok(res.into())
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn alter_columns(&self, alterations: Vec<ColumnAlteration>) -> napi::Result<()> { pub async fn alter_columns(
&self,
alterations: Vec<ColumnAlteration>,
) -> napi::Result<AlterColumnsResult> {
for alteration in &alterations { for alteration in &alterations {
if alteration.rename.is_none() if alteration.rename.is_none()
&& alteration.nullable.is_none() && alteration.nullable.is_none()
@@ -190,21 +231,23 @@ impl Table {
.collect::<std::result::Result<Vec<_>, String>>() .collect::<std::result::Result<Vec<_>, String>>()
.map_err(napi::Error::from_reason)?; .map_err(napi::Error::from_reason)?;
self.inner_ref()? let res = self
.inner_ref()?
.alter_columns(&alterations) .alter_columns(&alterations)
.await .await
.default_error()?; .default_error()?;
Ok(()) Ok(res.into())
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<()> { pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<DropColumnsResult> {
let col_refs = columns.iter().map(String::as_str).collect::<Vec<_>>(); let col_refs = columns.iter().map(String::as_str).collect::<Vec<_>>();
self.inner_ref()? let res = self
.inner_ref()?
.drop_columns(&col_refs) .drop_columns(&col_refs)
.await .await
.default_error()?; .default_error()?;
Ok(()) Ok(res.into())
} }
#[napi(catch_unwind)] #[napi(catch_unwind)]
@@ -224,6 +267,14 @@ impl Table {
.default_error() .default_error()
} }
#[napi(catch_unwind)]
pub async fn checkout_tag(&self, tag: String) -> napi::Result<()> {
self.inner_ref()?
.checkout_tag(tag.as_str())
.await
.default_error()
}
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn checkout_latest(&self) -> napi::Result<()> { pub async fn checkout_latest(&self) -> napi::Result<()> {
self.inner_ref()?.checkout_latest().await.default_error() self.inner_ref()?.checkout_latest().await.default_error()
@@ -256,6 +307,13 @@ impl Table {
self.inner_ref()?.restore().await.default_error() self.inner_ref()?.restore().await.default_error()
} }
#[napi(catch_unwind)]
pub async fn tags(&self) -> napi::Result<Tags> {
Ok(Tags {
inner: self.inner_ref()?.clone(),
})
}
#[napi(catch_unwind)] #[napi(catch_unwind)]
pub async fn optimize( pub async fn optimize(
&self, &self,
@@ -515,9 +573,257 @@ impl From<lancedb::index::IndexStatistics> for IndexStatistics {
} }
} }
#[napi(object)]
pub struct TableStatistics {
/// The total number of bytes in the table
pub total_bytes: i64,
/// The number of rows in the table
pub num_rows: i64,
/// The number of indices in the table
pub num_indices: i64,
/// Statistics on table fragments
pub fragment_stats: FragmentStatistics,
}
#[napi(object)]
pub struct FragmentStatistics {
/// The number of fragments in the table
pub num_fragments: i64,
/// The number of uncompacted fragments in the table
pub num_small_fragments: i64,
/// Statistics on the number of rows in the table fragments
pub lengths: FragmentSummaryStats,
}
#[napi(object)]
pub struct FragmentSummaryStats {
/// The number of rows in the fragment with the fewest rows
pub min: i64,
/// The number of rows in the fragment with the most rows
pub max: i64,
/// The mean number of rows in the fragments
pub mean: i64,
/// The 25th percentile of number of rows in the fragments
pub p25: i64,
/// The 50th percentile of number of rows in the fragments
pub p50: i64,
/// The 75th percentile of number of rows in the fragments
pub p75: i64,
/// The 99th percentile of number of rows in the fragments
pub p99: i64,
}
impl From<lancedb::table::TableStatistics> for TableStatistics {
fn from(v: lancedb::table::TableStatistics) -> Self {
Self {
total_bytes: v.total_bytes as i64,
num_rows: v.num_rows as i64,
num_indices: v.num_indices as i64,
fragment_stats: FragmentStatistics {
num_fragments: v.fragment_stats.num_fragments as i64,
num_small_fragments: v.fragment_stats.num_small_fragments as i64,
lengths: FragmentSummaryStats {
min: v.fragment_stats.lengths.min as i64,
max: v.fragment_stats.lengths.max as i64,
mean: v.fragment_stats.lengths.mean as i64,
p25: v.fragment_stats.lengths.p25 as i64,
p50: v.fragment_stats.lengths.p50 as i64,
p75: v.fragment_stats.lengths.p75 as i64,
p99: v.fragment_stats.lengths.p99 as i64,
},
},
}
}
}
#[napi(object)] #[napi(object)]
pub struct Version { pub struct Version {
pub version: i64, pub version: i64,
pub timestamp: i64, pub timestamp: i64,
pub metadata: HashMap<String, String>, pub metadata: HashMap<String, String>,
} }
#[napi(object)]
pub struct UpdateResult {
pub rows_updated: i64,
pub version: i64,
}
impl From<lancedb::table::UpdateResult> for UpdateResult {
fn from(value: lancedb::table::UpdateResult) -> Self {
Self {
rows_updated: value.rows_updated as i64,
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct AddResult {
pub version: i64,
}
impl From<lancedb::table::AddResult> for AddResult {
fn from(value: lancedb::table::AddResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct DeleteResult {
pub version: i64,
}
impl From<lancedb::table::DeleteResult> for DeleteResult {
fn from(value: lancedb::table::DeleteResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct MergeResult {
pub version: i64,
pub num_inserted_rows: i64,
pub num_updated_rows: i64,
pub num_deleted_rows: i64,
}
impl From<lancedb::table::MergeResult> for MergeResult {
fn from(value: lancedb::table::MergeResult) -> Self {
Self {
version: value.version as i64,
num_inserted_rows: value.num_inserted_rows as i64,
num_updated_rows: value.num_updated_rows as i64,
num_deleted_rows: value.num_deleted_rows as i64,
}
}
}
#[napi(object)]
pub struct AddColumnsResult {
pub version: i64,
}
impl From<lancedb::table::AddColumnsResult> for AddColumnsResult {
fn from(value: lancedb::table::AddColumnsResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct AlterColumnsResult {
pub version: i64,
}
impl From<lancedb::table::AlterColumnsResult> for AlterColumnsResult {
fn from(value: lancedb::table::AlterColumnsResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct DropColumnsResult {
pub version: i64,
}
impl From<lancedb::table::DropColumnsResult> for DropColumnsResult {
fn from(value: lancedb::table::DropColumnsResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi]
pub struct TagContents {
pub version: i64,
pub manifest_size: i64,
}
#[napi]
pub struct Tags {
inner: LanceDbTable,
}
#[napi]
impl Tags {
#[napi]
pub async fn list(&self) -> napi::Result<HashMap<String, TagContents>> {
let rust_tags = self.inner.tags().await.default_error()?;
let tag_list = rust_tags.as_ref().list().await.default_error()?;
let tag_contents = tag_list
.into_iter()
.map(|(k, v)| {
(
k,
TagContents {
version: v.version as i64,
manifest_size: v.manifest_size as i64,
},
)
})
.collect();
Ok(tag_contents)
}
#[napi]
pub async fn get_version(&self, tag: String) -> napi::Result<i64> {
let rust_tags = self.inner.tags().await.default_error()?;
rust_tags
.as_ref()
.get_version(tag.as_str())
.await
.map(|v| v as i64)
.default_error()
}
#[napi]
pub async unsafe fn create(&mut self, tag: String, version: i64) -> napi::Result<()> {
let mut rust_tags = self.inner.tags().await.default_error()?;
rust_tags
.as_mut()
.create(tag.as_str(), version as u64)
.await
.default_error()
}
#[napi]
pub async unsafe fn delete(&mut self, tag: String) -> napi::Result<()> {
let mut rust_tags = self.inner.tags().await.default_error()?;
rust_tags
.as_mut()
.delete(tag.as_str())
.await
.default_error()
}
#[napi]
pub async unsafe fn update(&mut self, tag: String, version: i64) -> napi::Result<()> {
let mut rust_tags = self.inner.tags().await.default_error()?;
rust_tags
.as_mut()
.update(tag.as_str(), version as u64)
.await
.default_error()
}
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion] [tool.bumpversion]
current_version = "0.22.0-beta.7" current_version = "0.24.0"
parse = """(?x) parse = """(?x)
(?P<major>0|[1-9]\\d*)\\. (?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\. (?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "lancedb-python" name = "lancedb-python"
version = "0.22.0-beta.7" version = "0.24.0"
edition.workspace = true edition.workspace = true
description = "Python bindings for LanceDB" description = "Python bindings for LanceDB"
license.workspace = true license.workspace = true
@@ -14,11 +14,11 @@ name = "_lancedb"
crate-type = ["cdylib"] crate-type = ["cdylib"]
[dependencies] [dependencies]
arrow = { version = "54.1", features = ["pyarrow"] } arrow = { version = "55.1", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb", default-features = false } lancedb = { path = "../rust/lancedb", default-features = false }
env_logger.workspace = true env_logger.workspace = true
pyo3 = { version = "0.23", features = ["extension-module", "abi3-py39"] } pyo3 = { version = "0.24", features = ["extension-module", "abi3-py39"] }
pyo3-async-runtimes = { version = "0.23", features = [ pyo3-async-runtimes = { version = "0.24", features = [
"attributes", "attributes",
"tokio-runtime", "tokio-runtime",
] } ] }
@@ -27,7 +27,7 @@ futures.workspace = true
tokio = { version = "1.40", features = ["sync"] } tokio = { version = "1.40", features = ["sync"] }
[build-dependencies] [build-dependencies]
pyo3-build-config = { version = "0.23", features = [ pyo3-build-config = { version = "0.24", features = [
"extension-module", "extension-module",
"abi3-py39", "abi3-py39",
] } ] }

View File

@@ -7,7 +7,7 @@ dependencies = [
"numpy", "numpy",
"overrides>=0.7", "overrides>=0.7",
"packaging", "packaging",
"pyarrow>=14", "pyarrow>=16",
"pydantic>=1.10", "pydantic>=1.10",
"tqdm>=4.27.0", "tqdm>=4.27.0",
] ]
@@ -44,7 +44,7 @@ repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
pylance = [ pylance = [
"pylance>=0.23.2", "pylance>=0.25",
] ]
tests = [ tests = [
"aiohttp", "aiohttp",
@@ -58,8 +58,9 @@ tests = [
"polars>=0.19, <=1.3.0", "polars>=0.19, <=1.3.0",
"tantivy", "tantivy",
"pyarrow-stubs", "pyarrow-stubs",
"pylance>=0.23.2", "pylance>=0.25",
"requests", "requests",
"datafusion",
] ]
dev = [ dev = [
"ruff", "ruff",
@@ -77,6 +78,7 @@ embeddings = [
"pillow", "pillow",
"open-clip-torch", "open-clip-torch",
"cohere", "cohere",
"colpali-engine>=0.3.10",
"huggingface_hub", "huggingface_hub",
"InstructorEmbedding", "InstructorEmbedding",
"google.generativeai", "google.generativeai",

View File

@@ -1,5 +1,5 @@
from datetime import timedelta from datetime import timedelta
from typing import Dict, List, Optional, Tuple, Any, Union, Literal from typing import Dict, List, Optional, Tuple, Any, TypedDict, Union, Literal
import pyarrow as pa import pyarrow as pa
@@ -36,8 +36,10 @@ class Table:
async def schema(self) -> pa.Schema: ... async def schema(self) -> pa.Schema: ...
async def add( async def add(
self, data: pa.RecordBatchReader, mode: Literal["append", "overwrite"] self, data: pa.RecordBatchReader, mode: Literal["append", "overwrite"]
) -> None: ... ) -> AddResult: ...
async def update(self, updates: Dict[str, str], where: Optional[str]) -> None: ... async def update(
self, updates: Dict[str, str], where: Optional[str]
) -> UpdateResult: ...
async def count_rows(self, filter: Optional[str]) -> int: ... async def count_rows(self, filter: Optional[str]) -> int: ...
async def create_index( async def create_index(
self, self,
@@ -47,23 +49,34 @@ class Table:
): ... ): ...
async def list_versions(self) -> List[Dict[str, Any]]: ... async def list_versions(self) -> List[Dict[str, Any]]: ...
async def version(self) -> int: ... async def version(self) -> int: ...
async def checkout(self, version: int): ... async def checkout(self, version: Union[int, str]): ...
async def checkout_latest(self): ... async def checkout_latest(self): ...
async def restore(self, version: Optional[int] = None): ... async def restore(self, version: Optional[Union[int, str]] = None): ...
async def list_indices(self) -> list[IndexConfig]: ... async def list_indices(self) -> list[IndexConfig]: ...
async def delete(self, filter: str): ... async def delete(self, filter: str) -> DeleteResult: ...
async def add_columns(self, columns: list[tuple[str, str]]) -> None: ... async def add_columns(self, columns: list[tuple[str, str]]) -> AddColumnsResult: ...
async def add_columns_with_schema(self, schema: pa.Schema) -> None: ... async def add_columns_with_schema(self, schema: pa.Schema) -> AddColumnsResult: ...
async def alter_columns(self, columns: list[dict[str, Any]]) -> None: ... async def alter_columns(
self, columns: list[dict[str, Any]]
) -> AlterColumnsResult: ...
async def optimize( async def optimize(
self, self,
*, *,
cleanup_since_ms: Optional[int] = None, cleanup_since_ms: Optional[int] = None,
delete_unverified: Optional[bool] = None, delete_unverified: Optional[bool] = None,
) -> OptimizeStats: ... ) -> OptimizeStats: ...
@property
def tags(self) -> Tags: ...
def query(self) -> Query: ... def query(self) -> Query: ...
def vector_search(self) -> VectorQuery: ... def vector_search(self) -> VectorQuery: ...
class Tags:
async def list(self) -> Dict[str, Tag]: ...
async def get_version(self, tag: str) -> int: ...
async def create(self, tag: str, version: int): ...
async def delete(self, tag: str): ...
async def update(self, tag: str, version: int): ...
class IndexConfig: class IndexConfig:
index_type: str index_type: str
columns: List[str] columns: List[str]
@@ -130,6 +143,8 @@ class VectorQuery:
def postfilter(self): ... def postfilter(self): ...
def refine_factor(self, refine_factor: int): ... def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ... def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ... def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ... def nearest_to_text(self, query: dict) -> HybridQuery: ...
def to_query_request(self) -> PyQueryRequest: ... def to_query_request(self) -> PyQueryRequest: ...
@@ -145,6 +160,8 @@ class HybridQuery:
def distance_type(self, distance_type: str): ... def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ... def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ... def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ... def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ... def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ... def to_fts_query(self) -> FTSQuery: ...
@@ -152,23 +169,21 @@ class HybridQuery:
def get_with_row_id(self) -> bool: ... def get_with_row_id(self) -> bool: ...
def to_query_request(self) -> PyQueryRequest: ... def to_query_request(self) -> PyQueryRequest: ...
class PyFullTextSearchQuery: class FullTextQuery:
columns: Optional[List[str]] pass
query: str
limit: Optional[int]
wand_factor: Optional[float]
class PyQueryRequest: class PyQueryRequest:
limit: Optional[int] limit: Optional[int]
offset: Optional[int] offset: Optional[int]
filter: Optional[Union[str, bytes]] filter: Optional[Union[str, bytes]]
full_text_search: Optional[PyFullTextSearchQuery] full_text_search: Optional[FullTextQuery]
select: Optional[Union[str, List[str]]] select: Optional[Union[str, List[str]]]
fast_search: Optional[bool] fast_search: Optional[bool]
with_row_id: Optional[bool] with_row_id: Optional[bool]
column: Optional[str] column: Optional[str]
query_vector: Optional[List[pa.Array]] query_vector: Optional[List[pa.Array]]
nprobes: Optional[int] minimum_nprobes: Optional[int]
maximum_nprobes: Optional[int]
lower_bound: Optional[float] lower_bound: Optional[float]
upper_bound: Optional[float] upper_bound: Optional[float]
ef: Optional[int] ef: Optional[int]
@@ -195,3 +210,32 @@ class RemovalStats:
class OptimizeStats: class OptimizeStats:
compaction: CompactionStats compaction: CompactionStats
prune: RemovalStats prune: RemovalStats
class Tag(TypedDict):
version: int
manifest_size: int
class AddResult:
version: int
class DeleteResult:
version: int
class UpdateResult:
rows_updated: int
version: int
class MergeResult:
version: int
num_updated_rows: int
num_inserted_rows: int
num_deleted_rows: int
class AddColumnsResult:
version: int
class AlterColumnsResult:
version: int
class DropColumnsResult:
version: int

View File

@@ -9,7 +9,7 @@ import numpy as np
import pyarrow as pa import pyarrow as pa
import pyarrow.dataset import pyarrow.dataset
from .dependencies import pandas as pd from .dependencies import _check_for_pandas, pandas as pd
DATA = Union[List[dict], "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]] DATA = Union[List[dict], "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray] VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
@@ -63,7 +63,7 @@ def data_to_reader(
data: DATA, schema: Optional[pa.Schema] = None data: DATA, schema: Optional[pa.Schema] = None
) -> pa.RecordBatchReader: ) -> pa.RecordBatchReader:
"""Convert various types of input into a RecordBatchReader""" """Convert various types of input into a RecordBatchReader"""
if pd is not None and isinstance(data, pd.DataFrame): if _check_for_pandas(data) and isinstance(data, pd.DataFrame):
return pa.Table.from_pandas(data, schema=schema).to_reader() return pa.Table.from_pandas(data, schema=schema).to_reader()
elif isinstance(data, pa.Table): elif isinstance(data, pa.Table):
return data.to_reader() return data.to_reader()

View File

@@ -19,3 +19,4 @@ from .imagebind import ImageBindEmbeddings
from .jinaai import JinaEmbeddings from .jinaai import JinaEmbeddings
from .watsonx import WatsonxEmbeddings from .watsonx import WatsonxEmbeddings
from .voyageai import VoyageAIEmbeddingFunction from .voyageai import VoyageAIEmbeddingFunction
from .colpali import ColPaliEmbeddings

View File

@@ -0,0 +1,255 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from functools import lru_cache
from typing import List, Union, Optional, Any
import numpy as np
import io
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import TEXT, IMAGES, is_flash_attn_2_available
@register("colpali")
class ColPaliEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the ColPali engine for
multimodal multi-vector embeddings.
This embedding function supports ColQwen2.5 models, producing multivector outputs
for both text and image inputs. The output embeddings are lists of vectors, each
vector being 128-dimensional by default, represented as List[List[float]].
Parameters
----------
model_name : str
The name of the model to use (e.g., "Metric-AI/ColQwen2.5-3b-multilingual-v1.0")
device : str
The device for inference (default "cuda:0").
dtype : str
Data type for model weights (default "bfloat16").
use_token_pooling : bool
Whether to use token pooling to reduce embedding size (default True).
pool_factor : int
Factor to reduce sequence length if token pooling is enabled (default 2).
quantization_config : Optional[BitsAndBytesConfig]
Quantization configuration for the model. (default None, bitsandbytes needed)
batch_size : int
Batch size for processing inputs (default 2).
"""
model_name: str = "Metric-AI/ColQwen2.5-3b-multilingual-v1.0"
device: str = "auto"
dtype: str = "bfloat16"
use_token_pooling: bool = True
pool_factor: int = 2
quantization_config: Optional[Any] = None
batch_size: int = 2
_model = None
_processor = None
_token_pooler = None
_vector_dim = None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
(
self._model,
self._processor,
self._token_pooler,
) = self._load_model(
self.model_name,
self.dtype,
self.device,
self.use_token_pooling,
self.quantization_config,
)
@staticmethod
@lru_cache(maxsize=1)
def _load_model(
model_name: str,
dtype: str,
device: str,
use_token_pooling: bool,
quantization_config: Optional[Any],
):
"""
Initialize and cache the ColPali model, processor, and token pooler.
"""
torch = attempt_import_or_raise("torch", "torch")
transformers = attempt_import_or_raise("transformers", "transformers")
colpali_engine = attempt_import_or_raise("colpali_engine", "colpali_engine")
from colpali_engine.compression.token_pooling import HierarchicalTokenPooler
if quantization_config is not None:
if not isinstance(quantization_config, transformers.BitsAndBytesConfig):
raise ValueError("quantization_config must be a BitsAndBytesConfig")
if dtype == "bfloat16":
torch_dtype = torch.bfloat16
elif dtype == "float16":
torch_dtype = torch.float16
elif dtype == "float64":
torch_dtype = torch.float64
else:
torch_dtype = torch.float32
model = colpali_engine.models.ColQwen2_5.from_pretrained(
model_name,
torch_dtype=torch_dtype,
device_map=device,
quantization_config=quantization_config
if quantization_config is not None
else None,
attn_implementation="flash_attention_2"
if is_flash_attn_2_available()
else None,
).eval()
processor = colpali_engine.models.ColQwen2_5_Processor.from_pretrained(
model_name
)
token_pooler = HierarchicalTokenPooler() if use_token_pooling else None
return model, processor, token_pooler
def ndims(self):
"""
Return the dimension of a vector in the multivector output (e.g., 128).
"""
torch = attempt_import_or_raise("torch", "torch")
if self._vector_dim is None:
dummy_query = "test"
batch_queries = self._processor.process_queries([dummy_query]).to(
self._model.device
)
with torch.no_grad():
query_embeddings = self._model(**batch_queries)
if self.use_token_pooling and self._token_pooler is not None:
query_embeddings = self._token_pooler.pool_embeddings(
query_embeddings,
pool_factor=self.pool_factor,
padding=True,
padding_side=self._processor.tokenizer.padding_side,
)
self._vector_dim = query_embeddings[0].shape[-1]
return self._vector_dim
def _process_embeddings(self, embeddings):
"""
Format model embeddings into List[List[float]].
Use token pooling if enabled.
"""
torch = attempt_import_or_raise("torch", "torch")
if self.use_token_pooling and self._token_pooler is not None:
embeddings = self._token_pooler.pool_embeddings(
embeddings,
pool_factor=self.pool_factor,
padding=True,
padding_side=self._processor.tokenizer.padding_side,
)
if isinstance(embeddings, torch.Tensor):
tensors = embeddings.detach().cpu()
if tensors.dtype == torch.bfloat16:
tensors = tensors.to(torch.float32)
return (
tensors.numpy()
.astype(np.float64 if self.dtype == "float64" else np.float32)
.tolist()
)
return []
def generate_text_embeddings(self, text: TEXT) -> List[List[List[float]]]:
"""
Generate embeddings for text input.
"""
torch = attempt_import_or_raise("torch", "torch")
text = self.sanitize_input(text)
all_embeddings = []
for i in range(0, len(text), self.batch_size):
batch_text = text[i : i + self.batch_size]
batch_queries = self._processor.process_queries(batch_text).to(
self._model.device
)
with torch.no_grad():
query_embeddings = self._model(**batch_queries)
all_embeddings.extend(self._process_embeddings(query_embeddings))
return all_embeddings
def _prepare_images(self, images: IMAGES) -> List:
"""
Convert image inputs to PIL Images.
"""
PIL = attempt_import_or_raise("PIL", "pillow")
requests = attempt_import_or_raise("requests", "requests")
images = self.sanitize_input(images)
pil_images = []
try:
for image in images:
if isinstance(image, str):
if image.startswith(("http://", "https://")):
response = requests.get(image, timeout=10)
response.raise_for_status()
pil_images.append(PIL.Image.open(io.BytesIO(response.content)))
else:
with PIL.Image.open(image) as im:
pil_images.append(im.copy())
elif isinstance(image, bytes):
pil_images.append(PIL.Image.open(io.BytesIO(image)))
else:
# Assume it's a PIL Image; will raise if invalid
pil_images.append(image)
except Exception as e:
raise ValueError(f"Failed to process image: {e}")
return pil_images
def generate_image_embeddings(self, images: IMAGES) -> List[List[List[float]]]:
"""
Generate embeddings for a batch of images.
"""
torch = attempt_import_or_raise("torch", "torch")
pil_images = self._prepare_images(images)
all_embeddings = []
for i in range(0, len(pil_images), self.batch_size):
batch_images = pil_images[i : i + self.batch_size]
batch_images = self._processor.process_images(batch_images).to(
self._model.device
)
with torch.no_grad():
image_embeddings = self._model(**batch_images)
all_embeddings.extend(self._process_embeddings(image_embeddings))
return all_embeddings
def compute_query_embeddings(
self, query: Union[str, IMAGES], *args, **kwargs
) -> List[List[List[float]]]:
"""
Compute embeddings for a single user query (text only).
"""
if not isinstance(query, str):
raise ValueError(
"Query must be a string, image to image search is not supported"
)
return self.generate_text_embeddings([query])
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[List[List[float]]]:
"""
Compute embeddings for a batch of source images.
Parameters
----------
images : Union[str, bytes, List, pa.Array, pa.ChunkedArray, np.ndarray]
Batch of images (paths, URLs, bytes, or PIL Images).
"""
images = self.sanitize_input(images)
return self.generate_image_embeddings(images)

View File

@@ -18,6 +18,7 @@ import numpy as np
import pyarrow as pa import pyarrow as pa
from ..dependencies import pandas as pd from ..dependencies import pandas as pd
from ..util import attempt_import_or_raise
# ruff: noqa: PERF203 # ruff: noqa: PERF203
@@ -275,3 +276,12 @@ def url_retrieve(url: str):
def api_key_not_found_help(provider): def api_key_not_found_help(provider):
logging.error("Could not find API key for %s", provider) logging.error("Could not find API key for %s", provider)
raise ValueError(f"Please set the {provider.upper()}_API_KEY environment variable.") raise ValueError(f"Please set the {provider.upper()}_API_KEY environment variable.")
def is_flash_attn_2_available():
try:
attempt_import_or_raise("flash_attn", "flash_attn")
return True
except ImportError:
return False

View File

@@ -102,7 +102,7 @@ class FTS:
Attributes Attributes
---------- ----------
with_position : bool, default True with_position : bool, default False
Whether to store the position of the token in the document. Setting this Whether to store the position of the token in the document. Setting this
to False can reduce the size of the index and improve indexing speed, to False can reduce the size of the index and improve indexing speed,
but it will disable support for phrase queries. but it will disable support for phrase queries.
@@ -118,25 +118,25 @@ class FTS:
ignored. ignored.
lower_case : bool, default True lower_case : bool, default True
Whether to convert the token to lower case. This makes queries case-insensitive. Whether to convert the token to lower case. This makes queries case-insensitive.
stem : bool, default False stem : bool, default True
Whether to stem the token. Stemming reduces words to their root form. Whether to stem the token. Stemming reduces words to their root form.
For example, in English "running" and "runs" would both be reduced to "run". For example, in English "running" and "runs" would both be reduced to "run".
remove_stop_words : bool, default False remove_stop_words : bool, default True
Whether to remove stop words. Stop words are common words that are often Whether to remove stop words. Stop words are common words that are often
removed from text before indexing. For example, in English "the" and "and". removed from text before indexing. For example, in English "the" and "and".
ascii_folding : bool, default False ascii_folding : bool, default True
Whether to fold ASCII characters. This converts accented characters to Whether to fold ASCII characters. This converts accented characters to
their ASCII equivalent. For example, "café" would be converted to "cafe". their ASCII equivalent. For example, "café" would be converted to "cafe".
""" """
with_position: bool = True with_position: bool = False
base_tokenizer: Literal["simple", "raw", "whitespace"] = "simple" base_tokenizer: Literal["simple", "raw", "whitespace"] = "simple"
language: str = "English" language: str = "English"
max_token_length: Optional[int] = 40 max_token_length: Optional[int] = 40
lower_case: bool = True lower_case: bool = True
stem: bool = False stem: bool = True
remove_stop_words: bool = False remove_stop_words: bool = True
ascii_folding: bool = False ascii_folding: bool = True
@dataclass @dataclass

View File

@@ -4,10 +4,14 @@
from __future__ import annotations from __future__ import annotations
from datetime import timedelta
from typing import TYPE_CHECKING, List, Optional from typing import TYPE_CHECKING, List, Optional
if TYPE_CHECKING: if TYPE_CHECKING:
from .common import DATA from .common import DATA
from ._lancedb import (
MergeInsertResult,
)
class LanceMergeInsertBuilder(object): class LanceMergeInsertBuilder(object):
@@ -28,6 +32,7 @@ class LanceMergeInsertBuilder(object):
self._when_not_matched_insert_all = False self._when_not_matched_insert_all = False
self._when_not_matched_by_source_delete = False self._when_not_matched_by_source_delete = False
self._when_not_matched_by_source_condition = None self._when_not_matched_by_source_condition = None
self._timeout = None
def when_matched_update_all( def when_matched_update_all(
self, *, where: Optional[str] = None self, *, where: Optional[str] = None
@@ -78,7 +83,8 @@ class LanceMergeInsertBuilder(object):
new_data: DATA, new_data: DATA,
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
): timeout: Optional[timedelta] = None,
) -> MergeInsertResult:
""" """
Executes the merge insert operation Executes the merge insert operation
@@ -95,5 +101,24 @@ class LanceMergeInsertBuilder(object):
One of "error", "drop", "fill". One of "error", "drop", "fill".
fill_value: float, default 0. fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill". The value to use when filling vectors. Only used if on_bad_vectors="fill".
timeout: Optional[timedelta], default None
Maximum time to run the operation before cancelling it.
By default, there is a 30-second timeout that is only enforced after the
first attempt. This is to prevent spending too long retrying to resolve
conflicts. For example, if a write attempt takes 20 seconds and fails,
the second attempt will be cancelled after 10 seconds, hitting the
30-second timeout. However, a write that takes one hour and succeeds on the
first attempt will not be cancelled.
When this is set, the timeout is enforced on all attempts, including
the first.
Returns
-------
MergeInsertResult
version: the new version number of the table after doing merge insert.
""" """
if timeout is not None:
self._timeout = timeout
return self._table._do_merge(self, new_data, on_bad_vectors, fill_value) return self._table._do_merge(self, new_data, on_bad_vectors, fill_value)

View File

@@ -152,6 +152,104 @@ def Vector(
return FixedSizeList return FixedSizeList
def MultiVector(
dim: int, value_type: pa.DataType = pa.float32(), nullable: bool = True
) -> Type:
"""Pydantic MultiVector Type for multi-vector embeddings.
This type represents a list of vectors, each with the same dimension.
Useful for models that produce multiple embeddings per input, like ColPali.
Parameters
----------
dim : int
The dimension of each vector in the multi-vector.
value_type : pyarrow.DataType, optional
The value type of the vectors, by default pa.float32()
nullable : bool, optional
Whether the multi-vector is nullable, by default it is True.
Examples
--------
>>> import pydantic
>>> from lancedb.pydantic import MultiVector
...
>>> class MyModel(pydantic.BaseModel):
... id: int
... text: str
... embeddings: MultiVector(128) # List of 128-dimensional vectors
>>> schema = pydantic_to_schema(MyModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("text", pa.utf8(), False),
... pa.field("embeddings", pa.list_(pa.list_(pa.float32(), 128)))
... ])
"""
class MultiVectorList(list, FixedSizeListMixin):
def __repr__(self):
return f"MultiVector(dim={dim})"
@staticmethod
def nullable() -> bool:
return nullable
@staticmethod
def dim() -> int:
return dim
@staticmethod
def value_arrow_type() -> pa.DataType:
return value_type
@staticmethod
def is_multi_vector() -> bool:
return True
@classmethod
def __get_pydantic_core_schema__(
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
cls,
core_schema.list_schema(
items_schema=core_schema.list_schema(
min_length=dim,
max_length=dim,
items_schema=core_schema.float_schema(),
),
),
)
@classmethod
def __get_validators__(cls) -> Generator[Callable, None, None]:
yield cls.validate
# For pydantic v1
@classmethod
def validate(cls, v):
if not isinstance(v, (list, range)):
raise TypeError("A list of vectors is needed")
for vec in v:
if not isinstance(vec, (list, range, np.ndarray)) or len(vec) != dim:
raise TypeError(f"Each vector must be a list of {dim} numbers")
return cls(v)
if PYDANTIC_VERSION.major < 2:
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]):
field_schema["items"] = {
"type": "array",
"items": {"type": "number"},
"minItems": dim,
"maxItems": dim,
}
return MultiVectorList
def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType: def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType:
"""Convert a field with native Python type to Arrow data type. """Convert a field with native Python type to Arrow data type.
@@ -206,6 +304,9 @@ def _pydantic_type_to_arrow_type(tp: Any, field: FieldInfo) -> pa.DataType:
fields = _pydantic_model_to_fields(tp) fields = _pydantic_model_to_fields(tp)
return pa.struct(fields) return pa.struct(fields)
if issubclass(tp, FixedSizeListMixin): if issubclass(tp, FixedSizeListMixin):
if getattr(tp, "is_multi_vector", lambda: False)():
return pa.list_(pa.list_(tp.value_arrow_type(), tp.dim()))
# For regular Vector
return pa.list_(tp.value_arrow_type(), tp.dim()) return pa.list_(tp.value_arrow_type(), tp.dim())
return _py_type_to_arrow_type(tp, field) return _py_type_to_arrow_type(tp, field)
@@ -314,6 +415,7 @@ class LanceModel(pydantic.BaseModel):
>>> table.add([ >>> table.add([
... TestModel(name="test", vector=[1.0, 2.0]) ... TestModel(name="test", vector=[1.0, 2.0])
... ]) ... ])
AddResult(version=2)
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel) >>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
[TestModel(name='test', vector=FixedSizeList(dim=2))] [TestModel(name='test', vector=FixedSizeList(dim=2))]
""" """

View File

@@ -4,7 +4,6 @@
from __future__ import annotations from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
import abc
from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ThreadPoolExecutor
from enum import Enum from enum import Enum
from datetime import timedelta from datetime import timedelta
@@ -28,6 +27,8 @@ import pyarrow.compute as pc
import pyarrow.fs as pa_fs import pyarrow.fs as pa_fs
import pydantic import pydantic
from lancedb.pydantic import PYDANTIC_VERSION
from . import __version__ from . import __version__
from .arrow import AsyncRecordBatchReader from .arrow import AsyncRecordBatchReader
from .dependencies import pandas as pd from .dependencies import pandas as pd
@@ -86,15 +87,28 @@ def ensure_vector_query(
return val return val
class FullTextQueryType(Enum): class FullTextQueryType(str, Enum):
MATCH = "match" MATCH = "match"
MATCH_PHRASE = "match_phrase" MATCH_PHRASE = "match_phrase"
BOOST = "boost" BOOST = "boost"
MULTI_MATCH = "multi_match" MULTI_MATCH = "multi_match"
BOOLEAN = "boolean"
class FullTextQuery(abc.ABC, pydantic.BaseModel): class FullTextOperator(str, Enum):
@abc.abstractmethod AND = "AND"
OR = "OR"
class Occur(str, Enum):
SHOULD = "SHOULD"
MUST = "MUST"
MUST_NOT = "MUST_NOT"
@pydantic.dataclasses.dataclass
class FullTextQuery(ABC):
@abstractmethod
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
""" """
Get the query type of the query. Get the query type of the query.
@@ -104,193 +118,178 @@ class FullTextQuery(abc.ABC, pydantic.BaseModel):
str str
The type of the query. The type of the query.
""" """
pass
@abc.abstractmethod def __and__(self, other: "FullTextQuery") -> "FullTextQuery":
def to_dict(self) -> dict:
""" """
Convert the query to a dictionary. Combine two queries with a logical AND operation.
Returns
-------
dict
The query as a dictionary.
"""
class MatchQuery(FullTextQuery):
query: str
column: str
boost: float = 1.0
fuzziness: int = 0
max_expansions: int = 50
def __init__(
self,
query: str,
column: str,
*,
boost: float = 1.0,
fuzziness: int = 0,
max_expansions: int = 50,
):
"""
Match query for full-text search.
Parameters Parameters
---------- ----------
query : str other : FullTextQuery
The query string to match against. The other query to combine with.
column : str
The name of the column to match against. Returns
boost : float, default 1.0 -------
The boost factor for the query. FullTextQuery
The score of each matching document is multiplied by this value. A new query that combines both queries with AND.
fuzziness : int, optional
The maximum edit distance for each term in the match query.
Defaults to 0 (exact match).
If None, fuzziness is applied automatically by the rules:
- 0 for terms with length <= 2
- 1 for terms with length <= 5
- 2 for terms with length > 5
max_expansions : int, optional
The maximum number of terms to consider for fuzzy matching.
Defaults to 50.
""" """
super().__init__( return BooleanQuery([(Occur.MUST, self), (Occur.MUST, other)])
query=query,
column=column, def __or__(self, other: "FullTextQuery") -> "FullTextQuery":
boost=boost, """
fuzziness=fuzziness, Combine two queries with a logical OR operation.
max_expansions=max_expansions,
) Parameters
----------
other : FullTextQuery
The other query to combine with.
Returns
-------
FullTextQuery
A new query that combines both queries with OR.
"""
return BooleanQuery([(Occur.SHOULD, self), (Occur.SHOULD, other)])
@pydantic.dataclasses.dataclass
class MatchQuery(FullTextQuery):
"""
Match query for full-text search.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
boost : float, default 1.0
The boost factor for the query.
The score of each matching document is multiplied by this value.
fuzziness : int, optional
The maximum edit distance for each term in the match query.
Defaults to 0 (exact match).
If None, fuzziness is applied automatically by the rules:
- 0 for terms with length <= 2
- 1 for terms with length <= 5
- 2 for terms with length > 5
max_expansions : int, optional
The maximum number of terms to consider for fuzzy matching.
Defaults to 50.
operator : FullTextOperator, default OR
The operator to use for combining the query results.
Can be either `AND` or `OR`.
If `AND`, all terms in the query must match.
If `OR`, at least one term in the query must match.
prefix_length : int, optional
The number of beginning characters being unchanged for fuzzy matching.
This is useful to achieve prefix matching.
"""
query: str
column: str
boost: float = pydantic.Field(1.0, kw_only=True)
fuzziness: int = pydantic.Field(0, kw_only=True)
max_expansions: int = pydantic.Field(50, kw_only=True)
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
prefix_length: int = pydantic.Field(0, kw_only=True)
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH return FullTextQueryType.MATCH
def to_dict(self) -> dict:
return {
"match": {
self.column: {
"query": self.query,
"boost": self.boost,
"fuzziness": self.fuzziness,
"max_expansions": self.max_expansions,
}
}
}
@pydantic.dataclasses.dataclass
class PhraseQuery(FullTextQuery): class PhraseQuery(FullTextQuery):
"""
Phrase query for full-text search.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
"""
query: str query: str
column: str column: str
slop: int = pydantic.Field(0, kw_only=True)
def __init__(self, query: str, column: str):
"""
Phrase query for full-text search.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
"""
super().__init__(query=query, column=column)
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH_PHRASE return FullTextQueryType.MATCH_PHRASE
def to_dict(self) -> dict:
return {
"match_phrase": {
self.column: self.query,
}
}
@pydantic.dataclasses.dataclass
class BoostQuery(FullTextQuery): class BoostQuery(FullTextQuery):
"""
Boost query for full-text search.
Parameters
----------
positive : dict
The positive query object.
negative : dict
The negative query object.
negative_boost : float, default 0.5
The boost factor for the negative query.
"""
positive: FullTextQuery positive: FullTextQuery
negative: FullTextQuery negative: FullTextQuery
negative_boost: float = 0.5 negative_boost: float = pydantic.Field(0.5, kw_only=True)
def __init__(
self,
positive: FullTextQuery,
negative: FullTextQuery,
*,
negative_boost: float = 0.5,
):
"""
Boost query for full-text search.
Parameters
----------
positive : dict
The positive query object.
negative : dict
The negative query object.
negative_boost : float
The boost factor for the negative query.
"""
super().__init__(
positive=positive, negative=negative, negative_boost=negative_boost
)
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
return FullTextQueryType.BOOST return FullTextQueryType.BOOST
def to_dict(self) -> dict:
return {
"boost": {
"positive": self.positive.to_dict(),
"negative": self.negative.to_dict(),
"negative_boost": self.negative_boost,
}
}
@pydantic.dataclasses.dataclass
class MultiMatchQuery(FullTextQuery): class MultiMatchQuery(FullTextQuery):
"""
Multi-match query for full-text search.
Parameters
----------
query : str | list[Query]
If a string, the query string to match against.
columns : list[str]
The list of columns to match against.
boosts : list[float], optional
The list of boost factors for each column. If not provided,
all columns will have the same boost factor.
operator : FullTextOperator, default OR
The operator to use for combining the query results.
Can be either `AND` or `OR`.
It would be applied to all columns individually.
For example, if the operator is `AND`,
then the query "hello world" is equal to
`match("hello AND world", column1) OR match("hello AND world", column2)`.
"""
query: str query: str
columns: list[str] columns: list[str]
boosts: list[float] boosts: Optional[list[float]] = pydantic.Field(None, kw_only=True)
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
def __init__(
self,
query: str,
columns: list[str],
*,
boosts: Optional[list[float]] = None,
):
"""
Multi-match query for full-text search.
Parameters
----------
query : str
The query string to match against.
columns : list[str]
The list of columns to match against.
boosts : list[float], optional
The list of boost factors for each column. If not provided,
all columns will have the same boost factor.
"""
if boosts is None:
boosts = [1.0] * len(columns)
super().__init__(query=query, columns=columns, boosts=boosts)
def query_type(self) -> FullTextQueryType: def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MULTI_MATCH return FullTextQueryType.MULTI_MATCH
def to_dict(self) -> dict:
return { @pydantic.dataclasses.dataclass
"multi_match": { class BooleanQuery(FullTextQuery):
"query": self.query, """
"columns": self.columns, Boolean query for full-text search.
"boost": self.boosts,
} Parameters
} ----------
queries : list[tuple(Occur, FullTextQuery)]
The list of queries with their occurrence requirements.
"""
queries: list[tuple[Occur, FullTextQuery]]
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.BOOLEAN
class FullTextSearchQuery(pydantic.BaseModel): class FullTextSearchQuery(pydantic.BaseModel):
@@ -443,8 +442,18 @@ class Query(pydantic.BaseModel):
# which columns to return in the results # which columns to return in the results
columns: Optional[Union[List[str], Dict[str, str]]] = None columns: Optional[Union[List[str], Dict[str, str]]] = None
# number of IVF partitions to search # minimum number of IVF partitions to search
nprobes: Optional[int] = None #
# If None then a default value (20) will be used.
minimum_nprobes: Optional[int] = None
# maximum number of IVF partitions to search
#
# If None then a default value (20) will be used.
#
# If 0 then no limit will be applied and all partitions could be searched
# if needed to satisfy the limit.
maximum_nprobes: Optional[int] = None
# lower bound for distance search # lower bound for distance search
lower_bound: Optional[float] = None lower_bound: Optional[float] = None
@@ -482,7 +491,8 @@ class Query(pydantic.BaseModel):
query.vector_column = req.column query.vector_column = req.column
query.vector = req.query_vector query.vector = req.query_vector
query.distance_type = req.distance_type query.distance_type = req.distance_type
query.nprobes = req.nprobes query.minimum_nprobes = req.minimum_nprobes
query.maximum_nprobes = req.maximum_nprobes
query.lower_bound = req.lower_bound query.lower_bound = req.lower_bound
query.upper_bound = req.upper_bound query.upper_bound = req.upper_bound
query.ef = req.ef query.ef = req.ef
@@ -491,17 +501,19 @@ class Query(pydantic.BaseModel):
query.postfilter = req.postfilter query.postfilter = req.postfilter
if req.full_text_search is not None: if req.full_text_search is not None:
query.full_text_query = FullTextSearchQuery( query.full_text_query = FullTextSearchQuery(
columns=req.full_text_search.columns, columns=None,
query=req.full_text_search.query, query=req.full_text_search,
limit=req.full_text_search.limit,
wand_factor=req.full_text_search.wand_factor,
) )
return query return query
class Config: # This tells pydantic to allow custom types (needed for the `vector` query since
# This tells pydantic to allow custom types (needed for the `vector` query since # pa.Array wouln't be allowed otherwise)
# pa.Array wouln't be allowed otherwise) if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
arbitrary_types_allowed = True
class Config:
arbitrary_types_allowed = True
else:
model_config = {"arbitrary_types_allowed": True}
class LanceQueryBuilder(ABC): class LanceQueryBuilder(ABC):
@@ -1041,7 +1053,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
super().__init__(table) super().__init__(table)
self._query = query self._query = query
self._distance_type = None self._distance_type = None
self._nprobes = None self._minimum_nprobes = None
self._maximum_nprobes = None
self._lower_bound = None self._lower_bound = None
self._upper_bound = None self._upper_bound = None
self._refine_factor = None self._refine_factor = None
@@ -1104,6 +1117,10 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
See discussion in [Querying an ANN Index][querying-an-ann-index] for See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice. tuning advice.
This method sets both the minimum and maximum number of probes to the same
value. See `minimum_nprobes` and `maximum_nprobes` for more fine-grained
control.
Parameters Parameters
---------- ----------
nprobes: int nprobes: int
@@ -1114,7 +1131,36 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
LanceVectorQueryBuilder LanceVectorQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._nprobes = nprobes self._minimum_nprobes = nprobes
self._maximum_nprobes = nprobes
return self
def minimum_nprobes(self, minimum_nprobes: int) -> LanceVectorQueryBuilder:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
These partitions will be searched on every vector query and will increase recall
at the expense of latency.
"""
self._minimum_nprobes = minimum_nprobes
return self
def maximum_nprobes(self, maximum_nprobes: int) -> LanceVectorQueryBuilder:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
If this value is greater than `minimum_nprobes` then the excess partitions
will be searched only if we have not found enough results.
This can be useful when there is a narrow filter to allow these queries to
spend more time searching and avoid potential false negatives.
If this value is 0 then no limit will be applied and all partitions could be
searched if needed to satisfy the limit.
"""
self._maximum_nprobes = maximum_nprobes
return self return self
def distance_range( def distance_range(
@@ -1218,7 +1264,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
limit=self._limit, limit=self._limit,
distance_type=self._distance_type, distance_type=self._distance_type,
columns=self._columns, columns=self._columns,
nprobes=self._nprobes, minimum_nprobes=self._minimum_nprobes,
maximum_nprobes=self._maximum_nprobes,
lower_bound=self._lower_bound, lower_bound=self._lower_bound,
upper_bound=self._upper_bound, upper_bound=self._upper_bound,
refine_factor=self._refine_factor, refine_factor=self._refine_factor,
@@ -1404,10 +1451,13 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
query = self._query query = self._query
if self._phrase_query: if self._phrase_query:
raise NotImplementedError( if isinstance(query, str):
"Phrase query is not yet supported in Lance FTS. " if not query.startswith('"') or not query.endswith('"'):
"Use tantivy-based index instead for now." query = f'"{query}"'
) elif isinstance(query, FullTextQuery) and not isinstance(
query, PhraseQuery
):
raise TypeError("Please use PhraseQuery for phrase queries.")
query = self.to_query_object() query = self.to_query_object()
results = self._table._execute_query(query, timeout=timeout) results = self._table._execute_query(query, timeout=timeout)
results = results.read_all() results = results.read_all()
@@ -1582,10 +1632,13 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._fts_columns = fts_columns self._fts_columns = fts_columns
self._norm = None self._norm = None
self._reranker = None self._reranker = None
self._nprobes = None self._minimum_nprobes = None
self._maximum_nprobes = None
self._refine_factor = None self._refine_factor = None
self._distance_type = None self._distance_type = None
self._phrase_query = None self._phrase_query = None
self._lower_bound = None
self._upper_bound = None
def _validate_query(self, query, vector=None, text=None): def _validate_query(self, query, vector=None, text=None):
if query is not None and (vector is not None or text is not None): if query is not None and (vector is not None or text is not None):
@@ -1628,47 +1681,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
raise NotImplementedError("to_query_object not yet supported on a hybrid query") raise NotImplementedError("to_query_object not yet supported on a hybrid query")
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table: def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
vector_query, fts_query = self._validate_query( self._create_query_builders()
self._query, self._vector, self._text
)
self._fts_query = LanceFtsQueryBuilder(
self._table, fts_query, fts_columns=self._fts_columns
)
vector_query = self._query_to_vector(
self._table, vector_query, self._vector_column
)
self._vector_query = LanceVectorQueryBuilder(
self._table, vector_query, self._vector_column
)
if self._limit:
self._vector_query.limit(self._limit)
self._fts_query.limit(self._limit)
if self._columns:
self._vector_query.select(self._columns)
self._fts_query.select(self._columns)
if self._where:
self._vector_query.where(self._where, self._postfilter)
self._fts_query.where(self._where, self._postfilter)
if self._with_row_id:
self._vector_query.with_row_id(True)
self._fts_query.with_row_id(True)
if self._phrase_query:
self._fts_query.phrase_query(True)
if self._distance_type:
self._vector_query.metric(self._distance_type)
if self._nprobes:
self._vector_query.nprobes(self._nprobes)
if self._refine_factor:
self._vector_query.refine_factor(self._refine_factor)
if self._ef:
self._vector_query.ef(self._ef)
if self._bypass_vector_index:
self._vector_query.bypass_vector_index()
if self._reranker is None:
self._reranker = RRFReranker()
with ThreadPoolExecutor() as executor: with ThreadPoolExecutor() as executor:
fts_future = executor.submit( fts_future = executor.submit(
self._fts_query.with_row_id(True).to_arrow, timeout=timeout self._fts_query.with_row_id(True).to_arrow, timeout=timeout
@@ -1852,7 +1865,24 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
LanceHybridQueryBuilder LanceHybridQueryBuilder
The LanceHybridQueryBuilder object. The LanceHybridQueryBuilder object.
""" """
self._nprobes = nprobes self._minimum_nprobes = nprobes
self._maximum_nprobes = nprobes
return self
def minimum_nprobes(self, minimum_nprobes: int) -> LanceHybridQueryBuilder:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
"""
self._minimum_nprobes = minimum_nprobes
return self
def maximum_nprobes(self, maximum_nprobes: int) -> LanceHybridQueryBuilder:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
"""
self._maximum_nprobes = maximum_nprobes
return self return self
def distance_range( def distance_range(
@@ -1991,6 +2021,114 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._bypass_vector_index = True self._bypass_vector_index = True
return self return self
def explain_plan(self, verbose: Optional[bool] = False) -> str:
"""Return the execution plan for this query.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [99.0, 99]}])
>>> query = [100, 100]
>>> plan = table.search(query).explain_plan(True)
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
Parameters
----------
verbose : bool, default False
Use a verbose output format.
Returns
-------
plan : str
""" # noqa: E501
self._create_query_builders()
results = ["Vector Search Plan:"]
results.append(
self._table._explain_plan(
self._vector_query.to_query_object(), verbose=verbose
)
)
results.append("FTS Search Plan:")
results.append(
self._table._explain_plan(
self._fts_query.to_query_object(), verbose=verbose
)
)
return "\n".join(results)
def analyze_plan(self):
"""Execute the query and display with runtime metrics.
Returns
-------
plan : str
"""
self._create_query_builders()
results = ["Vector Search Plan:"]
results.append(self._table._analyze_plan(self._vector_query.to_query_object()))
results.append("FTS Search Plan:")
results.append(self._table._analyze_plan(self._fts_query.to_query_object()))
return "\n".join(results)
def _create_query_builders(self):
"""Set up and configure the vector and FTS query builders."""
vector_query, fts_query = self._validate_query(
self._query, self._vector, self._text
)
self._fts_query = LanceFtsQueryBuilder(
self._table, fts_query, fts_columns=self._fts_columns
)
vector_query = self._query_to_vector(
self._table, vector_query, self._vector_column
)
self._vector_query = LanceVectorQueryBuilder(
self._table, vector_query, self._vector_column
)
# Apply common configurations
if self._limit:
self._vector_query.limit(self._limit)
self._fts_query.limit(self._limit)
if self._columns:
self._vector_query.select(self._columns)
self._fts_query.select(self._columns)
if self._where:
self._vector_query.where(self._where, self._postfilter)
self._fts_query.where(self._where, self._postfilter)
if self._with_row_id:
self._vector_query.with_row_id(True)
self._fts_query.with_row_id(True)
if self._phrase_query:
self._fts_query.phrase_query(True)
if self._distance_type:
self._vector_query.metric(self._distance_type)
if self._minimum_nprobes:
self._vector_query.minimum_nprobes(self._minimum_nprobes)
if self._maximum_nprobes is not None:
self._vector_query.maximum_nprobes(self._maximum_nprobes)
if self._refine_factor:
self._vector_query.refine_factor(self._refine_factor)
if self._ef:
self._vector_query.ef(self._ef)
if self._bypass_vector_index:
self._vector_query.bypass_vector_index()
if self._lower_bound or self._upper_bound:
self._vector_query.distance_range(
lower_bound=self._lower_bound, upper_bound=self._upper_bound
)
if self._reranker is None:
self._reranker = RRFReranker()
class AsyncQueryBase(object): class AsyncQueryBase(object):
def __init__(self, inner: Union[LanceQuery, LanceVectorQuery]): def __init__(self, inner: Union[LanceQuery, LanceVectorQuery]):
@@ -2439,7 +2577,7 @@ class AsyncQuery(AsyncQueryBase):
self._inner.nearest_to_text({"query": query, "columns": columns}) self._inner.nearest_to_text({"query": query, "columns": columns})
) )
# FullTextQuery object # FullTextQuery object
return AsyncFTSQuery(self._inner.nearest_to_text({"query": query.to_dict()})) return AsyncFTSQuery(self._inner.nearest_to_text({"query": query}))
class AsyncFTSQuery(AsyncQueryBase): class AsyncFTSQuery(AsyncQueryBase):
@@ -2587,6 +2725,34 @@ class AsyncVectorQueryBase:
self._inner.nprobes(nprobes) self._inner.nprobes(nprobes)
return self return self
def minimum_nprobes(self, minimum_nprobes: int) -> Self:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
These partitions will be searched on every indexed vector query and will
increase recall at the expense of latency.
"""
self._inner.minimum_nprobes(minimum_nprobes)
return self
def maximum_nprobes(self, maximum_nprobes: int) -> Self:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
If this value is greater than `minimum_nprobes` then the excess partitions
will be searched only if we have not found enough results.
This can be useful when there is a narrow filter to allow these queries to
spend more time searching and avoid potential false negatives.
If this value is 0 then no limit will be applied and all partitions could be
searched if needed to satisfy the limit.
"""
self._inner.maximum_nprobes(maximum_nprobes)
return self
def distance_range( def distance_range(
self, lower_bound: Optional[float] = None, upper_bound: Optional[float] = None self, lower_bound: Optional[float] = None, upper_bound: Optional[float] = None
) -> Self: ) -> Self:
@@ -2761,7 +2927,7 @@ class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
self._inner.nearest_to_text({"query": query, "columns": columns}) self._inner.nearest_to_text({"query": query, "columns": columns})
) )
# FullTextQuery object # FullTextQuery object
return AsyncHybridQuery(self._inner.nearest_to_text({"query": query.to_dict()})) return AsyncHybridQuery(self._inner.nearest_to_text({"query": query}))
async def to_batches( async def to_batches(
self, self,

View File

@@ -7,7 +7,16 @@ from functools import cached_property
from typing import Dict, Iterable, List, Optional, Union, Literal from typing import Dict, Iterable, List, Optional, Union, Literal
import warnings import warnings
from lancedb._lancedb import IndexConfig from lancedb._lancedb import (
AddColumnsResult,
AddResult,
AlterColumnsResult,
DeleteResult,
DropColumnsResult,
IndexConfig,
MergeResult,
UpdateResult,
)
from lancedb.embeddings.base import EmbeddingFunctionConfig from lancedb.embeddings.base import EmbeddingFunctionConfig
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.remote.db import LOOP from lancedb.remote.db import LOOP
@@ -18,7 +27,7 @@ from lancedb.merge import LanceMergeInsertBuilder
from lancedb.embeddings import EmbeddingFunctionRegistry from lancedb.embeddings import EmbeddingFunctionRegistry
from ..query import LanceVectorQueryBuilder, LanceQueryBuilder from ..query import LanceVectorQueryBuilder, LanceQueryBuilder
from ..table import AsyncTable, IndexStatistics, Query, Table from ..table import AsyncTable, IndexStatistics, Query, Table, Tags
class RemoteTable(Table): class RemoteTable(Table):
@@ -38,9 +47,6 @@ class RemoteTable(Table):
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoteTable({self.db_name}.{self.name})" return f"RemoteTable({self.db_name}.{self.name})"
def __len__(self) -> int:
self.count_rows(None)
@property @property
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) """The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
@@ -54,6 +60,10 @@ class RemoteTable(Table):
"""Get the current version of the table""" """Get the current version of the table"""
return LOOP.run(self._table.version()) return LOOP.run(self._table.version())
@property
def tags(self) -> Tags:
return Tags(self._table)
@cached_property @cached_property
def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]: def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]:
""" """
@@ -81,13 +91,13 @@ class RemoteTable(Table):
"""to_pandas() is not yet supported on LanceDB cloud.""" """to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.") return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version: int): def checkout(self, version: Union[int, str]):
return LOOP.run(self._table.checkout(version)) return LOOP.run(self._table.checkout(version))
def checkout_latest(self): def checkout_latest(self):
return LOOP.run(self._table.checkout_latest()) return LOOP.run(self._table.checkout_latest())
def restore(self, version: Optional[int] = None): def restore(self, version: Optional[Union[int, str]] = None):
return LOOP.run(self._table.restore(version)) return LOOP.run(self._table.restore(version))
def list_indices(self) -> Iterable[IndexConfig]: def list_indices(self) -> Iterable[IndexConfig]:
@@ -104,6 +114,7 @@ class RemoteTable(Table):
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST", "scalar"] = "scalar", index_type: Literal["BTREE", "BITMAP", "LABEL_LIST", "scalar"] = "scalar",
*, *,
replace: bool = False, replace: bool = False,
wait_timeout: timedelta = None,
): ):
"""Creates a scalar index """Creates a scalar index
Parameters Parameters
@@ -126,22 +137,27 @@ class RemoteTable(Table):
else: else:
raise ValueError(f"Unknown index type: {index_type}") raise ValueError(f"Unknown index type: {index_type}")
LOOP.run(self._table.create_index(column, config=config, replace=replace)) LOOP.run(
self._table.create_index(
column, config=config, replace=replace, wait_timeout=wait_timeout
)
)
def create_fts_index( def create_fts_index(
self, self,
column: str, column: str,
*, *,
replace: bool = False, replace: bool = False,
with_position: bool = True, wait_timeout: timedelta = None,
with_position: bool = False,
# tokenizer configs: # tokenizer configs:
base_tokenizer: str = "simple", base_tokenizer: str = "simple",
language: str = "English", language: str = "English",
max_token_length: Optional[int] = 40, max_token_length: Optional[int] = 40,
lower_case: bool = True, lower_case: bool = True,
stem: bool = False, stem: bool = True,
remove_stop_words: bool = False, remove_stop_words: bool = True,
ascii_folding: bool = False, ascii_folding: bool = True,
): ):
config = FTS( config = FTS(
with_position=with_position, with_position=with_position,
@@ -153,7 +169,11 @@ class RemoteTable(Table):
remove_stop_words=remove_stop_words, remove_stop_words=remove_stop_words,
ascii_folding=ascii_folding, ascii_folding=ascii_folding,
) )
LOOP.run(self._table.create_index(column, config=config, replace=replace)) LOOP.run(
self._table.create_index(
column, config=config, replace=replace, wait_timeout=wait_timeout
)
)
def create_index( def create_index(
self, self,
@@ -165,6 +185,7 @@ class RemoteTable(Table):
replace: Optional[bool] = None, replace: Optional[bool] = None,
accelerator: Optional[str] = None, accelerator: Optional[str] = None,
index_type="vector", index_type="vector",
wait_timeout: Optional[timedelta] = None,
): ):
"""Create an index on the table. """Create an index on the table.
Currently, the only parameters that matter are Currently, the only parameters that matter are
@@ -236,7 +257,11 @@ class RemoteTable(Table):
" 'IVF_FLAT', 'IVF_PQ', 'IVF_HNSW_PQ', 'IVF_HNSW_SQ'" " 'IVF_FLAT', 'IVF_PQ', 'IVF_HNSW_PQ', 'IVF_HNSW_SQ'"
) )
LOOP.run(self._table.create_index(vector_column_name, config=config)) LOOP.run(
self._table.create_index(
vector_column_name, config=config, wait_timeout=wait_timeout
)
)
def add( def add(
self, self,
@@ -244,7 +269,7 @@ class RemoteTable(Table):
mode: str = "append", mode: str = "append",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> int: ) -> AddResult:
"""Add more data to the [Table](Table). It has the same API signature as """Add more data to the [Table](Table). It has the same API signature as
the OSS version. the OSS version.
@@ -267,8 +292,12 @@ class RemoteTable(Table):
fill_value: float, default 0. fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill". The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
AddResult
An object containing the new version number of the table after adding data.
""" """
LOOP.run( return LOOP.run(
self._table.add( self._table.add(
data, mode=mode, on_bad_vectors=on_bad_vectors, fill_value=fill_value data, mode=mode, on_bad_vectors=on_bad_vectors, fill_value=fill_value
) )
@@ -394,10 +423,12 @@ class RemoteTable(Table):
new_data: DATA, new_data: DATA,
on_bad_vectors: str, on_bad_vectors: str,
fill_value: float, fill_value: float,
): ) -> MergeResult:
LOOP.run(self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)) return LOOP.run(
self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)
)
def delete(self, predicate: str): def delete(self, predicate: str) -> DeleteResult:
"""Delete rows from the table. """Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or This can be used to delete a single row, many rows, all rows, or
@@ -412,6 +443,11 @@ class RemoteTable(Table):
The filter must not be empty, or it will error. The filter must not be empty, or it will error.
Returns
-------
DeleteResult
An object containing the new version number of the table after deletion.
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
@@ -444,7 +480,7 @@ class RemoteTable(Table):
x vector _distance # doctest: +SKIP x vector _distance # doctest: +SKIP
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP 0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
""" """
LOOP.run(self._table.delete(predicate)) return LOOP.run(self._table.delete(predicate))
def update( def update(
self, self,
@@ -452,7 +488,7 @@ class RemoteTable(Table):
values: Optional[dict] = None, values: Optional[dict] = None,
*, *,
values_sql: Optional[Dict[str, str]] = None, values_sql: Optional[Dict[str, str]] = None,
): ) -> UpdateResult:
""" """
This can be used to update zero to all rows depending on how many This can be used to update zero to all rows depending on how many
rows match the where clause. rows match the where clause.
@@ -470,6 +506,12 @@ class RemoteTable(Table):
reference existing columns. For example, {"x": "x + 1"} will increment reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1. the x column by 1.
Returns
-------
UpdateResult
- rows_updated: The number of rows that were updated
- version: The new version number of the table after the update
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
@@ -494,7 +536,7 @@ class RemoteTable(Table):
2 2 [10.0, 10.0] # doctest: +SKIP 2 2 [10.0, 10.0] # doctest: +SKIP
""" """
LOOP.run( return LOOP.run(
self._table.update(where=where, updates=values, updates_sql=values_sql) self._table.update(where=where, updates=values, updates_sql=values_sql)
) )
@@ -542,18 +584,28 @@ class RemoteTable(Table):
def count_rows(self, filter: Optional[str] = None) -> int: def count_rows(self, filter: Optional[str] = None) -> int:
return LOOP.run(self._table.count_rows(filter)) return LOOP.run(self._table.count_rows(filter))
def add_columns(self, transforms: Dict[str, str]): def add_columns(self, transforms: Dict[str, str]) -> AddColumnsResult:
return LOOP.run(self._table.add_columns(transforms)) return LOOP.run(self._table.add_columns(transforms))
def alter_columns(self, *alterations: Iterable[Dict[str, str]]): def alter_columns(
self, *alterations: Iterable[Dict[str, str]]
) -> AlterColumnsResult:
return LOOP.run(self._table.alter_columns(*alterations)) return LOOP.run(self._table.alter_columns(*alterations))
def drop_columns(self, columns: Iterable[str]): def drop_columns(self, columns: Iterable[str]) -> DropColumnsResult:
return LOOP.run(self._table.drop_columns(columns)) return LOOP.run(self._table.drop_columns(columns))
def drop_index(self, index_name: str): def drop_index(self, index_name: str):
return LOOP.run(self._table.drop_index(index_name)) return LOOP.run(self._table.drop_index(index_name))
def wait_for_index(
self, index_names: Iterable[str], timeout: timedelta = timedelta(seconds=300)
):
return LOOP.run(self._table.wait_for_index(index_names, timeout))
def stats(self):
return LOOP.run(self._table.stats())
def uses_v2_manifest_paths(self) -> bool: def uses_v2_manifest_paths(self) -> bool:
raise NotImplementedError( raise NotImplementedError(
"uses_v2_manifest_paths() is not supported on the LanceDB Cloud" "uses_v2_manifest_paths() is not supported on the LanceDB Cloud"

File diff suppressed because it is too large Load Diff

View File

@@ -25,6 +25,10 @@ import numpy as np
from lancedb.pydantic import Vector, LanceModel from lancedb.pydantic import Vector, LanceModel
# --8<-- [end:import-lancedb-pydantic] # --8<-- [end:import-lancedb-pydantic]
# --8<-- [start:import-session-context]
from datafusion import SessionContext
# --8<-- [end:import-session-context]
# --8<-- [start:import-datetime] # --8<-- [start:import-datetime]
from datetime import timedelta from datetime import timedelta
@@ -33,6 +37,10 @@ from datetime import timedelta
from lancedb.embeddings import get_registry from lancedb.embeddings import get_registry
# --8<-- [end:import-embeddings] # --8<-- [end:import-embeddings]
# --8<-- [start:import-ffi-dataset]
from lance import FFILanceTableProvider
# --8<-- [end:import-ffi-dataset]
# --8<-- [start:import-pydantic-basemodel] # --8<-- [start:import-pydantic-basemodel]
from pydantic import BaseModel from pydantic import BaseModel
@@ -341,6 +349,27 @@ def test_table_with_embedding():
# --8<-- [end:create_table_with_embedding] # --8<-- [end:create_table_with_embedding]
def test_sql_query():
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1},
]
table = db.create_table("lance_table", data)
# --8<-- [start:lance_sql_basic]
ctx = SessionContext()
ffi_lance_table = FFILanceTableProvider(
table.to_lance(), with_row_id=False, with_row_addr=False
)
ctx.register_table_provider("ffi_lance_table", ffi_lance_table)
ctx.table("ffi_lance_table")
ctx.sql("SELECT vector FROM ffi_lance_table")
# --8<-- [end:lance_sql_basic]
@pytest.mark.skip @pytest.mark.skip
async def test_table_with_embedding_async(): async def test_table_with_embedding_async():
async_db = await lancedb.connect_async("data/sample-lancedb") async_db = await lancedb.connect_async("data/sample-lancedb")

View File

@@ -18,15 +18,19 @@ def test_upsert(mem_db):
{"id": 1, "name": "Bobby"}, {"id": 1, "name": "Bobby"},
{"id": 2, "name": "Charlie"}, {"id": 2, "name": "Charlie"},
] ]
( res = (
table.merge_insert("id") table.merge_insert("id")
.when_matched_update_all() .when_matched_update_all()
.when_not_matched_insert_all() .when_not_matched_insert_all()
.execute(new_users) .execute(new_users)
) )
table.count_rows() # 3 table.count_rows() # 3
res # {'num_inserted_rows': 1, 'num_updated_rows': 1, 'num_deleted_rows': 0}
# --8<-- [end:upsert_basic] # --8<-- [end:upsert_basic]
assert table.count_rows() == 3 assert table.count_rows() == 3
assert res.num_inserted_rows == 1
assert res.num_deleted_rows == 0
assert res.num_updated_rows == 1
@pytest.mark.asyncio @pytest.mark.asyncio
@@ -44,15 +48,22 @@ async def test_upsert_async(mem_db_async):
{"id": 1, "name": "Bobby"}, {"id": 1, "name": "Bobby"},
{"id": 2, "name": "Charlie"}, {"id": 2, "name": "Charlie"},
] ]
await ( res = await (
table.merge_insert("id") table.merge_insert("id")
.when_matched_update_all() .when_matched_update_all()
.when_not_matched_insert_all() .when_not_matched_insert_all()
.execute(new_users) .execute(new_users)
) )
await table.count_rows() # 3 await table.count_rows() # 3
res
# MergeResult(version=2, num_updated_rows=1,
# num_inserted_rows=1, num_deleted_rows=0)
# --8<-- [end:upsert_basic_async] # --8<-- [end:upsert_basic_async]
assert await table.count_rows() == 3 assert await table.count_rows() == 3
assert res.version == 2
assert res.num_inserted_rows == 1
assert res.num_deleted_rows == 0
assert res.num_updated_rows == 1
def test_insert_if_not_exists(mem_db): def test_insert_if_not_exists(mem_db):
@@ -69,10 +80,19 @@ def test_insert_if_not_exists(mem_db):
{"domain": "google.com", "name": "Google"}, {"domain": "google.com", "name": "Google"},
{"domain": "facebook.com", "name": "Facebook"}, {"domain": "facebook.com", "name": "Facebook"},
] ]
(table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains)) res = (
table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains)
)
table.count_rows() # 3 table.count_rows() # 3
res
# MergeResult(version=2, num_updated_rows=0,
# num_inserted_rows=1, num_deleted_rows=0)
# --8<-- [end:insert_if_not_exists] # --8<-- [end:insert_if_not_exists]
assert table.count_rows() == 3 assert table.count_rows() == 3
assert res.version == 2
assert res.num_inserted_rows == 1
assert res.num_deleted_rows == 0
assert res.num_updated_rows == 0
@pytest.mark.asyncio @pytest.mark.asyncio
@@ -90,12 +110,19 @@ async def test_insert_if_not_exists_async(mem_db_async):
{"domain": "google.com", "name": "Google"}, {"domain": "google.com", "name": "Google"},
{"domain": "facebook.com", "name": "Facebook"}, {"domain": "facebook.com", "name": "Facebook"},
] ]
await ( res = await (
table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains) table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains)
) )
await table.count_rows() # 3 await table.count_rows() # 3
# --8<-- [end:insert_if_not_exists_async] res
# MergeResult(version=2, num_updated_rows=0,
# num_inserted_rows=1, num_deleted_rows=0)
# --8<-- [end:insert_if_not_exists]
assert await table.count_rows() == 3 assert await table.count_rows() == 3
assert res.version == 2
assert res.num_inserted_rows == 1
assert res.num_deleted_rows == 0
assert res.num_updated_rows == 0
def test_replace_range(mem_db): def test_replace_range(mem_db):
@@ -113,7 +140,7 @@ def test_replace_range(mem_db):
new_chunks = [ new_chunks = [
{"doc_id": 1, "chunk_id": 0, "text": "Baz"}, {"doc_id": 1, "chunk_id": 0, "text": "Baz"},
] ]
( res = (
table.merge_insert(["doc_id", "chunk_id"]) table.merge_insert(["doc_id", "chunk_id"])
.when_matched_update_all() .when_matched_update_all()
.when_not_matched_insert_all() .when_not_matched_insert_all()
@@ -121,8 +148,15 @@ def test_replace_range(mem_db):
.execute(new_chunks) .execute(new_chunks)
) )
table.count_rows("doc_id = 1") # 1 table.count_rows("doc_id = 1") # 1
# --8<-- [end:replace_range] res
# MergeResult(version=2, num_updated_rows=1,
# num_inserted_rows=0, num_deleted_rows=1)
# --8<-- [end:insert_if_not_exists]
assert table.count_rows("doc_id = 1") == 1 assert table.count_rows("doc_id = 1") == 1
assert res.version == 2
assert res.num_inserted_rows == 0
assert res.num_deleted_rows == 1
assert res.num_updated_rows == 1
@pytest.mark.asyncio @pytest.mark.asyncio
@@ -141,7 +175,7 @@ async def test_replace_range_async(mem_db_async):
new_chunks = [ new_chunks = [
{"doc_id": 1, "chunk_id": 0, "text": "Baz"}, {"doc_id": 1, "chunk_id": 0, "text": "Baz"},
] ]
await ( res = await (
table.merge_insert(["doc_id", "chunk_id"]) table.merge_insert(["doc_id", "chunk_id"])
.when_matched_update_all() .when_matched_update_all()
.when_not_matched_insert_all() .when_not_matched_insert_all()
@@ -149,5 +183,12 @@ async def test_replace_range_async(mem_db_async):
.execute(new_chunks) .execute(new_chunks)
) )
await table.count_rows("doc_id = 1") # 1 await table.count_rows("doc_id = 1") # 1
# --8<-- [end:replace_range_async] res
# MergeResult(version=2, num_updated_rows=1,
# num_inserted_rows=0, num_deleted_rows=1)
# --8<-- [end:insert_if_not_exists]
assert await table.count_rows("doc_id = 1") == 1 assert await table.count_rows("doc_id = 1") == 1
assert res.version == 2
assert res.num_inserted_rows == 0
assert res.num_deleted_rows == 1
assert res.num_updated_rows == 1

View File

@@ -6,7 +6,7 @@ import lancedb
# --8<-- [end:import-lancedb] # --8<-- [end:import-lancedb]
# --8<-- [start:import-numpy] # --8<-- [start:import-numpy]
from lancedb.query import BoostQuery, MatchQuery from lancedb.query import BooleanQuery, BoostQuery, MatchQuery, Occur
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
@@ -156,6 +156,9 @@ async def test_vector_search_async():
# --8<-- [end:search_result_async_as_list] # --8<-- [end:search_result_async_as_list]
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_fuzzy_query(): def test_fts_fuzzy_query():
uri = "data/fuzzy-example" uri = "data/fuzzy-example"
db = lancedb.connect(uri) db = lancedb.connect(uri)
@@ -188,7 +191,19 @@ def test_fts_fuzzy_query():
"food", # 1 insertion "food", # 1 insertion
} }
results = table.search(
MatchQuery("foo", "text", fuzziness=1, prefix_length=3)
).to_pandas()
assert len(results) == 2
assert set(results["text"].to_list()) == {
"foo",
"food",
}
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_boost_query(): def test_fts_boost_query():
uri = "data/boost-example" uri = "data/boost-example"
db = lancedb.connect(uri) db = lancedb.connect(uri)
@@ -234,6 +249,63 @@ def test_fts_boost_query():
) )
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_boolean_query(tmp_path):
uri = tmp_path / "boolean-example"
db = lancedb.connect(uri)
table = db.create_table(
"my_table_fts_boolean",
data=[
{"text": "The cat and dog are playing"},
{"text": "The cat is sleeping"},
{"text": "The dog is barking"},
{"text": "The dog chases the cat"},
],
mode="overwrite",
)
table.create_fts_index("text", use_tantivy=False, replace=True)
# SHOULD
results = table.search(
MatchQuery("cat", "text") | MatchQuery("dog", "text")
).to_pandas()
assert len(results) == 4
assert set(results["text"].to_list()) == {
"The cat and dog are playing",
"The cat is sleeping",
"The dog is barking",
"The dog chases the cat",
}
# MUST
results = table.search(
MatchQuery("cat", "text") & MatchQuery("dog", "text")
).to_pandas()
assert len(results) == 2
assert set(results["text"].to_list()) == {
"The cat and dog are playing",
"The dog chases the cat",
}
# MUST NOT
results = table.search(
BooleanQuery(
[
(Occur.MUST, MatchQuery("cat", "text")),
(Occur.MUST_NOT, MatchQuery("dog", "text")),
]
)
).to_pandas()
assert len(results) == 1
assert set(results["text"].to_list()) == {
"The cat is sleeping",
}
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_native(): def test_fts_native():
# --8<-- [start:basic_fts] # --8<-- [start:basic_fts]
uri = "data/sample-lancedb" uri = "data/sample-lancedb"
@@ -282,6 +354,9 @@ def test_fts_native():
# --8<-- [end:fts_incremental_index] # --8<-- [end:fts_incremental_index]
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_fts_native_async(): async def test_fts_native_async():
# --8<-- [start:basic_fts_async] # --8<-- [start:basic_fts_async]

View File

@@ -11,7 +11,7 @@ import pandas as pd
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from lancedb.embeddings import get_registry from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector, MultiVector
import requests import requests
# These are integration tests for embedding functions. # These are integration tests for embedding functions.
@@ -575,3 +575,67 @@ def test_voyageai_multimodal_embedding_text_function():
tbl.add(df) tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims() assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
importlib.util.find_spec("colpali_engine") is None,
reason="colpali_engine not installed",
)
def test_colpali(tmp_path):
import requests
from lancedb.pydantic import LanceModel
db = lancedb.connect(tmp_path)
registry = get_registry()
func = registry.get("colpali").create()
class MediaItems(LanceModel):
text: str
image_uri: str = func.SourceField()
image_bytes: bytes = func.SourceField()
image_vectors: MultiVector(func.ndims()) = (
func.VectorField()
) # Multivector image embeddings
table = db.create_table("media", schema=MediaItems)
texts = [
"a cute cat playing with yarn",
"a puppy in a flower field",
"a red sports car on the highway",
"a vintage bicycle leaning against a wall",
"a plate of delicious pasta",
"fresh fruit salad in a bowl",
]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# Get images as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"text": texts, "image_uri": uris, "image_bytes": image_bytes})
)
# Test text-to-image search
image_results = (
table.search("fluffy companion", vector_column_name="image_vectors")
.limit(1)
.to_pydantic(MediaItems)[0]
)
assert "cat" in image_results.text.lower() or "puppy" in image_results.text.lower()
# Verify multivector dimensions
first_row = table.to_arrow().to_pylist()[0]
assert len(first_row["image_vectors"]) > 1, "Should have multiple image vectors"
assert len(first_row["image_vectors"][0]) == func.ndims(), (
"Vector dimension mismatch"
)

View File

@@ -215,6 +215,19 @@ def test_search_fts(table, use_tantivy):
assert len(results) == 5 assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score assert len(results[0]) == 3 # id, text, _score
# Test boolean query
results = (
table.search(MatchQuery("puppy", "text") & MatchQuery("runs", "text"))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
for r in results:
assert "puppy" in r["text"]
assert "runs" in r["text"]
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_fts_select_async(async_table): async def test_fts_select_async(async_table):
@@ -287,7 +300,7 @@ def test_search_fts_phrase_query(table):
assert False assert False
except Exception: except Exception:
pass pass
table.create_fts_index("text", use_tantivy=False, replace=True) table.create_fts_index("text", use_tantivy=False, with_position=True, replace=True)
results = table.search("puppy").limit(100).to_list() results = table.search("puppy").limit(100).to_list()
phrase_results = table.search('"puppy runs"').limit(100).to_list() phrase_results = table.search('"puppy runs"').limit(100).to_list()
assert len(results) > len(phrase_results) assert len(results) > len(phrase_results)
@@ -312,7 +325,7 @@ async def test_search_fts_phrase_query_async(async_table):
assert False assert False
except Exception: except Exception:
pass pass
await async_table.create_index("text", config=FTS()) await async_table.create_index("text", config=FTS(with_position=True))
results = await async_table.query().nearest_to_text("puppy").limit(100).to_list() results = await async_table.query().nearest_to_text("puppy").limit(100).to_list()
phrase_results = ( phrase_results = (
await async_table.query().nearest_to_text('"puppy runs"').limit(100).to_list() await async_table.query().nearest_to_text('"puppy runs"').limit(100).to_list()
@@ -649,7 +662,7 @@ def test_fts_on_list(mem_db: DBConnection):
} }
) )
table = mem_db.create_table("test", data=data) table = mem_db.create_table("test", data=data)
table.create_fts_index("text", use_tantivy=False) table.create_fts_index("text", use_tantivy=False, with_position=True)
res = table.search("lance").limit(5).to_list() res = table.search("lance").limit(5).to_list()
assert len(res) == 3 assert len(res) == 3

View File

@@ -4,13 +4,32 @@
import lancedb import lancedb
from lancedb.query import LanceHybridQueryBuilder from lancedb.query import LanceHybridQueryBuilder
from lancedb.rerankers.rrf import RRFReranker
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
import pytest import pytest
import pytest_asyncio import pytest_asyncio
from lancedb.index import FTS from lancedb.index import FTS
from lancedb.table import AsyncTable from lancedb.table import AsyncTable, Table
@pytest.fixture
def sync_table(tmpdir_factory) -> Table:
tmp_path = str(tmpdir_factory.mktemp("data"))
db = lancedb.connect(tmp_path)
data = pa.table(
{
"text": pa.array(["a", "b", "cat", "dog"]),
"vector": pa.array(
[[0.1, 0.1], [2, 2], [-0.1, -0.1], [0.5, -0.5]],
type=pa.list_(pa.float32(), list_size=2),
),
}
)
table = db.create_table("test", data)
table.create_fts_index("text", with_position=False, use_tantivy=False)
return table
@pytest_asyncio.fixture @pytest_asyncio.fixture
@@ -102,6 +121,42 @@ async def test_async_hybrid_query_default_limit(table: AsyncTable):
assert texts.count("a") == 1 assert texts.count("a") == 1
def test_hybrid_query_distance_range(sync_table: Table):
reranker = RRFReranker(return_score="all")
result = (
sync_table.search(query_type="hybrid")
.vector([0.0, 0.4])
.text("cat and dog")
.distance_range(lower_bound=0.2, upper_bound=0.5)
.rerank(reranker)
.limit(2)
.to_arrow()
)
assert len(result) == 2
print(result)
for dist in result["_distance"]:
if dist.is_valid:
assert 0.2 <= dist.as_py() <= 0.5
@pytest.mark.asyncio
async def test_hybrid_query_distance_range_async(table: AsyncTable):
reranker = RRFReranker(return_score="all")
result = await (
table.query()
.nearest_to([0.0, 0.4])
.nearest_to_text("cat and dog")
.distance_range(lower_bound=0.2, upper_bound=0.5)
.rerank(reranker)
.limit(2)
.to_arrow()
)
assert len(result) == 2
for dist in result["_distance"]:
if dist.is_valid:
assert 0.2 <= dist.as_py() <= 0.5
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_explain_plan(table: AsyncTable): async def test_explain_plan(table: AsyncTable):
plan = await ( plan = await (

View File

@@ -8,7 +8,7 @@ import pyarrow as pa
import pytest import pytest
import pytest_asyncio import pytest_asyncio
from lancedb import AsyncConnection, AsyncTable, connect_async from lancedb import AsyncConnection, AsyncTable, connect_async
from lancedb.index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq from lancedb.index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
@pytest_asyncio.fixture @pytest_asyncio.fixture
@@ -119,6 +119,18 @@ async def test_create_label_list_index(some_table: AsyncTable):
assert str(indices) == '[Index(LabelList, columns=["tags"], name="tags_idx")]' assert str(indices) == '[Index(LabelList, columns=["tags"], name="tags_idx")]'
@pytest.mark.asyncio
async def test_full_text_search_index(some_table: AsyncTable):
await some_table.create_index("tags", config=FTS(with_position=False))
indices = await some_table.list_indices()
assert str(indices) == '[Index(FTS, columns=["tags"], name="tags_idx")]'
await some_table.prewarm_index("tags_idx")
res = await (await some_table.search("tag0")).to_arrow()
assert res.num_rows > 0
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_create_vector_index(some_table: AsyncTable): async def test_create_vector_index(some_table: AsyncTable):
# Can create # Can create

Some files were not shown because too many files have changed in this diff Show More