Compare commits

..

2 Commits

Author SHA1 Message Date
Lei Xu
ad32ea6270 run cargo update 2025-04-02 12:41:37 -07:00
Lei Xu
ff94b2c642 relax half version 2025-04-02 12:05:02 -07:00
90 changed files with 1067 additions and 2125 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.19.0-beta.7"
current_version = "0.19.0-beta.3"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -18,7 +18,6 @@ on:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/npm-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
@@ -532,8 +531,6 @@ jobs:
npm publish $PUBLISH_ARGS $filename
done
- name: Deprecate
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
# We need to deprecate the old package to avoid confusion.
# Each time we publish a new version, it gets undeprecated.
run: npm deprecate vectordb "Use @lancedb/lancedb instead."

View File

@@ -8,7 +8,6 @@ on:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/pypi-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
jobs:
linux:

213
Cargo.lock generated
View File

@@ -315,7 +315,7 @@ dependencies = [
"arrow-schema",
"chrono",
"half",
"indexmap 2.9.0",
"indexmap 2.8.0",
"lexical-core",
"num",
"serde",
@@ -603,13 +603,12 @@ dependencies = [
[[package]]
name = "aws-sdk-bedrockruntime"
version = "1.82.0"
version = "1.80.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8cb95f77abd4321348dd2f52a25e1de199732f54d2a35860ad20f5df21c66b44"
checksum = "39ee8ef191b908d013659ca2c0670215f0c920c781998e1dc55904d6bdb73b51"
dependencies = [
"aws-credential-types",
"aws-runtime",
"aws-sigv4",
"aws-smithy-async",
"aws-smithy-eventstream",
"aws-smithy-http",
@@ -621,7 +620,6 @@ dependencies = [
"bytes",
"fastrand",
"http 0.2.12",
"hyper 0.14.32",
"once_cell",
"regex-lite",
"tracing",
@@ -629,9 +627,9 @@ dependencies = [
[[package]]
name = "aws-sdk-dynamodb"
version = "1.71.2"
version = "1.71.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2d49d08b1c99ca9a7de728a8975504857f2c24581a177f952e2a10244c305a1c"
checksum = "e04d98940e69f94525e47f5dda2e28919b81c229a8d25c941be31104c6a4afa8"
dependencies = [
"aws-credential-types",
"aws-runtime",
@@ -893,7 +891,7 @@ dependencies = [
"hyper-util",
"pin-project-lite",
"rustls 0.21.12",
"rustls 0.23.26",
"rustls 0.23.25",
"rustls-native-certs 0.8.1",
"rustls-pki-types",
"tokio",
@@ -1185,9 +1183,9 @@ dependencies = [
[[package]]
name = "blake3"
version = "1.8.1"
version = "1.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "389a099b34312839e16420d499a9cad9650541715937ffbdd40d36f49e77eeb3"
checksum = "34a796731680be7931955498a16a10b2270c7762963d5d570fdbfe02dcbf314f"
dependencies = [
"arrayref",
"arrayvec",
@@ -1287,7 +1285,7 @@ dependencies = [
"num-traits",
"num_cpus",
"rand 0.8.5",
"rand_distr",
"rand_distr 0.4.3",
"rayon",
"safetensors",
"thiserror 1.0.69",
@@ -1331,9 +1329,9 @@ dependencies = [
[[package]]
name = "cc"
version = "1.2.19"
version = "1.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8e3a13707ac958681c13b39b458c073d0d9bc8a22cb1b2f4c8e55eb72c13f362"
checksum = "1fcb57c740ae1daf453ae85f16e37396f672b039e00d9d866e07ddb24e328e3a"
dependencies = [
"jobserver",
"libc",
@@ -1629,9 +1627,9 @@ dependencies = [
[[package]]
name = "crossbeam-channel"
version = "0.5.15"
version = "0.5.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "82b8f8f868b36967f9606790d1903570de9ceaf870a7bf9fbbd3016d636a2cb2"
checksum = "06ba6d68e24814cb8de6bb986db8222d3a027d15872cabc0d18817bc3c0e4471"
dependencies = [
"crossbeam-utils",
]
@@ -1916,7 +1914,7 @@ dependencies = [
"base64 0.22.1",
"half",
"hashbrown 0.14.5",
"indexmap 2.9.0",
"indexmap 2.8.0",
"libc",
"log",
"object_store",
@@ -2003,7 +2001,7 @@ dependencies = [
"datafusion-functions-aggregate-common",
"datafusion-functions-window-common",
"datafusion-physical-expr-common",
"indexmap 2.9.0",
"indexmap 2.8.0",
"paste",
"serde_json",
"sqlparser 0.54.0",
@@ -2017,7 +2015,7 @@ checksum = "18f0a851a436c5a2139189eb4617a54e6a9ccb9edc96c4b3c83b3bb7c58b950e"
dependencies = [
"arrow",
"datafusion-common",
"indexmap 2.9.0",
"indexmap 2.8.0",
"itertools 0.14.0",
"paste",
]
@@ -2171,7 +2169,7 @@ dependencies = [
"datafusion-common",
"datafusion-expr",
"datafusion-physical-expr",
"indexmap 2.9.0",
"indexmap 2.8.0",
"itertools 0.14.0",
"log",
"regex",
@@ -2193,7 +2191,7 @@ dependencies = [
"datafusion-physical-expr-common",
"half",
"hashbrown 0.14.5",
"indexmap 2.9.0",
"indexmap 2.8.0",
"itertools 0.14.0",
"log",
"paste",
@@ -2254,7 +2252,7 @@ dependencies = [
"futures",
"half",
"hashbrown 0.14.5",
"indexmap 2.9.0",
"indexmap 2.8.0",
"itertools 0.14.0",
"log",
"parking_lot",
@@ -2272,7 +2270,7 @@ dependencies = [
"bigdecimal",
"datafusion-common",
"datafusion-expr",
"indexmap 2.9.0",
"indexmap 2.8.0",
"log",
"regex",
"sqlparser 0.54.0",
@@ -2310,9 +2308,9 @@ dependencies = [
[[package]]
name = "deranged"
version = "0.4.0"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c9e6a11ca8224451684bc0d7d5a7adbf8f2fd6887261a1cfc3c0432f9d4068e"
checksum = "28cfac68e08048ae1883171632c2aef3ebc555621ae56fbccce1cbf22dd7f058"
dependencies = [
"powerfmt",
"serde",
@@ -2539,9 +2537,9 @@ checksum = "877a4ace8713b0bcf2a4e7eec82529c029f1d0619886d18145fea96c3ffe5c0f"
[[package]]
name = "errno"
version = "0.3.11"
version = "0.3.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "976dd42dc7e85965fe702eb8164f21f450704bdde31faefd6471dba214cb594e"
checksum = "33d852cb9b869c2a9b3df2f71a3074817f01e1844f839a144f5fcef059a4eb5d"
dependencies = [
"libc",
"windows-sys 0.59.0",
@@ -2721,8 +2719,8 @@ checksum = "42703706b716c37f96a77aea830392ad231f44c9e9a67872fa5548707e11b11c"
[[package]]
name = "fsst"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"rand 0.8.5",
]
@@ -3040,7 +3038,7 @@ dependencies = [
"futures-sink",
"futures-util",
"http 0.2.12",
"indexmap 2.9.0",
"indexmap 2.8.0",
"slab",
"tokio",
"tokio-util",
@@ -3059,7 +3057,7 @@ dependencies = [
"futures-core",
"futures-sink",
"http 1.3.1",
"indexmap 2.9.0",
"indexmap 2.8.0",
"slab",
"tokio",
"tokio-util",
@@ -3068,16 +3066,16 @@ dependencies = [
[[package]]
name = "half"
version = "2.4.1"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6dd08c532ae367adf81c312a4580bc67f1d0fe8bc9c460520283f4c0ff277888"
checksum = "7db2ff139bba50379da6aa0766b52fdcb62cb5b263009b09ed58ba604e14bbd1"
dependencies = [
"bytemuck",
"cfg-if",
"crunchy",
"num-traits",
"rand 0.8.5",
"rand_distr",
"rand 0.9.0",
"rand_distr 0.5.1",
]
[[package]]
@@ -3323,7 +3321,7 @@ dependencies = [
"http 1.3.1",
"hyper 1.6.0",
"hyper-util",
"rustls 0.23.26",
"rustls 0.23.25",
"rustls-native-certs 0.8.1",
"rustls-pki-types",
"tokio",
@@ -3543,9 +3541,9 @@ dependencies = [
[[package]]
name = "indexmap"
version = "2.9.0"
version = "2.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cea70ddb795996207ad57735b50c5982d8844f38ba9ee5f1aedcfb708a2aa11e"
checksum = "3954d50fe15b02142bf25d3b8bdadb634ec3948f103d04ffe3031bc8fe9d7058"
dependencies = [
"equivalent",
"hashbrown 0.15.2",
@@ -3645,9 +3643,9 @@ checksum = "9028f49264629065d057f340a86acb84867925865f73bbf8d47b4d149a7e88b8"
[[package]]
name = "jiff"
version = "0.2.6"
version = "0.2.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1f33145a5cbea837164362c7bd596106eb7c5198f97d1ba6f6ebb3223952e488"
checksum = "c102670231191d07d37a35af3eb77f1f0dbf7a71be51a962dcd57ea607be7260"
dependencies = [
"jiff-static",
"log",
@@ -3658,9 +3656,9 @@ dependencies = [
[[package]]
name = "jiff-static"
version = "0.2.6"
version = "0.2.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "43ce13c40ec6956157a3635d97a1ee2df323b263f09ea14165131289cb0f5c19"
checksum = "4cdde31a9d349f1b1f51a0b3714a5940ac022976f4b49485fc04be052b183b4c"
dependencies = [
"proc-macro2",
"quote",
@@ -3711,8 +3709,8 @@ dependencies = [
[[package]]
name = "lance"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow",
"arrow-arith",
@@ -3738,7 +3736,6 @@ dependencies = [
"deepsize",
"futures",
"half",
"humantime",
"itertools 0.13.0",
"lance-arrow",
"lance-core",
@@ -3772,8 +3769,8 @@ dependencies = [
[[package]]
name = "lance-arrow"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow-array",
"arrow-buffer",
@@ -3790,8 +3787,8 @@ dependencies = [
[[package]]
name = "lance-core"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow-array",
"arrow-buffer",
@@ -3827,8 +3824,8 @@ dependencies = [
[[package]]
name = "lance-datafusion"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow",
"arrow-array",
@@ -3855,8 +3852,8 @@ dependencies = [
[[package]]
name = "lance-datagen"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow",
"arrow-array",
@@ -3871,8 +3868,8 @@ dependencies = [
[[package]]
name = "lance-encoding"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrayref",
"arrow",
@@ -3911,8 +3908,8 @@ dependencies = [
[[package]]
name = "lance-file"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow-arith",
"arrow-array",
@@ -3946,8 +3943,8 @@ dependencies = [
[[package]]
name = "lance-index"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow",
"arrow-array",
@@ -4000,8 +3997,8 @@ dependencies = [
[[package]]
name = "lance-io"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow",
"arrow-arith",
@@ -4039,8 +4036,8 @@ dependencies = [
[[package]]
name = "lance-linalg"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow-array",
"arrow-ord",
@@ -4063,8 +4060,8 @@ dependencies = [
[[package]]
name = "lance-table"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow",
"arrow-array",
@@ -4103,8 +4100,8 @@ dependencies = [
[[package]]
name = "lance-testing"
version = "0.26.0"
source = "git+https://github.com/lancedb/lance?tag=v0.26.0-beta.1#8e46047e2dcb171bec28e28b507a9b7858348773"
version = "0.25.3"
source = "git+https://github.com/lancedb/lance?tag=v0.25.3-beta.1#ca2e69c2be80b0714d5ef1db5265bae9fadf682c"
dependencies = [
"arrow-array",
"arrow-schema",
@@ -4115,7 +4112,7 @@ dependencies = [
[[package]]
name = "lancedb"
version = "0.19.0-beta.7"
version = "0.19.0-beta.3"
dependencies = [
"arrow",
"arrow-array",
@@ -4202,7 +4199,7 @@ dependencies = [
[[package]]
name = "lancedb-node"
version = "0.19.0-beta.7"
version = "0.19.0-beta.3"
dependencies = [
"arrow-array",
"arrow-ipc",
@@ -4227,7 +4224,7 @@ dependencies = [
[[package]]
name = "lancedb-nodejs"
version = "0.19.0-beta.7"
version = "0.19.0-beta.3"
dependencies = [
"arrow-array",
"arrow-ipc",
@@ -4245,7 +4242,7 @@ dependencies = [
[[package]]
name = "lancedb-python"
version = "0.22.0-beta.7"
version = "0.22.0-beta.3"
dependencies = [
"arrow",
"env_logger",
@@ -4390,9 +4387,9 @@ checksum = "d26c52dbd32dccf2d10cac7725f8eae5296885fb5703b261f7d0a0739ec807ab"
[[package]]
name = "linux-raw-sys"
version = "0.9.4"
version = "0.9.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cd945864f07fe9f5371a27ad7b52a172b4b499999f1d97574c9fa68373937e12"
checksum = "fe7db12097d22ec582439daf8618b8fdd1a7bef6270e9af3b1ebcd30893cf413"
[[package]]
name = "litemap"
@@ -4580,9 +4577,9 @@ checksum = "68354c5c6bd36d73ff3feceb05efa59b6acb7626617f4962be322a825e61f79a"
[[package]]
name = "miniz_oxide"
version = "0.8.8"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3be647b768db090acb35d5ec5db2b0e1f1de11133ca123b9eacf5137868f892a"
checksum = "8e3e04debbb59698c15bacbb6d93584a8c0ca9cc3213cb423d31f760d8843ce5"
dependencies = [
"adler2",
]
@@ -5139,7 +5136,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3672b37090dbd86368a4145bc067582552b29c27377cad4e0a306c97f9bd7772"
dependencies = [
"fixedbitset",
"indexmap 2.9.0",
"indexmap 2.8.0",
]
[[package]]
@@ -5332,7 +5329,7 @@ dependencies = [
"comfy-table",
"either",
"hashbrown 0.14.5",
"indexmap 2.9.0",
"indexmap 2.8.0",
"num-traits",
"once_cell",
"polars-arrow",
@@ -5341,7 +5338,7 @@ dependencies = [
"polars-row",
"polars-utils",
"rand 0.8.5",
"rand_distr",
"rand_distr 0.4.3",
"rayon",
"regex",
"smartstring",
@@ -5430,7 +5427,7 @@ dependencies = [
"either",
"hashbrown 0.14.5",
"hex",
"indexmap 2.9.0",
"indexmap 2.8.0",
"memchr",
"num-traits",
"polars-arrow",
@@ -5574,7 +5571,7 @@ dependencies = [
"ahash",
"bytemuck",
"hashbrown 0.14.5",
"indexmap 2.9.0",
"indexmap 2.8.0",
"num-traits",
"once_cell",
"polars-error",
@@ -5618,9 +5615,9 @@ dependencies = [
[[package]]
name = "prettyplease"
version = "0.2.32"
version = "0.2.31"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "664ec5419c51e34154eec046ebcba56312d5a2fc3b09a06da188e1ad21afadf6"
checksum = "5316f57387668042f561aae71480de936257848f9c43ce528e311d89a07cadeb"
dependencies = [
"proc-macro2",
"syn 2.0.100",
@@ -5827,7 +5824,7 @@ dependencies = [
"quinn-proto",
"quinn-udp",
"rustc-hash 2.1.1",
"rustls 0.23.26",
"rustls 0.23.25",
"socket2",
"thiserror 2.0.12",
"tokio",
@@ -5846,7 +5843,7 @@ dependencies = [
"rand 0.9.0",
"ring",
"rustc-hash 2.1.1",
"rustls 0.23.26",
"rustls 0.23.25",
"rustls-pki-types",
"slab",
"thiserror 2.0.12",
@@ -5960,6 +5957,16 @@ dependencies = [
"rand 0.8.5",
]
[[package]]
name = "rand_distr"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a8615d50dcf34fa31f7ab52692afec947c4dd0ab803cc87cb3b0b4570ff7463"
dependencies = [
"num-traits",
"rand 0.9.0",
]
[[package]]
name = "rand_xoshiro"
version = "0.6.0"
@@ -6066,9 +6073,9 @@ dependencies = [
[[package]]
name = "redox_syscall"
version = "0.5.11"
version = "0.5.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2f103c6d277498fbceb16e84d317e2a400f160f46904d5f5410848c829511a3"
checksum = "0b8c0c260b63a8219631167be35e6a988e9554dbd323f8bd08439c8ed1302bd1"
dependencies = [
"bitflags 2.9.0",
]
@@ -6168,7 +6175,7 @@ dependencies = [
"percent-encoding",
"pin-project-lite",
"quinn",
"rustls 0.23.26",
"rustls 0.23.25",
"rustls-native-certs 0.8.1",
"rustls-pemfile 2.2.0",
"rustls-pki-types",
@@ -6234,9 +6241,9 @@ dependencies = [
[[package]]
name = "roaring"
version = "0.10.12"
version = "0.10.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "19e8d2cfa184d94d0726d650a9f4a1be7f9b76ac9fdb954219878dc00c1c1e7b"
checksum = "a652edd001c53df0b3f96a36a8dc93fce6866988efc16808235653c6bcac8bf2"
dependencies = [
"bytemuck",
"byteorder",
@@ -6331,7 +6338,7 @@ dependencies = [
"bitflags 2.9.0",
"errno",
"libc",
"linux-raw-sys 0.9.4",
"linux-raw-sys 0.9.3",
"windows-sys 0.59.0",
]
@@ -6349,9 +6356,9 @@ dependencies = [
[[package]]
name = "rustls"
version = "0.23.26"
version = "0.23.25"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "df51b5869f3a441595eac5e8ff14d486ff285f7b8c0df8770e49c3b56351f0f0"
checksum = "822ee9188ac4ec04a2f0531e55d035fb2de73f18b41a63c70c2712503b6fb13c"
dependencies = [
"aws-lc-rs",
"log",
@@ -6648,7 +6655,7 @@ dependencies = [
"chrono",
"hex",
"indexmap 1.9.3",
"indexmap 2.9.0",
"indexmap 2.8.0",
"serde",
"serde_derive",
"serde_json",
@@ -6765,9 +6772,9 @@ dependencies = [
[[package]]
name = "smallvec"
version = "1.15.0"
version = "1.14.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8917285742e9f3e1683f0a9c4e6b57960b7314d0b08d30d1ecd426713ee2eee9"
checksum = "7fcf8323ef1faaee30a44a340193b1ac6814fd9b7b4e88e9d4519a3e4abe1cfd"
[[package]]
name = "smartstring"
@@ -7194,7 +7201,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c56d6ff5591fc332739b3ce7035b57995a3ce29a93ffd6012660e0949c956ea8"
dependencies = [
"murmurhash32",
"rand_distr",
"rand_distr 0.4.3",
"tantivy-common",
]
@@ -7387,9 +7394,9 @@ dependencies = [
[[package]]
name = "tokio"
version = "1.44.2"
version = "1.44.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e6b88822cbe49de4185e3a4cbf8321dd487cf5fe0c5c65695fef6346371e9c48"
checksum = "f382da615b842244d4b8738c82ed1275e6c5dd90c459a30941cd07080b06c91a"
dependencies = [
"backtrace",
"bytes",
@@ -7429,7 +7436,7 @@ version = "0.26.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8e727b36a1a0e8b74c376ac2211e40c2c8af09fb4013c60d910495810f008e9b"
dependencies = [
"rustls 0.23.26",
"rustls 0.23.25",
"tokio",
]
@@ -7469,7 +7476,7 @@ version = "0.22.24"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "17b4795ff5edd201c7cd6dca065ae59972ce77d1b80fa0a84d94950ece7d1474"
dependencies = [
"indexmap 2.9.0",
"indexmap 2.8.0",
"toml_datetime",
"winnow",
]
@@ -7654,7 +7661,7 @@ dependencies = [
"flate2",
"log",
"once_cell",
"rustls 0.23.26",
"rustls 0.23.25",
"rustls-pki-types",
"serde",
"serde_json",
@@ -8366,9 +8373,9 @@ checksum = "271414315aff87387382ec3d271b52d7ae78726f5d44ac98b4f4030c91880486"
[[package]]
name = "winnow"
version = "0.7.6"
version = "0.7.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "63d3fcd9bba44b03821e7d699eeee959f3126dcc4aa8e4ae18ec617c2a5cea10"
checksum = "0e97b544156e9bebe1a0ffbc03484fc1ffe3100cbce3ffb17eac35f7cdd7ab36"
dependencies = [
"memchr",
]
@@ -8538,7 +8545,7 @@ dependencies = [
"crc32fast",
"crossbeam-utils",
"displaydoc",
"indexmap 2.9.0",
"indexmap 2.8.0",
"num_enum",
"thiserror 1.0.69",
]

View File

@@ -21,16 +21,16 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.26.0", "features" = [
lance = { "version" = "=0.25.3", "features" = [
"dynamodb",
], tag = "v0.26.0-beta.1", git = "https://github.com/lancedb/lance" }
lance-io = { version = "=0.26.0", tag = "v0.26.0-beta.1", git = "https://github.com/lancedb/lance" }
lance-index = { version = "=0.26.0", tag = "v0.26.0-beta.1", git = "https://github.com/lancedb/lance" }
lance-linalg = { version = "=0.26.0", tag = "v0.26.0-beta.1", git = "https://github.com/lancedb/lance" }
lance-table = { version = "=0.26.0", tag = "v0.26.0-beta.1", git = "https://github.com/lancedb/lance" }
lance-testing = { version = "=0.26.0", tag = "v0.26.0-beta.1", git = "https://github.com/lancedb/lance" }
lance-datafusion = { version = "=0.26.0", tag = "v0.26.0-beta.1", git = "https://github.com/lancedb/lance" }
lance-encoding = { version = "=0.26.0", tag = "v0.26.0-beta.1", git = "https://github.com/lancedb/lance" }
], tag = "v0.25.3-beta.1", git = "https://github.com/lancedb/lance" }
lance-io = { version = "=0.25.3", tag = "v0.25.3-beta.1", git = "https://github.com/lancedb/lance" }
lance-index = { version = "=0.25.3", tag = "v0.25.3-beta.1", git = "https://github.com/lancedb/lance" }
lance-linalg = { version = "=0.25.3", tag = "v0.25.3-beta.1", git = "https://github.com/lancedb/lance" }
lance-table = { version = "=0.25.3", tag = "v0.25.3-beta.1", git = "https://github.com/lancedb/lance" }
lance-testing = { version = "=0.25.3", tag = "v0.25.3-beta.1", git = "https://github.com/lancedb/lance" }
lance-datafusion = { version = "=0.25.3", tag = "v0.25.3-beta.1", git = "https://github.com/lancedb/lance" }
lance-encoding = { version = "=0.25.3", tag = "v0.25.3-beta.1", git = "https://github.com/lancedb/lance" }
# Note that this one does not include pyarrow
arrow = { version = "54.1", optional = false }
arrow-array = "54.1"
@@ -48,7 +48,7 @@ datafusion-execution = "46.0"
datafusion-expr = "46.0"
datafusion-physical-plan = "46.0"
env_logger = "0.11"
half = { "version" = "=2.4.1", default-features = false, features = [
half = { "version" = "2.1", default-features = false, features = [
"num-traits",
] }
futures = "0"
@@ -63,15 +63,12 @@ rand = "0.8"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.39"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
crunchy = "=0.2.2"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

View File

@@ -2,7 +2,7 @@
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](../.github/workflows/docs.yml)
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features.

View File

@@ -342,7 +342,7 @@ For **read and write access**, LanceDB will need a policy such as:
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject"
"s3:DeleteObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
@@ -374,7 +374,7 @@ For **read-only access**, LanceDB will need a policy such as:
{
"Effect": "Allow",
"Action": [
"s3:GetObject"
"s3:GetObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},

View File

@@ -1001,9 +1001,11 @@ In LanceDB OSS, users can set the `read_consistency_interval` parameter on conne
There are three possible settings for `read_consistency_interval`:
1. **Unset (default)**: The database does not check for updates to tables made by other processes. This provides the best query performance, but means that clients may not see the most up-to-date data. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS.
3. **Custom interval (Eventual consistency)**: The database checks for updates at a custom interval, such as every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
1. **Unset**: The database does not check for updates to tables made by other processes. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS. For best performance, combine this setting with the storage option `new_table_enable_v2_manifest_paths` set to `true`.
3. **Custom interval (Eventual consistency, the default)**: The database checks for updates at a custom interval. By default, this is every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
You can always force a synchronization by calling `checkout_latest()` / `checkoutLatest()` on a table.
!!! tip "Consistency in LanceDB Cloud"
@@ -1041,7 +1043,21 @@ There are three possible settings for `read_consistency_interval`:
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_eventual_consistency"
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
For no consistency, use `None`:
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_no_consistency"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_no_consistency"
```
To manually check for updates you can use `checkout_latest`:
=== "Sync API"
@@ -1059,15 +1075,25 @@ There are three possible settings for `read_consistency_interval`:
To set strong consistency, use `0`:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const tbl = await db.openTable("my_table");
--8<-- "nodejs/examples/basic.test.ts:table_strong_consistency"
```
For eventual consistency, specify the update interval as seconds:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const tbl = await db.openTable("my_table");
--8<-- "nodejs/examples/basic.test.ts:table_eventual_consistency"
```
For no consistency, use `null`:
```ts
--8<-- "nodejs/examples/basic.test.ts:table_no_consistency"
```
To manually check for updates you can use `checkoutLatest`:
```ts
--8<-- "nodejs/examples/basic.test.ts:table_checkout_latest"
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007

View File

@@ -22,13 +22,10 @@ including methods to retrieve the query type and convert the query to a dictiona
new BoostQuery(
positive,
negative,
options?): BoostQuery
negativeBoost): BoostQuery
```
Creates an instance of BoostQuery.
The boost returns documents that match the positive query,
but penalizes those that match the negative query.
the penalty is controlled by the `negativeBoost` parameter.
#### Parameters
@@ -38,11 +35,8 @@ the penalty is controlled by the `negativeBoost` parameter.
* **negative**: [`FullTextQuery`](../interfaces/FullTextQuery.md)
The negative query that reduces the relevance score.
* **options?**
Optional parameters for the boost query.
- `negativeBoost`: The boost factor for the negative query (default is 0.0).
* **options.negativeBoost?**: `number`
* **negativeBoost**: `number`
The factor by which the negative query reduces the score.
#### Returns
@@ -56,8 +50,6 @@ the penalty is controlled by the `negativeBoost` parameter.
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
@@ -65,3 +57,19 @@ The type of the full-text query.
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)

View File

@@ -22,7 +22,9 @@ including methods to retrieve the query type and convert the query to a dictiona
new MatchQuery(
query,
column,
options?): MatchQuery
boost,
fuzziness,
maxExpansions): MatchQuery
```
Creates an instance of MatchQuery.
@@ -35,17 +37,14 @@ Creates an instance of MatchQuery.
* **column**: `string`
The name of the column to search within.
* **options?**
Optional parameters for the match query.
- `boost`: The boost factor for the query (default is 1.0).
- `fuzziness`: The fuzziness level for the query (default is 0).
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
* **boost**: `number` = `1.0`
(Optional) The boost factor to influence the relevance score of this query. Default is `1.0`.
* **options.boost?**: `number`
* **fuzziness**: `number` = `0`
(Optional) The allowed edit distance for fuzzy matching. Default is `0`.
* **options.fuzziness?**: `number`
* **options.maxExpansions?**: `number`
* **maxExpansions**: `number` = `50`
(Optional) The maximum number of terms to consider for fuzzy matching. Default is `50`.
#### Returns
@@ -59,8 +58,6 @@ Creates an instance of MatchQuery.
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
@@ -68,3 +65,19 @@ The type of the full-text query.
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)

View File

@@ -22,7 +22,7 @@ including methods to retrieve the query type and convert the query to a dictiona
new MultiMatchQuery(
query,
columns,
options?): MultiMatchQuery
boosts): MultiMatchQuery
```
Creates an instance of MultiMatchQuery.
@@ -35,11 +35,10 @@ Creates an instance of MultiMatchQuery.
* **columns**: `string`[]
An array of column names to search within.
* **options?**
Optional parameters for the multi-match query.
- `boosts`: An array of boost factors for each column (default is 1.0 for all).
* **options.boosts?**: `number`[]
* **boosts**: `number`[] = `...`
(Optional) An array of boost factors corresponding to each column. Default is an array of 1.0 for each column.
The `boosts` array should have the same length as `columns`. If not provided, all columns will have a default boost of 1.0.
If the length of `boosts` is less than `columns`, it will be padded with 1.0s.
#### Returns
@@ -53,8 +52,6 @@ Creates an instance of MultiMatchQuery.
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
@@ -62,3 +59,19 @@ The type of the full-text query.
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)

View File

@@ -44,8 +44,6 @@ Creates an instance of `PhraseQuery`.
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
@@ -53,3 +51,19 @@ The type of the full-text query.
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`toDict`](../interfaces/FullTextQuery.md#todict)

View File

@@ -454,28 +454,6 @@ Modeled after ``VACUUM`` in PostgreSQL.
***
### prewarmIndex()
```ts
abstract prewarmIndex(name): Promise<void>
```
Prewarm an index in the table.
#### Parameters
* **name**: `string`
The name of the index.
This will load the index into memory. This may reduce the cold-start time for
future queries. If the index does not fit in the cache then this call may be
wasteful.
#### Returns
`Promise`&lt;`void`&gt;
***
### query()
```ts
@@ -597,7 +575,7 @@ of the given query
#### Parameters
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md)
the query, a vector or string
* **queryType?**: `string`

View File

@@ -44,7 +44,7 @@ for testing purposes.
### readConsistencyInterval?
```ts
optional readConsistencyInterval: number;
optional readConsistencyInterval: null | number;
```
(For LanceDB OSS only): The interval, in seconds, at which to check for

View File

@@ -18,8 +18,18 @@ including methods to retrieve the query type and convert the query to a dictiona
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
***
### toDict()
```ts
toDict(): Record<string, unknown>
```
#### Returns
`Record`&lt;`string`, `unknown`&gt;

View File

@@ -20,13 +20,3 @@ The maximum number of rows to return in a single batch
Batches may have fewer rows if the underlying data is stored
in smaller chunks.
***
### timeoutMs?
```ts
optional timeoutMs: number;
```
Timeout for query execution in milliseconds

View File

@@ -11,6 +11,7 @@ likely that someone who knows the answer will see your question.
## Common issues
* Multiprocessing with `fork` is not supported. You should use `spawn` instead.
* Data returned by queries may not reflect the most recent writes, depending on configuration. LanceDB uses eventual consistency by default. See [consistency](/docs/src/guides/tables.md#consistency) for more information.
## Enabling logging

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.19.0-beta.7</version>
<version>0.19.0-beta.3</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.19.0-beta.7</version>
<version>0.19.0-beta.3</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

79
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.7",
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.7",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.7",
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.7",
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.7"
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.3",
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.3",
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.3",
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.3"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -326,71 +326,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.19.0-beta.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.19.0-beta.7.tgz",
"integrity": "sha512-HpbVKw4Vs+mPv7uPwaK7ilJlGrGdjOrNlC2mSkMCj0OlEwGRVcEcrSyijI7LXQH7ybEgNnDhSds5TuzBV26SGg==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.19.0-beta.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.19.0-beta.7.tgz",
"integrity": "sha512-x3X7nqIYVZtxaa0uZUk/M99vKvDinZ5G0+8k2NqZ696YXGWKGyRxR6k8ZzKYCoCTSuYXnBftgKoIlwJGtNt8Bw==",
"cpu": [
"x64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.19.0-beta.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.19.0-beta.7.tgz",
"integrity": "sha512-Vwj0HI3+b4NgXKf+5+W/GfLBCGoQMBGM47vA/ts1dpe/PxraOQYPDv67I5kbXkCQKwhal7b0iZx/PbMu0JZPyw==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.19.0-beta.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.19.0-beta.7.tgz",
"integrity": "sha512-Dx2B6UWQei9D7Rt+MgHWqPTYtEK2w3EgsNb5ENEWUTZxH7lD/CV7Sw0JMK5LDG209fFcpXFerveF6J8ZC8uGBQ==",
"cpu": [
"x64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.19.0-beta.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.19.0-beta.7.tgz",
"integrity": "sha512-F5LZGa+gkUH1TgsWZWLLAMejwXFIWdash7+85ip4k2M0ThyqLF/dtlldOvteUEd5+flxihGjHg6TUtnSY8XBFA==",
"cpu": [
"x64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
@@ -89,10 +89,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.7",
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.7",
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.7",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.7",
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.7"
"@lancedb/vectordb-darwin-x64": "0.19.0-beta.3",
"@lancedb/vectordb-darwin-arm64": "0.19.0-beta.3",
"@lancedb/vectordb-linux-x64-gnu": "0.19.0-beta.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.0-beta.3",
"@lancedb/vectordb-win32-x64-msvc": "0.19.0-beta.3"
}
}

View File

@@ -110,7 +110,7 @@ describe('LanceDB Mirrored Store Integration test', function () {
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.equal(files.length, 1, `Found files: ${files.map(f => f.name)}`)
assert.isTrue(files[0].name.endsWith('.lance'))
})

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.19.0-beta.7"
version = "0.19.0-beta.3"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -17,7 +17,7 @@ describe("when connecting", () => {
it("should connect", async () => {
const db = await connect(tmpDir.name);
expect(db.display()).toBe(
`ListingDatabase(uri=${tmpDir.name}, read_consistency_interval=None)`,
`ListingDatabase(uri=${tmpDir.name}, read_consistency_interval=5s)`,
);
});

View File

@@ -10,7 +10,7 @@ import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as arrow18 from "apache-arrow-18";
import { MatchQuery, PhraseQuery, Table, connect } from "../lancedb";
import { Table, connect } from "../lancedb";
import {
Table as ArrowTable,
Field,
@@ -33,7 +33,6 @@ import {
register,
} from "../lancedb/embedding";
import { Index } from "../lancedb/indices";
import { instanceOfFullTextQuery } from "../lancedb/query";
describe.each([arrow15, arrow16, arrow17, arrow18])(
"Given a table",
@@ -59,7 +58,7 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
it("be displayable", async () => {
expect(table.display()).toMatch(
/NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
/NativeTable\(some_table, uri=.*, read_consistency_interval=5s\)/,
);
table.close();
expect(table.display()).toBe("ClosedTable(some_table)");
@@ -868,44 +867,6 @@ describe("When creating an index", () => {
});
});
describe("When querying a table", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => tmpDir.removeCallback());
it("should throw an error when timeout is reached", async () => {
const db = await connect(tmpDir.name);
const data = makeArrowTable([
{ text: "a", vector: [0.1, 0.2] },
{ text: "b", vector: [0.3, 0.4] },
]);
const table = await db.createTable("test", data);
await table.createIndex("text", { config: Index.fts() });
await expect(
table.query().where("text != 'a'").toArray({ timeoutMs: 0 }),
).rejects.toThrow("Query timeout");
await expect(
table.query().nearestTo([0.0, 0.0]).toArrow({ timeoutMs: 0 }),
).rejects.toThrow("Query timeout");
await expect(
table.search("a", "fts").toArray({ timeoutMs: 0 }),
).rejects.toThrow("Query timeout");
await expect(
table
.query()
.nearestToText("a")
.nearestTo([0.0, 0.0])
.toArrow({ timeoutMs: 0 }),
).rejects.toThrow("Query timeout");
});
});
describe("Read consistency interval", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
@@ -1303,56 +1264,6 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
const results = await table.search("hello").toArray();
expect(results[0].text).toBe(data[0].text);
const query = new MatchQuery("goodbye", "text");
expect(instanceOfFullTextQuery(query)).toBe(true);
const results2 = await table
.search(new MatchQuery("goodbye", "text"))
.toArray();
expect(results2[0].text).toBe(data[1].text);
});
test("prewarm full text search index", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: ["lance database", "the", "search"], vector: [0.1, 0.2, 0.3] },
{ text: ["lance database"], vector: [0.4, 0.5, 0.6] },
{ text: ["lance", "search"], vector: [0.7, 0.8, 0.9] },
{ text: ["database", "search"], vector: [1.0, 1.1, 1.2] },
{ text: ["unrelated", "doc"], vector: [1.3, 1.4, 1.5] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
});
// For the moment, we just confirm we can call prewarmIndex without error
// and still search it afterwards
await table.prewarmIndex("text_idx");
const results = await table.search("lance").toArray();
expect(results.length).toBe(3);
});
test("full text index on list", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: ["lance database", "the", "search"], vector: [0.1, 0.2, 0.3] },
{ text: ["lance database"], vector: [0.4, 0.5, 0.6] },
{ text: ["lance", "search"], vector: [0.7, 0.8, 0.9] },
{ text: ["database", "search"], vector: [1.0, 1.1, 1.2] },
{ text: ["unrelated", "doc"], vector: [1.3, 1.4, 1.5] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
});
const results = await table.search("lance").toArray();
expect(results.length).toBe(3);
const results2 = await table.search('"lance database"').toArray();
expect(results2.length).toBe(2);
});
test("full text search without positions", async () => {
@@ -1405,43 +1316,6 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(results.length).toBe(2);
const phraseResults = await table.search('"hello world"').toArray();
expect(phraseResults.length).toBe(1);
const phraseResults2 = await table
.search(new PhraseQuery("hello world", "text"))
.toArray();
expect(phraseResults2.length).toBe(1);
});
test("full text search fuzzy query", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "fa", vector: [0.1, 0.2, 0.3] },
{ text: "fo", vector: [0.4, 0.5, 0.6] },
{ text: "fob", vector: [0.4, 0.5, 0.6] },
{ text: "focus", vector: [0.4, 0.5, 0.6] },
{ text: "foo", vector: [0.4, 0.5, 0.6] },
{ text: "food", vector: [0.4, 0.5, 0.6] },
{ text: "foul", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
});
const results = await table
.search(new MatchQuery("foo", "text"))
.toArray();
expect(results.length).toBe(1);
expect(results[0].text).toBe("foo");
const fuzzyResults = await table
.search(new MatchQuery("foo", "text", { fuzziness: 1 }))
.toArray();
expect(fuzzyResults.length).toBe(4);
const resultSet = new Set(fuzzyResults.map((r) => r.text));
expect(resultSet.has("foo")).toBe(true);
expect(resultSet.has("fob")).toBe(true);
expect(resultSet.has("fo")).toBe(true);
expect(resultSet.has("food")).toBe(true);
});
test.each([

View File

@@ -202,5 +202,35 @@ test("basic table examples", async () => {
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}
const uri = databaseDir;
await db.createTable("my_table", [{ id: 1 }, { id: 2 }]);
{
// --8<-- [start:table_strong_consistency]
const db = await lancedb.connect({ uri, readConsistencyInterval: 0 });
const tbl = await db.openTable("my_table");
// --8<-- [end:table_strong_consistency]
}
{
// --8<-- [start:table_eventual_consistency]
const db = await lancedb.connect({ uri, readConsistencyInterval: 5 });
const tbl = await db.openTable("my_table");
// --8<-- [end:table_eventual_consistency]
}
{
// --8<-- [start:table_no_consistency]
const db = await lancedb.connect({ uri, readConsistencyInterval: null });
const tbl = await db.openTable("my_table");
// --8<-- [end:table_no_consistency]
}
{
// --8<-- [start:table_checkout_latest]
const tbl = await db.openTable("my_table");
// (Other writes happen to test_table_async from another process)
// Check for updates
tbl.checkoutLatest();
// --8<-- [end:table_checkout_latest]
}
});
});

View File

@@ -11,7 +11,6 @@ import {
} from "./arrow";
import { type IvfPqOptions } from "./indices";
import {
JsFullTextQuery,
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
@@ -64,7 +63,7 @@ class RecordBatchIterable<
// biome-ignore lint/suspicious/noExplicitAny: skip
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> {
return new RecordBatchIterator(
this.inner.execute(this.options?.maxBatchLength, this.options?.timeoutMs),
this.inner.execute(this.options?.maxBatchLength),
);
}
}
@@ -80,11 +79,6 @@ export interface QueryExecutionOptions {
* in smaller chunks.
*/
maxBatchLength?: number;
/**
* Timeout for query execution in milliseconds
*/
timeoutMs?: number;
}
/**
@@ -178,7 +172,9 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
columns: columns,
});
} else {
inner.fullTextSearch({ query: query.inner });
// If query is a FullTextQuery object, convert it to a dict
const queryObj = query.toDict();
inner.fullTextSearch(queryObj);
}
});
return this;
@@ -287,11 +283,9 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
options?: Partial<QueryExecutionOptions>,
): Promise<NativeBatchIterator> {
if (this.inner instanceof Promise) {
return this.inner.then((inner) =>
inner.execute(options?.maxBatchLength, options?.timeoutMs),
);
return this.inner.then((inner) => inner.execute(options?.maxBatchLength));
} else {
return this.inner.execute(options?.maxBatchLength, options?.timeoutMs);
return this.inner.execute(options?.maxBatchLength);
}
}
@@ -742,7 +736,8 @@ export class Query extends QueryBase<NativeQuery> {
columns: columns,
});
} else {
inner.fullTextSearch({ query: query.inner });
const queryObj = query.toDict();
inner.fullTextSearch(queryObj);
}
});
return this;
@@ -770,141 +765,130 @@ export enum FullTextQueryType {
* including methods to retrieve the query type and convert the query to a dictionary format.
*/
export interface FullTextQuery {
/**
* Returns the inner query object.
* This is the underlying query object used by the database engine.
* @ignore
*/
inner: JsFullTextQuery;
/**
* The type of the full-text query.
*/
queryType(): FullTextQueryType;
}
// biome-ignore lint/suspicious/noExplicitAny: we want any here
export function instanceOfFullTextQuery(obj: any): obj is FullTextQuery {
return obj != null && obj.inner instanceof JsFullTextQuery;
toDict(): Record<string, unknown>;
}
export class MatchQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of MatchQuery.
*
* @param query - The text query to search for.
* @param column - The name of the column to search within.
* @param options - Optional parameters for the match query.
* - `boost`: The boost factor for the query (default is 1.0).
* - `fuzziness`: The fuzziness level for the query (default is 0).
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
* @param boost - (Optional) The boost factor to influence the relevance score of this query. Default is `1.0`.
* @param fuzziness - (Optional) The allowed edit distance for fuzzy matching. Default is `0`.
* @param maxExpansions - (Optional) The maximum number of terms to consider for fuzzy matching. Default is `50`.
*/
constructor(
query: string,
column: string,
options?: {
boost?: number;
fuzziness?: number;
maxExpansions?: number;
},
) {
let fuzziness = options?.fuzziness;
if (fuzziness === undefined) {
fuzziness = 0;
}
this.inner = JsFullTextQuery.matchQuery(
query,
column,
options?.boost ?? 1.0,
fuzziness,
options?.maxExpansions ?? 50,
);
}
private query: string,
private column: string,
private boost: number = 1.0,
private fuzziness: number = 0,
private maxExpansions: number = 50,
) {}
queryType(): FullTextQueryType {
return FullTextQueryType.Match;
}
toDict(): Record<string, unknown> {
return {
[this.queryType()]: {
[this.column]: {
query: this.query,
boost: this.boost,
fuzziness: this.fuzziness,
// biome-ignore lint/style/useNamingConvention: use underscore for consistency with the other APIs
max_expansions: this.maxExpansions,
},
},
};
}
}
export class PhraseQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of `PhraseQuery`.
*
* @param query - The phrase to search for in the specified column.
* @param column - The name of the column to search within.
*/
constructor(query: string, column: string) {
this.inner = JsFullTextQuery.phraseQuery(query, column);
}
constructor(
private query: string,
private column: string,
) {}
queryType(): FullTextQueryType {
return FullTextQueryType.MatchPhrase;
}
toDict(): Record<string, unknown> {
return {
[this.queryType()]: {
[this.column]: this.query,
},
};
}
}
export class BoostQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of BoostQuery.
* The boost returns documents that match the positive query,
* but penalizes those that match the negative query.
* the penalty is controlled by the `negativeBoost` parameter.
*
* @param positive - The positive query that boosts the relevance score.
* @param negative - The negative query that reduces the relevance score.
* @param options - Optional parameters for the boost query.
* - `negativeBoost`: The boost factor for the negative query (default is 0.0).
* @param negativeBoost - The factor by which the negative query reduces the score.
*/
constructor(
positive: FullTextQuery,
negative: FullTextQuery,
options?: {
negativeBoost?: number;
},
) {
this.inner = JsFullTextQuery.boostQuery(
positive.inner,
negative.inner,
options?.negativeBoost,
);
}
private positive: FullTextQuery,
private negative: FullTextQuery,
private negativeBoost: number,
) {}
queryType(): FullTextQueryType {
return FullTextQueryType.Boost;
}
toDict(): Record<string, unknown> {
return {
[this.queryType()]: {
positive: this.positive.toDict(),
negative: this.negative.toDict(),
// biome-ignore lint/style/useNamingConvention: use underscore for consistency with the other APIs
negative_boost: this.negativeBoost,
},
};
}
}
export class MultiMatchQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of MultiMatchQuery.
*
* @param query - The text query to search for across multiple columns.
* @param columns - An array of column names to search within.
* @param options - Optional parameters for the multi-match query.
* - `boosts`: An array of boost factors for each column (default is 1.0 for all).
* @param boosts - (Optional) An array of boost factors corresponding to each column. Default is an array of 1.0 for each column.
*
* The `boosts` array should have the same length as `columns`. If not provided, all columns will have a default boost of 1.0.
* If the length of `boosts` is less than `columns`, it will be padded with 1.0s.
*/
constructor(
query: string,
columns: string[],
options?: {
boosts?: number[];
},
) {
this.inner = JsFullTextQuery.multiMatchQuery(
query,
columns,
options?.boosts,
);
}
private query: string,
private columns: string[],
private boosts: number[] = columns.map(() => 1.0),
) {}
queryType(): FullTextQueryType {
return FullTextQueryType.MultiMatch;
}
toDict(): Record<string, unknown> {
return {
[this.queryType()]: {
query: this.query,
columns: this.columns,
boost: this.boosts,
},
};
}
}

View File

@@ -22,12 +22,7 @@ import {
OptimizeStats,
Table as _NativeTable,
} from "./native";
import {
FullTextQuery,
Query,
VectorQuery,
instanceOfFullTextQuery,
} from "./query";
import { Query, VectorQuery } from "./query";
import { sanitizeType } from "./sanitize";
import { IntoSql, toSQL } from "./util";
export { IndexConfig } from "./native";
@@ -235,17 +230,6 @@ export abstract class Table {
*/
abstract dropIndex(name: string): Promise<void>;
/**
* Prewarm an index in the table.
*
* @param name The name of the index.
*
* This will load the index into memory. This may reduce the cold-start time for
* future queries. If the index does not fit in the cache then this call may be
* wasteful.
*/
abstract prewarmIndex(name: string): Promise<void>;
/**
* Create a {@link Query} Builder.
*
@@ -310,7 +294,7 @@ export abstract class Table {
* if the query is a string and no embedding function is defined, it will be treated as a full text search query
*/
abstract search(
query: string | IntoVector | FullTextQuery,
query: string | IntoVector,
queryType?: string,
ftsColumns?: string | string[],
): VectorQuery | Query;
@@ -576,20 +560,16 @@ export class LocalTable extends Table {
await this.inner.dropIndex(name);
}
async prewarmIndex(name: string): Promise<void> {
await this.inner.prewarmIndex(name);
}
query(): Query {
return new Query(this.inner);
}
search(
query: string | IntoVector | FullTextQuery,
query: string | IntoVector,
queryType: string = "auto",
ftsColumns?: string | string[],
): VectorQuery | Query {
if (typeof query !== "string" && !instanceOfFullTextQuery(query)) {
if (typeof query !== "string") {
if (queryType === "fts") {
throw new Error("Cannot perform full text search on a vector query");
}
@@ -605,10 +585,7 @@ export class LocalTable extends Table {
// The query type is auto or vector
// fall back to full text search if no embedding functions are defined and the query is a string
if (
queryType === "auto" &&
(getRegistry().length() === 0 || instanceOfFullTextQuery(query))
) {
if (queryType === "auto" && getRegistry().length() === 0) {
return this.query().fullTextSearch(query, {
columns: ftsColumns,
});

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.19.0-beta.7",
"version": "0.19.0-beta.3",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -48,8 +48,16 @@ impl Connection {
pub async fn new(uri: String, options: ConnectionOptions) -> napi::Result<Self> {
let mut builder = ConnectBuilder::new(&uri);
if let Some(interval) = options.read_consistency_interval {
builder =
builder.read_consistency_interval(std::time::Duration::from_secs_f64(interval));
match interval {
Either::A(seconds) => {
builder = builder.read_consistency_interval(Some(
std::time::Duration::from_secs_f64(seconds),
));
}
Either::B(_) => {
builder = builder.read_consistency_interval(None);
}
}
}
if let Some(storage_options) = options.storage_options {
for (key, value) in storage_options {

View File

@@ -4,6 +4,7 @@
use std::collections::HashMap;
use env_logger::Env;
use napi::{bindgen_prelude::Null, Either};
use napi_derive::*;
mod connection;
@@ -18,7 +19,6 @@ mod table;
mod util;
#[napi(object)]
#[derive(Debug)]
pub struct ConnectionOptions {
/// (For LanceDB OSS only): The interval, in seconds, at which to check for
/// updates to the table from other processes. If None, then consistency is not
@@ -29,7 +29,7 @@ pub struct ConnectionOptions {
/// has passed since the last check, then the table will be checked for updates.
/// Note: this consistency only applies to read operations. Write operations are
/// always consistent.
pub read_consistency_interval: Option<f64>,
pub read_consistency_interval: Option<Either<f64, Null>>,
/// (For LanceDB OSS only): configuration for object storage.
///
/// The available options are described at https://lancedb.github.io/lancedb/guides/storage/

View File

@@ -3,9 +3,7 @@
use std::sync::Arc;
use lancedb::index::scalar::{
BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, PhraseQuery,
};
use lancedb::index::scalar::{FtsQuery, FullTextSearchQuery, MatchQuery, PhraseQuery};
use lancedb::query::ExecutableQuery;
use lancedb::query::Query as LanceDbQuery;
use lancedb::query::QueryBase;
@@ -20,7 +18,7 @@ use crate::error::NapiErrorExt;
use crate::iterator::RecordBatchIterator;
use crate::rerankers::Reranker;
use crate::rerankers::RerankerCallbacks;
use crate::util::parse_distance_type;
use crate::util::{parse_distance_type, parse_fts_query};
#[napi]
pub struct Query {
@@ -40,8 +38,51 @@ impl Query {
}
#[napi]
pub fn full_text_search(&mut self, query: napi::JsObject) -> napi::Result<()> {
let query = parse_fts_query(query)?;
pub fn full_text_search(&mut self, query: napi::JsUnknown) -> napi::Result<()> {
let query = unsafe { query.cast::<napi::JsObject>() };
let query = if let Some(query_text) = query.get::<_, String>("query").transpose() {
let mut query_text = query_text?;
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
let is_phrase =
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
if is_phrase {
// Remove the surrounding quotes for phrase queries
query_text = query_text[1..query_text.len() - 1].to_string();
}
let query: FtsQuery = match (is_phrase, is_multi_match) {
(false, _) => MatchQuery::new(query_text).into(),
(true, false) => PhraseQuery::new(query_text).into(),
(true, true) => {
return Err(napi::Error::from_reason(
"Phrase queries cannot be used with multiple columns.",
));
}
};
let mut query = FullTextSearchQuery::new_query(query);
if let Some(cols) = columns {
if !cols.is_empty() {
query = query.with_columns(&cols).map_err(|e| {
napi::Error::from_reason(format!(
"Failed to set full text search columns: {}",
e
))
})?;
}
}
query
} else if let Some(query) = query.get::<_, napi::JsObject>("query")? {
let query = parse_fts_query(&query)?;
FullTextSearchQuery::new_query(query)
} else {
return Err(napi::Error::from_reason(
"Invalid full text search query object".to_string(),
));
};
self.inner = self.inner.clone().full_text_search(query);
Ok(())
}
@@ -90,15 +131,11 @@ impl Query {
pub async fn execute(
&self,
max_batch_length: Option<u32>,
timeout_ms: Option<u32>,
) -> napi::Result<RecordBatchIterator> {
let mut execution_opts = QueryExecutionOptions::default();
if let Some(max_batch_length) = max_batch_length {
execution_opts.max_batch_length = max_batch_length;
}
if let Some(timeout_ms) = timeout_ms {
execution_opts.timeout = Some(std::time::Duration::from_millis(timeout_ms as u64))
}
let inner_stream = self
.inner
.execute_with_options(execution_opts)
@@ -202,8 +239,51 @@ impl VectorQuery {
}
#[napi]
pub fn full_text_search(&mut self, query: napi::JsObject) -> napi::Result<()> {
let query = parse_fts_query(query)?;
pub fn full_text_search(&mut self, query: napi::JsUnknown) -> napi::Result<()> {
let query = unsafe { query.cast::<napi::JsObject>() };
let query = if let Some(query_text) = query.get::<_, String>("query").transpose() {
let mut query_text = query_text?;
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
let is_phrase =
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
if is_phrase {
// Remove the surrounding quotes for phrase queries
query_text = query_text[1..query_text.len() - 1].to_string();
}
let query: FtsQuery = match (is_phrase, is_multi_match) {
(false, _) => MatchQuery::new(query_text).into(),
(true, false) => PhraseQuery::new(query_text).into(),
(true, true) => {
return Err(napi::Error::from_reason(
"Phrase queries cannot be used with multiple columns.",
));
}
};
let mut query = FullTextSearchQuery::new_query(query);
if let Some(cols) = columns {
if !cols.is_empty() {
query = query.with_columns(&cols).map_err(|e| {
napi::Error::from_reason(format!(
"Failed to set full text search columns: {}",
e
))
})?;
}
}
query
} else if let Some(query) = query.get::<_, napi::JsObject>("query")? {
let query = parse_fts_query(&query)?;
FullTextSearchQuery::new_query(query)
} else {
return Err(napi::Error::from_reason(
"Invalid full text search query object".to_string(),
));
};
self.inner = self.inner.clone().full_text_search(query);
Ok(())
}
@@ -250,15 +330,11 @@ impl VectorQuery {
pub async fn execute(
&self,
max_batch_length: Option<u32>,
timeout_ms: Option<u32>,
) -> napi::Result<RecordBatchIterator> {
let mut execution_opts = QueryExecutionOptions::default();
if let Some(max_batch_length) = max_batch_length {
execution_opts.max_batch_length = max_batch_length;
}
if let Some(timeout_ms) = timeout_ms {
execution_opts.timeout = Some(std::time::Duration::from_millis(timeout_ms as u64))
}
let inner_stream = self
.inner
.execute_with_options(execution_opts)
@@ -292,116 +368,3 @@ impl VectorQuery {
})
}
}
#[napi]
#[derive(Debug, Clone)]
pub struct JsFullTextQuery {
pub(crate) inner: FtsQuery,
}
#[napi]
impl JsFullTextQuery {
#[napi(factory)]
pub fn match_query(
query: String,
column: String,
boost: f64,
fuzziness: Option<u32>,
max_expansions: u32,
) -> napi::Result<Self> {
Ok(Self {
inner: MatchQuery::new(query)
.with_column(Some(column))
.with_boost(boost as f32)
.with_fuzziness(fuzziness)
.with_max_expansions(max_expansions as usize)
.into(),
})
}
#[napi(factory)]
pub fn phrase_query(query: String, column: String) -> napi::Result<Self> {
Ok(Self {
inner: PhraseQuery::new(query).with_column(Some(column)).into(),
})
}
#[napi(factory)]
#[allow(clippy::use_self)] // NAPI doesn't allow Self here but clippy reports it
pub fn boost_query(
positive: &JsFullTextQuery,
negative: &JsFullTextQuery,
negative_boost: Option<f64>,
) -> napi::Result<Self> {
Ok(Self {
inner: BoostQuery::new(
positive.inner.clone(),
negative.inner.clone(),
negative_boost.map(|v| v as f32),
)
.into(),
})
}
#[napi(factory)]
pub fn multi_match_query(
query: String,
columns: Vec<String>,
boosts: Option<Vec<f64>>,
) -> napi::Result<Self> {
let q = match boosts {
Some(boosts) => MultiMatchQuery::try_new(query, columns)
.and_then(|q| q.try_with_boosts(boosts.into_iter().map(|v| v as f32).collect())),
None => MultiMatchQuery::try_new(query, columns),
}
.map_err(|e| {
napi::Error::from_reason(format!("Failed to create multi match query: {}", e))
})?;
Ok(Self { inner: q.into() })
}
}
fn parse_fts_query(query: napi::JsObject) -> napi::Result<FullTextSearchQuery> {
if let Ok(Some(query)) = query.get::<_, &JsFullTextQuery>("query") {
Ok(FullTextSearchQuery::new_query(query.inner.clone()))
} else if let Ok(Some(query_text)) = query.get::<_, String>("query") {
let mut query_text = query_text;
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
let is_phrase =
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
if is_phrase {
// Remove the surrounding quotes for phrase queries
query_text = query_text[1..query_text.len() - 1].to_string();
}
let query: FtsQuery = match (is_phrase, is_multi_match) {
(false, _) => MatchQuery::new(query_text).into(),
(true, false) => PhraseQuery::new(query_text).into(),
(true, true) => {
return Err(napi::Error::from_reason(
"Phrase queries cannot be used with multiple columns.",
));
}
};
let mut query = FullTextSearchQuery::new_query(query);
if let Some(cols) = columns {
if !cols.is_empty() {
query = query.with_columns(&cols).map_err(|e| {
napi::Error::from_reason(format!(
"Failed to set full text search columns: {}",
e
))
})?;
}
}
Ok(query)
} else {
Err(napi::Error::from_reason(
"Invalid full text search query object".to_string(),
))
}
}

View File

@@ -132,14 +132,6 @@ impl Table {
.default_error()
}
#[napi(catch_unwind)]
pub async fn prewarm_index(&self, index_name: String) -> napi::Result<()> {
self.inner_ref()?
.prewarm_index(&index_name)
.await
.default_error()
}
#[napi(catch_unwind)]
pub async fn update(
&self,

View File

@@ -1,6 +1,7 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use lancedb::index::scalar::{BoostQuery, FtsQuery, MatchQuery, MultiMatchQuery, PhraseQuery};
use lancedb::DistanceType;
pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<DistanceType> {
@@ -15,3 +16,144 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<Dista
))),
}
}
pub fn parse_fts_query(query: &napi::JsObject) -> napi::Result<FtsQuery> {
let query_type = query
.get_property_names()?
.get_element::<napi::JsString>(0)?;
let query_type = query_type.into_utf8()?.into_owned()?;
let query_value =
query
.get::<_, napi::JsObject>(&query_type)?
.ok_or(napi::Error::from_reason(format!(
"query value {} not found",
query_type
)))?;
match query_type.as_str() {
"match" => {
let column = query_value
.get_property_names()?
.get_element::<napi::JsString>(0)?
.into_utf8()?
.into_owned()?;
let params =
query_value
.get::<_, napi::JsObject>(&column)?
.ok_or(napi::Error::from_reason(format!(
"column {} not found",
column
)))?;
let query = params
.get::<_, napi::JsString>("query")?
.ok_or(napi::Error::from_reason("query not found"))?
.into_utf8()?
.into_owned()?;
let boost = params
.get::<_, napi::JsNumber>("boost")?
.ok_or(napi::Error::from_reason("boost not found"))?
.get_double()? as f32;
let fuzziness = params
.get::<_, napi::JsNumber>("fuzziness")?
.map(|f| f.get_uint32())
.transpose()?;
let max_expansions = params
.get::<_, napi::JsNumber>("max_expansions")?
.ok_or(napi::Error::from_reason("max_expansions not found"))?
.get_uint32()? as usize;
let query = MatchQuery::new(query)
.with_column(Some(column))
.with_boost(boost)
.with_fuzziness(fuzziness)
.with_max_expansions(max_expansions);
Ok(query.into())
}
"match_phrase" => {
let column = query_value
.get_property_names()?
.get_element::<napi::JsString>(0)?
.into_utf8()?
.into_owned()?;
let query = query_value
.get::<_, napi::JsString>(&column)?
.ok_or(napi::Error::from_reason(format!(
"column {} not found",
column
)))?
.into_utf8()?
.into_owned()?;
let query = PhraseQuery::new(query).with_column(Some(column));
Ok(query.into())
}
"boost" => {
let positive = query_value
.get::<_, napi::JsObject>("positive")?
.ok_or(napi::Error::from_reason("positive not found"))?;
let negative = query_value
.get::<_, napi::JsObject>("negative")?
.ok_or(napi::Error::from_reason("negative not found"))?;
let negative_boost = query_value
.get::<_, napi::JsNumber>("negative_boost")?
.ok_or(napi::Error::from_reason("negative_boost not found"))?
.get_double()? as f32;
let positive = parse_fts_query(&positive)?;
let negative = parse_fts_query(&negative)?;
let query = BoostQuery::new(positive, negative, Some(negative_boost));
Ok(query.into())
}
"multi_match" => {
let query = query_value
.get::<_, napi::JsString>("query")?
.ok_or(napi::Error::from_reason("query not found"))?
.into_utf8()?
.into_owned()?;
let columns_array = query_value
.get::<_, napi::JsTypedArray>("columns")?
.ok_or(napi::Error::from_reason("columns not found"))?;
let columns_num = columns_array.get_array_length()?;
let mut columns = Vec::with_capacity(columns_num as usize);
for i in 0..columns_num {
let column = columns_array
.get_element::<napi::JsString>(i)?
.into_utf8()?
.into_owned()?;
columns.push(column);
}
let boost_array = query_value
.get::<_, napi::JsTypedArray>("boost")?
.ok_or(napi::Error::from_reason("boost not found"))?;
if boost_array.get_array_length()? != columns_num {
return Err(napi::Error::from_reason(format!(
"boost array length ({}) does not match columns length ({})",
boost_array.get_array_length()?,
columns_num
)));
}
let mut boost = Vec::with_capacity(columns_num as usize);
for i in 0..columns_num {
let b = boost_array.get_element::<napi::JsNumber>(i)?.get_double()? as f32;
boost.push(b);
}
let query =
MultiMatchQuery::try_new_with_boosts(query, columns, boost).map_err(|e| {
napi::Error::from_reason(format!("Error creating MultiMatchQuery: {}", e))
})?;
Ok(query.into())
}
_ => Err(napi::Error::from_reason(format!(
"Unsupported query type: {}",
query_type
))),
}
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.22.0-beta.8"
current_version = "0.22.0-beta.3"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.22.0-beta.8"
version = "0.22.0-beta.3"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -4,12 +4,11 @@ name = "lancedb"
dynamic = ["version"]
dependencies = [
"deprecation",
"numpy",
"overrides>=0.7",
"packaging",
"tqdm>=4.27.0",
"pyarrow>=14",
"pydantic>=1.10",
"tqdm>=4.27.0",
"packaging",
"overrides>=0.7",
]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
@@ -43,9 +42,6 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
pylance = [
"pylance>=0.25",
]
tests = [
"aiohttp",
"boto3",
@@ -58,8 +54,7 @@ tests = [
"polars>=0.19, <=1.3.0",
"tantivy",
"pyarrow-stubs",
"pylance>=0.25",
"requests",
"pylance>=0.23.2",
]
dev = [
"ruff",

View File

@@ -26,7 +26,7 @@ def connect(
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
storage_options: Optional[Dict[str, str]] = None,
@@ -49,9 +49,8 @@ def connect(
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. If None, then consistency is not checked. For strong consistency,
set this to zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
@@ -122,7 +121,7 @@ async def connect_async(
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
client_config: Optional[Union[ClientConfig, Dict[str, Any]]] = None,
storage_options: Optional[Dict[str, str]] = None,
) -> AsyncConnection:
@@ -143,9 +142,8 @@ async def connect_async(
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. If None, then consistency is not checked. For strong consistency,
set this to zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this

View File

@@ -1,4 +1,3 @@
from datetime import timedelta
from typing import Dict, List, Optional, Tuple, Any, Union, Literal
import pyarrow as pa
@@ -95,9 +94,7 @@ class Query:
def postfilter(self): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> FTSQuery: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
async def execute(self, max_batch_length: Optional[int]) -> RecordBatchStream: ...
async def explain_plan(self, verbose: Optional[bool]) -> str: ...
async def analyze_plan(self) -> str: ...
def to_query_request(self) -> PyQueryRequest: ...
@@ -113,9 +110,7 @@ class FTSQuery:
def get_query(self) -> str: ...
def add_query_vector(self, query_vec: pa.Array) -> None: ...
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
async def execute(self, max_batch_length: Optional[int]) -> RecordBatchStream: ...
def to_query_request(self) -> PyQueryRequest: ...
class VectorQuery:

View File

@@ -6,6 +6,7 @@ from __future__ import annotations
from abc import abstractmethod
from pathlib import Path
from datetime import timedelta
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
@@ -32,7 +33,6 @@ import deprecation
if TYPE_CHECKING:
import pyarrow as pa
from .pydantic import LanceModel
from datetime import timedelta
from ._lancedb import Connection as LanceDbConnection
from .common import DATA, URI
@@ -318,9 +318,8 @@ class LanceDBConnection(DBConnection):
The root uri of the database.
read_consistency_interval: timedelta, default None
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. If None, then consistency is not checked. For strong consistency,
set this to zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
@@ -352,7 +351,7 @@ class LanceDBConnection(DBConnection):
self,
uri: URI,
*,
read_consistency_interval: Optional[timedelta] = None,
read_consistency_interval: Optional[timedelta] = timedelta(seconds=5),
storage_options: Optional[Dict[str, str]] = None,
):
if not isinstance(uri, Path):

View File

@@ -1,12 +1,9 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import base64
import os
from typing import ClassVar, TYPE_CHECKING, List, Union, Any
from pathlib import Path
from urllib.parse import urlparse
from io import BytesIO
import os
from typing import ClassVar, TYPE_CHECKING, List, Union
import numpy as np
import pyarrow as pa
@@ -14,100 +11,12 @@ import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help, IMAGES, TEXT
from .utils import api_key_not_found_help, IMAGES
if TYPE_CHECKING:
import PIL
def is_valid_url(text):
try:
parsed = urlparse(text)
return bool(parsed.scheme) and bool(parsed.netloc)
except Exception:
return False
def transform_input(input_data: Union[str, bytes, Path]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(input_data, str):
if is_valid_url(input_data):
content = {"type": "image_url", "image_url": input_data}
else:
content = {"type": "text", "text": input_data}
elif isinstance(input_data, PIL.Image.Image):
buffered = BytesIO()
input_data.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
content = {
"type": "image_base64",
"image_base64": "data:image/jpeg;base64," + img_str,
}
elif isinstance(input_data, bytes):
img = PIL.Image.open(BytesIO(input_data))
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
content = {
"type": "image_base64",
"image_base64": "data:image/jpeg;base64," + img_str,
}
elif isinstance(input_data, Path):
img = PIL.Image.open(input_data)
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
content = {
"type": "image_base64",
"image_base64": "data:image/jpeg;base64," + img_str,
}
else:
raise ValueError("Each input should be either str, bytes, Path or Image.")
return {"content": [content]}
def sanitize_multimodal_input(inputs: Union[TEXT, IMAGES]) -> List[Any]:
"""
Sanitize the input to the embedding function.
"""
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(inputs, (str, bytes, Path, PIL.Image.Image)):
inputs = [inputs]
elif isinstance(inputs, pa.Array):
inputs = inputs.to_pylist()
elif isinstance(inputs, pa.ChunkedArray):
inputs = inputs.combine_chunks().to_pylist()
else:
raise ValueError(
f"Input type {type(inputs)} not allowed with multimodal model."
)
if not all(isinstance(x, (str, bytes, Path, PIL.Image.Image)) for x in inputs):
raise ValueError("Each input should be either str, bytes, Path or Image.")
return [transform_input(i) for i in inputs]
def sanitize_text_input(inputs: TEXT) -> List[str]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(inputs, str):
inputs = [inputs]
elif isinstance(inputs, pa.Array):
inputs = inputs.to_pylist()
elif isinstance(inputs, pa.ChunkedArray):
inputs = inputs.combine_chunks().to_pylist()
else:
raise ValueError(f"Input type {type(inputs)} not allowed with text model.")
if not all(isinstance(x, str) for x in inputs):
raise ValueError("Each input should be str.")
return inputs
@register("voyageai")
class VoyageAIEmbeddingFunction(EmbeddingFunction):
"""
@@ -165,11 +74,6 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
]
multimodal_embedding_models: list = ["voyage-multimodal-3"]
def _is_multimodal_model(self, model_name: str):
return (
model_name in self.multimodal_embedding_models or "multimodal" in model_name
)
def ndims(self):
if self.name == "voyage-3-lite":
return 512
@@ -181,12 +85,55 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
"voyage-finance-2",
"voyage-multilingual-2",
"voyage-law-2",
"voyage-multimodal-3",
]:
return 1024
else:
raise ValueError(f"Model {self.name} not supported")
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def generate_text_embeddings(self, text: str, **kwargs) -> np.ndarray:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
input_type: Optional[str]
truncation: Optional[bool]
"""
client = VoyageAIEmbeddingFunction._get_client()
if self.name in self.text_embedding_models:
rs = client.embed(texts=[text], model=self.name, **kwargs)
elif self.name in self.multimodal_embedding_models:
rs = client.multimodal_embed(inputs=[[text]], model=self.name, **kwargs)
else:
raise ValueError(
f"Model {self.name} not supported to generate text embeddings"
)
return rs.embeddings[0]
def generate_image_embedding(
self, image: "PIL.Image.Image", **kwargs
) -> np.ndarray:
rs = VoyageAIEmbeddingFunction._get_client().multimodal_embed(
inputs=[[image]], model=self.name, **kwargs
)
return rs.embeddings[0]
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
@@ -197,52 +144,23 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
Returns
-------
List[np.array]: the list of embeddings
"""
client = VoyageAIEmbeddingFunction._get_client()
if self._is_multimodal_model(self.name):
result = client.multimodal_embed(
inputs=[[query]], model=self.name, input_type="query", **kwargs
)
if isinstance(query, str):
return [self.generate_text_embeddings(query, input_type="query")]
else:
result = client.embed(
texts=[query], model=self.name, input_type="query", **kwargs
)
return [result.embeddings[0]]
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query, input_type="query")]
else:
raise TypeError("Only text PIL images supported as query")
def compute_source_embeddings(
self, inputs: Union[TEXT, IMAGES], *args, **kwargs
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Compute the embeddings for the inputs
Parameters
----------
inputs : Union[TEXT, IMAGES]
The inputs to embed. The input can be either str, bytes, Path (to an image),
PIL.Image or list of these.
Returns
-------
List[np.array]: the list of embeddings
"""
client = VoyageAIEmbeddingFunction._get_client()
if self._is_multimodal_model(self.name):
inputs = sanitize_multimodal_input(inputs)
result = client.multimodal_embed(
inputs=inputs, model=self.name, input_type="document", **kwargs
)
else:
inputs = sanitize_text_input(inputs)
result = client.embed(
texts=inputs, model=self.name, input_type="document", **kwargs
)
return result.embeddings
images = self.sanitize_input(images)
return [
self.generate_image_embedding(img, input_type="document") for img in images
]
@staticmethod
def _get_client():

View File

@@ -7,7 +7,6 @@ from abc import ABC, abstractmethod
import abc
from concurrent.futures import ThreadPoolExecutor
from enum import Enum
from datetime import timedelta
from typing import (
TYPE_CHECKING,
Dict,
@@ -266,8 +265,8 @@ class MultiMatchQuery(FullTextQuery):
Parameters
----------
query : str
The query string to match against.
query : str | list[Query]
If a string, the query string to match against.
columns : list[str]
The list of columns to match against.
@@ -651,12 +650,7 @@ class LanceQueryBuilder(ABC):
"""
return self.to_pandas()
def to_pandas(
self,
flatten: Optional[Union[int, bool]] = None,
*,
timeout: Optional[timedelta] = None,
) -> "pd.DataFrame":
def to_pandas(self, flatten: Optional[Union[int, bool]] = None) -> "pd.DataFrame":
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
@@ -670,15 +664,12 @@ class LanceQueryBuilder(ABC):
If flatten is an integer, flatten the nested columns up to the
specified depth.
If unspecified, do not flatten the nested columns.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
tbl = flatten_columns(self.to_arrow(timeout=timeout), flatten)
tbl = flatten_columns(self.to_arrow(), flatten)
return tbl.to_pandas()
@abstractmethod
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
def to_arrow(self) -> pa.Table:
"""
Execute the query and return the results as an
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
@@ -686,65 +677,34 @@ class LanceQueryBuilder(ABC):
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vectors.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
raise NotImplementedError
@abstractmethod
def to_batches(
self,
/,
batch_size: Optional[int] = None,
*,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader:
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.RecordBatchReader:
"""
Execute the query and return the results as a pyarrow
[RecordBatchReader](https://arrow.apache.org/docs/python/generated/pyarrow.RecordBatchReader.html)
Parameters
----------
batch_size: int
The maximum number of selected records in a RecordBatch object.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
raise NotImplementedError
def to_list(self, *, timeout: Optional[timedelta] = None) -> List[dict]:
def to_list(self) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
return self.to_arrow(timeout=timeout).to_pylist()
return self.to_arrow().to_pylist()
def to_pydantic(
self, model: Type[LanceModel], *, timeout: Optional[timedelta] = None
) -> List[LanceModel]:
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
Returns
-------
@@ -752,25 +712,19 @@ class LanceQueryBuilder(ABC):
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow(timeout=timeout).to_pylist()
for row in self.to_arrow().to_pylist()
]
def to_polars(self, *, timeout: Optional[timedelta] = None) -> "pl.DataFrame":
def to_polars(self) -> "pl.DataFrame":
"""
Execute the query and return the results as a Polars DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
import polars as pl
return pl.from_arrow(self.to_arrow(timeout=timeout))
return pl.from_arrow(self.to_arrow())
def limit(self, limit: Union[int, None]) -> Self:
"""Set the maximum number of results to return.
@@ -1185,7 +1139,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._refine_factor = refine_factor
return self
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
def to_arrow(self) -> pa.Table:
"""
Execute the query and return the results as an
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
@@ -1193,14 +1147,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vectors.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If None, wait indefinitely.
"""
return self.to_batches(timeout=timeout).read_all()
return self.to_batches().read_all()
def to_query_object(self) -> Query:
"""
@@ -1230,13 +1178,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
bypass_vector_index=self._bypass_vector_index,
)
def to_batches(
self,
/,
batch_size: Optional[int] = None,
*,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader:
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.RecordBatchReader:
"""
Execute the query and return the result as a RecordBatchReader object.
@@ -1244,9 +1186,6 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
----------
batch_size: int
The maximum number of selected records in a RecordBatch object.
timeout: timedelta, default None
The maximum time to wait for the query to complete.
If None, wait indefinitely.
Returns
-------
@@ -1256,9 +1195,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
if isinstance(vector[0], np.ndarray):
vector = [v.tolist() for v in vector]
query = self.to_query_object()
result_set = self._table._execute_query(
query, batch_size=batch_size, timeout=timeout
)
result_set = self._table._execute_query(query, batch_size)
if self._reranker is not None:
rs_table = result_set.read_all()
result_set = self._reranker.rerank_vector(self._str_query, rs_table)
@@ -1397,7 +1334,7 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
offset=self._offset,
)
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
def to_arrow(self) -> pa.Table:
path, fs, exist = self._table._get_fts_index_path()
if exist:
return self.tantivy_to_arrow()
@@ -1409,16 +1346,14 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
"Use tantivy-based index instead for now."
)
query = self.to_query_object()
results = self._table._execute_query(query, timeout=timeout)
results = self._table._execute_query(query)
results = results.read_all()
if self._reranker is not None:
results = self._reranker.rerank_fts(self._query, results)
check_reranker_result(results)
return results
def to_batches(
self, /, batch_size: Optional[int] = None, timeout: Optional[timedelta] = None
):
def to_batches(self, /, batch_size: Optional[int] = None):
raise NotImplementedError("to_batches on an FTS query")
def tantivy_to_arrow(self) -> pa.Table:
@@ -1523,8 +1458,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
class LanceEmptyQueryBuilder(LanceQueryBuilder):
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
return self.to_batches(timeout=timeout).read_all()
def to_arrow(self) -> pa.Table:
return self.to_batches().read_all()
def to_query_object(self) -> Query:
return Query(
@@ -1535,11 +1470,9 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
offset=self._offset,
)
def to_batches(
self, /, batch_size: Optional[int] = None, timeout: Optional[timedelta] = None
) -> pa.RecordBatchReader:
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.RecordBatchReader:
query = self.to_query_object()
return self._table._execute_query(query, batch_size=batch_size, timeout=timeout)
return self._table._execute_query(query, batch_size)
def rerank(self, reranker: Reranker) -> LanceEmptyQueryBuilder:
"""Rerank the results using the specified reranker.
@@ -1627,7 +1560,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
def to_query_object(self) -> Query:
raise NotImplementedError("to_query_object not yet supported on a hybrid query")
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
def to_arrow(self) -> pa.Table:
vector_query, fts_query = self._validate_query(
self._query, self._vector, self._text
)
@@ -1670,11 +1603,9 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._reranker = RRFReranker()
with ThreadPoolExecutor() as executor:
fts_future = executor.submit(
self._fts_query.with_row_id(True).to_arrow, timeout=timeout
)
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
vector_future = executor.submit(
self._vector_query.with_row_id(True).to_arrow, timeout=timeout
self._vector_query.with_row_id(True).to_arrow
)
fts_results = fts_future.result()
vector_results = vector_future.result()
@@ -1761,9 +1692,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
return results
def to_batches(
self, /, batch_size: Optional[int] = None, timeout: Optional[timedelta] = None
):
def to_batches(self):
raise NotImplementedError("to_batches not yet supported on a hybrid query")
@staticmethod
@@ -2127,10 +2056,7 @@ class AsyncQueryBase(object):
return self
async def to_batches(
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
self, *, max_batch_length: Optional[int] = None
) -> AsyncRecordBatchReader:
"""
Execute the query and return the results as an Apache Arrow RecordBatchReader.
@@ -2143,56 +2069,34 @@ class AsyncQueryBase(object):
If not specified, a default batch length is used.
It is possible for batches to be smaller than the provided length if the
underlying data is stored in smaller chunks.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return AsyncRecordBatchReader(
await self._inner.execute(max_batch_length, timeout)
)
return AsyncRecordBatchReader(await self._inner.execute(max_batch_length))
async def to_arrow(self, timeout: Optional[timedelta] = None) -> pa.Table:
async def to_arrow(self) -> pa.Table:
"""
Execute the query and collect the results into an Apache Arrow Table.
This method will collect all results into memory before returning. If
you expect a large number of results, you may want to use
[to_batches][lancedb.query.AsyncQueryBase.to_batches]
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
batch_iter = await self.to_batches(timeout=timeout)
batch_iter = await self.to_batches()
return pa.Table.from_batches(
await batch_iter.read_all(), schema=batch_iter.schema
)
async def to_list(self, timeout: Optional[timedelta] = None) -> List[dict]:
async def to_list(self) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return (await self.to_arrow(timeout=timeout)).to_pylist()
return (await self.to_arrow()).to_pylist()
async def to_pandas(
self,
flatten: Optional[Union[int, bool]] = None,
timeout: Optional[timedelta] = None,
self, flatten: Optional[Union[int, bool]] = None
) -> "pd.DataFrame":
"""
Execute the query and collect the results into a pandas DataFrame.
@@ -2221,19 +2125,10 @@ class AsyncQueryBase(object):
If flatten is an integer, flatten the nested columns up to the
specified depth.
If unspecified, do not flatten the nested columns.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return (
flatten_columns(await self.to_arrow(timeout=timeout), flatten)
).to_pandas()
return (flatten_columns(await self.to_arrow(), flatten)).to_pandas()
async def to_polars(
self,
timeout: Optional[timedelta] = None,
) -> "pl.DataFrame":
async def to_polars(self) -> "pl.DataFrame":
"""
Execute the query and collect the results into a Polars DataFrame.
@@ -2242,13 +2137,6 @@ class AsyncQueryBase(object):
[to_batches][lancedb.query.AsyncQueryBase.to_batches] and convert each batch to
polars separately.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
Examples
--------
@@ -2264,7 +2152,7 @@ class AsyncQueryBase(object):
"""
import polars as pl
return pl.from_arrow(await self.to_arrow(timeout=timeout))
return pl.from_arrow(await self.to_arrow())
async def explain_plan(self, verbose: Optional[bool] = False):
"""Return the execution plan for this query.
@@ -2535,12 +2423,9 @@ class AsyncFTSQuery(AsyncQueryBase):
)
async def to_batches(
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
self, *, max_batch_length: Optional[int] = None
) -> AsyncRecordBatchReader:
reader = await super().to_batches(timeout=timeout)
reader = await super().to_batches()
results = pa.Table.from_batches(await reader.read_all(), reader.schema)
if self._reranker:
results = self._reranker.rerank_fts(self.get_query(), results)
@@ -2764,12 +2649,9 @@ class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
return AsyncHybridQuery(self._inner.nearest_to_text({"query": query.to_dict()}))
async def to_batches(
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
self, *, max_batch_length: Optional[int] = None
) -> AsyncRecordBatchReader:
reader = await super().to_batches(timeout=timeout)
reader = await super().to_batches()
results = pa.Table.from_batches(await reader.read_all(), reader.schema)
if self._reranker:
results = self._reranker.rerank_vector(self._query_string, results)
@@ -2825,10 +2707,7 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
return self
async def to_batches(
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
self, *, max_batch_length: Optional[int] = None
) -> AsyncRecordBatchReader:
fts_query = AsyncFTSQuery(self._inner.to_fts_query())
vec_query = AsyncVectorQuery(self._inner.to_vector_query())
@@ -2840,8 +2719,8 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
vec_query.with_row_id()
fts_results, vector_results = await asyncio.gather(
fts_query.to_arrow(timeout=timeout),
vec_query.to_arrow(timeout=timeout),
fts_query.to_arrow(),
vec_query.to_arrow(),
)
result = LanceHybridQueryBuilder._combine_hybrid_results(

View File

@@ -355,15 +355,9 @@ class RemoteTable(Table):
)
def _execute_query(
self,
query: Query,
*,
batch_size: Optional[int] = None,
timeout: Optional[timedelta] = None,
self, query: Query, batch_size: Optional[int] = None
) -> pa.RecordBatchReader:
async_iter = LOOP.run(
self._table._execute_query(query, batch_size=batch_size, timeout=timeout)
)
async_iter = LOOP.run(self._table._execute_query(query, batch_size=batch_size))
def iter_sync():
try:

View File

@@ -47,9 +47,6 @@ class AnswerdotaiRerankers(Reranker):
)
def _rerank(self, result_set: pa.Table, query: str):
result_set = self._handle_empty_results(result_set)
if len(result_set) == 0:
return result_set
docs = result_set[self.column].to_pylist()
doc_ids = list(range(len(docs)))
result = self.reranker.rank(query, docs, doc_ids=doc_ids)
@@ -86,6 +83,7 @@ class AnswerdotaiRerankers(Reranker):
vector_results = self._rerank(vector_results, query)
if self.score == "relevance":
vector_results = vector_results.drop_columns(["_distance"])
vector_results = vector_results.sort_by([("_relevance_score", "descending")])
return vector_results
@@ -93,5 +91,7 @@ class AnswerdotaiRerankers(Reranker):
fts_results = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["_score"])
fts_results = fts_results.sort_by([("_relevance_score", "descending")])
return fts_results

View File

@@ -65,16 +65,6 @@ class Reranker(ABC):
f"{self.__class__.__name__} does not implement rerank_vector"
)
def _handle_empty_results(self, results: pa.Table):
"""
Helper method to handle empty FTS results consistently
"""
if len(results) > 0:
return results
return results.append_column(
"_relevance_score", pa.array([], type=pa.float32())
)
def rerank_fts(
self,
query: str,

View File

@@ -62,9 +62,6 @@ class CohereReranker(Reranker):
return cohere.Client(os.environ.get("COHERE_API_KEY") or self.api_key)
def _rerank(self, result_set: pa.Table, query: str):
result_set = self._handle_empty_results(result_set)
if len(result_set) == 0:
return result_set
docs = result_set[self.column].to_pylist()
response = self._client.rerank(
query=query,
@@ -102,14 +99,24 @@ class CohereReranker(Reranker):
)
return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table):
vector_results = self._rerank(vector_results, query)
def rerank_vector(
self,
query: str,
vector_results: pa.Table,
):
result_set = self._rerank(vector_results, query)
if self.score == "relevance":
vector_results = vector_results.drop_columns(["_distance"])
return vector_results
result_set = result_set.drop_columns(["_distance"])
def rerank_fts(self, query: str, fts_results: pa.Table):
fts_results = self._rerank(fts_results, query)
return result_set
def rerank_fts(
self,
query: str,
fts_results: pa.Table,
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["_score"])
return fts_results
result_set = result_set.drop_columns(["_score"])
return result_set

View File

@@ -63,9 +63,6 @@ class CrossEncoderReranker(Reranker):
return cross_encoder
def _rerank(self, result_set: pa.Table, query: str):
result_set = self._handle_empty_results(result_set)
if len(result_set) == 0:
return result_set
passages = result_set[self.column].to_pylist()
cross_inp = [[query, passage] for passage in passages]
cross_scores = self.model.predict(cross_inp)
@@ -96,7 +93,11 @@ class CrossEncoderReranker(Reranker):
return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table):
def rerank_vector(
self,
query: str,
vector_results: pa.Table,
):
vector_results = self._rerank(vector_results, query)
if self.score == "relevance":
vector_results = vector_results.drop_columns(["_distance"])
@@ -104,7 +105,11 @@ class CrossEncoderReranker(Reranker):
vector_results = vector_results.sort_by([("_relevance_score", "descending")])
return vector_results
def rerank_fts(self, query: str, fts_results: pa.Table):
def rerank_fts(
self,
query: str,
fts_results: pa.Table,
):
fts_results = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["_score"])

View File

@@ -62,9 +62,6 @@ class JinaReranker(Reranker):
return self._session
def _rerank(self, result_set: pa.Table, query: str):
result_set = self._handle_empty_results(result_set)
if len(result_set) == 0:
return result_set
docs = result_set[self.column].to_pylist()
response = self._client.post( # type: ignore
API_URL,
@@ -107,14 +104,24 @@ class JinaReranker(Reranker):
)
return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table):
vector_results = self._rerank(vector_results, query)
def rerank_vector(
self,
query: str,
vector_results: pa.Table,
):
result_set = self._rerank(vector_results, query)
if self.score == "relevance":
vector_results = vector_results.drop_columns(["_distance"])
return vector_results
result_set = result_set.drop_columns(["_distance"])
def rerank_fts(self, query: str, fts_results: pa.Table):
fts_results = self._rerank(fts_results, query)
return result_set
def rerank_fts(
self,
query: str,
fts_results: pa.Table,
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["_score"])
return fts_results
result_set = result_set.drop_columns(["_score"])
return result_set

View File

@@ -44,9 +44,6 @@ class OpenaiReranker(Reranker):
self.api_key = api_key
def _rerank(self, result_set: pa.Table, query: str):
result_set = self._handle_empty_results(result_set)
if len(result_set) == 0:
return result_set
docs = result_set[self.column].to_pylist()
response = self._client.chat.completions.create(
model=self.model_name,
@@ -107,14 +104,18 @@ class OpenaiReranker(Reranker):
vector_results = self._rerank(vector_results, query)
if self.score == "relevance":
vector_results = vector_results.drop_columns(["_distance"])
vector_results = vector_results.sort_by([("_relevance_score", "descending")])
return vector_results
def rerank_fts(self, query: str, fts_results: pa.Table):
fts_results = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["_score"])
fts_results = fts_results.sort_by([("_relevance_score", "descending")])
return fts_results
@cached_property

View File

@@ -63,9 +63,6 @@ class VoyageAIReranker(Reranker):
)
def _rerank(self, result_set: pa.Table, query: str):
result_set = self._handle_empty_results(result_set)
if len(result_set) == 0:
return result_set
docs = result_set[self.column].to_pylist()
response = self._client.rerank(
query=query,
@@ -104,14 +101,24 @@ class VoyageAIReranker(Reranker):
)
return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table):
vector_results = self._rerank(vector_results, query)
def rerank_vector(
self,
query: str,
vector_results: pa.Table,
):
result_set = self._rerank(vector_results, query)
if self.score == "relevance":
vector_results = vector_results.drop_columns(["_distance"])
return vector_results
result_set = result_set.drop_columns(["_distance"])
def rerank_fts(self, query: str, fts_results: pa.Table):
fts_results = self._rerank(fts_results, query)
return result_set
def rerank_fts(
self,
query: str,
fts_results: pa.Table,
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
fts_results = fts_results.drop_columns(["_score"])
return fts_results
result_set = result_set.drop_columns(["_score"])
return result_set

View File

@@ -1007,11 +1007,7 @@ class Table(ABC):
@abstractmethod
def _execute_query(
self,
query: Query,
*,
batch_size: Optional[int] = None,
timeout: Optional[timedelta] = None,
self, query: Query, batch_size: Optional[int] = None
) -> pa.RecordBatchReader: ...
@abstractmethod
@@ -1745,32 +1741,8 @@ class LanceTable(Table):
)
def drop_index(self, name: str) -> None:
"""
Drops an index from the table
Parameters
----------
name: str
The name of the index to drop
"""
return LOOP.run(self._table.drop_index(name))
def prewarm_index(self, name: str) -> None:
"""
Prewarms an index in the table
This loads the entire index into memory
If the index does not fit into the available cache this call
may be wasteful
Parameters
----------
name: str
The name of the index to prewarm
"""
return LOOP.run(self._table.prewarm_index(name))
def create_scalar_index(
self,
column: str,
@@ -2165,8 +2137,6 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if isinstance(query, FullTextQuery):
query_type = "fts"
vector_column_name = infer_vector_column_name(
schema=self.schema,
query_type=query_type,
@@ -2342,15 +2312,9 @@ class LanceTable(Table):
LOOP.run(self._table.update(values, where=where, updates_sql=values_sql))
def _execute_query(
self,
query: Query,
*,
batch_size: Optional[int] = None,
timeout: Optional[timedelta] = None,
self, query: Query, batch_size: Optional[int] = None
) -> pa.RecordBatchReader:
async_iter = LOOP.run(
self._table._execute_query(query, batch_size=batch_size, timeout=timeout)
)
async_iter = LOOP.run(self._table._execute_query(query, batch_size))
def iter_sync():
try:
@@ -3026,23 +2990,6 @@ class AsyncTable:
"""
await self._inner.drop_index(name)
async def prewarm_index(self, name: str) -> None:
"""
Prewarm an index in the table.
Parameters
----------
name: str
The name of the index to prewarm
Notes
-----
This will load the index into memory. This may reduce the cold-start time for
future queries. If the index does not fit in the cache then this call may be
wasteful.
"""
await self._inner.prewarm_index(name)
async def add(
self,
data: DATA,
@@ -3266,10 +3213,8 @@ class AsyncTable:
async def get_embedding_func(
vector_column_name: Optional[str],
query_type: QueryType,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]],
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]],
) -> Tuple[str, EmbeddingFunctionConfig]:
if isinstance(query, FullTextQuery):
query_type = "fts"
schema = await self.schema()
vector_column_name = infer_vector_column_name(
schema=schema,
@@ -3445,11 +3390,7 @@ class AsyncTable:
return async_query
async def _execute_query(
self,
query: Query,
*,
batch_size: Optional[int] = None,
timeout: Optional[timedelta] = None,
self, query: Query, batch_size: Optional[int] = None
) -> pa.RecordBatchReader:
# The sync table calls into this method, so we need to map the
# query to the async version of the query and run that here. This is only
@@ -3457,9 +3398,7 @@ class AsyncTable:
async_query = self._sync_query_to_async(query)
return await async_query.to_batches(
max_batch_length=batch_size, timeout=timeout
)
return await async_query.to_batches(max_batch_length=batch_size)
async def _explain_plan(self, query: Query, verbose: Optional[bool]) -> str:
# This method is used by the sync table

View File

@@ -253,14 +253,9 @@ def infer_vector_column_name(
query: Optional[Any], # inferred later in query builder
vector_column_name: Optional[str],
):
if vector_column_name is not None:
return vector_column_name
if query_type == "fts":
# FTS queries do not require a vector column
return None
if query is not None or query_type == "hybrid":
if (vector_column_name is None and query is not None and query_type != "fts") or (
vector_column_name is None and query_type == "hybrid"
):
try:
vector_column_name = inf_vector_column_query(schema)
except Exception as e:

View File

@@ -315,6 +315,11 @@ def test_table():
db = lancedb.connect(uri, read_consistency_interval=timedelta(seconds=5))
tbl = db.open_table("test_table")
# --8<-- [end:table_eventual_consistency]
# --8<-- [start:table_no_consistency]
uri = "data/sample-lancedb"
db = lancedb.connect(uri, read_consistency_interval=None)
tbl = db.open_table("test_table")
# --8<-- [end:table_no_consistency]
# --8<-- [start:table_checkout_latest]
tbl = db.open_table("test_table")
@@ -569,6 +574,12 @@ async def test_table_async():
)
async_tbl = await async_db.open_table("test_table_async")
# --8<-- [end:table_async_eventual_consistency]
# --8<-- [start:table_async_no_consistency]
uri = "data/sample-lancedb"
async_db = await lancedb.connect_async(uri, read_consistency_interval=None)
async_tbl = await async_db.open_table("test_table_async")
# --8<-- [end:table_async_no_consistency]
# --8<-- [start:table_async_checkout_latest]
async_tbl = await async_db.open_table("test_table_async")

View File

@@ -6,9 +6,7 @@ import lancedb
# --8<-- [end:import-lancedb]
# --8<-- [start:import-numpy]
from lancedb.query import BoostQuery, MatchQuery
import numpy as np
import pyarrow as pa
# --8<-- [end:import-numpy]
# --8<-- [start:import-datetime]
@@ -156,84 +154,6 @@ async def test_vector_search_async():
# --8<-- [end:search_result_async_as_list]
def test_fts_fuzzy_query():
uri = "data/fuzzy-example"
db = lancedb.connect(uri)
table = db.create_table(
"my_table_fts_fuzzy",
data=pa.table(
{
"text": [
"fa",
"fo", # spellchecker:disable-line
"fob",
"focus",
"foo",
"food",
"foul",
]
}
),
mode="overwrite",
)
table.create_fts_index("text", use_tantivy=False, replace=True)
results = table.search(MatchQuery("foo", "text", fuzziness=1)).to_pandas()
assert len(results) == 4
assert set(results["text"].to_list()) == {
"foo",
"fo", # 1 deletion # spellchecker:disable-line
"fob", # 1 substitution
"food", # 1 insertion
}
def test_fts_boost_query():
uri = "data/boost-example"
db = lancedb.connect(uri)
table = db.create_table(
"my_table_fts_boost",
data=pa.table(
{
"title": [
"The Hidden Gems of Travel",
"Exploring Nature's Wonders",
"Cultural Treasures Unveiled",
"The Nightlife Chronicles",
"Scenic Escapes and Challenges",
],
"desc": [
"A vibrant city with occasional traffic jams.",
"Beautiful landscapes but overpriced tourist spots.",
"Rich cultural heritage but humid summers.",
"Bustling nightlife but noisy streets.",
"Scenic views but limited public transport options.",
],
}
),
mode="overwrite",
)
table.create_fts_index("desc", use_tantivy=False, replace=True)
results = table.search(
BoostQuery(
MatchQuery("beautiful, cultural, nightlife", "desc"),
MatchQuery("bad traffic jams, overpriced", "desc"),
),
).to_pandas()
# we will hit 3 results because the positive query has 3 hits
assert len(results) == 3
# the one containing "overpriced" will be negatively boosted,
# so it will be the last one
assert (
results["desc"].to_list()[2]
== "Beautiful landscapes but overpriced tourist spots."
)
def test_fts_native():
# --8<-- [start:basic_fts]
uri = "data/sample-lancedb"

View File

@@ -3,7 +3,6 @@
import re
from datetime import timedelta
import os
import lancedb
@@ -299,13 +298,11 @@ def test_create_exist_ok(tmp_db: lancedb.DBConnection):
@pytest.mark.asyncio
async def test_connect(tmp_path):
db = await lancedb.connect_async(tmp_path)
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=None)"
db = await lancedb.connect_async(
tmp_path, read_consistency_interval=timedelta(seconds=5)
)
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=5s)"
db = await lancedb.connect_async(tmp_path, read_consistency_interval=None)
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=None)"
@pytest.mark.asyncio
async def test_close(mem_db_async: lancedb.AsyncConnection):
@@ -453,7 +450,7 @@ async def test_open_table(tmp_path):
assert tbl.name == "test"
assert (
re.search(
r"NativeTable\(test, uri=.*test\.lance, read_consistency_interval=None\)",
r"NativeTable\(test, uri=.*test\.lance, read_consistency_interval=5s\)",
str(tbl),
)
is not None

View File

@@ -12,7 +12,6 @@ import pyarrow as pa
import pytest
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
import requests
# These are integration tests for embedding functions.
# They are slow because they require downloading models
@@ -517,61 +516,3 @@ def test_voyageai_embedding_function():
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
)
def test_voyageai_multimodal_embedding_function():
voyageai = (
get_registry().get("voyageai").create(name="voyage-multimodal-3", max_retries=0)
)
class Images(LanceModel):
label: str
image_uri: str = voyageai.SourceField() # image uri as the source
image_bytes: bytes = voyageai.SourceField() # image bytes as the source
vector: Vector(voyageai.ndims()) = voyageai.VectorField() # vector column
vec_from_bytes: Vector(voyageai.ndims()) = (
voyageai.VectorField()
) # Another vector column
db = lancedb.connect("~/lancedb")
table = db.create_table("test", schema=Images, mode="overwrite")
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
assert len(table.to_pandas()["vector"][0]) == voyageai.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
)
def test_voyageai_multimodal_embedding_text_function():
voyageai = (
get_registry().get("voyageai").create(name="voyage-multimodal-3", max_retries=0)
)
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()

View File

@@ -22,7 +22,6 @@ from lancedb.db import DBConnection
from lancedb.index import FTS
from lancedb.query import BoostQuery, MatchQuery, MultiMatchQuery, PhraseQuery
import numpy as np
import pyarrow as pa
import pandas as pd
import pytest
from utils import exception_output
@@ -627,32 +626,3 @@ def test_language(mem_db: DBConnection):
# Stop words -> no results
results = table.search("la", query_type="fts").limit(5).to_list()
assert len(results) == 0
def test_fts_on_list(mem_db: DBConnection):
data = pa.table(
{
"text": [
["lance database", "the", "search"],
["lance database"],
["lance", "search"],
["database", "search"],
["unrelated", "doc"],
],
"vector": [
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0],
[10.0, 11.0, 12.0],
[13.0, 14.0, 15.0],
],
}
)
table = mem_db.create_table("test", data=data)
table.create_fts_index("text", use_tantivy=False)
res = table.search("lance").limit(5).to_list()
assert len(res) == 3
res = table.search(PhraseQuery("lance database", "text")).limit(5).to_list()
assert len(res) == 2

View File

@@ -8,7 +8,7 @@ import pyarrow as pa
import pytest
import pytest_asyncio
from lancedb import AsyncConnection, AsyncTable, connect_async
from lancedb.index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
from lancedb.index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq
@pytest_asyncio.fixture
@@ -119,18 +119,6 @@ async def test_create_label_list_index(some_table: AsyncTable):
assert str(indices) == '[Index(LabelList, columns=["tags"], name="tags_idx")]'
@pytest.mark.asyncio
async def test_full_text_search_index(some_table: AsyncTable):
await some_table.create_index("tags", config=FTS(with_position=False))
indices = await some_table.list_indices()
assert str(indices) == '[Index(FTS, columns=["tags"], name="tags_idx")]'
await some_table.prewarm_index("tags_idx")
res = await (await some_table.search("tag0")).to_arrow()
assert res.num_rows > 0
@pytest.mark.asyncio
async def test_create_vector_index(some_table: AsyncTable):
# Can create

View File

@@ -511,8 +511,7 @@ def test_query_builder_with_different_vector_column():
columns=["b"],
vector_column="foo_vector",
),
batch_size=None,
timeout=None,
None,
)
@@ -1077,67 +1076,3 @@ async def test_query_serialization_async(table_async: AsyncTable):
full_text_query=FullTextSearchQuery(columns=[], query="foo"),
with_row_id=False,
)
def test_query_timeout(tmp_path):
# Use local directory instead of memory:// to add a bit of latency to
# operations so a timeout of zero will trigger exceptions.
db = lancedb.connect(tmp_path)
data = pa.table(
{
"text": ["a", "b"],
"vector": pa.FixedSizeListArray.from_arrays(
pc.random(4).cast(pa.float32()), 2
),
}
)
table = db.create_table("test", data)
table.create_fts_index("text", use_tantivy=False)
with pytest.raises(Exception, match="Query timeout"):
table.search().where("text = 'a'").to_list(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
table.search([0.0, 0.0]).to_arrow(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
table.search("a", query_type="fts").to_pandas(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
table.search(query_type="hybrid").vector([0.0, 0.0]).text("a").to_arrow(
timeout=timedelta(0)
)
@pytest.mark.asyncio
async def test_query_timeout_async(tmp_path):
db = await lancedb.connect_async(tmp_path)
data = pa.table(
{
"text": ["a", "b"],
"vector": pa.FixedSizeListArray.from_arrays(
pc.random(4).cast(pa.float32()), 2
),
}
)
table = await db.create_table("test", data)
await table.create_index("text", config=FTS())
with pytest.raises(Exception, match="Query timeout"):
await table.query().where("text != 'a'").to_list(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
await table.vector_search([0.0, 0.0]).to_arrow(timeout=timedelta(0))
with pytest.raises(Exception, match="Query timeout"):
await (await table.search("a", query_type="fts")).to_pandas(
timeout=timedelta(0)
)
with pytest.raises(Exception, match="Query timeout"):
await (
table.query()
.nearest_to_text("a")
.nearest_to([0.0, 0.0])
.to_list(timeout=timedelta(0))
)

View File

@@ -457,45 +457,3 @@ def test_voyageai_reranker(tmp_path, use_tantivy):
reranker = VoyageAIReranker(model_name="rerank-2")
table, schema = get_test_table(tmp_path, use_tantivy)
_run_test_reranker(reranker, table, "single player experience", None, schema)
def test_empty_result_reranker():
pytest.importorskip("sentence_transformers")
db = lancedb.connect("memory://")
# Define schema
schema = pa.schema(
[
("id", pa.int64()),
("text", pa.string()),
("vector", pa.list_(pa.float32(), 128)), # 128-dimensional vector
]
)
# Create empty table with schema
empty_table = db.create_table("empty_table", schema=schema, mode="overwrite")
empty_table.create_fts_index("text", use_tantivy=False, replace=True)
for reranker in [
CrossEncoderReranker(),
# ColbertReranker(),
# AnswerdotaiRerankers(),
# OpenaiReranker(),
# JinaReranker(),
# VoyageAIReranker(model_name="rerank-2"),
]:
results = (
empty_table.search(list(range(128)))
.limit(3)
.rerank(reranker, "query")
.to_arrow()
)
# check if empty set contains _relevance_score column
assert "_relevance_score" in results.column_names
assert len(results) == 0
results = (
empty_table.search("query", query_type="fts")
.limit(3)
.rerank(reranker)
.to_arrow()
)

View File

@@ -32,7 +32,11 @@ def test_basic(mem_db: DBConnection):
table = mem_db.create_table("test", data=data)
assert table.name == "test"
assert "LanceTable(name='test', version=1, _conn=LanceDBConnection(" in repr(table)
assert (
"LanceTable(name='test', version=1, "
"read_consistency_interval=datetime.timedelta(seconds=5), "
"_conn=LanceDBConnection("
) in repr(table)
expected_schema = pa.schema(
{
"vector": pa.list_(pa.float32(), 2),

View File

@@ -204,7 +204,9 @@ pub fn connect(
}
if let Some(read_consistency_interval) = read_consistency_interval {
let read_consistency_interval = Duration::from_secs_f64(read_consistency_interval);
builder = builder.read_consistency_interval(read_consistency_interval);
builder = builder.read_consistency_interval(Some(read_consistency_interval));
} else {
builder = builder.read_consistency_interval(None);
}
if let Some(storage_options) = storage_options {
builder = builder.storage_options(storage_options);

View File

@@ -2,7 +2,6 @@
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::Arc;
use std::time::Duration;
use arrow::array::make_array;
use arrow::array::Array;
@@ -46,7 +45,7 @@ pub struct PyFullTextSearchQuery {
impl From<FullTextSearchQuery> for PyFullTextSearchQuery {
fn from(query: FullTextSearchQuery) -> Self {
Self {
PyFullTextSearchQuery {
columns: query.columns().into_iter().collect(),
query: query.query.query().to_owned(),
limit: query.limit,
@@ -100,7 +99,7 @@ pub struct PyQueryRequest {
impl From<AnyQuery> for PyQueryRequest {
fn from(query: AnyQuery) -> Self {
match query {
AnyQuery::Query(query_request) => Self {
AnyQuery::Query(query_request) => PyQueryRequest {
limit: query_request.limit,
offset: query_request.offset,
filter: query_request.filter.map(PyQueryFilter),
@@ -122,7 +121,7 @@ impl From<AnyQuery> for PyQueryRequest {
postfilter: None,
norm: None,
},
AnyQuery::VectorQuery(vector_query) => Self {
AnyQuery::VectorQuery(vector_query) => PyQueryRequest {
limit: vector_query.base.limit,
offset: vector_query.base.offset,
filter: vector_query.base.filter.map(PyQueryFilter),
@@ -295,11 +294,10 @@ impl Query {
})
}
#[pyo3(signature = (max_batch_length=None, timeout=None))]
#[pyo3(signature = (max_batch_length=None))]
pub fn execute(
self_: PyRef<'_, Self>,
max_batch_length: Option<u32>,
timeout: Option<Duration>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
@@ -307,9 +305,6 @@ impl Query {
if let Some(max_batch_length) = max_batch_length {
opts.max_batch_length = max_batch_length;
}
if let Some(timeout) = timeout {
opts.timeout = Some(timeout);
}
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
Ok(RecordBatchStream::new(inner_stream))
})
@@ -381,11 +376,10 @@ impl FTSQuery {
self.inner = self.inner.clone().postfilter();
}
#[pyo3(signature = (max_batch_length=None, timeout=None))]
#[pyo3(signature = (max_batch_length=None))]
pub fn execute(
self_: PyRef<'_, Self>,
max_batch_length: Option<u32>,
timeout: Option<Duration>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_
.inner
@@ -397,9 +391,6 @@ impl FTSQuery {
if let Some(max_batch_length) = max_batch_length {
opts.max_batch_length = max_batch_length;
}
if let Some(timeout) = timeout {
opts.timeout = Some(timeout);
}
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
Ok(RecordBatchStream::new(inner_stream))
})
@@ -522,11 +513,10 @@ impl VectorQuery {
self.inner = self.inner.clone().bypass_vector_index()
}
#[pyo3(signature = (max_batch_length=None, timeout=None))]
#[pyo3(signature = (max_batch_length=None))]
pub fn execute(
self_: PyRef<'_, Self>,
max_batch_length: Option<u32>,
timeout: Option<Duration>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
@@ -534,9 +524,6 @@ impl VectorQuery {
if let Some(max_batch_length) = max_batch_length {
opts.max_batch_length = max_batch_length;
}
if let Some(timeout) = timeout {
opts.timeout = Some(timeout);
}
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
Ok(RecordBatchStream::new(inner_stream))
})

View File

@@ -204,14 +204,6 @@ impl Table {
})
}
pub fn prewarm_index(self_: PyRef<'_, Self>, index_name: String) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
inner.prewarm_index(&index_name).await.infer_error()?;
Ok(())
})
}
pub fn list_indices(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {

View File

@@ -163,9 +163,8 @@ pub fn parse_fts_query(query: &Bound<'_, PyDict>) -> PyResult<FtsQuery> {
.ok_or(PyValueError::new_err("boost not found"))?
.extract::<Vec<f32>>()?;
let query = MultiMatchQuery::try_new(query, columns)
.and_then(|q| q.try_with_boosts(boost))
.map_err(|e| {
let query =
MultiMatchQuery::try_new_with_boosts(query, columns, boost).map_err(|e| {
PyValueError::new_err(format!("Error creating MultiMatchQuery: {}", e))
})?;
Ok(query.into())

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.19.0-beta.7"
version = "0.19.0-beta.3"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -60,7 +60,7 @@ fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
let mut conn_builder = connect(&path).storage_options(storage_options);
if let Some(interval) = read_consistency_interval {
conn_builder = conn_builder.read_consistency_interval(interval);
conn_builder = conn_builder.read_consistency_interval(Some(interval));
}
rt.spawn(async move {
let database = conn_builder.execute().await;

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.19.0-beta.7"
version = "0.19.0-beta.3"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true

View File

@@ -12,7 +12,7 @@ use super::{
Catalog, CatalogOptions, CreateDatabaseMode, CreateDatabaseRequest, DatabaseNamesRequest,
OpenDatabaseRequest,
};
use crate::connection::ConnectRequest;
use crate::connection::{ConnectRequest, DEFAULT_READ_CONSISTENCY_INTERVAL};
use crate::database::listing::{ListingDatabase, ListingDatabaseOptions};
use crate::database::{Database, DatabaseOptions};
use crate::error::{CreateDirSnafu, Error, Result};
@@ -214,7 +214,7 @@ impl Catalog for ListingCatalog {
uri: db_uri,
#[cfg(feature = "remote")]
client_config: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
options: Default::default(),
};
@@ -241,7 +241,7 @@ impl Catalog for ListingCatalog {
uri: db_path.to_string(),
#[cfg(feature = "remote")]
client_config: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
options: Default::default(),
};
@@ -311,7 +311,7 @@ mod tests {
#[cfg(feature = "remote")]
client_config: Default::default(),
options: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
};
let catalog = ListingCatalog::connect(&request).await.unwrap();

View File

@@ -36,6 +36,9 @@ pub use lance_encoding::version::LanceFileVersion;
#[cfg(feature = "remote")]
use lance_io::object_store::StorageOptions;
pub(crate) const DEFAULT_READ_CONSISTENCY_INTERVAL: Option<std::time::Duration> =
Some(std::time::Duration::from_secs(5));
/// A builder for configuring a [`Connection::table_names`] operation
pub struct TableNamesBuilder {
parent: Arc<dyn Database>,
@@ -139,6 +142,12 @@ impl CreateTableBuilder<true> {
}
}
/// Apply the given write options when writing the initial data
pub fn write_options(mut self, write_options: WriteOptions) -> Self {
self.request.write_options = write_options;
self
}
/// Execute the create table operation
pub async fn execute(self) -> Result<Table> {
let embedding_registry = self.embedding_registry.clone();
@@ -220,12 +229,6 @@ impl<const HAS_DATA: bool> CreateTableBuilder<HAS_DATA> {
self
}
/// Apply the given write options when writing the initial data
pub fn write_options(mut self, write_options: WriteOptions) -> Self {
self.request.write_options = write_options;
self
}
/// Set an option for the storage layer.
///
/// Options already set on the connection will be inherited by the table,
@@ -618,14 +621,15 @@ pub struct ConnectRequest {
/// The interval at which to check for updates from other processes.
///
/// If None, then consistency is not checked. For performance
/// reasons, this is the default. For strong consistency, set this to
/// If None, then consistency is not checked. For strong consistency, set this to
/// zero seconds. Then every read will check for updates from other
/// processes. As a compromise, you can set this to a non-zero timedelta
/// for eventual consistency. If more than that interval has passed since
/// the last check, then the table will be checked for updates. Note: this
/// consistency only applies to read operations. Write operations are
/// always consistent.
///
/// The default is 5 seconds.
pub read_consistency_interval: Option<std::time::Duration>,
}
@@ -643,7 +647,7 @@ impl ConnectBuilder {
uri: uri.to_string(),
#[cfg(feature = "remote")]
client_config: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
options: HashMap::new(),
},
embedding_registry: None,
@@ -782,8 +786,7 @@ impl ConnectBuilder {
/// The interval at which to check for updates from other processes. This
/// only affects LanceDB OSS.
///
/// If left unset, consistency is not checked. For maximum read
/// performance, this is the default. For strong consistency, set this to
/// If left unset, consistency is not checked. For strong consistency, set this to
/// zero seconds. Then every read will check for updates from other processes.
/// As a compromise, set this to a non-zero duration for eventual consistency.
/// If more than that duration has passed since the last read, the read will
@@ -792,13 +795,15 @@ impl ConnectBuilder {
/// This only affects read operations. Write operations are always
/// consistent.
///
/// The default is 5 seconds.
///
/// LanceDB Cloud uses eventual consistency under the hood, and is not
/// currently configurable.
pub fn read_consistency_interval(
mut self,
read_consistency_interval: std::time::Duration,
read_consistency_interval: Option<std::time::Duration>,
) -> Self {
self.request.read_consistency_interval = Some(read_consistency_interval);
self.request.read_consistency_interval = read_consistency_interval;
self
}
@@ -863,7 +868,7 @@ impl ConnectBuilder {
/// # Arguments
///
/// * `uri` - URI where the database is located, can be a local directory, supported remote cloud storage,
/// or a LanceDB Cloud database. See [ConnectOptions::uri] for a list of accepted formats
/// or a LanceDB Cloud database. See [ConnectOptions::uri] for a list of accepted formats
pub fn connect(uri: &str) -> ConnectBuilder {
ConnectBuilder::new(uri)
}
@@ -882,7 +887,7 @@ impl CatalogConnectBuilder {
uri: uri.to_string(),
#[cfg(feature = "remote")]
client_config: Default::default(),
read_consistency_interval: None,
read_consistency_interval: DEFAULT_READ_CONSISTENCY_INTERVAL,
options: HashMap::new(),
},
}

View File

@@ -41,7 +41,7 @@ where
/// ----------
/// - reader: RecordBatchReader
/// - strict: if set true, only `fixed_size_list<float>` is considered as vector column. If set to false,
/// a `list<float>` column with same length is also considered as vector column.
/// a `list<float>` column with same length is also considered as vector column.
pub fn infer_vector_columns(
reader: impl RecordBatchReader + Send,
strict: bool,

View File

@@ -14,9 +14,6 @@ use object_store::{
use async_trait::async_trait;
#[cfg(test)]
pub mod io_tracking;
#[derive(Debug)]
struct MirroringObjectStore {
primary: Arc<dyn ObjectStore>,

View File

@@ -1,237 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::{
fmt::{Display, Formatter},
sync::{Arc, Mutex},
};
use bytes::Bytes;
use futures::stream::BoxStream;
use lance::io::WrappingObjectStore;
use object_store::{
path::Path, GetOptions, GetResult, ListResult, MultipartUpload, ObjectMeta, ObjectStore,
PutMultipartOpts, PutOptions, PutPayload, PutResult, Result as OSResult, UploadPart,
};
#[derive(Debug, Default)]
pub struct IoStats {
pub read_iops: u64,
pub read_bytes: u64,
pub write_iops: u64,
pub write_bytes: u64,
}
impl Display for IoStats {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{:#?}", self)
}
}
#[derive(Debug, Clone)]
pub struct IoTrackingStore {
target: Arc<dyn ObjectStore>,
stats: Arc<Mutex<IoStats>>,
}
impl Display for IoTrackingStore {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "{:#?}", self)
}
}
#[derive(Debug, Default, Clone)]
pub struct IoStatsHolder(Arc<Mutex<IoStats>>);
impl IoStatsHolder {
pub fn incremental_stats(&self) -> IoStats {
std::mem::take(&mut self.0.lock().expect("failed to lock IoStats"))
}
}
impl WrappingObjectStore for IoStatsHolder {
fn wrap(&self, target: Arc<dyn ObjectStore>) -> Arc<dyn ObjectStore> {
Arc::new(IoTrackingStore {
target,
stats: self.0.clone(),
})
}
}
impl IoTrackingStore {
pub fn new_wrapper() -> (Arc<dyn WrappingObjectStore>, Arc<Mutex<IoStats>>) {
let stats = Arc::new(Mutex::new(IoStats::default()));
(Arc::new(IoStatsHolder(stats.clone())), stats)
}
fn record_read(&self, num_bytes: u64) {
let mut stats = self.stats.lock().unwrap();
stats.read_iops += 1;
stats.read_bytes += num_bytes;
}
fn record_write(&self, num_bytes: u64) {
let mut stats = self.stats.lock().unwrap();
stats.write_iops += 1;
stats.write_bytes += num_bytes;
}
}
#[async_trait::async_trait]
#[deny(clippy::missing_trait_methods)]
impl ObjectStore for IoTrackingStore {
async fn put(&self, location: &Path, bytes: PutPayload) -> OSResult<PutResult> {
self.record_write(bytes.content_length() as u64);
self.target.put(location, bytes).await
}
async fn put_opts(
&self,
location: &Path,
bytes: PutPayload,
opts: PutOptions,
) -> OSResult<PutResult> {
self.record_write(bytes.content_length() as u64);
self.target.put_opts(location, bytes, opts).await
}
async fn put_multipart(&self, location: &Path) -> OSResult<Box<dyn MultipartUpload>> {
let target = self.target.put_multipart(location).await?;
Ok(Box::new(IoTrackingMultipartUpload {
target,
stats: self.stats.clone(),
}))
}
async fn put_multipart_opts(
&self,
location: &Path,
opts: PutMultipartOpts,
) -> OSResult<Box<dyn MultipartUpload>> {
let target = self.target.put_multipart_opts(location, opts).await?;
Ok(Box::new(IoTrackingMultipartUpload {
target,
stats: self.stats.clone(),
}))
}
async fn get(&self, location: &Path) -> OSResult<GetResult> {
let result = self.target.get(location).await;
if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes as u64);
}
result
}
async fn get_opts(&self, location: &Path, options: GetOptions) -> OSResult<GetResult> {
let result = self.target.get_opts(location, options).await;
if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes as u64);
}
result
}
async fn get_range(&self, location: &Path, range: std::ops::Range<usize>) -> OSResult<Bytes> {
let result = self.target.get_range(location, range).await;
if let Ok(result) = &result {
self.record_read(result.len() as u64);
}
result
}
async fn get_ranges(
&self,
location: &Path,
ranges: &[std::ops::Range<usize>],
) -> OSResult<Vec<Bytes>> {
let result = self.target.get_ranges(location, ranges).await;
if let Ok(result) = &result {
self.record_read(result.iter().map(|b| b.len() as u64).sum());
}
result
}
async fn head(&self, location: &Path) -> OSResult<ObjectMeta> {
self.record_read(0);
self.target.head(location).await
}
async fn delete(&self, location: &Path) -> OSResult<()> {
self.record_write(0);
self.target.delete(location).await
}
fn delete_stream<'a>(
&'a self,
locations: BoxStream<'a, OSResult<Path>>,
) -> BoxStream<'a, OSResult<Path>> {
self.target.delete_stream(locations)
}
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, OSResult<ObjectMeta>> {
self.record_read(0);
self.target.list(prefix)
}
fn list_with_offset(
&self,
prefix: Option<&Path>,
offset: &Path,
) -> BoxStream<'_, OSResult<ObjectMeta>> {
self.record_read(0);
self.target.list_with_offset(prefix, offset)
}
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> OSResult<ListResult> {
self.record_read(0);
self.target.list_with_delimiter(prefix).await
}
async fn copy(&self, from: &Path, to: &Path) -> OSResult<()> {
self.record_write(0);
self.target.copy(from, to).await
}
async fn rename(&self, from: &Path, to: &Path) -> OSResult<()> {
self.record_write(0);
self.target.rename(from, to).await
}
async fn rename_if_not_exists(&self, from: &Path, to: &Path) -> OSResult<()> {
self.record_write(0);
self.target.rename_if_not_exists(from, to).await
}
async fn copy_if_not_exists(&self, from: &Path, to: &Path) -> OSResult<()> {
self.record_write(0);
self.target.copy_if_not_exists(from, to).await
}
}
#[derive(Debug)]
struct IoTrackingMultipartUpload {
target: Box<dyn MultipartUpload>,
stats: Arc<Mutex<IoStats>>,
}
#[async_trait::async_trait]
impl MultipartUpload for IoTrackingMultipartUpload {
async fn abort(&mut self) -> OSResult<()> {
self.target.abort().await
}
async fn complete(&mut self) -> OSResult<PutResult> {
self.target.complete().await
}
fn put_part(&mut self, payload: PutPayload) -> UploadPart {
{
let mut stats = self.stats.lock().unwrap();
stats.write_iops += 1;
stats.write_bytes += payload.content_length() as u64;
}
self.target.put_part(payload)
}
}

View File

@@ -31,7 +31,7 @@
//! are not yet ready to be released.
//!
//! - `remote` - Enable remote client to connect to LanceDB cloud. This is not yet fully implemented
//! and should not be enabled.
//! and should not be enabled.
//!
//! ### Quick Start
//!

View File

@@ -1,8 +1,8 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::future::Future;
use std::sync::Arc;
use std::{future::Future, time::Duration};
use arrow::compute::concat_batches;
use arrow_array::{make_array, Array, Float16Array, Float32Array, Float64Array};
@@ -25,7 +25,6 @@ use crate::error::{Error, Result};
use crate::rerankers::rrf::RRFReranker;
use crate::rerankers::{check_reranker_result, NormalizeMethod, Reranker};
use crate::table::BaseTable;
use crate::utils::TimeoutStream;
use crate::DistanceType;
use crate::{arrow::SendableRecordBatchStream, table::AnyQuery};
@@ -526,15 +525,12 @@ pub struct QueryExecutionOptions {
///
/// By default, this is 1024
pub max_batch_length: u32,
/// Max duration to wait for the query to execute before timing out.
pub timeout: Option<Duration>,
}
impl Default for QueryExecutionOptions {
fn default() -> Self {
Self {
max_batch_length: 1024,
timeout: None,
}
}
}
@@ -1011,10 +1007,7 @@ impl VectorQuery {
self
}
pub async fn execute_hybrid(
&self,
options: QueryExecutionOptions,
) -> Result<SendableRecordBatchStream> {
pub async fn execute_hybrid(&self) -> Result<SendableRecordBatchStream> {
// clone query and specify we want to include row IDs, which can be needed for reranking
let mut fts_query = Query::new(self.parent.clone());
fts_query.request = self.request.base.clone();
@@ -1023,10 +1016,7 @@ impl VectorQuery {
let mut vector_query = self.clone().with_row_id();
vector_query.request.base.full_text_search = None;
let (fts_results, vec_results) = try_join!(
fts_query.execute_with_options(options.clone()),
vector_query.inner_execute_with_options(options)
)?;
let (fts_results, vec_results) = try_join!(fts_query.execute(), vector_query.execute())?;
let (fts_results, vec_results) = try_join!(
fts_results.try_collect::<Vec<_>>(),
@@ -1084,20 +1074,6 @@ impl VectorQuery {
RecordBatchStreamAdapter::new(results.schema(), stream::iter([Ok(results)])),
))
}
async fn inner_execute_with_options(
&self,
options: QueryExecutionOptions,
) -> Result<SendableRecordBatchStream> {
let plan = self.create_plan(options.clone()).await?;
let inner = execute_plan(plan, Default::default())?;
let inner = if let Some(timeout) = options.timeout {
TimeoutStream::new_boxed(inner, timeout)
} else {
inner
};
Ok(DatasetRecordBatchStream::new(inner).into())
}
}
impl ExecutableQuery for VectorQuery {
@@ -1111,13 +1087,16 @@ impl ExecutableQuery for VectorQuery {
options: QueryExecutionOptions,
) -> Result<SendableRecordBatchStream> {
if self.request.base.full_text_search.is_some() {
let hybrid_result = async move { self.execute_hybrid(options).await }
.boxed()
.await?;
let hybrid_result = async move { self.execute_hybrid().await }.boxed().await?;
return Ok(hybrid_result);
}
self.inner_execute_with_options(options).await
Ok(SendableRecordBatchStream::from(
DatasetRecordBatchStream::new(execute_plan(
self.create_plan(options).await?,
Default::default(),
)?),
))
}
async fn explain_plan(&self, verbose: bool) -> Result<String> {

View File

@@ -13,7 +13,7 @@ use reqwest::{
use crate::error::{Error, Result};
use crate::remote::db::RemoteOptions;
const REQUEST_ID_HEADER: HeaderName = HeaderName::from_static("x-request-id");
const REQUEST_ID_HEADER: &str = "x-request-id";
/// Configuration for the LanceDB Cloud HTTP client.
#[derive(Clone, Debug)]
@@ -299,7 +299,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
) -> Result<HeaderMap> {
let mut headers = HeaderMap::new();
headers.insert(
HeaderName::from_static("x-api-key"),
"x-api-key",
HeaderValue::from_str(api_key).map_err(|_| Error::InvalidInput {
message: "non-ascii api key provided".to_string(),
})?,
@@ -307,7 +307,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
if region == "local" {
let host = format!("{}.local.api.lancedb.com", db_name);
headers.insert(
http::header::HOST,
"Host",
HeaderValue::from_str(&host).map_err(|_| Error::InvalidInput {
message: format!("non-ascii database name '{}' provided", db_name),
})?,
@@ -315,7 +315,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
}
if has_host_override {
headers.insert(
HeaderName::from_static("x-lancedb-database"),
"x-lancedb-database",
HeaderValue::from_str(db_name).map_err(|_| Error::InvalidInput {
message: format!("non-ascii database name '{}' provided", db_name),
})?,
@@ -323,7 +323,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
}
if db_prefix.is_some() {
headers.insert(
HeaderName::from_static("x-lancedb-database-prefix"),
"x-lancedb-database-prefix",
HeaderValue::from_str(db_prefix.unwrap()).map_err(|_| Error::InvalidInput {
message: format!(
"non-ascii database prefix '{}' provided",
@@ -335,7 +335,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
if let Some(v) = options.0.get("account_name") {
headers.insert(
HeaderName::from_static("x-azure-storage-account-name"),
"x-azure-storage-account-name",
HeaderValue::from_str(v).map_err(|_| Error::InvalidInput {
message: format!("non-ascii storage account name '{}' provided", db_name),
})?,
@@ -343,7 +343,7 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
}
if let Some(v) = options.0.get("azure_storage_account_name") {
headers.insert(
HeaderName::from_static("x-azure-storage-account-name"),
"x-azure-storage-account-name",
HeaderValue::from_str(v).map_err(|_| Error::InvalidInput {
message: format!("non-ascii storage account name '{}' provided", db_name),
})?,

View File

@@ -20,7 +20,7 @@ use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
use datafusion_physical_plan::{ExecutionPlan, RecordBatchStream, SendableRecordBatchStream};
use futures::TryStreamExt;
use http::header::CONTENT_TYPE;
use http::{HeaderName, StatusCode};
use http::StatusCode;
use lance::arrow::json::{JsonDataType, JsonSchema};
use lance::dataset::scanner::DatasetRecordBatchStream;
use lance::dataset::{ColumnAlteration, NewColumnTransform, Version};
@@ -44,8 +44,6 @@ use super::client::{HttpSend, RestfulLanceDbClient, Sender};
use super::db::ServerVersion;
use super::ARROW_STREAM_CONTENT_TYPE;
const REQUEST_TIMEOUT_HEADER: HeaderName = HeaderName::from_static("x-request-timeout-ms");
#[derive(Debug)]
pub struct RemoteTable<S: HttpSend = Sender> {
#[allow(dead_code)]
@@ -334,19 +332,9 @@ impl<S: HttpSend> RemoteTable<S> {
async fn execute_query(
&self,
query: &AnyQuery,
options: &QueryExecutionOptions,
_options: QueryExecutionOptions,
) -> Result<Vec<Pin<Box<dyn RecordBatchStream + Send>>>> {
let mut request = self.client.post(&format!("/v1/table/{}/query/", self.name));
if let Some(timeout) = options.timeout {
// Client side timeout
request = request.timeout(timeout);
// Also send to server, so it can abort the query if it takes too long.
// (If it doesn't fit into u64, it's not worth sending anyways.)
if let Ok(timeout_ms) = u64::try_from(timeout.as_millis()) {
request = request.header(REQUEST_TIMEOUT_HEADER, timeout_ms);
}
}
let request = self.client.post(&format!("/v1/table/{}/query/", self.name));
let query_bodies = self.prepare_query_bodies(query).await?;
let requests: Vec<reqwest::RequestBuilder> = query_bodies
@@ -555,7 +543,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
query: &AnyQuery,
options: QueryExecutionOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
let streams = self.execute_query(query, &options).await?;
let streams = self.execute_query(query, options).await?;
if streams.len() == 1 {
let stream = streams.into_iter().next().unwrap();
Ok(Arc::new(OneShotExec::new(stream)))
@@ -571,9 +559,9 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
async fn query(
&self,
query: &AnyQuery,
options: QueryExecutionOptions,
_options: QueryExecutionOptions,
) -> Result<DatasetRecordBatchStream> {
let streams = self.execute_query(query, &options).await?;
let streams = self.execute_query(query, _options).await?;
if streams.len() == 1 {
Ok(DatasetRecordBatchStream::new(
@@ -1003,12 +991,6 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
Ok(())
}
async fn prewarm_index(&self, _index_name: &str) -> Result<()> {
Err(Error::NotSupported {
message: "prewarm_index is not yet supported on LanceDB cloud.".into(),
})
}
async fn table_definition(&self) -> Result<TableDefinition> {
Err(Error::NotSupported {
message: "table_definition is not supported on LanceDB cloud.".into(),
@@ -1775,7 +1757,6 @@ mod tests {
"boost": 1.0,
"fuzziness": 0,
"max_expansions": 50,
"operator": "Or",
},
}
},

View File

@@ -29,8 +29,8 @@ impl FromStr for NormalizeMethod {
fn from_str(s: &str) -> Result<Self> {
match s.to_lowercase().as_str() {
"score" => Ok(Self::Score),
"rank" => Ok(Self::Rank),
"score" => Ok(NormalizeMethod::Score),
"rank" => Ok(NormalizeMethod::Rank),
_ => Err(Error::InvalidInput {
message: format!("invalid normalize method: {}", s),
}),
@@ -41,8 +41,8 @@ impl FromStr for NormalizeMethod {
impl std::fmt::Display for NormalizeMethod {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Score => write!(f, "score"),
Self::Rank => write!(f, "rank"),
NormalizeMethod::Score => write!(f, "score"),
NormalizeMethod::Rank => write!(f, "rank"),
}
}
}

View File

@@ -68,7 +68,7 @@ use crate::query::{
use crate::utils::{
default_vector_column, supported_bitmap_data_type, supported_btree_data_type,
supported_fts_data_type, supported_label_list_data_type, supported_vector_data_type,
PatchReadParam, PatchWriteParam, TimeoutStream,
PatchReadParam, PatchWriteParam,
};
use self::dataset::DatasetConsistencyWrapper;
@@ -455,8 +455,6 @@ pub trait BaseTable: std::fmt::Display + std::fmt::Debug + Send + Sync {
async fn list_indices(&self) -> Result<Vec<IndexConfig>>;
/// Drop an index from the table.
async fn drop_index(&self, name: &str) -> Result<()>;
/// Prewarm an index in the table
async fn prewarm_index(&self, name: &str) -> Result<()>;
/// Get statistics about the index.
async fn index_stats(&self, index_name: &str) -> Result<Option<IndexStatistics>>;
/// Merge insert new records into the table.
@@ -796,8 +794,8 @@ impl Table {
/// # Arguments
///
/// * `on` One or more columns to join on. This is how records from the
/// source table and target table are matched. Typically this is some
/// kind of key or id column.
/// source table and target table are matched. Typically this is some
/// kind of key or id column.
///
/// # Examples
///
@@ -1088,22 +1086,6 @@ impl Table {
self.inner.drop_index(name).await
}
/// Prewarm an index in the table
///
/// This is a hint to fully load the index into memory. It can be used to
/// avoid cold starts
///
/// It is generally wasteful to call this if the index does not fit into the
/// available cache.
///
/// Note: This function is not yet supported on all indices, in which case it
/// may do nothing.
///
/// Use [`Self::list_indices()`] to find the names of the indices.
pub async fn prewarm_index(&self, name: &str) -> Result<()> {
self.inner.prewarm_index(name).await
}
// Take many execution plans and map them into a single plan that adds
// a query_index column and unions them.
pub(crate) fn multi_vector_plan(
@@ -1793,14 +1775,11 @@ impl NativeTable {
query: &AnyQuery,
options: QueryExecutionOptions,
) -> Result<DatasetRecordBatchStream> {
let plan = self.create_plan(query, options.clone()).await?;
let inner = execute_plan(plan, Default::default())?;
let inner = if let Some(timeout) = options.timeout {
TimeoutStream::new_boxed(inner, timeout)
} else {
inner
};
Ok(DatasetRecordBatchStream::new(inner))
let plan = self.create_plan(query, options).await?;
Ok(DatasetRecordBatchStream::new(execute_plan(
plan,
Default::default(),
)?))
}
/// Check whether the table uses V2 manifest paths.
@@ -2024,11 +2003,6 @@ impl BaseTable for NativeTable {
Ok(())
}
async fn prewarm_index(&self, index_name: &str) -> Result<()> {
let dataset = self.dataset.get().await?;
Ok(dataset.prewarm_index(index_name).await?)
}
async fn update(&self, update: UpdateBuilder) -> Result<u64> {
let dataset = self.dataset.get().await?.clone();
let mut builder = LanceUpdateBuilder::new(Arc::new(dataset));
@@ -2652,7 +2626,7 @@ mod tests {
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let conn = connect(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -2735,7 +2709,7 @@ mod tests {
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let conn = connect(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -2932,7 +2906,7 @@ mod tests {
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let conn = connect(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -3478,9 +3452,6 @@ mod tests {
assert_eq!(stats.num_unindexed_rows, 0);
assert_eq!(stats.index_type, crate::index::IndexType::FTS);
assert_eq!(stats.distance_type, None);
// Make sure we can call prewarm without error
table.prewarm_index("text_idx").await.unwrap();
}
#[tokio::test]
@@ -3506,7 +3477,8 @@ mod tests {
let mut conn2 = ConnectBuilder::new(uri);
if let Some(interval) = interval {
conn2 = conn2.read_consistency_interval(std::time::Duration::from_millis(interval));
conn2 = conn2
.read_consistency_interval(Some(std::time::Duration::from_millis(interval)));
}
let conn2 = conn2.execute().await.unwrap();
let table2 = conn2.open_table("my_table").execute().await.unwrap();
@@ -3542,7 +3514,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -3563,7 +3535,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -3576,7 +3548,7 @@ mod tests {
let native_tbl = table.as_native().unwrap();
let manifest = native_tbl.manifest().await.unwrap();
let base_config_len = manifest.config.len();
assert_eq!(manifest.config.len(), 0);
native_tbl
.update_config(vec![("test_key1".to_string(), "test_val1".to_string())])
@@ -3584,7 +3556,7 @@ mod tests {
.unwrap();
let manifest = native_tbl.manifest().await.unwrap();
assert_eq!(manifest.config.len(), 1 + base_config_len);
assert_eq!(manifest.config.len(), 1);
assert_eq!(
manifest.config.get("test_key1"),
Some(&"test_val1".to_string())
@@ -3595,7 +3567,7 @@ mod tests {
.await
.unwrap();
let manifest = native_tbl.manifest().await.unwrap();
assert_eq!(manifest.config.len(), 2 + base_config_len);
assert_eq!(manifest.config.len(), 2);
assert_eq!(
manifest.config.get("test_key1"),
Some(&"test_val1".to_string())
@@ -3613,7 +3585,7 @@ mod tests {
.await
.unwrap();
let manifest = native_tbl.manifest().await.unwrap();
assert_eq!(manifest.config.len(), 2 + base_config_len);
assert_eq!(manifest.config.len(), 2);
assert_eq!(
manifest.config.get("test_key1"),
Some(&"test_val1".to_string())
@@ -3625,7 +3597,7 @@ mod tests {
native_tbl.delete_config_keys(&["test_key1"]).await.unwrap();
let manifest = native_tbl.manifest().await.unwrap();
assert_eq!(manifest.config.len(), 1 + base_config_len);
assert_eq!(manifest.config.len(), 1);
assert_eq!(
manifest.config.get("test_key2"),
Some(&"test_val2_update".to_string())
@@ -3638,7 +3610,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();
@@ -3700,7 +3672,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let conn = ConnectBuilder::new(uri)
.read_consistency_interval(Duration::from_secs(0))
.read_consistency_interval(Some(Duration::from_secs(0)))
.execute()
.await
.unwrap();

View File

@@ -7,6 +7,7 @@ use std::{
time::{self, Duration, Instant},
};
use futures::FutureExt;
use lance::Dataset;
use tokio::sync::{RwLock, RwLockReadGuard, RwLockWriteGuard};
@@ -22,13 +23,16 @@ pub struct DatasetConsistencyWrapper(Arc<RwLock<DatasetRef>>);
///
/// The dataset is lazily loaded, and starts off as None. On the first access,
/// the dataset is loaded.
#[derive(Debug, Clone)]
#[derive(Debug)]
enum DatasetRef {
/// In this mode, the dataset is always the latest version.
Latest {
dataset: Dataset,
read_consistency_interval: Option<Duration>,
last_consistency_check: Option<time::Instant>,
/// A background task loading the next version of the dataset. This happens
/// in the background so as not to block the current thread.
refresh_task: Option<tokio::task::JoinHandle<Result<Dataset>>>,
},
/// In this mode, the dataset is a specific version. It cannot be mutated.
TimeTravel { dataset: Dataset, version: u64 },
@@ -41,9 +45,19 @@ impl DatasetRef {
Self::Latest {
dataset,
last_consistency_check,
refresh_task,
..
} => {
dataset.checkout_latest().await?;
// Replace the refresh task
if let Some(refresh_task) = refresh_task {
refresh_task.abort();
}
let mut new_dataset = dataset.clone();
refresh_task.replace(tokio::spawn(async move {
new_dataset.checkout_latest().await?;
Ok(new_dataset)
}));
last_consistency_check.replace(Instant::now());
}
Self::TimeTravel { dataset, version } => {
@@ -57,26 +71,24 @@ impl DatasetRef {
matches!(self, Self::Latest { .. })
}
async fn need_reload(&self) -> Result<bool> {
Ok(match self {
Self::Latest { dataset, .. } => {
dataset.latest_version_id().await? != dataset.version().version
}
Self::TimeTravel { dataset, version } => dataset.version().version != *version,
})
fn strong_consistency(&self) -> bool {
matches!(
self,
Self::Latest { read_consistency_interval: Some(interval), .. }
if interval.as_nanos() == 0
)
}
async fn as_latest(&mut self, read_consistency_interval: Option<Duration>) -> Result<()> {
match self {
Self::Latest { .. } => Ok(()),
Self::TimeTravel { dataset, .. } => {
dataset
.checkout_version(dataset.latest_version_id().await?)
.await?;
dataset.checkout_latest().await?;
*self = Self::Latest {
dataset: dataset.clone(),
read_consistency_interval,
last_consistency_check: Some(Instant::now()),
refresh_task: None,
};
Ok(())
}
@@ -114,13 +126,74 @@ impl DatasetRef {
match self {
Self::Latest {
dataset: ref mut ds,
refresh_task,
last_consistency_check,
..
} => {
*ds = dataset;
if let Some(refresh_task) = refresh_task {
refresh_task.abort();
}
*refresh_task = None;
*last_consistency_check = Some(Instant::now());
}
_ => unreachable!("Dataset should be in latest mode at this point"),
}
}
/// Wait for the background refresh task to complete.
async fn await_refresh(&mut self) -> Result<()> {
if let Self::Latest {
refresh_task: Some(refresh_task),
read_consistency_interval,
..
} = self
{
let dataset = refresh_task.await.expect("Refresh task panicked")?;
*self = Self::Latest {
dataset,
read_consistency_interval: *read_consistency_interval,
last_consistency_check: Some(Instant::now()),
refresh_task: None,
};
}
Ok(())
}
/// Check if background refresh task is done, and if so, update the dataset.
fn check_refresh(&mut self) -> Result<()> {
if let Self::Latest {
refresh_task: Some(refresh_task),
read_consistency_interval,
..
} = self
{
if refresh_task.is_finished() {
let dataset = refresh_task
.now_or_never()
.unwrap()
.expect("Refresh task panicked")?;
*self = Self::Latest {
dataset,
read_consistency_interval: *read_consistency_interval,
last_consistency_check: Some(Instant::now()),
refresh_task: None,
};
}
}
Ok(())
}
fn refresh_is_ready(&self) -> bool {
matches!(
self,
Self::Latest {
refresh_task: Some(refresh_task),
..
}
if refresh_task.is_finished()
)
}
}
impl DatasetConsistencyWrapper {
@@ -130,6 +203,7 @@ impl DatasetConsistencyWrapper {
dataset,
read_consistency_interval,
last_consistency_check: Some(Instant::now()),
refresh_task: None,
})))
}
@@ -188,18 +262,9 @@ impl DatasetConsistencyWrapper {
}
pub async fn reload(&self) -> Result<()> {
if !self.0.read().await.need_reload().await? {
return Ok(());
}
let mut write_guard = self.0.write().await;
// on lock escalation -- check if someone else has already reloaded
if !write_guard.need_reload().await? {
return Ok(());
}
// actually need reloading
write_guard.reload().await
write_guard.reload().await?;
write_guard.await_refresh().await
}
/// Returns the version, if in time travel mode, or None otherwise
@@ -245,9 +310,26 @@ impl DatasetConsistencyWrapper {
/// Ensures that the dataset is loaded and up-to-date with consistency and
/// version parameters.
async fn ensure_up_to_date(&self) -> Result<()> {
// We may have previously created a background task to fetch the new
// version of the dataset. If that task is done, we should update the
// dataset.
{
let read_guard = self.0.read().await;
if read_guard.refresh_is_ready() {
drop(read_guard);
self.0.write().await.check_refresh()?;
}
}
if !self.is_up_to_date().await? {
self.reload().await?;
}
// If we are in strong consistency mode, we should await the refresh task.
if self.0.read().await.strong_consistency() {
self.0.write().await.await_refresh().await?;
}
Ok(())
}
}
@@ -290,48 +372,3 @@ impl DerefMut for DatasetWriteGuard<'_> {
}
}
}
#[cfg(test)]
mod tests {
use arrow_schema::{DataType, Field, Schema};
use lance::{dataset::WriteParams, io::ObjectStoreParams};
use super::*;
use crate::{connect, io::object_store::io_tracking::IoStatsHolder, table::WriteOptions};
#[tokio::test]
async fn test_iops_open_strong_consistency() {
let db = connect("memory://")
.read_consistency_interval(Duration::ZERO)
.execute()
.await
.expect("Failed to connect to database");
let io_stats = IoStatsHolder::default();
let schema = Arc::new(Schema::new(vec![Field::new("id", DataType::Int32, false)]));
let table = db
.create_empty_table("test", schema)
.write_options(WriteOptions {
lance_write_params: Some(WriteParams {
store_params: Some(ObjectStoreParams {
object_store_wrapper: Some(Arc::new(io_stats.clone())),
..Default::default()
}),
..Default::default()
}),
})
.execute()
.await
.unwrap();
io_stats.incremental_stats();
// We should only need 1 read IOP to check the schema: looking for the
// latest version.
table.schema().await.unwrap();
let stats = io_stats.incremental_stats();
assert_eq!(stats.read_iops, 1);
}
}

View File

@@ -3,20 +3,14 @@
use std::sync::Arc;
use arrow_array::RecordBatch;
use arrow_schema::{DataType, Schema, SchemaRef};
use datafusion_common::{DataFusionError, Result as DataFusionResult};
use datafusion_execution::RecordBatchStream;
use futures::{FutureExt, Stream};
use arrow_schema::{DataType, Schema};
use lance::arrow::json::JsonDataType;
use lance::dataset::{ReadParams, WriteParams};
use lance::index::vector::utils::infer_vector_dim;
use lance::io::{ObjectStoreParams, WrappingObjectStore};
use lazy_static::lazy_static;
use std::pin::Pin;
use crate::error::{Error, Result};
use datafusion_physical_plan::SendableRecordBatchStream;
lazy_static! {
static ref TABLE_NAME_REGEX: regex::Regex = regex::Regex::new(r"^[a-zA-Z0-9_\-\.]+$").unwrap();
@@ -158,17 +152,7 @@ pub fn supported_label_list_data_type(dtype: &DataType) -> bool {
}
pub fn supported_fts_data_type(dtype: &DataType) -> bool {
supported_fts_data_type_impl(dtype, false)
}
fn supported_fts_data_type_impl(dtype: &DataType, in_list: bool) -> bool {
match (dtype, in_list) {
(DataType::Utf8 | DataType::LargeUtf8, _) => true,
(DataType::List(field) | DataType::LargeList(field), false) => {
supported_fts_data_type_impl(field.data_type(), true)
}
_ => false,
}
matches!(dtype, DataType::Utf8 | DataType::LargeUtf8)
}
pub fn supported_vector_data_type(dtype: &DataType) -> bool {
@@ -194,98 +178,12 @@ pub fn string_to_datatype(s: &str) -> Option<DataType> {
(&json_type).try_into().ok()
}
enum TimeoutState {
NotStarted {
timeout: std::time::Duration,
},
Started {
deadline: Pin<Box<tokio::time::Sleep>>,
timeout: std::time::Duration,
},
Completed,
}
/// A `Stream` wrapper that implements a timeout.
///
/// The timeout starts when the first `poll_next` is called. As soon as the timeout
/// duration has passed, the stream will return an `Err` indicating a timeout error
/// for the next poll.
pub struct TimeoutStream {
inner: SendableRecordBatchStream,
state: TimeoutState,
}
impl TimeoutStream {
pub fn new(inner: SendableRecordBatchStream, timeout: std::time::Duration) -> Self {
Self {
inner,
state: TimeoutState::NotStarted { timeout },
}
}
pub fn new_boxed(
inner: SendableRecordBatchStream,
timeout: std::time::Duration,
) -> SendableRecordBatchStream {
Box::pin(Self::new(inner, timeout))
}
fn timeout_error(timeout: &std::time::Duration) -> DataFusionError {
DataFusionError::Execution(format!("Query timeout after {} ms", timeout.as_millis()))
}
}
impl RecordBatchStream for TimeoutStream {
fn schema(&self) -> SchemaRef {
self.inner.schema()
}
}
impl Stream for TimeoutStream {
type Item = DataFusionResult<RecordBatch>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
match &mut self.state {
TimeoutState::NotStarted { timeout } => {
if timeout.is_zero() {
return std::task::Poll::Ready(Some(Err(Self::timeout_error(timeout))));
}
let deadline = Box::pin(tokio::time::sleep(*timeout));
self.state = TimeoutState::Started {
deadline,
timeout: *timeout,
};
self.poll_next(cx)
}
TimeoutState::Started { deadline, timeout } => match deadline.poll_unpin(cx) {
std::task::Poll::Ready(_) => {
let err = Self::timeout_error(timeout);
self.state = TimeoutState::Completed;
std::task::Poll::Ready(Some(Err(err)))
}
std::task::Poll::Pending => {
let inner = Pin::new(&mut self.inner);
inner.poll_next(cx)
}
},
TimeoutState::Completed => std::task::Poll::Ready(None),
}
}
}
#[cfg(test)]
mod tests {
use arrow_array::Int32Array;
use arrow_schema::Field;
use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
use futures::{stream, StreamExt};
use tokio::time::sleep;
use super::*;
use arrow_schema::{DataType, Field};
#[test]
fn test_guess_default_column() {
let schema_no_vector = Schema::new(vec![
@@ -351,85 +249,4 @@ mod tests {
let expected = DataType::Int32;
assert_eq!(string_to_datatype(string), Some(expected));
}
fn sample_batch() -> RecordBatch {
let schema = Arc::new(Schema::new(vec![Field::new(
"col1",
DataType::Int32,
false,
)]));
RecordBatch::try_new(
schema.clone(),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap()
}
#[tokio::test]
async fn test_timeout_stream() {
let batch = sample_batch();
let schema = batch.schema();
let mock_stream = stream::iter(vec![Ok(batch.clone()), Ok(batch.clone())]);
let sendable_stream: SendableRecordBatchStream =
Box::pin(RecordBatchStreamAdapter::new(schema.clone(), mock_stream));
let timeout_duration = std::time::Duration::from_millis(10);
let mut timeout_stream = TimeoutStream::new(sendable_stream, timeout_duration);
// Poll the stream to get the first batch
let first_result = timeout_stream.next().await;
assert!(first_result.is_some());
assert!(first_result.unwrap().is_ok());
// Sleep for the timeout duration
sleep(timeout_duration).await;
// Poll the stream again and ensure it returns a timeout error
let second_result = timeout_stream.next().await.unwrap();
assert!(second_result.is_err());
assert!(second_result
.unwrap_err()
.to_string()
.contains("Query timeout"));
}
#[tokio::test]
async fn test_timeout_stream_zero_duration() {
let batch = sample_batch();
let schema = batch.schema();
let mock_stream = stream::iter(vec![Ok(batch.clone()), Ok(batch.clone())]);
let sendable_stream: SendableRecordBatchStream =
Box::pin(RecordBatchStreamAdapter::new(schema.clone(), mock_stream));
// Setup similar to test_timeout_stream
let timeout_duration = std::time::Duration::from_secs(0);
let mut timeout_stream = TimeoutStream::new(sendable_stream, timeout_duration);
// First poll should immediately return a timeout error
let result = timeout_stream.next().await.unwrap();
assert!(result.is_err());
assert!(result.unwrap_err().to_string().contains("Query timeout"));
}
#[tokio::test]
async fn test_timeout_stream_completes_normally() {
let batch = sample_batch();
let schema = batch.schema();
let mock_stream = stream::iter(vec![Ok(batch.clone()), Ok(batch.clone())]);
let sendable_stream: SendableRecordBatchStream =
Box::pin(RecordBatchStreamAdapter::new(schema.clone(), mock_stream));
// Setup a stream with 2 batches
// Use a longer timeout that won't trigger
let timeout_duration = std::time::Duration::from_secs(1);
let mut timeout_stream = TimeoutStream::new(sendable_stream, timeout_duration);
// Both polls should return data normally
assert!(timeout_stream.next().await.unwrap().is_ok());
assert!(timeout_stream.next().await.unwrap().is_ok());
// Stream should be empty now
assert!(timeout_stream.next().await.is_none());
}
}