Compare commits

...

37 Commits

Author SHA1 Message Date
Lance Release
a300a238db Bump version: 0.24.1-beta.2 → 0.24.1 2025-07-10 21:36:02 +00:00
Lance Release
a41ff1df0a Bump version: 0.24.1-beta.1 → 0.24.1-beta.2 2025-07-10 21:36:02 +00:00
Weston Pace
77b005d849 feat: update lance to 0.31.1 (#2501)
This is preparation for a stable release
2025-07-10 14:35:29 -07:00
CyrusAttoun
167fccc427 fix: change 'return' to 'raise' for unimplemented remote table function (#2484)
just noticed that we're doing a 'return' instead of a 'raise' while
trying to get remote functionality working for my project. I went ahead
and implemented tests for both of the unimplemented functions (to_pandas
and to_arrow) while I was in there.

---------

Co-authored-by: Cyrus Attoun <jattoun1@gmail.com>
2025-07-09 14:27:08 -07:00
Lance Release
2bffbcefa5 Bump version: 0.21.1-beta.0 → 0.21.1-beta.1 2025-07-09 05:54:20 +00:00
Lance Release
905552f993 Bump version: 0.24.1-beta.0 → 0.24.1-beta.1 2025-07-09 05:53:28 +00:00
BubbleCal
e4898c9313 chore: sync node package-lock (#2491)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-09 12:34:03 +08:00
BubbleCal
cab36d94b2 feat: support to specify num_partitions and num_bits (#2488) 2025-07-09 11:36:09 +08:00
Weston Pace
b64252d4fd chore: don't require exact version of half (#2489)
I can't find any reason for pinning this dependency and the fact that it
is pinned can be kind of annoying to use downstream (e.g. datafusion
currently requires >= 2.6).
2025-07-08 08:36:04 -07:00
Lance Release
6fc006072c Bump version: 0.21.0 → 0.21.1-beta.0 2025-07-07 21:01:30 +00:00
Lance Release
d4bb59b542 Bump version: 0.24.0 → 0.24.1-beta.0 2025-07-07 21:00:38 +00:00
Wyatt Alt
6b2dd6de51 chore: update lance to 31.1-beta.2 (#2487) 2025-07-07 12:53:16 -07:00
BubbleCal
dbccd9e4f1 chore: upgrade lance to 0.31.1-beta.1 (#2486)
this also upgrades:
- datafusion 47.0 -> 48.0
- half 2.5.0 -> 2.6.0

to be consistent with lance

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-07 22:16:43 +08:00
Will Jones
b12ebfed4c fix: only monotonically update dataset (#2479)
Make sure we only update the latest version if it's actually newer. This
is important if there are concurrent queries, as they can take different
amounts of time.
2025-07-01 08:29:37 -07:00
Weston Pace
1dadb2aefa feat: upgrade to lance 0.31.0-beta.1 (#2469)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Chores**
* Updated dependencies to newer versions for improved compatibility and
stability.

* **Refactor**
* Improved internal handling of data ranges and stream lifetimes for
enhanced performance and reliability.
* Simplified code style for Python query object conversions without
affecting functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 11:10:53 -07:00
Haoyu Weng
eb9784d7f2 feat(python): batch Ollama embed calls (#2453)
Other embedding integrations such as Cohere and OpenAI already send
requests in batches. We should do that for Ollama too to improve
throughput.

The Ollama [`.embed`
API](63ca747622/ollama/_client.py (L359-L378))
was added in version 0.3.0 (almost a year ago) so I updated the version
requirement in pyproject.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved compatibility with newer versions of the "ollama" package by
requiring version 0.3.0 or higher.
- Enhanced embedding generation to process batches of texts more
efficiently and reliably.
- **Refactor**
	- Improved type consistency and clarity for embedding-related methods.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 08:28:14 -07:00
Kilerd Chan
ba755626cc fix: expose parsing error coming from invalid object store uri (#2475)
this PR is to expose the error from `ListingCatalog::open_path` which
unwrap the Result coming from `ObjectStore::from_uri` to avoid panic
2025-06-30 10:33:18 +08:00
Keming
7760799cb8 docs: fix multivector notebook markdown style (#2447)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Improved formatting and clarity in instructional text within the
Multivector on LanceDB notebook.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-27 15:34:01 -07:00
Will Jones
4beb2d2877 fix(python): make sure explain_plan works with FTS queries (#2466)
## Summary

Fixes issue #2465 where FTS explain plans only showed basic `LanceScan`
instead of detailed execution plans with FTS query details, limits, and
offsets.

## Root Cause

The `FTSQuery::explain_plan()` and `analyze_plan()` methods were missing
the `.full_text_search()` call before calling explain/analyze plan,
causing them to operate on the base query without FTS context.

## Changes

- **Fixed** `explain_plan()` and `analyze_plan()` in `src/query.rs` to
call `.full_text_search()`
- **Added comprehensive test coverage** for FTS explain plans with
limits, offsets, and filters
- **Updated existing tests** to expect correct behavior instead of buggy
behavior

## Before/After

**Before (broken):**
```
LanceScan: uri=..., projection=[...], row_id=false, row_addr=false, ordered=true
```

**After (fixed):**
```
ProjectionExec: expr=[id@2 as id, text@3 as text, _score@1 as _score]
  Take: columns="_rowid, _score, (id), (text)"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=2, fetch=4
        MatchQuery: query=test
```

## Test Plan

- [x] All new FTS explain plan tests pass 
- [x] Existing tests continue to pass
- [x] FTS queries now show proper execution plans with MatchQuery,
limits, filters

Closes #2465

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added new test cases to verify explain plan output for full-text
search, vector queries with pagination, and queries with filters.

* **Bug Fixes**
* Improved the accuracy of explain plan and analysis output for
full-text search queries, ensuring the correct query details are
reflected.

* **Refactor**
* Enhanced the formatting and hierarchical structure of execution plans
for hybrid queries, providing clearer and more detailed plan
representations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-06-26 23:35:14 -07:00
Lance Release
a00b8595d1 Bump version: 0.21.0-beta.0 → 0.21.0 2025-06-20 05:47:06 +00:00
Lance Release
9c8314b4fd Bump version: 0.20.1-beta.2 → 0.21.0-beta.0 2025-06-20 05:46:27 +00:00
Lance Release
c625b6f2b2 Bump version: 0.24.0-beta.0 → 0.24.0 2025-06-20 05:46:05 +00:00
Lance Release
bec8fe6547 Bump version: 0.23.1-beta.2 → 0.24.0-beta.0 2025-06-20 05:46:04 +00:00
BubbleCal
dc1150c011 chore: upgrade lance to 0.30.0 (#2451)
lance [release
details](https://github.com/lancedb/lance/releases/tag/v0.30.0)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency specifications to use exact version numbers instead
of referencing a git repository and tag.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-20 11:27:20 +08:00
Will Jones
afaefc6264 ci: fix package lock again (#2449)
We are able to push commits over here:
cb7293e073/.github/workflows/make-release-commit.yml (L88-L95)

So I think it's safe to assume this will work.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workflow configuration to improve authentication and branch
targeting for automated release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-19 08:51:48 -07:00
BubbleCal
cb70ff8cee feat!: switch default FTS to native lance FTS (#2428)
This switches the default FTS to native lance FTS for Python sync table
API, the other APIs have switched to native implementation already

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The default behavior for creating a full-text search index now uses
the new implementation rather than the legacy one.
- **Bug Fixes**
- Improved handling and error messages for phrase queries in full-text
search.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-19 10:38:34 +08:00
BubbleCal
cbb5a841b1 feat: support prefix matching and must_not clause (#2441) 2025-06-19 10:32:32 +08:00
Lance Release
c72f6770fd Bump version: 0.20.1-beta.1 → 0.20.1-beta.2 2025-06-18 23:33:57 +00:00
Lance Release
e5a80a5e86 Bump version: 0.23.1-beta.1 → 0.23.1-beta.2 2025-06-18 23:33:05 +00:00
Will Jones
8d0a7fad1f ci: try again to fix node lockfiles (#2445)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to explicitly check out the main branch
during the publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:45:39 -07:00
LuQQiu
b80d4d0134 chore: update Lance to v0.30.0-beta.1 (#2444)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:15:39 -07:00
satya-nutella
9645fe52c2 fix: improve error handling and embedding logic in arrow.ts (#2433)
- Enhanced error messages for schema inference failures to suggest
providing an explicit schema.
- Updated embedding application logic to check for existing destination
columns, allowing for filling embeddings in columns that are all null.
- Added comments for clarity on handling existing columns during
embedding application.

Fixes https://github.com/lancedb/lancedb/issues/2183

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
  - Improved error messages for schema inference to enhance readability.
- Prevented redundant embedding application by skipping columns that
already contain data, avoiding unnecessary errors and computations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 12:45:11 -07:00
Lance Release
b77314168d Bump version: 0.20.1-beta.0 → 0.20.1-beta.1 2025-06-17 23:22:50 +00:00
Lance Release
e08d45e090 Bump version: 0.23.1-beta.0 → 0.23.1-beta.1 2025-06-17 23:22:00 +00:00
Will Jones
2e3ddb8382 ci: fix lockfile failure for vectordb node (#2443)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated release workflow to set a specific Git user name and email for
automated commits during the package publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 15:14:11 -07:00
Wyatt Alt
627ca4c810 chore: update lance to v0.29.1-beta.2 (#2442)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to use a newer version of the Lance
library.
- **New Features**
- Added support for a new query occurrence type labeled "MUST NOT" in
search filters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 14:02:13 -07:00
Lance Release
f8dae4ffe9 Bump version: 0.20.0 → 0.20.1-beta.0 2025-06-16 16:30:14 +00:00
45 changed files with 1016 additions and 735 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.20.0"
current_version = "0.21.1-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -541,10 +541,18 @@ jobs:
run: npm deprecate vectordb "Use @lancedb/lancedb instead."
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
- name: Update package-lock.json
run: bash ci/update_lockfiles.sh
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
bash ci/update_lockfiles.sh
- name: Push new commit
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}

993
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,14 +21,14 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.29.1", "features" = ["dynamodb"], tag = "v0.29.1-beta.1", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.1", tag = "v0.29.1-beta.1", git="https://github.com/lancedb/lance.git" }
lance-index = { version = "=0.29.1", tag = "v0.29.1-beta.1", git="https://github.com/lancedb/lance.git" }
lance-linalg = { version = "=0.29.1", tag = "v0.29.1-beta.1", git="https://github.com/lancedb/lance.git" }
lance-table = { version = "=0.29.1", tag = "v0.29.1-beta.1", git="https://github.com/lancedb/lance.git" }
lance-testing = { version = "=0.29.1", tag = "v0.29.1-beta.1", git="https://github.com/lancedb/lance.git" }
lance-datafusion = { version = "=0.29.1", tag = "v0.29.1-beta.1", git="https://github.com/lancedb/lance.git" }
lance-encoding = { version = "=0.29.1", tag = "v0.29.1-beta.1", git="https://github.com/lancedb/lance.git" }
lance = { "version" = "=0.31.1", features = ["dynamodb"] }
lance-io = { "version" = "=0.31.1" }
lance-index = { "version" = "=0.31.1" }
lance-linalg = { "version" = "=0.31.1" }
lance-table = { "version" = "=0.31.1" }
lance-testing = { "version" = "=0.31.1" }
lance-datafusion = { "version" = "=0.31.1" }
lance-encoding = { "version" = "=0.31.1" }
# Note that this one does not include pyarrow
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
@@ -39,20 +39,20 @@ arrow-schema = "55.1"
arrow-arith = "55.1"
arrow-cast = "55.1"
async-trait = "0"
datafusion = { version = "47.0", default-features = false }
datafusion-catalog = "47.0"
datafusion-common = { version = "47.0", default-features = false }
datafusion-execution = "47.0"
datafusion-expr = "47.0"
datafusion-physical-plan = "47.0"
datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "48.0"
datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "48.0"
datafusion-expr = "48.0"
datafusion-physical-plan = "48.0"
env_logger = "0.11"
half = { "version" = "=2.5.0", default-features = false, features = [
half = { "version" = "2.6.0", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
moka = { version = "0.12", features = ["future"] }
object_store = "0.11.0"
object_store = "0.12.0"
pin-project = "1.0.7"
snafu = "0.8"
url = "2"

View File

@@ -428,7 +428,7 @@
"\n",
"**Why?** \n",
"Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n",
"- **Use the pre-prepared table with index created ** (provided below) to proceed directly to step7: search. \n",
"- **Use the pre-prepared table with index created** (provided below) to proceed directly to **Step 7**: search. \n",
"- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n",
"- **Step 6** contains the details on creating the index on the multivector column"
]

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.20.0-final.0</version>
<version>0.21.1-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.20.0-final.0</version>
<version>0.21.1-beta.1</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

44
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.20.0",
"@lancedb/vectordb-darwin-x64": "0.20.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.20.0",
"@lancedb/vectordb-linux-x64-gnu": "0.20.0",
"@lancedb/vectordb-win32-x64-msvc": "0.20.0"
"@lancedb/vectordb-darwin-arm64": "0.21.1-beta.1",
"@lancedb/vectordb-darwin-x64": "0.21.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.21.1-beta.1"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -327,9 +327,9 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.20.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.20.0.tgz",
"integrity": "sha512-PEL4vFY42PaWPPnOfOcFBv1E+zumhZPMlQW7/M00ZA8O2uKiTc1xhajhaPcwVDZBYo36SRSIxUz2eYjXWA9sIw==",
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.21.1-beta.1.tgz",
"integrity": "sha512-D9SOLFb/40E2/9bt82xOti3jogRAaR1UkT2LfGZJw/0wBu8d8/xKjWgfm3d26S5K6in6DWsX1njLxevrFqD5HA==",
"cpu": [
"arm64"
],
@@ -339,9 +339,9 @@
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.20.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.20.0.tgz",
"integrity": "sha512-4A1f9DiyGhziN9P81jSmMgzXSc1XXM9bIJw5q/b2NmDoiqIr8tYv1FKdm0JDhMYjtnzBeNpc67gVy3GlGCuUWA==",
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.21.1-beta.1.tgz",
"integrity": "sha512-JnZ41aDOJs6LWfI9t/+MnpqsK/Fj9r/hDdZSOjcQquLOcm2eP3NnvEnDvn+1pqWBN6ceqf1avTatPBGnD/yhNA==",
"cpu": [
"x64"
],
@@ -351,9 +351,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.20.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.20.0.tgz",
"integrity": "sha512-A3teZC/zU0tccluIJZsTasP8vBQWhXsmvLOo9UopSeyCrA1sR2vEyvXV9hMRJo7+9QjOrYFLiFWPjXEdFb+/1Q==",
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.21.1-beta.1.tgz",
"integrity": "sha512-Xnw0wYtnfzVUr4DzppJCSx+HZdAHr6sqMC8SdaYNQ9XEjBZE20n5SO2AdBYjejbmONJ7lpGs3ydnLIZ6N40dAQ==",
"cpu": [
"arm64"
],
@@ -363,9 +363,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.20.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.20.0.tgz",
"integrity": "sha512-uREL9YF5iaeyfYh+5uvkSLQquFXYQoJyuDMPMZTwOE/Zghgw3lRl6KHIoMVCOfw+S8tkeyzU8UR4zgrbymbPGg==",
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.21.1-beta.1.tgz",
"integrity": "sha512-7S7gV13hv9Ho5W1Jat3FYiaMJOjRAwZOol7lKvOhU+sR/tJMEfZIOWAgymoqhAowbMtf+wwLoeKacfybXGET/w==",
"cpu": [
"x64"
],
@@ -375,9 +375,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.20.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.20.0.tgz",
"integrity": "sha512-0G5FD8X9S70hH4QK4S2m7TrWCIlVr4vox4Rjhfqdxk/5QWwYVT6WltvPgTJlektI7sUWeioDNmluHzqLZKDlHQ==",
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.21.1-beta.1.tgz",
"integrity": "sha512-w6fEQA9IquvJ/GUYfiawRQvvdFD6OU44UW9JWm+FoscUFzdLiV7qmH4QjYEeEXQD7ob83ikFaxXGPTksYXpNOA==",
"cpu": [
"x64"
],

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
@@ -89,10 +89,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.20.0",
"@lancedb/vectordb-darwin-arm64": "0.20.0",
"@lancedb/vectordb-linux-x64-gnu": "0.20.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.20.0",
"@lancedb/vectordb-win32-x64-msvc": "0.20.0"
"@lancedb/vectordb-darwin-x64": "0.21.1-beta.1",
"@lancedb/vectordb-darwin-arm64": "0.21.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.21.1-beta.1"
}
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.20.0"
version = "0.21.1-beta.1"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -592,14 +592,14 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
).rejects.toThrow("column vector was missing");
});
it("will provide a nice error if run twice", async function () {
it("will skip embedding application if already applied", async function () {
const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig);
// fromTableToBuffer will try and apply the embeddings again
await expect(
fromTableToBuffer(table, dummyEmbeddingConfig),
).rejects.toThrow("already existed");
// but should skip since the column already has non-null values
const result = await fromTableToBuffer(table, dummyEmbeddingConfig);
expect(result.byteLength).toBeGreaterThan(0);
});
});

View File

@@ -368,9 +368,9 @@ describe("merge insert", () => {
{ a: 4, b: "z" },
];
expect(
JSON.parse(JSON.stringify((await table.toArrow()).toArray())),
).toEqual(expected);
const result = (await table.toArrow()).toArray().sort((a, b) => a.a - b.a);
expect(result.map((row) => ({ ...row }))).toEqual(expected);
});
test("conditional update", async () => {
const newData = [
@@ -1650,13 +1650,25 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(resultSet.has("fob")).toBe(true);
expect(resultSet.has("fo")).toBe(true);
expect(resultSet.has("food")).toBe(true);
const prefixResults = await table
.search(
new MatchQuery("foo", "text", { fuzziness: 3, prefixLength: 3 }),
)
.toArray();
expect(prefixResults.length).toBe(2);
const resultSet2 = new Set(prefixResults.map((r) => r.text));
expect(resultSet2.has("foo")).toBe(true);
expect(resultSet2.has("food")).toBe(true);
});
test("full text search boolean query", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
{ text: "The cat and dog are playing" },
{ text: "The cat is sleeping" },
{ text: "The dog is barking" },
{ text: "The dog chases the cat" },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
@@ -1666,22 +1678,32 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
const shouldResults = await table
.search(
new BooleanQuery([
[Occur.Should, new MatchQuery("hello", "text")],
[Occur.Should, new MatchQuery("goodbye", "text")],
[Occur.Should, new MatchQuery("cat", "text")],
[Occur.Should, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(shouldResults.length).toBe(2);
expect(shouldResults.length).toBe(4);
const mustResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("hello", "text")],
[Occur.Must, new MatchQuery("world", "text")],
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.Must, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustResults.length).toBe(1);
expect(mustResults.length).toBe(2);
const mustNotResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.MustNot, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustNotResults.length).toBe(1);
});
test.each([

View File

@@ -417,7 +417,9 @@ function inferSchema(
} else {
const inferredType = inferType(value, path, opts);
if (inferredType === undefined) {
throw new Error(`Failed to infer data type for field ${path.join(".")} at row ${rowI}. \
throw new Error(`Failed to infer data type for field ${path.join(
".",
)} at row ${rowI}. \
Consider providing an explicit schema.`);
}
pathTree.set(path, inferredType);
@@ -799,11 +801,17 @@ async function applyEmbeddingsFromMetadata(
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
);
}
// Check if destination column exists and handle accordingly
if (columns[destColumn] !== undefined) {
throw new Error(
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
);
const existingColumn = columns[destColumn];
// If the column exists but is all null, we can fill it with embeddings
if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application
continue;
}
}
if (table.batches.length > 1) {
throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
@@ -903,11 +911,23 @@ async function applyEmbeddings<T>(
);
}
} else {
// Check if destination column exists and handle accordingly
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
);
const existingColumn = newColumns[destColumn];
// If the column exists but is all null, we can fill it with embeddings
if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application and return table as-is
let newTable = new ArrowTable(newColumns);
if (schema != null) {
newTable = alignTable(newTable, schema as Schema);
}
return new ArrowTable(
new Schema(newTable.schema.fields, schemaMetadata),
newTable.batches,
);
}
}
if (table.batches.length > 1) {
throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",

View File

@@ -812,10 +812,12 @@ export enum Operator {
*
* - `Must`: The term must be present in the document.
* - `Should`: The term should contribute to the document score, but is not required.
* - `MustNot`: The term must not be present in the document.
*/
export enum Occur {
Must = "MUST",
Should = "SHOULD",
Must = "MUST",
MustNot = "MUST_NOT",
}
/**
@@ -856,6 +858,7 @@ export class MatchQuery implements FullTextQuery {
* - `fuzziness`: The fuzziness level for the query (default is 0).
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
* - `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
*/
constructor(
query: string,
@@ -865,6 +868,7 @@ export class MatchQuery implements FullTextQuery {
fuzziness?: number;
maxExpansions?: number;
operator?: Operator;
prefixLength?: number;
},
) {
let fuzziness = options?.fuzziness;
@@ -878,6 +882,7 @@ export class MatchQuery implements FullTextQuery {
fuzziness,
options?.maxExpansions ?? 50,
options?.operator ?? Operator.Or,
options?.prefixLength ?? 0,
);
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.20.0",
"version": "0.21.1-beta.1",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.20.0",
"version": "0.21.1-beta.1",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -335,6 +335,7 @@ impl JsFullTextQuery {
fuzziness: Option<u32>,
max_expansions: u32,
operator: String,
prefix_length: u32,
) -> napi::Result<Self> {
Ok(Self {
inner: MatchQuery::new(query)
@@ -347,6 +348,7 @@ impl JsFullTextQuery {
napi::Error::from_reason(format!("Invalid operator: {}", e))
})?,
)
.with_prefix_length(prefix_length)
.into(),
})
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.23.1-beta.0"
current_version = "0.24.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.23.1-beta.0"
version = "0.24.1"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -85,7 +85,7 @@ embeddings = [
"boto3>=1.28.57",
"awscli>=1.29.57",
"botocore>=1.31.57",
"ollama",
"ollama>=0.3.0",
"ibm-watsonx-ai>=1.1.2",
]
azure = ["adlfs>=2024.2.0"]

View File

@@ -2,14 +2,15 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from functools import cached_property
from typing import TYPE_CHECKING, List, Optional, Union
from typing import TYPE_CHECKING, List, Optional, Sequence, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
if TYPE_CHECKING:
import numpy as np
import ollama
@@ -28,23 +29,21 @@ class OllamaEmbeddings(TextEmbeddingFunction):
keep_alive: Optional[Union[float, str]] = None
ollama_client_kwargs: Optional[dict] = {}
def ndims(self):
def ndims(self) -> int:
return len(self.generate_embeddings(["foo"])[0])
def _compute_embedding(self, text) -> Union["np.array", None]:
return (
self._ollama_client.embeddings(
model=self.name,
prompt=text,
options=self.options,
keep_alive=self.keep_alive,
)["embedding"]
or None
def _compute_embedding(self, text: Sequence[str]) -> Sequence[Sequence[float]]:
response = self._ollama_client.embed(
model=self.name,
input=text,
options=self.options,
keep_alive=self.keep_alive,
)
return response.embeddings
def generate_embeddings(
self, texts: Union[List[str], "np.ndarray"]
) -> list[Union["np.array", None]]:
self, texts: Union[List[str], np.ndarray]
) -> list[Union[np.array, None]]:
"""
Get the embeddings for the given texts
@@ -54,8 +53,8 @@ class OllamaEmbeddings(TextEmbeddingFunction):
The texts to embed
"""
# TODO retry, rate limit, token limit
embeddings = [self._compute_embedding(text) for text in texts]
return embeddings
embeddings = self._compute_embedding(texts)
return list(embeddings)
@cached_property
def _ollama_client(self) -> "ollama.Client":

View File

@@ -101,8 +101,9 @@ class FullTextOperator(str, Enum):
class Occur(str, Enum):
MUST = "MUST"
SHOULD = "SHOULD"
MUST = "MUST"
MUST_NOT = "MUST_NOT"
@pydantic.dataclasses.dataclass
@@ -181,6 +182,9 @@ class MatchQuery(FullTextQuery):
Can be either `AND` or `OR`.
If `AND`, all terms in the query must match.
If `OR`, at least one term in the query must match.
prefix_length : int, optional
The number of beginning characters being unchanged for fuzzy matching.
This is useful to achieve prefix matching.
"""
query: str
@@ -189,6 +193,7 @@ class MatchQuery(FullTextQuery):
fuzziness: int = pydantic.Field(0, kw_only=True)
max_expansions: int = pydantic.Field(50, kw_only=True)
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
prefix_length: int = pydantic.Field(0, kw_only=True)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH
@@ -1446,10 +1451,13 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
query = self._query
if self._phrase_query:
raise NotImplementedError(
"Phrase query is not yet supported in Lance FTS. "
"Use tantivy-based index instead for now."
)
if isinstance(query, str):
if not query.startswith('"') or not query.endswith('"'):
query = f'"{query}"'
elif isinstance(query, FullTextQuery) and not isinstance(
query, PhraseQuery
):
raise TypeError("Please use PhraseQuery for phrase queries.")
query = self.to_query_object()
results = self._table._execute_query(query, timeout=timeout)
results = results.read_all()
@@ -3034,15 +3042,21 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Vector Search Plan:
ProjectionExec: expr=[vector@0 as vector, text@3 as text, _distance@2 as _distance]
Take: columns="vector, _rowid, _distance, (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
Take: columns="vector, _rowid, _distance, (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
<BLANKLINE>
FTS Search Plan:
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true
ProjectionExec: expr=[vector@2 as vector, text@3 as text, _score@1 as _score]
Take: columns="_rowid, _score, (vector), (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
MatchQuery: query=hello
<BLANKLINE>
Parameters
----------

View File

@@ -18,7 +18,7 @@ from lancedb._lancedb import (
UpdateResult,
)
from lancedb.embeddings.base import EmbeddingFunctionConfig
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.index import FTS, BTree, Bitmap, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.remote.db import LOOP
import pyarrow as pa
@@ -89,7 +89,7 @@ class RemoteTable(Table):
def to_pandas(self):
"""to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
raise NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version: Union[int, str]):
return LOOP.run(self._table.checkout(version))
@@ -186,6 +186,8 @@ class RemoteTable(Table):
accelerator: Optional[str] = None,
index_type="vector",
wait_timeout: Optional[timedelta] = None,
*,
num_bits: int = 8,
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -220,11 +222,6 @@ class RemoteTable(Table):
>>> table.create_index("l2", "vector") # doctest: +SKIP
"""
if num_partitions is not None:
logging.warning(
"num_partitions is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if num_sub_vectors is not None:
logging.warning(
"num_sub_vectors is not supported on LanceDB cloud."
@@ -244,13 +241,21 @@ class RemoteTable(Table):
index_type = index_type.upper()
if index_type == "VECTOR" or index_type == "IVF_PQ":
config = IvfPq(distance_type=metric)
config = IvfPq(
distance_type=metric,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
)
elif index_type == "IVF_HNSW_PQ":
config = HnswPq(distance_type=metric)
raise ValueError(
"IVF_HNSW_PQ is not supported on LanceDB cloud."
"Please use IVF_HNSW_SQ instead."
)
elif index_type == "IVF_HNSW_SQ":
config = HnswSq(distance_type=metric)
config = HnswSq(distance_type=metric, num_partitions=num_partitions)
elif index_type == "IVF_FLAT":
config = IvfFlat(distance_type=metric)
config = IvfFlat(distance_type=metric, num_partitions=num_partitions)
else:
raise ValueError(
f"Unknown vector index type: {index_type}. Valid options are"

View File

@@ -827,7 +827,7 @@ class Table(ABC):
ordering_field_names: Optional[Union[str, List[str]]] = None,
replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
use_tantivy: bool = True,
use_tantivy: bool = False,
tokenizer_name: Optional[str] = None,
with_position: bool = False,
# tokenizer configs:
@@ -864,7 +864,7 @@ class Table(ABC):
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
language code followed by "_stem". So for english it would be "en_stem".
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
use_tantivy: bool, default True
use_tantivy: bool, default False
If True, use the legacy full-text search implementation based on tantivy.
If False, use the new full-text search implementation based on lance-index.
with_position: bool, default False
@@ -1970,7 +1970,7 @@ class LanceTable(Table):
ordering_field_names: Optional[Union[str, List[str]]] = None,
replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
use_tantivy: bool = True,
use_tantivy: bool = False,
tokenizer_name: Optional[str] = None,
with_position: bool = False,
# tokenizer configs:

View File

@@ -6,7 +6,7 @@ import lancedb
# --8<-- [end:import-lancedb]
# --8<-- [start:import-numpy]
from lancedb.query import BoostQuery, MatchQuery
from lancedb.query import BooleanQuery, BoostQuery, MatchQuery, Occur
import numpy as np
import pyarrow as pa
@@ -191,6 +191,15 @@ def test_fts_fuzzy_query():
"food", # 1 insertion
}
results = table.search(
MatchQuery("foo", "text", fuzziness=1, prefix_length=3)
).to_pandas()
assert len(results) == 2
assert set(results["text"].to_list()) == {
"foo",
"food",
}
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
@@ -240,6 +249,60 @@ def test_fts_boost_query():
)
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_boolean_query(tmp_path):
uri = tmp_path / "boolean-example"
db = lancedb.connect(uri)
table = db.create_table(
"my_table_fts_boolean",
data=[
{"text": "The cat and dog are playing"},
{"text": "The cat is sleeping"},
{"text": "The dog is barking"},
{"text": "The dog chases the cat"},
],
mode="overwrite",
)
table.create_fts_index("text", use_tantivy=False, replace=True)
# SHOULD
results = table.search(
MatchQuery("cat", "text") | MatchQuery("dog", "text")
).to_pandas()
assert len(results) == 4
assert set(results["text"].to_list()) == {
"The cat and dog are playing",
"The cat is sleeping",
"The dog is barking",
"The dog chases the cat",
}
# MUST
results = table.search(
MatchQuery("cat", "text") & MatchQuery("dog", "text")
).to_pandas()
assert len(results) == 2
assert set(results["text"].to_list()) == {
"The cat and dog are playing",
"The dog chases the cat",
}
# MUST NOT
results = table.search(
BooleanQuery(
[
(Occur.MUST, MatchQuery("cat", "text")),
(Occur.MUST_NOT, MatchQuery("dog", "text")),
]
)
).to_pandas()
assert len(results) == 1
assert set(results["text"].to_list()) == {
"The cat is sleeping",
}
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)

View File

@@ -775,6 +775,82 @@ async def test_explain_plan_async(table_async: AsyncTable):
assert "KNN" in plan
@pytest.mark.asyncio
async def test_explain_plan_fts(table_async: AsyncTable):
"""Test explain plan for FTS queries"""
# Create FTS index
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
# Test pure FTS query
query = await table_async.search("dog", query_type="fts", fts_columns="text")
plan = await query.explain_plan()
# Should show FTS details (issue #2465 is now fixed)
assert "MatchQuery: query=dog" in plan
assert "GlobalLimitExec" in plan # Default limit
# Test FTS query with limit
query_with_limit = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_limit = await query_with_limit.limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test FTS query with offset and limit
query_with_offset = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_offset = await query_with_offset.offset(1).limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_vector_with_limit_offset(table_async: AsyncTable):
"""Test explain plan for vector queries with limit and offset"""
# Test vector query with limit
plan_with_limit = await (
table_async.query().nearest_to(pa.array([1, 2])).limit(1).explain_plan()
)
assert "KNN" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test vector query with offset and limit
plan_with_offset = await (
table_async.query()
.nearest_to(pa.array([1, 2]))
.offset(1)
.limit(1)
.explain_plan()
)
assert "KNN" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_with_filters(table_async: AsyncTable):
"""Test explain plan for queries with filters"""
# Test vector query with filter
plan_with_filter = await (
table_async.query().nearest_to(pa.array([1, 2])).where("id = 1").explain_plan()
)
assert "KNN" in plan_with_filter
assert "FilterExec" in plan_with_filter
# Test FTS query with filter
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
query_fts_filter = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_fts_filter = await query_fts_filter.where("id = 1").explain_plan()
assert "MatchQuery: query=dog" in plan_fts_filter
assert "FilterExec: id@" in plan_fts_filter # Should show filter details
@pytest.mark.asyncio
async def test_query_camelcase_async(tmp_path):
db = await lancedb.connect_async(tmp_path)

View File

@@ -210,6 +210,25 @@ async def test_retry_error():
assert cause.status_code == 429
def test_table_unimplemented_functions():
def handler(request):
if request.path == "/v1/table/test/create/?mode=create":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(b"{}")
else:
request.send_response(404)
request.end_headers()
with mock_lancedb_connection(handler) as db:
table = db.create_table("test", [{"id": 1}])
with pytest.raises(NotImplementedError):
table.to_arrow()
with pytest.raises(NotImplementedError):
table.to_pandas()
def test_table_add_in_threadpool():
def handler(request):
if request.path == "/v1/table/test/insert/":

View File

@@ -245,7 +245,7 @@ def test_s3_dynamodb_sync(s3_bucket: str, commit_table: str, monkeypatch):
NotImplementedError,
match="Full-text search is only supported on the local filesystem",
):
table.create_fts_index("x")
table.create_fts_index("x", use_tantivy=True)
# make sure list tables still works
assert db.table_names() == ["test_ddb_sync"]

View File

@@ -50,8 +50,9 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let fuzziness = ob.getattr("fuzziness")?.extract()?;
let max_expansions = ob.getattr("max_expansions")?.extract()?;
let operator = ob.getattr("operator")?.extract::<String>()?;
let prefix_length = ob.getattr("prefix_length")?.extract()?;
Ok(PyLanceDB(
Ok(Self(
MatchQuery::new(query)
.with_column(Some(column))
.with_boost(boost)
@@ -60,6 +61,7 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
.with_operator(Operator::try_from(operator.as_str()).map_err(|e| {
PyValueError::new_err(format!("Invalid operator: {}", e))
})?)
.with_prefix_length(prefix_length)
.into(),
))
}
@@ -68,7 +70,7 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let column = ob.getattr("column")?.extract()?;
let slop = ob.getattr("slop")?.extract()?;
Ok(PyLanceDB(
Ok(Self(
PhraseQuery::new(query)
.with_column(Some(column))
.with_slop(slop)
@@ -76,10 +78,10 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
))
}
"BoostQuery" => {
let positive: PyLanceDB<FtsQuery> = ob.getattr("positive")?.extract()?;
let negative: PyLanceDB<FtsQuery> = ob.getattr("negative")?.extract()?;
let positive: Self = ob.getattr("positive")?.extract()?;
let negative: Self = ob.getattr("negative")?.extract()?;
let negative_boost = ob.getattr("negative_boost")?.extract()?;
Ok(PyLanceDB(
Ok(Self(
BoostQuery::new(positive.0, negative.0, negative_boost).into(),
))
}
@@ -101,18 +103,17 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let op = Operator::try_from(operator.as_str())
.map_err(|e| PyValueError::new_err(format!("Invalid operator: {}", e)))?;
Ok(PyLanceDB(q.with_operator(op).into()))
Ok(Self(q.with_operator(op).into()))
}
"BooleanQuery" => {
let queries: Vec<(String, PyLanceDB<FtsQuery>)> =
ob.getattr("queries")?.extract()?;
let queries: Vec<(String, Self)> = ob.getattr("queries")?.extract()?;
let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries {
let occur = Occur::try_from(occur.as_str())
.map_err(|e| PyValueError::new_err(e.to_string()))?;
sub_queries.push((occur, q.0));
}
Ok(PyLanceDB(BooleanQuery::new(sub_queries).into()))
Ok(Self(BooleanQuery::new(sub_queries).into()))
}
name => Err(PyValueError::new_err(format!(
"Unsupported FTS query type: {}",
@@ -139,7 +140,8 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
kwargs.set_item("boost", query.boost)?;
kwargs.set_item("fuzziness", query.fuzziness)?;
kwargs.set_item("max_expansions", query.max_expansions)?;
kwargs.set_item("operator", operator_to_str(query.operator))?;
kwargs.set_item::<_, &str>("operator", query.operator.into())?;
kwargs.set_item("prefix_length", query.prefix_length)?;
namespace
.getattr(intern!(py, "MatchQuery"))?
.call((query.terms, query.column.unwrap()), Some(&kwargs))
@@ -152,8 +154,8 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
.call((query.terms, query.column.unwrap()), Some(&kwargs))
}
FtsQuery::Boost(query) => {
let positive = PyLanceDB(query.positive.as_ref().clone()).into_pyobject(py)?;
let negative = PyLanceDB(query.negative.as_ref().clone()).into_pyobject(py)?;
let positive = Self(query.positive.as_ref().clone()).into_pyobject(py)?;
let negative = Self(query.negative.as_ref().clone()).into_pyobject(py)?;
let kwargs = PyDict::new(py);
kwargs.set_item("negative_boost", query.negative_boost)?;
namespace
@@ -169,19 +171,25 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
.unzip();
let kwargs = PyDict::new(py);
kwargs.set_item("boosts", boosts)?;
kwargs.set_item("operator", operator_to_str(first.operator))?;
kwargs.set_item::<_, &str>("operator", first.operator.into())?;
namespace
.getattr(intern!(py, "MultiMatchQuery"))?
.call((first.terms.clone(), columns), Some(&kwargs))
}
FtsQuery::Boolean(query) => {
let mut queries = Vec::with_capacity(query.must.len() + query.should.len());
for q in query.must {
queries.push((occur_to_str(Occur::Must), PyLanceDB(q).into_pyobject(py)?));
}
let mut queries: Vec<(&str, Bound<'py, PyAny>)> = Vec::with_capacity(
query.should.len() + query.must.len() + query.must_not.len(),
);
for q in query.should {
queries.push((occur_to_str(Occur::Should), PyLanceDB(q).into_pyobject(py)?));
queries.push((Occur::Should.into(), Self(q).into_pyobject(py)?));
}
for q in query.must {
queries.push((Occur::Must.into(), Self(q).into_pyobject(py)?));
}
for q in query.must_not {
queries.push((Occur::MustNot.into(), Self(q).into_pyobject(py)?));
}
namespace
.getattr(intern!(py, "BooleanQuery"))?
.call1((queries,))
@@ -190,20 +198,6 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
}
}
fn operator_to_str(op: Operator) -> &'static str {
match op {
Operator::And => "AND",
Operator::Or => "OR",
}
}
fn occur_to_str(occur: Occur) -> &'static str {
match occur {
Occur::Must => "MUST",
Occur::Should => "SHOULD",
}
}
// Python representation of query vector(s)
#[derive(Clone)]
pub struct PyQueryVectors(Vec<Arc<dyn Array>>);
@@ -568,7 +562,10 @@ impl FTSQuery {
}
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
let inner = self_
.inner
.clone()
.full_text_search(self_.fts_query.clone());
future_into_py(self_.py(), async move {
inner
.explain_plan(verbose)
@@ -578,7 +575,10 @@ impl FTSQuery {
}
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
let inner = self_
.inner
.clone()
.full_text_search(self_.fts_query.clone());
future_into_py(self_.py(), async move {
inner
.analyze_plan()

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.20.0"
version = "0.21.1-beta.1"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.20.0"
version = "0.21.1-beta.1"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true

View File

@@ -105,7 +105,7 @@ impl ListingCatalog {
}
async fn open_path(path: &str) -> Result<Self> {
let (object_store, base_path) = ObjectStore::from_uri(path).await.unwrap();
let (object_store, base_path) = ObjectStore::from_uri(path).await?;
if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path })?;
}

View File

@@ -107,7 +107,7 @@ impl ObjectStore for MirroringObjectStore {
self.primary.delete(location).await
}
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, Result<ObjectMeta>> {
fn list(&self, prefix: Option<&Path>) -> BoxStream<'static, Result<ObjectMeta>> {
self.primary.list(prefix)
}

View File

@@ -119,7 +119,7 @@ impl ObjectStore for IoTrackingStore {
let result = self.target.get(location).await;
if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes as u64);
self.record_read(num_bytes);
}
result
}
@@ -128,12 +128,12 @@ impl ObjectStore for IoTrackingStore {
let result = self.target.get_opts(location, options).await;
if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes as u64);
self.record_read(num_bytes);
}
result
}
async fn get_range(&self, location: &Path, range: std::ops::Range<usize>) -> OSResult<Bytes> {
async fn get_range(&self, location: &Path, range: std::ops::Range<u64>) -> OSResult<Bytes> {
let result = self.target.get_range(location, range).await;
if let Ok(result) = &result {
self.record_read(result.len() as u64);
@@ -144,7 +144,7 @@ impl ObjectStore for IoTrackingStore {
async fn get_ranges(
&self,
location: &Path,
ranges: &[std::ops::Range<usize>],
ranges: &[std::ops::Range<u64>],
) -> OSResult<Vec<Bytes>> {
let result = self.target.get_ranges(location, ranges).await;
if let Ok(result) = &result {
@@ -170,7 +170,7 @@ impl ObjectStore for IoTrackingStore {
self.target.delete_stream(locations)
}
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, OSResult<ObjectMeta>> {
fn list(&self, prefix: Option<&Path>) -> BoxStream<'static, OSResult<ObjectMeta>> {
self.record_read(0);
self.target.list(prefix)
}
@@ -179,7 +179,7 @@ impl ObjectStore for IoTrackingStore {
&self,
prefix: Option<&Path>,
offset: &Path,
) -> BoxStream<'_, OSResult<ObjectMeta>> {
) -> BoxStream<'static, OSResult<ObjectMeta>> {
self.record_read(0);
self.target.list_with_offset(prefix, offset)
}

View File

@@ -57,6 +57,8 @@ use crate::{
};
const REQUEST_TIMEOUT_HEADER: HeaderName = HeaderName::from_static("x-request-timeout-ms");
const METRIC_TYPE_KEY: &str = "metric_type";
const INDEX_TYPE_KEY: &str = "index_type";
pub struct RemoteTags<'a, S: HttpSend = Sender> {
inner: &'a RemoteTable<S>,
@@ -997,23 +999,53 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
"column": column
});
let (index_type, distance_type) = match index.index {
match index.index {
// TODO: Should we pass the actual index parameters? SaaS does not
// yet support them.
Index::IvfFlat(index) => ("IVF_FLAT", Some(index.distance_type)),
Index::IvfPq(index) => ("IVF_PQ", Some(index.distance_type)),
Index::IvfHnswSq(index) => ("IVF_HNSW_SQ", Some(index.distance_type)),
Index::BTree(_) => ("BTREE", None),
Index::Bitmap(_) => ("BITMAP", None),
Index::LabelList(_) => ("LABEL_LIST", None),
Index::IvfFlat(index) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_FLAT".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
if let Some(num_partitions) = index.num_partitions {
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
}
Index::IvfPq(index) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_PQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
if let Some(num_partitions) = index.num_partitions {
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
if let Some(num_bits) = index.num_bits {
body["num_bits"] = serde_json::Value::Number(num_bits.into());
}
}
Index::IvfHnswSq(index) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_HNSW_SQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
if let Some(num_partitions) = index.num_partitions {
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
}
Index::BTree(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("BTREE".to_string());
}
Index::Bitmap(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("BITMAP".to_string());
}
Index::LabelList(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("LABEL_LIST".to_string());
}
Index::FTS(fts) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("FTS".to_string());
let params = serde_json::to_value(&fts).map_err(|e| Error::InvalidInput {
message: format!("failed to serialize FTS index params {:?}", e),
})?;
for (key, value) in params.as_object().unwrap() {
body[key] = value.clone();
}
("FTS", None)
}
Index::Auto => {
let schema = self.schema().await?;
@@ -1023,9 +1055,11 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
message: format!("Column {} not found in schema", column),
})?;
if supported_vector_data_type(field.data_type()) {
("IVF_PQ", Some(DistanceType::L2))
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_PQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(DistanceType::L2.to_string().to_lowercase());
} else if supported_btree_data_type(field.data_type()) {
("BTREE", None)
body[INDEX_TYPE_KEY] = serde_json::Value::String("BTREE".to_string());
} else {
return Err(Error::NotSupported {
message: format!(
@@ -1042,12 +1076,6 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
})
}
};
body["index_type"] = serde_json::Value::String(index_type.into());
if let Some(distance_type) = distance_type {
// Phalanx expects this to be lowercase right now.
body["metric_type"] =
serde_json::Value::String(distance_type.to_string().to_lowercase());
}
let request = request.json(&body);
@@ -1429,11 +1457,12 @@ mod tests {
use chrono::{DateTime, Utc};
use futures::{future::BoxFuture, StreamExt, TryFutureExt};
use lance_index::scalar::inverted::query::MatchQuery;
use lance_index::scalar::FullTextSearchQuery;
use lance_index::scalar::{FullTextSearchQuery, InvertedIndexParams};
use reqwest::Body;
use rstest::rstest;
use serde_json::json;
use crate::index::vector::IvfFlatIndexBuilder;
use crate::index::vector::{IvfFlatIndexBuilder, IvfHnswSqIndexBuilder};
use crate::remote::db::DEFAULT_SERVER_VERSION;
use crate::remote::JSON_CONTENT_TYPE;
use crate::{
@@ -2318,6 +2347,7 @@ mod tests {
"fuzziness": 0,
"max_expansions": 50,
"operator": "Or",
"prefix_length": 0,
},
}
},
@@ -2432,29 +2462,79 @@ mod tests {
let cases = [
(
"IVF_FLAT",
Some("hamming"),
json!({
"metric_type": "hamming",
}),
Index::IvfFlat(IvfFlatIndexBuilder::default().distance_type(DistanceType::Hamming)),
),
("IVF_PQ", Some("l2"), Index::IvfPq(Default::default())),
(
"IVF_FLAT",
json!({
"metric_type": "hamming",
"num_partitions": 128,
}),
Index::IvfFlat(
IvfFlatIndexBuilder::default()
.distance_type(DistanceType::Hamming)
.num_partitions(128),
),
),
(
"IVF_PQ",
Some("cosine"),
Index::IvfPq(IvfPqIndexBuilder::default().distance_type(DistanceType::Cosine)),
json!({
"metric_type": "l2",
}),
Index::IvfPq(Default::default()),
),
(
"IVF_PQ",
json!({
"metric_type": "cosine",
"num_partitions": 128,
"num_bits": 4,
}),
Index::IvfPq(
IvfPqIndexBuilder::default()
.distance_type(DistanceType::Cosine)
.num_partitions(128)
.num_bits(4),
),
),
(
"IVF_HNSW_SQ",
Some("l2"),
json!({
"metric_type": "l2",
}),
Index::IvfHnswSq(Default::default()),
),
(
"IVF_HNSW_SQ",
json!({
"metric_type": "l2",
"num_partitions": 128,
}),
Index::IvfHnswSq(
IvfHnswSqIndexBuilder::default()
.distance_type(DistanceType::L2)
.num_partitions(128),
),
),
// HNSW_PQ isn't yet supported on SaaS
("BTREE", None, Index::BTree(Default::default())),
("BITMAP", None, Index::Bitmap(Default::default())),
("LABEL_LIST", None, Index::LabelList(Default::default())),
("FTS", None, Index::FTS(Default::default())),
("BTREE", json!({}), Index::BTree(Default::default())),
("BITMAP", json!({}), Index::Bitmap(Default::default())),
(
"LABEL_LIST",
json!({}),
Index::LabelList(Default::default()),
),
(
"FTS",
serde_json::to_value(InvertedIndexParams::default()).unwrap(),
Index::FTS(Default::default()),
),
];
for (index_type, distance_type, index) in cases {
let params = index.clone();
for (index_type, expected_body, index) in cases {
let table = Table::new_with_handler("my_table", move |request| {
assert_eq!(request.method(), "POST");
assert_eq!(request.url().path(), "/v1/table/my_table/create_index/");
@@ -2464,19 +2544,9 @@ mod tests {
);
let body = request.body().unwrap().as_bytes().unwrap();
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
let mut expected_body = serde_json::json!({
"column": "a",
"index_type": index_type,
});
if let Some(distance_type) = distance_type {
expected_body["metric_type"] = distance_type.to_lowercase().into();
}
if let Index::FTS(fts) = &params {
let params = serde_json::to_value(fts).unwrap();
for (key, value) in params.as_object().unwrap() {
expected_body[key] = value.clone();
}
}
let mut expected_body = expected_body.clone();
expected_body["column"] = "a".into();
expected_body[INDEX_TYPE_KEY] = index_type.into();
assert_eq!(body, expected_body);

View File

@@ -392,9 +392,18 @@ pub mod tests {
} else {
expected_line.trim()
};
assert_eq!(&actual_trimmed[..expected_trimmed.len()], expected_trimmed);
assert_eq!(
&actual_trimmed[..expected_trimmed.len()],
expected_trimmed,
"\nactual:\n{physical_plan}\nexpected:\n{expected}"
);
}
assert_eq!(lines_checked, expected.lines().count());
assert_eq!(
lines_checked,
expected.lines().count(),
"\nlines_checked:\n{lines_checked}\nexpected:\n{}",
expected.lines().count()
);
}
}
@@ -477,9 +486,9 @@ pub mod tests {
TestFixture::check_plan(
plan,
"MetadataEraserExec
RepartitionExec:...
CoalesceBatchesExec:...
FilterExec: i@0 >= 5
RepartitionExec:...
ProjectionExec:...
LanceScan:...",
)

View File

@@ -129,7 +129,9 @@ impl DatasetRef {
dataset: ref mut ds,
..
} => {
*ds = dataset;
if dataset.manifest().version > ds.manifest().version {
*ds = dataset;
}
}
_ => unreachable!("Dataset should be in latest mode at this point"),
}