mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 06:19:57 +00:00
Compare commits
16 Commits
python-v0.
...
lance-main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5a732bbf39 | ||
|
|
4beb2d2877 | ||
|
|
a00b8595d1 | ||
|
|
9c8314b4fd | ||
|
|
c625b6f2b2 | ||
|
|
bec8fe6547 | ||
|
|
dc1150c011 | ||
|
|
afaefc6264 | ||
|
|
cb70ff8cee | ||
|
|
cbb5a841b1 | ||
|
|
c72f6770fd | ||
|
|
e5a80a5e86 | ||
|
|
8d0a7fad1f | ||
|
|
b80d4d0134 | ||
|
|
9645fe52c2 | ||
|
|
b77314168d |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.20.1-beta.0"
|
||||
current_version = "0.21.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
5
.github/workflows/npm-publish.yml
vendored
5
.github/workflows/npm-publish.yml
vendored
@@ -541,6 +541,8 @@ jobs:
|
||||
run: npm deprecate vectordb "Use @lancedb/lancedb instead."
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
- name: Update package-lock.json
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
@@ -548,6 +550,9 @@ jobs:
|
||||
bash ci/update_lockfiles.sh
|
||||
- name: Push new commit
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
branch: main
|
||||
- name: Notify Slack Action
|
||||
uses: ravsamhq/notify-slack-action@2.3.0
|
||||
if: ${{ always() }}
|
||||
|
||||
710
Cargo.lock
generated
710
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
18
Cargo.toml
18
Cargo.toml
@@ -21,14 +21,14 @@ categories = ["database-implementations"]
|
||||
rust-version = "1.78.0"
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.29.1", "features" = ["dynamodb"], tag = "v0.29.1-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-io = { version = "=0.29.1", tag = "v0.29.1-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-index = { version = "=0.29.1", tag = "v0.29.1-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-linalg = { version = "=0.29.1", tag = "v0.29.1-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-table = { version = "=0.29.1", tag = "v0.29.1-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-testing = { version = "=0.29.1", tag = "v0.29.1-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-datafusion = { version = "=0.29.1", tag = "v0.29.1-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance-encoding = { version = "=0.29.1", tag = "v0.29.1-beta.2", git="https://github.com/lancedb/lance.git" }
|
||||
lance = { path = "../lance/rust/lance", "features" = ["dynamodb"] }
|
||||
lance-io = { path = "../lance/rust/lance-io" }
|
||||
lance-index = { path = "../lance/rust/lance-index" }
|
||||
lance-linalg = { path = "../lance/rust/lance-linalg" }
|
||||
lance-table = { path = "../lance/rust/lance-table" }
|
||||
lance-testing = { path = "../lance/rust/lance-testing" }
|
||||
lance-datafusion = { path = "../lance/rust/lance-datafusion" }
|
||||
lance-encoding = { path = "../lance/rust/lance-encoding" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "55.1", optional = false }
|
||||
arrow-array = "55.1"
|
||||
@@ -52,7 +52,7 @@ half = { "version" = "=2.5.0", default-features = false, features = [
|
||||
futures = "0"
|
||||
log = "0.4"
|
||||
moka = { version = "0.12", features = ["future"] }
|
||||
object_store = "0.11.0"
|
||||
object_store = "0.12.0"
|
||||
pin-project = "1.0.7"
|
||||
snafu = "0.8"
|
||||
url = "2"
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.20.1-beta.0</version>
|
||||
<version>0.21.0-final.0</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.20.1-beta.0</version>
|
||||
<version>0.21.0-final.0</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>LanceDB Parent</name>
|
||||
|
||||
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -52,11 +52,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.20.1-beta.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.20.1-beta.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.20.1-beta.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.20.1-beta.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.20.1-beta.0"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.21.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.21.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.21.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.21.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.21.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
@@ -326,66 +326,6 @@
|
||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.20.1-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.20.1-beta.0.tgz",
|
||||
"integrity": "sha512-EZl1nvF/2MbLkB8DkNPg+9SpYWpqnNR9kY5a1JWtNWQWw735oT2VPnH3B2htDKU42gJ/9DJGBdEvIJwzeHT85w==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.20.1-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.20.1-beta.0.tgz",
|
||||
"integrity": "sha512-1ZkMcsXsysLRohAeHGpbytVHUp4yEU89A34rrh48vcQUNvYtqxbAw+TLjAbN0vvNvOZOI4DRllxSL1O+Dbybbg==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.20.1-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.20.1-beta.0.tgz",
|
||||
"integrity": "sha512-CxjSGaLJNRYxljdrC8MSirnHu73jctv3S3Q90CbsWMsij9za87zvnrjoiRIn7kv7UNS4ArwS9yyH6gNorCBf6Q==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.20.1-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.20.1-beta.0.tgz",
|
||||
"integrity": "sha512-WI2XWYYO5ygL0Az7SlX98VpNqrz8hKuTK/xC/PoM99s1xnfcCukM28DaDGZJpXOGnLbVnexcO2RW4daJ2xDPaQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.20.1-beta.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.20.1-beta.0.tgz",
|
||||
"integrity": "sha512-Mxd7V3Y8whEBoQFQZhZGFQi0avq8ujHRI2c0LhjhYTdwGylrBS3bfGD+/nbDGhAjp7dp5U8P4kiBi30QNwoedA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
]
|
||||
},
|
||||
"node_modules/@neon-rs/cli": {
|
||||
"version": "0.0.160",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"private": false,
|
||||
"main": "dist/index.js",
|
||||
@@ -89,10 +89,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-x64": "0.20.1-beta.0",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.20.1-beta.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.20.1-beta.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.20.1-beta.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.20.1-beta.0"
|
||||
"@lancedb/vectordb-darwin-x64": "0.21.0",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.21.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.21.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.21.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.21.0"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "lancedb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.20.1-beta.0"
|
||||
version = "0.21.0"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
|
||||
@@ -592,14 +592,14 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
).rejects.toThrow("column vector was missing");
|
||||
});
|
||||
|
||||
it("will provide a nice error if run twice", async function () {
|
||||
it("will skip embedding application if already applied", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||
|
||||
// fromTableToBuffer will try and apply the embeddings again
|
||||
await expect(
|
||||
fromTableToBuffer(table, dummyEmbeddingConfig),
|
||||
).rejects.toThrow("already existed");
|
||||
// but should skip since the column already has non-null values
|
||||
const result = await fromTableToBuffer(table, dummyEmbeddingConfig);
|
||||
expect(result.byteLength).toBeGreaterThan(0);
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
@@ -1650,13 +1650,25 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
expect(resultSet.has("fob")).toBe(true);
|
||||
expect(resultSet.has("fo")).toBe(true);
|
||||
expect(resultSet.has("food")).toBe(true);
|
||||
|
||||
const prefixResults = await table
|
||||
.search(
|
||||
new MatchQuery("foo", "text", { fuzziness: 3, prefixLength: 3 }),
|
||||
)
|
||||
.toArray();
|
||||
expect(prefixResults.length).toBe(2);
|
||||
const resultSet2 = new Set(prefixResults.map((r) => r.text));
|
||||
expect(resultSet2.has("foo")).toBe(true);
|
||||
expect(resultSet2.has("food")).toBe(true);
|
||||
});
|
||||
|
||||
test("full text search boolean query", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
||||
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "The cat and dog are playing" },
|
||||
{ text: "The cat is sleeping" },
|
||||
{ text: "The dog is barking" },
|
||||
{ text: "The dog chases the cat" },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
await table.createIndex("text", {
|
||||
@@ -1666,22 +1678,32 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
const shouldResults = await table
|
||||
.search(
|
||||
new BooleanQuery([
|
||||
[Occur.Should, new MatchQuery("hello", "text")],
|
||||
[Occur.Should, new MatchQuery("goodbye", "text")],
|
||||
[Occur.Should, new MatchQuery("cat", "text")],
|
||||
[Occur.Should, new MatchQuery("dog", "text")],
|
||||
]),
|
||||
)
|
||||
.toArray();
|
||||
expect(shouldResults.length).toBe(2);
|
||||
expect(shouldResults.length).toBe(4);
|
||||
|
||||
const mustResults = await table
|
||||
.search(
|
||||
new BooleanQuery([
|
||||
[Occur.Must, new MatchQuery("hello", "text")],
|
||||
[Occur.Must, new MatchQuery("world", "text")],
|
||||
[Occur.Must, new MatchQuery("cat", "text")],
|
||||
[Occur.Must, new MatchQuery("dog", "text")],
|
||||
]),
|
||||
)
|
||||
.toArray();
|
||||
expect(mustResults.length).toBe(1);
|
||||
expect(mustResults.length).toBe(2);
|
||||
|
||||
const mustNotResults = await table
|
||||
.search(
|
||||
new BooleanQuery([
|
||||
[Occur.Must, new MatchQuery("cat", "text")],
|
||||
[Occur.MustNot, new MatchQuery("dog", "text")],
|
||||
]),
|
||||
)
|
||||
.toArray();
|
||||
expect(mustNotResults.length).toBe(1);
|
||||
});
|
||||
|
||||
test.each([
|
||||
|
||||
@@ -417,7 +417,9 @@ function inferSchema(
|
||||
} else {
|
||||
const inferredType = inferType(value, path, opts);
|
||||
if (inferredType === undefined) {
|
||||
throw new Error(`Failed to infer data type for field ${path.join(".")} at row ${rowI}. \
|
||||
throw new Error(`Failed to infer data type for field ${path.join(
|
||||
".",
|
||||
)} at row ${rowI}. \
|
||||
Consider providing an explicit schema.`);
|
||||
}
|
||||
pathTree.set(path, inferredType);
|
||||
@@ -799,11 +801,17 @@ async function applyEmbeddingsFromMetadata(
|
||||
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
|
||||
);
|
||||
}
|
||||
|
||||
// Check if destination column exists and handle accordingly
|
||||
if (columns[destColumn] !== undefined) {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
|
||||
);
|
||||
const existingColumn = columns[destColumn];
|
||||
// If the column exists but is all null, we can fill it with embeddings
|
||||
if (existingColumn.nullCount !== existingColumn.length) {
|
||||
// Column has non-null values, skip embedding application
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error(
|
||||
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
|
||||
@@ -903,11 +911,23 @@ async function applyEmbeddings<T>(
|
||||
);
|
||||
}
|
||||
} else {
|
||||
// Check if destination column exists and handle accordingly
|
||||
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
|
||||
);
|
||||
const existingColumn = newColumns[destColumn];
|
||||
// If the column exists but is all null, we can fill it with embeddings
|
||||
if (existingColumn.nullCount !== existingColumn.length) {
|
||||
// Column has non-null values, skip embedding application and return table as-is
|
||||
let newTable = new ArrowTable(newColumns);
|
||||
if (schema != null) {
|
||||
newTable = alignTable(newTable, schema as Schema);
|
||||
}
|
||||
return new ArrowTable(
|
||||
new Schema(newTable.schema.fields, schemaMetadata),
|
||||
newTable.batches,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error(
|
||||
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
|
||||
|
||||
@@ -812,10 +812,12 @@ export enum Operator {
|
||||
*
|
||||
* - `Must`: The term must be present in the document.
|
||||
* - `Should`: The term should contribute to the document score, but is not required.
|
||||
* - `MustNot`: The term must not be present in the document.
|
||||
*/
|
||||
export enum Occur {
|
||||
Must = "MUST",
|
||||
Should = "SHOULD",
|
||||
Must = "MUST",
|
||||
MustNot = "MUST_NOT",
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -856,6 +858,7 @@ export class MatchQuery implements FullTextQuery {
|
||||
* - `fuzziness`: The fuzziness level for the query (default is 0).
|
||||
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
|
||||
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
|
||||
* - `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
|
||||
*/
|
||||
constructor(
|
||||
query: string,
|
||||
@@ -865,6 +868,7 @@ export class MatchQuery implements FullTextQuery {
|
||||
fuzziness?: number;
|
||||
maxExpansions?: number;
|
||||
operator?: Operator;
|
||||
prefixLength?: number;
|
||||
},
|
||||
) {
|
||||
let fuzziness = options?.fuzziness;
|
||||
@@ -878,6 +882,7 @@ export class MatchQuery implements FullTextQuery {
|
||||
fuzziness,
|
||||
options?.maxExpansions ?? 50,
|
||||
options?.operator ?? Operator.Or,
|
||||
options?.prefixLength ?? 0,
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
4
nodejs/package-lock.json
generated
4
nodejs/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
"ann"
|
||||
],
|
||||
"private": false,
|
||||
"version": "0.20.1-beta.0",
|
||||
"version": "0.21.0",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
|
||||
@@ -335,6 +335,7 @@ impl JsFullTextQuery {
|
||||
fuzziness: Option<u32>,
|
||||
max_expansions: u32,
|
||||
operator: String,
|
||||
prefix_length: u32,
|
||||
) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: MatchQuery::new(query)
|
||||
@@ -347,6 +348,7 @@ impl JsFullTextQuery {
|
||||
napi::Error::from_reason(format!("Invalid operator: {}", e))
|
||||
})?,
|
||||
)
|
||||
.with_prefix_length(prefix_length)
|
||||
.into(),
|
||||
})
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.23.1-beta.1"
|
||||
current_version = "0.24.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.23.1-beta.1"
|
||||
version = "0.24.0"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
|
||||
@@ -101,8 +101,9 @@ class FullTextOperator(str, Enum):
|
||||
|
||||
|
||||
class Occur(str, Enum):
|
||||
MUST = "MUST"
|
||||
SHOULD = "SHOULD"
|
||||
MUST = "MUST"
|
||||
MUST_NOT = "MUST_NOT"
|
||||
|
||||
|
||||
@pydantic.dataclasses.dataclass
|
||||
@@ -181,6 +182,9 @@ class MatchQuery(FullTextQuery):
|
||||
Can be either `AND` or `OR`.
|
||||
If `AND`, all terms in the query must match.
|
||||
If `OR`, at least one term in the query must match.
|
||||
prefix_length : int, optional
|
||||
The number of beginning characters being unchanged for fuzzy matching.
|
||||
This is useful to achieve prefix matching.
|
||||
"""
|
||||
|
||||
query: str
|
||||
@@ -189,6 +193,7 @@ class MatchQuery(FullTextQuery):
|
||||
fuzziness: int = pydantic.Field(0, kw_only=True)
|
||||
max_expansions: int = pydantic.Field(50, kw_only=True)
|
||||
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
|
||||
prefix_length: int = pydantic.Field(0, kw_only=True)
|
||||
|
||||
def query_type(self) -> FullTextQueryType:
|
||||
return FullTextQueryType.MATCH
|
||||
@@ -1446,10 +1451,13 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
|
||||
query = self._query
|
||||
if self._phrase_query:
|
||||
raise NotImplementedError(
|
||||
"Phrase query is not yet supported in Lance FTS. "
|
||||
"Use tantivy-based index instead for now."
|
||||
)
|
||||
if isinstance(query, str):
|
||||
if not query.startswith('"') or not query.endswith('"'):
|
||||
query = f'"{query}"'
|
||||
elif isinstance(query, FullTextQuery) and not isinstance(
|
||||
query, PhraseQuery
|
||||
):
|
||||
raise TypeError("Please use PhraseQuery for phrase queries.")
|
||||
query = self.to_query_object()
|
||||
results = self._table._execute_query(query, timeout=timeout)
|
||||
results = results.read_all()
|
||||
@@ -3034,15 +3042,21 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
|
||||
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
|
||||
Vector Search Plan:
|
||||
ProjectionExec: expr=[vector@0 as vector, text@3 as text, _distance@2 as _distance]
|
||||
Take: columns="vector, _rowid, _distance, (text)"
|
||||
CoalesceBatchesExec: target_batch_size=1024
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||
Take: columns="vector, _rowid, _distance, (text)"
|
||||
CoalesceBatchesExec: target_batch_size=1024
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||
<BLANKLINE>
|
||||
FTS Search Plan:
|
||||
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true
|
||||
ProjectionExec: expr=[vector@2 as vector, text@3 as text, _score@1 as _score]
|
||||
Take: columns="_rowid, _score, (vector), (text)"
|
||||
CoalesceBatchesExec: target_batch_size=1024
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
MatchQuery: query=hello
|
||||
<BLANKLINE>
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
@@ -827,7 +827,7 @@ class Table(ABC):
|
||||
ordering_field_names: Optional[Union[str, List[str]]] = None,
|
||||
replace: bool = False,
|
||||
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
|
||||
use_tantivy: bool = True,
|
||||
use_tantivy: bool = False,
|
||||
tokenizer_name: Optional[str] = None,
|
||||
with_position: bool = False,
|
||||
# tokenizer configs:
|
||||
@@ -864,7 +864,7 @@ class Table(ABC):
|
||||
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
|
||||
language code followed by "_stem". So for english it would be "en_stem".
|
||||
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
|
||||
use_tantivy: bool, default True
|
||||
use_tantivy: bool, default False
|
||||
If True, use the legacy full-text search implementation based on tantivy.
|
||||
If False, use the new full-text search implementation based on lance-index.
|
||||
with_position: bool, default False
|
||||
@@ -1970,7 +1970,7 @@ class LanceTable(Table):
|
||||
ordering_field_names: Optional[Union[str, List[str]]] = None,
|
||||
replace: bool = False,
|
||||
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
|
||||
use_tantivy: bool = True,
|
||||
use_tantivy: bool = False,
|
||||
tokenizer_name: Optional[str] = None,
|
||||
with_position: bool = False,
|
||||
# tokenizer configs:
|
||||
|
||||
@@ -6,7 +6,7 @@ import lancedb
|
||||
|
||||
# --8<-- [end:import-lancedb]
|
||||
# --8<-- [start:import-numpy]
|
||||
from lancedb.query import BoostQuery, MatchQuery
|
||||
from lancedb.query import BooleanQuery, BoostQuery, MatchQuery, Occur
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
|
||||
@@ -191,6 +191,15 @@ def test_fts_fuzzy_query():
|
||||
"food", # 1 insertion
|
||||
}
|
||||
|
||||
results = table.search(
|
||||
MatchQuery("foo", "text", fuzziness=1, prefix_length=3)
|
||||
).to_pandas()
|
||||
assert len(results) == 2
|
||||
assert set(results["text"].to_list()) == {
|
||||
"foo",
|
||||
"food",
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
|
||||
@@ -240,6 +249,60 @@ def test_fts_boost_query():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
|
||||
)
|
||||
def test_fts_boolean_query(tmp_path):
|
||||
uri = tmp_path / "boolean-example"
|
||||
db = lancedb.connect(uri)
|
||||
table = db.create_table(
|
||||
"my_table_fts_boolean",
|
||||
data=[
|
||||
{"text": "The cat and dog are playing"},
|
||||
{"text": "The cat is sleeping"},
|
||||
{"text": "The dog is barking"},
|
||||
{"text": "The dog chases the cat"},
|
||||
],
|
||||
mode="overwrite",
|
||||
)
|
||||
table.create_fts_index("text", use_tantivy=False, replace=True)
|
||||
|
||||
# SHOULD
|
||||
results = table.search(
|
||||
MatchQuery("cat", "text") | MatchQuery("dog", "text")
|
||||
).to_pandas()
|
||||
assert len(results) == 4
|
||||
assert set(results["text"].to_list()) == {
|
||||
"The cat and dog are playing",
|
||||
"The cat is sleeping",
|
||||
"The dog is barking",
|
||||
"The dog chases the cat",
|
||||
}
|
||||
# MUST
|
||||
results = table.search(
|
||||
MatchQuery("cat", "text") & MatchQuery("dog", "text")
|
||||
).to_pandas()
|
||||
assert len(results) == 2
|
||||
assert set(results["text"].to_list()) == {
|
||||
"The cat and dog are playing",
|
||||
"The dog chases the cat",
|
||||
}
|
||||
|
||||
# MUST NOT
|
||||
results = table.search(
|
||||
BooleanQuery(
|
||||
[
|
||||
(Occur.MUST, MatchQuery("cat", "text")),
|
||||
(Occur.MUST_NOT, MatchQuery("dog", "text")),
|
||||
]
|
||||
)
|
||||
).to_pandas()
|
||||
assert len(results) == 1
|
||||
assert set(results["text"].to_list()) == {
|
||||
"The cat is sleeping",
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
|
||||
)
|
||||
|
||||
@@ -775,6 +775,82 @@ async def test_explain_plan_async(table_async: AsyncTable):
|
||||
assert "KNN" in plan
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_explain_plan_fts(table_async: AsyncTable):
|
||||
"""Test explain plan for FTS queries"""
|
||||
# Create FTS index
|
||||
from lancedb.index import FTS
|
||||
|
||||
await table_async.create_index("text", config=FTS())
|
||||
|
||||
# Test pure FTS query
|
||||
query = await table_async.search("dog", query_type="fts", fts_columns="text")
|
||||
plan = await query.explain_plan()
|
||||
# Should show FTS details (issue #2465 is now fixed)
|
||||
assert "MatchQuery: query=dog" in plan
|
||||
assert "GlobalLimitExec" in plan # Default limit
|
||||
|
||||
# Test FTS query with limit
|
||||
query_with_limit = await table_async.search(
|
||||
"dog", query_type="fts", fts_columns="text"
|
||||
)
|
||||
plan_with_limit = await query_with_limit.limit(1).explain_plan()
|
||||
assert "MatchQuery: query=dog" in plan_with_limit
|
||||
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
|
||||
|
||||
# Test FTS query with offset and limit
|
||||
query_with_offset = await table_async.search(
|
||||
"dog", query_type="fts", fts_columns="text"
|
||||
)
|
||||
plan_with_offset = await query_with_offset.offset(1).limit(1).explain_plan()
|
||||
assert "MatchQuery: query=dog" in plan_with_offset
|
||||
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_explain_plan_vector_with_limit_offset(table_async: AsyncTable):
|
||||
"""Test explain plan for vector queries with limit and offset"""
|
||||
# Test vector query with limit
|
||||
plan_with_limit = await (
|
||||
table_async.query().nearest_to(pa.array([1, 2])).limit(1).explain_plan()
|
||||
)
|
||||
assert "KNN" in plan_with_limit
|
||||
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
|
||||
|
||||
# Test vector query with offset and limit
|
||||
plan_with_offset = await (
|
||||
table_async.query()
|
||||
.nearest_to(pa.array([1, 2]))
|
||||
.offset(1)
|
||||
.limit(1)
|
||||
.explain_plan()
|
||||
)
|
||||
assert "KNN" in plan_with_offset
|
||||
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_explain_plan_with_filters(table_async: AsyncTable):
|
||||
"""Test explain plan for queries with filters"""
|
||||
# Test vector query with filter
|
||||
plan_with_filter = await (
|
||||
table_async.query().nearest_to(pa.array([1, 2])).where("id = 1").explain_plan()
|
||||
)
|
||||
assert "KNN" in plan_with_filter
|
||||
assert "FilterExec" in plan_with_filter
|
||||
|
||||
# Test FTS query with filter
|
||||
from lancedb.index import FTS
|
||||
|
||||
await table_async.create_index("text", config=FTS())
|
||||
query_fts_filter = await table_async.search(
|
||||
"dog", query_type="fts", fts_columns="text"
|
||||
)
|
||||
plan_fts_filter = await query_fts_filter.where("id = 1").explain_plan()
|
||||
assert "MatchQuery: query=dog" in plan_fts_filter
|
||||
assert "FilterExec: id@" in plan_fts_filter # Should show filter details
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_camelcase_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
|
||||
@@ -245,7 +245,7 @@ def test_s3_dynamodb_sync(s3_bucket: str, commit_table: str, monkeypatch):
|
||||
NotImplementedError,
|
||||
match="Full-text search is only supported on the local filesystem",
|
||||
):
|
||||
table.create_fts_index("x")
|
||||
table.create_fts_index("x", use_tantivy=True)
|
||||
|
||||
# make sure list tables still works
|
||||
assert db.table_names() == ["test_ddb_sync"]
|
||||
|
||||
@@ -50,6 +50,7 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
|
||||
let fuzziness = ob.getattr("fuzziness")?.extract()?;
|
||||
let max_expansions = ob.getattr("max_expansions")?.extract()?;
|
||||
let operator = ob.getattr("operator")?.extract::<String>()?;
|
||||
let prefix_length = ob.getattr("prefix_length")?.extract()?;
|
||||
|
||||
Ok(PyLanceDB(
|
||||
MatchQuery::new(query)
|
||||
@@ -60,6 +61,7 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
|
||||
.with_operator(Operator::try_from(operator.as_str()).map_err(|e| {
|
||||
PyValueError::new_err(format!("Invalid operator: {}", e))
|
||||
})?)
|
||||
.with_prefix_length(prefix_length)
|
||||
.into(),
|
||||
))
|
||||
}
|
||||
@@ -139,7 +141,8 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
|
||||
kwargs.set_item("boost", query.boost)?;
|
||||
kwargs.set_item("fuzziness", query.fuzziness)?;
|
||||
kwargs.set_item("max_expansions", query.max_expansions)?;
|
||||
kwargs.set_item("operator", operator_to_str(query.operator))?;
|
||||
kwargs.set_item::<_, &str>("operator", query.operator.into())?;
|
||||
kwargs.set_item("prefix_length", query.prefix_length)?;
|
||||
namespace
|
||||
.getattr(intern!(py, "MatchQuery"))?
|
||||
.call((query.terms, query.column.unwrap()), Some(&kwargs))
|
||||
@@ -169,19 +172,25 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
|
||||
.unzip();
|
||||
let kwargs = PyDict::new(py);
|
||||
kwargs.set_item("boosts", boosts)?;
|
||||
kwargs.set_item("operator", operator_to_str(first.operator))?;
|
||||
kwargs.set_item::<_, &str>("operator", first.operator.into())?;
|
||||
namespace
|
||||
.getattr(intern!(py, "MultiMatchQuery"))?
|
||||
.call((first.terms.clone(), columns), Some(&kwargs))
|
||||
}
|
||||
FtsQuery::Boolean(query) => {
|
||||
let mut queries = Vec::with_capacity(query.must.len() + query.should.len());
|
||||
for q in query.must {
|
||||
queries.push((occur_to_str(Occur::Must), PyLanceDB(q).into_pyobject(py)?));
|
||||
}
|
||||
let mut queries: Vec<(&str, Bound<'py, PyAny>)> = Vec::with_capacity(
|
||||
query.should.len() + query.must.len() + query.must_not.len(),
|
||||
);
|
||||
for q in query.should {
|
||||
queries.push((occur_to_str(Occur::Should), PyLanceDB(q).into_pyobject(py)?));
|
||||
queries.push((Occur::Should.into(), PyLanceDB(q).into_pyobject(py)?));
|
||||
}
|
||||
for q in query.must {
|
||||
queries.push((Occur::Must.into(), PyLanceDB(q).into_pyobject(py)?));
|
||||
}
|
||||
for q in query.must_not {
|
||||
queries.push((Occur::MustNot.into(), PyLanceDB(q).into_pyobject(py)?));
|
||||
}
|
||||
|
||||
namespace
|
||||
.getattr(intern!(py, "BooleanQuery"))?
|
||||
.call1((queries,))
|
||||
@@ -190,21 +199,6 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
|
||||
}
|
||||
}
|
||||
|
||||
fn operator_to_str(op: Operator) -> &'static str {
|
||||
match op {
|
||||
Operator::And => "AND",
|
||||
Operator::Or => "OR",
|
||||
}
|
||||
}
|
||||
|
||||
fn occur_to_str(occur: Occur) -> &'static str {
|
||||
match occur {
|
||||
Occur::Must => "MUST",
|
||||
Occur::Should => "SHOULD",
|
||||
Occur::MustNot => "MUST NOT",
|
||||
}
|
||||
}
|
||||
|
||||
// Python representation of query vector(s)
|
||||
#[derive(Clone)]
|
||||
pub struct PyQueryVectors(Vec<Arc<dyn Array>>);
|
||||
@@ -569,7 +563,10 @@ impl FTSQuery {
|
||||
}
|
||||
|
||||
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner.clone();
|
||||
let inner = self_
|
||||
.inner
|
||||
.clone()
|
||||
.full_text_search(self_.fts_query.clone());
|
||||
future_into_py(self_.py(), async move {
|
||||
inner
|
||||
.explain_plan(verbose)
|
||||
@@ -579,7 +576,10 @@ impl FTSQuery {
|
||||
}
|
||||
|
||||
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner.clone();
|
||||
let inner = self_
|
||||
.inner
|
||||
.clone()
|
||||
.full_text_search(self_.fts_query.clone());
|
||||
future_into_py(self_.py(), async move {
|
||||
inner
|
||||
.analyze_plan()
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-node"
|
||||
version = "0.20.1-beta.0"
|
||||
version = "0.21.0"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
edition.workspace = true
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb"
|
||||
version = "0.20.1-beta.0"
|
||||
version = "0.21.0"
|
||||
edition.workspace = true
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
|
||||
@@ -107,7 +107,7 @@ impl ObjectStore for MirroringObjectStore {
|
||||
self.primary.delete(location).await
|
||||
}
|
||||
|
||||
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, Result<ObjectMeta>> {
|
||||
fn list(&self, prefix: Option<&Path>) -> BoxStream<'static, Result<ObjectMeta>> {
|
||||
self.primary.list(prefix)
|
||||
}
|
||||
|
||||
|
||||
@@ -133,7 +133,7 @@ impl ObjectStore for IoTrackingStore {
|
||||
result
|
||||
}
|
||||
|
||||
async fn get_range(&self, location: &Path, range: std::ops::Range<usize>) -> OSResult<Bytes> {
|
||||
async fn get_range(&self, location: &Path, range: std::ops::Range<u64>) -> OSResult<Bytes> {
|
||||
let result = self.target.get_range(location, range).await;
|
||||
if let Ok(result) = &result {
|
||||
self.record_read(result.len() as u64);
|
||||
@@ -144,7 +144,7 @@ impl ObjectStore for IoTrackingStore {
|
||||
async fn get_ranges(
|
||||
&self,
|
||||
location: &Path,
|
||||
ranges: &[std::ops::Range<usize>],
|
||||
ranges: &[std::ops::Range<u64>],
|
||||
) -> OSResult<Vec<Bytes>> {
|
||||
let result = self.target.get_ranges(location, ranges).await;
|
||||
if let Ok(result) = &result {
|
||||
@@ -170,7 +170,7 @@ impl ObjectStore for IoTrackingStore {
|
||||
self.target.delete_stream(locations)
|
||||
}
|
||||
|
||||
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, OSResult<ObjectMeta>> {
|
||||
fn list(&self, prefix: Option<&Path>) -> BoxStream<'static, OSResult<ObjectMeta>> {
|
||||
self.record_read(0);
|
||||
self.target.list(prefix)
|
||||
}
|
||||
@@ -179,7 +179,7 @@ impl ObjectStore for IoTrackingStore {
|
||||
&self,
|
||||
prefix: Option<&Path>,
|
||||
offset: &Path,
|
||||
) -> BoxStream<'_, OSResult<ObjectMeta>> {
|
||||
) -> BoxStream<'static, OSResult<ObjectMeta>> {
|
||||
self.record_read(0);
|
||||
self.target.list_with_offset(prefix, offset)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user