Compare commits

..

357 Commits

Author SHA1 Message Date
Lance Release
677b7c1fcc [python] Bump version: 0.5.6 → 0.5.7 2024-02-22 20:07:12 +00:00
Lei Xu
8303a7197b chore: bump pylance to 0.9.18 (#1011) 2024-02-22 11:47:36 -08:00
Raghav Dixit
5fa9bfc4a8 python(feat): Imagebind embedding fn support (#1003)
Added imagebind fn support , steps to install mentioned in docstring. 
pytest slow checks done locally

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-02-22 11:47:08 +05:30
Ayush Chaurasia
bf2e9d0088 Docs: add meta tags (#1006) 2024-02-21 23:22:47 +05:30
Weston Pace
f04590ddad refactor: rust vectordb API stabilization of the Connection trait (#993)
This is the start of a more comprehensive refactor and stabilization of
the Rust API. The `Connection` trait is cleaned up to not require
`lance` and to match the `Connection` trait in other APIs. In addition,
the concrete implementation `Database` is hidden.

BREAKING CHANGE: The struct `crate::connection::Database` is now gone.
Several examples opened a connection using `Database::connect` or
`Database::connect_with_params`. Users should now use
`vectordb::connect`.

BREAKING CHANGE: The `connect`, `create_table`, and `open_table` methods
now all return a builder object. This means that a call like
`conn.open_table(..., opt1, opt2)` will now become
`conn.open_table(...).opt1(opt1).opt2(opt2).execute()` In addition, the
structure of options has changed slightly. However, no options
capability has been removed.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-02-20 18:35:52 -08:00
Lance Release
62c5117def [python] Bump version: 0.5.5 → 0.5.6 2024-02-20 20:45:02 +00:00
Bert
22c196b3e3 lance 0.9.18 (#1000) 2024-02-19 15:20:34 -05:00
Johannes Kolbe
1f4ac71fa3 apply fixes for notebook (#989) 2024-02-19 15:36:52 +05:30
Ayush Chaurasia
b5aad2d856 docs: Add meta tag for image preview (#988)
I think this should work. Need to deploy it to be sure as it can be
tested locally. Can be tested here.

2 things about this solution:
* All pages have a same meta tag, i.e, lancedb banner
* If needed, we can automatically use the first image of each page and
generate meta tags using the ultralytics mkdocs plugin that we did for
this purpose - https://github.com/ultralytics/mkdocs
2024-02-19 14:07:31 +05:30
Chang She
ca6f55b160 doc: update navigation links for embedding functions (#986) 2024-02-17 12:12:11 -08:00
Chang She
6f8cf1e068 doc: improve embedding functions documentation (#983)
Got some user feedback that the `implicit` / `explicit` distinction is
confusing.
Instead I was thinking we would just deprecate the `with_embeddings` API
and then organize working with embeddings into 3 buckets:

1. manually generate embeddings
2. use a provided embedding function
3. define your own custom embedding function
2024-02-17 10:39:28 -08:00
Chang She
e0277383a5 feat(python): add optional threadpool for batch requests (#981)
Currently if a batch request is given to the remote API, each query is
sent sequentially. We should allow the user to specify a threadpool.
2024-02-16 20:22:22 -08:00
Will Jones
d6b408e26f fix: use static C runtime on Windows (#979)
We depend on C static runtime, but not all Windows machines have that.
So might be worth statically linking it.

https://github.com/reorproject/reor/issues/36#issuecomment-1948876463
2024-02-16 15:54:12 -08:00
Will Jones
2447372c1f docs: show DuckDB with dataset, not table (#974)
Using datasets is preferred way to allow filter and projection pushdown,
as well as aggregated larger-than-memory tables.
2024-02-16 09:18:18 -08:00
Ayush Chaurasia
f0298d8372 docs: Minimal reranking evaluation benchmarks (#977) 2024-02-15 22:16:53 +05:30
Lance Release
54693e6bec Updating package-lock.json 2024-02-14 23:20:59 +00:00
Will Jones
73b2977bff chore: upgrade lance to 0.9.16 (#975) 2024-02-14 14:20:03 -08:00
Will Jones
aec85f7875 ci: fix Node ARM release build (#971)
When we turned on fat LTO builds, we made the release build job **much**
more compute and memory intensive. The ARM runners have particularly low
memory per core, which makes them susceptible to OOM errors. To avoid
issues, I have enabled memory swap on ARM and bumped the side of the
runner.
2024-02-14 13:02:09 -08:00
Will Jones
51f92ecb3d ci: reduce number of build jobs on aarch64 to avoid OOM (#970) 2024-02-13 17:33:09 -08:00
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
Lance Release
82936c77ef [python] Bump version: 0.5.3 → 0.5.4 2024-02-09 22:56:45 +00:00
Weston Pace
dddcddcaf9 chore: bump lance version to 0.9.15 (#949) 2024-02-09 14:55:44 -08:00
Weston Pace
a9727eb318 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-02-09 10:26:14 -08:00
QianZhu
48d55bf952 added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-09 10:07:47 -08:00
Weston Pace
d2e71c8b08 feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-02-08 09:40:29 -08:00
Nitish Sharma
f53aace89c Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-02-07 20:49:25 -08:00
Ayush Chaurasia
d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30
Will Jones
57605a2d86 feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

## Table reference state

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-02-05 08:12:19 -08:00
Ayush Chaurasia
738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00
Lei Xu
0b0f42537e chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-02-04 14:21:27 -08:00
QianZhu
e412194008 fix hybrid search example (#922) 2024-02-03 09:26:32 +05:30
Lance Release
a9088224c5 [python] Bump version: 0.5.2 → 0.5.3 2024-02-03 03:04:04 +00:00
Ayush Chaurasia
688c57a0d8 fix: revert safe_import_pandas usage (#921) 2024-02-02 18:57:13 -08:00
Lance Release
12a98deded Updating package-lock.json 2024-02-02 22:37:23 +00:00
Lance Release
e4bb042918 Updating package-lock.json 2024-02-02 21:57:07 +00:00
Lance Release
04e1662681 Bump version: 0.4.7 → 0.4.8 2024-02-02 21:56:57 +00:00
Lance Release
ce2242e06d [python] Bump version: 0.5.1 → 0.5.2 2024-02-02 21:33:02 +00:00
Weston Pace
778339388a chore: bump pylance version to latest in pyproject.toml (#918) 2024-02-02 13:32:12 -08:00
Weston Pace
7f8637a0b4 feat: add merge_insert to the node and rust APIs (#915) 2024-02-02 13:16:51 -08:00
QianZhu
09cd08222d make it explicit about the vector column data type (#916)
<img width="837" alt="Screenshot 2024-02-01 at 4 23 34 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/4f0f5c5a-2a24-4b00-aad1-ef80a593d964">
[
<img width="838" alt="Screenshot 2024-02-01 at 4 26 03 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/ca073bc8-b518-4be3-811d-8a7184416f07">
](url)

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-02 09:02:02 -08:00
Bert
a248d7feec fix: add request retry to python client (#917)
Adds capability to the remote python SDK to retry requests (fixes #911)

This can be configured through environment:
- `LANCE_CLIENT_MAX_RETRIES`= total number of retries. Set to 0 to
disable retries. default = 3
- `LANCE_CLIENT_CONNECT_RETRIES` = number of times to retry request in
case of TCP connect failure. default = 3
- `LANCE_CLIENT_READ_RETRIES` = number of times to retry request in case
of HTTP request failure. default = 3
- `LANCE_CLIENT_RETRY_STATUSES` = http statuses for which the request
will be retried. passed as comma separated list of ints. default `500,
502, 503`
- `LANCE_CLIENT_RETRY_BACKOFF_FACTOR` = controls time between retry
requests. see
[here](23f2287eb5/src/urllib3/util/retry.py (L141-L146)).
default = 0.25

Only read requests will be retried:
- list table names
- query
- describe table
- list table indices

This does not add retry capabilities for writes as it could possibly
cause issues in the case where the retried write isn't idempotent. For
example, in the case where the LB times-out the request but the server
completes the request anyway, we might not want to blindly retry an
insert request.
2024-02-02 11:27:29 -05:00
Weston Pace
cc9473a94a docs: add cleanup_old_versions and compact_files to Table for documentation purposes (#900)
Closes #819
2024-02-01 15:06:00 -08:00
Weston Pace
d77e95a4f4 feat: upgrade to lance 0.9.11 and expose merge_insert (#906)
This adds the python bindings requested in #870 The javascript/rust
bindings will be added in a future PR.
2024-02-01 11:36:29 -08:00
Lei Xu
62f053ac92 ci: bump to new version of python action to use node 20 gIthub action runtime (#909)
Github action is deprecating old node-16 runtime.
2024-02-01 11:36:03 -08:00
JacobLinCool
34e10caad2 fix the repo link on npm, add links for homepage and bug report (#910)
- fix the repo link on npm
- add links for homepage and bug report
2024-01-31 21:07:11 -08:00
QianZhu
f5726e2d0c arrow table/f16 example (#907) 2024-01-31 14:41:28 -08:00
Lance Release
12b4fb42fc Updating package-lock.json 2024-01-31 21:18:24 +00:00
Lance Release
1328cd46f1 Updating package-lock.json 2024-01-31 20:29:38 +00:00
Lance Release
0c940ed9f8 Bump version: 0.4.6 → 0.4.7 2024-01-31 20:29:28 +00:00
Lei Xu
5f59e51583 fix(node): pass AWS credentials to db level operations (#908)
Passed the following tests

```ts
const keyId = process.env.AWS_ACCESS_KEY_ID;
const secretKey = process.env.AWS_SECRET_ACCESS_KEY;
const sessionToken = process.env.AWS_SESSION_TOKEN;
const region = process.env.AWS_REGION;

const db = await lancedb.connect({
  uri: "s3://bucket/path",
  awsCredentials: {
    accessKeyId: keyId,
    secretKey: secretKey,
    sessionToken: sessionToken,
  },
  awsRegion: region,
} as lancedb.ConnectionOptions);

  console.log(await db.createTable("test", [{ vector: [1, 2, 3] }]));
  console.log(await db.tableNames());
  console.log(await db.dropTable("test"))
```
2024-01-31 12:05:01 -08:00
Will Jones
8d0ea29f89 docs: provide AWS S3 cleanup and permissions advice (#903)
Adding some more quick advice for how to setup AWS S3 with LanceDB.

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-31 09:24:54 -08:00
Abraham Lopez
b9468bb980 chore: update JS/TS example in README (#898)
- The JS/TS library actually expects named parameters via an object in
`.createTable()` rather than individual arguments
- Added example on how to search rows by criteria without a vector
search. TS type of `.search()` currently has the `query` parameter as
non-optional so we have to pass undefined for now.
2024-01-30 11:09:45 -08:00
Lei Xu
a42df158a3 ci: change apple silicon runner to free OSS macos-14 target (#901) 2024-01-30 11:05:42 -08:00
Raghav Dixit
9df6905d86 chore(python): GTE embedding function model name update (#902)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 23:56:29 +05:30
Ayush Chaurasia
3ffed89793 feat(python): Hybrid search & Reranker API (#824)
based on https://github.com/lancedb/lancedb/pull/713
- The Reranker api can be plugged into vector only or fts only search
but this PR doesn't do that (see example -
https://txt.cohere.com/rerank/)


### Default reranker -- `LinearCombinationReranker(weight=0.7,
fill=1.0)`

```
table.search("hello", query_type="hybrid").rerank(normalize="score").to_pandas()
```
### Available rerankers
LinearCombinationReranker
```
from lancedb.rerankers import LinearCombinationReranker

# Same as default 
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=LinearCombinationReranker()
                                     ).to_pandas()

# with custom params
reranker = LinearCombinationReranker(weight=0.3, fill=1.0)
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=reranker
                                     ).to_pandas()
```

Cohere Reranker
```
from lancedb.rerankers import CohereReranker

# default model.. English and multi-lingual supported. See docstring for available custom params
table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank",  # score or rank
                                      reranker=CohereReranker()
                                     ).to_pandas()

```

CrossEncoderReranker

```
from lancedb.rerankers import CrossEncoderReranker

table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank", 
                                      reranker=CrossEncoderReranker()
                                     ).to_pandas()

```

## Using custom Reranker
```
from lancedb.reranker import Reranker

class CustomReranker(Reranker):
    def rerank_hybrid(self, vector_result, fts_result):
           combined_res = self.merge_results(vector_results, fts_results) # or use custom combination logic
           # Custom rerank logic here
           
           return combined_res
```

- [x] Expand testing
- [x] Make sure usage makes sense
- [x] Run simple benchmarks for correctness (Seeing weird result from
cohere reranker in the toy example)
- Support diverse rerankers by default:
- [x] Cross encoding
- [x] Cohere
- [x] Reciprocal Rank Fusion

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-30 19:10:33 +05:30
Prashanth Rao
f150768739 Fix image bgcolor (#891)
Minor fix to change the background color for an image in the docs. It's
now readable in both light and dark modes (earlier version made it
impossible to read in dark mode).
2024-01-30 16:50:29 +05:30
Ayush Chaurasia
b432ecf2f6 doc: Add documentation chatbot for LanceDB (#890)
<img width="1258" alt="Screenshot 2024-01-29 at 10 05 52 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/7c108fde-e993-415c-ad01-72010fd5fe31">
2024-01-30 11:24:57 +05:30
Raghav Dixit
d1a7257810 feat(python): Embedding fn support for gte-mlx/gte-large (#873)
have added testing and an example in the docstring, will be pushing a
separate PR in recipe repo for rag example

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 11:21:57 +05:30
Ayush Chaurasia
5c5e23bbb9 chore(python): Temporarily extend remote connection timeout (#888)
Context - https://etoai.slack.com/archives/C05NC5YSW5V/p1706371205883149
2024-01-29 17:34:33 +05:30
Lei Xu
e5796a4836 doc: fix js example of create index (#886) 2024-01-28 17:02:36 -08:00
Lei Xu
b9c5323265 doc: use snippet for rust code example and make sure rust examples run through CI (#885) 2024-01-28 14:30:30 -08:00
Lei Xu
e41a52863a fix: fix doc build to include the source snippet correctly (#883) 2024-01-28 11:55:58 -08:00
Chang She
13acc8a480 doc(rust): minor fixes for Rust quick start. (#878) 2024-01-28 11:40:52 -08:00
Lei Xu
22b9eceb12 chore: convert all js doc test to use snippet. (#881) 2024-01-28 11:39:25 -08:00
Lei Xu
5f62302614 doc: use code snippet for typescript examples (#880)
The typescript code is in a fully function file, that will be run via the CI.
2024-01-27 22:52:37 -08:00
Ayush Chaurasia
d84e0d1db8 feat(python): Aws Bedrock embeddings integration (#822)
Supports amazon titan, cohere english & cohere multi-lingual base
models.
2024-01-28 02:04:15 +05:30
Lei Xu
ac94b2a420 chore: upgrade lance, pylance and datafusion (#879) 2024-01-27 12:31:38 -08:00
Lei Xu
b49bc113c4 chore: add one rust SDK e2e example (#876)
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-26 22:41:20 -08:00
Lei Xu
77b5b1cf0e doc: update quick start for full rust example (#872) 2024-01-26 16:19:43 -08:00
Lei Xu
e910809de0 chore: bump github actions to v4 due to GHA warnings of node version deprecation (#874) 2024-01-26 15:52:47 -08:00
Lance Release
90b5b55126 Updating package-lock.json 2024-01-26 23:35:58 +00:00
Lance Release
488e4f8452 Updating package-lock.json 2024-01-26 22:40:46 +00:00
Lance Release
ba6f949515 Bump version: 0.4.5 → 0.4.6 2024-01-26 22:40:36 +00:00
Lei Xu
3dd8522bc9 feat(rust): provide connect and connect_with_options in Rust SDK (#871)
* Bring the feature parity of Rust connect methods.
* A global connect method that can connect to local and remote / cloud
table, as the same as in js/python today.
2024-01-26 11:40:11 -08:00
Lei Xu
e01ef63488 chore(rust): simplified version of optimize (#869)
Consolidate various optimize() into one method, similar to postgres
VACCUM in the process of preparing Rust API for public use
2024-01-26 11:36:04 -08:00
Lei Xu
a6cf24b359 feat(napi): Issue queries as node SDK (#868)
* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
2024-01-25 22:14:14 -08:00
Lance Release
9a07c9aad8 Updating package-lock.json 2024-01-25 21:49:36 +00:00
Lance Release
d405798952 Updating package-lock.json 2024-01-25 20:54:55 +00:00
Lance Release
e8a8b92b2a Bump version: 0.4.4 → 0.4.5 2024-01-25 20:54:44 +00:00
Lei Xu
66362c6506 fix: release build for node sdk (#861) 2024-01-25 12:51:32 -08:00
Lance Release
5228ca4b6b Updating package-lock.json 2024-01-25 19:53:05 +00:00
Lance Release
dcc216a244 Bump version: 0.4.3 → 0.4.4 2024-01-25 19:52:54 +00:00
Lei Xu
a7aa168c7f feat: improve the rust table query API and documents (#860)
* Easy to type
* Handle `String, &str, [String] and [&str]` well without manual
conversion
* Fix function name to be verb
* Improve docstring of Rust.
* Promote `query` and `search()` to public `Table` trait
2024-01-25 10:44:31 -08:00
Lei Xu
7a89b5ec68 doc: update rust readme to include crate and docs.rs links (#859) 2024-01-24 20:26:30 -08:00
Lei Xu
ee862abd29 feat(napi): Provide a new createIndex API in the napi SDK. (#857) 2024-01-24 17:27:46 -08:00
Will Jones
4e1ed2b139 docs: document basics of configuring object storage (#832)
Created based on upstream PR https://github.com/lancedb/lance/pull/1849

Closes #681

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-24 15:27:22 -08:00
Lei Xu
008e0b1a93 feat(rust): create index API improvement (#853)
* Extract a minimal Table interface in Rust SDK
* Make create_index composable in Rust.
* Fix compiling issues from ffi
2024-01-24 10:05:12 -08:00
Bert
82cbcf6d07 Bump lance 0.9.9 (#851) 2024-01-24 08:41:28 -05:00
Lei Xu
1cd5426aea feat: rework NodeJS SDK using napi (#847)
Use Napi to write a Node.js SDK that follows Polars for better
maintainability, while keeping most of the logic in Rust.
2024-01-23 15:14:45 -08:00
Lance Release
41f0e32a06 [python] Bump version: 0.5.0 → 0.5.1 2024-01-23 22:01:14 +00:00
Lei Xu
ccfd043939 feat: change create table to accept Arrow table (#845) 2024-01-23 13:25:15 -08:00
QianZhu
b4d451ed21 extend timeout for requests.get and requests.post (#848) 2024-01-22 20:31:39 -08:00
Lei Xu
4c303ba293 chore(rust): provide a Connection trait to match python and nodejs SDK (#846)
In NodeJS and Python, LanceDB establishes a connection to a db. In Rust
core, it is called Database.
We should be consistent with the naming.
2024-01-22 17:35:02 -08:00
Bert
66eaa2a00e allow passing api key as env var (#841)
Allow passing API key as env var:
```shell
export LANCEDB_API_KEY=sh_123...
```

with this set, apiKey argument can omitted from `connect`
```js
    const db = await vectordb.connect({
        uri: "db://test-proj-01-ae8343",
        region: "us-east-1",
  })
```
```py
    db = lancedb.connect(
        uri="db://test-proj-01-ae8343",
        region="us-east-1",
    )
```
2024-01-22 16:18:28 -05:00
Lei Xu
5f14a411af feat(js): add helper function to create Arrow Table with schema (#838)
Support to make Apache Arrow Table from an array of javascript Records,
with optionally provided Schema.
2024-01-22 11:49:44 -08:00
Chang She
bea3cef627 chore(js): remove errant console.log (#834) 2024-01-22 11:44:38 -08:00
Lei Xu
0e92a7277c doc: add index page for rust crate (#839)
Rust API doc for the braves
2024-01-22 09:15:55 -08:00
Lei Xu
83ed8d1e49 bug: add a test for fp16 (#837)
Add test to ingest fp16 to a database
2024-01-20 16:23:28 -08:00
Chang She
a1ab549457 Merge branch 'tecmie-tecmie/embeddings-openai' 2024-01-19 16:46:16 -08:00
Chang She
3ba1618be9 Merge branch 'tecmie/embeddings-openai' of github.com:tecmie/lancedb into tecmie-tecmie/embeddings-openai 2024-01-19 16:45:41 -08:00
Lei Xu
9a9fc77a95 doc: improve docs for nodejs connect functions (#833)
* improve the docstring for NodeJS connect functions and
`ConnectOptions` parameters.
* Simplify `npm run build` steps.
2024-01-19 16:07:53 -08:00
Bert
c89d5e6e6d fix: remote python client closes idle connections (#831) 2024-01-19 17:28:36 -05:00
Will Jones
d012db24c2 ci: lint and enforce linting (#829)
@eddyxu added instructions for linting here:


7af213801a/python/README.md (L45-L50)

However, we had a lot of failures and weren't checking this in CI. This
PR fixes all lints and adds a check to CI to keep us in compliance with
the lints.
2024-01-19 13:09:14 -08:00
Bert
7af213801a bump lance to 0.9.7 (#826) 2024-01-18 20:44:22 -08:00
Prashanth Rao
8f54cfcde9 Docs updates incl. Polars (#827)
This PR makes the following aesthetic and content updates to the docs.

- [x] Fix max width issue on mobile: Content should now render more
cleanly and be more readable on smaller devices
- [x] Improve image quality of flowchart in data management page
- [x] Fix syntax highlighting in text at the bottom of the IVF-PQ
concepts page
- [x] Add example of Polars LazyFrames to docs (Integrations)
- [x] Add example of adding data to tables using Polars (guides)
2024-01-18 20:43:59 -08:00
Prashanth Rao
119b928a52 docs: Updates and refactor (#683)
This PR makes incremental changes to the documentation.

* Closes #697 
* Closes #698

## Chores
- [x] Add dark mode
- [x] Fix headers in navbar
- [x] Add `extra.css` to customize navbar styles
- [x] Customize fonts for prose/code blocks, navbar and admonitions
- [x] Inspect all admonition boxes (remove redundant dropdowns) and
improve clarity and readability
- [x] Ensure that all images in the docs have white background (not
transparent) to be viewable in dark mode
- [x] Improve code formatting in code blocks to make them consistent
with autoformatters (eslint/ruff)
- [x] Add bolder weight to h1 headers
- [x] Add diagram showing the difference between embedded (OSS) and
serverless (Cloud)
- [x] Fix [Creating an empty
table](https://lancedb.github.io/lancedb/guides/tables/#creating-empty-table)
section: right now, the subheaders are not clickable.
- [x] In critical data ingestion methods like `table.add` (among
others), the type signature often does not match the actual code
- [x] Proof-read each documentation section and rewrite as necessary to
provide more context, use cases, and explanations so it reads less like
reference documentation. This is especially important for CRUD and
search sections since those are so central to the user experience.

## Restructure/new content 
- [x] The section for [Adding
data](https://lancedb.github.io/lancedb/guides/tables/#adding-to-a-table)
only shows examples for pandas and iterables. We should include pydantic
models, arrow tables, etc.
- [x] Add conceptual tutorial for IVF-PQ index
- [x] Clearly separate vector search, FTS and filtering sections so that
these are easier to find
- [x] Add docs on refine factor to explain its importance for recall.
Closes #716
- [x] Add an FAQ page showing answers to commonly asked questions about
LanceDB. Closes #746
- [x] Add simple polars example to the integrations section. Closes #756
and closes #153
- [ ] Add basic docs for the Rust API (more detailed API docs can come
later). Closes #781
- [x] Add a section on the various storage options on local vs. cloud
(S3, EBS, EFS, local disk, etc.) and the tradeoffs involved. Closes #782
- [x] Revamp filtering docs: add pre-filtering examples and redo headers
and update content for SQL filters. Closes #783 and closes #784.
- [x] Add docs for data management: compaction, cleaning up old versions
and incremental indexing. Closes #785
- [ ] Add a benchmark section that also discusses some best practices.
Closes #787

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-01-19 00:18:37 +05:30
Lance Release
8bcdc81fd3 [python] Bump version: 0.4.4 → 0.5.0 2024-01-18 01:53:15 +00:00
Chang She
39e14c70c5 chore(python): turn off lazy frame ingestion (#821) 2024-01-16 19:11:16 -08:00
Chang She
af8263af94 feat(python): allow the entire table to be converted a polars dataframe (#814) 2024-01-15 15:49:16 -08:00
Chang She
be4ab9eef3 feat(python): add exist_ok option to create table (#813)
This mimics CREATE TABLE IF NOT EXISTS behavior.
We add `db.create_table(..., exist_ok=True)` parameter.
By default it is set to False, so trying to create
a table with the same name will raise an exception.
If set to True, then it only opens the table if it
already exists. If you pass in a schema, it will
be checked against the existing table to make sure
you get what you want. If you pass in data, it will
NOT be added to the existing table.
2024-01-15 11:09:18 -08:00
Ayush Chaurasia
184d2bc969 chore(python): get rid of Pydantic deprication warning in embedding fcn (#816)
```
UserWarning: Valid config keys have changed in V2:
* 'keep_untouched' has been renamed to 'ignored_types' warnings.warn(message, UserWarning)
```
2024-01-15 12:19:51 +05:30
Anton Shevtsov
ff6f005336 Add openai api key not found help (#815)
This pull request adds check for the presence of an environment variable
`OPENAI_API_KEY` and removes an unused parameter in
`retry_with_exponential_backoff` function.
2024-01-15 02:44:09 +05:30
Chang She
49333e522c feat(python): basic polars integration (#811)
We should now be able to directly ingest polars dataframes and return
results as polars dataframes


![image](https://github.com/lancedb/lancedb/assets/759245/828b1260-c791-45f1-a047-aa649575e798)
2024-01-13 16:38:16 -08:00
Andrew Miracle
44eba363b5 eslint fix 2024-01-13 09:15:01 +01:00
Ayush Chaurasia
4568df422d feat(python): Add gemini text embedding function (#806)
Named it Gemini-text for now. Not sure how complicated it will be to
support both text and multimodal embeddings under the same class
"gemini"..But its not something to worry about for now I guess.
2024-01-12 22:38:55 -08:00
Andrew Miracle
a90358a1e3 Merge branch 'main' into tecmie/embeddings-openai 2024-01-12 10:18:54 +01:00
Andrew Miracle
f7f9beaf31 rebase from lancedb/main 2024-01-12 10:17:30 +01:00
Lance Release
cfdbddc5cf Updating package-lock.json 2024-01-12 09:45:45 +01:00
Lance Release
88affc1428 Bump version: 0.4.2 → 0.4.3 2024-01-12 09:45:40 +01:00
Lance Release
a7be064f00 [python] Bump version: 0.4.3 → 0.4.4 2024-01-12 09:45:40 +01:00
Will Jones
707df47c3f upgrade lance (#809) 2024-01-12 09:45:40 +01:00
Lei Xu
6e97fada13 chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-12 09:45:40 +01:00
Chang She
3f66be666d feat(node): align incoming data to table schema (#802) 2024-01-12 09:45:40 +01:00
Sebastian Law
eda4c587fc use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-12 09:45:36 +01:00
Chang She
91d64d86e0 chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-12 09:45:36 +01:00
Chang She
ff81c0d698 feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-12 09:45:36 +01:00
Chang She
fcfb4587bb feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-12 09:45:36 +01:00
Chang She
f43c06d9ce fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-12 09:45:36 +01:00
Chang She
ba01d274eb feat(python): support new style optional syntax (#793) 2024-01-12 09:45:36 +01:00
Chang She
615c469af2 chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-12 09:45:36 +01:00
Chang She
a649b3b1e4 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-12 09:45:36 +01:00
Lei Xu
be76242884 chore: bump lance to 0.9.5 (#790) 2024-01-12 09:45:36 +01:00
Chang She
f4994cb0ec feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-12 09:45:36 +01:00
lucasiscovici
00b0c75710 raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-12 09:45:36 +01:00
sudhir
47299385fa Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-12 09:45:36 +01:00
Chris
9dea884a7f Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-12 09:45:36 +01:00
Vladimir Varankin
85f8cf20aa Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-12 09:45:36 +01:00
QianZhu
5e720b2776 small bug fix for example code in SaaS JS doc (#770) 2024-01-12 09:45:36 +01:00
Chang She
30a8223944 chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-12 09:45:36 +01:00
Bengsoon Chuah
5b1587d84a Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-12 09:45:36 +01:00
QianZhu
78bafb3007 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-12 09:45:36 +01:00
Chang She
4417f7c5a7 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-12 09:45:36 +01:00
Lance Release
577d6ea16e Updating package-lock.json 2024-01-12 09:45:33 +01:00
Lance Release
53d2ef5e81 Bump version: 0.4.1 → 0.4.2 2024-01-12 09:45:29 +01:00
Lance Release
e48ceb2ebd [python] Bump version: 0.4.2 → 0.4.3 2024-01-12 09:45:29 +01:00
Lei Xu
327692ccb1 chore: bump pylance to 0.9.2 (#754) 2024-01-12 09:45:29 +01:00
Xin Hao
bc224a6a0b docs: fix link (#752) 2024-01-12 09:45:29 +01:00
Chang She
2dcb39f556 feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2024-01-12 09:45:29 +01:00
Lance Release
6bda6f2f2a [python] Bump version: 0.4.1 → 0.4.2 2024-01-12 09:45:29 +01:00
Chang She
a3fafd6b54 chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2024-01-12 09:45:29 +01:00
Chang She
dc8d6835c0 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2024-01-12 09:45:29 +01:00
Chang She
f55d99cec5 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-01-12 09:45:29 +01:00
Aidan
3d8b2f5531 fix: createIndex index cache size (#741) 2024-01-12 09:45:29 +01:00
Chang She
b71aa4117f feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2024-01-12 09:45:29 +01:00
Lance Release
55db26f59a Updating package-lock.json 2024-01-12 09:45:29 +01:00
Lance Release
7e42f58dec [python] Bump version: 0.4.0 → 0.4.1 2024-01-12 09:45:23 +01:00
Lance Release
2790b19279 Bump version: 0.4.0 → 0.4.1 2024-01-12 09:45:23 +01:00
elliottRobinson
4ba655d05e Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2024-01-12 09:45:23 +01:00
Lance Release
986891db98 Updating package-lock.json 2024-01-11 22:21:42 +00:00
Lance Release
036bf02901 Updating package-lock.json 2024-01-11 21:34:04 +00:00
Lance Release
4e31f0cc7a Bump version: 0.4.2 → 0.4.3 2024-01-11 21:33:55 +00:00
Lance Release
0a16e29b93 [python] Bump version: 0.4.3 → 0.4.4 2024-01-11 21:29:00 +00:00
Will Jones
cf7d7a19f5 upgrade lance (#809) 2024-01-11 13:28:10 -08:00
Lei Xu
fe2fb91a8b chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-11 10:58:49 -08:00
Chang She
81af350d85 feat(node): align incoming data to table schema (#802) 2024-01-10 16:44:00 -08:00
Sebastian Law
99adfe065a use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-10 00:07:50 -05:00
Chang She
277406509e chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-09 20:20:13 -08:00
Chang She
63411b4d8b feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-09 19:41:31 -08:00
Chang She
d998f80b04 feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-09 19:33:03 -08:00
Chang She
629379a532 fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-09 19:27:38 -08:00
Andrew Miracle
821cf0e434 eslint fix 2024-01-09 16:27:22 +01:00
Chang She
99ba5331f0 feat(python): support new style optional syntax (#793) 2024-01-09 07:03:29 -08:00
Chang She
121687231c chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-08 21:49:31 -08:00
Chang She
ac40d4b235 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-08 21:12:48 -08:00
Lei Xu
c5a52565ac chore: bump lance to 0.9.5 (#790) 2024-01-07 19:27:47 -08:00
Chang She
b0a88a7286 feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-07 15:15:13 -08:00
lucasiscovici
d41d849e0e raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-07 14:34:04 -08:00
sudhir
bf5202f196 Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-07 14:27:56 -08:00
Chris
8be2861061 Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-07 14:27:40 -08:00
Vladimir Varankin
0560e3a0e5 Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-07 14:26:35 -08:00
QianZhu
b83fbfc344 small bug fix for example code in SaaS JS doc (#770) 2024-01-04 14:30:34 -08:00
Chang She
60b22d84bf chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-04 11:45:12 -08:00
Bengsoon Chuah
7d55a94efd Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-04 11:15:42 -08:00
QianZhu
4d8e401d34 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-03 16:24:21 -08:00
Chang She
684eb8b087 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-02 20:55:33 -08:00
Lance Release
4e3b82feaa Updating package-lock.json 2023-12-30 03:16:41 +00:00
Lance Release
8e248a9d67 Updating package-lock.json 2023-12-30 00:53:51 +00:00
Lance Release
065ffde443 Bump version: 0.4.1 → 0.4.2 2023-12-30 00:53:30 +00:00
Lance Release
c3059dc689 [python] Bump version: 0.4.2 → 0.4.3 2023-12-30 00:52:54 +00:00
Lei Xu
a9caa5f2d4 chore: bump pylance to 0.9.2 (#754) 2023-12-29 16:39:45 -08:00
Xin Hao
8411c36b96 docs: fix link (#752) 2023-12-29 15:33:24 -08:00
Chang She
7773bda7ee feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2023-12-29 15:33:03 -08:00
Lance Release
392777952f [python] Bump version: 0.4.1 → 0.4.2 2023-12-29 00:19:21 +00:00
Chang She
7e75e50d3a chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2023-12-28 15:05:57 -08:00
Chang She
4b8af261a3 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2023-12-28 11:02:56 -08:00
Chang She
c8728d4ca1 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-27 09:31:04 -08:00
Aidan
446f837335 fix: createIndex index cache size (#741) 2023-12-27 09:25:13 -08:00
Chang She
8f9ad978f5 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2023-12-27 09:10:09 -08:00
Lance Release
0df38341d5 Updating package-lock.json 2023-12-26 17:21:51 +00:00
Lance Release
60260018cf [python] Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:16 +00:00
Lance Release
bb100c5c19 Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:09 +00:00
elliottRobinson
eab9072bb5 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2023-12-26 19:24:22 +05:30
Andrew Miracle
ee1d0b596f remove console logs 2023-12-25 21:51:02 +00:00
Andrew Miracle
38a4524893 add support for openai SDK version ^4.24.1 2023-12-25 20:29:54 +00:00
Will Jones
ee0f0611d9 docs: update node API reference (#734)
This command hasn't been run for a while...
2023-12-22 10:14:31 -08:00
Will Jones
34966312cb docs: enhance Update user guide (#735)
Closes #705
2023-12-22 10:14:21 -08:00
Bert
756188358c docs: fix JS api docs for update method (#738) 2023-12-21 13:48:00 -05:00
Weston Pace
dc5126d8d1 feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2023-12-21 09:50:10 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
Chang She
7856a94d2c feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 12:28:53 -08:00
Chang She
371d2f979e feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-12-20 12:23:07 -08:00
Aidan
fff8e399a3 feat: Node create index API (#720) 2023-12-20 15:22:35 -05:00
Aidan
73e4015797 feat: Node Schema API (#717) 2023-12-20 12:16:40 -05:00
Lance Release
5142a27482 Updating package-lock.json 2023-12-18 18:15:50 +00:00
Lance Release
81df2a524e Updating package-lock.json 2023-12-18 17:29:58 +00:00
Lance Release
40638e5515 Bump version: 0.3.11 → 0.4.0 2023-12-18 17:29:47 +00:00
Lance Release
018314a5c1 [python] Bump version: 0.3.6 → 0.4.0 2023-12-18 17:27:26 +00:00
Lei Xu
409eb30ea5 chore: bump lance version to 0.9 (#715) 2023-12-17 22:11:42 -05:00
Lance Release
ff9872fd44 Updating package-lock.json 2023-12-15 18:25:06 +00:00
Lance Release
a0608044a1 [python] Bump version: 0.3.5 → 0.3.6 2023-12-15 18:20:55 +00:00
Lance Release
2e4ea7d2bc Updating package-lock.json 2023-12-15 18:01:45 +00:00
Lance Release
57e5695a54 Bump version: 0.3.10 → 0.3.11 2023-12-15 18:01:34 +00:00
Bert
ce58ea7c38 chore: fix package lock (#711) 2023-12-15 11:49:16 -05:00
Bert
57207eff4a implement update for remote clients (#706) 2023-12-15 09:06:40 -05:00
Rob Meng
2d78bff120 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2023-12-15 00:19:08 -05:00
Rob Meng
7c09b9b9a9 feat: allow custom column name in query (#709) 2023-12-14 23:29:26 -05:00
Chang She
bd0034a157 feat: support nested pydantic schema (#707) 2023-12-14 18:20:45 -08:00
Will Jones
144b3b5d83 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2023-12-14 12:09:28 -08:00
Lance Release
b6f0a31686 Updating package-lock.json 2023-12-14 19:31:56 +00:00
Lance Release
9ec526f73f Bump version: 0.3.9 → 0.3.10 2023-12-14 19:31:41 +00:00
Lance Release
600bfd7237 [python] Bump version: 0.3.4 → 0.3.5 2023-12-14 19:31:22 +00:00
Will Jones
d087e7891d feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2023-12-14 11:28:32 -08:00
Chang She
098e397cf0 feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2023-12-13 22:59:01 -08:00
Bert
63ee8fa6a1 Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-13 14:53:06 -05:00
Ayush Chaurasia
693091db29 chore(python): Reduce posthog event count (#661)
- Register open_table as event 
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2023-12-08 11:00:51 -08:00
Ayush Chaurasia
dca4533dbe docs: Update roboflow tutorial position (#666) 2023-12-08 11:00:11 -08:00
QianZhu
f6bbe199dc Qian/minor fix doc (#695) 2023-12-08 09:58:53 -08:00
Kaushal Kumar Choudhary
366e522c2b docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2023-12-08 20:55:04 +05:30
Chang She
244b6919cc chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2023-12-07 15:49:52 -08:00
QianZhu
aca785ff98 saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2023-12-07 14:47:56 -08:00
Chang She
bbdebf2c38 chore: update package lock (#689) 2023-12-06 17:14:56 -08:00
Chang She
1336cce0dc chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2023-12-06 14:20:46 -08:00
Lance Release
6c83b6a513 Updating package-lock.json 2023-12-04 18:34:43 +00:00
Lance Release
6bec4bec51 Updating package-lock.json 2023-12-04 17:02:48 +00:00
Lance Release
23d30dfc78 Bump version: 0.3.8 → 0.3.9 2023-12-04 17:02:35 +00:00
Rob Meng
94c8c50f96 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2023-12-04 12:01:16 -05:00
Rob Meng
72765d8e1a feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2023-12-01 16:49:10 -05:00
Rob Meng
a2a8f9615e chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2023-12-01 00:44:14 -05:00
James
b085d9aaa1 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2023-11-27 20:39:01 +05:30
Bert
6eb662de9b fix: python remote correct open_table error message (#659) 2023-11-24 19:28:33 -05:00
Lance Release
2bb2bb581a Updating package-lock.json 2023-11-19 00:45:51 +00:00
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
Lance Release
123a49df77 Bump version: 0.3.7 → 0.3.8 2023-11-19 00:03:58 +00:00
Will Jones
a57aa4b142 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2023-11-18 15:57:23 -08:00
Rok Mihevc
d8e3e54226 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2023-11-18 14:17:40 -08:00
Ayush Chaurasia
ccfdf4853a [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2023-11-18 06:08:26 +05:30
Ayush Chaurasia
87e5d86e90 [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2023-11-18 06:08:13 +05:30
Aidan
1cf8a3e4e0 SaaS create_index API (#649) 2023-11-15 19:12:52 -05:00
Lance Release
5372843281 Updating package-lock.json 2023-11-15 03:15:10 +00:00
Lance Release
54677b8f0b Updating package-lock.json 2023-11-15 02:42:38 +00:00
Lance Release
ebcf9bf6ae Bump version: 0.3.6 → 0.3.7 2023-11-15 02:42:25 +00:00
Bert
797514bcbf fix: node remote implement table.countRows (#648) 2023-11-13 17:43:20 -05:00
Rok Mihevc
1c872ce501 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2023-11-13 21:43:48 +01:00
Bert
479f471c14 fix: node send db header for GET requests (#646) 2023-11-11 16:33:25 -05:00
Ayush Chaurasia
ae0d2f2599 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2023-11-10 15:02:38 +05:30
Ayush Chaurasia
1e8678f11a Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2023-11-09 12:34:18 +05:30
QianZhu
662968559d fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2023-11-07 17:34:38 -08:00
Rob Meng
9d895801f2 upgrade lance to 0.8.14 (#636)
upgrade lance
2023-11-07 19:01:29 -05:00
Rob Meng
80613a40fd skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2023-11-07 12:33:32 -05:00
Lei Xu
d43ef7f11e chore: apple silicon runner (#633)
Close #632
2023-11-06 21:04:32 -08:00
Lei Xu
554e068917 chore: improve create_table API consistency between local and remote SDK (#627) 2023-11-03 13:15:11 -07:00
Bert
567734dd6e fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2023-11-03 10:24:56 -04:00
Ayush Chaurasia
1589499f89 Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2023-11-02 19:20:10 +05:30
Lance Release
682e95fa83 Updating package-lock.json 2023-11-01 22:20:49 +00:00
Lance Release
1ad5e7f2f0 Updating package-lock.json 2023-11-01 21:16:20 +00:00
Lance Release
ddb3ef4ce5 Bump version: 0.3.5 → 0.3.6 2023-11-01 21:16:06 +00:00
Lance Release
ef20b2a138 [python] Bump version: 0.3.2 → 0.3.3 2023-11-01 21:15:55 +00:00
Lei Xu
2e0f251bfd chore: bump lance to 8.10 (#622) 2023-11-01 14:14:38 -07:00
Ayush Chaurasia
2cb91e818d Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2023-11-02 01:13:16 +05:30
Chang She
2835c76336 doc: node sdk now supports windows (#616) 2023-11-01 10:04:18 -07:00
Bert
8068a2bbc3 ci: cancel in progress runs on new push (#620) 2023-11-01 11:33:48 -04:00
Bert
24111d543a fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2023-11-01 10:50:09 -04:00
QianZhu
7eec2b8f9a Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2023-10-31 19:50:05 -07:00
Will Jones
b2b70ea399 increment pylance (#618) 2023-10-31 18:07:03 -07:00
Bert
e50a3c1783 added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-10-31 16:39:32 -04:00
Weston Pace
b517134309 feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2023-10-31 13:11:03 -07:00
Lei Xu
6fb539b5bf doc: add doc to use GPU for indexing (#611) 2023-10-30 15:25:00 -07:00
Lance Release
f37fe120fd Updating package-lock.json 2023-10-26 22:30:16 +00:00
Lance Release
2e115acb9a Updating package-lock.json 2023-10-26 21:48:01 +00:00
Lance Release
27a638362d Bump version: 0.3.4 → 0.3.5 2023-10-26 21:47:44 +00:00
Bert
22a6695d7a fix conv version (#605) 2023-10-26 17:44:11 -04:00
Lance Release
57eff82ee7 Updating package-lock.json 2023-10-26 21:03:07 +00:00
Lance Release
7732f7d41c Bump version: 0.3.3 → 0.3.4 2023-10-26 21:02:52 +00:00
Bert
5ca98c326f feat: added dataset stats api to node (#604) 2023-10-26 17:00:48 -04:00
Bert
b55db397eb feat: added data stats apis (#596) 2023-10-26 13:10:17 -04:00
Rob Meng
c04d72ac8a expose remap index api (#603)
expose index remap options in `compact_files`
2023-10-25 22:10:37 -04:00
Rob Meng
28b02fb72a feat: expose optimize index api (#602)
expose `optimize_index` api.
2023-10-25 19:40:23 -04:00
Lance Release
f3cf986777 [python] Bump version: 0.3.1 → 0.3.2 2023-10-24 19:06:38 +00:00
Bert
c73fcc8898 update lance to 0.8.7 (#598) 2023-10-24 14:49:36 -04:00
Chang She
cd9debc3b7 fix(python): fix multiple embedding functions bug (#597)
Closes #594

The embedding functions are pydantic models so multiple instances with
the same parameters are considered ==, which means that if you have
multiple embedding columns it's possible for the embeddings to get
overwritten. Instead we use `is` instead of == to avoid this problem.

testing: modified unit test to include this case
2023-10-24 13:05:05 -04:00
Rob Meng
26a97ba997 feat: add checkout method to table to reuse existing store and connections (#593)
Prior to this PR, to get a new version of a table, we need to re-open
the table. This has a few downsides w.r.t. performance:
* Object store is recreated, which takes time and throws away existing
warm connections
* Commit handler is thrown aways as well, which also may contain warm
connections
2023-10-23 12:06:13 -04:00
Rob Meng
ce19fedb08 feat: include manifest files in mirrow store (#589) 2023-10-21 12:21:41 -04:00
Will Jones
14e8e48de2 Revert "[python] Bump version: 0.3.2 → 0.3.3"
This reverts commit c30faf6083.
2023-10-20 17:52:49 -07:00
Will Jones
c30faf6083 [python] Bump version: 0.3.2 → 0.3.3 2023-10-20 17:30:00 -07:00
Ayush Chaurasia
64a4f025bb [Docs]: Minor Fixes (#587)
* Filename typo
* Remove rick_morty csv as users won't really be able to use it.. We can
create a an executable colab and download it from a bucket or smth.
2023-10-20 16:14:35 +02:00
Ayush Chaurasia
6dc968e7d3 [Docs] Embeddings API: Add multi-lingual semantic search example (#582) 2023-10-20 18:40:49 +05:30
Ayush Chaurasia
06b5b69f1e [Docs]Versioning docs (#586)
closes #564

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-20 18:40:16 +05:30
Lance Release
6bd3a838fc Updating package-lock.json 2023-10-19 20:45:39 +00:00
Lance Release
f36fea8f20 Updating package-lock.json 2023-10-19 20:06:10 +00:00
Lance Release
0a30591729 Bump version: 0.3.2 → 0.3.3 2023-10-19 20:05:57 +00:00
Chang She
0ed39b6146 chore: bump lance version in python/rust lancedb (#584)
To include latest v0.8.6

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-19 13:05:12 -07:00
Ayush Chaurasia
a8c7f80073 [Docs] Update embedding function docs (#581) 2023-10-18 13:04:42 +05:30
Ayush Chaurasia
0293bbe142 [Python]Embeddings API refactor (#580)
Sets things up for this -> https://github.com/lancedb/lancedb/issues/579
- Just separates out the registry/ingestion code from the function
implementation code
- adds a `get_registry` util
- package name "open-clip" -> "open-clip-torch"
2023-10-17 22:32:19 -07:00
Ayush Chaurasia
7372656369 [Docs] Add posthog telemetry to docs (#577)
Allows creation of funnels and user journeys
2023-10-17 21:11:59 -07:00
QianZhu
d46bc5dd6e list table pagination draft (#574) 2023-10-16 21:09:20 -07:00
Prashanth Rao
86efb11572 Add pyarrow date and timestamp type conversion from pydantic (#576) 2023-10-16 19:42:24 -07:00
Chang She
bb01ad5290 doc: fix broken link and add README (#573)
Fix broken link to embedding functions

testing: broken link was verified after local docs build to have been
repaired

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-16 16:13:07 -07:00
Lance Release
1b8cda0941 Updating package-lock.json 2023-10-16 16:10:07 +00:00
Lance Release
bc85a749a3 Updating package-lock.json 2023-10-16 15:12:15 +00:00
Lance Release
02c35d3457 Bump version: 0.3.1 → 0.3.2 2023-10-16 15:11:57 +00:00
Rob Meng
345c136cfb implement remote api calls for table mutation (#567)
Add more APIs to remote table for Node SDK
* `add` rows
* `overwrite` table with rows
* `create` table

This has been tested against dev stack
2023-10-16 11:07:58 -04:00
Rok Mihevc
043e388254 docs: show source of documented functions (#569) 2023-10-15 09:05:36 -07:00
Lei Xu
fe64fc4671 feat(python,js): deletion operation on remote tables (#568) 2023-10-14 15:47:19 -07:00
Rok Mihevc
6d66404506 docs: switch python examples to be row based (#554) 2023-10-14 14:07:43 -07:00
Lei Xu
eff94ecea8 chore: bump lance to 0.8.5 (#561)
Bump lance to 0.5.8
2023-10-14 12:38:43 -07:00
Ayush Chaurasia
7dfb555fea [DOCS][PYTHON] Update embeddings API docs & Example (#516)
This PR adds an overview of embeddings docs:
- 2 ways to vectorize your data using lancedb - explicit & implicit
- explicit - manually vectorize your data using `wit_embedding` function
- Implicit - automatically vectorize your data as it comes by ingesting
your embedding function details as table metadata
- Multi-modal example w/ disappearing embedding function
2023-10-14 07:56:07 +05:30
Lance Release
f762a669e7 Updating package-lock.json 2023-10-13 22:27:48 +00:00
Lance Release
0bdc7140dd Updating package-lock.json 2023-10-13 21:24:05 +00:00
Lance Release
8f6e955b24 Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:54 +00:00
Lance Release
1096da09da [python] Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:47 +00:00
Ayush Chaurasia
683824f1e9 Add cohere embedding function (#550) 2023-10-13 16:27:34 +05:30
Will Jones
db7bdefe77 feat: cleanup and compaction (#518)
#488
2023-10-11 12:49:12 -07:00
Ayush Chaurasia
e41894b071 [Docs] Improve visibility of table ops (#553)
A little verbose, but better than being non-discoverable 
![Screenshot from 2023-10-11
16-26-02](https://github.com/lancedb/lancedb/assets/15766192/9ba539a7-0cf8-4d9e-94e7-ce5d37c35df0)
2023-10-11 12:20:46 -07:00
Chang She
e1ae2bcbd8 feat: add to_list and to_pandas api's (#556)
Add `to_list` to return query results as list of python dict (so we're
not too pandas-centric). Closes #555

Add `to_pandas` API and add deprecation warning on `to_df`. Closes #545

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-11 12:18:55 -07:00
Ankur Goyal
ababc3f8ec Use query.limit(..) in README (#543)
If you run the README javascript example in typescript, it complains
that the type of limit is a function and cannot be set to a number.
2023-10-11 11:54:14 -07:00
Ayush Chaurasia
a1377afcaa feat: telemetry, error tracking, CLI & config manager (#538)
Co-authored-by: Lance Release <lance-dev@lancedb.com>
Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: rmeng <rob@lancedb.com>
Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Rok Mihevc <rok@mihevc.org>
2023-10-08 23:11:39 +05:30
678 changed files with 22630 additions and 114752 deletions

12
.bumpversion.cfg Normal file
View File

@@ -0,0 +1,12 @@
[bumpversion]
current_version = 0.4.10
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/vectordb/Cargo.toml]

View File

@@ -1,110 +0,0 @@
[tool.bumpversion]
current_version = "0.20.1-beta.2"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
(?P<patch>0|[1-9]\\d*)
(?:-(?P<pre_l>[a-zA-Z-]+)\\.(?P<pre_n>0|[1-9]\\d*))?
"""
serialize = [
"{major}.{minor}.{patch}-{pre_l}.{pre_n}",
"{major}.{minor}.{patch}",
]
search = "{current_version}"
replace = "{new_version}"
regex = false
ignore_missing_version = false
ignore_missing_files = false
tag = true
sign_tags = false
tag_name = "v{new_version}"
tag_message = "Bump version: {current_version} → {new_version}"
allow_dirty = true
commit = true
message = "Bump version: {current_version} → {new_version}"
commit_args = ""
# Java maven files
pre_commit_hooks = [
"""
NEW_VERSION="${BVHOOK_NEW_MAJOR}.${BVHOOK_NEW_MINOR}.${BVHOOK_NEW_PATCH}"
if [ ! -z "$BVHOOK_NEW_PRE_L" ] && [ ! -z "$BVHOOK_NEW_PRE_N" ]; then
NEW_VERSION="${NEW_VERSION}-${BVHOOK_NEW_PRE_L}.${BVHOOK_NEW_PRE_N}"
fi
echo "Constructed new version: $NEW_VERSION"
cd java && mvn versions:set -DnewVersion=$NEW_VERSION && mvn versions:commit
# Check for any modified but unstaged pom.xml files
MODIFIED_POMS=$(git ls-files -m | grep pom.xml)
if [ ! -z "$MODIFIED_POMS" ]; then
echo "The following pom.xml files were modified but not staged. Adding them now:"
echo "$MODIFIED_POMS" | while read -r file; do
git add "$file"
echo "Added: $file"
done
fi
""",
]
[tool.bumpversion.parts.pre_l]
optional_value = "final"
values = ["beta", "final"]
[[tool.bumpversion.files]]
filename = "node/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
[[tool.bumpversion.files]]
filename = "nodejs/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# nodejs binary packages
[[tool.bumpversion.files]]
glob = "nodejs/npm/*/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# vectodb node binary packages
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-arm64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-arm64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-x64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-x64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
# Cargo files
# ------------
[[tool.bumpversion.files]]
filename = "rust/ffi/node/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "rust/lancedb/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "nodejs/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""

View File

@@ -31,13 +31,6 @@ rustflags = [
[target.x86_64-unknown-linux-gnu] [target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"] rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-unknown-linux-musl]
linker = "aarch64-linux-musl-gcc"
rustflags = ["-C", "target-feature=-crt-static"]
[target.aarch64-apple-darwin] [target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"] rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
@@ -45,7 +38,3 @@ rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm
# not found errors on systems that are missing it. # not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc] [target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"] rustflags = ["-Ctarget-feature=+crt-static"]
# Experimental target for Arm64 Windows
[target.aarch64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

33
.github/labeler.yml vendored
View File

@@ -1,33 +0,0 @@
version: 1
appendOnly: true
# Labels are applied based on conventional commits standard
# https://www.conventionalcommits.org/en/v1.0.0/
# These labels are later used in release notes. See .github/release.yml
labels:
# If the PR title has an ! before the : it will be considered a breaking change
# For example, `feat!: add new feature` will be considered a breaking change
- label: breaking-change
title: "^[^:]+!:.*"
- label: breaking-change
body: "BREAKING CHANGE"
- label: enhancement
title: "^feat(\\(.+\\))?!?:.*"
- label: bug
title: "^fix(\\(.+\\))?!?:.*"
- label: documentation
title: "^docs(\\(.+\\))?!?:.*"
- label: performance
title: "^perf(\\(.+\\))?!?:.*"
- label: ci
title: "^ci(\\(.+\\))?!?:.*"
- label: chore
title: "^(chore|test|build|style)(\\(.+\\))?!?:.*"
- label: Python
files:
- "^python\\/.*"
- label: Rust
files:
- "^rust\\/.*"
- label: typescript
files:
- "^node\\/.*"

View File

@@ -1,41 +0,0 @@
{
"ignore_labels": ["chore"],
"pr_template": "- ${{TITLE}} by @${{AUTHOR}} in ${{URL}}",
"categories": [
{
"title": "## 🏆 Highlights",
"labels": ["highlight"]
},
{
"title": "## 🛠 Breaking Changes",
"labels": ["breaking-change"]
},
{
"title": "## ⚠️ Deprecations ",
"labels": ["deprecation"]
},
{
"title": "## 🎉 New Features",
"labels": ["enhancement"]
},
{
"title": "## 🐛 Bug Fixes",
"labels": ["bug"]
},
{
"title": "## 📚 Documentation",
"labels": ["documentation"]
},
{
"title": "## 🚀 Performance Improvements",
"labels": ["performance"]
},
{
"title": "## Other Changes"
},
{
"title": "## 🔧 Build and CI",
"labels": ["ci"]
}
]
}

View File

@@ -1,57 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build-linux-wheel
description: "Build a manylinux wheel for lance"
inputs:
python-minor-version:
description: "8, 9, 10, 11, 12"
required: true
args:
description: "--release"
required: false
default: ""
arm-build:
description: "Build for arm64 instead of x86_64"
# Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false
default: "false"
manylinux:
description: "The manylinux version to build for"
required: false
default: "2_17"
runs:
using: "composite"
steps:
- name: CONFIRM ARM BUILD
shell: bash
run: |
echo "ARM BUILD: ${{ inputs.arm-build }}"
- name: Build x86_64 Manylinux wheel
if: ${{ inputs.arm-build == 'false' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
target: x86_64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }}
before-script-linux: |
set -e
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip
- name: Build Arm Manylinux Wheel
if: ${{ inputs.arm-build == 'true' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
target: aarch64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }}
before-script-linux: |
set -e
yum install -y clang \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-aarch_64.zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip

View File

@@ -1,26 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install macos dependency
shell: bash
run: |
brew install protobuf
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
# TODO: pass through interpreter
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python

View File

@@ -1,34 +0,0 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
- uses: actions/upload-artifact@v4
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -1,20 +1,13 @@
name: Cargo Publish name: Cargo Publish
on: on:
push: release:
tags-ignore: types: [ published ]
# We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases.
- 'v*-beta*'
- '*-v*' # for example, python-vX.Y.Z
env: env:
# This env var is used by Swatinem/rust-cache@v2 for the cache # This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent. # key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always CARGO_TERM_COLOR: always
# Up-to-date compilers needed for fp16kernels.
CC: gcc-12
CXX: g++-12
jobs: jobs:
build: build:
@@ -33,4 +26,4 @@ jobs:
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package - name: Publish the package
run: | run: |
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }} cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -1,81 +0,0 @@
name: PR Checks
on:
pull_request_target:
types: [opened, edited, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
labeler:
permissions:
pull-requests: write
name: Label PR
runs-on: ubuntu-latest
steps:
- uses: srvaroa/labeler@master
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
commitlint:
permissions:
pull-requests: write
name: Verify PR title / description conforms to semantic-release
runs-on: ubuntu-latest
steps:
- uses: actions/setup-node@v3
with:
node-version: "18"
# These rules are disabled because Github will always ensure there
# is a blank line between the title and the body and Github will
# word wrap the description field to ensure a reasonable max line
# length.
- run: npm install @commitlint/config-conventional
- run: >
echo 'module.exports = {
"rules": {
"body-max-line-length": [0, "always", Infinity],
"footer-max-line-length": [0, "always", Infinity],
"body-leading-blank": [0, "always"]
}
}' > .commitlintrc.js
- run: npx commitlint --extends @commitlint/config-conventional --verbose <<< $COMMIT_MSG
env:
COMMIT_MSG: >
${{ github.event.pull_request.title }}
${{ github.event.pull_request.body }}
- if: failure()
uses: actions/github-script@v6
with:
script: |
const message = `**ACTION NEEDED**
Lance follows the [Conventional Commits specification](https://www.conventionalcommits.org/en/v1.0.0/) for release automation.
The PR title and description are used as the merge commit message.\
Please update your PR title and description to match the specification.
For details on the error please inspect the "PR Title Check" action.
`
// Get list of current comments
const comments = await github.paginate(github.rest.issues.listComments, {
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number
});
// Check if this job already commented
for (const comment of comments) {
if (comment.body === message) {
return // Already commented
}
}
// Post the comment about Conventional Commits
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: message
})
core.setFailed(message)

View File

@@ -18,45 +18,34 @@ concurrency:
group: "pages" group: "pages"
cancel-in-progress: true cancel-in-progress: true
env:
# This reduces the disk space needed for the build
RUSTFLAGS: "-C debuginfo=0"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
jobs: jobs:
# Single deploy job since we're just deploying # Single deploy job since we're just deploying
build: build:
environment: environment:
name: github-pages name: github-pages
url: ${{ steps.deployment.outputs.page_url }} url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-24.04 runs-on: ubuntu-22.04
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Install dependencies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: "3.10" python-version: "3.10"
cache: "pip" cache: "pip"
cache-dependency-path: "docs/requirements.txt" cache-dependency-path: "docs/requirements.txt"
- uses: Swatinem/rust-cache@v2
- name: Build Python - name: Build Python
working-directory: python working-directory: python
run: | run: |
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e . python -m pip install -e .
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt python -m pip install -r ../docs/requirements.txt
- name: Set up node - name: Set up node
uses: actions/setup-node@v3 uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install node dependencies - name: Install node dependencies
working-directory: node working-directory: node
run: | run: |
@@ -79,9 +68,9 @@ jobs:
- name: Setup Pages - name: Setup Pages
uses: actions/configure-pages@v2 uses: actions/configure-pages@v2
- name: Upload artifact - name: Upload artifact
uses: actions/upload-pages-artifact@v3 uses: actions/upload-pages-artifact@v1
with: with:
path: "docs/site" path: "docs/site"
- name: Deploy to GitHub Pages - name: Deploy to GitHub Pages
id: deployment id: deployment
uses: actions/deploy-pages@v4 uses: actions/deploy-pages@v1

View File

@@ -18,38 +18,26 @@ on:
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma" RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
test-python: test-python:
name: Test doc python code name: Test doc python code
runs-on: ubuntu-24.04 runs-on: "ubuntu-latest"
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y libssl-dev
rustup update && rustup default
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: 3.11 python-version: 3.11
cache: "pip" cache: "pip"
cache-dependency-path: "docs/test/requirements.txt" cache-dependency-path: "docs/test/requirements.txt"
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Build Python - name: Build Python
working-directory: docs/test working-directory: docs/test
run: run:
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt python -m pip install -r requirements.txt
- name: Create test files - name: Create test files
run: | run: |
cd docs/test cd docs/test
@@ -60,8 +48,8 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node: test-node:
name: Test doc nodejs code name: Test doc nodejs code
runs-on: ubuntu-24.04 runs-on: "ubuntu-latest"
timeout-minutes: 60 timeout-minutes: 45
strategy: strategy:
fail-fast: false fail-fast: false
steps: steps:
@@ -70,20 +58,13 @@ jobs:
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node - name: Set up Node
uses: actions/setup-node@v4 uses: actions/setup-node@v4
with: with:
node-version: 20 node-version: 20
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu - name: Install dependecies needed for ubuntu
run: | run: |
sudo apt install -y libssl-dev sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Rust cache - name: Rust cache
uses: swatinem/rust-cache@v2 uses: swatinem/rust-cache@v2
- name: Install node dependencies - name: Install node dependencies

View File

@@ -1,114 +0,0 @@
name: Build and publish Java packages
on:
release:
types: [released]
pull_request:
paths:
- .github/workflows/java-publish.yml
jobs:
macos-arm64:
name: Build on MacOS Arm64
runs-on: macos-14
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
brew install protobuf
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_darwin_aarch64.zip
path: target/release/liblancedb_jni.dylib
retention-days: 1
if-no-files-found: error
linux-arm64:
name: Build on Linux Arm64
runs-on: warp-ubuntu-2204-arm64-8x
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.81.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
rustflags: "-C debuginfo=1"
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_linux_aarch64.zip
path: target/release/liblancedb_jni.so
retention-days: 1
if-no-files-found: error
linux-x86:
runs-on: warp-ubuntu-2204-x64-8x
timeout-minutes: 30
needs: [macos-arm64, linux-arm64]
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Set up Java 8
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 8
cache: "maven"
server-id: ossrh
server-username: SONATYPE_USER
server-password: SONATYPE_TOKEN
gpg-private-key: ${{ secrets.GPG_PRIVATE_KEY }}
gpg-passphrase: ${{ secrets.GPG_PASSPHRASE }}
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Download artifact
uses: actions/download-artifact@v4
- name: Copy native libs
run: |
mkdir -p ./core/target/classes/nativelib/darwin-aarch64 ./core/target/classes/nativelib/linux-aarch64
cp ../liblancedb_jni_darwin_aarch64.zip/liblancedb_jni.dylib ./core/target/classes/nativelib/darwin-aarch64/liblancedb_jni.dylib
cp ../liblancedb_jni_linux_aarch64.zip/liblancedb_jni.so ./core/target/classes/nativelib/linux-aarch64/liblancedb_jni.so
- name: Dry run
if: github.event_name == 'pull_request'
run: |
mvn --batch-mode -DskipTests -Drust.release.build=true package
- name: Set github
run: |
git config --global user.email "LanceDB Github Runner"
git config --global user.name "dev+gha@lancedb.com"
- name: Publish with Java 8
if: github.event_name == 'release'
run: |
echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
export GPG_TTY=$(tty)
mvn --batch-mode -DskipTests -Drust.release.build=true -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}

View File

@@ -1,118 +0,0 @@
name: Build and Run Java JNI Tests
on:
push:
branches:
- main
paths:
- java/**
pull_request:
paths:
- java/**
- rust/**
- .github/workflows/java.yml
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1"
jobs:
linux-build-java-11:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
linux-build-java-17:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 17
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 17
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 17
run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
-XX:+IgnoreUnrecognizedVMOptions \
--add-opens=java.base/java.lang=ALL-UNNAMED \
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED \
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED \
--add-opens=java.base/java.io=ALL-UNNAMED \
--add-opens=java.base/java.net=ALL-UNNAMED \
--add-opens=java.base/java.nio=ALL-UNNAMED \
--add-opens=java.base/java.util=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED \
--add-opens=java.base/jdk.internal.ref=ALL-UNNAMED \
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED \
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED \
--add-opens=java.base/sun.security.action=ALL-UNNAMED \
--add-opens=java.base/sun.util.calendar=ALL-UNNAMED \
--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED \
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -1,31 +0,0 @@
name: Check license headers
on:
push:
branches:
- main
pull_request:
paths:
- rust/**
- python/**
- nodejs/**
- java/**
- .github/workflows/license-header-check.yml
jobs:
check-licenses:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Install license-header-checker
working-directory: /tmp
run: |
curl -s https://raw.githubusercontent.com/lluissm/license-header-checker/master/install.sh | bash
mv /tmp/bin/license-header-checker /usr/local/bin/
- name: Check license headers (rust)
run: license-header-checker -a -v ./rust/license_header.txt ./ rs && [[ -z `git status -s` ]]
- name: Check license headers (python)
run: license-header-checker -a -v ./python/license_header.txt python py && [[ -z `git status -s` ]]
- name: Check license headers (typescript)
run: license-header-checker -a -v ./nodejs/license_header.txt nodejs ts && [[ -z `git status -s` ]]
- name: Check license headers (java)
run: license-header-checker -a -v ./nodejs/license_header.txt java java && [[ -z `git status -s` ]]

View File

@@ -1,95 +1,59 @@
name: Create release commit name: Create release commit
# This workflow increments versions, tags the version, and pushes it.
# When a tag is pushed, another workflow is triggered that creates a GH release
# and uploads the binaries. This workflow is only for creating the tag.
# This script will enforce that a minor version is incremented if there are any
# breaking changes since the last minor increment. However, it isn't able to
# differentiate between breaking changes in Node versus Python. If you wish to
# bypass this check, you can manually increment the version and push the tag.
on: on:
workflow_dispatch: workflow_dispatch:
inputs: inputs:
dry_run: dry_run:
description: 'Dry run (create the local commit/tags but do not push it)' description: 'Dry run (create the local commit/tags but do not push it)'
required: true required: true
default: false default: "false"
type: boolean
type:
description: 'What kind of release is this?'
required: true
default: 'preview'
type: choice type: choice
options: options:
- preview - "true"
- stable - "false"
python: part:
description: 'Make a Python release' description: 'What kind of release is this?'
required: true required: true
default: true default: 'patch'
type: boolean type: choice
other: options:
description: 'Make a Node/Rust/Java release' - patch
required: true - minor
default: true - major
type: boolean
bump-minor:
description: 'Bump minor version'
required: true
default: false
type: boolean
jobs: jobs:
make-release: bump-version:
# Creates tag and GH release. The GH release will trigger the build and release jobs. runs-on: ubuntu-latest
runs-on: ubuntu-24.04
permissions:
contents: write
steps: steps:
- name: Output Inputs - name: Check out main
run: echo "${{ toJSON(github.event.inputs) }}" uses: actions/checkout@v4
- uses: actions/checkout@v4
with: with:
ref: main
persist-credentials: false
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
# It's important we use our token here, as the default token will NOT
# trigger any workflows watching for new tags. See:
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Validate Lance dependency is at stable version
if: ${{ inputs.type == 'stable' }}
run: python ci/validate_stable_lance.py
- name: Set git configs for bumpversion - name: Set git configs for bumpversion
shell: bash shell: bash
run: | run: |
git config user.name 'Lance Release' git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com' git config user.email 'lance-dev@lancedb.com'
- name: Bump Python version - name: Set up Python 3.11
if: ${{ inputs.python }} uses: actions/setup-python@v5
working-directory: python with:
env: python-version: "3.11"
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} - name: Bump version, create tag and commit
run: | run: |
# Need to get the commit before bumping the version, so we can pip install bump2version
# determine if there are breaking changes in the next step as well. bumpversion --verbose ${{ inputs.part }}
echo "COMMIT_BEFORE_BUMP=$(git rev-parse HEAD)" >> $GITHUB_ENV - name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
pip install bump-my-version PyGithub packaging
bash ../ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} python-v
- name: Bump Node/Rust version
if: ${{ inputs.other }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh --amend
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master uses: ad-m/github-push-action@master
with: with:
# Need to use PAT here too to trigger next workflow. See comment above.
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }} branch: main
tags: true tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ inputs.dry_run }} == "false"
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -20,11 +20,31 @@ env:
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
# #
# Use native CPU to accelerate tests if possible, especially for f16 # Use native CPU to accelerate tests if possible, especially for f16
# target-cpu=haswell fixes failing ci build RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
lint:
name: Lint
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Lint
run: |
npm ci
npm run lint
linux: linux:
name: Linux (Node ${{ matrix.node-version }}) name: Linux (Node ${{ matrix.node-version }})
timeout-minutes: 30 timeout-minutes: 30
@@ -107,7 +127,6 @@ jobs:
AWS_ENDPOINT: http://localhost:4566 AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb # this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566 DYNAMODB_ENDPOINT: http://localhost:4566
ALLOW_HTTP: true
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:

View File

@@ -28,10 +28,6 @@ jobs:
run: run:
shell: bash shell: bash
working-directory: nodejs working-directory: nodejs
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
@@ -47,18 +43,12 @@ jobs:
run: | run: |
sudo apt update sudo apt update
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- name: Lint - name: Lint
run: | run: |
cargo fmt --all -- --check cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings cargo clippy --all --all-features -- -D warnings
npm ci npm ci
npm run lint-ci npm run lint
- name: Lint examples
working-directory: nodejs/examples
run: npm ci && npm run lint-ci
linux: linux:
name: Linux (NodeJS ${{ matrix.node-version }}) name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30 timeout-minutes: 30
@@ -90,37 +80,8 @@ jobs:
run: | run: |
npm ci npm ci
npm run build npm run build
- name: Setup localstack
working-directory: .
run: docker compose up --detach --wait
- name: Test - name: Test
env:
S3_TEST: "1"
run: npm run test run: npm run test
- name: Setup examples
working-directory: nodejs/examples
run: npm ci
- name: Test examples
working-directory: ./
env:
OPENAI_API_KEY: test
OPENAI_BASE_URL: http://0.0.0.0:8000
run: |
python ci/mock_openai.py &
cd nodejs/examples
npm test
- name: Check docs
run: |
# We run this as part of the job because the binary needs to be built
# first to export the types of the native code.
set -e
npm ci
npm run docs
if ! git diff --exit-code -- . ':(exclude)Cargo.lock'; then
echo "Docs need to be updated"
echo "Run 'npm run docs', fix any warnings, and commit the changes."
exit 1
fi
macos: macos:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "macos-14" runs-on: "macos-14"
@@ -150,3 +111,4 @@ jobs:
- name: Test - name: Test
run: | run: |
npm run test npm run test

View File

@@ -1,379 +1,14 @@
name: NPM Publish name: NPM Publish
env:
MACOSX_DEPLOYMENT_TARGET: '10.13'
CARGO_INCREMENTAL: '0'
permissions:
contents: write
id-token: write
on: on:
push: release:
branches: types: [ published ]
- main
tags:
- "v*"
pull_request:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/npm-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs: jobs:
gh-release: node:
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Extract version
id: extract_version
env:
GITHUB_REF: ${{ github.ref }}
run: |
set -e
echo "Extracting tag and version from $GITHUB_REF"
if [[ $GITHUB_REF =~ refs/tags/v(.*) ]]; then
VERSION=${BASH_REMATCH[1]}
TAG=v$VERSION
echo "tag=$TAG" >> $GITHUB_OUTPUT
echo "version=$VERSION" >> $GITHUB_OUTPUT
else
echo "Failed to extract version from $GITHUB_REF"
exit 1
fi
echo "Extracted version $VERSION from $GITHUB_REF"
if [[ $VERSION =~ beta ]]; then
echo "This is a beta release"
# Get last release (that is not this one)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^v \
| grep -vF "$TAG" \
| python ci/semver_sort.py v \
| tail -n 1)
else
echo "This is a stable release"
# Get last stable tag (ignore betas)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^v \
| grep -vF "$TAG" \
| grep -v beta \
| python ci/semver_sort.py v \
| tail -n 1)
fi
echo "Found from tag $FROM_TAG"
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
- name: Create Release Notes
id: release_notes
uses: mikepenz/release-changelog-builder-action@v4
with:
configuration: .github/release_notes.json
toTag: ${{ steps.extract_version.outputs.tag }}
fromTag: ${{ steps.extract_version.outputs.from_tag }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Create GH release
uses: softprops/action-gh-release@v2
with:
prerelease: ${{ contains('beta', github.ref) }}
tag_name: ${{ steps.extract_version.outputs.tag }}
token: ${{ secrets.GITHUB_TOKEN }}
generate_release_notes: false
name: Node/Rust LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.release_notes.outputs.changelog }}
build-lancedb:
strategy:
fail-fast: false
matrix:
settings:
- target: x86_64-apple-darwin
host: macos-latest
features: ","
pre_build: |-
brew install protobuf
rustup target add x86_64-apple-darwin
- target: aarch64-apple-darwin
host: macos-latest
features: fp16kernels
pre_build: brew install protobuf
- target: x86_64-pc-windows-msvc
host: windows-latest
features: ","
pre_build: |-
choco install --no-progress protoc ninja nasm
tail -n 1000 /c/ProgramData/chocolatey/logs/chocolatey.log
# There is an issue where choco doesn't add nasm to the path
export PATH="$PATH:/c/Program Files/NASM"
nasm -v
- target: aarch64-pc-windows-msvc
host: windows-latest
features: ","
pre_build: |-
choco install --no-progress protoc
rustup target add aarch64-pc-windows-msvc
- target: x86_64-unknown-linux-gnu
host: ubuntu-latest
features: fp16kernels
# https://github.com/napi-rs/napi-rs/blob/main/debian.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-debian
pre_build: |-
set -e &&
apt-get update &&
apt-get install -y protobuf-compiler pkg-config
- target: x86_64-unknown-linux-musl
# This one seems to need some extra memory
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
features: fp16kernels
pre_build: |-
set -e &&
apk add protobuf-dev curl &&
ln -s /usr/lib/gcc/x86_64-alpine-linux-musl/14.2.0/crtbeginS.o /usr/lib/crtbeginS.o &&
ln -s /usr/lib/libgcc_s.so /usr/lib/libgcc.so &&
CC=gcc &&
CXX=g++
- target: aarch64-unknown-linux-gnu
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/debian-aarch64.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-debian-aarch64
features: "fp16kernels"
pre_build: |-
set -e &&
apt-get update &&
apt-get install -y protobuf-compiler pkg-config &&
# https://github.com/aws/aws-lc-rs/issues/737#issuecomment-2725918627
ln -s /usr/aarch64-unknown-linux-gnu/lib/gcc/aarch64-unknown-linux-gnu/4.8.5/crtbeginS.o /usr/aarch64-unknown-linux-gnu/aarch64-unknown-linux-gnu/sysroot/usr/lib/crtbeginS.o &&
ln -s /usr/aarch64-unknown-linux-gnu/lib/gcc /usr/aarch64-unknown-linux-gnu/aarch64-unknown-linux-gnu/sysroot/usr/lib/gcc &&
rustup target add aarch64-unknown-linux-gnu
- target: aarch64-unknown-linux-musl
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
features: ","
pre_build: |-
set -e &&
apk add protobuf-dev &&
rustup target add aarch64-unknown-linux-musl &&
export CC_aarch64_unknown_linux_musl=aarch64-linux-musl-gcc &&
export CXX_aarch64_unknown_linux_musl=aarch64-linux-musl-g++
name: build - ${{ matrix.settings.target }}
runs-on: ${{ matrix.settings.host }}
defaults:
run:
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
if: ${{ !matrix.settings.docker }}
with:
node-version: 20
cache: npm
cache-dependency-path: nodejs/package-lock.json
- name: Install
uses: dtolnay/rust-toolchain@stable
if: ${{ !matrix.settings.docker }}
with:
toolchain: stable
targets: ${{ matrix.settings.target }}
- name: Cache cargo
uses: actions/cache@v4
with:
path: |
~/.cargo/registry/index/
~/.cargo/registry/cache/
~/.cargo/git/db/
.cargo-cache
target/
key: nodejs-${{ matrix.settings.target }}-cargo-${{ matrix.settings.host }}
- name: Setup toolchain
run: ${{ matrix.settings.setup }}
if: ${{ matrix.settings.setup }}
shell: bash
- name: Install dependencies
run: npm ci
- name: Build in docker
uses: addnab/docker-run-action@v3
if: ${{ matrix.settings.docker }}
with:
image: ${{ matrix.settings.docker }}
options: "--user 0:0 -v ${{ github.workspace }}/.cargo-cache/git/db:/usr/local/cargo/git/db \
-v ${{ github.workspace }}/.cargo/registry/cache:/usr/local/cargo/registry/cache \
-v ${{ github.workspace }}/.cargo/registry/index:/usr/local/cargo/registry/index \
-v ${{ github.workspace }}:/build -w /build/nodejs"
run: |
set -e
${{ matrix.settings.pre_build }}
npx napi build --platform --release --no-const-enum \
--features ${{ matrix.settings.features }} \
--target ${{ matrix.settings.target }} \
--dts ../lancedb/native.d.ts \
--js ../lancedb/native.js \
--strip \
dist/
- name: Build
run: |
${{ matrix.settings.pre_build }}
npx napi build --platform --release --no-const-enum \
--features ${{ matrix.settings.features }} \
--target ${{ matrix.settings.target }} \
--dts ../lancedb/native.d.ts \
--js ../lancedb/native.js \
--strip \
$EXTRA_ARGS \
dist/
if: ${{ !matrix.settings.docker }}
shell: bash
- name: Upload artifact
uses: actions/upload-artifact@v4
with:
name: lancedb-${{ matrix.settings.target }}
path: nodejs/dist/*.node
if-no-files-found: error
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Make generic artifacts
if: ${{ matrix.settings.target == 'aarch64-apple-darwin' }}
run: npm run tsc
- name: Upload Generic Artifacts
if: ${{ matrix.settings.target == 'aarch64-apple-darwin' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
test-lancedb:
name: "Test: ${{ matrix.settings.target }} - node@${{ matrix.node }}"
needs:
- build-lancedb
strategy:
fail-fast: false
matrix:
settings:
# TODO: Get tests passing on Windows (failing from test tmpdir issue)
# - host: windows-latest
# target: x86_64-pc-windows-msvc
- host: macos-latest
target: aarch64-apple-darwin
- target: x86_64-unknown-linux-gnu
host: ubuntu-latest
- target: aarch64-unknown-linux-gnu
host: buildjet-16vcpu-ubuntu-2204-arm
node:
- '20'
runs-on: ${{ matrix.settings.host }}
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: ${{ matrix.node }}
cache: npm
cache-dependency-path: nodejs/package-lock.json
- name: Install dependencies
run: npm ci
- name: Download artifacts
uses: actions/download-artifact@v4
with:
name: lancedb-${{ matrix.settings.target }}
path: nodejs/dist/
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
# For testing purposes:
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
# run-id: 13982782871
- name: List packages
run: ls -R dist
- name: Move built files
run: cp dist/native.d.ts dist/native.js dist/*.node lancedb/
- name: Test bindings
run: npm test
publish:
name: Publish
runs-on: ubuntu-latest
defaults:
run:
shell: bash
working-directory: nodejs
needs:
- test-lancedb
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: 20
cache: npm
cache-dependency-path: nodejs/package-lock.json
registry-url: "https://registry.npmjs.org"
- name: Install dependencies
run: npm ci
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: lancedb-*
path: nodejs/nodejs-artifacts
merge-multiple: true
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- name: Display structure of downloaded files
run: find dist && find nodejs-artifacts
- name: Move artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: List packages
run: find npm
- name: Publish
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
DRY_RUN: ${{ !startsWith(github.ref, 'refs/tags/v') }}
run: |
ARGS="--access public"
if [[ $DRY_RUN == "true" ]]; then
ARGS="$ARGS --dry-run"
fi
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
ARGS="$ARGS --tag preview"
fi
npm publish $ARGS
# ----------------------------------------------------------------------------
# vectordb release (legacy)
# ----------------------------------------------------------------------------
# TODO: delete this when we drop vectordb
node:
name: vectordb Typescript
runs-on: ubuntu-latest
defaults: defaults:
run: run:
shell: bash shell: bash
@@ -384,7 +19,7 @@ jobs:
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
cache: "npm" cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- name: Install dependencies - name: Install dependencies
run: | run: |
@@ -396,14 +31,13 @@ jobs:
npm run tsc npm run tsc
npm pack npm pack
- name: Upload Linux Artifacts - name: Upload Linux Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v3
with: with:
name: node-package name: node-package
path: | path: |
node/vectordb-*.tgz node/vectordb-*.tgz
node-macos: node-macos:
name: vectordb ${{ matrix.config.arch }}
strategy: strategy:
matrix: matrix:
config: config:
@@ -413,6 +47,8 @@ jobs:
# xlarge is implicitly arm64. # xlarge is implicitly arm64.
runner: macos-14 runner: macos-14
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
@@ -425,15 +61,18 @@ jobs:
- name: Build MacOS native node modules - name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }} run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts - name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v3
with: with:
name: node-native-darwin-${{ matrix.config.arch }} name: native-darwin
path: | path: |
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
node-linux-gnu:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu) node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
@@ -442,11 +81,12 @@ jobs:
runner: ubuntu-latest runner: ubuntu-latest
- arch: aarch64 - arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors. # For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: warp-ubuntu-latest-arm64-4x runner: buildjet-16vcpu-ubuntu-2204-arm
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
# To avoid OOM errors on ARM, we create a swap file. # Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build - name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }} if: ${{ matrix.config.arch == 'aarch64' }}
run: | run: |
@@ -461,17 +101,18 @@ jobs:
free -h free -h
- name: Build Linux Artifacts - name: Build Linux Artifacts
run: | run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts - name: Upload Linux Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v3
with: with:
name: node-native-linux-${{ matrix.config.arch }}-gnu name: native-linux
path: | path: |
node/dist/lancedb-vectordb-linux*.tgz node/dist/lancedb-vectordb-linux*.tgz
node-windows: node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
@@ -495,70 +136,45 @@ jobs:
- name: Build Windows native node modules - name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }} run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts - name: Upload Windows Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v3
with: with:
name: node-native-windows name: native-windows
path: | path: |
node/dist/lancedb-vectordb-win32*.tgz node/dist/lancedb-vectordb-win32*.tgz
release: release:
name: vectordb NPM Publish needs: [node, node-macos, node-linux, node-windows]
needs: [node, node-macos, node-linux-gnu, node-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
permissions:
contents: write
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
- uses: actions/download-artifact@v4 - uses: actions/download-artifact@v3
with:
pattern: node-*
- name: Display structure of downloaded files - name: Display structure of downloaded files
run: ls -R run: ls -R
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
registry-url: "https://registry.npmjs.org" registry-url: 'https://registry.npmjs.org'
- name: Publish to NPM - name: Publish to NPM
env: env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }} NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: | run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
fi
mv */*.tgz . mv */*.tgz .
for filename in *.tgz; do for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename npm publish $filename
done done
- name: Deprecate
env: update-package-lock:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }} needs: [release]
# We need to deprecate the old package to avoid confusion. runs-on: ubuntu-latest
# Each time we publish a new version, it gets undeprecated. steps:
run: npm deprecate vectordb "Use @lancedb/lancedb instead."
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
with: with:
ref: main ref: main
- name: Update package-lock.json persist-credentials: false
run: | fetch-depth: 0
git config user.name 'Lance Release' lfs: true
git config user.email 'lance-dev@lancedb.com' - uses: ./.github/workflows/update_package_lock
bash ci/update_lockfiles.sh
- name: Push new commit
uses: ad-m/github-push-action@master
with: with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}

View File

@@ -1,175 +1,31 @@
name: PyPI Publish name: PyPI Publish
on: on:
push: release:
tags: types: [ published ]
- 'python-v*'
pull_request:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/pypi-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
jobs: jobs:
linux: publish:
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
timeout-minutes: 60
strategy:
matrix:
config:
- platform: x86_64
manylinux: "2_17"
extra_args: ""
runner: ubuntu-22.04
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
runner: ubuntu-22.04
- platform: aarch64
manylinux: "2_17"
extra_args: ""
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: ubuntu-2404-8x-arm64
- platform: aarch64
manylinux: "2_28"
extra_args: "--features fp16kernels"
runner: ubuntu-2404-8x-arm64
runs-on: ${{ matrix.config.runner }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.8
- uses: ./.github/workflows/build_linux_wheel
with:
python-minor-version: 8
args: "--release --strip ${{ matrix.config.extra_args }}"
arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
mac:
timeout-minutes: 60
runs-on: ${{ matrix.config.runner }}
strategy:
matrix:
config:
- target: x86_64-apple-darwin
runner: macos-13
- target: aarch64-apple-darwin
runner: macos-14
env:
MACOSX_DEPLOYMENT_TARGET: 10.15
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.12
- uses: ./.github/workflows/build_mac_wheel
with:
python-minor-version: 8
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
windows:
timeout-minutes: 60
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.12
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: 8
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/python-v')
runs-on: ubuntu-latest runs-on: ubuntu-latest
permissions: # Only runs on tags that matches the python-make-release action
contents: write if: startsWith(github.ref, 'refs/tags/python-v')
defaults:
run:
shell: bash
working-directory: python
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with: with:
fetch-depth: 0 python-version: "3.8"
lfs: true - name: Build distribution
- name: Extract version
id: extract_version
env:
GITHUB_REF: ${{ github.ref }}
run: | run: |
set -e ls -la
echo "Extracting tag and version from $GITHUB_REF" pip install wheel setuptools --upgrade
if [[ $GITHUB_REF =~ refs/tags/python-v(.*) ]]; then python setup.py sdist bdist_wheel
VERSION=${BASH_REMATCH[1]} - name: Publish
TAG=python-v$VERSION uses: pypa/gh-action-pypi-publish@v1.8.5
echo "tag=$TAG" >> $GITHUB_OUTPUT
echo "version=$VERSION" >> $GITHUB_OUTPUT
else
echo "Failed to extract version from $GITHUB_REF"
exit 1
fi
echo "Extracted version $VERSION from $GITHUB_REF"
if [[ $VERSION =~ beta ]]; then
echo "This is a beta release"
# Get last release (that is not this one)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^python-v \
| grep -vF "$TAG" \
| python ci/semver_sort.py python-v \
| tail -n 1)
else
echo "This is a stable release"
# Get last stable tag (ignore betas)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^python-v \
| grep -vF "$TAG" \
| grep -v beta \
| python ci/semver_sort.py python-v \
| tail -n 1)
fi
echo "Found from tag $FROM_TAG"
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
- name: Create Python Release Notes
id: python_release_notes
uses: mikepenz/release-changelog-builder-action@v4
with: with:
configuration: .github/release_notes.json password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
toTag: ${{ steps.extract_version.outputs.tag }} packages-dir: python/dist
fromTag: ${{ steps.extract_version.outputs.from_tag }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Create Python GH release
uses: softprops/action-gh-release@v2
with:
prerelease: ${{ contains('beta', github.ref) }}
tag_name: ${{ steps.extract_version.outputs.tag }}
token: ${{ secrets.GITHUB_TOKEN }}
generate_release_notes: false
name: Python LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.python_release_notes.outputs.changelog }}

View File

@@ -0,0 +1,56 @@
name: Python - Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump version, create tag and commit
working-directory: python
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -13,105 +13,13 @@ concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }} group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true cancel-in-progress: true
env:
# Color output for pytest is off by default.
PYTEST_ADDOPTS: "--color=yes"
FORCE_COLOR: "1"
jobs: jobs:
lint:
name: "Lint"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install ruff
run: |
pip install ruff==0.9.9
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff check .
type-check:
name: "Type Check"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install protobuf compiler
run: |
sudo apt update
sudo apt install -y protobuf-compiler
pip install toml
- name: Install dependencies
run: |
python ../ci/parse_requirements.py pyproject.toml --extras dev,tests,embeddings > requirements.txt
pip install -r requirements.txt
- name: Run pyright
run: pyright
doctest:
name: "Doctest"
timeout-minutes: 30
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
cache: "pip"
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- name: Install
run: |
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests,dev,embeddings]
pip install tantivy
pip install mlx
- name: Doctest
run: pytest --doctest-modules python/lancedb
linux: linux:
name: "Linux: python-3.${{ matrix.python-minor-version }}"
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
python-minor-version: ["9", "12"] python-minor-version: [ "8", "11" ]
runs-on: "ubuntu-24.04" runs-on: "ubuntu-22.04"
defaults: defaults:
run: run:
shell: bash shell: bash
@@ -121,67 +29,34 @@ jobs:
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: 3.${{ matrix.python-minor-version }} python-version: 3.${{ matrix.python-minor-version }}
- uses: Swatinem/rust-cache@v2 - name: Install lancedb
with:
workspaces: python
- uses: ./.github/workflows/build_linux_wheel
- uses: ./.github/workflows/run_tests
with:
integration: true
- name: Test without pylance or pandas
run: | run: |
pip uninstall -y pylance pandas pip install -e .[tests]
pytest -vv python/tests/test_table.py pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
# Make sure wheels are not included in the Rust cache pip install pytest pytest-mock ruff
- name: Delete wheels - name: Format check
run: rm -rf target/wheels run: ruff format --check .
- name: Lint
run: ruff .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
platform: platform:
name: "Mac: ${{ matrix.config.name }}" name: "Platform: ${{ matrix.config.name }}"
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
config: config:
- name: x86 - name: x86 Mac
runner: macos-13 runner: macos-13
- name: Arm - name: Arm Mac
runner: macos-14 runner: macos-14
runs-on: "${{ matrix.config.runner }}" - name: x86 Windows
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_mac_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 60
strategy:
matrix:
config:
- name: x86
runner: windows-latest runner: windows-latest
runs-on: "${{ matrix.config.runner }}" runs-on: "${{ matrix.config.runner }}"
defaults: defaults:
@@ -196,18 +71,17 @@ jobs:
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: "3.12" python-version: "3.11"
- uses: Swatinem/rust-cache@v2 - name: Install lancedb
with: run: |
workspaces: python pip install -e .[tests]
- uses: ./.github/workflows/build_windows_wheel pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
- uses: ./.github/workflows/run_tests pip install pytest pytest-mock
# Make sure wheels are not included in the Rust cache - name: Run tests
- name: Delete wheels run: pytest -m "not slow" -x -v --durations=30 tests
run: rm -rf target/wheels
pydantic1x: pydantic1x:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "ubuntu-24.04" runs-on: "ubuntu-22.04"
defaults: defaults:
run: run:
shell: bash shell: bash
@@ -217,10 +91,6 @@ jobs:
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
@@ -228,8 +98,10 @@ jobs:
- name: Install lancedb - name: Install lancedb
run: | run: |
pip install "pydantic<2" pip install "pydantic<2"
pip install pyarrow==16 pip install -e .[tests]
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests] pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install tantivy pip install pytest pytest-mock
- name: Run tests - name: Run tests
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb

View File

@@ -1,31 +0,0 @@
name: run-tests
description: "Install lance wheel and run unit tests"
inputs:
python-minor-version:
required: true
description: "8 9 10 11 12"
integration:
required: false
description: "Run integration tests"
default: "false"
runs:
using: "composite"
steps:
- name: Install lancedb
shell: bash
run: |
pip3 install --extra-index-url https://pypi.fury.io/lancedb/ $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: Setup localstack for integration tests
if: ${{ inputs.integration == 'true' }}
shell: bash
working-directory: .
run: docker compose up --detach --wait
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -vv --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -vv --durations=30 python/python/tests

View File

@@ -22,27 +22,20 @@ env:
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1" RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
CARGO_INCREMENTAL: 0
jobs: jobs:
lint: lint:
timeout-minutes: 30 timeout-minutes: 30
runs-on: ubuntu-24.04 runs-on: ubuntu-22.04
defaults: defaults:
run: run:
shell: bash shell: bash
env: working-directory: rust
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust
@@ -53,49 +46,14 @@ jobs:
- name: Run format - name: Run format
run: cargo fmt --all -- --check run: cargo fmt --all -- --check
- name: Run clippy - name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings run: cargo clippy --all --all-features -- -D warnings
build-no-lock:
runs-on: ubuntu-24.04
timeout-minutes: 30
env:
# Need up-to-date compilers for kernels
CC: clang
CXX: clang++
steps:
- uses: actions/checkout@v4
# Building without a lock file often requires the latest Rust version since downstream
# dependencies may have updated their minimum Rust version.
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "stable"
# Remove cargo.lock to force a fresh build
- name: Remove Cargo.lock
run: rm -f Cargo.lock
- uses: rui314/setup-mold@v1
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build all
run: |
cargo build --benches --all-features --tests
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
# To build all features, we need more disk space than is available runs-on: ubuntu-22.04
# on the free OSS github runner. This is mostly due to the the
# sentence-transformers feature.
runs-on: ubuntu-2404-4x-x64
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: rust working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
@@ -106,27 +64,14 @@ jobs:
workspaces: rust workspaces: rust
- name: Install dependencies - name: Install dependencies
run: | run: |
# This shaves 2 minutes off this step in CI. This doesn't seem to be sudo apt update
# necessary in standard runners, but it is in the 4x runners.
sudo rm /var/lib/man-db/auto-update
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- uses: rui314/setup-mold@v1
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build - name: Build
run: cargo build --all-features --tests --locked --examples run: cargo build --all-features
- name: Run tests - name: Run tests
run: cargo test --all-features --locked run: cargo test --all-features
- name: Run examples - name: Run examples
run: cargo run --example simple --locked run: cargo run --example simple
macos: macos:
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
@@ -149,78 +94,28 @@ jobs:
workspaces: rust workspaces: rust
- name: Install dependencies - name: Install dependencies
run: brew install protobuf run: brew install protobuf
- name: Build
run: cargo build --all-features
- name: Run tests - name: Run tests
run: | run: cargo test --all-features
# Don't run the s3 integration tests since docker isn't available
# on this image.
ALL_FEATURES=`cargo metadata --format-version=1 --no-deps \
| jq -r '.packages[] | .features | keys | .[]' \
| grep -v s3-test | sort | uniq | paste -s -d "," -`
cargo test --features $ALL_FEATURES --locked
windows: windows:
runs-on: windows-2022 runs-on: windows-2022
strategy:
matrix:
target:
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
defaults:
run:
working-directory: rust/lancedb
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust
- name: Install Protoc v21.12 - name: Install Protoc v21.12
run: choco install --no-progress protoc working-directory: C:\
- name: Build
run: | run: |
rustup target add ${{ matrix.target }} New-Item -Path 'C:\protoc' -ItemType Directory
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT Set-Location C:\protoc
cargo build --features remote --tests --locked --target ${{ matrix.target }} Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests - name: Run tests
# Can only run tests when target matches host
if: ${{ matrix.target == 'x86_64-pc-windows-msvc' }}
run: | run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT $env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo test --features remote --locked cargo build
cargo test
msrv:
# Check the minimum supported Rust version
name: MSRV Check - Rust v${{ matrix.msrv }}
runs-on: ubuntu-24.04
strategy:
matrix:
msrv: ["1.78.0"] # This should match up with rust-version in Cargo.toml
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
submodules: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install ${{ matrix.msrv }}
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ matrix.msrv }}
- name: Downgrade dependencies
# These packages have newer requirements for MSRV
run: |
cargo update -p aws-sdk-bedrockruntime --precise 1.64.0
cargo update -p aws-sdk-dynamodb --precise 1.55.0
cargo update -p aws-config --precise 1.5.10
cargo update -p aws-sdk-kms --precise 1.51.0
cargo update -p aws-sdk-s3 --precise 1.65.0
cargo update -p aws-sdk-sso --precise 1.50.0
cargo update -p aws-sdk-ssooidc --precise 1.51.0
cargo update -p aws-sdk-sts --precise 1.51.0
cargo update -p home --precise 0.5.9
- name: cargo +${{ matrix.msrv }} check
run: cargo check --workspace --tests --benches --all-features

View File

@@ -0,0 +1,33 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,19 +0,0 @@
name: Update NodeJs package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -1,45 +0,0 @@
name: upload-wheel
description: "Upload wheels to Pypi"
inputs:
pypi_token:
required: true
description: "release token for the repo"
fury_token:
required: true
description: "release token for the fury repo"
runs:
using: "composite"
steps:
- name: Install dependencies
shell: bash
run: |
python -m pip install --upgrade pip
pip install twine
python3 -m pip install --upgrade pkginfo
- name: Choose repo
shell: bash
id: choose_repo
run: |
if [[ ${{ github.ref }} == *beta* ]]; then
echo "repo=fury" >> $GITHUB_OUTPUT
else
echo "repo=pypi" >> $GITHUB_OUTPUT
fi
- name: Publish to PyPI
shell: bash
env:
FURY_TOKEN: ${{ inputs.fury_token }}
PYPI_TOKEN: ${{ inputs.pypi_token }}
run: |
if [[ ${{ steps.choose_repo.outputs.repo }} == fury ]]; then
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
echo "Uploading $WHEEL to Fury"
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
else
twine upload --repository ${{ steps.choose_repo.outputs.repo }} \
--username __token__ \
--password $PYPI_TOKEN \
target/wheels/lancedb-*.whl
fi

12
.gitignore vendored
View File

@@ -4,11 +4,11 @@
**/__pycache__ **/__pycache__
.DS_Store .DS_Store
venv venv
.venv
.vscode .vscode
.zed
rust/target rust/target
rust/Cargo.lock
site site
@@ -22,11 +22,6 @@ python/dist
**/.hypothesis **/.hypothesis
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
## Javascript ## Javascript
*.node *.node
**/node_modules **/node_modules
@@ -34,10 +29,9 @@ python/dist
node/dist node/dist
node/examples/**/package-lock.json node/examples/**/package-lock.json
node/examples/**/dist node/examples/**/dist
nodejs/lancedb/native*
dist dist
## Rust ## Rust
target target
**/sccache.log Cargo.lock

View File

@@ -5,23 +5,17 @@ repos:
- id: check-yaml - id: check-yaml
- id: end-of-file-fixer - id: end-of-file-fixer
- id: trailing-whitespace - id: trailing-whitespace
- repo: https://github.com/psf/black
rev: 22.12.0
hooks:
- id: black
- repo: https://github.com/astral-sh/ruff-pre-commit - repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version. # Ruff version.
rev: v0.9.9 rev: v0.0.277
hooks: hooks:
- id: ruff - id: ruff
# - repo: https://github.com/RobertCraigie/pyright-python - repo: https://github.com/pycqa/isort
# rev: v1.1.395 rev: 5.12.0
# hooks:
# - id: pyright
# args: ["--project", "python"]
# additional_dependencies: [pyarrow-stubs]
- repo: local
hooks: hooks:
- id: local-biome-check - id: isort
name: biome check name: isort (python)
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*

View File

@@ -1,78 +0,0 @@
# Contributing to LanceDB
LanceDB is an open-source project and we welcome contributions from the community.
This document outlines the process for contributing to LanceDB.
## Reporting Issues
If you encounter a bug or have a feature request, please open an issue on the
[GitHub issue tracker](https://github.com/lancedb/lancedb).
## Picking an issue
We track issues on the GitHub issue tracker. If you are looking for something to
work on, check the [good first issue](https://github.com/lancedb/lancedb/contribute) label. These issues are typically the best described and have the smallest scope.
If there's an issue you are interested in working on, please leave a comment on the issue. This will help us avoid duplicate work. Additionally, if you have questions about the issue, please ask them in the issue comments. We are happy to provide guidance on how to approach the issue.
## Configuring Git
First, fork the repository on GitHub, then clone your fork:
```bash
git clone https://github.com/<username>/lancedb.git
cd lancedb
```
Then add the main repository as a remote:
```bash
git remote add upstream https://github.com/lancedb/lancedb.git
git fetch upstream
```
## Setting up your development environment
We have development environments for Python, Typescript, and Java. Each environment has its own setup instructions.
* [Python](python/CONTRIBUTING.md)
* [Typescript](nodejs/CONTRIBUTING.md)
<!-- TODO: add Java contributing guide -->
* [Documentation](docs/README.md)
## Best practices for pull requests
For the best chance of having your pull request accepted, please follow these guidelines:
1. Unit test all bug fixes and new features. Your code will not be merged if it
doesn't have tests.
1. If you change the public API, update the documentation in the `docs` directory.
1. Aim to minimize the number of changes in each pull request. Keep to solving
one problem at a time, when possible.
1. Before marking a pull request ready-for-review, do a self review of your code.
Is it clear why you are making the changes? Are the changes easy to understand?
1. Use [conventional commit messages](https://www.conventionalcommits.org/en/) as pull request titles. Examples:
* New feature: `feat: adding foo API`
* Bug fix: `fix: issue with foo API`
* Documentation change: `docs: adding foo API documentation`
1. If your pull request is a work in progress, leave the pull request as a draft.
We will assume the pull request is ready for review when it is opened.
1. When writing tests, test the error cases. Make sure they have understandable
error messages.
## Project structure
The core library is written in Rust. The Python, Typescript, and Java libraries
are wrappers around the Rust library.
* `src/lancedb`: Rust library source code
* `python`: Python package source code
* `nodejs`: Typescript package source code
* `node`: **Deprecated** Typescript package source code
* `java`: Java package source code
* `docs`: Documentation source code
## Release process
For information on the release process, see: [release_process.md](release_process.md)

8874
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,11 +1,5 @@
[workspace] [workspace]
members = [ members = ["rust/ffi/node", "rust/vectordb", "nodejs"]
"rust/ffi/node",
"rust/lancedb",
"nodejs",
"python",
"java/core/lancedb-jni",
]
# Python package needs to be built by maturin. # Python package needs to be built by maturin.
exclude = ["python"] exclude = ["python"]
resolver = "2" resolver = "2"
@@ -18,55 +12,29 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"] keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.30.0", "features" = ["dynamodb"] } lance = { "version" = "=0.9.18", "features" = ["dynamodb"] }
lance-io = "=0.30.0" lance-index = { "version" = "=0.9.18" }
lance-index = "=0.30.0" lance-linalg = { "version" = "=0.9.18" }
lance-linalg = "=0.30.0" lance-testing = { "version" = "=0.9.18" }
lance-table = "=0.30.0"
lance-testing = "=0.30.0"
lance-datafusion = "=0.30.0"
lance-encoding = "=0.30.0"
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "55.1", optional = false } arrow = { version = "50.0", optional = false }
arrow-array = "55.1" arrow-array = "50.0"
arrow-data = "55.1" arrow-data = "50.0"
arrow-ipc = "55.1" arrow-ipc = "50.0"
arrow-ord = "55.1" arrow-ord = "50.0"
arrow-schema = "55.1" arrow-schema = "50.0"
arrow-arith = "55.1" arrow-arith = "50.0"
arrow-cast = "55.1" arrow-cast = "50.0"
async-trait = "0" async-trait = "0"
datafusion = { version = "47.0", default-features = false } chrono = "0.4.23"
datafusion-catalog = "47.0" half = { "version" = "=2.3.1", default-features = false, features = [
datafusion-common = { version = "47.0", default-features = false }
datafusion-execution = "47.0"
datafusion-expr = "47.0"
datafusion-physical-plan = "47.0"
env_logger = "0.11"
half = { "version" = "=2.5.0", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
futures = "0" futures = "0"
log = "0.4" log = "0.4"
moka = { version = "0.12", features = ["future"] } object_store = "0.9.0"
object_store = "0.11.0" snafu = "0.7.4"
pin-project = "1.0.7"
snafu = "0.8"
url = "2" url = "2"
num-traits = "0.2" num-traits = "0.2"
rand = "0.9"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
crunchy = "=0.2.2"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

166
README.md
View File

@@ -1,97 +1,87 @@
<a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a>
<div align="center"> <div align="center">
<p align="center">
[![LanceDB](docs/src/assets/hero-header.png)](https://lancedb.com) <img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
**Developer-friendly, serverless vector database for AI applications**
<img src="docs/src/assets/lancedb.png" alt="LanceDB" width="50%"> <a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
# **The Multimodal AI Lakehouse** </p>
[**How to Install** ](#how-to-install) ✦ [**Detailed Documentation**](https://lancedb.github.io/lancedb/) ✦ [**Tutorials and Recipes**](https://github.com/lancedb/vectordb-recipes/tree/main) ✦ [**Contributors**](#contributors)
**The ultimate multimodal data platform for AI/ML applications.**
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease.
LanceDB is a central location where developers can build, train and analyze their AI workloads.
</div>
<br>
## **Demo: Multimodal Search by Keyword, Vector or with SQL**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec"> <img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
## **Star LanceDB to get updates!** </p>
<details>
<summary>⭐ Click here ⭐ to see how fast we're growing!</summary>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
<img width="100%" src="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
</picture>
</details>
## **Key Features**:
- **Fast Vector Search**: Search billions of vectors in milliseconds with state-of-the-art indexing.
- **Comprehensive Search**: Support for vector similarity search, full-text search and SQL.
- **Multimodal Support**: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- **Advanced Features**: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
### **Products**:
- **Open Source & Local**: 100% open source, runs locally or in your cloud. No vendor lock-in.
- **Cloud and Enterprise**: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
### **Ecosystem**:
- **Columnar Storage**: Built on the Lance columnar format for efficient storage and analytics.
- **Seamless Integration**: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- **Rich Ecosystem**: Integrations with [**LangChain** 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [**LlamaIndex** 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
## **How to Install**:
Follow the [Quickstart](https://lancedb.github.io/lancedb/basic/) doc to set up LanceDB locally.
**API & SDK:** We also support Python, Typescript and Rust SDKs
| Interface | Documentation |
|-----------|---------------|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
## **Join Us and Contribute**
We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our [**Discord**](https://discord.gg/G5DcmnZWKB) server.
[**Check out the GitHub Issues**](https://github.com/lancedb/lancedb/issues) if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
## **Contributors**
<a href="https://github.com/lancedb/lancedb/graphs/contributors">
<img src="https://contrib.rocks/image?repo=lancedb/lancedb" />
</a>
## **Stay in Touch With Us**
<div align="center">
</br>
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
</div> </div>
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
**Javascript**
```shell
npm install vectordb
```
```javascript
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable({
name: 'vectors',
data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
```
**Python**
```shell
pip install lancedb
```
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>

View File

@@ -1,7 +1,6 @@
#!/bin/bash #!/bin/bash
set -e set -e
ARCH=${1:-x86_64} ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
# We pass down the current user so that when we later mount the local files # We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user. # into the container, the files are accessible by the current user.
@@ -19,4 +18,4 @@ docker run \
-v $(pwd):/io -w /io \ -v $(pwd):/io -w /io \
--memory-swap=-1 \ --memory-swap=-1 \
lancedb-node-manylinux \ lancedb-node-manylinux \
bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE bash ci/manylinux_node/build.sh $ARCH

View File

@@ -3,7 +3,6 @@
# Targets supported: # Targets supported:
# - x86_64-pc-windows-msvc # - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc # - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust { function Prebuild-Rust {
param ( param (
@@ -32,7 +31,7 @@ function Build-NodeBinaries {
$targets = $args[0] $targets = $args[0]
if (-not $targets) { if (-not $targets) {
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc" $targets = "x86_64-pc-windows-msvc"
} }
Write-Host "Building artifacts for targets: $targets" Write-Host "Building artifacts for targets: $targets"

View File

@@ -1,42 +0,0 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,51 +0,0 @@
set -e
RELEASE_TYPE=${1:-"stable"}
BUMP_MINOR=${2:-false}
TAG_PREFIX=${3:-"v"} # Such as "python-v"
HEAD_SHA=${4:-$(git rev-parse HEAD)}
readonly SELF_DIR=$(cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
PREV_TAG=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
echo "Found previous tag $PREV_TAG"
# Initially, we don't want to tag if we are doing stable, because we will bump
# again later. See comment at end for why.
if [[ "$RELEASE_TYPE" == 'stable' ]]; then
BUMP_ARGS="--no-tag"
fi
# If last is stable and not bumping minor
if [[ $PREV_TAG != *beta* ]]; then
if [[ "$BUMP_MINOR" != "false" ]]; then
# X.Y.Z -> X.(Y+1).0-beta.0
bump-my-version bump -vv $BUMP_ARGS minor
else
# X.Y.Z -> X.Y.(Z+1)-beta.0
bump-my-version bump -vv $BUMP_ARGS patch
fi
else
if [[ "$BUMP_MINOR" != "false" ]]; then
# X.Y.Z-beta.N -> X.(Y+1).0-beta.0
bump-my-version bump -vv $BUMP_ARGS minor
else
# X.Y.Z-beta.N -> X.Y.Z-beta.(N+1)
bump-my-version bump -vv $BUMP_ARGS pre_n
fi
fi
# The above bump will always bump to a pre-release version. If we are releasing
# a stable version, bump the pre-release level ("pre_l") to make it stable.
if [[ $RELEASE_TYPE == 'stable' ]]; then
# X.Y.Z-beta.N -> X.Y.Z
bump-my-version bump -vv pre_l
fi
# Validate that we have incremented version appropriately for breaking changes
NEW_TAG=$(git describe --tags --exact-match HEAD)
NEW_VERSION=$(echo $NEW_TAG | sed "s/^$TAG_PREFIX//")
LAST_STABLE_RELEASE=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | grep -v beta | grep -vF "$NEW_TAG" | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
LAST_STABLE_VERSION=$(echo $LAST_STABLE_RELEASE | sed "s/^$TAG_PREFIX//")
python $SELF_DIR/check_breaking_changes.py $LAST_STABLE_RELEASE $HEAD_SHA $LAST_STABLE_VERSION $NEW_VERSION

View File

@@ -1,35 +0,0 @@
"""
Check whether there are any breaking changes in the PRs between the base and head commits.
If there are, assert that we have incremented the minor version.
"""
import argparse
import os
from packaging.version import parse
from github import Github
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("base")
parser.add_argument("head")
parser.add_argument("last_stable_version")
parser.add_argument("current_version")
args = parser.parse_args()
repo = Github(os.environ["GITHUB_TOKEN"]).get_repo(os.environ["GITHUB_REPOSITORY"])
commits = repo.compare(args.base, args.head).commits
prs = (pr for commit in commits for pr in commit.get_pulls())
for pr in prs:
if any(label.name == "breaking-change" for label in pr.labels):
print(f"Breaking change in PR: {pr.html_url}")
break
else:
print("No breaking changes found.")
exit(0)
last_stable_version = parse(args.last_stable_version)
current_version = parse(args.current_version)
if current_version.minor <= last_stable_version.minor:
print("Minor version is not greater than the last stable version.")
exit(1)

View File

@@ -4,18 +4,22 @@
# range of linux distributions. # range of linux distributions.
ARG ARCH=x86_64 ARG ARCH=x86_64
FROM quay.io/pypa/manylinux_2_28_${ARCH} FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64 ARG ARCH=x86_64
ARG DOCKER_USER=default_user ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root. # Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH} RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER} ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user, but only if it doesn't exist # Create a group and user
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be # We switch to the user to install Rust and Node, since those like to be
# installed at the user level. # installed at the user level.

19
ci/manylinux_node/build.sh Executable file
View File

@@ -0,0 +1,19 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd node
npm ci
npm run build-release
npm run pack-build

View File

@@ -1,13 +0,0 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd node
npm ci
npm run build-release
npm run pack-build -- -t $TARGET_TRIPLE

View File

@@ -0,0 +1,26 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -8,7 +8,7 @@ install_node() {
source "$HOME"/.bashrc source "$HOME"/.bashrc
nvm install --no-progress 18 nvm install --no-progress 16
} }
install_rust() { install_rust() {

View File

@@ -1,57 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
import argparse
import json
import http.server
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
def do_POST(self):
content_length = int(self.headers["Content-Length"])
post_data = self.rfile.read(content_length)
post_data = json.loads(post_data.decode("utf-8"))
# See: https://platform.openai.com/docs/api-reference/embeddings/create
if isinstance(post_data["input"], str):
num_inputs = 1
else:
num_inputs = len(post_data["input"])
model = post_data.get("model", "text-embedding-ada-002")
data = []
for i in range(num_inputs):
data.append({
"object": "embedding",
"embedding": [0.1] * 1536,
"index": i,
})
response = {
"object": "list",
"data": data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
self.wfile.write(json.dumps(response).encode("utf-8"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
args = parser.parse_args()
port = args.port
print(f"server started on port {port}. Press Ctrl-C to stop.")
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
server.serve_forever()

View File

@@ -1,41 +0,0 @@
import argparse
import toml
def parse_dependencies(pyproject_path, extras=None):
with open(pyproject_path, "r") as file:
pyproject = toml.load(file)
dependencies = pyproject.get("project", {}).get("dependencies", [])
for dependency in dependencies:
print(dependency)
optional_dependencies = pyproject.get("project", {}).get(
"optional-dependencies", {}
)
if extras:
for extra in extras.split(","):
for dep in optional_dependencies.get(extra, []):
print(dep)
def main():
parser = argparse.ArgumentParser(
description="Generate requirements.txt from pyproject.toml"
)
parser.add_argument("path", type=str, help="Path to pyproject.toml")
parser.add_argument(
"--extras",
type=str,
help="Comma-separated list of extras to include",
default="",
)
args = parser.parse_args()
parse_dependencies(args.path, args.extras)
if __name__ == "__main__":
main()

View File

@@ -1,35 +0,0 @@
"""
Takes a list of semver strings and sorts them in ascending order.
"""
import sys
from packaging.version import parse, InvalidVersion
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("prefix", default="v")
args = parser.parse_args()
# Read the input from stdin
lines = sys.stdin.readlines()
# Parse the versions
versions = []
for line in lines:
line = line.strip()
try:
version_str = line.removeprefix(args.prefix)
version = parse(version_str)
except InvalidVersion:
# There are old tags that don't follow the semver format
print(f"Invalid version: {line}", file=sys.stderr)
continue
versions.append((line, version))
# Sort the versions
versions.sort(key=lambda x: x[1])
# Print the sorted versions as original strings
for line, _ in versions:
print(line)

View File

@@ -1,174 +0,0 @@
import argparse
import sys
import json
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
version = version_line.split(" ")[1].strip()
return version
def get_latest_preview_version() -> str:
lance_tags = run_command(
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[(.*?)\]', line)
if match:
features_str = match.group(1)
return [f.strip('"') for f in features_str.split(",")]
return []
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
new_lines.append(line_updater(line))
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
update_cargo_toml(line_updater)
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
elif args.version == "local":
set_local_version()
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
else:
set_stable_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)

View File

@@ -1,105 +0,0 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
# dbghelp.lib fwpuclnt.lib arm64rt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/227f40682a88dc5fa0ccb9cadc9ad30af99ad1f1a75db63407587d079f60d035/Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
mkdir -p /usr/aarch64-pc-windows-msvc/usr/include
mkdir -p /usr/aarch64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/aarch64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/aarch64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# ARM intrinsics
# original dir: MSVC/
# '__n128x4' redefined in arm_neon.h
# "arm64_neon.h" included from intrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp arm_neon.h intrin.h -t /usr/aarch64-pc-windows-msvc/usr/include)
# .lib
# _Interlocked intrinsics
# must always link with arm64rt.lib
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib dbghelp.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/arm64/libucrt.lib' /usr/aarch64-pc-windows-msvc/usr/lib

View File

@@ -1,105 +0,0 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/bfc3904a0195453419ae4dfea7abd6fb/e10768bb6e9d0ea730280336b697da66.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/637f9f3be880c71f9e3ca07b4d67345c/f9b24c8280986c0683fbceca5326d806.cab
# dbghelp.lib fwpuclnt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/9f51690d5aa804b1340ce12d1ec80f89/windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/d3a7df4ca3303a698640a29e558a5e5b/58314d0646d7e1a25e97c902166c3155.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/8728f21ae09940f1f4b4ee47b4a596be2509e2a47d2f0c83bbec0ea37d69644b/Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
mkdir -p /usr/x86_64-pc-windows-msvc/usr/include
mkdir -p /usr/x86_64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/x86_64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/x86_64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/x86_64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# x86 intrinsics
# original dir: MSVC/
# '_mm_movemask_epi8' defined in emmintrin.h
# '__v4sf' defined in xmmintrin.h
# '__v2si' defined in mmintrin.h
# '__m128d' redefined in immintrin.h
# '__m128i' redefined in intrin.h
# '_mm_comlt_epu8' defined in ammintrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp emmintrin.h xmmintrin.h mmintrin.h immintrin.h intrin.h ammintrin.h -t /usr/x86_64-pc-windows-msvc/usr/include)
# .lib
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/x64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib dbghelp.lib fwpuclnt.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/x64' && cp libcmt.lib libvcruntime.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/x64/libucrt.lib' /usr/x86_64-pc-windows-msvc/usr/lib

View File

@@ -1,30 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building
cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
pushd node || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -1,34 +0,0 @@
import tomllib
found_preview_lance = False
with open("Cargo.toml", "rb") as f:
cargo_data = tomllib.load(f)
for name, dep in cargo_data["workspace"]["dependencies"].items():
if name == "lance" or name.startswith("lance-"):
if isinstance(dep, str):
version = dep
elif isinstance(dep, dict):
# Version doesn't have the beta tag in it, so we instead look
# at the git tag.
version = dep.get('tag', dep.get('version'))
else:
raise ValueError("Unexpected type for dependency: " + str(dep))
if "beta" in version:
found_preview_lance = True
print(f"Dependency '{name}' is a preview version: {version}")
with open("python/pyproject.toml", "rb") as f:
py_proj_data = tomllib.load(f)
for dep in py_proj_data["project"]["dependencies"]:
if dep.startswith("pylance"):
if "b" in dep:
found_preview_lance = True
print(f"Dependency '{dep}' is a preview version")
break # Only one pylance dependency
if found_preview_lance:
raise ValueError("Found preview version of Lance in dependencies")

View File

@@ -1,18 +1,18 @@
version: "3.9" version: "3.9"
services: services:
localstack: localstack:
image: localstack/localstack:3.3 image: localstack/localstack:0.14
ports: ports:
- 4566:4566 - 4566:4566
environment: environment:
- SERVICES=s3,dynamodb,kms - SERVICES=s3,dynamodb
- DEBUG=1 - DEBUG=1
- LS_LOG=trace - LS_LOG=trace
- DOCKER_HOST=unix:///var/run/docker.sock - DOCKER_HOST=unix:///var/run/docker.sock
- AWS_ACCESS_KEY_ID=ACCESSKEY - AWS_ACCESS_KEY_ID=ACCESSKEY
- AWS_SECRET_ACCESS_KEY=SECRETKEY - AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck: healthcheck:
test: [ "CMD", "curl", "-s", "http://localhost:4566/_localstack/health" ] test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
interval: 5s interval: 5s
retries: 3 retries: 3
start_period: 10s start_period: 10s

View File

@@ -1,27 +0,0 @@
#Simple base dockerfile that supports basic dependencies required to run lance with FTS and Hybrid Search
#Usage docker build -t lancedb:latest -f Dockerfile .
FROM python:3.10-slim-buster
# Install Rust
RUN apt-get update && apt-get install -y curl build-essential && \
curl https://sh.rustup.rs -sSf | sh -s -- -y
# Set the environment variable for Rust
ENV PATH="/root/.cargo/bin:${PATH}"
# Install protobuf compiler
RUN apt-get install -y protobuf-compiler && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get -y update &&\
apt-get -y upgrade && \
apt-get -y install git
# Verify installations
RUN python --version && \
rustc --version && \
protoc --version
RUN pip install tantivy lancedb

View File

@@ -2,88 +2,43 @@
LanceDB docs are deployed to https://lancedb.github.io/lancedb/. LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](../.github/workflows/docs.yml) Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features. unreleased features.
## Building the docs ## Building the docs
### Setup ### Setup
1. Install LanceDB Python. See setup in [Python contributing guide](../python/CONTRIBUTING.md). 1. Install LanceDB. From LanceDB repo root: `pip install -e python`
Run `make develop` to install the Python package. 2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
2. Install documentation dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt` 3. Make sure you have node and npm setup
4. Make sure protobuf and libssl are installed
### Preview the docs ### Building node module and create markdown files
```shell See [Javascript docs README](./src/javascript/README.md)
### Build docs
From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally.
### Run local server
You can run a local server to test the docs prior to deployment by navigating to the `docs` directory and running the following command:
```bash
cd docs cd docs
mkdocs serve mkdocs serve
``` ```
If you want to just generate the HTML files: ### Run doctest for typescript example
```shell ```bash
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml cd lancedb/docs
``` npm i
If successful, you should see a `docs/site` directory that you can verify locally.
## Adding examples
To make sure examples are correct, we put examples in test files so they can be
run as part of our test suites.
You can see the tests are at:
* Python: `python/python/tests/docs`
* Typescript: `nodejs/examples/`
### Checking python examples
```shell
cd python
pytest -vv python/tests/docs
```
### Checking typescript examples
The `@lancedb/lancedb` package must be built before running the tests:
```shell
pushd nodejs
npm ci
npm run build npm run build
popd npm run all
```
Then you can run the examples by going to the `nodejs/examples` directory and
running the tests like a normal npm package:
```shell
pushd nodejs/examples
npm ci
npm test
popd
```
## API documentation
### Python
The Python API documentation is organized based on the file `docs/src/python/python.md`.
We manually add entries there so we can control the organization of the reference page.
**However, this means any new types must be manually added to the file.** No additional
steps are needed to generate the API documentation.
### Typescript
The typescript API documentation is generated from the typescript source code using [typedoc](https://typedoc.org/).
When new APIs are added, you must manually re-run the typedoc command to update the API documentation.
The new files should be checked into the repository.
```shell
pushd nodejs
npm run docs
popd
``` ```

View File

@@ -4,9 +4,6 @@ repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb repo_name: lancedb/lancedb
docs_dir: src docs_dir: src
watch:
- src
- ../python/python
theme: theme:
name: "material" name: "material"
@@ -29,18 +26,16 @@ theme:
- content.code.copy - content.code.copy
- content.tabs.link - content.tabs.link
- content.action.edit - content.action.edit
- content.tooltips
- toc.follow - toc.follow
# - toc.integrate
- navigation.top - navigation.top
- navigation.tabs - navigation.tabs
- navigation.tabs.sticky - navigation.tabs.sticky
- navigation.footer - navigation.footer
- navigation.tracking - navigation.tracking
- navigation.instant - navigation.instant
- content.footnote.tooltips
icon: icon:
repo: fontawesome/brands/github repo: fontawesome/brands/github
annotation: material/arrow-right-circle
custom_dir: overrides custom_dir: overrides
plugins: plugins:
@@ -52,33 +47,30 @@ plugins:
paths: [../python] paths: [../python]
options: options:
docstring_style: numpy docstring_style: numpy
heading_level: 3 heading_level: 4
show_source: true show_source: true
show_symbol_type_in_heading: true show_symbol_type_in_heading: true
show_signature_annotations: true show_signature_annotations: true
show_root_heading: true
members_order: source members_order: source
docstring_section_style: list
signature_crossrefs: true
separate_signature: true
import: import:
# for cross references # for cross references
- https://arrow.apache.org/docs/objects.inv - https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv - https://pandas.pydata.org/docs/objects.inv
- https://lancedb.github.io/lance/objects.inv
- https://docs.pydantic.dev/latest/objects.inv
- mkdocs-jupyter - mkdocs-jupyter
- render_swagger: - ultralytics:
allow_arbitrary_locations: true verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
markdown_extensions: markdown_extensions:
- admonition - admonition
- footnotes - footnotes
- pymdownx.critic
- pymdownx.caret
- pymdownx.keys
- pymdownx.mark
- pymdownx.tilde
- pymdownx.details - pymdownx.details
- pymdownx.highlight: - pymdownx.highlight:
anchor_linenums: true anchor_linenums: true
@@ -92,15 +84,7 @@ markdown_extensions:
- pymdownx.tabbed: - pymdownx.tabbed:
alternate_style: true alternate_style: true
- md_in_html - md_in_html
- abbr
- attr_list - attr_list
- pymdownx.snippets
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
- markdown.extensions.toc:
baselevel: 1
permalink: ""
nav: nav:
- Home: - Home:
@@ -108,84 +92,26 @@ nav:
- 🏃🏼‍♂️ Quick start: basic.md - 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts: - 📚 Concepts:
- Vector search: concepts/vector_search.md - Vector search: concepts/vector_search.md
- Indexing: - Indexing: concepts/index_ivfpq.md
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md - Storage: concepts/storage.md
- Data management: concepts/data_management.md - Data management: concepts/data_management.md
- 🔨 Guides: - 🔨 Guides:
- Working with tables: guides/tables.md - Working with tables: guides/tables.md
- Building a vector index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search (native): fts.md - Full-text search: fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search: - Hybrid search:
- Overview: hybrid_search/hybrid_search.md - Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md - Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb - Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings: - 🧬 Managing embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md - Overview: embeddings/index.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
- Available models: - Available models: embeddings/default_embedding_functions.md
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations: - 🔌 Integrations:
@@ -193,33 +119,20 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md - Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md - LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain: - LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LangChain 🔗: integrations/langchain.md - LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- 🎯 Examples: - 🎯 Examples:
- Overview: examples/index.md - Overview: examples/index.md
- 🐍 Python: - 🐍 Python:
- Overview: examples/examples_python.md - Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Multimodal: examples/python_examples/multimodal.md - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Rag: examples/python_examples/rag.md - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Vector Search: examples/python_examples/vector_search.md - Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript: - 👾 JavaScript:
@@ -227,98 +140,42 @@ nav:
- Serverless Website Chatbot: examples/serverless_website_chatbot.md - Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust: - 🔧 CLI & Config: cli_config.md
- Overview: examples/examples_rust.md
- 📓 Studies:
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- 💭 FAQs: faq.md - 💭 FAQs: faq.md
- 🔍 Troubleshooting: troubleshooting.md
- ⚙️ API reference: - ⚙️ API reference:
- 🐍 Python: python/python.md - 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md - 👾 JavaScript: javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md - 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/ - ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md - Quick start: basic.md
- Concepts: - Concepts:
- Vector search: concepts/vector_search.md - Vector search: concepts/vector_search.md
- Indexing: - Indexing: concepts/index_ivfpq.md
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md - Storage: concepts/storage.md
- Data management: concepts/data_management.md - Data management: concepts/data_management.md
- Guides: - Guides:
- Working with tables: guides/tables.md - Working with tables: guides/tables.md
- Working with SQL: guides/sql_querying.md
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search (native): fts.md - Full-text search: fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search: - Hybrid search:
- Overview: hybrid_search/hybrid_search.md - Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md - Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb - Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Document search Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings: - Managing Embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md - Overview: embeddings/index.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
- Available models: - Available models: embeddings/default_embedding_functions.md
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations: - Integrations:
@@ -326,47 +183,32 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md - Polars: python/polars_arrow.md
- DuckDB : python/duckdb.md - DuckDB : python/duckdb.md
- Datafusion: python/datafusion.md - LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain 🦜️🔗↗: integrations/langchain.md - LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LangChain.js 🦜️🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb - LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- LlamaIndex 🦙↗: integrations/llamaIndex.md
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md - Python examples:
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- Examples:
- examples/index.md - examples/index.md
- 🐍 Python: - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Overview: examples/examples_python.md - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Build From Scratch: examples/python_examples/build_from_scratch.md - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript: - Javascript examples:
- Overview: examples/examples_js.md - Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- API reference: - API reference:
- Overview: api_reference.md
- Python: python/python.md - Python: python/python.md
- Javascript (vectordb): javascript/modules.md - Javascript: javascript/modules.md
- Javascript (lancedb): js/globals.md - LanceDB Cloud:
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html - Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
extra_css: extra_css:
- styles/global.css - styles/global.css
@@ -374,16 +216,8 @@ extra_css:
extra_javascript: extra_javascript:
- "extra_js/init_ask_ai_widget.js" - "extra_js/init_ask_ai_widget.js"
- "extra_js/reo.js"
extra: extra:
analytics: analytics:
provider: google provider: google
property: G-B7NFM40W74 property: G-B7NFM40W74
social:
- icon: fontawesome/brands/github
link: https://github.com/lancedb/lancedb
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb

View File

@@ -1,513 +0,0 @@
openapi: 3.1.0
info:
version: 1.0.0
title: LanceDB Cloud API
description: |
LanceDB Cloud API is a RESTful API that allows users to access and modify data stored in LanceDB Cloud.
Table actions are considered temporary resource creations and all use POST method.
contact:
name: LanceDB support
url: https://lancedb.com
email: contact@lancedb.com
servers:
- url: https://{db}.{region}.api.lancedb.com
description: LanceDB Cloud REST endpoint.
variables:
db:
default: ""
description: the name of DB
region:
default: "us-east-1"
description: the service region of the DB
security:
- key_auth: []
components:
securitySchemes:
key_auth:
name: x-api-key
type: apiKey
in: header
parameters:
table_name:
name: name
in: path
description: name of the table
required: true
schema:
type: string
index_name:
name: index_name
in: path
description: name of the index
required: true
schema:
type: string
responses:
invalid_request:
description: Invalid request
content:
text/plain:
schema:
type: string
not_found:
description: Not found
content:
text/plain:
schema:
type: string
unauthorized:
description: Unauthorized
content:
text/plain:
schema:
type: string
requestBodies:
arrow_stream_buffer:
description: Arrow IPC stream buffer
required: true
content:
application/vnd.apache.arrow.stream:
schema:
type: string
format: binary
paths:
/v1/table/:
get:
description: List tables, optionally, with pagination.
tags:
- Tables
summary: List Tables
operationId: listTables
parameters:
- name: limit
in: query
description: Limits the number of items to return.
schema:
type: integer
- name: page_token
in: query
description: Specifies the starting position of the next query
schema:
type: string
responses:
"200":
description: Successfully returned a list of tables in the DB
content:
application/json:
schema:
type: object
properties:
tables:
type: array
items:
type: string
page_token:
type: string
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create/:
post:
description: Create a new table
summary: Create a new table
operationId: createTable
tags:
- Tables
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Table successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/query/:
post:
description: Vector Query
url: https://{db-uri}.{aws-region}.api.lancedb.com/v1/table/{name}/query/
tags:
- Data
summary: Vector Query
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
vector:
type: FixedSizeList
description: |
The targetted vector to search for. Required.
vector_column:
type: string
description: |
The column to query, it can be inferred from the schema if there is only one vector column.
prefilter:
type: boolean
description: |
Whether to prefilter the data. Optional.
k:
type: integer
description: |
The number of search results to return. Default is 10.
distance_type:
type: string
description: |
The distance metric to use for search. l2, Cosine, Dot and Hamming are supported. Default is l2.
bypass_vector_index:
type: boolean
description: |
Whether to bypass vector index. Optional.
filter:
type: string
description: |
A filter expression that specifies the rows to query. Optional.
columns:
type: array
items:
type: string
description: |
The columns to return. Optional.
nprobe:
type: integer
description: |
The number of probes to use for search. Optional.
refine_factor:
type: integer
description: |
The refine factor to use for search. Optional.
default: null
fast_search:
type: boolean
description: |
Whether to use fast search. Optional.
default: false
required:
- vector
responses:
"200":
description: top k results if query is successfully executed
content:
application/json:
schema:
type: object
properties:
results:
type: array
items:
type: object
properties:
id:
type: integer
selected_col_1_to_return:
type: col_1_type
selected_col_n_to_return:
type: col_n_type
_distance:
type: float
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/insert/:
post:
description: Insert new data to the Table.
tags:
- Data
operationId: insertData
summary: Insert new data.
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/merge_insert/:
post:
description: Create a "merge insert" operation
This operation can add rows, update rows, and remove rows all in a single
transaction. See python method `lancedb.table.Table.merge_insert` for examples.
tags:
- Data
summary: Merge Insert
operationId: mergeInsert
parameters:
- $ref: "#/components/parameters/table_name"
- name: on
in: query
description: |
The column to use as the primary key for the merge operation.
required: true
schema:
type: string
- name: when_matched_update_all
in: query
description: |
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
required: false
schema:
type: boolean
- name: when_matched_update_all_filt
in: query
description: |
If present then only rows that satisfy the filter expression will
be updated
required: false
schema:
type: string
- name: when_not_matched_insert_all
in: query
description: |
Rows that exist only in the source table (new data) will be
inserted into the target table (old data).
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete
in: query
description: |
Rows that exist only in the target table (old data) will be
deleted. An optional condition (`when_not_matched_by_source_delete_filt`)
can be provided to limit what data is deleted.
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete_filt
in: query
description: |
The filter expression that specifies the rows to delete.
required: false
schema:
type: string
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Merge Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/delete/:
post:
description: Delete rows from a table.
tags:
- Data
summary: Delete rows from a table
operationId: deleteData
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
predicate:
type: string
description: |
A filter expression that specifies the rows to delete.
responses:
"200":
description: Delete successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/drop/:
post:
description: Drop a table
tags:
- Tables
summary: Drop a table
operationId: dropTable
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Drop successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/describe/:
post:
description: Describe a table and return Table Information.
tags:
- Tables
summary: Describe a table
operationId: describeTable
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Table information
content:
application/json:
schema:
type: object
properties:
table:
type: string
version:
type: integer
schema:
type: string
stats:
type: object
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/list/:
post:
description: List indexes of a table
tags:
- Tables
summary: List indexes of a table
operationId: listIndexes
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Available list of indexes on the table.
content:
application/json:
schema:
type: object
properties:
indexes:
type: array
items:
type: object
properties:
columns:
type: array
items:
type: string
index_name:
type: string
index_uuid:
type: string
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_index/:
post:
description: Create vector index on a Table
tags:
- Tables
summary: Create vector index on a Table
operationId: createIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
metric_type:
type: string
nullable: false
description: |
The metric type to use for the index. l2, Cosine, Dot are supported.
index_type:
type: string
responses:
"200":
description: Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_scalar_index/:
post:
description: Create a scalar index on a table
tags:
- Tables
summary: Create a scalar index on a table
operationId: createScalarIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
index_type:
type: string
required: false
responses:
"200":
description: Scalar Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/{index_name}/drop/:
post:
description: Drop an index from the table
tags:
- Tables
summary: Drop an index from the table
operationId: dropIndex
parameters:
- $ref: "#/components/parameters/table_name"
- $ref: "#/components/parameters/index_name"
responses:
"200":
description: Index successfully dropped
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"

View File

@@ -1,5 +0,0 @@
{% extends "base.html" %}
{% block announce %}
📚 Starting June 1st, 2025, please use <a href="https://lancedb.github.io/documentation" target="_blank" rel="noopener noreferrer">lancedb.github.io/documentation</a> for the latest docs.
{% endblock %}

21
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
}, },
"../node": { "../node": {
"name": "vectordb", "name": "vectordb",
"version": "0.12.0", "version": "0.4.6",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -31,7 +31,9 @@
"win32" "win32"
], ],
"dependencies": { "dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74", "@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0" "axios": "^1.4.0"
}, },
"devDependencies": { "devDependencies": {
@@ -44,7 +46,6 @@
"@types/temp": "^0.9.1", "@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3", "@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1", "@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1", "cargo-cp-artifact": "^0.1",
"chai": "^4.3.7", "chai": "^4.3.7",
"chai-as-promised": "^7.1.1", "chai-as-promised": "^7.1.1",
@@ -61,19 +62,15 @@
"ts-node-dev": "^2.0.0", "ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7", "typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3", "typedoc-plugin-markdown": "^3.15.3",
"typescript": "^5.1.0", "typescript": "*",
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.12.0", "@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.12.0", "@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0", "@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0", "@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0" "@lancedb/vectordb-win32-x64-msvc": "0.4.6"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2"
} }
}, },
"../node/node_modules/apache-arrow": { "../node/node_modules/apache-arrow": {

View File

@@ -1,7 +1,6 @@
mkdocs==1.5.3 mkdocs==1.5.3
mkdocs-jupyter==0.24.1 mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3 mkdocs-material==9.5.3
mkdocstrings[python]==0.25.2 mkdocstrings[python]==0.20.0
griffe
mkdocs-render-swagger-plugin
pydantic pydantic
mkdocs-ultralytics-plugin==0.0.44

View File

@@ -7,51 +7,47 @@ for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search). A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results. LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
## Disk-based Index Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
Lance provides an `IVF_PQ` disk-based index. It uses **Inverted File Index (IVF)** to first divide In the future we will look to automatically create and configure the ANN index as data comes in.
the dataset into `N` partitions, and then applies **Product Quantization** to compress vectors in each partition.
See the [indexing](concepts/index_ivfpq.md) concepts guide for more information on how this works. ## Types of Index
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
- `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
- `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index ## Creating an IVF_PQ Index
Lance supports `IVF_PQ` index type by default. Lance supports `IVF_PQ` index type by default.
=== "Python" === "Python"
=== "Sync API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method. Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python ```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb" import lancedb
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy" import numpy as np
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index" uri = "data/sample-lancedb"
``` db = lancedb.connect(uri)
=== "Async API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python # Create 10,000 sample vectors
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb" data = [{"vector": row, "item": f"item {i}"}
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy" for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-ivfpq"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index_async" # Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
``` ```
=== "TypeScript" === "Typescript"
=== "@lancedb/lancedb"
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
```
=== "vectordb (deprecated)"
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
```typescript ```typescript
--8<--- "docs/src/ann_indexes.ts:import" --8<--- "docs/src/ann_indexes.ts:import"
@@ -59,35 +55,12 @@ Lance supports `IVF_PQ` index type by default.
--8<-- "docs/src/ann_indexes.ts:ingest" --8<-- "docs/src/ann_indexes.ts:ingest"
``` ```
=== "Rust" - **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:create_index"
```
IVF_PQ index parameters are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/index/vector/struct.IvfPqIndexBuilder.html).
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`l2`".
We also support "cosine" and "dot" distance as well. We also support "cosine" and "dot" distance as well.
- **num_partitions**: The number of partitions in the index. The default is the square root - **num_partitions** (default: 256): The number of partitions of the index.
of the number of rows. - **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
!!! note a single PQ code.
In the synchronous python SDK and node's `vectordb` the default is 256. This default has
changed in the asynchronous python SDK and node's `lancedb`.
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
!!! note
In the synchronous python SDK and node's `vectordb` the default is currently 96. This default has
changed in the asynchronous python SDK and node's `lancedb`.
<figure markdown> <figure markdown>
![IVF PQ](./assets/ivf_pq.png) ![IVF PQ](./assets/ivf_pq.png)
@@ -115,7 +88,7 @@ You can specify the GPU device to train IVF partitions via
) )
``` ```
=== "MacOS" === "Macos"
<!-- skip-test --> <!-- skip-test -->
```python ```python
@@ -126,10 +99,8 @@ You can specify the GPU device to train IVF partitions via
accelerator="mps" accelerator="mps"
) )
``` ```
!!! note
GPU based indexing is not yet supported with our asynchronous client.
Troubleshooting: Trouble shootings:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/). PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
@@ -142,26 +113,22 @@ There are a couple of parameters that can be used to fine-tune the search:
- **limit** (default: 10): The amount of results that will be returned - **limit** (default: 10): The amount of results that will be returned
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/> - **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/> Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/> e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/> - **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/> A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/> e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
!!! note Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search" tbl.search(np.random.random((1536))) \
``` .limit(2) \
=== "Async API" .nprobes(20) \
.refine_factor(10) \
```python .to_pandas()
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async"
``` ```
```text ```text
@@ -170,28 +137,12 @@ There are a couple of parameters that can be used to fine-tune the search:
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
``` ```
=== "TypeScript" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/ann_indexes.ts:search1" --8<-- "docs/src/ann_indexes.ts:search1"
``` ```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:search1"
```
Vector search options are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/query/struct.Query.html#method.nearest_to).
The search will return the data requested in addition to the distance of each item. The search will return the data requested in addition to the distance of each item.
### Filtering (where clause) ### Filtering (where clause)
@@ -199,26 +150,12 @@ The search will return the data requested in addition to the distance of each it
You can further filter the elements returned by a search using a where clause. You can further filter the elements returned by a search using a where clause.
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_filter" tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_filter"
``` ```
=== "TypeScript" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
```
=== "vectordb (deprecated)"
```javascript ```javascript
--8<-- "docs/src/ann_indexes.ts:search2" --8<-- "docs/src/ann_indexes.ts:search2"
@@ -230,16 +167,10 @@ You can select the columns returned by the query using a select clause.
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_select" tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
``` ```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_select"
```
```text ```text
vector _distance vector _distance
@@ -248,15 +179,7 @@ You can select the columns returned by the query using a select clause.
... ...
``` ```
=== "TypeScript" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/ann_indexes.ts:search3" --8<-- "docs/src/ann_indexes.ts:search3"
@@ -264,21 +187,13 @@ You can select the columns returned by the query using a select clause.
## FAQ ## FAQ
### Why do I need to manually create an index?
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
datasets of the order of ~100K vectors don't require index creation. If you can live with up to
100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
### When is it necessary to create an ANN vector index? ### When is it necessary to create an ANN vector index?
`LanceDB` comes out-of-the-box with highly optimized SIMD code for computing vector similarity. `LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing distances for 100K pairs of 1K dimension vectors takes **less than 20ms**. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
We observe that for small datasets (~100K rows) or for applications that can accept 100ms latency, For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
vector indices are usually not necessary.
For large-scale or higher dimension vectors, it can beneficial to create vector index for performance. For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take? ### How big is my index, and how many memory will it take?
@@ -291,17 +206,9 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
`num_partitions` is used to decide how many partitions the first level `IVF` index uses. `num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 4K-8K rows lead to a good latency / recall. On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because `num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency. less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
!!! note
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

View File

@@ -3,7 +3,6 @@ import * as vectordb from "vectordb";
// --8<-- [end:import] // --8<-- [end:import]
(async () => { (async () => {
console.log("ann_indexes.ts: start");
// --8<-- [start:ingest] // --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb"); const db = await vectordb.connect("data/sample-lancedb");
@@ -50,5 +49,5 @@ import * as vectordb from "vectordb";
.execute(); .execute();
// --8<-- [end:search3] // --8<-- [end:search3]
console.log("ann_indexes.ts: done"); console.log("Ann indexes: done");
})(); })();

View File

@@ -1,8 +0,0 @@
# API Reference
The API reference for the LanceDB client SDKs are available at the following locations:
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

Before

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

After

Width:  |  Height:  |  Size: 83 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>

Before

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 204 KiB

After

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 217 KiB

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 256 KiB

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -1,22 +0,0 @@
<svg width="147" height="20" viewBox="0 0 147 20" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect x="0.5" y="0.5" width="145.482" height="19" rx="9.5" fill="white" stroke="#EFEFEF"/>
<path d="M14.1863 10.9251V12.7593H16.0205V10.9251H14.1863Z" fill="#FF3270"/>
<path d="M17.8707 10.9251V12.7593H19.7049V10.9251H17.8707Z" fill="#861FFF"/>
<path d="M14.1863 7.24078V9.07496H16.0205V7.24078H14.1863Z" fill="#097EFF"/>
<path fill-rule="evenodd" clip-rule="evenodd" d="M12.903 6.77179C12.903 6.32194 13.2676 5.95728 13.7175 5.95728C14.1703 5.95728 15.2556 5.95728 16.1094 5.95728C16.7538 5.95728 17.2758 6.47963 17.2758 7.12398V9.6698H19.8217C20.4661 9.6698 20.9884 10.1922 20.9884 10.8365C20.9884 11.6337 20.9884 12.4309 20.9884 13.2282C20.9884 13.678 20.6237 14.0427 20.1738 14.0427H17.3039H16.5874H13.7175C13.2676 14.0427 12.903 13.678 12.903 13.2282V9.71653V9.64174V6.77179ZM14.1863 7.24066V9.07485H16.0205V7.24066H14.1863ZM14.1863 12.7593V10.9251H16.0205V12.7593H14.1863ZM17.8708 12.7593V10.9251H19.705V12.7593H17.8708Z" fill="black"/>
<path d="M18.614 8.35468L20.7796 6.18905M20.7796 6.18905V7.66073M20.7796 6.18905L19.2724 6.18905" stroke="black" stroke-width="0.686298" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M31.6082 13.9838C30.8546 13.9838 30.1895 13.802 29.6132 13.4385C29.0368 13.066 28.5846 12.5429 28.2565 11.869C27.9373 11.1862 27.7777 10.3749 27.7777 9.43501C27.7777 8.49511 27.9373 7.69265 28.2565 7.02762C28.5846 6.3626 29.0368 5.85275 29.6132 5.49807C30.1895 5.14339 30.8546 4.96605 31.6082 4.96605C32.3708 4.96605 33.0403 5.14339 33.6166 5.49807C34.193 5.85275 34.6408 6.3626 34.96 7.02762C35.2881 7.69265 35.4521 8.49511 35.4521 9.43501C35.4521 10.3749 35.2881 11.1862 34.96 11.869C34.6408 12.5429 34.193 13.066 33.6166 13.4385C33.0403 13.802 32.3708 13.9838 31.6082 13.9838ZM31.6082 12.6404C32.291 12.6404 32.8363 12.3523 33.2442 11.7759C33.6521 11.1907 33.856 10.4104 33.856 9.43501C33.856 8.45964 33.6521 7.69708 33.2442 7.14733C32.8363 6.58871 32.291 6.3094 31.6082 6.3094C30.9255 6.3094 30.3802 6.58871 29.9723 7.14733C29.5644 7.69708 29.3605 8.45964 29.3605 9.43501C29.3605 10.4104 29.5644 11.1907 29.9723 11.7759C30.3802 12.3523 30.9255 12.6404 31.6082 12.6404Z" fill="#2C3236"/>
<path d="M37.0592 16.4045V7.29363H38.3227L38.4291 7.98526H38.4823C38.7572 7.75472 39.0631 7.55521 39.4 7.38674C39.7459 7.21826 40.0961 7.13403 40.4508 7.13403C41.2665 7.13403 41.8961 7.43551 42.3395 8.03846C42.7917 8.64142 43.0178 9.44831 43.0178 10.4591C43.0178 11.204 42.8848 11.8424 42.6188 12.3744C42.3528 12.8976 42.0069 13.2966 41.5813 13.5715C41.1646 13.8463 40.7124 13.9838 40.2247 13.9838C39.9409 13.9838 39.6572 13.9217 39.3734 13.7976C39.0897 13.6646 38.8148 13.4872 38.5488 13.2656L38.5887 14.3562V16.4045H37.0592ZM39.9055 12.7202C40.3399 12.7202 40.7035 12.5296 40.9961 12.1483C41.2887 11.767 41.435 11.2084 41.435 10.4724C41.435 9.81629 41.3242 9.30644 41.1025 8.94289C40.8808 8.57935 40.5217 8.39757 40.0252 8.39757C39.5641 8.39757 39.0853 8.64142 38.5887 9.1291V12.1749C38.8281 12.37 39.0587 12.5119 39.2803 12.6005C39.502 12.6803 39.7104 12.7202 39.9055 12.7202Z" fill="#2C3236"/>
<path d="M47.3598 13.9838C46.7568 13.9838 46.2115 13.8508 45.7238 13.5848C45.2361 13.3099 44.8504 12.9197 44.5667 12.4143C44.2829 11.9 44.141 11.2838 44.141 10.5656C44.141 9.85619 44.2829 9.24437 44.5667 8.73009C44.8593 8.2158 45.2361 7.82122 45.6972 7.54634C46.1583 7.27147 46.6415 7.13403 47.147 7.13403C47.741 7.13403 48.2376 7.26703 48.6366 7.53304C49.0356 7.79018 49.3371 8.15373 49.541 8.62368C49.745 9.08476 49.847 9.62122 49.847 10.233C49.847 10.5523 49.8248 10.8005 49.7805 10.9779H45.6307C45.7016 11.5542 45.91 12.002 46.2558 12.3212C46.6016 12.6404 47.0361 12.8 47.5593 12.8C47.843 12.8 48.1046 12.7601 48.344 12.6803C48.5923 12.5917 48.8361 12.472 49.0755 12.3212L49.5942 13.2789C49.2839 13.4828 48.9381 13.6513 48.5568 13.7843C48.1755 13.9173 47.7765 13.9838 47.3598 13.9838ZM45.6174 9.94043H48.5169C48.5169 9.43501 48.4061 9.04043 48.1844 8.75669C47.9627 8.46408 47.6302 8.31777 47.1869 8.31777C46.8056 8.31777 46.4642 8.45964 46.1627 8.74339C45.8701 9.01826 45.6883 9.41728 45.6174 9.94043Z" fill="#2C3236"/>
<path d="M51.3078 13.8242V7.29363H52.5714L52.6778 8.17147H52.731C53.0236 7.88772 53.3428 7.64388 53.6886 7.43994C54.0344 7.236 54.429 7.13403 54.8724 7.13403C55.5728 7.13403 56.0827 7.36014 56.4019 7.81235C56.7211 8.26457 56.8807 8.90299 56.8807 9.72762V13.8242H55.3512V9.92713C55.3512 9.38624 55.2714 9.00496 55.1118 8.78329C54.9522 8.56161 54.6906 8.45078 54.327 8.45078C54.0433 8.45078 53.7906 8.52171 53.5689 8.66358C53.3561 8.79659 53.1123 8.99609 52.8374 9.2621V13.8242H51.3078Z" fill="#2C3236"/>
<path d="M61.4131 13.8242V7.29363H62.9426V13.8242H61.4131ZM62.1845 6.14979C61.9096 6.14979 61.6879 6.06999 61.5195 5.91038C61.351 5.75078 61.2668 5.53797 61.2668 5.27196C61.2668 5.01482 61.351 4.80644 61.5195 4.64684C61.6879 4.48723 61.9096 4.40743 62.1845 4.40743C62.4594 4.40743 62.6811 4.48723 62.8495 4.64684C63.018 4.80644 63.1022 5.01482 63.1022 5.27196C63.1022 5.53797 63.018 5.75078 62.8495 5.91038C62.6811 6.06999 62.4594 6.14979 62.1845 6.14979Z" fill="#2C3236"/>
<path d="M64.8941 13.8242V7.29363H66.1576L66.264 8.17147H66.3172C66.6098 7.88772 66.929 7.64388 67.2748 7.43994C67.6207 7.236 68.0152 7.13403 68.4586 7.13403C69.1591 7.13403 69.6689 7.36014 69.9881 7.81235C70.3074 8.26457 70.467 8.90299 70.467 9.72762V13.8242H68.9374V9.92713C68.9374 9.38624 68.8576 9.00496 68.698 8.78329C68.5384 8.56161 68.2768 8.45078 67.9133 8.45078C67.6295 8.45078 67.3768 8.52171 67.1551 8.66358C66.9423 8.79659 66.6985 8.99609 66.4236 9.2621V13.8242H64.8941Z" fill="#2C3236"/>
<path d="M75.1323 13.8242V5.12565H76.6752V8.62368H80.1998V5.12565H81.7427V13.8242H80.1998V9.96703H76.6752V13.8242H75.1323Z" fill="#2C3236"/>
<path d="M83.9517 13.8242V5.12565H89.2054V6.4291H85.4945V8.88969H88.6601V10.1931H85.4945V13.8242H83.9517Z" fill="#2C3236"/>
<path d="M95.9349 13.9838C95.3497 13.9838 94.7822 13.8729 94.2324 13.6513C93.6915 13.4296 93.2127 13.1148 92.796 12.7069L93.7004 11.6562C94.0108 11.9488 94.3654 12.1882 94.7645 12.3744C95.1635 12.5518 95.5625 12.6404 95.9615 12.6404C96.458 12.6404 96.8349 12.5385 97.092 12.3345C97.3492 12.1306 97.4778 11.8601 97.4778 11.5232C97.4778 11.1596 97.3492 10.8981 97.092 10.7385C96.8438 10.5789 96.5245 10.4148 96.1344 10.2463L94.9374 9.72762C94.6536 9.60348 94.3743 9.44388 94.0994 9.2488C93.8334 9.05373 93.6117 8.80546 93.4344 8.50398C93.2659 8.2025 93.1817 7.83895 93.1817 7.41334C93.1817 6.95225 93.3058 6.53994 93.5541 6.17639C93.8113 5.80398 94.1571 5.51137 94.5915 5.29856C95.0349 5.07689 95.5403 4.96605 96.1078 4.96605C96.6132 4.96605 97.1009 5.06802 97.5709 5.27196C98.0408 5.46703 98.4442 5.73304 98.7812 6.06999L97.9965 7.05423C97.7216 6.82368 97.429 6.64191 97.1186 6.5089C96.8172 6.3759 96.4802 6.3094 96.1078 6.3094C95.6999 6.3094 95.3674 6.4025 95.1103 6.58871C94.862 6.76605 94.7379 7.01432 94.7379 7.33353C94.7379 7.55521 94.7999 7.74142 94.9241 7.89215C95.0571 8.03403 95.23 8.15816 95.4428 8.26457C95.6556 8.36211 95.8817 8.45964 96.1211 8.55718L97.3048 9.0493C97.8191 9.27097 98.2403 9.56358 98.5684 9.92713C98.8965 10.2818 99.0605 10.7739 99.0605 11.4035C99.0605 11.8734 98.9364 12.3035 98.6881 12.6936C98.4398 13.0838 98.0807 13.3986 97.6108 13.638C97.1497 13.8685 96.591 13.9838 95.9349 13.9838Z" fill="#2C3236"/>
<path d="M100.509 16.4045V7.29363H101.773L101.879 7.98526H101.932C102.207 7.75472 102.513 7.55521 102.85 7.38674C103.196 7.21826 103.546 7.13403 103.901 7.13403C104.717 7.13403 105.346 7.43551 105.79 8.03846C106.242 8.64142 106.468 9.44831 106.468 10.4591C106.468 11.204 106.335 11.8424 106.069 12.3744C105.803 12.8976 105.457 13.2966 105.031 13.5715C104.615 13.8463 104.162 13.9838 103.675 13.9838C103.391 13.9838 103.107 13.9217 102.824 13.7976C102.54 13.6646 102.265 13.4872 101.999 13.2656L102.039 14.3562V16.4045H100.509ZM103.356 12.7202C103.79 12.7202 104.154 12.5296 104.446 12.1483C104.739 11.767 104.885 11.2084 104.885 10.4724C104.885 9.81629 104.774 9.30644 104.553 8.94289C104.331 8.57935 103.972 8.39757 103.475 8.39757C103.014 8.39757 102.535 8.64142 102.039 9.1291V12.1749C102.278 12.37 102.509 12.5119 102.73 12.6005C102.952 12.6803 103.16 12.7202 103.356 12.7202Z" fill="#2C3236"/>
<path d="M109.444 13.9838C108.876 13.9838 108.411 13.8064 108.047 13.4518C107.692 13.0971 107.515 12.636 107.515 12.0685C107.515 11.368 107.821 10.8271 108.433 10.4458C109.045 10.0557 110.02 9.78969 111.359 9.64782C111.35 9.30201 111.257 9.00496 111.08 8.75669C110.911 8.49954 110.605 8.37097 110.162 8.37097C109.843 8.37097 109.528 8.43304 109.218 8.55718C108.916 8.68132 108.619 8.83206 108.326 9.0094L107.768 7.98526C108.131 7.75472 108.539 7.55521 108.991 7.38674C109.452 7.21826 109.94 7.13403 110.454 7.13403C111.27 7.13403 111.878 7.37787 112.277 7.86555C112.685 8.34437 112.888 9.04043 112.888 9.95373V13.8242H111.625L111.518 13.1059H111.465C111.173 13.3542 110.858 13.5626 110.521 13.7311C110.193 13.8995 109.834 13.9838 109.444 13.9838ZM109.936 12.7867C110.202 12.7867 110.441 12.7247 110.654 12.6005C110.876 12.4675 111.111 12.2902 111.359 12.0685V10.6055C110.472 10.7207 109.856 10.8936 109.51 11.1242C109.164 11.3458 108.991 11.6207 108.991 11.9488C108.991 12.2414 109.08 12.4542 109.257 12.5872C109.435 12.7202 109.661 12.7867 109.936 12.7867Z" fill="#2C3236"/>
<path d="M117.446 13.9838C116.851 13.9838 116.315 13.8508 115.836 13.5848C115.366 13.3099 114.989 12.9197 114.706 12.4143C114.431 11.9 114.293 11.2838 114.293 10.5656C114.293 9.83846 114.444 9.2222 114.746 8.71679C115.047 8.2025 115.446 7.81235 115.943 7.54634C116.448 7.27147 116.989 7.13403 117.565 7.13403C117.982 7.13403 118.346 7.20496 118.656 7.34684C118.966 7.48871 119.241 7.66161 119.48 7.86555L118.736 8.86309C118.567 8.71235 118.394 8.59708 118.217 8.51728C118.04 8.42861 117.849 8.38427 117.645 8.38427C117.122 8.38427 116.692 8.58378 116.355 8.98279C116.027 9.38181 115.863 9.9094 115.863 10.5656C115.863 11.2128 116.022 11.736 116.342 12.135C116.67 12.534 117.091 12.7335 117.605 12.7335C117.862 12.7335 118.102 12.6803 118.323 12.5739C118.554 12.4587 118.762 12.3256 118.948 12.1749L119.574 13.1857C119.272 13.4518 118.935 13.6513 118.563 13.7843C118.19 13.9173 117.818 13.9838 117.446 13.9838Z" fill="#2C3236"/>
<path d="M123.331 13.9838C122.728 13.9838 122.183 13.8508 121.695 13.5848C121.207 13.3099 120.822 12.9197 120.538 12.4143C120.254 11.9 120.112 11.2838 120.112 10.5656C120.112 9.85619 120.254 9.24437 120.538 8.73009C120.83 8.2158 121.207 7.82122 121.668 7.54634C122.13 7.27147 122.613 7.13403 123.118 7.13403C123.712 7.13403 124.209 7.26703 124.608 7.53304C125.007 7.79018 125.308 8.15373 125.512 8.62368C125.716 9.08476 125.818 9.62122 125.818 10.233C125.818 10.5523 125.796 10.8005 125.752 10.9779H121.602C121.673 11.5542 121.881 12.002 122.227 12.3212C122.573 12.6404 123.007 12.8 123.53 12.8C123.814 12.8 124.076 12.7601 124.315 12.6803C124.563 12.5917 124.807 12.472 125.047 12.3212L125.565 13.2789C125.255 13.4828 124.909 13.6513 124.528 13.7843C124.147 13.9173 123.748 13.9838 123.331 13.9838ZM121.589 9.94043H124.488C124.488 9.43501 124.377 9.04043 124.156 8.75669C123.934 8.46408 123.601 8.31777 123.158 8.31777C122.777 8.31777 122.435 8.45964 122.134 8.74339C121.841 9.01826 121.66 9.41728 121.589 9.94043Z" fill="#2C3236"/>
<path d="M129.101 13.9838C128.658 13.9838 128.215 13.8995 127.771 13.7311C127.328 13.5537 126.947 13.3365 126.627 13.0793L127.346 12.0951C127.638 12.3168 127.931 12.4941 128.223 12.6271C128.516 12.7601 128.826 12.8266 129.154 12.8266C129.509 12.8266 129.771 12.7513 129.939 12.6005C130.108 12.4498 130.192 12.2636 130.192 12.0419C130.192 11.8557 130.121 11.705 129.979 11.5897C129.846 11.4656 129.673 11.3591 129.46 11.2705C129.248 11.1729 129.026 11.0798 128.795 10.9912C128.512 10.8848 128.228 10.7562 127.944 10.6055C127.669 10.4458 127.443 10.2463 127.266 10.0069C127.088 9.75866 127 9.45274 127 9.0892C127 8.51284 127.213 8.04289 127.638 7.67935C128.064 7.3158 128.64 7.13403 129.367 7.13403C129.828 7.13403 130.241 7.21383 130.604 7.37344C130.968 7.53304 131.282 7.71482 131.548 7.91876L130.844 8.84979C130.613 8.68132 130.378 8.54831 130.139 8.45078C129.908 8.34437 129.664 8.29117 129.407 8.29117C129.079 8.29117 128.835 8.36211 128.676 8.50398C128.516 8.63698 128.436 8.80545 128.436 9.0094C128.436 9.26654 128.569 9.46161 128.835 9.59462C129.101 9.72762 129.412 9.85619 129.766 9.98033C130.068 10.0867 130.36 10.2197 130.644 10.3793C130.928 10.5301 131.163 10.7296 131.349 10.9779C131.544 11.2261 131.642 11.5542 131.642 11.9621C131.642 12.5207 131.424 12.9995 130.99 13.3986C130.555 13.7887 129.926 13.9838 129.101 13.9838Z" fill="#2C3236"/>
</svg>

Before

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -1 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>

Before

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

After

Width:  |  Height:  |  Size: 205 KiB

View File

@@ -3,7 +3,7 @@
!!! info "LanceDB can be run in a number of ways:" !!! info "LanceDB can be run in a number of ways:"
* Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application) * Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application)
* Directly from a client application like a Jupyter notebook for analytical workloads * Connected to directly from a client application like a Jupyter notebook for analytical workloads
* Deployed as a remote serverless database * Deployed as a remote serverless database
![](assets/lancedb_embedded_explanation.png) ![](assets/lancedb_embedded_explanation.png)
@@ -16,68 +16,21 @@
pip install lancedb pip install lancedb
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb
```
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "vectordb (deprecated)"
```shell ```shell
npm install vectordb npm install vectordb
``` ```
!!! note "Bundling `vectordb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "Rust" === "Rust"
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
```shell ```shell
cargo add lancedb cargo add vectordb
``` ```
!!! info "To use the lancedb create, you first need to install protobuf." !!! info "To use the vectordb create, you first need to install protobuf."
=== "macOS" === "macOS"
@@ -91,79 +44,23 @@
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
``` ```
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)" !!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
### Preview releases ## How to connect to a database
Stable releases are created about every 2 weeks. For the latest features and bug
fixes, you can install the preview release. These releases receive the same
level of testing as stable releases, but are not guaranteed to be available for
more than 6 months after they are released. Once your application is stable, we
recommend switching to stable releases.
=== "Python" === "Python"
```shell
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb@preview
```
=== "vectordb (deprecated)"
```shell
npm install vectordb@preview
```
=== "Rust"
We don't push preview releases to crates.io, but you can referent the tag
in GitHub within your Cargo dependencies:
```toml
[dependencies]
lancedb = { git = "https://github.com/lancedb/lancedb.git", tag = "vX.Y.Z-beta.N" }
```
## Connect to a database
=== "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:imports" import lancedb
uri = "data/sample-lancedb"
--8<-- "python/python/tests/docs/test_basic.py:set_uri" db = lancedb.connect(uri)
--8<-- "python/python/tests/docs/test_basic.py:connect"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript ```typescript
import * as lancedb from "@lancedb/lancedb"; --8<-- "docs/src/basic_legacy.ts:import"
import * as arrow from "apache-arrow";
--8<-- "nodejs/examples/basic.test.ts:connect"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:open_db" --8<-- "docs/src/basic_legacy.ts:open_db"
``` ```
@@ -172,125 +69,76 @@ recommend switching to stable releases.
```rust ```rust
#[tokio::main] #[tokio::main]
async fn main() -> Result<()> { async fn main() -> Result<()> {
--8<-- "rust/lancedb/examples/simple.rs:connect" --8<-- "rust/vectordb/examples/simple.rs:connect"
} }
``` ```
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/lancedb/examples/simple.rs) for a full working example." !!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories). LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`. If you need a reminder of the uri, you can call `db.uri()`.
## Create a table ## How to create a table
### Create a table from initial data
If you have data to insert into the table at creation time, you can simultaneously create a
table and insert the data into it. The schema of the data will be used as the schema of the
table.
=== "Python" === "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"` If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method. to the `create_table` method.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
```
You can also pass in a pandas DataFrame directly: You can also pass in a pandas DataFrame directly:
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas" import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
``` ```
=== "Async API" === "Typescript"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_table"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:create_table" --8<-- "docs/src/basic_legacy.ts:create_table"
``` ```
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode:"overwrite"` If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function. to the `createTable` function.
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:create_table" use arrow_schema::{DataType, Schema, Field};
use arrow_array::{RecordBatch, RecordBatchIterator};
--8<-- "rust/vectordb/examples/simple.rs:create_table"
``` ```
If the table already exists, LanceDB will raise an error by default. See If the table already exists, LanceDB will raise an error by default.
[the mode option](https://docs.rs/lancedb/latest/lancedb/connection/struct.CreateTableBuilder.html#method.mode)
for details on how to overwrite (or open) existing tables instead.
!!! Providing table records in Rust !!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
The Rust SDK currently expects data to be provided as an Arrow ### Creating an empty table
[RecordBatchReader](https://docs.rs/arrow-array/latest/arrow_array/trait.RecordBatchReader.html)
Support for additional formats (such as serde or polars) is on the roadmap.
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
!!! info "Automatic embedding generation with Embedding API"
When working with embedding models, it is recommended to use the LanceDB embedding API to automatically create vector representation of the data and queries in the background. See the [quickstart example](#using-the-embedding-api) or the embedding API [guide](./embeddings/)
### Create an empty table
Sometimes you may not have the data to insert into the table at creation time. Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema, so that you can add In this case, you can create an empty table and specify the schema.
data to the table at a later time (as long as it conforms to the schema). This is
similar to a `CREATE TABLE` statement in SQL.
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table" import pyarrow as pa
``` schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
=== "Async API" tbl = db.create_table("empty_table", schema=schema)
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
``` ```
!!! note "You can define schema in Pydantic" === "Typescript"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table" --8<-- "docs/src/basic_legacy.ts:create_empty_table"
@@ -299,105 +147,70 @@ similar to a `CREATE TABLE` statement in SQL.
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:create_empty_table" --8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
``` ```
## Open an existing table ## How to open an existing table
Once created, you can open a table as follows: Once created, you can open a table using the following code:
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:open_table" tbl = db.open_table("my_table")
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:open_table"
```
=== "vectordb (deprecated)"
```typescript ```typescript
const tbl = await db.openTable("myTable"); const tbl = await db.openTable("myTable");
``` ```
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:open_existing_tbl" --8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
``` ```
If you forget the name of your table, you can always get a listing of all table names: If you forget the name of your table, you can always get a listing of all table names:
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:table_names" print(db.table_names())
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
``` ```
=== "Typescript[^1]" === "Javascript"
=== "@lancedb/lancedb"
```typescript ```javascript
--8<-- "nodejs/examples/basic.test.ts:table_names"
```
=== "vectordb (deprecated)"
```typescript
console.log(await db.tableNames()); console.log(await db.tableNames());
``` ```
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:list_names" --8<-- "rust/vectordb/examples/simple.rs:list_names"
``` ```
## Add data to a table ## How to add data to a table
After a table has been created, you can always add more data to it as follows: After a table has been created, you can always add more data to it using
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
```
=== "Async API"
```python # Option 1: Add a list of dicts to a table
--8<-- "python/python/tests/docs/test_basic.py:add_data_async" data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_data"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:add" --8<-- "docs/src/basic_legacy.ts:add"
@@ -406,36 +219,22 @@ After a table has been created, you can always add more data to it as follows:
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:add" --8<-- "rust/vectordb/examples/simple.rs:add"
``` ```
## Search for nearest neighbors ## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors as follows: Once you've embedded the query, you can find its nearest neighbors using the following code:
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search" tbl.search([100, 100]).limit(2).to_pandas()
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
``` ```
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:vector_search"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:search" --8<-- "docs/src/basic_legacy.ts:search"
@@ -446,42 +245,19 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
```rust ```rust
use futures::TryStreamExt; use futures::TryStreamExt;
--8<-- "rust/lancedb/examples/simple.rs:search" --8<-- "rust/vectordb/examples/simple.rs:search"
``` ```
!!! Query vectors in Rust
Rust does not yet support automatic execution of embedding functions. You will need to
calculate embeddings yourself. Support for this is on the roadmap and can be tracked at
https://github.com/lancedb/lancedb/issues/994
Query vectors can be provided as Arrow arrays or a Vec/slice of Rust floats.
Support for additional formats (e.g. `polars::series::Series`) is on the roadmap.
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN). By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance. For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
LanceDB allows you to create an ANN index on a table as follows:
=== "Python" === "Python"
=== "Sync API" ```py
tbl.create_index()
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_index"
```
=== "vectordb (deprecated)"
```{.typescript .ignore} ```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index" --8<-- "docs/src/basic_legacy.ts:create_index"
@@ -490,17 +266,12 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:create_index" --8<-- "rust/vectordb/examples/simple.rs:create_index"
``` ```
!!! note "Why do I need to create an index manually?" Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
## Delete rows from a table ## How to delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns. which rows to delete, provide a filter that matches on the metadata columns.
@@ -508,26 +279,11 @@ This can delete any number of rows that match the filter.
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows" tbl.delete('item = "fizz"')
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
``` ```
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:delete" --8<-- "docs/src/basic_legacy.ts:delete"
@@ -536,65 +292,36 @@ This can delete any number of rows that match the filter.
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:delete" --8<-- "rust/vectordb/examples/simple.rs:delete"
``` ```
The deletion predicate is a SQL expression that supports the same expressions The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause (`only_if()` in Rust) on a search. They can be as as the `where()` clause on a search. They can be as simple or complex as needed.
simple or complex as needed. To see what expressions are supported, see the To see what expressions are supported, see the [SQL filters](sql.md) section.
[SQL filters](sql.md) section.
=== "Python" === "Python"
=== "Sync API"
Read more: [lancedb.table.Table.delete][] Read more: [lancedb.table.Table.delete][]
=== "Async API"
Read more: [lancedb.table.AsyncTable.delete][]
=== "Typescript[^1]" === "Javascript"
=== "@lancedb/lancedb"
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
=== "vectordb (deprecated)"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete) Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
=== "Rust" ## How to remove a table
Read more: [lancedb::Table::delete](https://docs.rs/lancedb/latest/lancedb/table/struct.Table.html#method.delete)
## Drop a table
Use the `drop_table()` method on the database to remove a table. Use the `drop_table()` method on the database to remove a table.
=== "Python" === "Python"
=== "Sync API"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table" db.drop_table("my_table")
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "Typescript[^1]" === "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_table"
```
=== "vectordb (deprecated)"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table" --8<-- "docs/src/basic_legacy.ts:drop_table"
@@ -606,50 +333,25 @@ Use the `drop_table()` method on the database to remove a table.
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:drop_table" --8<-- "rust/vectordb/examples/simple.rs:drop_table"
``` ```
!!! note "Bundling `vectordb` apps with Webpack"
## Using the Embedding API If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
=== "Python" ```javascript
/** @type {import('next').NextConfig} */
=== "Sync API" module.exports = ({
webpack(config) {
```python config.externals.push({ vectordb: 'vectordb' })
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports" return config;
}
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings" })
``` ```
=== "Async API"
Coming soon to the async API.
https://github.com/lancedb/lancedb/issues/1938
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/index.md).
## What's next ## What's next
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts. This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail. If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,14 +1,6 @@
// --8<-- [start:import] // --8<-- [start:import]
import * as lancedb from "vectordb"; import * as lancedb from "vectordb";
import { import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
Schema,
Field,
Float32,
FixedSizeList,
Int32,
Float16,
} from "apache-arrow";
import * as arrow from "apache-arrow";
// --8<-- [end:import] // --8<-- [end:import]
import * as fs from "fs"; import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow"; import { Table as ArrowTable, Utf8 } from "apache-arrow";
@@ -28,33 +20,9 @@ const example = async () => {
{ vector: [3.1, 4.1], item: "foo", price: 10.0 }, { vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 }, { vector: [5.9, 26.5], item: "bar", price: 20.0 },
], ],
{ writeMode: lancedb.WriteMode.Overwrite }, { writeMode: lancedb.WriteMode.Overwrite }
); );
// --8<-- [end:create_table] // --8<-- [end:create_table]
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable({
name: "myTableWithSchema",
data,
schema,
});
// --8<-- [end:create_table_with_schema]
}
// --8<-- [start:add] // --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({ const newData = Array.from({ length: 500 }, (_, i) => ({
@@ -74,39 +42,38 @@ const example = async () => {
// --8<-- [end:create_index] // --8<-- [end:create_index]
// --8<-- [start:create_empty_table] // --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
{
// --8<-- [start:create_f16_table]
const dim = 16;
const total = 10;
const schema = new Schema([ const schema = new Schema([
new Field("id", new Int32()), new Field("id", new Int32()),
new Field( new Field("name", new Utf8()),
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]); ]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable( const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({ Array.from(Array(total), (_, i) => ({
id: i, id: i,
vector: Array.from(Array(dim), Math.random), vector: Array.from(Array(dim), Math.random)
})), })),
{ schema }, { f16_schema }
); )
const table = await db.createTable("f16_tbl", data); const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table] // --8<-- [end:create_f16_table]
}
// --8<-- [start:search] // --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute(); const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search] // --8<-- [end:search]
console.log(query);
// --8<-- [start:delete] // --8<-- [start:delete]
await tbl.delete('item = "fizz"'); await tbl.delete('item = "fizz"');
@@ -118,9 +85,8 @@ const example = async () => {
}; };
async function main() { async function main() {
console.log("basic_legacy.ts: start");
await example(); await example();
console.log("basic_legacy.ts: done"); console.log("Basic example: done");
} }
main(); main();

51
docs/src/cli_config.md Normal file
View File

@@ -0,0 +1,51 @@
# CLI & Config
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console.
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command.
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
### Get usage help
```
lancedb diagnostics --help
```
### Disable diagnostics
```
lancedb diagnostics --disabled
```
### Enable diagnostics
```
lancedb diagnostics --enabled
```

View File

@@ -1,34 +0,0 @@
This section provides answers to the most common questions asked about LanceDB Cloud. By following these guidelines, you can ensure a smooth, performant experience with LanceDB Cloud.
### Should I reuse the database connection?
Yes! It is recommended to establish a single database connection and maintain it throughout your interaction with the tables within.
LanceDB uses HTTP connections to communicate with the servers. By re-using the Connection object, you avoid the overhead of repeatedly establishing HTTP connections, significantly improving efficiency.
### Should I re-use the `Table` object?
`table = db.open_table()` should be called once and used for all subsequent table operations. If there are changes to the opened table, `table` always reflect the **latest version** of the data.
### What should I do if I need to search for rows by `id`?
LanceDB Cloud currently does not support an ID or primary key column. You are recommended to add a
user-defined ID column. To significantly improve the query performance with SQL causes, a scalar BITMAP/BTREE index should be created on this column.
### What are the vector indexing types supported by LanceDB Cloud?
We support `IVF_PQ` and `IVF_HNSW_SQ` as the `index_type` which is passed to `create_index`. LanceDB Cloud tunes the indexing parameters automatically to achieve the best tradeoff between query latency and query quality.
### When I add new rows to a table, do I need to manually update the index?
No! LanceDB Cloud triggers an asynchronous background job to index the new vectors.
Even though indexing is asynchronous, your vectors will still be immediately searchable. LanceDB uses brute-force search to search over unindexed rows. This makes you new data is immediately available, but does increase latency temporarily. To disable the brute-force part of search, set the `fast_search` flag in your query to `true`.
### Do I need to reindex the whole dataset if only a small portion of the data is deleted or updated?
No! Similar to adding data to the table, LanceDB Cloud triggers an asynchronous background job to update the existing indices. Therefore, no action is needed from users and there is absolutely no
downtime expected.
### How do I know whether an index has been created?
While index creation in LanceDB Cloud is generally fast, querying immediately after a `create_index` call may result in errors. It's recommended to use `list_indices` to verify index creation before querying.
### Why is my query latency higher than expected?
Multiple factors can impact query latency. To reduce query latency, consider the following:
- Send pre-warm queries: send a few queries to warm up the cache before an actual user query.
- Check network latency: LanceDB Cloud is hosted in AWS `us-east-1` region. It is recommended to run queries from an EC2 instance that is in the same region.
- Create scalar indices: If you are filtering on metadata, it is recommended to create scalar indices on those columns. This will speedup searches with metadata filtering. See [here](../guides/scalar_index.md) for more details on creating a scalar index.

View File

@@ -2,7 +2,7 @@
LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below. LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud (Public Beta)](https://cloud.lancedb.com){ .md-button .md-button--primary } [Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
## Architecture ## Architecture

View File

@@ -1 +0,0 @@
!!swagger ../../openapi.yml!!

View File

@@ -1,99 +0,0 @@
# Understanding HNSW index
Approximate Nearest Neighbor (ANN) search is a method for finding data points near a given point in a dataset, though not always the exact nearest one. HNSW is one of the most accurate and fastest Approximate Nearest Neighbour search algorithms, Its beneficial in high-dimensional spaces where finding the same nearest neighbor would be too slow and costly
[Jump to usage](#usage)
There are three main types of ANN search algorithms:
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
* **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
HNSW also combines this with the ideas behind a classic 1-dimensional search data structure: the skip list.
## k-Nearest Neighbor Graphs and k-approximate Nearest neighbor Graphs
The k-nearest neighbor graph actually predates its use for ANN search. Its construction is quite simple:
* Each vector in the dataset is given an associated vertex.
* Each vertex has outgoing edges to its k nearest neighbors. That is, the k closest other vertices by Euclidean distance between the two corresponding vectors. This can be thought of as a "friend list" for the vertex.
* For some applications (including nearest-neighbor search), the incoming edges are also added.
Eventually, it was realized that the following greedy search method over such a graph typically results in good approximate nearest neighbors:
* Given a query vector, start at some fixed "entry point" vertex (e.g. the approximate center node).
* Look at that vertex's neighbors. If any of them are closer to the query vector than the current vertex, then move to that vertex.
* Repeat until a local optimum is found.
The above algorithm also generalizes to e.g. top 10 approximate nearest neighbors.
Computing a k-nearest neighbor graph is actually quite slow, taking quadratic time in the dataset size. It was quickly realized that near-identical performance can be achieved using a k-approximate nearest neighbor graph. That is, instead of obtaining the k-nearest neighbors for each vertex, an approximate nearest neighbor search data structure is used to build much faster.
In fact, another data structure is not needed: This can be done "incrementally".
That is, if you start with a k-ANN graph for n-1 vertices, you can extend it to a k-ANN graph for n vertices as well by using the graph to obtain the k-ANN for the new vertex.
One downside of k-NN and k-ANN graphs alone is that one must typically build them with a large value of k to get decent results, resulting in a large index.
## HNSW: Hierarchical Navigable Small Worlds
HNSW builds on k-ANN in two main ways:
* Instead of getting the k-approximate nearest neighbors for a large value of k, it sparsifies the k-ANN graph using a carefully chosen "edge pruning" heuristic, allowing for the number of edges per vertex to be limited to a relatively small constant.
* The "entry point" vertex is chosen dynamically using a recursively constructed data structure on a subset of the data, similarly to a skip list.
This recursive structure can be thought of as separating into layers:
* At the bottom-most layer, an k-ANN graph on the whole dataset is present.
* At the second layer, a k-ANN graph on a fraction of the dataset (e.g. 10%) is present.
* At the Lth layer, a k-ANN graph is present. It is over a (constant) fraction (e.g. 10%) of the vectors/vertices present in the L-1th layer.
Then the greedy search routine operates as follows:
* At the top layer (using an arbitrary vertex as an entry point), use the greedy local search routine on the k-ANN graph to get an approximate nearest neighbor at that layer.
* Using the approximate nearest neighbor found in the previous layer as an entry point, find an approximate nearest neighbor in the next layer with the same method.
* Repeat until the bottom-most layer is reached. Then use the entry point to find multiple nearest neighbors (e.g. top 10).
## Usage
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index
```python
import lancedb
import numpy as np
uri = "/tmp/lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [
{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))
]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the HNSW index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(index_type=IVF_HNSW_SQ)
```
### Query the index
```python
# Search using a random 1536-dimensional embedding
tbl.search(np.random.random((1536))) \
.limit(2) \
.to_pandas()
```

View File

@@ -31,7 +31,7 @@ As an example, consider starting with 128-dimensional vector consisting of 32-bi
While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space. While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space.
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are initialized by running K-means over the stored vectors. The centroids of K-means turn into the seed points which then each define a region. These regions are then are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index. In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
![](../assets/ivfpq_ivf_desc.webp) ![](../assets/ivfpq_ivf_desc.webp)
@@ -47,7 +47,7 @@ We can combine the above concepts to understand how to build and query an IVF-PQ
There are three key parameters to set when constructing an IVF-PQ index: There are three key parameters to set when constructing an IVF-PQ index:
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance. * `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `num_partitions`: The number of partitions in the IVF portion of the index. * `num_partitions`: The number of partitions in the IVF portion of the index.
* `num_sub_vectors`: The number of sub-vectors that will be created during Product Quantization (PQ). * `num_sub_vectors`: The number of sub-vectors that will be created during Product Quantization (PQ).
@@ -56,12 +56,10 @@ In Python, the index can be created as follows:
```python ```python
# Create and train the index for a 1536-dimensional vector # Create and train the index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step # Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="l2", num_partitions=256, num_sub_vectors=96) tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
``` ```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters. The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
### Query the index ### Query the index
@@ -83,4 +81,24 @@ The above query will perform a search on the table `tbl` using the given query v
* `to_pandas()`: Convert the results to a pandas DataFrame * `to_pandas()`: Convert the results to a pandas DataFrame
And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB. And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB.
To see how to create an IVF-PQ index in LanceDB, take a look at the [ANN indexes](../ann_indexes.md) section.
## FAQ
### When is it necessary to create a vector index?
LanceDB has manually-tuned SIMD code for computing vector distances. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **<20ms**. For small datasets (<100K rows) or applications that can accept up to 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how much memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with 1024-dimension vectors, if we choose `num_sub_vectors = 64`, each sub-vector has `1024 / 64 = 16` float32 numbers. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for IVF_PQ index?
`num_partitions` is used to decide how many partitions the first level IVF index uses. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. On SIFT-1M dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency/recall.
`num_sub_vectors` specifies how many PQ short codes to generate on each vector. Because PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

View File

@@ -1,67 +0,0 @@
# Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -1,51 +0,0 @@
# Jina Embeddings : Multimodal
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -1,82 +0,0 @@
# OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```

View File

@@ -1,51 +0,0 @@
# AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -1,63 +0,0 @@
# Cohere Embeddings
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
Supported models are:
- embed-english-v3.0
- embed-multilingual-v3.0
- embed-english-light-v3.0
- embed-multilingual-light-v3.0
- embed-english-v2.0
- embed-english-light-v2.0
- embed-multilingual-v2.0
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types:
| Input Type | Description |
|-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector|
| | database for search use-cases. |
| "`search_query`" | Used for embeddings of search queries |
| | run against a vector DB |
| "`semantic_similarity`" | Specifies the given text will be used |
| | for Semantic Textual Similarity (STS) |
| "`classification`" | Used for embeddings passed through a |
| | text classifier. |
| "`clustering`" | Used for the embeddings run through a |
| | clustering algorithm |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -1,35 +0,0 @@
# Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Usage Example:
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -1,24 +0,0 @@
# Huggingface embedding models
We offer support for all Hugging Face models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`. Some Hugging Face models might require custom models defined on the HuggingFace Hub in their own modeling files. You may enable this by setting `trust_remote_code=True`. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
Example usage -
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add(df)
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -1,75 +0,0 @@
# IBM watsonx.ai Embeddings
Generate text embeddings using IBM's watsonx.ai platform.
## Supported Models
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
- `ibm/slate-125m-english-rtrvr`
- `ibm/slate-30m-english-rtrvr`
- `sentence-transformers/all-minilm-l12-v2`
- `intfloat/multilingual-e5-large`
## Parameters
The following parameters can be passed to the `create` method:
| Parameter | Type | Default Value | Description |
|------------|----------|----------------------------------|-----------------------------------------------------------|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
| url | str | None | Optional custom URL for the watsonx.ai instance |
| params | dict | None | Optional additional parameters for the embedding model |
## Usage Example
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
```
pip install ibm-watsonx-ai
```
Optionally set environment variables (if not passing credentials to `create` directly):
```sh
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
```
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
watsonx_embed = EmbeddingFunctionRegistry
.get_instance()
.get("watsonx")
.create(
name="ibm/slate-125m-english-rtrvr",
# Uncomment and set these if not using environment variables
# api_key="your_api_key_here",
# project_id="your_project_id_here",
# url="your_watsonx_url_here",
# params={...},
)
class TextModel(LanceModel):
text: str = watsonx_embed.SourceField()
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"},
]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
tbl.add(data)
rs = tbl.search("hello").limit(1).to_pandas()
print(rs)
```

View File

@@ -1,50 +0,0 @@
# Instructor Embeddings
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```

View File

@@ -1,39 +0,0 @@
# Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -1,37 +0,0 @@
# Ollama embeddings
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
| Parameter | Type | Default Value | Description |
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -1,35 +0,0 @@
# OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -1,174 +0,0 @@
# Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.

View File

@@ -1,51 +0,0 @@
# VoyageAI Embeddings
Voyage AI provides cutting-edge embedding and rerankers.
Using voyageai API requires voyageai package, which can be installed using `pip install voyageai`. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `VOYAGE_API_KEY` environment variable to use the VoyageAI API.
Supported models are:
- voyage-3
- voyage-3-lite
- voyage-finance-2
- voyage-multilingual-2
- voyage-law-2
- voyage-code-2
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
voyageai = EmbeddingFunctionRegistry
.get_instance()
.get("voyageai")
.create(name="voyage-3")
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

Some files were not shown because too many files have changed in this diff Show More