Compare commits

..

1 Commits

Author SHA1 Message Date
Andrew Yao
ea1f96dab0 build(python): Add project.dynamic = ["version"] to pyproject.toml 2024-12-24 22:27:54 -08:00
444 changed files with 8745 additions and 42079 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.21.2-beta.0"
current_version = "0.14.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -87,11 +87,26 @@ glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{current_version}\""
# Cargo files
# ------------
[[tool.bumpversion.files]]

View File

@@ -34,10 +34,6 @@ rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-unknown-linux-musl]
linker = "aarch64-linux-musl-gcc"
rustflags = ["-C", "target-feature=-crt-static"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
@@ -48,4 +44,4 @@ rustflags = ["-Ctarget-feature=+crt-static"]
# Experimental target for Arm64 Windows
[target.aarch64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -36,7 +36,8 @@ runs:
args: ${{ inputs.args }}
before-script-linux: |
set -e
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
yum install -y openssl-devel \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip
- name: Build Arm Manylinux Wheel
@@ -51,7 +52,12 @@ runs:
args: ${{ inputs.args }}
before-script-linux: |
set -e
yum install -y clang \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-aarch_64.zip > /tmp/protoc.zip \
apt install -y unzip
if [ $(uname -m) = "x86_64" ]; then
PROTOC_ARCH="x86_64"
else
PROTOC_ARCH="aarch_64"
fi
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip

View File

@@ -20,7 +20,7 @@ runs:
uses: PyO3/maturin-action@v1
with:
command: build
# TODO: pass through interpreter
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -28,7 +28,7 @@ runs:
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
- uses: actions/upload-artifact@v4
- uses: actions/upload-artifact@v3
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -18,24 +18,17 @@ concurrency:
group: "pages"
cancel-in-progress: true
env:
# This reduces the disk space needed for the build
RUSTFLAGS: "-C debuginfo=0"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
jobs:
# Single deploy job since we're just deploying
build:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-24.04
runs-on: buildjet-8vcpu-ubuntu-2204
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies needed for ubuntu
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
@@ -45,7 +38,6 @@ jobs:
python-version: "3.10"
cache: "pip"
cache-dependency-path: "docs/requirements.txt"
- uses: Swatinem/rust-cache@v2
- name: Build Python
working-directory: python
run: |
@@ -57,6 +49,7 @@ jobs:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install node dependencies
working-directory: node
run: |

View File

@@ -43,7 +43,7 @@ jobs:
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.81.0"
toolchain: "1.79.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
@@ -97,7 +97,7 @@ jobs:
- name: Dry run
if: github.event_name == 'pull_request'
run: |
mvn --batch-mode -DskipTests -Drust.release.build=true package
mvn --batch-mode -DskipTests package
- name: Set github
run: |
git config --global user.email "LanceDB Github Runner"
@@ -108,7 +108,7 @@ jobs:
echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
export GPG_TTY=$(tty)
mvn --batch-mode -DskipTests -Drust.release.build=true -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
mvn --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}

View File

@@ -35,9 +35,6 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -71,9 +68,6 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -116,3 +110,4 @@ jobs:
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -1,31 +0,0 @@
name: Check license headers
on:
push:
branches:
- main
pull_request:
paths:
- rust/**
- python/**
- nodejs/**
- java/**
- .github/workflows/license-header-check.yml
jobs:
check-licenses:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Install license-header-checker
working-directory: /tmp
run: |
curl -s https://raw.githubusercontent.com/lluissm/license-header-checker/master/install.sh | bash
mv /tmp/bin/license-header-checker /usr/local/bin/
- name: Check license headers (rust)
run: license-header-checker -a -v ./rust/license_header.txt ./ rs && [[ -z `git status -s` ]]
- name: Check license headers (python)
run: license-header-checker -a -v ./python/license_header.txt python py && [[ -z `git status -s` ]]
- name: Check license headers (typescript)
run: license-header-checker -a -v ./nodejs/license_header.txt nodejs ts && [[ -z `git status -s` ]]
- name: Check license headers (java)
run: license-header-checker -a -v ./nodejs/license_header.txt java java && [[ -z `git status -s` ]]

View File

@@ -43,7 +43,7 @@ on:
jobs:
make-release:
# Creates tag and GH release. The GH release will trigger the build and release jobs.
runs-on: ubuntu-24.04
runs-on: ubuntu-latest
permissions:
contents: write
steps:
@@ -57,14 +57,15 @@ jobs:
# trigger any workflows watching for new tags. See:
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Validate Lance dependency is at stable version
if: ${{ inputs.type == 'stable' }}
run: python ci/validate_stable_lance.py
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.11
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump Python version
if: ${{ inputs.python }}
working-directory: python
@@ -84,7 +85,6 @@ jobs:
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh --amend
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master
@@ -93,3 +93,11 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }}
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -47,9 +47,6 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- name: Lint
run: |
cargo fmt --all -- --check
@@ -109,18 +106,6 @@ jobs:
python ci/mock_openai.py &
cd nodejs/examples
npm test
- name: Check docs
run: |
# We run this as part of the job because the binary needs to be built
# first to export the types of the native code.
set -e
npm ci
npm run docs
if ! git diff --exit-code -- . ':(exclude)Cargo.lock'; then
echo "Docs need to be updated"
echo "Run 'npm run docs', fix any warnings, and commit the changes."
exit 1
fi
macos:
timeout-minutes: 30
runs-on: "macos-14"

File diff suppressed because it is too large Load Diff

View File

@@ -4,11 +4,6 @@ on:
push:
tags:
- 'python-v*'
pull_request:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/pypi-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
jobs:
linux:
@@ -20,21 +15,15 @@ jobs:
- platform: x86_64
manylinux: "2_17"
extra_args: ""
runner: ubuntu-22.04
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
runner: ubuntu-22.04
- platform: aarch64
manylinux: "2_17"
manylinux: "2_24"
extra_args: ""
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: ubuntu-2404-8x-arm64
- platform: aarch64
manylinux: "2_28"
extra_args: "--features fp16kernels"
runner: ubuntu-2404-8x-arm64
runs-on: ${{ matrix.config.runner }}
# We don't build fp16 kernels for aarch64, because it uses
# cross compilation image, which doesn't have a new enough compiler.
runs-on: "ubuntu-22.04"
steps:
- uses: actions/checkout@v4
with:
@@ -51,7 +40,6 @@ jobs:
arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
@@ -81,7 +69,6 @@ jobs:
python-minor-version: 8
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
@@ -103,12 +90,10 @@ jobs:
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/python-v')
runs-on: ubuntu-latest
permissions:
contents: write

View File

@@ -13,11 +13,6 @@ concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Color output for pytest is off by default.
PYTEST_ADDOPTS: "--color=yes"
FORCE_COLOR: "1"
jobs:
lint:
name: "Lint"
@@ -35,17 +30,16 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
python-version: "3.11"
- name: Install ruff
run: |
pip install ruff==0.9.9
pip install ruff==0.5.4
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff check .
type-check:
name: "Type Check"
doctest:
name: "Doctest"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
@@ -60,36 +54,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install protobuf compiler
run: |
sudo apt update
sudo apt install -y protobuf-compiler
pip install toml
- name: Install dependencies
run: |
python ../ci/parse_requirements.py pyproject.toml --extras dev,tests,embeddings > requirements.txt
pip install -r requirements.txt
- name: Run pyright
run: pyright
doctest:
name: "Doctest"
timeout-minutes: 30
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
python-version: "3.11"
cache: "pip"
- name: Install protobuf
run: |
@@ -110,8 +75,8 @@ jobs:
timeout-minutes: 30
strategy:
matrix:
python-minor-version: ["9", "12"]
runs-on: "ubuntu-24.04"
python-minor-version: ["9", "11"]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
@@ -136,10 +101,6 @@ jobs:
- uses: ./.github/workflows/run_tests
with:
integration: true
- name: Test without pylance or pandas
run: |
pip uninstall -y pylance pandas
pytest -vv python/tests/test_table.py
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
@@ -166,7 +127,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
@@ -196,7 +157,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
@@ -207,7 +168,7 @@ jobs:
run: rm -rf target/wheels
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-24.04"
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
@@ -228,7 +189,6 @@ jobs:
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install pyarrow==16
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install tantivy
- name: Run tests

View File

@@ -24,8 +24,8 @@ runs:
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -vv --durations=30 python/python/tests
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -vv --durations=30 python/python/tests
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests

View File

@@ -22,7 +22,6 @@ env:
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
CARGO_INCREMENTAL: 0
jobs:
lint:
@@ -40,9 +39,6 @@ jobs:
with:
fetch-depth: 0
lfs: true
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
@@ -55,33 +51,6 @@ jobs:
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
build-no-lock:
runs-on: ubuntu-24.04
timeout-minutes: 30
env:
# Need up-to-date compilers for kernels
CC: clang
CXX: clang++
steps:
- uses: actions/checkout@v4
# Building without a lock file often requires the latest Rust version since downstream
# dependencies may have updated their minimum Rust version.
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "stable"
# Remove cargo.lock to force a fresh build
- name: Remove Cargo.lock
run: rm -f Cargo.lock
- uses: rui314/setup-mold@v1
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build all
run: |
cargo build --benches --all-features --tests
linux:
timeout-minutes: 30
# To build all features, we need more disk space than is available
@@ -106,11 +75,8 @@ jobs:
workspaces: rust
- name: Install dependencies
run: |
# This shaves 2 minutes off this step in CI. This doesn't seem to be
# necessary in standard runners, but it is in the 4x runners.
sudo rm /var/lib/man-db/auto-update
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: rui314/setup-mold@v1
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
@@ -121,11 +87,11 @@ jobs:
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features --tests --locked --examples
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features --locked
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple --locked
run: cargo run --example simple
macos:
timeout-minutes: 30
@@ -149,43 +115,129 @@ jobs:
workspaces: rust
- name: Install dependencies
run: brew install protobuf
- name: Build
run: cargo build --all-features
- name: Run tests
run: |
# Don't run the s3 integration tests since docker isn't available
# on this image.
ALL_FEATURES=`cargo metadata --format-version=1 --no-deps \
| jq -r '.packages[] | .features | keys | .[]' \
| grep -v s3-test | sort | uniq | paste -s -d "," -`
cargo test --features $ALL_FEATURES --locked
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
windows:
runs-on: windows-2022
strategy:
matrix:
target:
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
defaults:
run:
working-directory: rust/lancedb
steps:
- uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install Protoc v21.12
run: choco install --no-progress protoc
- name: Build
working-directory: C:\
run: |
rustup target add ${{ matrix.target }}
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --features remote --tests --locked --target ${{ matrix.target }}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
# Can only run tests when target matches host
if: ${{ matrix.target == 'x86_64-pc-windows-msvc' }}
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo test --features remote --locked
cargo build
cargo test
windows-arm64:
runs-on: windows-4x-arm
steps:
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# Add INCLUDE paths
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --target aarch64-pc-windows-msvc
cargo test --target aarch64-pc-windows-msvc
msrv:
# Check the minimum supported Rust version

View File

@@ -0,0 +1,33 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -0,0 +1,33 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

3
.gitignore vendored
View File

@@ -9,6 +9,7 @@ venv
.vscode
.zed
rust/target
rust/Cargo.lock
site
@@ -41,3 +42,5 @@ dist
target
**/sccache.log
Cargo.lock

View File

@@ -1,27 +1,21 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
hooks:
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/astral-sh/ruff-pre-commit
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.9.9
rev: v0.2.2
hooks:
- id: ruff
# - repo: https://github.com/RobertCraigie/pyright-python
# rev: v1.1.395
# hooks:
# - id: pyright
# args: ["--project", "python"]
# additional_dependencies: [pyarrow-stubs]
- repo: local
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*
- id: ruff
- repo: local
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*

View File

@@ -1,78 +0,0 @@
# Contributing to LanceDB
LanceDB is an open-source project and we welcome contributions from the community.
This document outlines the process for contributing to LanceDB.
## Reporting Issues
If you encounter a bug or have a feature request, please open an issue on the
[GitHub issue tracker](https://github.com/lancedb/lancedb).
## Picking an issue
We track issues on the GitHub issue tracker. If you are looking for something to
work on, check the [good first issue](https://github.com/lancedb/lancedb/contribute) label. These issues are typically the best described and have the smallest scope.
If there's an issue you are interested in working on, please leave a comment on the issue. This will help us avoid duplicate work. Additionally, if you have questions about the issue, please ask them in the issue comments. We are happy to provide guidance on how to approach the issue.
## Configuring Git
First, fork the repository on GitHub, then clone your fork:
```bash
git clone https://github.com/<username>/lancedb.git
cd lancedb
```
Then add the main repository as a remote:
```bash
git remote add upstream https://github.com/lancedb/lancedb.git
git fetch upstream
```
## Setting up your development environment
We have development environments for Python, Typescript, and Java. Each environment has its own setup instructions.
* [Python](python/CONTRIBUTING.md)
* [Typescript](nodejs/CONTRIBUTING.md)
<!-- TODO: add Java contributing guide -->
* [Documentation](docs/README.md)
## Best practices for pull requests
For the best chance of having your pull request accepted, please follow these guidelines:
1. Unit test all bug fixes and new features. Your code will not be merged if it
doesn't have tests.
1. If you change the public API, update the documentation in the `docs` directory.
1. Aim to minimize the number of changes in each pull request. Keep to solving
one problem at a time, when possible.
1. Before marking a pull request ready-for-review, do a self review of your code.
Is it clear why you are making the changes? Are the changes easy to understand?
1. Use [conventional commit messages](https://www.conventionalcommits.org/en/) as pull request titles. Examples:
* New feature: `feat: adding foo API`
* Bug fix: `fix: issue with foo API`
* Documentation change: `docs: adding foo API documentation`
1. If your pull request is a work in progress, leave the pull request as a draft.
We will assume the pull request is ready for review when it is opened.
1. When writing tests, test the error cases. Make sure they have understandable
error messages.
## Project structure
The core library is written in Rust. The Python, Typescript, and Java libraries
are wrappers around the Rust library.
* `src/lancedb`: Rust library source code
* `python`: Python package source code
* `nodejs`: Typescript package source code
* `node`: **Deprecated** Typescript package source code
* `java`: Java package source code
* `docs`: Documentation source code
## Release process
For information on the release process, see: [release_process.md](release_process.md)

8892
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,54 +21,41 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.31.2", "features" = [
lance = { "version" = "=0.21.0", "features" = [
"dynamodb",
], "tag" = "v0.31.2-beta.3", "git" = "https://github.com/lancedb/lance.git" }
lance-io = { "version" = "=0.31.2", "tag" = "v0.31.2-beta.3", "git" = "https://github.com/lancedb/lance.git" }
lance-index = { "version" = "=0.31.2", "tag" = "v0.31.2-beta.3", "git" = "https://github.com/lancedb/lance.git" }
lance-linalg = { "version" = "=0.31.2", "tag" = "v0.31.2-beta.3", "git" = "https://github.com/lancedb/lance.git" }
lance-table = { "version" = "=0.31.2", "tag" = "v0.31.2-beta.3", "git" = "https://github.com/lancedb/lance.git" }
lance-testing = { "version" = "=0.31.2", "tag" = "v0.31.2-beta.3", "git" = "https://github.com/lancedb/lance.git" }
lance-datafusion = { "version" = "=0.31.2", "tag" = "v0.31.2-beta.3", "git" = "https://github.com/lancedb/lance.git" }
lance-encoding = { "version" = "=0.31.2", "tag" = "v0.31.2-beta.3", "git" = "https://github.com/lancedb/lance.git" }
], git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-io = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-index = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-linalg = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-table = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-testing = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-datafusion = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-encoding = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
# Note that this one does not include pyarrow
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
arrow-data = "55.1"
arrow-ipc = "55.1"
arrow-ord = "55.1"
arrow-schema = "55.1"
arrow-arith = "55.1"
arrow-cast = "55.1"
arrow = { version = "53.2", optional = false }
arrow-array = "53.2"
arrow-data = "53.2"
arrow-ipc = "53.2"
arrow-ord = "53.2"
arrow-schema = "53.2"
arrow-arith = "53.2"
arrow-cast = "53.2"
async-trait = "0"
datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "48.0"
datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "48.0"
datafusion-expr = "48.0"
datafusion-physical-plan = "48.0"
env_logger = "0.11"
half = { "version" = "2.6.0", default-features = false, features = [
chrono = "0.4.35"
datafusion-common = "42.0"
datafusion-physical-plan = "42.0"
env_logger = "0.10"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
moka = { version = "0.12", features = ["future"] }
object_store = "0.12.0"
moka = { version = "0.11", features = ["future"] }
object_store = "0.10.2"
pin-project = "1.0.7"
snafu = "0.8"
snafu = "0.7.4"
url = "2"
num-traits = "0.2"
rand = "0.9"
rand = "0.8"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
crunchy = "=0.2.2"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

165
README.md
View File

@@ -1,97 +1,86 @@
<a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a>
<div align="center">
<p align="center">
[![LanceDB](docs/src/assets/hero-header.png)](https://lancedb.com)
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
**Developer-friendly, database for multimodal AI**
<img src="docs/src/assets/lancedb.png" alt="LanceDB" width="50%">
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
# **The Multimodal AI Lakehouse**
</p>
[**How to Install** ](#how-to-install) ✦ [**Detailed Documentation**](https://lancedb.github.io/lancedb/) ✦ [**Tutorials and Recipes**](https://github.com/lancedb/vectordb-recipes/tree/main) ✦ [**Contributors**](#contributors)
**The ultimate multimodal data platform for AI/ML applications.**
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease.
LanceDB is a central location where developers can build, train and analyze their AI workloads.
</div>
<br>
## **Demo: Multimodal Search by Keyword, Vector or with SQL**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
## **Star LanceDB to get updates!**
<details>
<summary>⭐ Click here ⭐ to see how fast we're growing!</summary>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
<img width="100%" src="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
</picture>
</details>
## **Key Features**:
- **Fast Vector Search**: Search billions of vectors in milliseconds with state-of-the-art indexing.
- **Comprehensive Search**: Support for vector similarity search, full-text search and SQL.
- **Multimodal Support**: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- **Advanced Features**: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
### **Products**:
- **Open Source & Local**: 100% open source, runs locally or in your cloud. No vendor lock-in.
- **Cloud and Enterprise**: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
### **Ecosystem**:
- **Columnar Storage**: Built on the Lance columnar format for efficient storage and analytics.
- **Seamless Integration**: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- **Rich Ecosystem**: Integrations with [**LangChain** 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [**LlamaIndex** 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
## **How to Install**:
Follow the [Quickstart](https://lancedb.github.io/lancedb/basic/) doc to set up LanceDB locally.
**API & SDK:** We also support Python, Typescript and Rust SDKs
| Interface | Documentation |
|-----------|---------------|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
## **Join Us and Contribute**
We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our [**Discord**](https://discord.gg/G5DcmnZWKB) server.
[**Check out the GitHub Issues**](https://github.com/lancedb/lancedb/issues) if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
## **Contributors**
<a href="https://github.com/lancedb/lancedb/graphs/contributors">
<img src="https://contrib.rocks/image?repo=lancedb/lancedb" />
</a>
## **Stay in Touch With Us**
<div align="center">
</br>
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
</p>
</div>
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
**Javascript**
```shell
npm install @lancedb/lancedb
```
```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
```
**Python**
```shell
pip install lancedb
```
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux-$ARCH \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux-$ARCH \
bash ci/manylinux_node/build_lancedb.sh $ARCH

View File

@@ -0,0 +1,34 @@
# Builds the macOS artifacts (nodejs binaries).
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/lancedb
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd nodejs
echo "Building nodejs library for $1"
export RUST_TARGET=$1
npm run build-release
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -1,5 +1,5 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
@@ -9,6 +9,10 @@ FROM quay.io/pypa/manylinux_2_28_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
@@ -17,7 +21,7 @@ ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user, but only if it doesn't exist
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}

View File

@@ -0,0 +1,19 @@
#!/bin/bash
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd nodejs
npm ci
npm run build-release

View File

@@ -4,6 +4,14 @@ set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE

View File

@@ -0,0 +1,26 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1v \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,41 +0,0 @@
import argparse
import toml
def parse_dependencies(pyproject_path, extras=None):
with open(pyproject_path, "r") as file:
pyproject = toml.load(file)
dependencies = pyproject.get("project", {}).get("dependencies", [])
for dependency in dependencies:
print(dependency)
optional_dependencies = pyproject.get("project", {}).get(
"optional-dependencies", {}
)
if extras:
for extra in extras.split(","):
for dep in optional_dependencies.get(extra, []):
print(dep)
def main():
parser = argparse.ArgumentParser(
description="Generate requirements.txt from pyproject.toml"
)
parser.add_argument("path", type=str, help="Path to pyproject.toml")
parser.add_argument(
"--extras",
type=str,
help="Comma-separated list of extras to include",
default="",
)
args = parser.parse_args()
parse_dependencies(args.path, args.extras)
if __name__ == "__main__":
main()

View File

@@ -1,188 +0,0 @@
import argparse
import sys
import json
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
version = version_line.split(" ")[1].strip()
return version
def get_latest_preview_version() -> str:
lance_tags = run_command(
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[\s*(.*?)\s*\]', line, re.DOTALL)
if match:
features_str = match.group(1)
return [f.strip('"') for f in features_str.split(",") if len(f) > 0]
return []
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
lance_line = ""
is_parsing_lance_line = False
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
if line.strip().endswith("}"):
new_lines.append(line_updater(line))
else:
lance_line = line
is_parsing_lance_line = True
elif is_parsing_lance_line:
lance_line += line
if line.strip().endswith("}"):
new_lines.append(line_updater(lance_line))
lance_line = ""
is_parsing_lance_line = False
else:
print("doesn't end with }:", line)
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
update_cargo_toml(line_updater)
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
elif args.version == "local":
set_local_version()
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
else:
set_stable_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)

View File

@@ -53,7 +53,7 @@ curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-42
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
# dbghelp.lib fwpuclnt.lib arm64rt.lib
# fwpuclnt.lib arm64rt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
@@ -98,7 +98,7 @@ find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#inclu
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib dbghelp.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)

View File

@@ -1,30 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building
cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
pushd node || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -1,34 +0,0 @@
import tomllib
found_preview_lance = False
with open("Cargo.toml", "rb") as f:
cargo_data = tomllib.load(f)
for name, dep in cargo_data["workspace"]["dependencies"].items():
if name == "lance" or name.startswith("lance-"):
if isinstance(dep, str):
version = dep
elif isinstance(dep, dict):
# Version doesn't have the beta tag in it, so we instead look
# at the git tag.
version = dep.get('tag', dep.get('version'))
else:
raise ValueError("Unexpected type for dependency: " + str(dep))
if "beta" in version:
found_preview_lance = True
print(f"Dependency '{name}' is a preview version: {version}")
with open("python/pyproject.toml", "rb") as f:
py_proj_data = tomllib.load(f)
for dep in py_proj_data["project"]["dependencies"]:
if dep.startswith("pylance"):
if "b" in dep:
found_preview_lance = True
print(f"Dependency '{dep}' is a preview version")
break # Only one pylance dependency
if found_preview_lance:
raise ValueError("Found preview version of Lance in dependencies")

View File

@@ -2,88 +2,43 @@
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](../.github/workflows/docs.yml)
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features.
## Building the docs
### Setup
1. Install LanceDB Python. See setup in [Python contributing guide](../python/CONTRIBUTING.md).
Run `make develop` to install the Python package.
2. Install documentation dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
3. Make sure you have node and npm setup
4. Make sure protobuf and libssl are installed
### Preview the docs
### Building node module and create markdown files
```shell
See [Javascript docs README](./src/javascript/README.md)
### Build docs
From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally.
### Run local server
You can run a local server to test the docs prior to deployment by navigating to the `docs` directory and running the following command:
```bash
cd docs
mkdocs serve
```
If you want to just generate the HTML files:
### Run doctest for typescript example
```shell
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
```
If successful, you should see a `docs/site` directory that you can verify locally.
## Adding examples
To make sure examples are correct, we put examples in test files so they can be
run as part of our test suites.
You can see the tests are at:
* Python: `python/python/tests/docs`
* Typescript: `nodejs/examples/`
### Checking python examples
```shell
cd python
pytest -vv python/tests/docs
```
### Checking typescript examples
The `@lancedb/lancedb` package must be built before running the tests:
```shell
pushd nodejs
npm ci
```bash
cd lancedb/docs
npm i
npm run build
popd
```
Then you can run the examples by going to the `nodejs/examples` directory and
running the tests like a normal npm package:
```shell
pushd nodejs/examples
npm ci
npm test
popd
```
## API documentation
### Python
The Python API documentation is organized based on the file `docs/src/python/python.md`.
We manually add entries there so we can control the organization of the reference page.
**However, this means any new types must be manually added to the file.** No additional
steps are needed to generate the API documentation.
### Typescript
The typescript API documentation is generated from the typescript source code using [typedoc](https://typedoc.org/).
When new APIs are added, you must manually re-run the typedoc command to update the API documentation.
The new files should be checked into the repository.
```shell
pushd nodejs
npm run docs
popd
npm run all
```

View File

@@ -4,9 +4,6 @@ repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb
docs_dir: src
watch:
- src
- ../python/python
theme:
name: "material"
@@ -66,7 +63,6 @@ plugins:
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- https://lancedb.github.io/lance/objects.inv
- https://docs.pydantic.dev/latest/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations: true
@@ -109,8 +105,8 @@ nav:
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
@@ -124,9 +120,6 @@ nav:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
@@ -137,8 +130,8 @@ nav:
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
@@ -153,9 +146,7 @@ nav:
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
@@ -185,7 +176,6 @@ nav:
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
@@ -193,7 +183,6 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
@@ -206,7 +195,6 @@ nav:
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
@@ -238,18 +226,24 @@ nav:
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- FAQs: cloud/cloud_faq.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Working with SQL: guides/sql_querying.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search (native): fts.md
@@ -259,9 +253,6 @@ nav:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Document search Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
@@ -272,8 +263,8 @@ nav:
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
@@ -287,9 +278,7 @@ nav:
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
@@ -318,7 +307,6 @@ nav:
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
@@ -326,7 +314,6 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md
@@ -335,7 +322,6 @@ nav:
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- Examples:
- examples/index.md
- 🐍 Python:
@@ -359,14 +345,21 @@ nav:
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- API reference:
- Overview: api_reference.md
- Python: python/python.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/globals.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- FAQs: cloud/cloud_faq.md
extra_css:
- styles/global.css
@@ -374,7 +367,6 @@ extra_css:
extra_javascript:
- "extra_js/init_ask_ai_widget.js"
- "extra_js/reo.js"
extra:
analytics:

View File

@@ -38,13 +38,6 @@ components:
required: true
schema:
type: string
index_name:
name: index_name
in: path
description: name of the index
required: true
schema:
type: string
responses:
invalid_request:
description: Invalid request
@@ -171,7 +164,7 @@ paths:
distance_type:
type: string
description: |
The distance metric to use for search. l2, Cosine, Dot and Hamming are supported. Default is l2.
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
bypass_vector_index:
type: boolean
description: |
@@ -450,7 +443,7 @@ paths:
type: string
nullable: false
description: |
The metric type to use for the index. l2, Cosine, Dot are supported.
The metric type to use for the index. L2, Cosine, Dot are supported.
index_type:
type: string
responses:
@@ -492,22 +485,3 @@ paths:
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/{index_name}/drop/:
post:
description: Drop an index from the table
tags:
- Tables
summary: Drop an index from the table
operationId: dropIndex
parameters:
- $ref: "#/components/parameters/table_name"
- $ref: "#/components/parameters/index_name"
responses:
"200":
description: Index successfully dropped
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"

View File

@@ -1,5 +0,0 @@
{% extends "base.html" %}
{% block announce %}
📚 Starting June 1st, 2025, please use <a href="https://lancedb.github.io/documentation" target="_blank" rel="noopener noreferrer">lancedb.github.io/documentation</a> for the latest docs.
{% endblock %}

12
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.21.2-beta.0",
"version": "0.12.0",
"cpu": [
"x64",
"arm64"
@@ -65,11 +65,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.0",
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.0"
"@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",

View File

@@ -18,24 +18,25 @@ See the [indexing](concepts/index_ivfpq.md) concepts guide for more information
Lance supports `IVF_PQ` index type by default.
=== "Python"
=== "Sync API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index"
```
=== "Async API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-ivfpq"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index_async"
```
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "TypeScript"
@@ -69,7 +70,7 @@ Lance supports `IVF_PQ` index type by default.
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`l2`".
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions**: The number of partitions in the index. The default is the square root
of the number of rows.
@@ -126,9 +127,7 @@ You can specify the GPU device to train IVF partitions via
accelerator="mps"
)
```
!!! note
GPU based indexing is not yet supported with our asynchronous client.
Troubleshooting:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
@@ -153,16 +152,14 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async"
```
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
```text
vector item _distance
@@ -199,16 +196,10 @@ The search will return the data requested in addition to the distance of each it
You can further filter the elements returned by a search using a where clause.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_filter"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_filter"
```
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "TypeScript"
@@ -230,16 +221,10 @@ You can select the columns returned by the query using a select clause.
=== "Python"
=== "Sync API"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_select"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_select"
```
```text
vector _distance
@@ -291,7 +276,7 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 4K-8K rows lead to a good latency / recall.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in

View File

@@ -3,7 +3,6 @@ import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
console.log("ann_indexes.ts: start");
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
@@ -50,5 +49,5 @@ import * as vectordb from "vectordb";
.execute();
// --8<-- [end:search3]
console.log("ann_indexes.ts: done");
console.log("Ann indexes: done");
})();

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -133,22 +133,13 @@ recommend switching to stable releases.
## Connect to a database
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect"
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
=== "Typescript[^1]"
@@ -192,33 +183,21 @@ table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
=== "Sync API"
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript[^1]"
@@ -268,16 +247,10 @@ similar to a `CREATE TABLE` statement in SQL.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
!!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
@@ -308,16 +281,10 @@ Once created, you can open a table as follows:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table"
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
@@ -343,16 +310,10 @@ If you forget the name of your table, you can always get a listing of all table
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names"
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
@@ -379,16 +340,10 @@ After a table has been created, you can always add more data to it as follows:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
@@ -415,16 +370,10 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
This returns a pandas DataFrame with the results.
@@ -463,16 +412,10 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
```py
--8<-- "python/python/tests/docs/test_basic.py:create_index"
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
@@ -508,16 +451,10 @@ This can delete any number of rows that match the filter.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript[^1]"
@@ -546,10 +483,7 @@ simple or complex as needed. To see what expressions are supported, see the
=== "Python"
=== "Sync API"
Read more: [lancedb.table.Table.delete][]
=== "Async API"
Read more: [lancedb.table.AsyncTable.delete][]
Read more: [lancedb.table.Table.delete][]
=== "Typescript[^1]"
@@ -571,16 +505,10 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
@@ -615,17 +543,10 @@ You can use the embedding API when working with embedding models. It automatical
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Async API"
Coming soon to the async API.
https://github.com/lancedb/lancedb/issues/1938
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Typescript[^1]"

View File

@@ -107,6 +107,7 @@ const example = async () => {
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
console.log(query);
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
@@ -118,9 +119,8 @@ const example = async () => {
};
async function main() {
console.log("basic_legacy.ts: start");
await example();
console.log("basic_legacy.ts: done");
console.log("Basic example: done");
}
main();

View File

@@ -2,7 +2,7 @@
LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud (Public Beta)](https://cloud.lancedb.com){ .md-button .md-button--primary }
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
## Architecture

View File

@@ -7,7 +7,7 @@ Approximate Nearest Neighbor (ANN) search is a method for finding data points ne
There are three main types of ANN search algorithms:
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
* **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* * **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
@@ -59,7 +59,7 @@ Then the greedy search routine operates as follows:
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.

View File

@@ -47,7 +47,7 @@ We can combine the above concepts to understand how to build and query an IVF-PQ
There are three key parameters to set when constructing an IVF-PQ index:
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `num_partitions`: The number of partitions in the IVF portion of the index.
* `num_sub_vectors`: The number of sub-vectors that will be created during Product Quantization (PQ).
@@ -56,7 +56,7 @@ In Python, the index can be created as follows:
```python
# Create and train the index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="l2", num_partitions=256, num_sub_vectors=96)
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.

View File

@@ -55,14 +55,6 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
!!! danger "Use sensitive keys to prevent leaking secrets"
To prevent leaking secrets, such as API keys, you should add any sensitive
parameters of an embedding function to the output of the
[sensitive_keys()][lancedb.embeddings.base.EmbeddingFunction.sensitive_keys] /
[getSensitiveKeys()](../../js/namespaces/embedding/classes/EmbeddingFunction/#getsensitivekeys)
method. This prevents users from accidentally instantiating the embedding
function with hard-coded secrets.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
=== "Python"

View File

@@ -54,7 +54,7 @@ As mentioned, after creating embedding, each data point is represented as a vect
Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar. To quantify this closeness, we use distance as a metric which can be measured in the following way -
1. **Euclidean Distance (l2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
1. **Euclidean Distance (L2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
2. **Cosine Similarity**: It measures the cosine of the angle between two vectors, providing a normalized measure of similarity based on their direction.
3. **Dot product**: It is calculated as the sum of the products of their corresponding components. To measure relatedness it considers both the magnitude and direction of the vectors.

View File

@@ -1,53 +0,0 @@
# Variable and Secrets
Most embedding configuration options are saved in the table's metadata. However,
this isn't always appropriate. For example, API keys should never be stored in the
metadata. Additionally, other configuration options might be best set at runtime,
such as the `device` configuration that controls whether to use GPU or CPU for
inference. If you hardcoded this to GPU, you wouldn't be able to run the code on
a server without one.
To handle these cases, you can set variables on the embedding registry and
reference them in the embedding configuration. These variables will be available
during the runtime of your program, but not saved in the table's metadata. When
the table is loaded from a different process, the variables must be set again.
To set a variable, use the `set_var()` / `setVar()` method on the embedding registry.
To reference a variable, use the syntax `$env:VARIABLE_NAME`. If there is a default
value, you can use the syntax `$env:VARIABLE_NAME:DEFAULT_VALUE`.
## Using variables to set secrets
Sensitive configuration, such as API keys, must either be set as environment
variables or using variables on the embedding registry. If you pass in a hardcoded
value, LanceDB will raise an error. Instead, if you want to set an API key via
configuration, use a variable:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:register_secret"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:register_secret"
```
## Using variables to set the device parameter
Many embedding functions that run locally have a `device` parameter that controls
whether to use GPU or CPU for inference. Because not all computers have a GPU,
it's helpful to be able to set the `device` parameter at runtime, rather than
have it hard coded in the embedding configuration. To make it work even if the
variable isn't set, you could provide a default value of `cpu` in the embedding
configuration.
Some embedding libraries even have a method to detect which devices are available,
which could be used to dynamically set the device at runtime. For example, in Python
you can check if a CUDA GPU is available using `torch.cuda.is_available()`.
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:register_device"
```

View File

@@ -8,5 +8,15 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
* 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon)
!!! tip "Hosted LanceDB"
If you want S3 cost-efficiency and local performance via a simple serverless API, checkout **LanceDB Cloud**. For private deployments, high performance at extreme scale, or if you have strict security requirements, talk to us about **LanceDB Enterprise**. [Learn more](https://docs.lancedb.com/)
## Python Applications powered by LanceDB
| Project Name | Description |
| --- | --- |
| **Ultralytics Explorer 🚀**<br>[![Ultralytics](https://img.shields.io/badge/Ultralytics-Docs-green?labelColor=0f3bc4&style=flat-square&logo=https://cdn.prod.website-files.com/646dd1f1a3703e451ba81ecc/64994922cf2a6385a4bf4489_UltralyticsYOLO_mark_blue.svg&link=https://docs.ultralytics.com/datasets/explorer/)](https://docs.ultralytics.com/datasets/explorer/)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
| **Website Chatbot🤖**<br>[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&amp;env=OPENAI_API_KEY&amp;envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&amp;project-name=lancedb-vercel-chatbot&amp;repository-name=lancedb-vercel-chatbot&amp;demo-title=LanceDB%20Chatbot%20Demo&amp;demo-description=Demo%20website%20chatbot%20with%20LanceDB.&amp;demo-url=https%3A%2F%2Flancedb.vercel.app&amp;demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
## Nodejs Applications powered by LanceDB
| Project Name | Description |
| --- | --- |
| **Langchain Writing Assistant✍ **<br>[![Github](../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/tree/main/applications/node/lanchain_writing_assistant) | - **📂 Data Source Integration**: Use your own data by specifying data source file, and the app instantly processes it to provide insights. <br>- **🧠 Intelligent Suggestions**: Powered by LangChain.js and LanceDB, it improves writing productivity and accuracy. <br>- **💡 Enhanced Writing Experience**: It delivers real-time contextual insights and factual suggestions while the user writes. |

View File

@@ -1 +0,0 @@
!function(){var e,t,n;e="9627b71b382d201",t=function(){Reo.init({clientID:"9627b71b382d201"})},(n=document.createElement("script")).src="https://static.reo.dev/"+e+"/reo.js",n.defer=!0,n.onload=t,document.head.appendChild(n)}();

View File

@@ -10,20 +10,28 @@ LanceDB provides support for full-text search via Lance, allowing you to incorpo
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:basic_fts"
```
=== "Async API"
```python
import lancedb
```python
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:basic_fts_async"
```
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table(
"my_table",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text", use_tantivy=False)
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
=== "TypeScript"
@@ -42,7 +50,7 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
});
await tbl
.search("puppy", "fts")
.search("puppy", queryType="fts")
.select(["text"])
.limit(10)
.toArray();
@@ -85,32 +93,22 @@ By default the text is tokenized by splitting on punctuation and whitespaces, an
Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern `tokenizer_name="{language_code}_stem"`, e.g. `en_stem` for English.
For example, to enable stemming for English:
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_stem"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_stem_async"
```
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
For example, for language with accents, you can specify the tokenizer to use `ascii_folding` to remove accents, e.g. 'é' to 'e':
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_folding"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_folding_async"
```
```python
table.create_fts_index("text",
use_tantivy=False,
language="French",
stem=True,
ascii_folding=True)
```
## Filtering
@@ -121,16 +119,9 @@ This can be invoked via the familiar `where` syntax.
With pre-filtering:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_prefiltering"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_prefiltering_async"
```
```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
```
=== "TypeScript"
@@ -160,16 +151,9 @@ With pre-filtering:
With post-filtering:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_postfiltering"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_postfiltering_async"
```
```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
```
=== "TypeScript"
@@ -207,16 +191,9 @@ or a **terms** search query like `old man sea`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
To search for a phrase, the index must be created with `with_position=True`:
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_with_position"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_with_position_async"
```
```python
table.create_fts_index("text", use_tantivy=False, with_position=True)
```
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
@@ -228,16 +205,10 @@ This can make the query more efficient, especially when the table is large and t
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_incremental_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_incremental_index_async"
```
```python
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
table.optimize()
```
=== "TypeScript"

View File

@@ -2,7 +2,7 @@
LanceDB also provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
The tantivy-based FTS is only available in Python synchronous APIs and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
The tantivy-based FTS is only available in Python and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
## Installation

View File

@@ -1,85 +0,0 @@
# Late interaction & MultiVector embedding type
Late interaction is a technique used in retrieval that calculates the relevance of a query to a document by comparing their multi-vector representations. The key difference between late interaction and other popular methods:
![late interaction vs other methods](https://raw.githubusercontent.com/lancedb/assets/b035a0ceb2c237734e0d393054c146d289792339/docs/assets/integration/colbert-blog-interaction.svg)
[ Illustration from https://jina.ai/news/what-is-colbert-and-late-interaction-and-why-they-matter-in-search/]
<b>No interaction:</b> Refers to independently embedding the query and document, that are compared to calcualte similarity without any interaction between them. This is typically used in vector search operations.
<b>Partial interaction</b> Refers to a specific approach where the similarity computation happens primarily between query vectors and document vectors, without extensive interaction between individual components of each. An example of this is dual-encoder models like BERT.
<b>Early full interaction</b> Refers to techniques like cross-encoders that process query and docs in pairs with full interaction across various stages of encoding. This is a powerful, but relatively slower technique. Because it requires processing query and docs in pairs, doc embeddings can't be pre-computed for fast retrieval. This is why cross encoders are typically used as reranking models combined with vector search. Learn more about [LanceDB Reranking support](https://lancedb.github.io/lancedb/reranking/).
<b>Late interaction</b> Late interaction is a technique that calculates the doc and query similarity independently and then the interaction or evaluation happens during the retrieval process. This is typically used in retrieval models like ColBERT. Unlike early interaction, It allows speeding up the retrieval process without compromising the depth of semantic analysis.
## Internals of ColBERT
Let's take a look at the steps involved in performing late interaction based retrieval using ColBERT:
• ColBERT employs BERT-based encoders for both queries `(fQ)` and documents `(fD)`
• A single BERT model is shared between query and document encoders and special tokens distinguish input types: `[Q]` for queries and `[D]` for documents
**Query Encoder (fQ):**
• Query q is tokenized into WordPiece tokens: `q1, q2, ..., ql`. `[Q]` token is prepended right after BERT's `[CLS]` token
• If query length < Nq, it's padded with [MASK] tokens up to Nq.
The padded sequence goes through BERT's transformer architecture
Final embeddings are L2-normalized.
**Document Encoder (fD):**
Document d is tokenized into tokens `d1, d2, ..., dm`. `[D]` token is prepended after `[CLS]` token
Unlike queries, documents are NOT padded with `[MASK]` tokens
Document tokens are processed through BERT and the same linear layer
**Late Interaction:**
Late interaction estimates relevance score `S(q,d)` using embedding `Eq` and `Ed`. Late interaction happens after independent encoding
For each query embedding, maximum similarity is computed against all document embeddings
The similarity measure can be cosine similarity or squared L2 distance
**MaxSim Calculation:**
```
S(q,d) := Σ max(Eqi⋅EdjT)
i∈|Eq| j∈|Ed|
```
This finds the best matching document embedding for each query embedding
Captures relevance based on strongest local matches between contextual embeddings
## LanceDB MultiVector type
LanceDB supports multivector type, this is useful when you have multiple vectors for a single item (e.g. with ColBert and ColPali).
You can index on a column with multivector type and search on it, the query can be single vector or multiple vectors. For now, only cosine metric is supported for multivector search. The vector value type can be float16, float32 or float64. LanceDB integrateds [ConteXtualized Token Retriever(XTR)](https://arxiv.org/abs/2304.01982), which introduces a simple, yet novel, objective function that encourages the model to retrieve the most important document tokens first.
```python
import lancedb
import numpy as np
import pyarrow as pa
db = lancedb.connect("data/multivector_demo")
schema = pa.schema(
[
pa.field("id", pa.int64()),
# float16, float32, and float64 are supported
pa.field("vector", pa.list_(pa.list_(pa.float32(), 256))),
]
)
data = [
{
"id": i,
"vector": np.random.random(size=(2, 256)).tolist(),
}
for i in range(1024)
]
tbl = db.create_table("my_table", data=data, schema=schema)
# only cosine similarity is supported for multi-vectors
tbl.create_index(metric="cosine")
# query with single vector
query = np.random.random(256).astype(np.float16)
tbl.search(query).to_arrow()
# query with multiple vectors
query = np.random.random(size=(2, 256))
tbl.search(query).to_arrow()
```
Find more about vector search in LanceDB [here](https://lancedb.github.io/lancedb/search/#multivector-type).

View File

@@ -32,20 +32,19 @@ over scalar columns.
### Create a scalar index
=== "Python"
=== "Sync API"
```python
import lancedb
books = [
{"book_id": 1, "publisher": "plenty of books", "tags": ["fantasy", "adventure"]},
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]}
]
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-btree-bitmap"
--8<-- "python/python/tests/docs/test_guide_index.py:basic_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-btree-bitmap"
--8<-- "python/python/tests/docs/test_guide_index.py:basic_scalar_index_async"
```
db = lancedb.connect("./db")
table = db.create_table("books", books)
table.create_scalar_index("book_id") # BTree by default
table.create_scalar_index("publisher", index_type="BITMAP")
```
=== "Typescript"
@@ -63,18 +62,12 @@ The following scan will be faster if the column `book_id` has a scalar index:
=== "Python"
=== "Sync API"
```python
import lancedb
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:search_with_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:search_with_scalar_index_async"
```
table = db.open_table("books")
my_df = table.search().where("book_id = 2").to_pandas()
```
=== "Typescript"
@@ -95,18 +88,22 @@ Scalar indices can also speed up scans containing a vector search or full text s
=== "Python"
=== "Sync API"
```python
import lancedb
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_scalar_index"
```
=== "Async API"
data = [
{"book_id": 1, "vector": [1, 2]},
{"book_id": 2, "vector": [3, 4]},
{"book_id": 3, "vector": [5, 6]}
]
table = db.create_table("book_with_embeddings", data)
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_scalar_index_async"
```
(
table.search([1, 2])
.where("book_id != 3", prefilter=True)
.to_pandas()
)
```
=== "Typescript"
@@ -125,16 +122,10 @@ Scalar indices can also speed up scans containing a vector search or full text s
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:update_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:update_scalar_index_async"
```
```python
table.add([{"vector": [7, 8], "book_id": 4}])
table.optimize()
```
=== "TypeScript"

View File

@@ -1,60 +0,0 @@
# SQL Querying
You can use DuckDB and Apache Datafusion to query your LanceDB tables using SQL.
This guide will show how to query Lance tables them using both.
We will re-use the dataset [created previously](./tables.md):
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
table = db.create_table("pd_table", data=data)
```
## Querying a LanceDB Table with DuckDb
The `to_lance` method converts the LanceDB table to a `LanceDataset`, which is accessible to DuckDB through the Arrow compatibility layer.
To query the resulting Lance dataset in DuckDB, all you need to do is reference the dataset by the same name in your SQL query.
```python
import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table")
```
| vector | item | price |
| ----------- | ---- | ----- |
| [3.1, 4.1] | foo | 10.0 |
| [5.9, 26.5] | bar | 20.0 |
## Querying a LanceDB Table with Apache Datafusion
Have the required imports before doing any querying.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-session-context"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-ffi-dataset"
```
Register the table created with the Datafusion session context.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:lance_sql_basic"
```
| vector | item | price |
| ----------- | ---- | ----- |
| [3.1, 4.1] | foo | 10.0 |
| [5.9, 26.5] | bar | 20.0 |

View File

@@ -12,50 +12,26 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
=== "Python"
AWS S3:
=== "Sync API"
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("s3://bucket/path")
```
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
```
Google Cloud Storage:
=== "Sync API"
```python
import lancedb
db = lancedb.connect("gs://bucket/path")
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("gs://bucket/path")
```
```python
import lancedb
db = lancedb.connect("gs://bucket/path")
```
Azure Blob Storage:
<!-- skip-test -->
=== "Sync API"
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("az://bucket/path")
```
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
@@ -118,24 +94,13 @@ If you only want this to apply to one particular connection, you can pass the `s
=== "Python"
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "TypeScript"
@@ -163,29 +128,15 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
=== "Python"
<!-- skip-test -->
=== "Sync API"
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
table = db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("s3://bucket/path")
async_table = await async_db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
```python
import lancedb
db = await lancedb.connect_async("s3://bucket/path")
table = await db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
=== "TypeScript"
@@ -243,32 +194,17 @@ These can be set as environment variables or passed in the `storage_options` par
=== "Python"
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "TypeScript"
@@ -342,7 +278,7 @@ For **read and write access**, LanceDB will need a policy such as:
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject"
"s3:DeleteObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
@@ -374,7 +310,7 @@ For **read-only access**, LanceDB will need a policy such as:
{
"Effect": "Allow",
"Action": [
"s3:GetObject"
"s3:GetObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
@@ -412,22 +348,12 @@ name of the table to use.
=== "Python"
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
```python
import lancedb
db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "JavaScript"
@@ -515,30 +441,16 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
=== "Python"
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "TypeScript"
@@ -590,30 +502,16 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
=== "Python"
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
```python
import lancedb
db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "TypeScript"
@@ -654,29 +552,15 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
=== "Python"
<!-- skip-test -->
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
```python
import lancedb
db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
=== "TypeScript"
@@ -728,31 +612,16 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
=== "Python"
<!-- skip-test -->
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
```python
import lancedb
db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
=== "TypeScript"

View File

@@ -12,18 +12,10 @@ Initialize a LanceDB connection and create a table
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:connect"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:connect_async"
```
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
@@ -55,16 +47,18 @@ Initialize a LanceDB connection and create a table
=== "Python"
=== "Sync API"
```python
import lancedb
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table"
```
=== "Async API"
db = lancedb.connect("./.lancedb")
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async"
```
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
@@ -73,30 +67,16 @@ Initialize a LanceDB connection and create a table
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_exist_ok"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_exist_ok"
```
```python
db.create_table("name", data, exist_ok=True)
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_overwrite"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_overwrite"
```
```python
db.create_table("name", data, mode="overwrite")
```
=== "Typescript[^1]"
You can create a LanceDB table in JavaScript using an array of records as follows.
@@ -166,37 +146,34 @@ Initialize a LanceDB connection and create a table
### From a Pandas DataFrame
```python
import pandas as pd
=== "Sync API"
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_pandas"
```
=== "Async API"
db.create_table("my_table", data)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_pandas"
```
db["my_table"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
=== "Sync API"
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_custom_schema"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_custom_schema"
```
table = db.create_table("my_table", data, schema=custom_schema)
```
### From a Polars DataFrame
@@ -205,38 +182,45 @@ written in Rust. Just like in Pandas, the Polars integration is enabled by PyArr
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way.
=== "Sync API"
```python
import polars as pl
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_polars"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_polars"
```
data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pl_table", data=data)
```
### From an Arrow Table
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_arrow_table"
```
=== "Async API"
```python
import pyarrows as pa
import numpy as np
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_arrow_table"
```
dim = 16
total = 2
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float16(), dim)),
pa.field("text", pa.string())
]
)
data = pa.Table.from_arrays(
[
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
pa.list_(pa.float16(), dim)),
pa.array(["foo", "bar"])
],
["vector", "text"],
)
tbl = db.create_table("f16_tbl", data, schema=schema)
```
=== "Typescript[^1]"
@@ -266,22 +250,25 @@ can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
=== "Sync API"
```python
from lancedb.pydantic import Vector, LanceModel
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Content"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_pydantic"
```
=== "Async API"
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Content"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_pydantic"
```
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
#### Nested schemas
@@ -290,24 +277,22 @@ For example, you may want to store the document string
and the document source name as a nested Document object:
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pydantic-basemodel"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Document"
class Document(BaseModel):
content: str
source: str
```
This can be used as the type of a LanceDB table column:
=== "Sync API"
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:class-NestedSchema"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_nested_schema"
```
=== "Async API"
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:class-NestedSchema"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_nested_schema"
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
@@ -371,20 +356,29 @@ LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generat
Here's an example using using `RecordBatch` iterator for creating tables.
=== "Sync API"
```python
import pyarrow as pa
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_batch"
```
=== "Async API"
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_batch"
```
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("batched_tale", make_batches(), schema=schema)
```
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
@@ -393,29 +387,15 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
=== "Python"
If you forget the name of your table, you can always get a listing of all table names.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:list_tables"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:list_tables_async"
```
```python
print(db.table_names())
```
Then, you can open any existing tables.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:open_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:open_table_async"
```
```python
tbl = db.open_table("my_table")
```
=== "Typescript[^1]"
@@ -438,41 +418,35 @@ You can create an empty table for scenarios where you want to add data to the ta
An empty table can be initialized via a PyArrow schema.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table"
```
=== "Async API"
```python
import lancedb
import pyarrow as pa
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_async"
```
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
])
tbl = db.create_table("empty_table_add", schema=schema)
```
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
that has been extended to support LanceDB specific types like `Vector`.
=== "Sync API"
```python
import lancedb
from lancedb.pydantic import LanceModel, vector
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Item"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_pydantic"
```
=== "Async API"
class Item(LanceModel):
vector: Vector(2)
item: str
price: float
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Item"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_async_pydantic"
```
tbl = db.create_table("empty_table_add", schema=Item.to_arrow_schema())
```
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
@@ -499,96 +473,86 @@ After a table has been created, you can always add more data to it using the `ad
### Add a Pandas DataFrame
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pandas"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pandas"
```
```python
df = pd.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
})
tbl.add(df)
```
### Add a Polars DataFrame
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_polars"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_polars"
```
```python
df = pl.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
})
tbl.add(df)
```
### Add an Iterator
You can also add a large dataset batch in one go using Iterator of any supported data types.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches_for_add"
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_batch"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches_for_add"
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_batch"
```
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "item": "peach", "price": 6.0},
{"vector": [5.9, 26.5], "item": "pear", "price": 5.0}
]
tbl.add(make_batches())
```
### Add a PyArrow table
If you have data coming in as a PyArrow table, you can add it directly to the LanceDB table.
=== "Sync API"
```python
pa_table = pa.Table.from_arrays(
[
pa.array([[9.1, 6.7], [9.9, 31.2]],
pa.list_(pa.float32(), 2)),
pa.array(["mango", "orange"]),
pa.array([7.0, 4.0]),
],
["vector", "item", "price"],
)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pyarrow"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pyarrow"
```
tbl.add(pa_table)
```
### Add a Pydantic Model
Assuming that a table has been created with the correct schema as shown [above](#creating-empty-table), you can add data items that are valid Pydantic models to the table.
=== "Sync API"
```python
pydantic_model_items = [
Item(vector=[8.1, 4.7], item="pineapple", price=10.0),
Item(vector=[6.9, 9.3], item="avocado", price=9.0)
]
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pydantic"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pydantic"
```
tbl.add(pydantic_model_items)
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
=== "Sync API"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-embeddings"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_with_embedding"
```
=== "Async API"
db = lancedb.connect("~/tmp")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.5")
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-embeddings"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_with_embedding"
```
class Schema(LanceModel):
text: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField(default=None)
tbl = db.create_table("my_table", schema=Schema, mode="overwrite")
models = [Schema(text="hello"), Schema(text="world")]
tbl.add(models)
```
=== "Typescript[^1]"
@@ -601,79 +565,50 @@ After a table has been created, you can always add more data to it using the `ad
)
```
## Upserting into a table
Upserting lets you insert new rows or update existing rows in a table. To upsert
in LanceDB, use the merge insert API.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic"
```
**API Reference**: [lancedb.table.Table.merge_insert][]
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic_async"
```
**API Reference**: [lancedb.table.AsyncTable.merge_insert][]
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/merge_insert.test.ts:upsert_basic"
```
**API Reference**: [lancedb.Table.mergeInsert](../js/classes/Table.md/#mergeInsert)
Read more in the guide on [merge insert](tables/merge_insert.md).
## Deleting from a table
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_row"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_row_async"
```
```python
tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
=== "Sync API"
```python
import lancedb
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_specific_row"
```
=== "Async API"
data = [{"x": 1, "vector": [1, 2]},
{"x": 2, "vector": [3, 4]},
{"x": 3, "vector": [5, 6]}]
db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data)
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 2 [3.0, 4.0]
# 2 3 [5.0, 6.0]
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_specific_row_async"
```
table.delete("x = 2")
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 3 [5.0, 6.0]
```
### Delete from a list of values
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_list_values"
```
=== "Async API"
```python
to_remove = [1, 5]
to_remove = ", ".join(str(v) for v in to_remove)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_list_values_async"
```
table.delete(f"x IN ({to_remove})")
table.to_pandas()
# x vector
# 0 3 [5.0, 6.0]
```
=== "Typescript[^1]"
@@ -724,20 +659,27 @@ This can be used to update zero to all rows depending on how many rows match the
=== "Python"
API Reference: [lancedb.table.Table.update][]
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table"
```
=== "Async API"
```python
import lancedb
import pandas as pd
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_async"
```
# Create a lancedb connection
db = lancedb.connect("./.lancedb")
# Create a table from a pandas DataFrame
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
table = db.create_table("my_table", data)
# Update the table where x = 2
table.update(where="x = 2", values={"vector": [10, 10]})
# Get the updated table as a pandas DataFrame
df = table.to_pandas()
# Print the DataFrame
print(df)
```
Output
```shell
@@ -765,10 +707,7 @@ This can be used to update zero to all rows depending on how many rows match the
];
const tbl = await db.createTable("my_table", data)
await tbl.update({
values: { vector: [10, 10] },
where: "x = 2"
});
await tbl.update({vector: [10, 10]}, { where: "x = 2"})
```
=== "vectordb (deprecated)"
@@ -787,10 +726,7 @@ This can be used to update zero to all rows depending on how many rows match the
];
const tbl = await db.createTable("my_table", data)
await tbl.update({
where: "x = 2",
values: { vector: [10, 10] }
});
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
#### Updating using a sql query
@@ -798,16 +734,13 @@ This can be used to update zero to all rows depending on how many rows match the
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_sql"
```
=== "Async API"
```python
# Update the table where x = 2
table.update(valuesSql={"x": "x + 1"})
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_sql_async"
```
print(table.to_pandas())
```
Output
```shell
@@ -838,16 +771,11 @@ This can be used to update zero to all rows depending on how many rows match the
Use the `drop_table()` method on the database to remove a table.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
@@ -876,21 +804,14 @@ a table:
You can add new columns to the table with the `add_columns` method. New columns
are filled with values based on a SQL expression. For example, you can add a new
column `y` to the table, fill it with the value of `x * 2` and set the expected
column `y` to the table, fill it with the value of `x * 2` and set the expected
data type for it.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_columns_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:add_columns"
```
**API Reference:** [lancedb.table.Table.add_columns][]
=== "Typescript"
@@ -927,18 +848,10 @@ rewriting the column, which can be a heavy operation.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_basic.py:alter_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_basic.py:alter_columns_async"
```
```python
import pyarrow as pa
--8<-- "python/python/tests/docs/test_basic.py:alter_columns"
```
**API Reference:** [lancedb.table.Table.alter_columns][]
=== "Typescript"
@@ -959,16 +872,9 @@ will remove the column from the schema.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_columns_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_columns"
```
**API Reference:** [lancedb.table.Table.drop_columns][]
=== "Typescript"
@@ -1019,46 +925,31 @@ There are three possible settings for `read_consistency_interval`:
To set strong consistency, use `timedelta(0)`:
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_strong_consistency"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_strong_consistency"
```
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
table = db.open_table("my_table")
```
For eventual consistency, use a custom `timedelta`:
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_eventual_consistency"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_eventual_consistency"
```
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
table = db.open_table("my_table")
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
=== "Sync API"
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_checkout_latest"
```
=== "Async API"
# (Other writes happen to my_table from another process)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_checkout_latest"
```
# Check for updates
table.checkout_latest()
```
=== "Typescript[^1]"
@@ -1066,14 +957,14 @@ There are three possible settings for `read_consistency_interval`:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const tbl = await db.openTable("my_table");
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const tbl = await db.openTable("my_table");
const table = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007

View File

@@ -1,135 +0,0 @@
The merge insert command is a flexible API that can be used to perform:
1. Upsert
2. Insert-if-not-exists
3. Replace range
It works by joining the input data with the target table on a key you provide.
Often this key is a unique row id key. You can then specify what to do when
there is a match and when there is not a match. For example, for upsert you want
to update if the row has a match and insert if the row doesn't have a match.
Whereas for insert-if-not-exists you only want to insert if the row doesn't have
a match.
You can also read more in the API reference:
* Python
* Sync: [lancedb.table.Table.merge_insert][]
* Async: [lancedb.table.AsyncTable.merge_insert][]
* Typescript: [lancedb.Table.mergeInsert](../../js/classes/Table.md/#mergeinsert)
!!! tip "Use scalar indices to speed up merge insert"
The merge insert command needs to perform a join between the input data and the
target table on the `on` key you provide. This requires scanning that entire
column, which can be expensive for large tables. To speed up this operation,
you can create a scalar index on the `on` column, which will allow LanceDB to
find matches without having to scan the whole tables.
Read more about scalar indices in [Building a Scalar Index](../scalar_index.md)
guide.
!!! info "Embedding Functions"
Like the create table and add APIs, the merge insert API will automatically
compute embeddings if the table has a embedding definition in its schema.
If the input data doesn't contain the source column, or the vector column
is already filled, then the embeddings won't be computed. See the
[Embedding Functions](../../embeddings/embedding_functions.md) guide for more
information.
## Upsert
Upsert updates rows if they exist and inserts them if they don't. To do this
with merge insert, enable both `when_matched_update_all()` and
`when_not_matched_insert_all()`.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic_async"
```
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/merge_insert.test.ts:upsert_basic"
```
!!! note "Providing subsets of columns"
If a column is nullable, it can be omitted from input data and it will be
considered `null`. Columns can also be provided in any order.
## Insert-if-not-exists
To avoid inserting duplicate rows, you can use the insert-if-not-exists command.
This will only insert rows that do not have a match in the target table. To do
this with merge insert, enable just `when_not_matched_insert_all()`.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:insert_if_not_exists"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:insert_if_not_exists_async"
```
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/merge_insert.test.ts:insert_if_not_exists"
```
## Replace range
You can also replace a range of rows in the target table with the input data.
For example, if you have a table of document chunks, where each chunk has
both a `doc_id` and a `chunk_id`, you can replace all chunks for a given
`doc_id` with updated chunks. This can be tricky otherwise because if you
try to use upsert when the new data has fewer chunks you will end up with
extra chunks. To avoid this, add another clause to delete any chunks for
the document that are not in the new data, with
`when_not_matched_by_source_delete`.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:replace_range"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:replace_range_async"
```
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/merge_insert.test.ts:replace_range"
```

View File

@@ -1,8 +1,8 @@
## Improving retriever performance
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retrievers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retrievers are a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
@@ -19,7 +19,7 @@ Using different embedding models is something that's very specific to the use ca
## The dataset
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv).
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv)
### Using different query types
Let's setup the embeddings and the dataset first. We'll use the LanceDB's `huggingface` embeddings integration for this guide.
@@ -45,14 +45,14 @@ table.add(df[["context"]].to_dict(orient="records"))
queries = df["query"].tolist()
```
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset:
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset.
* <b> Vector Search: </b>
```python
table.search(quries[0], query_type="vector").limit(5).to_pandas()
```
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement:
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement.
```python
table.search(quries[0]).limit(5).to_pandas()
@@ -77,7 +77,7 @@ Now that we have the dataset and embeddings table set up, here's how you can run
* <b> Hybrid Search: </b>
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset:
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset.
```python
table.search(quries[0], query_type="hybrid").limit(5).to_pandas()
```
@@ -87,7 +87,7 @@ Now that we have the dataset and embeddings table set up, here's how you can run
!!! note "Note"
By default, it uses `LinearCombinationReranker` that combines the scores from vector and full-text search using a weighted linear combination. It is the simplest reranker implementation available in LanceDB. You can also use other rerankers like `CrossEncoderReranker` or `CohereReranker` for reranking the results.
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/).
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/)

View File

@@ -1,6 +1,6 @@
Continuing from the previous section, we can now rerank the results using more complex rerankers.
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows:
@@ -62,6 +62,9 @@ Let us take a look at the same datasets from the previous sections, using the sa
| Reranked fts | 0.672 |
| Hybrid | 0.759 |
### SQuAD Dataset
### Uber10K sec filing Dataset
| Query Type | Hit-rate@5 |

View File

@@ -1,5 +1,5 @@
## Finetuning the Embedding Model
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
@@ -16,7 +16,7 @@ validation_df.to_csv("data_val.csv", index=False)
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
We parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node:
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
@@ -43,7 +43,7 @@ val_dataset = generate_qa_embedding_pairs(
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model:
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
@@ -57,7 +57,7 @@ finetune_engine = SentenceTransformersFinetuneEngine(
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder.
This saves the fine tuned embedding model in `tuned_model` folder. This al
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.

View File

@@ -3,22 +3,22 @@
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step:reranking.
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example:Weighted linear combination of semantic search & keyword-based search results.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example:Cross Encoder models
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset or application specific so it's hard to generalize.
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from an experiment comparing these rerankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline: `0.64`
Vector Search baseline - `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
@@ -33,7 +33,7 @@ Vector Search baseline: `0.64`
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline: `0.59`
Vector Search baseline - `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |

View File

@@ -5,46 +5,57 @@ LanceDB supports both semantic and keyword-based search (also termed full-text s
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
=== "Sync API"
```python
import os
```python
--8<-- "python/python/tests/docs/test_search.py:import-os"
--8<-- "python/python/tests/docs/test_search.py:import-openai"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-embeddings"
--8<-- "python/python/tests/docs/test_search.py:import-pydantic"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:import-openai-embeddings"
--8<-- "python/python/tests/docs/test_search.py:class-Documents"
--8<-- "python/python/tests/docs/test_search.py:basic_hybrid_search"
```
=== "Async API"
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
```python
--8<-- "python/python/tests/docs/test_search.py:import-os"
--8<-- "python/python/tests/docs/test_search.py:import-openai"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-embeddings"
--8<-- "python/python/tests/docs/test_search.py:import-pydantic"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:import-openai-embeddings"
--8<-- "python/python/tests/docs/test_search.py:class-Documents"
--8<-- "python/python/tests/docs/test_search.py:basic_hybrid_search_async"
```
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
data = [
{ "text": "rebel spaceships striking from a hidden base"},
{ "text": "have won their first victory against the evil Galactic Empire"},
{ "text": "during the battle rebel spies managed to steal secret plans"},
{ "text": "to the Empire's ultimate weapon the Death Star"}
]
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
!!! Note
You can also pass the vector and text query manually. This is useful if you're not using the embedding API or if you're using a separate embedder service.
### Explicitly passing the vector and text query
=== "Sync API"
```python
vector_query = [0.1, 0.2, 0.3, 0.4, 0.5]
text_query = "flower moon"
results = table.search(query_type="hybrid")
.vector(vector_query)
.text(text_query)
.limit(5)
.to_pandas()
```python
--8<-- "python/python/tests/docs/test_search.py:hybrid_search_pass_vector_text"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:hybrid_search_pass_vector_text_async"
```
```
By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion score, to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
@@ -57,7 +68,7 @@ By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion scor
## Available Rerankers
LanceDB provides a number of rerankers out of the box. You can use any of these rerankers by passing them to the `rerank()` method.
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method.
Go to [Rerankers](../reranking/index.md) to learn more about using the available rerankers and implementing custom rerankers.

View File

@@ -4,9 +4,6 @@ LanceDB is an open-source vector database for AI that's designed to store, manag
Both the database and the underlying data format are designed from the ground up to be **easy-to-use**, **scalable** and **cost-effective**.
!!! tip "Hosted LanceDB"
If you want S3 cost-efficiency and local performance via a simple serverless API, checkout **LanceDB Cloud**. For private deployments, high performance at extreme scale, or if you have strict security requirements, talk to us about **LanceDB Enterprise**. [Learn more](https://docs.lancedb.com/)
![](assets/lancedb_and_lance.png)
## Truly multi-modal
@@ -23,7 +20,7 @@ LanceDB **OSS** is an **open-source**, batteries-included embedded vector databa
LanceDB **Cloud** is a SaaS (software-as-a-service) solution that runs serverless in the cloud, making the storage clearly separated from compute. It's designed to be cost-effective and highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud (Public Beta) Now](https://cloud.lancedb.com){ .md-button .md-button--primary }
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
## Why use LanceDB?

View File

@@ -1,183 +0,0 @@
### genkitx-lancedb
This is a lancedb plugin for genkit framework. It allows you to use LanceDB for ingesting and rereiving data using genkit framework.
![integration-banner-genkit](https://github.com/user-attachments/assets/a6cc28af-98e9-4425-b87c-7ab139bd7893)
### Installation
```bash
pnpm install genkitx-lancedb
```
### Usage
Adding LanceDB plugin to your genkit instance.
```ts
import { lancedbIndexerRef, lancedb, lancedbRetrieverRef, WriteMode } from 'genkitx-lancedb';
import { textEmbedding004, vertexAI } from '@genkit-ai/vertexai';
import { gemini } from '@genkit-ai/vertexai';
import { z, genkit } from 'genkit';
import { Document } from 'genkit/retriever';
import { chunk } from 'llm-chunk';
import { readFile } from 'fs/promises';
import path from 'path';
import pdf from 'pdf-parse/lib/pdf-parse';
const ai = genkit({
plugins: [
// vertexAI provides the textEmbedding004 embedder
vertexAI(),
// the local vector store requires an embedder to translate from text to vector
lancedb([
{
dbUri: '.db', // optional lancedb uri, default to .db
tableName: 'table', // optional table name, default to table
embedder: textEmbedding004,
},
]),
],
});
```
You can run this app with the following command:
```bash
genkit start -- tsx --watch src/index.ts
```
This'll add LanceDB as a retriever and indexer to the genkit instance. You can see it in the GUI view
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/e752f7f4-785b-4797-a11e-72ab06a531b7" />
**Testing retrieval on a sample table**
Let's see the raw retrieval results
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/b8d356ed-8421-4790-8fc0-d6af563b9657" />
On running this query, you'll 5 results fetched from the lancedb table, where each result looks something like this:
<img width="1417" alt="Screenshot 2025-05-11 at 7 21 18PM" src="https://github.com/user-attachments/assets/77429525-36e2-4da6-a694-e58c1cf9eb83" />
## Creating a custom RAG flow
Now that we've seen how you can use LanceDB for in a genkit pipeline, let's refine the flow and create a RAG. A RAG flow will consist of an index and a retreiver with its outputs postprocessed an fed into an LLM for final response
### Creating custom indexer flows
You can also create custom indexer flows, utilizing more options and features provided by LanceDB.
```ts
export const menuPdfIndexer = lancedbIndexerRef({
// Using all defaults, for dbUri, tableName, and embedder, etc
});
const chunkingConfig = {
minLength: 1000,
maxLength: 2000,
splitter: 'sentence',
overlap: 100,
delimiters: '',
} as any;
async function extractTextFromPdf(filePath: string) {
const pdfFile = path.resolve(filePath);
const dataBuffer = await readFile(pdfFile);
const data = await pdf(dataBuffer);
return data.text;
}
export const indexMenu = ai.defineFlow(
{
name: 'indexMenu',
inputSchema: z.string().describe('PDF file path'),
outputSchema: z.void(),
},
async (filePath: string) => {
filePath = path.resolve(filePath);
// Read the pdf.
const pdfTxt = await ai.run('extract-text', () =>
extractTextFromPdf(filePath)
);
// Divide the pdf text into segments.
const chunks = await ai.run('chunk-it', async () =>
chunk(pdfTxt, chunkingConfig)
);
// Convert chunks of text into documents to store in the index.
const documents = chunks.map((text) => {
return Document.fromText(text, { filePath });
});
// Add documents to the index.
await ai.index({
indexer: menuPdfIndexer,
documents,
options: {
writeMode: WriteMode.Overwrite,
} as any
});
}
);
```
<img width="1316" alt="Screenshot 2025-05-11 at 8 35 56PM" src="https://github.com/user-attachments/assets/e2a20ce4-d1d0-4fa2-9a84-f2cc26e3a29f" />
In your console, you can see the logs
<img width="511" alt="Screenshot 2025-05-11 at 7 19 14PM" src="https://github.com/user-attachments/assets/243f26c5-ed38-40b6-b661-002f40f0423a" />
### Creating custom retriever flows
You can also create custom retriever flows, utilizing more options and features provided by LanceDB.
```ts
export const menuRetriever = lancedbRetrieverRef({
tableName: "table", // Use the same table name as the indexer.
displayName: "Menu", // Use a custom display name.
export const menuQAFlow = ai.defineFlow(
{ name: "Menu", inputSchema: z.string(), outputSchema: z.string() },
async (input: string) => {
// retrieve relevant documents
const docs = await ai.retrieve({
retriever: menuRetriever,
query: input,
options: {
k: 3,
},
});
const extractedContent = docs.map(doc => {
if (doc.content && Array.isArray(doc.content) && doc.content.length > 0) {
if (doc.content[0].media && doc.content[0].media.url) {
return doc.content[0].media.url;
}
}
return "No content found";
});
console.log("Extracted content:", extractedContent);
const { text } = await ai.generate({
model: gemini('gemini-2.0-flash'),
prompt: `
You are acting as a helpful AI assistant that can answer
questions about the food available on the menu at Genkit Grub Pub.
Use only the context provided to answer the question.
If you don't know, do not make up an answer.
Do not add or change items on the menu.
Context:
${extractedContent.join('\n\n')}
Question: ${input}`,
docs,
});
return text;
}
);
```
Now using our retrieval flow, we can ask question about the ingsted PDF
<img width="1306" alt="Screenshot 2025-05-11 at 7 18 45PM" src="https://github.com/user-attachments/assets/86c66b13-7c12-4d5f-9d81-ae36bfb1c346" />

View File

@@ -108,7 +108,7 @@ This method creates a scalar(for non-vector cols) or a vector index on a table.
|:---|:---|:---|:---|
|`vector_col`|`Optional[str]`| Provide if you want to create index on a vector column. |`None`|
|`col_name`|`Optional[str]`| Provide if you want to create index on a non-vector column. |`None`|
|`metric`|`Optional[str]` |Provide the metric to use for vector index. choice of metrics: 'l2', 'dot', 'cosine'. |`l2`|
|`metric`|`Optional[str]` |Provide the metric to use for vector index. choice of metrics: 'L2', 'dot', 'cosine'. |`L2`|
|`num_partitions`|`Optional[int]`|Number of partitions to use for the index.|`256`|
|`num_sub_vectors`|`Optional[int]` |Number of sub-vectors to use for the index.|`96`|
|`index_cache_size`|`Optional[int]` |Size of the index cache.|`None`|

View File

@@ -125,7 +125,7 @@ The exhaustive list of parameters for `LanceDBVectorStore` vector store are :
```
- **_table_exists(self, tbl_name: `Optional[str]` = `None`) -> `bool`** : Returns `True` if `tbl_name` exists in database.
- __create_index(
self, scalar: `Optional[bool]` = False, col_name: `Optional[str]` = None, num_partitions: `Optional[int]` = 256, num_sub_vectors: `Optional[int]` = 96, index_cache_size: `Optional[int]` = None, metric: `Optional[str]` = "l2",
self, scalar: `Optional[bool]` = False, col_name: `Optional[str]` = None, num_partitions: `Optional[int]` = 256, num_sub_vectors: `Optional[int]` = 96, index_cache_size: `Optional[int]` = None, metric: `Optional[str]` = "L2",
) -> `None`__ : Creates a scalar(for non-vector cols) or a vector index on a table.
Make sure your vector column has enough data before creating an index on it.

View File

@@ -10,7 +10,7 @@ Distance metrics type.
- [Cosine](MetricType.md#cosine)
- [Dot](MetricType.md#dot)
- [l2](MetricType.md#l2)
- [L2](MetricType.md#l2)
## Enumeration Members

View File

@@ -85,7 +85,7 @@ ___
`Optional` **metric\_type**: [`MetricType`](../enums/MetricType.md)
Metric type, l2 or Cosine
Metric type, L2 or Cosine
#### Defined in

View File

@@ -15,9 +15,11 @@ npm install @lancedb/lancedb
This will download the appropriate native library for your platform. We currently
support:
- Linux (x86_64 and aarch64 on glibc and musl)
- Linux (x86_64 and aarch64)
- MacOS (Intel and ARM/M1/M2)
- Windows (x86_64 and aarch64)
- Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage
@@ -34,8 +36,41 @@ const results = await table.vectorSearch([0.1, 0.3]).limit(20).toArray();
console.log(results);
```
The [quickstart](https://lancedb.github.io/lancedb/basic/) contains a more complete example.
The [quickstart](../basic.md) contains a more complete example.
## Development
See [CONTRIBUTING.md](_media/CONTRIBUTING.md) for information on how to contribute to LanceDB.
```sh
npm run build
npm run test
```
### Running lint / format
LanceDb uses [biome](https://biomejs.dev/) for linting and formatting. if you are using VSCode you will need to install the official [Biome](https://marketplace.visualstudio.com/items?itemName=biomejs.biome) extension.
To manually lint your code you can run:
```sh
npm run lint
```
to automatically fix all fixable issues:
```sh
npm run lint-fix
```
If you do not have your workspace root set to the `nodejs` directory, unfortunately the extension will not work. You can still run the linting and formatting commands manually.
### Generating docs
```sh
npm run docs
cd ../docs
# Asssume the virtual environment was created
# python3 -m venv venv
# pip install -r requirements.txt
. ./venv/bin/activate
mkdocs build
```

View File

@@ -1,76 +0,0 @@
# Contributing to LanceDB Typescript
This document outlines the process for contributing to LanceDB Typescript.
For general contribution guidelines, see [CONTRIBUTING.md](../CONTRIBUTING.md).
## Project layout
The Typescript package is a wrapper around the Rust library, `lancedb`. We use
the [napi-rs](https://napi.rs/) library to create the bindings between Rust and
Typescript.
* `src/`: Rust bindings source code
* `lancedb/`: Typescript package source code
* `__test__/`: Unit tests
* `examples/`: An npm package with the examples shown in the documentation
## Development environment
To set up your development environment, you will need to install the following:
1. Node.js 14 or later
2. Rust's package manager, Cargo. Use [rustup](https://rustup.rs/) to install.
3. [protoc](https://grpc.io/docs/protoc-installation/) (Protocol Buffers compiler)
Initial setup:
```shell
npm install
```
### Commit Hooks
It is **highly recommended** to install the [pre-commit](https://pre-commit.com/) hooks to ensure that your
code is formatted correctly and passes basic checks before committing:
```shell
pre-commit install
```
## Development
Most common development commands can be run using the npm scripts.
Build the package
```shell
npm install
npm run build
```
Lint:
```shell
npm run lint
```
Format and fix lints:
```shell
npm run lint-fix
```
Run tests:
```shell
npm test
```
To run a single test:
```shell
# Single file: table.test.ts
npm test -- table.test.ts
# Single test: 'merge insert' in table.test.ts
npm test -- table.test.ts --testNamePattern=merge\ insert
```

View File

@@ -1,53 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BooleanQuery
# Class: BooleanQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BooleanQuery()
```ts
new BooleanQuery(queries): BooleanQuery
```
Creates an instance of BooleanQuery.
#### Parameters
* **queries**: [[`Occur`](../enumerations/Occur.md), [`FullTextQuery`](../interfaces/FullTextQuery.md)][]
An array of (Occur, FullTextQuery objects) to combine.
Occur specifies whether the query must match, or should match.
#### Returns
[`BooleanQuery`](BooleanQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -1,67 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BoostQuery
# Class: BoostQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BoostQuery()
```ts
new BoostQuery(
positive,
negative,
options?): BoostQuery
```
Creates an instance of BoostQuery.
The boost returns documents that match the positive query,
but penalizes those that match the negative query.
the penalty is controlled by the `negativeBoost` parameter.
#### Parameters
* **positive**: [`FullTextQuery`](../interfaces/FullTextQuery.md)
The positive query that boosts the relevance score.
* **negative**: [`FullTextQuery`](../interfaces/FullTextQuery.md)
The negative query that reduces the relevance score.
* **options?**
Optional parameters for the boost query.
- `negativeBoost`: The boost factor for the negative query (default is 0.0).
* **options.negativeBoost?**: `number`
#### Returns
[`BoostQuery`](BoostQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -23,6 +23,18 @@ be closed when they are garbage collected.
Any created tables are independent and will continue to work even if
the underlying connection has been closed.
## Constructors
### new Connection()
```ts
new Connection(): Connection
```
#### Returns
[`Connection`](Connection.md)
## Methods
### close()
@@ -59,7 +71,7 @@ Creates a new empty Table
* **name**: `string`
The name of the table.
* **schema**: [`SchemaLike`](../type-aliases/SchemaLike.md)
* **schema**: `SchemaLike`
The schema of the table
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
@@ -105,7 +117,7 @@ Creates a new Table and initialize it with new data.
* **name**: `string`
The name of the table.
* **data**: [`TableLike`](../type-aliases/TableLike.md) \| `Record`&lt;`string`, `unknown`&gt;[]
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
@@ -131,20 +143,6 @@ Return a brief description of the connection
***
### dropAllTables()
```ts
abstract dropAllTables(): Promise<void>
```
Drop all tables in the database.
#### Returns
`Promise`&lt;`void`&gt;
***
### dropTable()
```ts
@@ -191,7 +189,7 @@ Open a table in the database.
* **name**: `string`
The name of the table
* **options?**: `Partial`&lt;[`OpenTableOptions`](../interfaces/OpenTableOptions.md)&gt;
* **options?**: `Partial`&lt;`OpenTableOptions`&gt;
#### Returns

View File

@@ -72,9 +72,11 @@ The results of a full text search are ordered by relevance measured by BM25.
You can combine filters with full text search.
For now, the full text search index only supports English, and doesn't support phrase search.
#### Parameters
* **options?**: `Partial`&lt;[`FtsOptions`](../interfaces/FtsOptions.md)&gt;
* **options?**: `Partial`&lt;`FtsOptions`&gt;
#### Returns
@@ -96,7 +98,7 @@ the vectors.
#### Parameters
* **options?**: `Partial`&lt;[`HnswPqOptions`](../interfaces/HnswPqOptions.md)&gt;
* **options?**: `Partial`&lt;`HnswPqOptions`&gt;
#### Returns
@@ -118,38 +120,7 @@ the vectors.
#### Parameters
* **options?**: `Partial`&lt;[`HnswSqOptions`](../interfaces/HnswSqOptions.md)&gt;
#### Returns
[`Index`](Index.md)
***
### ivfFlat()
```ts
static ivfFlat(options?): Index
```
Create an IvfFlat index
This index groups vectors into partitions of similar vectors. Each partition keeps track of
a centroid which is the average value of all vectors in the group.
During a query the centroids are compared with the query vector to find the closest
partitions. The vectors in these partitions are then searched to find
the closest vectors.
The partitioning process is called IVF and the `num_partitions` parameter controls how
many groups to create.
Note that training an IVF FLAT index on a large dataset is a slow operation and
currently is also a memory intensive operation.
#### Parameters
* **options?**: `Partial`&lt;[`IvfFlatOptions`](../interfaces/IvfFlatOptions.md)&gt;
* **options?**: `Partial`&lt;`HnswSqOptions`&gt;
#### Returns

View File

@@ -1,76 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MatchQuery
# Class: MatchQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new MatchQuery()
```ts
new MatchQuery(
query,
column,
options?): MatchQuery
```
Creates an instance of MatchQuery.
#### Parameters
* **query**: `string`
The text query to search for.
* **column**: `string`
The name of the column to search within.
* **options?**
Optional parameters for the match query.
- `boost`: The boost factor for the query (default is 1.0).
- `fuzziness`: The fuzziness level for the query (default is 0).
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
- `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
* **options.boost?**: `number`
* **options.fuzziness?**: `number`
* **options.maxExpansions?**: `number`
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
* **options.prefixLength?**: `number`
#### Returns
[`MatchQuery`](MatchQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -1,128 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MergeInsertBuilder
# Class: MergeInsertBuilder
A builder used to create and run a merge insert operation
## Constructors
### new MergeInsertBuilder()
```ts
new MergeInsertBuilder(native, schema): MergeInsertBuilder
```
Construct a MergeInsertBuilder. __Internal use only.__
#### Parameters
* **native**: `NativeMergeInsertBuilder`
* **schema**: `Schema`&lt;`any`&gt; \| `Promise`&lt;`Schema`&lt;`any`&gt;&gt;
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)
## Methods
### execute()
```ts
execute(data, execOptions?): Promise<MergeResult>
```
Executes the merge insert operation
#### Parameters
* **data**: [`Data`](../type-aliases/Data.md)
* **execOptions?**: `Partial`&lt;[`WriteExecutionOptions`](../interfaces/WriteExecutionOptions.md)&gt;
#### Returns
`Promise`&lt;[`MergeResult`](../interfaces/MergeResult.md)&gt;
the merge result
***
### whenMatchedUpdateAll()
```ts
whenMatchedUpdateAll(options?): MergeInsertBuilder
```
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
If there are multiple matches then the behavior is undefined.
Currently this causes multiple copies of the row to be created
but that behavior is subject to change.
An optional condition may be specified. If it is, then only
matched rows that satisfy the condtion will be updated. Any
rows that do not satisfy the condition will be left as they
are. Failing to satisfy the condition does not cause a
"matched row" to become a "not matched" row.
The condition should be an SQL string. Use the prefix
target. to refer to rows in the target table (old data)
and the prefix source. to refer to rows in the source
table (new data).
For example, "target.last_update < source.last_update"
#### Parameters
* **options?**
* **options.where?**: `string`
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)
***
### whenNotMatchedBySourceDelete()
```ts
whenNotMatchedBySourceDelete(options?): MergeInsertBuilder
```
Rows that exist only in the target table (old data) will be
deleted. An optional condition can be provided to limit what
data is deleted.
#### Parameters
* **options?**
* **options.where?**: `string`
An optional condition to limit what data is deleted
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)
***
### whenNotMatchedInsertAll()
```ts
whenNotMatchedInsertAll(): MergeInsertBuilder
```
Rows that exist only in the source table (new data) should
be inserted into the target table.
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)

View File

@@ -1,67 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MultiMatchQuery
# Class: MultiMatchQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new MultiMatchQuery()
```ts
new MultiMatchQuery(
query,
columns,
options?): MultiMatchQuery
```
Creates an instance of MultiMatchQuery.
#### Parameters
* **query**: `string`
The text query to search for across multiple columns.
* **columns**: `string`[]
An array of column names to search within.
* **options?**
Optional parameters for the multi-match query.
- `boosts`: An array of boost factors for each column (default is 1.0 for all).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
* **options.boosts?**: `number`[]
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
#### Returns
[`MultiMatchQuery`](MultiMatchQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -1,64 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / PhraseQuery
# Class: PhraseQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new PhraseQuery()
```ts
new PhraseQuery(
query,
column,
options?): PhraseQuery
```
Creates an instance of `PhraseQuery`.
#### Parameters
* **query**: `string`
The phrase to search for in the specified column.
* **column**: `string`
The name of the column to search within.
* **options?**
Optional parameters for the phrase query.
- `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
* **options.slop?**: `number`
#### Returns
[`PhraseQuery`](PhraseQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -8,14 +8,30 @@
A builder for LanceDB queries.
## See
[Table#query](Table.md#query), [Table#search](Table.md#search)
## Extends
- [`QueryBase`](QueryBase.md)&lt;`NativeQuery`&gt;
## Constructors
### new Query()
```ts
new Query(tbl): Query
```
#### Parameters
* **tbl**: `Table`
#### Returns
[`Query`](Query.md)
#### Overrides
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
## Properties
### inner
@@ -30,50 +46,39 @@ protected inner: Query | Promise<Query>;
## Methods
### analyzePlan()
### \[asyncIterator\]()
```ts
analyzePlan(): Promise<string>
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`Promise`&lt;`string`&gt;
A query execution plan with runtime metrics for each step.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
```
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
#### Inherited from
[`QueryBase`](QueryBase.md).[`analyzePlan`](QueryBase.md#analyzeplan)
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
***
### doCall()
```ts
protected doCall(fn): void
```
#### Parameters
* **fn**
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
***
@@ -87,7 +92,7 @@ Execute the query and return the results as an
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -156,7 +161,7 @@ fastSearch(): this
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use [Table#optimize](Table.md#optimize) to index all un-indexed data.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
@@ -184,7 +189,7 @@ A filter statement to be applied to this query.
`this`
#### See
#### Alias
where
@@ -206,9 +211,9 @@ fullTextSearch(query, options?): this
#### Parameters
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **query**: `string`
* **options?**: `Partial`&lt;[`FullTextSearchOptions`](../interfaces/FullTextSearchOptions.md)&gt;
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
@@ -245,6 +250,26 @@ called then every valid row from the table will be returned.
***
### nativeExecute()
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`RecordBatchIterator`&gt;
#### Inherited from
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
***
### nearestTo()
```ts
@@ -269,7 +294,7 @@ If there is more than one vector column you must use
#### Parameters
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md)
* **vector**: `IntoVector`
#### Returns
@@ -309,7 +334,7 @@ nearestToText(query, columns?): Query
#### Parameters
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **query**: `string`
* **columns?**: `string`[]
@@ -402,7 +427,7 @@ Collect the results as an array of objects.
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -424,7 +449,7 @@ Collect the results as an Arrow
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns

View File

@@ -8,11 +8,6 @@
Common methods supported by all query types
## See
- [Query](Query.md)
- [VectorQuery](VectorQuery.md)
## Extended by
- [`Query`](Query.md)
@@ -26,6 +21,22 @@ Common methods supported by all query types
- `AsyncIterable`&lt;`RecordBatch`&gt;
## Constructors
### new QueryBase()
```ts
protected new QueryBase<NativeQueryType>(inner): QueryBase<NativeQueryType>
```
#### Parameters
* **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
#### Returns
[`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
## Properties
### inner
@@ -36,47 +47,36 @@ protected inner: NativeQueryType | Promise<NativeQueryType>;
## Methods
### analyzePlan()
### \[asyncIterator\]()
```ts
analyzePlan(): Promise<string>
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`Promise`&lt;`string`&gt;
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
A query execution plan with runtime metrics for each step.
#### Implementation of
#### Example
`AsyncIterable.[asyncIterator]`
***
### doCall()
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
protected doCall(fn): void
```
#### Parameters
* **fn**
#### Returns
`void`
***
### execute()
@@ -89,7 +89,7 @@ Execute the query and return the results as an
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -150,7 +150,7 @@ fastSearch(): this
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use [Table#optimize](Table.md#optimize) to index all un-indexed data.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
@@ -174,7 +174,7 @@ A filter statement to be applied to this query.
`this`
#### See
#### Alias
where
@@ -192,9 +192,9 @@ fullTextSearch(query, options?): this
#### Parameters
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **query**: `string`
* **options?**: `Partial`&lt;[`FullTextSearchOptions`](../interfaces/FullTextSearchOptions.md)&gt;
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
@@ -223,6 +223,22 @@ called then every valid row from the table will be returned.
***
### nativeExecute()
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`RecordBatchIterator`&gt;
***
### offset()
```ts
@@ -298,7 +314,7 @@ Collect the results as an array of objects.
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -316,7 +332,7 @@ Collect the results as an Arrow
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns

View File

@@ -14,13 +14,21 @@ will be freed when the Table is garbage collected. To eagerly free the cache yo
can call the `close` method. Once the Table is closed, it cannot be used for any
further operations.
Tables are created using the methods [Connection#createTable](Connection.md#createtable)
and [Connection#createEmptyTable](Connection.md#createemptytable). Existing tables are opened
using [Connection#openTable](Connection.md#opentable).
Closing a table is optional. It not closed, it will be closed when it is garbage
collected.
## Constructors
### new Table()
```ts
new Table(): Table
```
#### Returns
[`Table`](Table.md)
## Accessors
### name
@@ -40,7 +48,7 @@ Returns the name of the table
### add()
```ts
abstract add(data, options?): Promise<AddResult>
abstract add(data, options?): Promise<void>
```
Insert records into this Table.
@@ -54,17 +62,14 @@ Insert records into this Table.
#### Returns
`Promise`&lt;[`AddResult`](../interfaces/AddResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table
`Promise`&lt;`void`&gt;
***
### addColumns()
```ts
abstract addColumns(newColumnTransforms): Promise<AddColumnsResult>
abstract addColumns(newColumnTransforms): Promise<void>
```
Add new columns with defined values.
@@ -79,17 +84,14 @@ Add new columns with defined values.
#### Returns
`Promise`&lt;[`AddColumnsResult`](../interfaces/AddColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after adding the columns.
`Promise`&lt;`void`&gt;
***
### alterColumns()
```ts
abstract alterColumns(columnAlterations): Promise<AlterColumnsResult>
abstract alterColumns(columnAlterations): Promise<void>
```
Alter the name or nullability of columns.
@@ -102,10 +104,7 @@ Alter the name or nullability of columns.
#### Returns
`Promise`&lt;[`AlterColumnsResult`](../interfaces/AlterColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after altering the columns.
`Promise`&lt;`void`&gt;
***
@@ -126,8 +125,8 @@ wish to return to standard mode, call `checkoutLatest`.
#### Parameters
* **version**: `string` \| `number`
The version to checkout, could be version number or tag
* **version**: `number`
The version to checkout
#### Returns
@@ -217,9 +216,6 @@ Indices on vector columns will speed up vector searches.
Indices on scalar columns will speed up filtering (in both
vector and non-vector searches)
We currently don't support custom named indexes.
The index name will always be `${column}_idx`.
#### Parameters
* **column**: `string`
@@ -230,6 +226,11 @@ The index name will always be `${column}_idx`.
`Promise`&lt;`void`&gt;
#### Note
We currently don't support custom named indexes,
The index name will always be `${column}_idx`
#### Examples
```ts
@@ -261,7 +262,7 @@ await table.createIndex("my_float_col");
### delete()
```ts
abstract delete(predicate): Promise<DeleteResult>
abstract delete(predicate): Promise<void>
```
Delete the rows that satisfy the predicate.
@@ -272,10 +273,7 @@ Delete the rows that satisfy the predicate.
#### Returns
`Promise`&lt;[`DeleteResult`](../interfaces/DeleteResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table
`Promise`&lt;`void`&gt;
***
@@ -296,7 +294,7 @@ Return a brief description of the table
### dropColumns()
```ts
abstract dropColumns(columnNames): Promise<DropColumnsResult>
abstract dropColumns(columnNames): Promise<void>
```
Drop one or more columns from the dataset
@@ -315,31 +313,6 @@ then call ``cleanup_files`` to remove the old files.
#### Returns
`Promise`&lt;[`DropColumnsResult`](../interfaces/DropColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after dropping the columns.
***
### dropIndex()
```ts
abstract dropIndex(name): Promise<void>
```
Drop an index from the table.
#### Parameters
* **name**: `string`
The name of the index.
This does not delete the index from disk, it just removes it from the table.
To delete the index, run [Table#optimize](Table.md#optimize) after dropping the index.
Use [Table.listIndices](Table.md#listindices) to find the names of the indices.
#### Returns
`Promise`&lt;`void`&gt;
***
@@ -363,8 +336,6 @@ List all the stats of a specified index
The stats of the index. If the index does not exist, it will return undefined
Use [Table.listIndices](Table.md#listindices) to find the names of the indices.
***
### isOpen()
@@ -405,7 +376,7 @@ List all the versions of the table
#### Returns
`Promise`&lt;[`Version`](../interfaces/Version.md)[]&gt;
`Promise`&lt;`Version`[]&gt;
***
@@ -421,7 +392,7 @@ abstract mergeInsert(on): MergeInsertBuilder
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)
`MergeInsertBuilder`
***
@@ -465,29 +436,7 @@ Modeled after ``VACUUM`` in PostgreSQL.
#### Returns
`Promise`&lt;[`OptimizeStats`](../interfaces/OptimizeStats.md)&gt;
***
### prewarmIndex()
```ts
abstract prewarmIndex(name): Promise<void>
```
Prewarm an index in the table.
#### Parameters
* **name**: `string`
The name of the index.
This will load the index into memory. This may reduce the cold-start time for
future queries. If the index does not fit in the cache then this call may be
wasteful.
#### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;`OptimizeStats`&gt;
***
@@ -604,7 +553,7 @@ Get the schema of the table.
abstract search(
query,
queryType?,
ftsColumns?): Query | VectorQuery
ftsColumns?): VectorQuery | Query
```
Create a search query to find the nearest neighbors
@@ -612,7 +561,7 @@ of the given query
#### Parameters
* **query**: `string` \| [`IntoVector`](../type-aliases/IntoVector.md) \| [`MultiVector`](../type-aliases/MultiVector.md) \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **query**: `string` \| `IntoVector`
the query, a vector or string
* **queryType?**: `string`
@@ -626,51 +575,7 @@ of the given query
#### Returns
[`Query`](Query.md) \| [`VectorQuery`](VectorQuery.md)
***
### stats()
```ts
abstract stats(): Promise<TableStatistics>
```
Returns table and fragment statistics
#### Returns
`Promise`&lt;[`TableStatistics`](../interfaces/TableStatistics.md)&gt;
The table and fragment statistics
***
### tags()
```ts
abstract tags(): Promise<Tags>
```
Get a tags manager for this table.
Tags allow you to label specific versions of a table with a human-readable name.
The returned tags manager can be used to list, create, update, or delete tags.
#### Returns
`Promise`&lt;[`Tags`](Tags.md)&gt;
A tags manager for this table
#### Example
```typescript
const tagsManager = await table.tags();
await tagsManager.create("v1", 1);
const tags = await tagsManager.list();
console.log(tags); // { "v1": { version: 1, manifestSize: ... } }
```
[`VectorQuery`](VectorQuery.md) \| [`Query`](Query.md)
***
@@ -693,7 +598,7 @@ Return the table as an arrow table
#### update(opts)
```ts
abstract update(opts): Promise<UpdateResult>
abstract update(opts): Promise<void>
```
Update existing records in the Table
@@ -704,10 +609,7 @@ Update existing records in the Table
##### Returns
`Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object containing
the number of rows updated and the new version number
`Promise`&lt;`void`&gt;
##### Example
@@ -718,7 +620,7 @@ table.update({where:"x = 2", values:{"vector": [10, 10]}})
#### update(opts)
```ts
abstract update(opts): Promise<UpdateResult>
abstract update(opts): Promise<void>
```
Update existing records in the Table
@@ -729,10 +631,7 @@ Update existing records in the Table
##### Returns
`Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object containing
the number of rows updated and the new version number
`Promise`&lt;`void`&gt;
##### Example
@@ -743,7 +642,7 @@ table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
#### update(updates, options)
```ts
abstract update(updates, options?): Promise<UpdateResult>
abstract update(updates, options?): Promise<void>
```
Update existing records in the Table
@@ -766,6 +665,10 @@ repeatedly calilng this method.
* **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
the
columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
* **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control
@@ -773,15 +676,7 @@ repeatedly calilng this method.
##### Returns
`Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object
containing the number of rows updated and the new version number
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
`Promise`&lt;`void`&gt;
***
@@ -799,7 +694,7 @@ by `query`.
#### Parameters
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md) \| [`MultiVector`](../type-aliases/MultiVector.md)
* **vector**: `IntoVector`
#### Returns
@@ -825,23 +720,35 @@ Retrieve the version of the table
***
### waitForIndex()
### parseTableData()
```ts
abstract waitForIndex(indexNames, timeoutSeconds): Promise<void>
static parseTableData(
data,
options?,
streaming?): Promise<object>
```
Waits for asynchronous indexing to complete on the table.
#### Parameters
* **indexNames**: `string`[]
The name of the indices to wait for
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
* **timeoutSeconds**: `number`
The number of seconds to wait before timing out
This will raise an error if the indices are not created and fully indexed within the timeout.
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **streaming?**: `boolean` = `false`
#### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;`object`&gt;
##### buf
```ts
buf: Buffer;
```
##### mode
```ts
mode: string;
```

View File

@@ -1,35 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / TagContents
# Class: TagContents
## Constructors
### new TagContents()
```ts
new TagContents(): TagContents
```
#### Returns
[`TagContents`](TagContents.md)
## Properties
### manifestSize
```ts
manifestSize: number;
```
***
### version
```ts
version: number;
```

View File

@@ -1,99 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Tags
# Class: Tags
## Constructors
### new Tags()
```ts
new Tags(): Tags
```
#### Returns
[`Tags`](Tags.md)
## Methods
### create()
```ts
create(tag, version): Promise<void>
```
#### Parameters
* **tag**: `string`
* **version**: `number`
#### Returns
`Promise`&lt;`void`&gt;
***
### delete()
```ts
delete(tag): Promise<void>
```
#### Parameters
* **tag**: `string`
#### Returns
`Promise`&lt;`void`&gt;
***
### getVersion()
```ts
getVersion(tag): Promise<number>
```
#### Parameters
* **tag**: `string`
#### Returns
`Promise`&lt;`number`&gt;
***
### list()
```ts
list(): Promise<Record<string, TagContents>>
```
#### Returns
`Promise`&lt;`Record`&lt;`string`, [`TagContents`](TagContents.md)&gt;&gt;
***
### update()
```ts
update(tag, version): Promise<void>
```
#### Parameters
* **tag**: `string`
* **version**: `number`
#### Returns
`Promise`&lt;`void`&gt;

View File

@@ -10,14 +10,30 @@ A builder used to construct a vector search
This builder can be reused to execute the query many times.
## See
[Query#nearestTo](Query.md#nearestto)
## Extends
- [`QueryBase`](QueryBase.md)&lt;`NativeVectorQuery`&gt;
## Constructors
### new VectorQuery()
```ts
new VectorQuery(inner): VectorQuery
```
#### Parameters
* **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Overrides
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
## Properties
### inner
@@ -32,6 +48,22 @@ protected inner: VectorQuery | Promise<VectorQuery>;
## Methods
### \[asyncIterator\]()
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
#### Inherited from
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
***
### addQueryVector()
```ts
@@ -40,7 +72,7 @@ addQueryVector(vector): VectorQuery
#### Parameters
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md)
* **vector**: `IntoVector`
#### Returns
@@ -48,53 +80,6 @@ addQueryVector(vector): VectorQuery
***
### analyzePlan()
```ts
analyzePlan(): Promise<string>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`Promise`&lt;`string`&gt;
A query execution plan with runtime metrics for each step.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`analyzePlan`](QueryBase.md#analyzeplan)
***
### bypassVectorIndex()
```ts
@@ -143,24 +128,6 @@ whose data type is a fixed-size-list of floats.
***
### distanceRange()
```ts
distanceRange(lowerBound?, upperBound?): VectorQuery
```
#### Parameters
* **lowerBound?**: `number`
* **upperBound?**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### distanceType()
```ts
@@ -194,6 +161,26 @@ By default "l2" is used.
***
### doCall()
```ts
protected doCall(fn): void
```
#### Parameters
* **fn**
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
***
### ef()
```ts
@@ -228,7 +215,7 @@ Execute the query and return the results as an
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -297,7 +284,7 @@ fastSearch(): this
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use [Table#optimize](Table.md#optimize) to index all un-indexed data.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
@@ -325,7 +312,7 @@ A filter statement to be applied to this query.
`this`
#### See
#### Alias
where
@@ -347,9 +334,9 @@ fullTextSearch(query, options?): this
#### Parameters
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **query**: `string`
* **options?**: `Partial`&lt;[`FullTextSearchOptions`](../interfaces/FullTextSearchOptions.md)&gt;
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
@@ -386,50 +373,23 @@ called then every valid row from the table will be returned.
***
### maximumNprobes()
### nativeExecute()
```ts
maximumNprobes(maximumNprobes): VectorQuery
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
Set the maximum number of probes used.
This controls the maximum number of partitions that will be searched. If this
number is greater than minimumNprobes then the excess partitions will _only_ be
searched if we have not found enough results. This can be useful when there is
a narrow filter to allow these queries to spend more time searching and avoid
potential false negatives.
#### Parameters
* **maximumNprobes**: `number`
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
[`VectorQuery`](VectorQuery.md)
`Promise`&lt;`RecordBatchIterator`&gt;
***
#### Inherited from
### minimumNprobes()
```ts
minimumNprobes(minimumNprobes): VectorQuery
```
Set the minimum number of probes used.
This controls the minimum number of partitions that will be searched. This
parameter will impact every query against a vector index, regardless of the
filter. See `nprobes` for more details. Higher values will increase recall
but will also increase latency.
#### Parameters
* **minimumNprobes**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
***
@@ -460,10 +420,6 @@ For best results we recommend tuning this parameter with a benchmark against
your actual data to find the smallest possible value that will still give
you the desired recall.
For more fine grained control over behavior when you have a very narrow filter
you can use `minimumNprobes` and `maximumNprobes`. This method sets both
the minimum and maximum to the same value.
#### Parameters
* **nprobes**: `number`
@@ -572,22 +528,6 @@ distance between the query vector and the actual uncompressed vector.
***
### rerank()
```ts
rerank(reranker): VectorQuery
```
#### Parameters
* **reranker**: [`Reranker`](../namespaces/rerankers/interfaces/Reranker.md)
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### select()
```ts
@@ -651,7 +591,7 @@ Collect the results as an array of objects.
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -673,7 +613,7 @@ Collect the results as an Arrow
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns

View File

@@ -1,54 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FullTextQueryType
# Enumeration: FullTextQueryType
Enum representing the types of full-text queries supported.
- `Match`: Performs a full-text search for terms in the query string.
- `MatchPhrase`: Searches for an exact phrase match in the text.
- `Boost`: Boosts the relevance score of specific terms in the query.
- `MultiMatch`: Searches across multiple fields for the query terms.
## Enumeration Members
### Boolean
```ts
Boolean: "boolean";
```
***
### Boost
```ts
Boost: "boost";
```
***
### Match
```ts
Match: "match";
```
***
### MatchPhrase
```ts
MatchPhrase: "match_phrase";
```
***
### MultiMatch
```ts
MultiMatch: "multi_match";
```

View File

@@ -1,37 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Occur
# Enumeration: Occur
Enum representing the occurrence of terms in full-text queries.
- `Must`: The term must be present in the document.
- `Should`: The term should contribute to the document score, but is not required.
- `MustNot`: The term must not be present in the document.
## Enumeration Members
### Must
```ts
Must: "MUST";
```
***
### MustNot
```ts
MustNot: "MUST_NOT";
```
***
### Should
```ts
Should: "SHOULD";
```

View File

@@ -1,28 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Operator
# Enumeration: Operator
Enum representing the logical operators used in full-text queries.
- `And`: All terms must match.
- `Or`: At least one term must match.
## Enumeration Members
### And
```ts
And: "AND";
```
***
### Or
```ts
Or: "OR";
```

View File

@@ -0,0 +1,33 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Enumeration Members
### Append
```ts
Append: "Append";
```
***
### Create
```ts
Create: "Create";
```
***
### Overwrite
```ts
Overwrite: "Overwrite";
```

View File

@@ -6,10 +6,10 @@
# Function: connect()
## connect(uri, options)
## connect(uri, opts)
```ts
function connect(uri, options?): Promise<Connection>
function connect(uri, opts?): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -26,8 +26,7 @@ Accepted formats:
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
* **options?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt;
The options to use when connecting to the database
* **opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt;
### Returns
@@ -50,10 +49,10 @@ const conn = await connect(
});
```
## connect(options)
## connect(opts)
```ts
function connect(options): Promise<Connection>
function connect(opts): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -66,8 +65,7 @@ Accepted formats:
### Parameters
* **options**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt; & `object`
The options to use when connecting to the database
* **opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt; & `object`
### Returns

View File

@@ -22,6 +22,8 @@ when creating a table or adding data to it)
This function converts an array of Record<String, any> (row-major JS objects)
to an Arrow Table (a columnar structure)
Note that it currently does not support nulls.
If a schema is provided then it will be used to determine the resulting array
types. Fields will also be reordered to fit the order defined by the schema.
@@ -29,9 +31,6 @@ If a schema is not provided then the types will be inferred and the field order
will be controlled by the order of properties in the first record. If a type
is inferred it will always be nullable.
If not all fields are found in the data, then a subset of the schema will be
returned.
If the input is empty then a schema must be provided to create an empty table.
When a schema is not specified then data types will be inferred. The inference
@@ -39,7 +38,6 @@ rules are as follows:
- boolean => Bool
- number => Float64
- bigint => Int64
- String => Utf8
- Buffer => Binary
- Record<String, any> => Struct
@@ -59,7 +57,6 @@ rules are as follows:
## Example
```ts
import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
@@ -81,40 +78,42 @@ The `vectorColumns` option can be used to support other vector column
names and data types.
```ts
const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
```
You can specify the vector column types and names using the options as well
```ts
```typescript
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
const table = makeArrowTable([
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
assert.deepEqual(table.schema, schema)
```

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / packBits
# Function: packBits()
```ts
function packBits(data): number[]
```
## Parameters
* **data**: `number`[]
## Returns
`number`[]

View File

@@ -7,90 +7,48 @@
## Namespaces
- [embedding](namespaces/embedding/README.md)
- [rerankers](namespaces/rerankers/README.md)
## Enumerations
- [FullTextQueryType](enumerations/FullTextQueryType.md)
- [Occur](enumerations/Occur.md)
- [Operator](enumerations/Operator.md)
- [WriteMode](enumerations/WriteMode.md)
## Classes
- [BooleanQuery](classes/BooleanQuery.md)
- [BoostQuery](classes/BoostQuery.md)
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [MatchQuery](classes/MatchQuery.md)
- [MergeInsertBuilder](classes/MergeInsertBuilder.md)
- [MultiMatchQuery](classes/MultiMatchQuery.md)
- [PhraseQuery](classes/PhraseQuery.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [TagContents](classes/TagContents.md)
- [Tags](classes/Tags.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
## Interfaces
- [AddColumnsResult](interfaces/AddColumnsResult.md)
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [AddResult](interfaces/AddResult.md)
- [AlterColumnsResult](interfaces/AlterColumnsResult.md)
- [ClientConfig](interfaces/ClientConfig.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [CompactionStats](interfaces/CompactionStats.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [DeleteResult](interfaces/DeleteResult.md)
- [DropColumnsResult](interfaces/DropColumnsResult.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [FragmentStatistics](interfaces/FragmentStatistics.md)
- [FragmentSummaryStats](interfaces/FragmentSummaryStats.md)
- [FtsOptions](interfaces/FtsOptions.md)
- [FullTextQuery](interfaces/FullTextQuery.md)
- [FullTextSearchOptions](interfaces/FullTextSearchOptions.md)
- [HnswPqOptions](interfaces/HnswPqOptions.md)
- [HnswSqOptions](interfaces/HnswSqOptions.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfFlatOptions](interfaces/IvfFlatOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [MergeResult](interfaces/MergeResult.md)
- [OpenTableOptions](interfaces/OpenTableOptions.md)
- [OptimizeOptions](interfaces/OptimizeOptions.md)
- [OptimizeStats](interfaces/OptimizeStats.md)
- [QueryExecutionOptions](interfaces/QueryExecutionOptions.md)
- [RemovalStats](interfaces/RemovalStats.md)
- [RetryConfig](interfaces/RetryConfig.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [TableStatistics](interfaces/TableStatistics.md)
- [TimeoutConfig](interfaces/TimeoutConfig.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [UpdateResult](interfaces/UpdateResult.md)
- [Version](interfaces/Version.md)
- [WriteExecutionOptions](interfaces/WriteExecutionOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
## Type Aliases
- [Data](type-aliases/Data.md)
- [DataLike](type-aliases/DataLike.md)
- [FieldLike](type-aliases/FieldLike.md)
- [IntoSql](type-aliases/IntoSql.md)
- [IntoVector](type-aliases/IntoVector.md)
- [MultiVector](type-aliases/MultiVector.md)
- [RecordBatchLike](type-aliases/RecordBatchLike.md)
- [SchemaLike](type-aliases/SchemaLike.md)
- [TableLike](type-aliases/TableLike.md)
## Functions
- [connect](functions/connect.md)
- [makeArrowTable](functions/makeArrowTable.md)
- [packBits](functions/packBits.md)

View File

@@ -1,15 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / AddColumnsResult
# Interface: AddColumnsResult
## Properties
### version
```ts
version: number;
```

View File

@@ -1,15 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / AddResult
# Interface: AddResult
## Properties
### version
```ts
version: number;
```

Some files were not shown because too many files have changed in this diff Show More