Compare commits

...

11 Commits

Author SHA1 Message Date
Lance Release
639c943dee Bump version: 0.21.4-beta.0 → 0.21.4-beta.1 2025-08-22 03:54:52 +00:00
Lance Release
b88422e515 Bump version: 0.24.4-beta.0 → 0.24.4-beta.1 2025-08-22 03:54:34 +00:00
BubbleCal
8d60685ede chore: upgrade lance to 0.33.0-beta.4 (#2604)
detials:
https://github.com/lancedb/lance/releases/tag/untagged-5191abd48c1fbe76f746

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-08-21 21:18:48 +08:00
Jack Ye
04285a4a4e feat(python): integrate with lance namespace (#2599)
This PR integrates `lancedb` with `lance-namespace` so that users can
use LanceDB client to access Lance tables in any catalog services. In
general, we expect most of the logic to be delegated to the existing
`LanceDBConnection` and `LanceTable`, but the namespace implemenation
will control how table is created, dropped, and describe where the table
is stored with any related storage options like access credentials.

The implementation currently only supports a 1 level namespace that
directly contains tables. We will introduce nested namespace support in
a separated PR.

Users are expected to use it in the following way:

```python
>>> import lancedb
>>> import pyarrow as pa
>>> # Connect using GlueNamespace
>>> db = lancedb.connect_namespace("glue", {"catalog_id": "123456789012"})
>>> # Create a table with schema
>>> schema = pa.schema([
...     pa.field("id", pa.int64()),
...     pa.field("vector", pa.list_(pa.float32(), 2))
... ])
>>> table = db.create_table("my_table", schema=schema)
>>> # List tables
>>> db.table_names()
['my_table']
```
2025-08-20 15:46:16 -07:00
Lance Release
d4a41b5663 Bump version: 0.21.3 → 0.21.4-beta.0 2025-08-19 22:56:52 +00:00
Lance Release
adc3daa462 Bump version: 0.24.3 → 0.24.4-beta.0 2025-08-19 22:56:05 +00:00
Will Jones
acbfa6c012 feat: upgrade lance to 0.33.0-beta.3 (#2598)
Change logs:
*
[v0.33.0-beta.3](https://github.com/lancedb/lance/releases/tag/v0.33.0-beta.3)
*
[v0.33.0-beta.2](https://github.com/lancedb/lance/releases/tag/v0.33.0-beta.2)
*
[v0.33.0-beta.1](https://github.com/lancedb/lance/releases/tag/v0.33.0-beta.1)

Important changes:

* Row-level conflict resolution for delete operations
* Fixes #2593
* Fix for keeping tombstones fields around, preventing cleanup of
dropped columns.
2025-08-19 13:45:15 -07:00
Vitali Lovich
d602e9f98c fix: make cloud features optional (#2567) (#2568)
This shrinks the size of a local embedded build that can disable all the
default features. When combined with
https://github.com/lancedb/lance/pull/4362 and the dependencies are
updated to point to the fix, this resolves #2567 fully.

Verified by patching the workspace to redirect to my clone of lance with
the PR applied.
```
cargo tree -p lancedb -e no-build -e no-dev --no-default-features -i aws-config | less
```

The reason that lance itself needs to change too is that many
dependencies within that project depend on lance-io/default and lancedb
depends on them which transitively ends up enabling the cloud
regardless. The PR in lance removes the dependency on lance-io/default
from all sibling crates.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-08-15 16:46:52 -07:00
Will Jones
ad09234d59 feat: allow setting train=False and name on indices (#2586)
Enables two new parameters when building indices:

* `name`: Allows explicitly setting a name on the index. Default is
`{col_name}_idx`.
* `train` (default `True`): When set to `False`, an empty index will be
immediately created.

The upgrade of Lance means there are also additional behaviors from
cd76a993b8:

* When a scalar index is created on a Table, it will be kept around even
if all rows are deleted or updated.
* Scalar indices can be created on empty tables. They will default to
`train=False` if the table is empty.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-08-15 14:00:26 -07:00
Lance Release
0c34ffb252 Bump version: 0.21.3-beta.0 → 0.21.3 2025-08-15 18:03:26 +00:00
Lance Release
d9f333d828 Bump version: 0.21.2 → 0.21.3-beta.0 2025-08-15 18:02:43 +00:00
41 changed files with 1521 additions and 435 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.21.2"
current_version = "0.21.4-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -13,10 +13,68 @@ Project layout:
Common commands:
* Check for compiler errors: `cargo check --features remote --tests --examples`
* Run tests: `cargo test --features remote --tests`
* Run specific test: `cargo test --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --features remote --tests --examples`
* Check for compiler errors: `cargo check --quiet --features remote --tests --examples`
* Run tests: `cargo test --quiet --features remote --tests`
* Run specific test: `cargo test --quiet --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --quiet --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.
## Coding tips
* When writing Rust doctests for things that require a connection or table reference,
write them as a function instead of a fully executable test. This allows type checking
to run but avoids needing a full test environment. For example:
```rust
/// ```
/// use lance_index::scalar::FullTextSearchQuery;
/// use lancedb::query::{QueryBase, ExecutableQuery};
///
/// # use lancedb::Table;
/// # async fn query(table: &Table) -> Result<(), Box<dyn std::error::Error>> {
/// let results = table.query()
/// .full_text_search(FullTextSearchQuery::new("hello world".into()))
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
```
## Example plan: adding a new method on Table
Adding a new method involves first adding it to the Rust core, then exposing it
in the Python and TypeScript bindings. There are both local and remote tables.
Remote tables are implemented via a HTTP API and require the `remote` cargo
feature flag to be enabled. Python has both sync and async methods.
Rust core changes:
1. Add method on `Table` struct in `rust/lancedb/src/table.rs` (calls `BaseTable` trait).
2. Add method to `BaseTable` trait in `rust/lancedb/src/table.rs`.
3. Implement new trait method on `NativeTable` in `rust/lancedb/src/table.rs`.
* Test with unit test in `rust/lancedb/src/table.rs`.
4. Implement new trait method on `RemoteTable` in `rust/lancedb/src/remote/table.rs`.
* Test with unit test in `rust/lancedb/src/remote/table.rs` against mocked endpoint.
Python bindings changes:
1. Add PyO3 method binding in `python/src/table.rs`. Run `make develop` to compile bindings.
2. Add types for PyO3 method in `python/python/lancedb/_lancedb.pyi`.
3. Add method to `AsyncTable` class in `python/python/lancedb/table.py`.
4. Add abstract method to `Table` abstract base class in `python/python/lancedb/table.py`.
5. Add concrete sync method to `LanceTable` class in `python/python/lancedb/table.py`.
* Should use `LOOP.run()` to call the corresponding `AsyncTable` method.
6. Add concrete sync method to `RemoteTable` class in `python/python/lancedb/remote/table.py`.
7. Add unit test in `python/tests/test_table.py`.
TypeScript bindings changes:
1. Add napi-rs method binding on `Table` in `nodejs/src/table.rs`.
2. Run `npm run build` to generate TypeScript definitions.
3. Add typescript method on abstract class `Table` in `nodejs/src/table.ts`.
4. Add concrete method on `LocalTable` class in `nodejs/src/native_table.ts`.
* Note: despite the name, this class is also used for remote tables.
5. Add test in `nodejs/__test__/table.test.ts`.
6. Run `npm run docs` to generate TypeScript documentation.

47
Cargo.lock generated
View File

@@ -2838,8 +2838,7 @@ checksum = "42703706b716c37f96a77aea830392ad231f44c9e9a67872fa5548707e11b11c"
[[package]]
name = "fsst"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "548190a42654ce848835b410ae33f43b4d55cb24548fd0a885a289a1d5a95019"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow-array",
"rand 0.9.1",
@@ -3953,8 +3952,7 @@ dependencies = [
[[package]]
name = "lance"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "94bafd9d9a9301c1eac48892ec8016d4d28204d4fc55f2ebebee9a7af465e152"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow",
"arrow-arith",
@@ -4017,8 +4015,7 @@ dependencies = [
[[package]]
name = "lance-arrow"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b97ebcd8edc2b534e8ded20c97c8928e275160794af91ed803a3d48d8d2a88d8"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow-array",
"arrow-buffer",
@@ -4036,8 +4033,7 @@ dependencies = [
[[package]]
name = "lance-core"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ce5c1849d07985d6a5011aca9de43c7a42ec4c996d66ef3f2d9896c227cc934c"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow-array",
"arrow-buffer",
@@ -4073,8 +4069,7 @@ dependencies = [
[[package]]
name = "lance-datafusion"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d355c087bc66d85e36cfb428465f585b13971e1e13585dd2b6886a54d8a7d9a4"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow",
"arrow-array",
@@ -4103,8 +4098,7 @@ dependencies = [
[[package]]
name = "lance-datagen"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "110d4dedfe02e9cff8f11cfb64a261755da7ee9131845197efeec8b659cc5513"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow",
"arrow-array",
@@ -4112,6 +4106,7 @@ dependencies = [
"arrow-schema",
"chrono",
"futures",
"half",
"hex",
"rand 0.9.1",
"rand_xoshiro",
@@ -4121,8 +4116,7 @@ dependencies = [
[[package]]
name = "lance-encoding"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "66750006299a2fb003091bc290eb1fe2a5933e35236d921934131f3e4629cd33"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrayref",
"arrow",
@@ -4162,8 +4156,7 @@ dependencies = [
[[package]]
name = "lance-file"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c639062100610a075e01fd455173348b2fccea10cb0e89f70e38a3183c56022"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow-arith",
"arrow-array",
@@ -4198,8 +4191,7 @@ dependencies = [
[[package]]
name = "lance-index"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7ae67a048a51fb525d1bfde86d1b39118462277e7e7a7cd0e7ba866312873532"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow",
"arrow-array",
@@ -4227,6 +4219,7 @@ dependencies = [
"lance-arrow",
"lance-core",
"lance-datafusion",
"lance-datagen",
"lance-encoding",
"lance-file",
"lance-io",
@@ -4253,8 +4246,7 @@ dependencies = [
[[package]]
name = "lance-io"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cc86c7307e2d3d895cfefa503f986edcbdd208eb0aa89ba2c75724ba04bce843"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow",
"arrow-arith",
@@ -4295,8 +4287,7 @@ dependencies = [
[[package]]
name = "lance-linalg"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "769f910b6f2ad5eb4d1b3071c533b619351e61e0dfca74f13c98680a8e6476e9"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow-array",
"arrow-buffer",
@@ -4320,8 +4311,7 @@ dependencies = [
[[package]]
name = "lance-table"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ffbeafa8a3e97b5b3a06f06d69b0cefe56e65c64a33f674c40c113b797328bd2"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow",
"arrow-array",
@@ -4360,8 +4350,7 @@ dependencies = [
[[package]]
name = "lance-testing"
version = "0.33.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "535a3bba37625cd515a7172a8d0d138f86822acef9fa9425ad1e050ef88bf92f"
source = "git+https://github.com/lancedb/lance.git?tag=v0.33.0-beta.4#e37e9df2458e88c37205415bd00d950b7f936061"
dependencies = [
"arrow-array",
"arrow-schema",
@@ -4372,7 +4361,7 @@ dependencies = [
[[package]]
name = "lancedb"
version = "0.21.2"
version = "0.21.4-beta.0"
dependencies = [
"arrow",
"arrow-array",
@@ -4459,7 +4448,7 @@ dependencies = [
[[package]]
name = "lancedb-nodejs"
version = "0.21.2"
version = "0.21.4-beta.0"
dependencies = [
"arrow-array",
"arrow-ipc",
@@ -4479,7 +4468,7 @@ dependencies = [
[[package]]
name = "lancedb-python"
version = "0.24.2"
version = "0.24.4-beta.0"
dependencies = [
"arrow",
"env_logger",

View File

@@ -15,14 +15,14 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.33.0", "features" = ["dynamodb"] }
lance-io = "=0.33.0"
lance-index = "=0.33.0"
lance-linalg = "=0.33.0"
lance-table = "=0.33.0"
lance-testing = "=0.33.0"
lance-datafusion = "=0.33.0"
lance-encoding = "=0.33.0"
lance = { "version" = "=0.33.0", default-features = false, "features" = ["dynamodb"], "tag" = "v0.33.0-beta.4", "git" = "https://github.com/lancedb/lance.git" }
lance-io = { "version" = "=0.33.0", default-features = false, "tag" = "v0.33.0-beta.4", "git" = "https://github.com/lancedb/lance.git" }
lance-index = { "version" = "=0.33.0", "tag" = "v0.33.0-beta.4", "git" = "https://github.com/lancedb/lance.git" }
lance-linalg = { "version" = "=0.33.0", "tag" = "v0.33.0-beta.4", "git" = "https://github.com/lancedb/lance.git" }
lance-table = { "version" = "=0.33.0", "tag" = "v0.33.0-beta.4", "git" = "https://github.com/lancedb/lance.git" }
lance-testing = { "version" = "=0.33.0", "tag" = "v0.33.0-beta.4", "git" = "https://github.com/lancedb/lance.git" }
lance-datafusion = { "version" = "=0.33.0", "tag" = "v0.33.0-beta.4", "git" = "https://github.com/lancedb/lance.git" }
lance-encoding = { "version" = "=0.33.0", "tag" = "v0.33.0-beta.4", "git" = "https://github.com/lancedb/lance.git" }
# Note that this one does not include pyarrow
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"

View File

@@ -54,6 +54,52 @@ def extract_features(line: str) -> list:
return []
def extract_default_features(line: str) -> bool:
"""
Checks if default-features = false is present in a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"] }'
Returns: True if default-features = false is present, False otherwise
"""
import re
match = re.search(r'default-features\s*=\s*false', line)
return match is not None
def dict_to_toml_line(package_name: str, config: dict) -> str:
"""
Converts a configuration dictionary to a TOML dependency line.
Dictionary insertion order is preserved (Python 3.7+), so the caller
controls the order of fields in the output.
Args:
package_name: The name of the package (e.g., "lance", "lance-io")
config: Dictionary with keys like "version", "path", "git", "tag", "features", "default-features"
The order of keys in this dict determines the order in the output.
Returns:
A properly formatted TOML line with a trailing newline
"""
# If only version is specified, use simple format
if len(config) == 1 and "version" in config:
return f'{package_name} = "{config["version"]}"\n'
# Otherwise, use inline table format
parts = []
for key, value in config.items():
if key == "default-features" and not value:
parts.append("default-features = false")
elif key == "features":
parts.append(f'"features" = {json.dumps(value)}')
elif isinstance(value, str):
parts.append(f'"{key}" = "{value}"')
else:
# This shouldn't happen with our current usage
parts.append(f'"{key}" = {json.dumps(value)}')
return f'{package_name} = {{ {", ".join(parts)} }}\n'
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
@@ -67,20 +113,27 @@ def update_cargo_toml(line_updater):
is_parsing_lance_line = False
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
if line.strip().endswith("}"):
# Check if this is a single-line or multi-line entry
# Single-line entries either:
# 1. End with } (complete inline table)
# 2. End with " (simple version string)
# Multi-line entries start with { but don't end with }
if line.strip().endswith("}") or line.strip().endswith('"'):
# Single-line entry - process immediately
new_lines.append(line_updater(line))
else:
elif "{" in line and not line.strip().endswith("}"):
# Multi-line entry - start accumulating
lance_line = line
is_parsing_lance_line = True
else:
# Single-line entry without quotes or braces (shouldn't happen but handle it)
new_lines.append(line_updater(line))
elif is_parsing_lance_line:
lance_line += line
if line.strip().endswith("}"):
new_lines.append(line_updater(lance_line))
lance_line = ""
is_parsing_lance_line = False
else:
print("doesn't end with }:", line)
else:
# Keep the line unchanged
new_lines.append(line)
@@ -92,18 +145,25 @@ def update_cargo_toml(line_updater):
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"] }
lance-io = { "version" = "=0.29.0", default-features = false }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
# Build config in desired order: version, default-features, features
config = {"version": f"={version}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
config["features"] = features
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)
@@ -111,19 +171,29 @@ def set_stable_version(version: str):
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"], "tag" = "v0.29.0-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-io = { "version" = "=0.29.0", default-features = false, "tag" = "v0.29.0-beta.2", "git" = "https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
# Build config in desired order: version, default-features, features, tag, git
config = {"version": f"={base_version}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
config["features"] = features
config["tag"] = f"v{version}"
config["git"] = "https://github.com/lancedb/lance.git"
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)
@@ -131,18 +201,25 @@ def set_preview_version(version: str):
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
lance = { "path" = "../lance/rust/lance", default-features = false, "features" = ["dynamodb"] }
lance-io = { "path" = "../lance/rust/lance-io", default-features = false }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
# Build config in desired order: path, default-features, features
config = {"path": f"../lance/rust/{package_name}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
config["features"] = features
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)

View File

@@ -26,6 +26,18 @@ will be used to determine the most useful kind of index to create.
***
### name?
```ts
optional name: string;
```
Optional custom name for the index.
If not provided, a default name will be generated based on the column name.
***
### replace?
```ts
@@ -42,8 +54,27 @@ The default is true
***
### train?
```ts
optional train: boolean;
```
Whether to train the index with existing data.
If true (default), the index will be trained with existing data in the table.
If false, the index will be created empty and populated as new data is added.
Note: This option is only supported for scalar indices. Vector indices always train.
***
### waitTimeoutSeconds?
```ts
optional waitTimeoutSeconds: number;
```
Timeout in seconds to wait for index creation to complete.
If not specified, the method will return immediately after starting the index creation.

View File

@@ -15,7 +15,7 @@ publish = false
crate-type = ["cdylib"]
[dependencies]
lancedb = { path = "../../../rust/lancedb" }
lancedb = { path = "../../../rust/lancedb", default-features = false }
lance = { workspace = true }
arrow = { workspace = true, features = ["ffi"] }
arrow-schema.workspace = true
@@ -25,3 +25,6 @@ snafu.workspace = true
lazy_static.workspace = true
serde = { version = "^1" }
serde_json = { version = "1" }
[features]
default = ["lancedb/default"]

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.2-final.0</version>
<version>0.21.4-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.2-final.0</version>
<version>0.21.4-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.2-final.0</version>
<version>0.21.4-beta.1</version>
<packaging>pom</packaging>
<name>${project.artifactId}</name>
<description>LanceDB Java SDK Parent POM</description>

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.21.2"
version = "0.21.4-beta.1"
license.workspace = true
description.workspace = true
repository.workspace = true
@@ -18,7 +18,7 @@ arrow-array.workspace = true
arrow-schema.workspace = true
env_logger.workspace = true
futures.workspace = true
lancedb = { path = "../rust/lancedb" }
lancedb = { path = "../rust/lancedb", default-features = false }
napi = { version = "2.16.8", default-features = false, features = [
"napi9",
"async"
@@ -36,6 +36,6 @@ aws-lc-rs = "=1.13.0"
napi-build = "2.1"
[features]
default = ["remote"]
default = ["remote", "lancedb/default"]
fp16kernels = ["lancedb/fp16kernels"]
remote = ["lancedb/remote"]

View File

@@ -857,6 +857,40 @@ describe("When creating an index", () => {
expect(stats).toBeUndefined();
});
test("should support name and train parameters", async () => {
// Test with custom name
await tbl.createIndex("vec", {
config: Index.ivfPq({ numPartitions: 4 }),
name: "my_custom_vector_index",
});
const indices = await tbl.listIndices();
expect(indices).toHaveLength(1);
expect(indices[0].name).toBe("my_custom_vector_index");
// Test scalar index with train=false
await tbl.createIndex("id", {
config: Index.btree(),
name: "btree_empty",
train: false,
});
const allIndices = await tbl.listIndices();
expect(allIndices).toHaveLength(2);
expect(allIndices.some((idx) => idx.name === "btree_empty")).toBe(true);
// Test with both name and train=true (use tags column)
await tbl.createIndex("tags", {
config: Index.labelList(),
name: "tags_trained",
train: true,
});
const finalIndices = await tbl.listIndices();
expect(finalIndices).toHaveLength(3);
expect(finalIndices.some((idx) => idx.name === "tags_trained")).toBe(true);
});
test("create ivf_flat with binary vectors", async () => {
const db = await connect(tmpDir.name);
const binarySchema = new Schema([

View File

@@ -700,5 +700,27 @@ export interface IndexOptions {
*/
replace?: boolean;
/**
* Timeout in seconds to wait for index creation to complete.
*
* If not specified, the method will return immediately after starting the index creation.
*/
waitTimeoutSeconds?: number;
/**
* Optional custom name for the index.
*
* If not provided, a default name will be generated based on the column name.
*/
name?: string;
/**
* Whether to train the index with existing data.
*
* If true (default), the index will be trained with existing data in the table.
* If false, the index will be created empty and populated as new data is added.
*
* Note: This option is only supported for scalar indices. Vector indices always train.
*/
train?: boolean;
}

View File

@@ -662,6 +662,8 @@ export class LocalTable extends Table {
column,
options?.replace,
options?.waitTimeoutSeconds,
options?.name,
options?.train,
);
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.21.2",
"version": "0.21.4-beta.1",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.21.2",
"version": "0.21.4-beta.1",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.21.2",
"version": "0.21.4-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.21.2",
"version": "0.21.4-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.21.2",
"version": "0.21.4-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.21.2",
"version": "0.21.4-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.21.2",
"version": "0.21.4-beta.1",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.21.2",
"version": "0.21.4-beta.1",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.21.2",
"version": "0.21.4-beta.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.21.2",
"version": "0.21.4-beta.0",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.21.2",
"version": "0.21.4-beta.1",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -114,6 +114,8 @@ impl Table {
column: String,
replace: Option<bool>,
wait_timeout_s: Option<i64>,
name: Option<String>,
train: Option<bool>,
) -> napi::Result<()> {
let lancedb_index = if let Some(index) = index {
index.consume()?
@@ -128,6 +130,12 @@ impl Table {
builder =
builder.wait_timeout(std::time::Duration::from_secs(timeout.try_into().unwrap()));
}
if let Some(name) = name {
builder = builder.name(name);
}
if let Some(train) = train {
builder = builder.train(train);
}
builder.execute().await.default_error()
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.24.3"
current_version = "0.24.4-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.24.3"
version = "0.24.4-beta.1"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -33,6 +33,6 @@ pyo3-build-config = { version = "0.24", features = [
] }
[features]
default = ["remote"]
default = ["remote", "lancedb/default"]
fp16kernels = ["lancedb/fp16kernels"]
remote = ["lancedb/remote"]

View File

@@ -10,6 +10,7 @@ dependencies = [
"pyarrow>=16",
"pydantic>=1.10",
"tqdm>=4.27.0",
"lance-namespace==0.0.6"
]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]

View File

@@ -19,6 +19,7 @@ from .remote.db import RemoteDBConnection
from .schema import vector
from .table import AsyncTable
from ._lancedb import Session
from .namespace import connect_namespace, LanceNamespaceDBConnection
def connect(
@@ -221,6 +222,7 @@ async def connect_async(
__all__ = [
"connect",
"connect_async",
"connect_namespace",
"AsyncConnection",
"AsyncTable",
"URI",
@@ -228,6 +230,7 @@ __all__ = [
"vector",
"DBConnection",
"LanceDBConnection",
"LanceNamespaceDBConnection",
"RemoteDBConnection",
"Session",
"__version__",

View File

@@ -59,6 +59,10 @@ class Table:
column: str,
index: Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS],
replace: Optional[bool],
wait_timeout: Optional[object],
*,
name: Optional[str],
train: Optional[bool],
): ...
async def list_versions(self) -> List[Dict[str, Any]]: ...
async def version(self) -> int: ...

View File

@@ -0,0 +1,325 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""
LanceDB Namespace integration module.
This module provides integration with lance_namespace for managing tables
through a namespace abstraction.
"""
from __future__ import annotations
from typing import Dict, Iterable, List, Optional, Union
import os
from lancedb.db import DBConnection
from lancedb.table import LanceTable, Table
from lancedb.util import validate_table_name
from lancedb.common import validate_schema
from lancedb.table import sanitize_create_table
from overrides import override
from lance_namespace import LanceNamespace, connect as namespace_connect
from lance_namespace_urllib3_client.models import (
ListTablesRequest,
DescribeTableRequest,
CreateTableRequest,
DropTableRequest,
JsonArrowSchema,
JsonArrowField,
JsonArrowDataType,
)
import pyarrow as pa
from datetime import timedelta
from lancedb.pydantic import LanceModel
from lancedb.common import DATA
from lancedb.embeddings import EmbeddingFunctionConfig
from ._lancedb import Session
def _convert_pyarrow_type_to_json(arrow_type: pa.DataType) -> JsonArrowDataType:
"""Convert PyArrow DataType to JsonArrowDataType."""
if pa.types.is_null(arrow_type):
type_name = "null"
elif pa.types.is_boolean(arrow_type):
type_name = "bool"
elif pa.types.is_int8(arrow_type):
type_name = "int8"
elif pa.types.is_uint8(arrow_type):
type_name = "uint8"
elif pa.types.is_int16(arrow_type):
type_name = "int16"
elif pa.types.is_uint16(arrow_type):
type_name = "uint16"
elif pa.types.is_int32(arrow_type):
type_name = "int32"
elif pa.types.is_uint32(arrow_type):
type_name = "uint32"
elif pa.types.is_int64(arrow_type):
type_name = "int64"
elif pa.types.is_uint64(arrow_type):
type_name = "uint64"
elif pa.types.is_float32(arrow_type):
type_name = "float32"
elif pa.types.is_float64(arrow_type):
type_name = "float64"
elif pa.types.is_string(arrow_type):
type_name = "utf8"
elif pa.types.is_binary(arrow_type):
type_name = "binary"
elif pa.types.is_list(arrow_type):
# For list types, we need more complex handling
type_name = "list"
elif pa.types.is_fixed_size_list(arrow_type):
type_name = "fixed_size_list"
else:
# Default to string representation for unsupported types
type_name = str(arrow_type)
return JsonArrowDataType(type=type_name)
def _convert_pyarrow_schema_to_json(schema: pa.Schema) -> JsonArrowSchema:
"""Convert PyArrow Schema to JsonArrowSchema."""
fields = []
for field in schema:
json_field = JsonArrowField(
name=field.name,
type=_convert_pyarrow_type_to_json(field.type),
nullable=field.nullable,
metadata=field.metadata,
)
fields.append(json_field)
return JsonArrowSchema(fields=fields, metadata=schema.metadata)
class LanceNamespaceDBConnection(DBConnection):
"""
A LanceDB connection that uses a namespace for table management.
This connection delegates table URI resolution to a lance_namespace instance,
while using the standard LanceTable for actual table operations.
"""
def __init__(
self,
namespace: LanceNamespace,
*,
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
):
"""
Initialize a namespace-based LanceDB connection.
Parameters
----------
namespace : LanceNamespace
The namespace instance to use for table management
read_consistency_interval : Optional[timedelta]
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked.
storage_options : Optional[Dict[str, str]]
Additional options for the storage backend
session : Optional[Session]
A session to use for this connection
"""
self._ns = namespace
self.read_consistency_interval = read_consistency_interval
self.storage_options = storage_options or {}
self.session = session
@override
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
# Use namespace to list tables
request = ListTablesRequest(id=None, page_token=page_token, limit=limit)
response = self._ns.list_tables(request)
return response.tables if response.tables else []
@override
def create_table(
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
mode: str = "create",
exist_ok: bool = False,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
*,
storage_options: Optional[Dict[str, str]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
) -> Table:
if mode.lower() not in ["create", "overwrite"]:
raise ValueError("mode must be either 'create' or 'overwrite'")
validate_table_name(name)
# TODO: support passing data
if data is not None:
raise ValueError(
"create_table currently only supports creating empty tables (data=None)"
)
# Prepare schema
metadata = None
if embedding_functions is not None:
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
registry = EmbeddingFunctionRegistry.get_instance()
metadata = registry.get_table_metadata(embedding_functions)
data, schema = sanitize_create_table(
data, schema, metadata, on_bad_vectors, fill_value
)
validate_schema(schema)
# Convert PyArrow schema to JsonArrowSchema
json_schema = _convert_pyarrow_schema_to_json(schema)
# Create table request
request = CreateTableRequest(id=[name], var_schema=json_schema)
# Create empty Arrow IPC stream bytes
import pyarrow.ipc as ipc
import io
empty_table = pa.Table.from_arrays(
[pa.array([], type=field.type) for field in schema], schema=schema
)
buffer = io.BytesIO()
with ipc.new_stream(buffer, schema) as writer:
writer.write_table(empty_table)
request_data = buffer.getvalue()
self._ns.create_table(request, request_data)
return self.open_table(name, storage_options=storage_options)
@override
def open_table(
self,
name: str,
*,
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> Table:
request = DescribeTableRequest(id=[name])
response = self._ns.describe_table(request)
merged_storage_options = dict()
if storage_options:
merged_storage_options.update(storage_options)
if response.storage_options:
merged_storage_options.update(response.storage_options)
return self._lance_table_from_uri(
response.location,
storage_options=merged_storage_options,
index_cache_size=index_cache_size,
)
@override
def drop_table(self, name: str):
# Use namespace drop_table directly
request = DropTableRequest(id=[name])
self._ns.drop_table(request)
@override
def rename_table(self, cur_name: str, new_name: str):
raise NotImplementedError(
"rename_table is not supported for namespace connections"
)
@override
def drop_database(self):
raise NotImplementedError(
"drop_database is deprecated, use drop_all_tables instead"
)
@override
def drop_all_tables(self):
for table_name in self.table_names():
self.drop_table(table_name)
def _lance_table_from_uri(
self,
table_uri: str,
*,
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> LanceTable:
# Extract the base path and table name from the URI
if table_uri.endswith(".lance"):
base_path = os.path.dirname(table_uri)
table_name = os.path.basename(table_uri)[:-6] # Remove .lance
else:
raise ValueError(f"Invalid table URI: {table_uri}")
from lancedb.db import LanceDBConnection
temp_conn = LanceDBConnection(
base_path,
read_consistency_interval=self.read_consistency_interval,
storage_options={**self.storage_options, **(storage_options or {})},
session=self.session,
)
# Open the table using the temporary connection
return LanceTable.open(
temp_conn,
table_name,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
def connect_namespace(
impl: str,
properties: Dict[str, str],
*,
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
) -> LanceNamespaceDBConnection:
"""
Connect to a LanceDB database through a namespace.
Parameters
----------
impl : str
The namespace implementation to use. For examples:
- "dir" for DirectoryNamespace
- "rest" for REST-based namespace
- Full module path for custom implementations
properties : Dict[str, str]
Configuration properties for the namespace implementation.
Different namespace implemenation has different config properties.
For example, use DirectoryNamespace with {"root": "/path/to/directory"}
read_consistency_interval : Optional[timedelta]
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked.
storage_options : Optional[Dict[str, str]]
Additional options for the storage backend
session : Optional[Session]
A session to use for this connection
Returns
-------
LanceNamespaceDBConnection
A namespace-based connection to LanceDB
"""
namespace = namespace_connect(impl, properties)
# Return the namespace-based connection
return LanceNamespaceDBConnection(
namespace,
read_consistency_interval=read_consistency_interval,
storage_options=storage_options,
session=session,
)

View File

@@ -194,6 +194,8 @@ class RemoteTable(Table):
wait_timeout: Optional[timedelta] = None,
*,
num_bits: int = 8,
name: Optional[str] = None,
train: bool = True,
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -270,7 +272,11 @@ class RemoteTable(Table):
LOOP.run(
self._table.create_index(
vector_column_name, config=config, wait_timeout=wait_timeout
vector_column_name,
config=config,
wait_timeout=wait_timeout,
name=name,
train=train,
)
)

View File

@@ -689,6 +689,8 @@ class Table(ABC):
sample_rate: int = 256,
m: int = 20,
ef_construction: int = 300,
name: Optional[str] = None,
train: bool = True,
):
"""Create an index on the table.
@@ -721,6 +723,11 @@ class Table(ABC):
Only 4 and 8 are supported.
wait_timeout: timedelta, optional
The timeout to wait if indexing is asynchronous.
name: str, optional
The name of the index. If not provided, a default name will be generated.
train: bool, default True
Whether to train the index with existing data. Vector indices always train
with existing data.
"""
raise NotImplementedError
@@ -1929,6 +1936,9 @@ class LanceTable(Table):
sample_rate: int = 256,
m: int = 20,
ef_construction: int = 300,
*,
name: Optional[str] = None,
train: bool = True,
):
"""Create an index on the table."""
if accelerator is not None:
@@ -1992,6 +2002,8 @@ class LanceTable(Table):
vector_column_name,
replace=replace,
config=config,
name=name,
train=train,
)
)
@@ -3251,6 +3263,8 @@ class AsyncTable:
Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS]
] = None,
wait_timeout: Optional[timedelta] = None,
name: Optional[str] = None,
train: bool = True,
):
"""Create an index to speed up queries
@@ -3277,6 +3291,11 @@ class AsyncTable:
creating an index object.
wait_timeout: timedelta, optional
The timeout to wait if indexing is asynchronous.
name: str, optional
The name of the index. If not provided, a default name will be generated.
train: bool, default True
Whether to train the index with existing data. Vector indices always train
with existing data.
"""
if config is not None:
if not isinstance(
@@ -3288,7 +3307,12 @@ class AsyncTable:
)
try:
await self._inner.create_index(
column, index=config, replace=replace, wait_timeout=wait_timeout
column,
index=config,
replace=replace,
wait_timeout=wait_timeout,
name=name,
train=train,
)
except ValueError as e:
if "not support the requested language" in str(e):

View File

@@ -0,0 +1,414 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""Tests for LanceDB namespace integration."""
import tempfile
import shutil
from typing import Dict, Optional
import pytest
import pyarrow as pa
import lancedb
from lance_namespace.namespace import NATIVE_IMPLS, LanceNamespace
from lance_namespace_urllib3_client.models import (
ListTablesRequest,
ListTablesResponse,
DescribeTableRequest,
DescribeTableResponse,
RegisterTableRequest,
RegisterTableResponse,
DeregisterTableRequest,
DeregisterTableResponse,
CreateTableRequest,
CreateTableResponse,
DropTableRequest,
DropTableResponse,
)
class TempNamespace(LanceNamespace):
"""A simple dictionary-backed namespace for testing."""
# Class-level storage to persist table registry across instances
_global_registry: Dict[str, Dict[str, str]] = {}
def __init__(self, **properties):
"""Initialize the test namespace.
Args:
root: The root directory for tables (optional)
**properties: Additional configuration properties
"""
self.config = TempNamespaceConfig(properties)
# Use the root as a key to maintain separate registries per root
root = self.config.root
if root not in self._global_registry:
self._global_registry[root] = {}
self.tables = self._global_registry[root] # Reference to shared registry
def list_tables(self, request: ListTablesRequest) -> ListTablesResponse:
"""List all tables in the namespace."""
# For simplicity, ignore namespace ID validation
tables = list(self.tables.keys())
return ListTablesResponse(tables=tables)
def describe_table(self, request: DescribeTableRequest) -> DescribeTableResponse:
"""Describe a table by returning its location."""
if not request.id or len(request.id) != 1:
raise ValueError("Invalid table ID")
table_name = request.id[0]
if table_name not in self.tables:
raise RuntimeError(f"Table does not exist: {table_name}")
table_uri = self.tables[table_name]
return DescribeTableResponse(location=table_uri)
def create_table(
self, request: CreateTableRequest, request_data: bytes
) -> CreateTableResponse:
"""Create a table in the namespace."""
if not request.id or len(request.id) != 1:
raise ValueError("Invalid table ID")
table_name = request.id[0]
# Check if table already exists
if table_name in self.tables:
if request.mode == "overwrite":
# Drop existing table for overwrite mode
del self.tables[table_name]
else:
raise RuntimeError(f"Table already exists: {table_name}")
# Generate table URI based on root directory
table_uri = f"{self.config.root}/{table_name}.lance"
# Parse the Arrow IPC stream to get the schema and create the actual table
import pyarrow.ipc as ipc
import io
import lance
# Read the IPC stream
reader = ipc.open_stream(io.BytesIO(request_data))
table = reader.read_all()
# Create the actual Lance table
lance.write_dataset(table, table_uri)
# Store the table mapping
self.tables[table_name] = table_uri
return CreateTableResponse(location=table_uri)
def drop_table(self, request: DropTableRequest) -> DropTableResponse:
"""Drop a table from the namespace."""
if not request.id or len(request.id) != 1:
raise ValueError("Invalid table ID")
table_name = request.id[0]
if table_name not in self.tables:
raise RuntimeError(f"Table does not exist: {table_name}")
# Get the table URI
table_uri = self.tables[table_name]
# Delete the actual table files
import shutil
import os
if os.path.exists(table_uri):
shutil.rmtree(table_uri, ignore_errors=True)
# Remove from registry
del self.tables[table_name]
return DropTableResponse()
def register_table(self, request: RegisterTableRequest) -> RegisterTableResponse:
"""Register a table with the namespace."""
if not request.id or len(request.id) != 1:
raise ValueError("Invalid table ID")
if not request.location:
raise ValueError("Table location is required")
table_name = request.id[0]
self.tables[table_name] = request.location
return RegisterTableResponse()
def deregister_table(
self, request: DeregisterTableRequest
) -> DeregisterTableResponse:
"""Deregister a table from the namespace."""
if not request.id or len(request.id) != 1:
raise ValueError("Invalid table ID")
table_name = request.id[0]
if table_name not in self.tables:
raise RuntimeError(f"Table does not exist: {table_name}")
del self.tables[table_name]
return DeregisterTableResponse()
class TempNamespaceConfig:
"""Configuration for TestNamespace."""
ROOT = "root"
def __init__(self, properties: Optional[Dict[str, str]] = None):
"""Initialize configuration from properties.
Args:
properties: Dictionary of configuration properties
"""
if properties is None:
properties = {}
self._root = properties.get(self.ROOT, "/tmp")
@property
def root(self) -> str:
"""Get the namespace root directory."""
return self._root
NATIVE_IMPLS["temp"] = f"{TempNamespace.__module__}.TempNamespace"
class TestNamespaceConnection:
"""Test namespace-based LanceDB connection."""
def setup_method(self):
"""Set up test fixtures."""
self.temp_dir = tempfile.mkdtemp()
# Clear the TestNamespace registry for this test
if self.temp_dir in TempNamespace._global_registry:
TempNamespace._global_registry[self.temp_dir].clear()
def teardown_method(self):
"""Clean up test fixtures."""
# Clear the TestNamespace registry
if self.temp_dir in TempNamespace._global_registry:
del TempNamespace._global_registry[self.temp_dir]
shutil.rmtree(self.temp_dir, ignore_errors=True)
def test_connect_namespace_test(self):
"""Test connecting to LanceDB through TestNamespace."""
# Connect using TestNamespace
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Should be a LanceNamespaceDBConnection
assert isinstance(db, lancedb.LanceNamespaceDBConnection)
# Initially no tables
assert len(list(db.table_names())) == 0
def test_create_table_through_namespace(self):
"""Test creating a table through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Define schema for empty table
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("text", pa.string()),
]
)
# Create empty table
table = db.create_table("test_table", schema=schema)
assert table is not None
assert table.name == "test_table"
# Table should appear in namespace
table_names = list(db.table_names())
assert "test_table" in table_names
assert len(table_names) == 1
# Verify empty table
result = table.to_pandas()
assert len(result) == 0
assert list(result.columns) == ["id", "vector", "text"]
def test_open_table_through_namespace(self):
"""Test opening an existing table through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create a table with schema
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("test_table", schema=schema)
# Open the table
table = db.open_table("test_table")
assert table is not None
assert table.name == "test_table"
# Verify empty table with correct schema
result = table.to_pandas()
assert len(result) == 0
assert list(result.columns) == ["id", "vector"]
def test_drop_table_through_namespace(self):
"""Test dropping a table through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create tables
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("table1", schema=schema)
db.create_table("table2", schema=schema)
# Verify both tables exist
table_names = list(db.table_names())
assert "table1" in table_names
assert "table2" in table_names
assert len(table_names) == 2
# Drop one table
db.drop_table("table1")
# Verify only table2 remains
table_names = list(db.table_names())
assert "table1" not in table_names
assert "table2" in table_names
assert len(table_names) == 1
# Should not be able to open dropped table
with pytest.raises(RuntimeError):
db.open_table("table1")
def test_create_table_with_schema(self):
"""Test creating a table with explicit schema through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Define schema
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 3)),
pa.field("text", pa.string()),
]
)
# Create table with schema
table = db.create_table("test_table", schema=schema)
assert table is not None
# Verify schema
table_schema = table.schema
assert len(table_schema) == 3
assert table_schema.field("id").type == pa.int64()
assert table_schema.field("text").type == pa.string()
def test_rename_table_not_supported(self):
"""Test that rename_table raises NotImplementedError."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create a table
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("old_name", schema=schema)
# Rename should raise NotImplementedError
with pytest.raises(NotImplementedError, match="rename_table is not supported"):
db.rename_table("old_name", "new_name")
def test_drop_all_tables(self):
"""Test dropping all tables through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create multiple tables
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
for i in range(3):
db.create_table(f"table{i}", schema=schema)
# Verify tables exist
assert len(list(db.table_names())) == 3
# Drop all tables
db.drop_all_tables()
# Verify all tables are gone
assert len(list(db.table_names())) == 0
def test_table_operations(self):
"""Test various table operations through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create a table with schema
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("text", pa.string()),
]
)
table = db.create_table("test_table", schema=schema)
# Verify empty table was created
result = table.to_pandas()
assert len(result) == 0
assert list(result.columns) == ["id", "vector", "text"]
# Test add data to the table
new_data = [
{"id": 1, "vector": [1.0, 2.0], "text": "item_1"},
{"id": 2, "vector": [2.0, 3.0], "text": "item_2"},
]
table.add(new_data)
result = table.to_pandas()
assert len(result) == 2
# Test delete
table.delete("id = 1")
result = table.to_pandas()
assert len(result) == 1
assert result["id"].values[0] == 2
# Test update
table.update(where="id = 2", values={"text": "updated"})
result = table.to_pandas()
assert result["text"].values[0] == "updated"
def test_storage_options(self):
"""Test passing storage options through namespace connection."""
# Connect with storage options
storage_opts = {"test_option": "test_value"}
db = lancedb.connect_namespace(
"temp", {"root": self.temp_dir}, storage_options=storage_opts
)
# Storage options should be preserved
assert db.storage_options == storage_opts
# Create table with additional storage options
table_opts = {"table_option": "table_value"}
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("test_table", schema=schema, storage_options=table_opts)

View File

@@ -670,7 +670,9 @@ def test_create_index_method(mock_create_index, mem_db: DBConnection):
num_sub_vectors=96,
num_bits=4,
)
mock_create_index.assert_called_with("vector", replace=True, config=expected_config)
mock_create_index.assert_called_with(
"vector", replace=True, config=expected_config, name=None, train=True
)
table.create_index(
vector_column_name="my_vector",
@@ -680,7 +682,7 @@ def test_create_index_method(mock_create_index, mem_db: DBConnection):
)
expected_config = HnswPq(distance_type="dot")
mock_create_index.assert_called_with(
"my_vector", replace=False, config=expected_config
"my_vector", replace=False, config=expected_config, name=None, train=True
)
table.create_index(
@@ -695,7 +697,44 @@ def test_create_index_method(mock_create_index, mem_db: DBConnection):
distance_type="cosine", sample_rate=0.1, m=29, ef_construction=10
)
mock_create_index.assert_called_with(
"my_vector", replace=True, config=expected_config
"my_vector", replace=True, config=expected_config, name=None, train=True
)
@patch("lancedb.table.AsyncTable.create_index")
def test_create_index_name_and_train_parameters(
mock_create_index, mem_db: DBConnection
):
"""Test that name and train parameters are passed correctly to AsyncTable"""
table = mem_db.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "id": 1},
{"vector": [5.9, 26.5], "id": 2},
],
)
# Test with custom name
table.create_index(vector_column_name="vector", name="my_custom_index")
expected_config = IvfPq() # Default config
mock_create_index.assert_called_with(
"vector",
replace=True,
config=expected_config,
name="my_custom_index",
train=True,
)
# Test with train=False
table.create_index(vector_column_name="vector", train=False)
mock_create_index.assert_called_with(
"vector", replace=True, config=expected_config, name=None, train=False
)
# Test with both name and train
table.create_index(vector_column_name="vector", name="my_index_name", train=True)
mock_create_index.assert_called_with(
"vector", replace=True, config=expected_config, name="my_index_name", train=True
)

View File

@@ -341,13 +341,15 @@ impl Table {
})
}
#[pyo3(signature = (column, index=None, replace=None, wait_timeout=None))]
#[pyo3(signature = (column, index=None, replace=None, wait_timeout=None, *, name=None, train=None))]
pub fn create_index<'a>(
self_: PyRef<'a, Self>,
column: String,
index: Option<Bound<'_, PyAny>>,
replace: Option<bool>,
wait_timeout: Option<Bound<'_, PyAny>>,
name: Option<String>,
train: Option<bool>,
) -> PyResult<Bound<'a, PyAny>> {
let index = extract_index_params(&index)?;
let timeout = wait_timeout.map(|t| t.extract::<std::time::Duration>().unwrap());
@@ -357,6 +359,12 @@ impl Table {
if let Some(replace) = replace {
op = op.replace(replace);
}
if let Some(name) = name {
op = op.name(name);
}
if let Some(train) = train {
op = op.train(train);
}
future_into_py(self_.py(), async move {
op.execute().await.infer_error()?;

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.21.2"
version = "0.21.4-beta.1"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -97,7 +97,12 @@ rstest = "0.23.0"
[features]
default = []
default = ["aws", "gcs", "azure", "dynamodb", "oss"]
aws = ["lance/aws", "lance-io/aws"]
oss = ["lance/oss", "lance-io/oss"]
gcs = ["lance/gcp", "lance-io/gcp"]
azure = ["lance/azure", "lance-io/azure"]
dynamodb = ["lance/dynamodb", "aws"]
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = []

View File

@@ -9,6 +9,7 @@ use std::sync::Arc;
use arrow_array::RecordBatchReader;
use arrow_schema::{Field, SchemaRef};
use lance::dataset::ReadParams;
#[cfg(feature = "aws")]
use object_store::aws::AwsCredential;
use crate::arrow::{IntoArrow, IntoArrowStream, SendableRecordBatchStream};
@@ -749,6 +750,7 @@ impl ConnectBuilder {
}
/// [`AwsCredential`] to use when connecting to S3.
#[cfg(feature = "aws")]
#[deprecated(note = "Pass through storage_options instead")]
pub fn aws_creds(mut self, aws_creds: AwsCredential) -> Self {
self.request

View File

@@ -65,12 +65,94 @@ pub enum Index {
/// Builder for the create_index operation
///
/// The methods on this builder are used to specify options common to all indices.
///
/// # Examples
///
/// Creating a basic vector index:
///
/// ```
/// use lancedb::{connect, index::{Index, vector::IvfPqIndexBuilder}};
///
/// # async fn create_basic_vector_index() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a vector index with default settings
/// table
/// .create_index(&["vector"], Index::IvfPq(IvfPqIndexBuilder::default()))
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Creating an index with a custom name:
///
/// ```
/// use lancedb::{connect, index::{Index, vector::IvfPqIndexBuilder}};
///
/// # async fn create_named_index() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a vector index with a custom name
/// table
/// .create_index(&["embeddings"], Index::IvfPq(IvfPqIndexBuilder::default()))
/// .name("my_embeddings_index".to_string())
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Creating an untrained index (for scalar indices only):
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BTreeIndexBuilder}};
///
/// # async fn create_untrained_index() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a BTree index without training (creates empty index)
/// table
/// .create_index(&["category"], Index::BTree(BTreeIndexBuilder::default()))
/// .train(false)
/// .name("category_index".to_string())
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Creating a scalar index with all options:
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BitmapIndexBuilder}};
///
/// # async fn create_full_options_index() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a bitmap index with full configuration
/// table
/// .create_index(&["status"], Index::Bitmap(BitmapIndexBuilder::default()))
/// .name("status_bitmap_index".to_string())
/// .train(true) // Train the index with existing data
/// .replace(false) // Don't replace if index already exists
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
pub struct IndexBuilder {
parent: Arc<dyn BaseTable>,
pub(crate) index: Index,
pub(crate) columns: Vec<String>,
pub(crate) replace: bool,
pub(crate) wait_timeout: Option<Duration>,
pub(crate) train: bool,
pub(crate) name: Option<String>,
}
impl IndexBuilder {
@@ -80,7 +162,9 @@ impl IndexBuilder {
index,
columns,
replace: true,
train: true,
wait_timeout: None,
name: None,
}
}
@@ -94,6 +178,82 @@ impl IndexBuilder {
self
}
/// The name of the index. If not set, a default name will be generated.
///
/// # Examples
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BTreeIndexBuilder}};
///
/// # async fn name_example() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create an index with a custom name
/// table
/// .create_index(&["user_id"], Index::BTree(BTreeIndexBuilder::default()))
/// .name("user_id_btree_index".to_string())
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
pub fn name(mut self, v: String) -> Self {
self.name = Some(v);
self
}
/// Whether to train the index, the default is `true`.
///
/// If this is false, the index will not be trained and just created empty.
///
/// This is not supported for vector indices yet.
///
/// # Examples
///
/// Creating an empty index that will be populated later:
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BitmapIndexBuilder}};
///
/// # async fn train_false_example() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create an empty bitmap index (not trained with existing data)
/// table
/// .create_index(&["category"], Index::Bitmap(BitmapIndexBuilder::default()))
/// .train(false) // Create empty index
/// .name("category_bitmap".to_string())
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Creating a trained index (default behavior):
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BTreeIndexBuilder}};
///
/// # async fn train_true_example() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a trained BTree index (includes existing data)
/// table
/// .create_index(&["timestamp"], Index::BTree(BTreeIndexBuilder::default()))
/// .train(true) // Train with existing data (this is the default)
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
pub fn train(mut self, v: bool) -> Self {
self.train = v;
self
}
/// Duration of time to wait for asynchronous indexing to complete. If not set,
/// `create_index()` will not wait.
///

View File

@@ -999,6 +999,18 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
"column": column
});
// Add name parameter if provided (for backwards compatibility, only include if Some)
if let Some(ref name) = index.name {
body["name"] = serde_json::Value::String(name.clone());
}
// Warn if train=false is specified since it's not meaningful
if !index.train {
log::warn!(
"train=false has no effect remote tables. The index will be created empty and automatically populated in the background."
);
}
match index.index {
// TODO: Should we pass the actual index parameters? SaaS does not
// yet support them.
@@ -1084,8 +1096,8 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
self.check_table_response(&request_id, response).await?;
if let Some(wait_timeout) = index.wait_timeout {
let name = format!("{}_idx", column);
self.wait_for_index(&[&name], wait_timeout).await?;
let index_name = index.name.unwrap_or_else(|| format!("{}_idx", column));
self.wait_for_index(&[&index_name], wait_timeout).await?;
}
Ok(())

View File

@@ -28,9 +28,11 @@ use lance::dataset::{
};
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
use lance::index::vector::utils::infer_vector_dim;
use lance::index::vector::VectorIndexParams;
use lance::io::WrappingObjectStore;
use lance_datafusion::exec::{analyze_plan as lance_analyze_plan, execute_plan};
use lance_datafusion::utils::StreamingWriteSource;
use lance_index::scalar::{ScalarIndexParams, ScalarIndexType};
use lance_index::vector::hnsw::builder::HnswBuildParams;
use lance_index::vector::ivf::IvfBuildParams;
use lance_index::vector::pq::PQBuildParams;
@@ -50,11 +52,7 @@ use crate::arrow::IntoArrow;
use crate::connection::NoData;
use crate::embeddings::{EmbeddingDefinition, EmbeddingRegistry, MaybeEmbedded, MemoryRegistry};
use crate::error::{Error, Result};
use crate::index::scalar::FtsIndexBuilder;
use crate::index::vector::{
suggested_num_partitions_for_hnsw, IvfFlatIndexBuilder, IvfHnswPqIndexBuilder,
IvfHnswSqIndexBuilder, IvfPqIndexBuilder, VectorIndex,
};
use crate::index::vector::{suggested_num_partitions_for_hnsw, VectorIndex};
use crate::index::IndexStatistics;
use crate::index::{
vector::{suggested_num_partitions, suggested_num_sub_vectors},
@@ -1698,345 +1696,211 @@ impl NativeTable {
.collect())
}
async fn create_ivf_flat_index(
&self,
index: IvfFlatIndexBuilder,
// Helper to validate index type compatibility with field data type
fn validate_index_type(
field: &Field,
replace: bool,
index_name: &str,
supported_fn: impl Fn(&DataType) -> bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
if !supported_fn(field.data_type()) {
return Err(Error::Schema {
message: format!(
"An IVF Flat index cannot be created on the column `{}` which has data type {}",
"A {} index cannot be created on the field `{}` which has data type {}",
index_name,
field.name(),
field.data_type()
),
});
}
let num_partitions = if let Some(n) = index.num_partitions {
n
} else {
suggested_num_partitions(self.count_rows(None).await?)
};
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_flat(
num_partitions as usize,
index.distance_type.into(),
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_ivf_pq_index(
// Helper to get num_partitions with default calculation
async fn get_num_partitions(
&self,
index: IvfPqIndexBuilder,
field: &Field,
replace: bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
message: format!(
"An IVF PQ index cannot be created on the column `{}` which has data type {}",
field.name(),
field.data_type()
),
});
provided: Option<u32>,
for_hnsw: bool,
dim: Option<u32>,
) -> Result<u32> {
if let Some(n) = provided {
Ok(n)
} else {
let row_count = self.count_rows(None).await?;
if for_hnsw {
Ok(suggested_num_partitions_for_hnsw(
row_count,
dim.ok_or_else(|| Error::InvalidInput {
message: "Vector dimension required for HNSW partitioning".to_string(),
})?,
))
} else {
Ok(suggested_num_partitions(row_count))
}
}
let num_partitions = if let Some(n) = index.num_partitions {
n
} else {
suggested_num_partitions(self.count_rows(None).await?)
};
let num_sub_vectors: u32 = if let Some(n) = index.num_sub_vectors {
n
} else {
let dim = infer_vector_dim(field.data_type())?;
suggested_num_sub_vectors(dim as u32)
};
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_pq(
num_partitions as usize,
/*num_bits=*/ 8,
num_sub_vectors as usize,
index.distance_type.into(),
index.max_iterations as usize,
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_ivf_hnsw_pq_index(
&self,
index: IvfHnswPqIndexBuilder,
field: &Field,
replace: bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
message: format!(
"An IVF HNSW PQ index cannot be created on the column `{}` which has data type {}",
field.name(),
field.data_type()
),
});
// Helper to get num_sub_vectors with default calculation
fn get_num_sub_vectors(provided: Option<u32>, dim: u32) -> u32 {
provided.unwrap_or_else(|| suggested_num_sub_vectors(dim))
}
// Helper to extract vector dimension from field
fn get_vector_dimension(field: &Field) -> Result<u32> {
match field.data_type() {
arrow_schema::DataType::FixedSizeList(_, n) => Ok(*n as u32),
_ => Ok(infer_vector_dim(field.data_type())? as u32),
}
}
let num_partitions: u32 = if let Some(n) = index.num_partitions {
n
} else {
match field.data_type() {
arrow_schema::DataType::FixedSizeList(_, n) => Ok::<u32, Error>(
suggested_num_partitions_for_hnsw(self.count_rows(None).await?, *n as u32),
),
_ => Err(Error::Schema {
message: format!("Column '{}' is not a FixedSizeList", field.name()),
}),
}?
};
let num_sub_vectors: u32 = if let Some(n) = index.num_sub_vectors {
n
} else {
match field.data_type() {
arrow_schema::DataType::FixedSizeList(_, n) => {
Ok::<u32, Error>(suggested_num_sub_vectors(*n as u32))
// Convert LanceDB Index to Lance IndexParams
async fn make_index_params(
&self,
field: &Field,
index_opts: Index,
) -> Result<Box<dyn lance::index::IndexParams>> {
match index_opts {
Index::Auto => {
if supported_vector_data_type(field.data_type()) {
// Use IvfPq as the default for auto vector indices
let dim = Self::get_vector_dimension(field)?;
let num_partitions = self.get_num_partitions(None, false, None).await?;
let num_sub_vectors = Self::get_num_sub_vectors(None, dim);
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_pq(
num_partitions as usize,
/*num_bits=*/ 8,
num_sub_vectors as usize,
lance_linalg::distance::MetricType::L2,
/*max_iterations=*/ 50,
);
Ok(Box::new(lance_idx_params))
} else if supported_btree_data_type(field.data_type()) {
Ok(Box::new(ScalarIndexParams::new(ScalarIndexType::BTree)))
} else {
return Err(Error::InvalidInput {
message: format!(
"there are no indices supported for the field `{}` with the data type {}",
field.name(),
field.data_type()
),
});
}
_ => Err(Error::Schema {
message: format!("Column '{}' is not a FixedSizeList", field.name()),
}),
}?
};
let mut dataset = self.dataset.get_mut().await?;
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
ivf_params.sample_rate = index.sample_rate as usize;
ivf_params.max_iters = index.max_iterations as usize;
let hnsw_params = HnswBuildParams::default()
.num_edges(index.m as usize)
.ef_construction(index.ef_construction as usize);
let pq_params = PQBuildParams {
num_sub_vectors: num_sub_vectors as usize,
..Default::default()
};
let lance_idx_params = lance::index::vector::VectorIndexParams::with_ivf_hnsw_pq_params(
index.distance_type.into(),
ivf_params,
hnsw_params,
pq_params,
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_ivf_hnsw_sq_index(
&self,
index: IvfHnswSqIndexBuilder,
field: &Field,
replace: bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
message: format!(
"An IVF HNSW SQ index cannot be created on the column `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let num_partitions: u32 = if let Some(n) = index.num_partitions {
n
} else {
match field.data_type() {
arrow_schema::DataType::FixedSizeList(_, n) => Ok::<u32, Error>(
suggested_num_partitions_for_hnsw(self.count_rows(None).await?, *n as u32),
),
_ => Err(Error::Schema {
message: format!("Column '{}' is not a FixedSizeList", field.name()),
}),
}?
};
let mut dataset = self.dataset.get_mut().await?;
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
ivf_params.sample_rate = index.sample_rate as usize;
ivf_params.max_iters = index.max_iterations as usize;
let hnsw_params = HnswBuildParams::default()
.num_edges(index.m as usize)
.ef_construction(index.ef_construction as usize);
let sq_params = SQBuildParams {
sample_rate: index.sample_rate as usize,
..Default::default()
};
let lance_idx_params = lance::index::vector::VectorIndexParams::with_ivf_hnsw_sq_params(
index.distance_type.into(),
ivf_params,
hnsw_params,
sq_params,
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_auto_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if supported_vector_data_type(field.data_type()) {
self.create_ivf_pq_index(IvfPqIndexBuilder::default(), field, opts.replace)
.await
} else if supported_btree_data_type(field.data_type()) {
self.create_btree_index(field, opts).await
} else {
Err(Error::InvalidInput {
message: format!(
"there are no indices supported for the field `{}` with the data type {}",
field.name(),
field.data_type()
),
})
}
Index::BTree(_) => {
Self::validate_index_type(field, "BTree", supported_btree_data_type)?;
Ok(Box::new(ScalarIndexParams::new(ScalarIndexType::BTree)))
}
Index::Bitmap(_) => {
Self::validate_index_type(field, "Bitmap", supported_bitmap_data_type)?;
Ok(Box::new(ScalarIndexParams::new(ScalarIndexType::Bitmap)))
}
Index::LabelList(_) => {
Self::validate_index_type(field, "LabelList", supported_label_list_data_type)?;
Ok(Box::new(ScalarIndexParams::new(ScalarIndexType::LabelList)))
}
Index::FTS(fts_opts) => {
Self::validate_index_type(field, "FTS", supported_fts_data_type)?;
Ok(Box::new(fts_opts))
}
Index::IvfFlat(index) => {
Self::validate_index_type(field, "IVF Flat", supported_vector_data_type)?;
let num_partitions = self
.get_num_partitions(index.num_partitions, false, None)
.await?;
let lance_idx_params = VectorIndexParams::ivf_flat(
num_partitions as usize,
index.distance_type.into(),
);
Ok(Box::new(lance_idx_params))
}
Index::IvfPq(index) => {
Self::validate_index_type(field, "IVF PQ", supported_vector_data_type)?;
let dim = Self::get_vector_dimension(field)?;
let num_partitions = self
.get_num_partitions(index.num_partitions, false, None)
.await?;
let num_sub_vectors = Self::get_num_sub_vectors(index.num_sub_vectors, dim);
let lance_idx_params = VectorIndexParams::ivf_pq(
num_partitions as usize,
/*num_bits=*/ 8,
num_sub_vectors as usize,
index.distance_type.into(),
index.max_iterations as usize,
);
Ok(Box::new(lance_idx_params))
}
Index::IvfHnswPq(index) => {
Self::validate_index_type(field, "IVF HNSW PQ", supported_vector_data_type)?;
let dim = Self::get_vector_dimension(field)?;
let num_partitions = self
.get_num_partitions(index.num_partitions, true, Some(dim))
.await?;
let num_sub_vectors = Self::get_num_sub_vectors(index.num_sub_vectors, dim);
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
ivf_params.sample_rate = index.sample_rate as usize;
ivf_params.max_iters = index.max_iterations as usize;
let hnsw_params = HnswBuildParams::default()
.num_edges(index.m as usize)
.ef_construction(index.ef_construction as usize);
let pq_params = PQBuildParams {
num_sub_vectors: num_sub_vectors as usize,
..Default::default()
};
let lance_idx_params = VectorIndexParams::with_ivf_hnsw_pq_params(
index.distance_type.into(),
ivf_params,
hnsw_params,
pq_params,
);
Ok(Box::new(lance_idx_params))
}
Index::IvfHnswSq(index) => {
Self::validate_index_type(field, "IVF HNSW SQ", supported_vector_data_type)?;
let dim = Self::get_vector_dimension(field)?;
let num_partitions = self
.get_num_partitions(index.num_partitions, true, Some(dim))
.await?;
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
ivf_params.sample_rate = index.sample_rate as usize;
ivf_params.max_iters = index.max_iterations as usize;
let hnsw_params = HnswBuildParams::default()
.num_edges(index.m as usize)
.ef_construction(index.ef_construction as usize);
let sq_params = SQBuildParams {
sample_rate: index.sample_rate as usize,
..Default::default()
};
let lance_idx_params = VectorIndexParams::with_ivf_hnsw_sq_params(
index.distance_type.into(),
ivf_params,
hnsw_params,
sq_params,
);
Ok(Box::new(lance_idx_params))
}
}
}
async fn create_btree_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !supported_btree_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A BTree index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
// Helper method to get the correct IndexType based on the Index variant and field data type
fn get_index_type_for_field(&self, field: &Field, index: &Index) -> IndexType {
match index {
Index::Auto => {
if supported_vector_data_type(field.data_type()) {
IndexType::Vector
} else if supported_btree_data_type(field.data_type()) {
IndexType::BTree
} else {
// This should not happen since make_index_params would have failed
IndexType::BTree
}
}
Index::BTree(_) => IndexType::BTree,
Index::Bitmap(_) => IndexType::Bitmap,
Index::LabelList(_) => IndexType::LabelList,
Index::FTS(_) => IndexType::Inverted,
Index::IvfFlat(_) | Index::IvfPq(_) | Index::IvfHnswPq(_) | Index::IvfHnswSq(_) => {
IndexType::Vector
}
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::BTree),
};
dataset
.create_index(
&[field.name()],
IndexType::BTree,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_bitmap_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !supported_bitmap_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A Bitmap index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::Bitmap),
};
dataset
.create_index(
&[field.name()],
IndexType::Bitmap,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_label_list_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !supported_label_list_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A LabelList index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::LabelList),
};
dataset
.create_index(
&[field.name()],
IndexType::LabelList,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_fts_index(
&self,
field: &Field,
fts_opts: FtsIndexBuilder,
replace: bool,
) -> Result<()> {
if !supported_fts_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A FTS index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
dataset
.create_index(
&[field.name()],
IndexType::Inverted,
None,
&fts_opts,
replace,
)
.await?;
Ok(())
}
async fn generic_query(
@@ -2251,26 +2115,20 @@ impl BaseTable for NativeTable {
let field = schema.field_with_name(&opts.columns[0])?;
match opts.index {
Index::Auto => self.create_auto_index(field, opts).await,
Index::BTree(_) => self.create_btree_index(field, opts).await,
Index::Bitmap(_) => self.create_bitmap_index(field, opts).await,
Index::LabelList(_) => self.create_label_list_index(field, opts).await,
Index::FTS(fts_opts) => self.create_fts_index(field, fts_opts, opts.replace).await,
Index::IvfFlat(ivf_flat) => {
self.create_ivf_flat_index(ivf_flat, field, opts.replace)
.await
}
Index::IvfPq(ivf_pq) => self.create_ivf_pq_index(ivf_pq, field, opts.replace).await,
Index::IvfHnswPq(ivf_hnsw_pq) => {
self.create_ivf_hnsw_pq_index(ivf_hnsw_pq, field, opts.replace)
.await
}
Index::IvfHnswSq(ivf_hnsw_sq) => {
self.create_ivf_hnsw_sq_index(ivf_hnsw_sq, field, opts.replace)
.await
}
let lance_idx_params = self.make_index_params(field, opts.index.clone()).await?;
let index_type = self.get_index_type_for_field(field, &opts.index);
let columns = [field.name().as_str()];
let mut dataset = self.dataset.get_mut().await?;
let mut builder = dataset
.create_index_builder(&columns, index_type, lance_idx_params.as_ref())
.train(opts.train)
.replace(opts.replace);
if let Some(name) = opts.name {
builder = builder.name(name);
}
builder.await?;
Ok(())
}
async fn drop_index(&self, index_name: &str) -> Result<()> {
@@ -2890,6 +2748,7 @@ mod tests {
use crate::connect;
use crate::connection::ConnectBuilder;
use crate::index::scalar::{BTreeIndexBuilder, BitmapIndexBuilder};
use crate::index::vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder};
use crate::query::{ExecutableQuery, QueryBase};
#[tokio::test]