Compare commits

..

6 Commits

Author SHA1 Message Date
Colin P. McCabe
d6ea17073c test 2025-09-30 11:58:20 -07:00
BubbleCal
c123bbf391 Merge branch 'main' of https://github.com/lancedb/lancedb into add-ivfrq 2025-09-30 16:30:58 +08:00
BubbleCal
fb856005a9 update docs
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-09-29 18:24:58 +08:00
BubbleCal
5c1c2e2dd6 fmt
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-09-29 17:47:59 +08:00
BubbleCal
1beef5f6e3 fix
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-09-29 17:08:12 +08:00
BubbleCal
0913632584 feat: support IVF_RQ index type
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-09-29 16:53:43 +08:00
119 changed files with 2466 additions and 7304 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.22.3-beta.3"
current_version = "0.22.2-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,45 +0,0 @@
name: Create Failure Issue
description: Creates a GitHub issue if any jobs in the workflow failed
inputs:
job-results:
description: 'JSON string of job results from needs context'
required: true
workflow-name:
description: 'Name of the workflow'
required: true
runs:
using: composite
steps:
- name: Check for failures and create issue
shell: bash
env:
JOB_RESULTS: ${{ inputs.job-results }}
WORKFLOW_NAME: ${{ inputs.workflow-name }}
RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
GH_TOKEN: ${{ github.token }}
run: |
# Check if any job failed
if echo "$JOB_RESULTS" | jq -e 'to_entries | any(.value.result == "failure")' > /dev/null; then
echo "Detected job failures, creating issue..."
# Extract failed job names
FAILED_JOBS=$(echo "$JOB_RESULTS" | jq -r 'to_entries | map(select(.value.result == "failure")) | map(.key) | join(", ")')
# Create issue with workflow name, failed jobs, and run URL
gh issue create \
--title "$WORKFLOW_NAME Failed ($FAILED_JOBS)" \
--body "The workflow **$WORKFLOW_NAME** failed during execution.
**Failed jobs:** $FAILED_JOBS
**Run URL:** $RUN_URL
Please investigate the failed jobs and address any issues." \
--label "ci"
echo "Issue created successfully"
else
echo "No job failures detected, skipping issue creation"
fi

View File

@@ -38,17 +38,3 @@ jobs:
- name: Publish the package
run: |
cargo publish -p lancedb --all-features --token ${{ steps.auth.outputs.token }}
report-failure:
name: Report Workflow Failure
runs-on: ubuntu-latest
needs: [build]
if: always() && (github.event_name == 'release' || github.event_name == 'workflow_dispatch')
permissions:
contents: read
issues: write
steps:
- uses: actions/checkout@v4
- uses: ./.github/actions/create-failure-issue
with:
job-results: ${{ toJSON(needs) }}
workflow-name: ${{ github.workflow }}

View File

@@ -1,107 +0,0 @@
name: Codex Update Lance Dependency
on:
workflow_call:
inputs:
tag:
description: "Tag name from Lance"
required: true
type: string
workflow_dispatch:
inputs:
tag:
description: "Tag name from Lance"
required: true
type: string
permissions:
contents: write
pull-requests: write
actions: read
jobs:
update:
runs-on: ubuntu-latest
steps:
- name: Show inputs
run: |
echo "tag = ${{ inputs.tag }}"
- name: Checkout Repo LanceDB
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: true
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: 20
- name: Install Codex CLI
run: npm install -g @openai/codex
- name: Install Rust toolchain
uses: dtolnay/rust-toolchain@stable
with:
toolchain: stable
components: clippy, rustfmt
- name: Install system dependencies
run: |
sudo apt-get update
sudo apt-get install -y protobuf-compiler libssl-dev
- name: Install cargo-info
run: cargo install cargo-info
- name: Install Python dependencies
run: python3 -m pip install --upgrade pip packaging
- name: Configure git user
run: |
git config user.name "lancedb automation"
git config user.email "robot@lancedb.com"
- name: Configure Codex authentication
env:
CODEX_TOKEN_B64: ${{ secrets.CODEX_TOKEN }}
run: |
if [ -z "${CODEX_TOKEN_B64}" ]; then
echo "Repository secret CODEX_TOKEN is not defined; skipping Codex execution."
exit 1
fi
mkdir -p ~/.codex
echo "${CODEX_TOKEN_B64}" | base64 --decode > ~/.codex/auth.json
- name: Run Codex to update Lance dependency
env:
TAG: ${{ inputs.tag }}
GITHUB_TOKEN: ${{ secrets.ROBOT_TOKEN }}
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
run: |
set -euo pipefail
VERSION="${TAG#refs/tags/}"
VERSION="${VERSION#v}"
BRANCH_NAME="codex/update-lance-${VERSION//[^a-zA-Z0-9]/-}"
cat <<EOF >/tmp/codex-prompt.txt
You are running inside the lancedb repository on a GitHub Actions runner. Update the Lance dependency to version ${VERSION} and prepare a pull request for maintainers to review.
Follow these steps exactly:
1. Use script "ci/set_lance_version.py" to update Lance dependencies. The script already refreshes Cargo metadata, so allow it to finish even if it takes time.
2. Run "cargo clippy --workspace --tests --all-features -- -D warnings". If diagnostics appear, fix them yourself and rerun clippy until it exits cleanly. Do not skip any warnings.
3. After clippy succeeds, run "cargo fmt --all" to format the workspace.
4. Ensure the repository is clean except for intentional changes. Inspect "git status --short" and "git diff" to confirm the dependency update and any required fixes.
5. Create and switch to a new branch named "${BRANCH_NAME}" (replace any duplicated hyphens if necessary).
6. Stage all relevant files with "git add -A". Commit using the message "chore: update lance dependency to v${VERSION}".
7. Push the branch to origin. If the branch already exists, force-push your changes.
8. env "GH_TOKEN" is available, use "gh" tools for github related operations like creating pull request.
9. Create a pull request targeting "main" with title "chore: update lance dependency to v${VERSION}". In the body, summarize the dependency bump, clippy/fmt verification, and link the triggering tag (${TAG}).
10. After creating the PR, display the PR URL, "git status --short", and a concise summary of the commands run and their results.
Constraints:
- Use bash commands; avoid modifying GitHub workflow files other than through the scripted task above.
- Do not merge the PR.
- If any command fails, diagnose and fix the issue instead of aborting.
EOF
codex --config shell_environment_policy.ignore_default_excludes=true exec --dangerously-bypass-approvals-and-sandbox "$(cat /tmp/codex-prompt.txt)"

View File

@@ -58,7 +58,7 @@ jobs:
cache: 'npm'
cache-dependency-path: docs/package-lock.json
- name: Install node dependencies
working-directory: nodejs
working-directory: node
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev

View File

@@ -43,6 +43,7 @@ jobs:
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.81.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
@@ -111,17 +112,3 @@ jobs:
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}
report-failure:
name: Report Workflow Failure
runs-on: ubuntu-latest
needs: [linux-arm64, linux-x86, macos-arm64]
if: always() && (github.event_name == 'release' || github.event_name == 'workflow_dispatch')
permissions:
contents: read
issues: write
steps:
- uses: actions/checkout@v4
- uses: ./.github/actions/create-failure-issue
with:
job-results: ${{ toJSON(needs) }}
workflow-name: ${{ github.workflow }}

View File

@@ -6,7 +6,6 @@ on:
- main
pull_request:
paths:
- Cargo.toml
- nodejs/**
- .github/workflows/nodejs.yml
- docker-compose.yml

View File

@@ -365,17 +365,3 @@ jobs:
ARGS="$ARGS --tag preview"
fi
npm publish $ARGS
report-failure:
name: Report Workflow Failure
runs-on: ubuntu-latest
needs: [build-lancedb, test-lancedb, publish]
if: always() && (github.event_name == 'release' || github.event_name == 'workflow_dispatch')
permissions:
contents: read
issues: write
steps:
- uses: actions/checkout@v4
- uses: ./.github/actions/create-failure-issue
with:
job-results: ${{ toJSON(needs) }}
workflow-name: ${{ github.workflow }}

View File

@@ -173,17 +173,3 @@ jobs:
generate_release_notes: false
name: Python LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.python_release_notes.outputs.changelog }}
report-failure:
name: Report Workflow Failure
runs-on: ubuntu-latest
needs: [linux, mac, windows]
permissions:
contents: read
issues: write
if: always() && (github.event_name == 'release' || github.event_name == 'workflow_dispatch')
steps:
- uses: actions/checkout@v4
- uses: ./.github/actions/create-failure-issue
with:
job-results: ${{ toJSON(needs) }}
workflow-name: ${{ github.workflow }}

View File

@@ -6,7 +6,6 @@ on:
- main
pull_request:
paths:
- Cargo.toml
- python/**
- .github/workflows/python.yml

View File

@@ -125,9 +125,6 @@ jobs:
- name: Run examples
run: cargo run --example simple --locked
- name: Run remote tests
# Running this requires access to secrets, so skip if this is
# a PR from a fork.
if: github.event_name != 'pull_request' || !github.event.pull_request.head.repo.fork
run: make -C ./lancedb remote-tests
macos:

101
AGENTS.md
View File

@@ -1,101 +0,0 @@
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
remote (against LanceDB Cloud).
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
Project layout:
* `rust/lancedb`: The LanceDB core Rust implementation.
* `python`: The Python bindings, using PyO3.
* `nodejs`: The Typescript bindings, using napi-rs
* `java`: The Java bindings
Common commands:
* Check for compiler errors: `cargo check --quiet --features remote --tests --examples`
* Run tests: `cargo test --quiet --features remote --tests`
* Run specific test: `cargo test --quiet --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --quiet --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.
## Coding tips
* When writing Rust doctests for things that require a connection or table reference,
write them as a function instead of a fully executable test. This allows type checking
to run but avoids needing a full test environment. For example:
```rust
/// ```
/// use lance_index::scalar::FullTextSearchQuery;
/// use lancedb::query::{QueryBase, ExecutableQuery};
///
/// # use lancedb::Table;
/// # async fn query(table: &Table) -> Result<(), Box<dyn std::error::Error>> {
/// let results = table.query()
/// .full_text_search(FullTextSearchQuery::new("hello world".into()))
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
```
## Example plan: adding a new method on Table
Adding a new method involves first adding it to the Rust core, then exposing it
in the Python and TypeScript bindings. There are both local and remote tables.
Remote tables are implemented via a HTTP API and require the `remote` cargo
feature flag to be enabled. Python has both sync and async methods.
Rust core changes:
1. Add method on `Table` struct in `rust/lancedb/src/table.rs` (calls `BaseTable` trait).
2. Add method to `BaseTable` trait in `rust/lancedb/src/table.rs`.
3. Implement new trait method on `NativeTable` in `rust/lancedb/src/table.rs`.
* Test with unit test in `rust/lancedb/src/table.rs`.
4. Implement new trait method on `RemoteTable` in `rust/lancedb/src/remote/table.rs`.
* Test with unit test in `rust/lancedb/src/remote/table.rs` against mocked endpoint.
Python bindings changes:
1. Add PyO3 method binding in `python/src/table.rs`. Run `make develop` to compile bindings.
2. Add types for PyO3 method in `python/python/lancedb/_lancedb.pyi`.
3. Add method to `AsyncTable` class in `python/python/lancedb/table.py`.
4. Add abstract method to `Table` abstract base class in `python/python/lancedb/table.py`.
5. Add concrete sync method to `LanceTable` class in `python/python/lancedb/table.py`.
* Should use `LOOP.run()` to call the corresponding `AsyncTable` method.
6. Add concrete sync method to `RemoteTable` class in `python/python/lancedb/remote/table.py`.
7. Add unit test in `python/tests/test_table.py`.
TypeScript bindings changes:
1. Add napi-rs method binding on `Table` in `nodejs/src/table.rs`.
2. Run `npm run build` to generate TypeScript definitions.
3. Add typescript method on abstract class `Table` in `nodejs/src/table.ts`.
4. Add concrete method on `LocalTable` class in `nodejs/src/native_table.ts`.
* Note: despite the name, this class is also used for remote tables.
5. Add test in `nodejs/__test__/table.test.ts`.
6. Run `npm run docs` to generate TypeScript documentation.
## Review Guidelines
Please consider the following when reviewing code contributions.
### Rust API design
* Design public APIs so they can be evolved easily in the future without breaking
changes. Often this means using builder patterns or options structs instead of
long argument lists.
* For public APIs, prefer inputs that use `Into<T>` or `AsRef<T>` traits to allow
more flexible inputs. For example, use `name: Into<String>` instead of `name: String`,
so we don't have to write `func("my_string".to_string())`.
### Testing
* Ensure all new public APIs have documentation and examples.
* Ensure that all bugfixes and features have corresponding tests. **We do not merge
code without tests.**
### Documentation
* New features must include updates to the rust documentation comments. Link to
relevant structs and methods to increase the value of documentation.

View File

@@ -1 +0,0 @@
AGENTS.md

80
CLAUDE.md Normal file
View File

@@ -0,0 +1,80 @@
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
remote (against LanceDB Cloud).
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
Project layout:
* `rust/lancedb`: The LanceDB core Rust implementation.
* `python`: The Python bindings, using PyO3.
* `nodejs`: The Typescript bindings, using napi-rs
* `java`: The Java bindings
Common commands:
* Check for compiler errors: `cargo check --quiet --features remote --tests --examples`
* Run tests: `cargo test --quiet --features remote --tests`
* Run specific test: `cargo test --quiet --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --quiet --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.
## Coding tips
* When writing Rust doctests for things that require a connection or table reference,
write them as a function instead of a fully executable test. This allows type checking
to run but avoids needing a full test environment. For example:
```rust
/// ```
/// use lance_index::scalar::FullTextSearchQuery;
/// use lancedb::query::{QueryBase, ExecutableQuery};
///
/// # use lancedb::Table;
/// # async fn query(table: &Table) -> Result<(), Box<dyn std::error::Error>> {
/// let results = table.query()
/// .full_text_search(FullTextSearchQuery::new("hello world".into()))
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
```
## Example plan: adding a new method on Table
Adding a new method involves first adding it to the Rust core, then exposing it
in the Python and TypeScript bindings. There are both local and remote tables.
Remote tables are implemented via a HTTP API and require the `remote` cargo
feature flag to be enabled. Python has both sync and async methods.
Rust core changes:
1. Add method on `Table` struct in `rust/lancedb/src/table.rs` (calls `BaseTable` trait).
2. Add method to `BaseTable` trait in `rust/lancedb/src/table.rs`.
3. Implement new trait method on `NativeTable` in `rust/lancedb/src/table.rs`.
* Test with unit test in `rust/lancedb/src/table.rs`.
4. Implement new trait method on `RemoteTable` in `rust/lancedb/src/remote/table.rs`.
* Test with unit test in `rust/lancedb/src/remote/table.rs` against mocked endpoint.
Python bindings changes:
1. Add PyO3 method binding in `python/src/table.rs`. Run `make develop` to compile bindings.
2. Add types for PyO3 method in `python/python/lancedb/_lancedb.pyi`.
3. Add method to `AsyncTable` class in `python/python/lancedb/table.py`.
4. Add abstract method to `Table` abstract base class in `python/python/lancedb/table.py`.
5. Add concrete sync method to `LanceTable` class in `python/python/lancedb/table.py`.
* Should use `LOOP.run()` to call the corresponding `AsyncTable` method.
6. Add concrete sync method to `RemoteTable` class in `python/python/lancedb/remote/table.py`.
7. Add unit test in `python/tests/test_table.py`.
TypeScript bindings changes:
1. Add napi-rs method binding on `Table` in `nodejs/src/table.rs`.
2. Run `npm run build` to generate TypeScript definitions.
3. Add typescript method on abstract class `Table` in `nodejs/src/table.ts`.
4. Add concrete method on `LocalTable` class in `nodejs/src/native_table.ts`.
* Note: despite the name, this class is also used for remote tables.
5. Add test in `nodejs/__test__/table.test.ts`.
6. Run `npm run docs` to generate TypeScript documentation.

2684
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -15,37 +15,31 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.38.3", default-features = false, "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-core = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-datagen = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-file = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-io = { "version" = "=0.38.3", default-features = false, "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-index = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-linalg = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-namespace = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-namespace-impls = { "version" = "=0.38.3", "features" = ["dir-aws", "dir-gcp", "dir-azure", "dir-oss", "rest"], "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-table = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-testing = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-datafusion = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-encoding = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
lance-arrow = { "version" = "=0.38.3", "tag" = "v0.38.3", "git" = "https://github.com/lancedb/lance.git" }
ahash = "0.8"
lance = { "version" = "=0.37.0", default-features = false, "features" = ["dynamodb"], "tag" = "v0.37.1-beta.1", "git" = "https://github.com/lancedb/lance.git" }
lance-io = { "version" = "=0.37.0", default-features = false, "tag" = "v0.37.1-beta.1", "git" = "https://github.com/lancedb/lance.git" }
lance-index = { "version" = "=0.37.0", "tag" = "v0.37.1-beta.1", "git" = "https://github.com/lancedb/lance.git" }
lance-linalg = { "version" = "=0.37.0", "tag" = "v0.37.1-beta.1", "git" = "https://github.com/lancedb/lance.git" }
lance-table = { "version" = "=0.37.0", "tag" = "v0.37.1-beta.1", "git" = "https://github.com/lancedb/lance.git" }
lance-testing = { "version" = "=0.37.0", "tag" = "v0.37.1-beta.1", "git" = "https://github.com/lancedb/lance.git" }
lance-datafusion = { "version" = "=0.37.0", "tag" = "v0.37.1-beta.1", "git" = "https://github.com/lancedb/lance.git" }
lance-encoding = { "version" = "=0.37.0", "tag" = "v0.37.1-beta.1", "git" = "https://github.com/lancedb/lance.git" }
lance-namespace = "0.0.15"
# Note that this one does not include pyarrow
arrow = { version = "56.2", optional = false }
arrow-array = "56.2"
arrow-data = "56.2"
arrow-ipc = "56.2"
arrow-ord = "56.2"
arrow-schema = "56.2"
arrow-select = "56.2"
arrow-cast = "56.2"
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
arrow-data = "55.1"
arrow-ipc = "55.1"
arrow-ord = "55.1"
arrow-schema = "55.1"
arrow-arith = "55.1"
arrow-cast = "55.1"
async-trait = "0"
datafusion = { version = "50.1", default-features = false }
datafusion-catalog = "50.1"
datafusion-common = { version = "50.1", default-features = false }
datafusion-execution = "50.1"
datafusion-expr = "50.1"
datafusion-physical-plan = "50.1"
datafusion = { version = "49.0", default-features = false }
datafusion-catalog = "49.0"
datafusion-common = { version = "49.0", default-features = false }
datafusion-execution = "49.0"
datafusion-expr = "49.0"
datafusion-physical-plan = "49.0"
env_logger = "0.11"
half = { "version" = "2.6.0", default-features = false, features = [
"num-traits",
@@ -55,14 +49,18 @@ log = "0.4"
moka = { version = "0.12", features = ["future"] }
object_store = "0.12.0"
pin-project = "1.0.7"
rand = "0.9"
snafu = "0.8"
url = "2"
num-traits = "0.2"
rand = "0.9"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
crunchy = "0.2.4"
chrono = "0.4"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

View File

@@ -16,47 +16,30 @@ check_command_exists() {
}
if [[ ! -e ./lancedb ]]; then
if [[ -v SOPHON_READ_TOKEN ]]; then
INPUT="lancedb-linux-x64"
gh release \
--repo lancedb/lancedb \
download ci-support-binaries \
--pattern "${INPUT}" \
|| die "failed to fetch cli."
check_command_exists openssl
openssl enc -aes-256-cbc \
-d -pbkdf2 \
-pass "env:SOPHON_READ_TOKEN" \
-in "${INPUT}" \
-out ./lancedb-linux-x64.tar.gz \
|| die "openssl failed"
TARGET="${INPUT}.tar.gz"
else
ARCH="x64"
if [[ $OSTYPE == 'darwin'* ]]; then
UNAME=$(uname -m)
if [[ $UNAME == 'arm64' ]]; then
ARCH='arm64'
fi
OSTYPE="macos"
elif [[ $OSTYPE == 'linux'* ]]; then
if [[ $UNAME == 'aarch64' ]]; then
ARCH='arm64'
fi
OSTYPE="linux"
else
die "unknown OSTYPE: $OSTYPE"
ARCH="x64"
if [[ $OSTYPE == 'darwin'* ]]; then
UNAME=$(uname -m)
if [[ $UNAME == 'arm64' ]]; then
ARCH='arm64'
fi
check_command_exists gh
TARGET="lancedb-${OSTYPE}-${ARCH}.tar.gz"
gh release \
--repo lancedb/sophon \
download lancedb-cli-v0.0.3 \
--pattern "${TARGET}" \
|| die "failed to fetch cli."
OSTYPE="macos"
elif [[ $OSTYPE == 'linux'* ]]; then
if [[ $UNAME == 'aarch64' ]]; then
ARCH='arm64'
fi
OSTYPE="linux"
else
die "unknown OSTYPE: $OSTYPE"
fi
check_command_exists gh
TARGET="lancedb-${OSTYPE}-${ARCH}.tar.gz"
gh release \
--repo lancedb/sophon \
download lancedb-cli-v0.0.3 \
--pattern "${TARGET}" \
|| die "failed to fetch cli."
check_command_exists tar
tar xvf "${TARGET}" || die "tar failed."
[[ -e ./lancedb ]] || die "failed to extract lancedb."

View File

@@ -183,8 +183,10 @@ def set_preview_version(version: str):
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
base_version = version.split("-")[0] # Get the base version without beta suffix
# Build config in desired order: version, default-features, features, tag, git
config = {"version": f"={version}"}
config = {"version": f"={base_version}"}
if extract_default_features(line):
config["default-features"] = False

View File

@@ -84,7 +84,6 @@ plugins:
'examples.md': 'https://lancedb.com/docs/tutorials/'
'concepts/vector_search.md': 'https://lancedb.com/docs/search/vector-search/'
'troubleshooting.md': 'https://lancedb.com/docs/troubleshooting/'
'guides/storage.md': 'https://lancedb.com/docs/storage/integrations'
@@ -403,4 +402,4 @@ extra:
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb
link: https://www.linkedin.com/company/lancedb

View File

@@ -1,97 +0,0 @@
# VoyageAI Embeddings : Multimodal
VoyageAI embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://docs.voyageai.com/docs/multimodal-embeddings](https://docs.voyageai.com/docs/multimodal-embeddings)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|-------------------------|-------------------------------------------|
| `name` | `str` | `"voyage-multimodal-3"` | The model ID of the VoyageAI model to use |
Usage Example:
```python
import base64
import os
from io import BytesIO
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['VOYAGE_API_KEY'] = 'YOUR_VOYAGE_API_KEY'
db = lancedb.connect(".lancedb")
func = get_registry().get("voyageai").create(name="voyage-multimodal-3")
def image_to_base64(image_bytes: bytes):
buffered = BytesIO(image_bytes)
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode("utf-8")
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: str = func.SourceField() # image bytes base64 encoded as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
if "images" in db.table_names():
db.drop_table("images")
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
images_bytes = [image_to_base64(requests.get(uri).content) for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": images_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend", "vec_from_bytes").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(BytesIO(image_bytes))
actual = table.search(query_image, "vec_from_bytes").limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```

View File

@@ -397,6 +397,117 @@ For **read-only access**, LanceDB will need a policy such as:
}
```
#### DynamoDB Commit Store for concurrent writes
By default, S3 does not support concurrent writes. Having two or more processes
writing to the same table at the same time can lead to data corruption. This is
because S3, unlike other object stores, does not have any atomic put or copy
operation.
To enable concurrent writes, you can configure LanceDB to use a DynamoDB table
as a commit store. This table will be used to coordinate writes between
different processes. To enable this feature, you must modify your connection
URI to use the `s3+ddb` scheme and add a query parameter `ddbTableName` with the
name of the table to use.
=== "Python"
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
);
```
The DynamoDB table must be created with the following schema:
- Hash key: `base_uri` (string)
- Range key: `version` (number)
You can create this programmatically with:
=== "Python"
<!-- skip-test -->
```python
import boto3
dynamodb = boto3.client("dynamodb")
table = dynamodb.create_table(
TableName=table_name,
KeySchema=[
{"AttributeName": "base_uri", "KeyType": "HASH"},
{"AttributeName": "version", "KeyType": "RANGE"},
],
AttributeDefinitions=[
{"AttributeName": "base_uri", "AttributeType": "S"},
{"AttributeName": "version", "AttributeType": "N"},
],
ProvisionedThroughput={"ReadCapacityUnits": 1, "WriteCapacityUnits": 1},
)
```
=== "JavaScript"
<!-- skip-test -->
```javascript
import {
CreateTableCommand,
DynamoDBClient,
} from "@aws-sdk/client-dynamodb";
const dynamodb = new DynamoDBClient({
region: CONFIG.awsRegion,
credentials: {
accessKeyId: CONFIG.awsAccessKeyId,
secretAccessKey: CONFIG.awsSecretAccessKey,
},
endpoint: CONFIG.awsEndpoint,
});
const command = new CreateTableCommand({
TableName: table_name,
AttributeDefinitions: [
{
AttributeName: "base_uri",
AttributeType: "S",
},
{
AttributeName: "version",
AttributeType: "N",
},
],
KeySchema: [
{ AttributeName: "base_uri", KeyType: "HASH" },
{ AttributeName: "version", KeyType: "RANGE" },
],
ProvisionedThroughput: {
ReadCapacityUnits: 1,
WriteCapacityUnits: 1,
},
});
await client.send(command);
```
#### S3-compatible stores

View File

@@ -1,220 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / PermutationBuilder
# Class: PermutationBuilder
A PermutationBuilder for creating data permutations with splits, shuffling, and filtering.
This class provides a TypeScript wrapper around the native Rust PermutationBuilder,
offering methods to configure data splits, shuffling, and filtering before executing
the permutation to create a new table.
## Methods
### execute()
```ts
execute(): Promise<Table>
```
Execute the permutation and create the destination table.
#### Returns
`Promise`&lt;[`Table`](Table.md)&gt;
A Promise that resolves to the new Table instance
#### Example
```ts
const permutationTable = await builder.execute();
console.log(`Created table: ${permutationTable.name}`);
```
***
### filter()
```ts
filter(filter): PermutationBuilder
```
Configure filtering for the permutation.
#### Parameters
* **filter**: `string`
SQL filter expression
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
builder.filter("age > 18 AND status = 'active'");
```
***
### shuffle()
```ts
shuffle(options): PermutationBuilder
```
Configure shuffling for the permutation.
#### Parameters
* **options**: [`ShuffleOptions`](../interfaces/ShuffleOptions.md)
Configuration for shuffling
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
// Basic shuffle
builder.shuffle({ seed: 42 });
// Shuffle with clump size
builder.shuffle({ seed: 42, clumpSize: 10 });
```
***
### splitCalculated()
```ts
splitCalculated(calculation): PermutationBuilder
```
Configure calculated splits for the permutation.
#### Parameters
* **calculation**: `string`
SQL expression for calculating splits
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
builder.splitCalculated("user_id % 3");
```
***
### splitHash()
```ts
splitHash(options): PermutationBuilder
```
Configure hash-based splits for the permutation.
#### Parameters
* **options**: [`SplitHashOptions`](../interfaces/SplitHashOptions.md)
Configuration for hash-based splitting
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
builder.splitHash({
columns: ["user_id"],
splitWeights: [70, 30],
discardWeight: 0
});
```
***
### splitRandom()
```ts
splitRandom(options): PermutationBuilder
```
Configure random splits for the permutation.
#### Parameters
* **options**: [`SplitRandomOptions`](../interfaces/SplitRandomOptions.md)
Configuration for random splitting
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
// Split by ratios
builder.splitRandom({ ratios: [0.7, 0.3], seed: 42 });
// Split by counts
builder.splitRandom({ counts: [1000, 500], seed: 42 });
// Split with fixed size
builder.splitRandom({ fixed: 100, seed: 42 });
```
***
### splitSequential()
```ts
splitSequential(options): PermutationBuilder
```
Configure sequential splits for the permutation.
#### Parameters
* **options**: [`SplitSequentialOptions`](../interfaces/SplitSequentialOptions.md)
Configuration for sequential splitting
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
// Split by ratios
builder.splitSequential({ ratios: [0.8, 0.2] });
// Split by counts
builder.splitSequential({ counts: [800, 200] });
// Split with fixed size
builder.splitSequential({ fixed: 1000 });
```

View File

@@ -80,7 +80,7 @@ AnalyzeExec verbose=true, metrics=[]
### execute()
```ts
protected execute(options?): AsyncGenerator<RecordBatch<any>, void, unknown>
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
@@ -91,7 +91,7 @@ Execute the query and return the results as an
#### Returns
`AsyncGenerator`&lt;`RecordBatch`&lt;`any`&gt;, `void`, `unknown`&gt;
[`RecordBatchIterator`](RecordBatchIterator.md)
#### See
@@ -343,29 +343,6 @@ This is useful for pagination.
***
### outputSchema()
```ts
outputSchema(): Promise<Schema<any>>
```
Returns the schema of the output that will be returned by this query.
This can be used to inspect the types and names of the columns that will be
returned by the query before executing it.
#### Returns
`Promise`&lt;`Schema`&lt;`any`&gt;&gt;
An Arrow Schema describing the output columns.
#### Inherited from
`StandardQueryBase.outputSchema`
***
### select()
```ts

View File

@@ -81,7 +81,7 @@ AnalyzeExec verbose=true, metrics=[]
### execute()
```ts
protected execute(options?): AsyncGenerator<RecordBatch<any>, void, unknown>
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
@@ -92,7 +92,7 @@ Execute the query and return the results as an
#### Returns
`AsyncGenerator`&lt;`RecordBatch`&lt;`any`&gt;, `void`, `unknown`&gt;
[`RecordBatchIterator`](RecordBatchIterator.md)
#### See
@@ -140,25 +140,6 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### outputSchema()
```ts
outputSchema(): Promise<Schema<any>>
```
Returns the schema of the output that will be returned by this query.
This can be used to inspect the types and names of the columns that will be
returned by the query before executing it.
#### Returns
`Promise`&lt;`Schema`&lt;`any`&gt;&gt;
An Arrow Schema describing the output columns.
***
### select()
```ts

View File

@@ -0,0 +1,43 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
# Class: RecordBatchIterator
## Implements
- `AsyncIterator`&lt;`RecordBatch`&gt;
## Constructors
### new RecordBatchIterator()
```ts
new RecordBatchIterator(promise?): RecordBatchIterator
```
#### Parameters
* **promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
## Methods
### next()
```ts
next(): Promise<IteratorResult<RecordBatch<any>, any>>
```
#### Returns
`Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt;
#### Implementation of
`AsyncIterator.next`

View File

@@ -76,7 +76,7 @@ AnalyzeExec verbose=true, metrics=[]
### execute()
```ts
protected execute(options?): AsyncGenerator<RecordBatch<any>, void, unknown>
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
@@ -87,7 +87,7 @@ Execute the query and return the results as an
#### Returns
`AsyncGenerator`&lt;`RecordBatch`&lt;`any`&gt;, `void`, `unknown`&gt;
[`RecordBatchIterator`](RecordBatchIterator.md)
#### See
@@ -143,29 +143,6 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### outputSchema()
```ts
outputSchema(): Promise<Schema<any>>
```
Returns the schema of the output that will be returned by this query.
This can be used to inspect the types and names of the columns that will be
returned by the query before executing it.
#### Returns
`Promise`&lt;`Schema`&lt;`any`&gt;&gt;
An Arrow Schema describing the output columns.
#### Inherited from
[`QueryBase`](QueryBase.md).[`outputSchema`](QueryBase.md#outputschema)
***
### select()
```ts

View File

@@ -221,7 +221,7 @@ also increase the latency of your query. The default value is 1.5*limit.
### execute()
```ts
protected execute(options?): AsyncGenerator<RecordBatch<any>, void, unknown>
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
@@ -232,7 +232,7 @@ Execute the query and return the results as an
#### Returns
`AsyncGenerator`&lt;`RecordBatch`&lt;`any`&gt;, `void`, `unknown`&gt;
[`RecordBatchIterator`](RecordBatchIterator.md)
#### See
@@ -498,29 +498,6 @@ This is useful for pagination.
***
### outputSchema()
```ts
outputSchema(): Promise<Schema<any>>
```
Returns the schema of the output that will be returned by this query.
This can be used to inspect the types and names of the columns that will be
returned by the query before executing it.
#### Returns
`Promise`&lt;`Schema`&lt;`any`&gt;&gt;
An Arrow Schema describing the output columns.
#### Inherited from
`StandardQueryBase.outputSchema`
***
### postfilter()
```ts

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
# Function: RecordBatchIterator()
```ts
function RecordBatchIterator(promisedInner): AsyncGenerator<RecordBatch<any>, void, unknown>
```
## Parameters
* **promisedInner**: `Promise`&lt;`RecordBatchIterator`&gt;
## Returns
`AsyncGenerator`&lt;`RecordBatch`&lt;`any`&gt;, `void`, `unknown`&gt;

View File

@@ -1,34 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / permutationBuilder
# Function: permutationBuilder()
```ts
function permutationBuilder(table): PermutationBuilder
```
Create a permutation builder for the given table.
## Parameters
* **table**: [`Table`](../classes/Table.md)
The source table to create a permutation from
## Returns
[`PermutationBuilder`](../classes/PermutationBuilder.md)
A PermutationBuilder instance
## Example
```ts
const builder = permutationBuilder(sourceTable, "training_data")
.splitRandom({ ratios: [0.8, 0.2], seed: 42 })
.shuffle({ seed: 123 });
const trainingTable = await builder.execute();
```

View File

@@ -28,10 +28,10 @@
- [MultiMatchQuery](classes/MultiMatchQuery.md)
- [NativeJsHeaderProvider](classes/NativeJsHeaderProvider.md)
- [OAuthHeaderProvider](classes/OAuthHeaderProvider.md)
- [PermutationBuilder](classes/PermutationBuilder.md)
- [PhraseQuery](classes/PhraseQuery.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Session](classes/Session.md)
- [StaticHeaderProvider](classes/StaticHeaderProvider.md)
- [Table](classes/Table.md)
@@ -76,10 +76,6 @@
- [QueryExecutionOptions](interfaces/QueryExecutionOptions.md)
- [RemovalStats](interfaces/RemovalStats.md)
- [RetryConfig](interfaces/RetryConfig.md)
- [ShuffleOptions](interfaces/ShuffleOptions.md)
- [SplitHashOptions](interfaces/SplitHashOptions.md)
- [SplitRandomOptions](interfaces/SplitRandomOptions.md)
- [SplitSequentialOptions](interfaces/SplitSequentialOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [TableStatistics](interfaces/TableStatistics.md)
- [TimeoutConfig](interfaces/TimeoutConfig.md)
@@ -104,8 +100,6 @@
## Functions
- [RecordBatchIterator](functions/RecordBatchIterator.md)
- [connect](functions/connect.md)
- [makeArrowTable](functions/makeArrowTable.md)
- [packBits](functions/packBits.md)
- [permutationBuilder](functions/permutationBuilder.md)

View File

@@ -1,101 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IvfRqOptions
# Interface: IvfRqOptions
## Properties
### distanceType?
```ts
optional distanceType: "l2" | "cosine" | "dot";
```
Distance type to use to build the index.
Default value is "l2".
This is used when training the index to calculate the IVF partitions
(vectors are grouped in partitions with similar vectors according to this
distance type) and during quantization.
The distance type used to train an index MUST match the distance type used
to search the index. Failure to do so will yield inaccurate results.
The following distance types are available:
"l2" - Euclidean distance.
"cosine" - Cosine distance.
"dot" - Dot product.
***
### maxIterations?
```ts
optional maxIterations: number;
```
Max iterations to train IVF kmeans.
When training an IVF index we use kmeans to calculate the partitions. This parameter
controls how many iterations of kmeans to run.
The default value is 50.
***
### numBits?
```ts
optional numBits: number;
```
Number of bits per dimension for residual quantization.
This value controls how much each residual component is compressed. The more
bits, the more accurate the index will be but the slower search. Typical values
are small integers; the default is 1 bit per dimension.
***
### numPartitions?
```ts
optional numPartitions: number;
```
The number of IVF partitions to create.
This value should generally scale with the number of rows in the dataset.
By default the number of partitions is the square root of the number of
rows.
If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
***
### sampleRate?
```ts
optional sampleRate: number;
```
The number of vectors, per partition, to sample when training IVF kmeans.
When an IVF index is trained, we need to calculate partitions. These are groups
of vectors that are similar to each other. To do this we use an algorithm called kmeans.
Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
random sample of the data. This parameter controls the size of the sample. The total
number of vectors used to train the index is `sample_rate * num_partitions`.
Increasing this value might improve the quality of the index but in most cases the
default should be sufficient.
The default value is 256.

View File

@@ -1,23 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / ShuffleOptions
# Interface: ShuffleOptions
## Properties
### clumpSize?
```ts
optional clumpSize: number;
```
***
### seed?
```ts
optional seed: number;
```

View File

@@ -1,31 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / SplitHashOptions
# Interface: SplitHashOptions
## Properties
### columns
```ts
columns: string[];
```
***
### discardWeight?
```ts
optional discardWeight: number;
```
***
### splitWeights
```ts
splitWeights: number[];
```

View File

@@ -1,39 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / SplitRandomOptions
# Interface: SplitRandomOptions
## Properties
### counts?
```ts
optional counts: number[];
```
***
### fixed?
```ts
optional fixed: number;
```
***
### ratios?
```ts
optional ratios: number[];
```
***
### seed?
```ts
optional seed: number;
```

View File

@@ -1,31 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / SplitSequentialOptions
# Interface: SplitSequentialOptions
## Properties
### counts?
```ts
optional counts: number[];
```
***
### fixed?
```ts
optional fixed: number;
```
***
### ratios?
```ts
optional ratios: number[];
```

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.22.3-beta.3</version>
<version>0.22.2-beta.0</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.22.3-beta.3</version>
<version>0.22.2-beta.0</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.22.3-beta.3</version>
<version>0.22.2-beta.0</version>
<packaging>pom</packaging>
<name>${project.artifactId}</name>
<description>LanceDB Java SDK Parent POM</description>

View File

@@ -1,13 +0,0 @@
These are the typescript bindings of LanceDB.
The core Rust library is in the `../rust/lancedb` directory, the rust binding
code is in the `src/` directory and the typescript bindings are in
the `lancedb/` directory.
Whenever you change the Rust code, you will need to recompile: `npm run build`.
Common commands:
* Build: `npm run build`
* Lint: `npm run lint`
* Fix lints: `npm run lint-fix`
* Test: `npm test`
* Run single test file: `npm test __test__/arrow.test.ts`

View File

@@ -1 +0,0 @@
AGENTS.md

13
nodejs/CLAUDE.md Normal file
View File

@@ -0,0 +1,13 @@
These are the typescript bindings of LanceDB.
The core Rust library is in the `../rust/lancedb` directory, the rust binding
code is in the `src/` directory and the typescript bindings are in
the `lancedb/` directory.
Whenever you change the Rust code, you will need to recompile: `npm run build`.
Common commands:
* Build: `npm run build`
* Lint: `npm run lint`
* Fix lints: `npm run lint-fix`
* Test: `npm test`
* Run single test file: `npm test __test__/arrow.test.ts`

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.22.3-beta.3"
version = "0.22.2-beta.0"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -1,227 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as tmp from "tmp";
import { Table, connect, permutationBuilder } from "../lancedb";
import { makeArrowTable } from "../lancedb/arrow";
describe("PermutationBuilder", () => {
let tmpDir: tmp.DirResult;
let table: Table;
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const db = await connect(tmpDir.name);
// Create test data
const data = makeArrowTable(
[
{ id: 1, value: 10 },
{ id: 2, value: 20 },
{ id: 3, value: 30 },
{ id: 4, value: 40 },
{ id: 5, value: 50 },
{ id: 6, value: 60 },
{ id: 7, value: 70 },
{ id: 8, value: 80 },
{ id: 9, value: 90 },
{ id: 10, value: 100 },
],
{ vectorColumns: {} },
);
table = await db.createTable("test_table", data);
});
afterEach(() => {
tmpDir.removeCallback();
});
test("should create permutation builder", () => {
const builder = permutationBuilder(table);
expect(builder).toBeDefined();
});
test("should execute basic permutation", async () => {
const builder = permutationBuilder(table);
const permutationTable = await builder.execute();
expect(permutationTable).toBeDefined();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
});
test("should create permutation with random splits", async () => {
const builder = permutationBuilder(table).splitRandom({
ratios: [1.0],
seed: 42,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
});
test("should create permutation with percentage splits", async () => {
const builder = permutationBuilder(table).splitRandom({
ratios: [0.3, 0.7],
seed: 42,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check split distribution
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBeGreaterThan(0);
expect(split1Count).toBeGreaterThan(0);
expect(split0Count + split1Count).toBe(10);
});
test("should create permutation with count splits", async () => {
const builder = permutationBuilder(table).splitRandom({
counts: [3, 7],
seed: 42,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check split distribution
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBe(3);
expect(split1Count).toBe(7);
});
test("should create permutation with hash splits", async () => {
const builder = permutationBuilder(table).splitHash({
columns: ["id"],
splitWeights: [50, 50],
discardWeight: 0,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check that splits exist
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBeGreaterThan(0);
expect(split1Count).toBeGreaterThan(0);
expect(split0Count + split1Count).toBe(10);
});
test("should create permutation with sequential splits", async () => {
const builder = permutationBuilder(table).splitSequential({
ratios: [0.5, 0.5],
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check split distribution - sequential should give exactly 5 and 5
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBe(5);
expect(split1Count).toBe(5);
});
test("should create permutation with calculated splits", async () => {
const builder = permutationBuilder(table).splitCalculated("id % 2");
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check split distribution
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBeGreaterThan(0);
expect(split1Count).toBeGreaterThan(0);
expect(split0Count + split1Count).toBe(10);
});
test("should create permutation with shuffle", async () => {
const builder = permutationBuilder(table).shuffle({
seed: 42,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
});
test("should create permutation with shuffle and clump size", async () => {
const builder = permutationBuilder(table).shuffle({
seed: 42,
clumpSize: 2,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
});
test("should create permutation with filter", async () => {
const builder = permutationBuilder(table).filter("value > 50");
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(5); // Values 60, 70, 80, 90, 100
});
test("should chain multiple operations", async () => {
const builder = permutationBuilder(table)
.filter("value <= 80")
.splitRandom({ ratios: [0.5, 0.5], seed: 42 })
.shuffle({ seed: 123 });
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(8); // Values 10, 20, 30, 40, 50, 60, 70, 80
// Check split distribution
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBeGreaterThan(0);
expect(split1Count).toBeGreaterThan(0);
expect(split0Count + split1Count).toBe(8);
});
test("should throw error for invalid split arguments", () => {
const builder = permutationBuilder(table);
// Test no arguments provided
expect(() => builder.splitRandom({})).toThrow(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
);
// Test multiple arguments provided
expect(() =>
builder.splitRandom({ ratios: [0.5, 0.5], counts: [3, 7], seed: 42 }),
).toThrow("Exactly one of 'ratios', 'counts', or 'fixed' must be provided");
});
test("should throw error when builder is consumed", async () => {
const builder = permutationBuilder(table);
// Execute once
await builder.execute();
// Should throw error on second execution
await expect(builder.execute()).rejects.toThrow("Builder already consumed");
});
});

View File

@@ -1,111 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as tmp from "tmp";
import { type Table, connect } from "../lancedb";
import {
Field,
FixedSizeList,
Float32,
Int64,
Schema,
Utf8,
makeArrowTable,
} from "../lancedb/arrow";
import { Index } from "../lancedb/indices";
describe("Query outputSchema", () => {
let tmpDir: tmp.DirResult;
let table: Table;
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const db = await connect(tmpDir.name);
// Create table with explicit schema to ensure proper types
const schema = new Schema([
new Field("a", new Int64(), true),
new Field("text", new Utf8(), true),
new Field(
"vec",
new FixedSizeList(2, new Field("item", new Float32())),
true,
),
]);
const data = makeArrowTable(
[
{ a: 1n, text: "foo", vec: [1, 2] },
{ a: 2n, text: "bar", vec: [3, 4] },
{ a: 3n, text: "baz", vec: [5, 6] },
],
{ schema },
);
table = await db.createTable("test", data);
});
afterEach(() => {
tmpDir.removeCallback();
});
it("should return schema for plain query", async () => {
const schema = await table.query().outputSchema();
expect(schema.fields.length).toBe(3);
expect(schema.fields.map((f) => f.name)).toEqual(["a", "text", "vec"]);
expect(schema.fields[0].type.toString()).toBe("Int64");
expect(schema.fields[1].type.toString()).toBe("Utf8");
});
it("should return schema with dynamic projection", async () => {
const schema = await table.query().select({ bl: "a * 2" }).outputSchema();
expect(schema.fields.length).toBe(1);
expect(schema.fields[0].name).toBe("bl");
expect(schema.fields[0].type.toString()).toBe("Int64");
});
it("should return schema for vector search with _distance column", async () => {
const schema = await table
.vectorSearch([1, 2])
.select(["a"])
.outputSchema();
expect(schema.fields.length).toBe(2);
expect(schema.fields.map((f) => f.name)).toEqual(["a", "_distance"]);
expect(schema.fields[0].type.toString()).toBe("Int64");
expect(schema.fields[1].type.toString()).toBe("Float32");
});
it("should return schema for FTS search", async () => {
await table.createIndex("text", { config: Index.fts() });
const schema = await table
.search("foo", "fts")
.select(["a"])
.outputSchema();
// FTS search includes _score column in addition to selected columns
expect(schema.fields.length).toBe(2);
expect(schema.fields.map((f) => f.name)).toContain("a");
expect(schema.fields.map((f) => f.name)).toContain("_score");
const aField = schema.fields.find((f) => f.name === "a");
expect(aField?.type.toString()).toBe("Int64");
});
it("should return schema for take query", async () => {
const schema = await table.takeOffsets([0]).select(["text"]).outputSchema();
expect(schema.fields.length).toBe(1);
expect(schema.fields[0].name).toBe("text");
expect(schema.fields[0].type.toString()).toBe("Utf8");
});
it("should return full schema when no select is specified", async () => {
const schema = await table.query().outputSchema();
// Should return all columns
expect(schema.fields.length).toBe(3);
});
});

View File

@@ -1,184 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as arrow from "../lancedb/arrow";
import { sanitizeField, sanitizeType } from "../lancedb/sanitize";
describe("sanitize", function () {
describe("sanitizeType function", function () {
it("should handle type objects", function () {
const type = new arrow.Int32();
const result = sanitizeType(type);
expect(result.typeId).toBe(arrow.Type.Int);
expect((result as arrow.Int).bitWidth).toBe(32);
expect((result as arrow.Int).isSigned).toBe(true);
const floatType = {
typeId: 3, // Type.Float = 3
precision: 2,
toString: () => "Float",
isFloat: true,
isFixedWidth: true,
};
const floatResult = sanitizeType(floatType);
expect(floatResult).toBeInstanceOf(arrow.DataType);
expect(floatResult.typeId).toBe(arrow.Type.Float);
const floatResult2 = sanitizeType({ ...floatType, typeId: () => 3 });
expect(floatResult2).toBeInstanceOf(arrow.DataType);
expect(floatResult2.typeId).toBe(arrow.Type.Float);
});
const allTypeNameTestCases = [
["null", new arrow.Null()],
["binary", new arrow.Binary()],
["utf8", new arrow.Utf8()],
["bool", new arrow.Bool()],
["int8", new arrow.Int8()],
["int16", new arrow.Int16()],
["int32", new arrow.Int32()],
["int64", new arrow.Int64()],
["uint8", new arrow.Uint8()],
["uint16", new arrow.Uint16()],
["uint32", new arrow.Uint32()],
["uint64", new arrow.Uint64()],
["float16", new arrow.Float16()],
["float32", new arrow.Float32()],
["float64", new arrow.Float64()],
["datemillisecond", new arrow.DateMillisecond()],
["dateday", new arrow.DateDay()],
["timenanosecond", new arrow.TimeNanosecond()],
["timemicrosecond", new arrow.TimeMicrosecond()],
["timemillisecond", new arrow.TimeMillisecond()],
["timesecond", new arrow.TimeSecond()],
["intervaldaytime", new arrow.IntervalDayTime()],
["intervalyearmonth", new arrow.IntervalYearMonth()],
["durationnanosecond", new arrow.DurationNanosecond()],
["durationmicrosecond", new arrow.DurationMicrosecond()],
["durationmillisecond", new arrow.DurationMillisecond()],
["durationsecond", new arrow.DurationSecond()],
] as const;
it.each(allTypeNameTestCases)(
'should map type name "%s" to %s',
function (name, expected) {
const result = sanitizeType(name);
expect(result).toBeInstanceOf(expected.constructor);
},
);
const caseVariationTestCases = [
["NULL", new arrow.Null()],
["Utf8", new arrow.Utf8()],
["FLOAT32", new arrow.Float32()],
["DaTedAy", new arrow.DateDay()],
] as const;
it.each(caseVariationTestCases)(
'should be case insensitive for type name "%s" mapped to %s',
function (name, expected) {
const result = sanitizeType(name);
expect(result).toBeInstanceOf(expected.constructor);
},
);
it("should throw error for unrecognized type name", function () {
expect(() => sanitizeType("invalid_type")).toThrow(
"Unrecognized type name in schema: invalid_type",
);
});
});
describe("sanitizeField function", function () {
it("should handle field with string type name", function () {
const field = sanitizeField({
name: "string_field",
type: "utf8",
nullable: true,
metadata: new Map([["key", "value"]]),
});
expect(field).toBeInstanceOf(arrow.Field);
expect(field.name).toBe("string_field");
expect(field.type).toBeInstanceOf(arrow.Utf8);
expect(field.nullable).toBe(true);
expect(field.metadata?.get("key")).toBe("value");
});
it("should handle field with type object", function () {
const floatType = {
typeId: 3, // Float
precision: 32,
};
const field = sanitizeField({
name: "float_field",
type: floatType,
nullable: false,
});
expect(field).toBeInstanceOf(arrow.Field);
expect(field.name).toBe("float_field");
expect(field.type).toBeInstanceOf(arrow.DataType);
expect(field.type.typeId).toBe(arrow.Type.Float);
expect((field.type as arrow.Float64).precision).toBe(32);
expect(field.nullable).toBe(false);
});
it("should handle field with direct Type instance", function () {
const field = sanitizeField({
name: "bool_field",
type: new arrow.Bool(),
nullable: true,
});
expect(field).toBeInstanceOf(arrow.Field);
expect(field.name).toBe("bool_field");
expect(field.type).toBeInstanceOf(arrow.Bool);
expect(field.nullable).toBe(true);
});
it("should throw error for invalid field object", function () {
expect(() =>
sanitizeField({
type: "int32",
nullable: true,
}),
).toThrow(
"The field passed in is missing a `type`/`name`/`nullable` property",
);
// Invalid type
expect(() =>
sanitizeField({
name: "invalid",
type: { invalid: true },
nullable: true,
}),
).toThrow("Expected a Type to have a typeId property");
// Invalid nullable
expect(() =>
sanitizeField({
name: "invalid_nullable",
type: "int32",
nullable: "not a boolean",
}),
).toThrow("The field passed in had a non-boolean `nullable` property");
});
it("should report error for invalid type name", function () {
expect(() =>
sanitizeField({
name: "invalid_field",
type: "invalid_type",
nullable: true,
}),
).toThrow(
"Unable to sanitize type for field: invalid_field due to error: Error: Unrecognized type name in schema: invalid_type",
);
});
});
});

View File

@@ -10,13 +10,7 @@ import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as arrow18 from "apache-arrow-18";
import {
Connection,
MatchQuery,
PhraseQuery,
Table,
connect,
} from "../lancedb";
import { MatchQuery, PhraseQuery, Table, connect } from "../lancedb";
import {
Table as ArrowTable,
Field,
@@ -27,8 +21,6 @@ import {
Int64,
List,
Schema,
SchemaLike,
Type,
Uint8,
Utf8,
makeArrowTable,
@@ -219,7 +211,8 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
},
);
it("should be able to omit nullable fields", async () => {
// TODO: https://github.com/lancedb/lancedb/issues/1832
it.skip("should be able to omit nullable fields", async () => {
const db = await connect(tmpDir.name);
const schema = new arrow.Schema([
new arrow.Field(
@@ -243,36 +236,23 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
await table.add([data3]);
let res = await table.query().limit(10).toArray();
const resVector = res.map((r) =>
r.vector ? Array.from(r.vector) : null,
);
const resVector = res.map((r) => r.get("vector").toArray());
expect(resVector).toEqual([null, data2.vector, data3.vector]);
const resItem = res.map((r) => r.item);
const resItem = res.map((r) => r.get("item").toArray());
expect(resItem).toEqual(["foo", null, "bar"]);
const resPrice = res.map((r) => r.price);
const resPrice = res.map((r) => r.get("price").toArray());
expect(resPrice).toEqual([10.0, 2.0, 3.0]);
const data4 = { item: "foo" };
// We can't omit a column if it's not nullable
await expect(table.add([data4])).rejects.toThrow(
"Append with different schema",
);
await expect(table.add([data4])).rejects.toThrow("Invalid user input");
// But we can alter columns to make them nullable
await table.alterColumns([{ path: "price", nullable: true }]);
await table.add([data4]);
res = (await table.query().limit(10).toArray()).map((r) => ({
...r.toJSON(),
vector: r.vector ? Array.from(r.vector) : null,
}));
// Rust fills missing nullable fields with null
expect(res).toEqual([
{ ...data1, vector: null },
{ ...data2, item: null },
data3,
{ ...data4, price: null, vector: null },
]);
res = (await table.query().limit(10).toArray()).map((r) => r.toJSON());
expect(res).toEqual([data1, data2, data3, data4]);
});
it("should be able to insert nullable data for non-nullable fields", async () => {
@@ -350,43 +330,6 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
const table = await db.createTable("my_table", data);
expect(await table.countRows()).toEqual(2);
});
it("should allow undefined and omitted nullable vector fields", async () => {
// Test for the bug: can't pass undefined or omit vector column
const db = await connect("memory://");
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32(), true),
new arrow.Field(
"vector",
new arrow.FixedSizeList(
32,
new arrow.Field("item", new arrow.Float32(), true),
),
true, // nullable = true
),
]);
const table = await db.createEmptyTable("test_table", schema);
// Should not throw error for undefined value
await table.add([{ id: 0, vector: undefined }]);
// Should not throw error for omitted field
await table.add([{ id: 1 }]);
// Should still work for null
await table.add([{ id: 2, vector: null }]);
// Should still work for actual vector
const testVector = new Array(32).fill(0.5);
await table.add([{ id: 3, vector: testVector }]);
expect(await table.countRows()).toEqual(4);
const res = await table.query().limit(10).toArray();
const resVector = res.map((r) =>
r.vector ? Array.from(r.vector) : null,
);
expect(resVector).toEqual([null, null, null, testVector]);
});
},
);
@@ -1520,9 +1463,7 @@ describe("when optimizing a dataset", () => {
it("delete unverified", async () => {
const version = await table.version();
const versionFile = `${tmpDir.name}/${table.name}.lance/_versions/${
version - 1
}.manifest`;
const versionFile = `${tmpDir.name}/${table.name}.lance/_versions/${version - 1}.manifest`;
fs.rmSync(versionFile);
let stats = await table.optimize({ deleteUnverified: false });
@@ -2036,52 +1977,3 @@ describe("column name options", () => {
expect(results2.length).toBe(10);
});
});
describe("when creating an empty table", () => {
let con: Connection;
beforeEach(async () => {
const tmpDir = tmp.dirSync({ unsafeCleanup: true });
con = await connect(tmpDir.name);
});
afterEach(() => {
con.close();
});
it("can create an empty table from an arrow Schema", async () => {
const schema = new Schema([
new Field("id", new Int64()),
new Field("vector", new Float64()),
]);
const table = await con.createEmptyTable("test", schema);
const actualSchema = await table.schema();
expect(actualSchema.fields[0].type.typeId).toBe(Type.Int);
expect((actualSchema.fields[0].type as Int64).bitWidth).toBe(64);
expect(actualSchema.fields[1].type.typeId).toBe(Type.Float);
expect((actualSchema.fields[1].type as Float64).precision).toBe(2);
});
it("can create an empty table from schema that specifies field types by name", async () => {
const schemaLike = {
fields: [
{
name: "id",
type: "int64",
nullable: true,
},
{
name: "vector",
type: "float64",
nullable: true,
},
],
metadata: new Map(),
names: ["id", "vector"],
} satisfies SchemaLike;
const table = await con.createEmptyTable("test", schemaLike);
const actualSchema = await table.schema();
expect(actualSchema.fields[0].type.typeId).toBe(Type.Int);
expect((actualSchema.fields[0].type as Int64).bitWidth).toBe(64);
expect(actualSchema.fields[1].type.typeId).toBe(Type.Float);
expect((actualSchema.fields[1].type as Float64).precision).toBe(2);
});
});

View File

@@ -73,7 +73,7 @@ export type FieldLike =
| {
type: string;
name: string;
nullable: boolean;
nullable?: boolean;
metadata?: Map<string, string>;
};
@@ -1285,36 +1285,19 @@ function validateSchemaEmbeddings(
if (isFixedSizeList(field.type)) {
field = sanitizeField(field);
if (data.length !== 0 && data?.[0]?.[field.name] === undefined) {
// Check if there's an embedding function registered for this field
let hasEmbeddingFunction = false;
// Check schema metadata for embedding functions
if (schema.metadata.has("embedding_functions")) {
const embeddings = JSON.parse(
schema.metadata.get("embedding_functions")!,
);
// biome-ignore lint/suspicious/noExplicitAny: we don't know the type of `f`
if (embeddings.find((f: any) => f["vectorColumn"] === field.name)) {
hasEmbeddingFunction = true;
}
}
// Check passed embedding function parameter
if (embeddings && embeddings.vectorColumn === field.name) {
hasEmbeddingFunction = true;
}
// If the field is nullable AND there's no embedding function, allow undefined/omitted values
if (field.nullable && !hasEmbeddingFunction) {
fields.push(field);
} else {
// Either not nullable OR has embedding function - require explicit values
if (hasEmbeddingFunction) {
// Don't add to missingEmbeddingFields since this is expected to be filled by embedding function
fields.push(field);
} else {
if (
// biome-ignore lint/suspicious/noExplicitAny: we don't know the type of `f`
embeddings.find((f: any) => f["vectorColumn"] === field.name) ===
undefined
) {
missingEmbeddingFields.push(field);
}
} else {
missingEmbeddingFields.push(field);
}
} else {
fields.push(field);

View File

@@ -43,10 +43,6 @@ export {
DeleteResult,
DropColumnsResult,
UpdateResult,
SplitRandomOptions,
SplitHashOptions,
SplitSequentialOptions,
ShuffleOptions,
} from "./native.js";
export {
@@ -115,7 +111,6 @@ export {
export { MergeInsertBuilder, WriteExecutionOptions } from "./merge";
export * as embedding from "./embedding";
export { permutationBuilder, PermutationBuilder } from "./permutation";
export * as rerankers from "./rerankers";
export {
SchemaLike,

View File

@@ -1,183 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import {
PermutationBuilder as NativePermutationBuilder,
Table as NativeTable,
ShuffleOptions,
SplitHashOptions,
SplitRandomOptions,
SplitSequentialOptions,
permutationBuilder as nativePermutationBuilder,
} from "./native.js";
import { LocalTable, Table } from "./table";
/**
* A PermutationBuilder for creating data permutations with splits, shuffling, and filtering.
*
* This class provides a TypeScript wrapper around the native Rust PermutationBuilder,
* offering methods to configure data splits, shuffling, and filtering before executing
* the permutation to create a new table.
*/
export class PermutationBuilder {
private inner: NativePermutationBuilder;
/**
* @hidden
*/
constructor(inner: NativePermutationBuilder) {
this.inner = inner;
}
/**
* Configure random splits for the permutation.
*
* @param options - Configuration for random splitting
* @returns A new PermutationBuilder instance
* @example
* ```ts
* // Split by ratios
* builder.splitRandom({ ratios: [0.7, 0.3], seed: 42 });
*
* // Split by counts
* builder.splitRandom({ counts: [1000, 500], seed: 42 });
*
* // Split with fixed size
* builder.splitRandom({ fixed: 100, seed: 42 });
* ```
*/
splitRandom(options: SplitRandomOptions): PermutationBuilder {
const newInner = this.inner.splitRandom(options);
return new PermutationBuilder(newInner);
}
/**
* Configure hash-based splits for the permutation.
*
* @param options - Configuration for hash-based splitting
* @returns A new PermutationBuilder instance
* @example
* ```ts
* builder.splitHash({
* columns: ["user_id"],
* splitWeights: [70, 30],
* discardWeight: 0
* });
* ```
*/
splitHash(options: SplitHashOptions): PermutationBuilder {
const newInner = this.inner.splitHash(options);
return new PermutationBuilder(newInner);
}
/**
* Configure sequential splits for the permutation.
*
* @param options - Configuration for sequential splitting
* @returns A new PermutationBuilder instance
* @example
* ```ts
* // Split by ratios
* builder.splitSequential({ ratios: [0.8, 0.2] });
*
* // Split by counts
* builder.splitSequential({ counts: [800, 200] });
*
* // Split with fixed size
* builder.splitSequential({ fixed: 1000 });
* ```
*/
splitSequential(options: SplitSequentialOptions): PermutationBuilder {
const newInner = this.inner.splitSequential(options);
return new PermutationBuilder(newInner);
}
/**
* Configure calculated splits for the permutation.
*
* @param calculation - SQL expression for calculating splits
* @returns A new PermutationBuilder instance
* @example
* ```ts
* builder.splitCalculated("user_id % 3");
* ```
*/
splitCalculated(calculation: string): PermutationBuilder {
const newInner = this.inner.splitCalculated(calculation);
return new PermutationBuilder(newInner);
}
/**
* Configure shuffling for the permutation.
*
* @param options - Configuration for shuffling
* @returns A new PermutationBuilder instance
* @example
* ```ts
* // Basic shuffle
* builder.shuffle({ seed: 42 });
*
* // Shuffle with clump size
* builder.shuffle({ seed: 42, clumpSize: 10 });
* ```
*/
shuffle(options: ShuffleOptions): PermutationBuilder {
const newInner = this.inner.shuffle(options);
return new PermutationBuilder(newInner);
}
/**
* Configure filtering for the permutation.
*
* @param filter - SQL filter expression
* @returns A new PermutationBuilder instance
* @example
* ```ts
* builder.filter("age > 18 AND status = 'active'");
* ```
*/
filter(filter: string): PermutationBuilder {
const newInner = this.inner.filter(filter);
return new PermutationBuilder(newInner);
}
/**
* Execute the permutation and create the destination table.
*
* @returns A Promise that resolves to the new Table instance
* @example
* ```ts
* const permutationTable = await builder.execute();
* console.log(`Created table: ${permutationTable.name}`);
* ```
*/
async execute(): Promise<Table> {
const nativeTable: NativeTable = await this.inner.execute();
return new LocalTable(nativeTable);
}
}
/**
* Create a permutation builder for the given table.
*
* @param table - The source table to create a permutation from
* @returns A PermutationBuilder instance
* @example
* ```ts
* const builder = permutationBuilder(sourceTable, "training_data")
* .splitRandom({ ratios: [0.8, 0.2], seed: 42 })
* .shuffle({ seed: 123 });
*
* const trainingTable = await builder.execute();
* ```
*/
export function permutationBuilder(table: Table): PermutationBuilder {
// Extract the inner native table from the TypeScript wrapper
const localTable = table as LocalTable;
// Access inner through type assertion since it's private
const nativeBuilder = nativePermutationBuilder(
// biome-ignore lint/suspicious/noExplicitAny: need access to private variable
(localTable as any).inner,
);
return new PermutationBuilder(nativeBuilder);
}

View File

@@ -20,25 +20,35 @@ import {
} from "./native";
import { Reranker } from "./rerankers";
export async function* RecordBatchIterator(
promisedInner: Promise<NativeBatchIterator>,
) {
const inner = await promisedInner;
export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
private promisedInner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator;
if (inner === undefined) {
throw new Error("Invalid iterator state");
constructor(promise?: Promise<NativeBatchIterator>) {
// TODO: check promise reliably so we dont need to pass two arguments.
this.promisedInner = promise;
}
for (let buffer = await inner.next(); buffer; buffer = await inner.next()) {
const { batches } = tableFromIPC(buffer);
if (batches.length !== 1) {
// biome-ignore lint/suspicious/noExplicitAny: skip
async next(): Promise<IteratorResult<RecordBatch<any>>> {
if (this.inner === undefined) {
this.inner = await this.promisedInner;
}
if (this.inner === undefined) {
throw new Error("Invalid iterator state state");
}
const n = await this.inner.next();
if (n == null) {
return Promise.resolve({ done: true, value: null });
}
const tbl = tableFromIPC(n);
if (tbl.batches.length != 1) {
throw new Error("Expected only one batch");
}
yield batches[0];
return Promise.resolve({ done: false, value: tbl.batches[0] });
}
}
/* eslint-enable */
class RecordBatchIterable<
NativeQueryType extends NativeQuery | NativeVectorQuery | NativeTakeQuery,
@@ -54,7 +64,7 @@ class RecordBatchIterable<
// biome-ignore lint/suspicious/noExplicitAny: skip
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> {
return RecordBatchIterator(
return new RecordBatchIterator(
this.inner.execute(this.options?.maxBatchLength, this.options?.timeoutMs),
);
}
@@ -221,8 +231,10 @@ export class QueryBase<
* single query)
*
*/
protected execute(options?: Partial<QueryExecutionOptions>) {
return RecordBatchIterator(this.nativeExecute(options));
protected execute(
options?: Partial<QueryExecutionOptions>,
): RecordBatchIterator {
return new RecordBatchIterator(this.nativeExecute(options));
}
/**
@@ -230,7 +242,8 @@ export class QueryBase<
*/
// biome-ignore lint/suspicious/noExplicitAny: skip
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
return RecordBatchIterator(this.nativeExecute());
const promise = this.nativeExecute();
return new RecordBatchIterator(promise);
}
/** Collect the results as an Arrow @see {@link ArrowTable}. */
@@ -313,25 +326,6 @@ export class QueryBase<
return this.inner.analyzePlan();
}
}
/**
* Returns the schema of the output that will be returned by this query.
*
* This can be used to inspect the types and names of the columns that will be
* returned by the query before executing it.
*
* @returns An Arrow Schema describing the output columns.
*/
async outputSchema(): Promise<import("./arrow").Schema> {
let schemaBuffer: Buffer;
if (this.inner instanceof Promise) {
schemaBuffer = await this.inner.then((inner) => inner.outputSchema());
} else {
schemaBuffer = await this.inner.outputSchema();
}
const schema = tableFromIPC(schemaBuffer).schema;
return schema;
}
}
export class StandardQueryBase<

View File

@@ -326,9 +326,6 @@ export function sanitizeDictionary(typeLike: object) {
// biome-ignore lint/suspicious/noExplicitAny: skip
export function sanitizeType(typeLike: unknown): DataType<any> {
if (typeof typeLike === "string") {
return dataTypeFromName(typeLike);
}
if (typeof typeLike !== "object" || typeLike === null) {
throw Error("Expected a Type but object was null/undefined");
}
@@ -450,7 +447,7 @@ export function sanitizeType(typeLike: unknown): DataType<any> {
case Type.DurationSecond:
return new DurationSecond();
default:
throw new Error("Unrecognized type id in schema: " + typeId);
throw new Error("Unrecoginized type id in schema: " + typeId);
}
}
@@ -470,15 +467,7 @@ export function sanitizeField(fieldLike: unknown): Field {
"The field passed in is missing a `type`/`name`/`nullable` property",
);
}
let type: DataType;
try {
type = sanitizeType(fieldLike.type);
} catch (error: unknown) {
throw Error(
`Unable to sanitize type for field: ${fieldLike.name} due to error: ${error}`,
{ cause: error },
);
}
const type = sanitizeType(fieldLike.type);
const name = fieldLike.name;
if (!(typeof name === "string")) {
throw Error("The field passed in had a non-string `name` property");
@@ -592,46 +581,3 @@ function sanitizeData(
},
);
}
const constructorsByTypeName = {
null: () => new Null(),
binary: () => new Binary(),
utf8: () => new Utf8(),
bool: () => new Bool(),
int8: () => new Int8(),
int16: () => new Int16(),
int32: () => new Int32(),
int64: () => new Int64(),
uint8: () => new Uint8(),
uint16: () => new Uint16(),
uint32: () => new Uint32(),
uint64: () => new Uint64(),
float16: () => new Float16(),
float32: () => new Float32(),
float64: () => new Float64(),
datemillisecond: () => new DateMillisecond(),
dateday: () => new DateDay(),
timenanosecond: () => new TimeNanosecond(),
timemicrosecond: () => new TimeMicrosecond(),
timemillisecond: () => new TimeMillisecond(),
timesecond: () => new TimeSecond(),
intervaldaytime: () => new IntervalDayTime(),
intervalyearmonth: () => new IntervalYearMonth(),
durationnanosecond: () => new DurationNanosecond(),
durationmicrosecond: () => new DurationMicrosecond(),
durationmillisecond: () => new DurationMillisecond(),
durationsecond: () => new DurationSecond(),
} as const;
type MappableTypeName = keyof typeof constructorsByTypeName;
export function dataTypeFromName(typeName: string): DataType {
const normalizedTypeName = typeName.toLowerCase() as MappableTypeName;
const _constructor = constructorsByTypeName[normalizedTypeName];
if (!_constructor) {
throw new Error("Unrecognized type name in schema: " + typeName);
}
return _constructor();
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.22.3-beta.3",
"version": "0.22.2-beta.0",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -12,7 +12,6 @@ mod header;
mod index;
mod iterator;
pub mod merge;
pub mod permutation;
mod query;
pub mod remote;
mod rerankers;

View File

@@ -1,214 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::{Arc, Mutex};
use crate::{error::NapiErrorExt, table::Table};
use lancedb::dataloader::{
permutation::builder::{PermutationBuilder as LancePermutationBuilder, ShuffleStrategy},
permutation::split::{SplitSizes, SplitStrategy},
};
use napi_derive::napi;
#[napi(object)]
pub struct SplitRandomOptions {
pub ratios: Option<Vec<f64>>,
pub counts: Option<Vec<i64>>,
pub fixed: Option<i64>,
pub seed: Option<i64>,
}
#[napi(object)]
pub struct SplitHashOptions {
pub columns: Vec<String>,
pub split_weights: Vec<i64>,
pub discard_weight: Option<i64>,
}
#[napi(object)]
pub struct SplitSequentialOptions {
pub ratios: Option<Vec<f64>>,
pub counts: Option<Vec<i64>>,
pub fixed: Option<i64>,
}
#[napi(object)]
pub struct ShuffleOptions {
pub seed: Option<i64>,
pub clump_size: Option<i64>,
}
pub struct PermutationBuilderState {
pub builder: Option<LancePermutationBuilder>,
}
#[napi]
pub struct PermutationBuilder {
state: Arc<Mutex<PermutationBuilderState>>,
}
impl PermutationBuilder {
pub fn new(builder: LancePermutationBuilder) -> Self {
Self {
state: Arc::new(Mutex::new(PermutationBuilderState {
builder: Some(builder),
})),
}
}
}
impl PermutationBuilder {
fn modify(
&self,
func: impl FnOnce(LancePermutationBuilder) -> LancePermutationBuilder,
) -> napi::Result<Self> {
let mut state = self.state.lock().unwrap();
let builder = state
.builder
.take()
.ok_or_else(|| napi::Error::from_reason("Builder already consumed"))?;
state.builder = Some(func(builder));
Ok(Self {
state: self.state.clone(),
})
}
}
#[napi]
impl PermutationBuilder {
/// Configure random splits
#[napi]
pub fn split_random(&self, options: SplitRandomOptions) -> napi::Result<Self> {
// Check that exactly one split type is provided
let split_args_count = [
options.ratios.is_some(),
options.counts.is_some(),
options.fixed.is_some(),
]
.iter()
.filter(|&&x| x)
.count();
if split_args_count != 1 {
return Err(napi::Error::from_reason(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
));
}
let sizes = if let Some(ratios) = options.ratios {
SplitSizes::Percentages(ratios)
} else if let Some(counts) = options.counts {
SplitSizes::Counts(counts.into_iter().map(|c| c as u64).collect())
} else if let Some(fixed) = options.fixed {
SplitSizes::Fixed(fixed as u64)
} else {
unreachable!("One of the split arguments must be provided");
};
let seed = options.seed.map(|s| s as u64);
self.modify(|builder| builder.with_split_strategy(SplitStrategy::Random { seed, sizes }))
}
/// Configure hash-based splits
#[napi]
pub fn split_hash(&self, options: SplitHashOptions) -> napi::Result<Self> {
let split_weights = options
.split_weights
.into_iter()
.map(|w| w as u64)
.collect();
let discard_weight = options.discard_weight.unwrap_or(0) as u64;
self.modify(|builder| {
builder.with_split_strategy(SplitStrategy::Hash {
columns: options.columns,
split_weights,
discard_weight,
})
})
}
/// Configure sequential splits
#[napi]
pub fn split_sequential(&self, options: SplitSequentialOptions) -> napi::Result<Self> {
// Check that exactly one split type is provided
let split_args_count = [
options.ratios.is_some(),
options.counts.is_some(),
options.fixed.is_some(),
]
.iter()
.filter(|&&x| x)
.count();
if split_args_count != 1 {
return Err(napi::Error::from_reason(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
));
}
let sizes = if let Some(ratios) = options.ratios {
SplitSizes::Percentages(ratios)
} else if let Some(counts) = options.counts {
SplitSizes::Counts(counts.into_iter().map(|c| c as u64).collect())
} else if let Some(fixed) = options.fixed {
SplitSizes::Fixed(fixed as u64)
} else {
unreachable!("One of the split arguments must be provided");
};
self.modify(|builder| builder.with_split_strategy(SplitStrategy::Sequential { sizes }))
}
/// Configure calculated splits
#[napi]
pub fn split_calculated(&self, calculation: String) -> napi::Result<Self> {
self.modify(|builder| {
builder.with_split_strategy(SplitStrategy::Calculated { calculation })
})
}
/// Configure shuffling
#[napi]
pub fn shuffle(&self, options: ShuffleOptions) -> napi::Result<Self> {
let seed = options.seed.map(|s| s as u64);
let clump_size = options.clump_size.map(|c| c as u64);
self.modify(|builder| {
builder.with_shuffle_strategy(ShuffleStrategy::Random { seed, clump_size })
})
}
/// Configure filtering
#[napi]
pub fn filter(&self, filter: String) -> napi::Result<Self> {
self.modify(|builder| builder.with_filter(filter))
}
/// Execute the permutation builder and create the table
#[napi]
pub async fn execute(&self) -> napi::Result<Table> {
let builder = {
let mut state = self.state.lock().unwrap();
state
.builder
.take()
.ok_or_else(|| napi::Error::from_reason("Builder already consumed"))?
};
let table = builder.build().await.default_error()?;
Ok(Table::new(table))
}
}
/// Create a permutation builder for the given table
#[napi]
pub fn permutation_builder(table: &crate::table::Table) -> napi::Result<PermutationBuilder> {
use lancedb::dataloader::permutation::builder::PermutationBuilder as LancePermutationBuilder;
let inner_table = table.inner_ref()?.clone();
let inner_builder = LancePermutationBuilder::new(inner_table);
Ok(PermutationBuilder::new(inner_builder))
}

View File

@@ -22,7 +22,7 @@ use crate::error::NapiErrorExt;
use crate::iterator::RecordBatchIterator;
use crate::rerankers::Reranker;
use crate::rerankers::RerankerCallbacks;
use crate::util::{parse_distance_type, schema_to_buffer};
use crate::util::parse_distance_type;
#[napi]
pub struct Query {
@@ -88,12 +88,6 @@ impl Query {
self.inner = self.inner.clone().with_row_id();
}
#[napi(catch_unwind)]
pub async fn output_schema(&self) -> napi::Result<Buffer> {
let schema = self.inner.output_schema().await.default_error()?;
schema_to_buffer(&schema)
}
#[napi(catch_unwind)]
pub async fn execute(
&self,
@@ -279,12 +273,6 @@ impl VectorQuery {
.rerank(Arc::new(Reranker::new(callbacks)));
}
#[napi(catch_unwind)]
pub async fn output_schema(&self) -> napi::Result<Buffer> {
let schema = self.inner.output_schema().await.default_error()?;
schema_to_buffer(&schema)
}
#[napi(catch_unwind)]
pub async fn execute(
&self,
@@ -358,12 +346,6 @@ impl TakeQuery {
self.inner = self.inner.clone().with_row_id();
}
#[napi(catch_unwind)]
pub async fn output_schema(&self) -> napi::Result<Buffer> {
let schema = self.inner.output_schema().await.default_error()?;
schema_to_buffer(&schema)
}
#[napi(catch_unwind)]
pub async fn execute(
&self,

View File

@@ -3,6 +3,7 @@
use std::collections::HashMap;
use arrow_ipc::writer::FileWriter;
use lancedb::ipc::ipc_file_to_batches;
use lancedb::table::{
AddDataMode, ColumnAlteration as LanceColumnAlteration, Duration, NewColumnTransform,
@@ -15,7 +16,6 @@ use crate::error::NapiErrorExt;
use crate::index::Index;
use crate::merge::NativeMergeInsertBuilder;
use crate::query::{Query, TakeQuery, VectorQuery};
use crate::util::schema_to_buffer;
#[napi]
pub struct Table {
@@ -26,7 +26,7 @@ pub struct Table {
}
impl Table {
pub(crate) fn inner_ref(&self) -> napi::Result<&LanceDbTable> {
fn inner_ref(&self) -> napi::Result<&LanceDbTable> {
self.inner
.as_ref()
.ok_or_else(|| napi::Error::from_reason(format!("Table {} is closed", self.name)))
@@ -64,7 +64,14 @@ impl Table {
#[napi(catch_unwind)]
pub async fn schema(&self) -> napi::Result<Buffer> {
let schema = self.inner_ref()?.schema().await.default_error()?;
schema_to_buffer(&schema)
let mut writer = FileWriter::try_new(vec![], &schema)
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
writer
.finish()
.map_err(|e| napi::Error::from_reason(format!("Failed to finish IPC file: {}", e)))?;
Ok(Buffer::from(writer.into_inner().map_err(|e| {
napi::Error::from_reason(format!("Failed to get IPC file: {}", e))
})?))
}
#[napi(catch_unwind)]

View File

@@ -1,10 +1,7 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use arrow_ipc::writer::FileWriter;
use arrow_schema::Schema;
use lancedb::DistanceType;
use napi::bindgen_prelude::Buffer;
pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<DistanceType> {
match distance_type.as_ref().to_lowercase().as_str() {
@@ -18,15 +15,3 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<Dista
))),
}
}
/// Convert an Arrow Schema to an Arrow IPC file buffer
pub fn schema_to_buffer(schema: &Schema) -> napi::Result<Buffer> {
let mut writer = FileWriter::try_new(vec![], schema)
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
writer
.finish()
.map_err(|e| napi::Error::from_reason(format!("Failed to finish IPC file: {}", e)))?;
Ok(Buffer::from(writer.into_inner().map_err(|e| {
napi::Error::from_reason(format!("Failed to get IPC file: {}", e))
})?))
}

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.25.3-beta.4"
current_version = "0.25.2-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -24,19 +24,6 @@ commit = true
message = "Bump version: {current_version} → {new_version}"
commit_args = ""
# Update Cargo.lock after version bump
pre_commit_hooks = [
"""
cd python && cargo update -p lancedb-python
if git diff --quiet ../Cargo.lock; then
echo "Cargo.lock unchanged"
else
git add ../Cargo.lock
echo "Updated and staged Cargo.lock"
fi
""",
]
[tool.bumpversion.parts.pre_l]
values = ["beta", "final"]
optional_value = "final"

View File

@@ -1,19 +0,0 @@
These are the Python bindings of LanceDB.
The core Rust library is in the `../rust/lancedb` directory, the rust binding
code is in the `src/` directory and the Python bindings are in the `lancedb/` directory.
Common commands:
* Build: `make develop`
* Format: `make format`
* Lint: `make check`
* Fix lints: `make fix`
* Test: `make test`
* Doc test: `make doctest`
Before committing changes, run lints and then formatting.
When you change the Rust code, you will need to recompile the Python bindings: `make develop`.
When you export new types from Rust to Python, you must manually update `python/lancedb/_lancedb.pyi`
with the corresponding type hints. You can run `pyright` to check for type errors in the Python code.

View File

@@ -1 +0,0 @@
AGENTS.md

19
python/CLAUDE.md Normal file
View File

@@ -0,0 +1,19 @@
These are the Python bindings of LanceDB.
The core Rust library is in the `../rust/lancedb` directory, the rust binding
code is in the `src/` directory and the Python bindings are in the `lancedb/` directory.
Common commands:
* Build: `make develop`
* Format: `make format`
* Lint: `make check`
* Fix lints: `make fix`
* Test: `make test`
* Doc test: `make doctest`
Before committing changes, run lints and then formatting.
When you change the Rust code, you will need to recompile the Python bindings: `make develop`.
When you export new types from Rust to Python, you must manually update `python/lancedb/_lancedb.pyi`
with the corresponding type hints. You can run `pyright` to check for type errors in the Python code.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.25.3-beta.4"
version = "0.25.2-beta.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -14,12 +14,12 @@ name = "_lancedb"
crate-type = ["cdylib"]
[dependencies]
arrow = { version = "56.2", features = ["pyarrow"] }
arrow = { version = "55.1", features = ["pyarrow"] }
async-trait = "0.1"
lancedb = { path = "../rust/lancedb", default-features = false }
env_logger.workspace = true
pyo3 = { version = "0.25", features = ["extension-module", "abi3-py39"] }
pyo3-async-runtimes = { version = "0.25", features = [
pyo3 = { version = "0.24", features = ["extension-module", "abi3-py39"] }
pyo3-async-runtimes = { version = "0.24", features = [
"attributes",
"tokio-runtime",
] }
@@ -28,7 +28,7 @@ futures.workspace = true
tokio = { version = "1.40", features = ["sync"] }
[build-dependencies]
pyo3-build-config = { version = "0.25", features = [
pyo3-build-config = { version = "0.24", features = [
"extension-module",
"abi3-py39",
] }

View File

@@ -5,12 +5,12 @@ dynamic = ["version"]
dependencies = [
"deprecation",
"numpy",
"overrides>=0.7; python_version<'3.12'",
"overrides>=0.7",
"packaging",
"pyarrow>=16",
"pydantic>=1.10",
"tqdm>=4.27.0",
"lance-namespace>=0.0.16"
"lance-namespace==0.0.6"
]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]

View File

@@ -123,8 +123,6 @@ class Table:
@property
def tags(self) -> Tags: ...
def query(self) -> Query: ...
def take_offsets(self, offsets: list[int]) -> TakeQuery: ...
def take_row_ids(self, row_ids: list[int]) -> TakeQuery: ...
def vector_search(self) -> VectorQuery: ...
class Tags:
@@ -135,7 +133,6 @@ class Tags:
async def update(self, tag: str, version: int): ...
class IndexConfig:
name: str
index_type: str
columns: List[str]
@@ -167,7 +164,6 @@ class Query:
def postfilter(self): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> FTSQuery: ...
async def output_schema(self) -> pa.Schema: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
@@ -175,13 +171,6 @@ class Query:
async def analyze_plan(self) -> str: ...
def to_query_request(self) -> PyQueryRequest: ...
class TakeQuery:
def select(self, columns: List[str]): ...
def with_row_id(self): ...
async def output_schema(self) -> pa.Schema: ...
async def execute(self) -> RecordBatchStream: ...
def to_query_request(self) -> PyQueryRequest: ...
class FTSQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
@@ -193,14 +182,12 @@ class FTSQuery:
def get_query(self) -> str: ...
def add_query_vector(self, query_vec: pa.Array) -> None: ...
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
async def output_schema(self) -> pa.Schema: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
def to_query_request(self) -> PyQueryRequest: ...
class VectorQuery:
async def output_schema(self) -> pa.Schema: ...
async def execute(self) -> RecordBatchStream: ...
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
@@ -308,34 +295,3 @@ class AlterColumnsResult:
class DropColumnsResult:
version: int
class AsyncPermutationBuilder:
def select(self, projections: Dict[str, str]) -> "AsyncPermutationBuilder": ...
def split_random(
self,
*,
ratios: Optional[List[float]] = None,
counts: Optional[List[int]] = None,
fixed: Optional[int] = None,
seed: Optional[int] = None,
) -> "AsyncPermutationBuilder": ...
def split_hash(
self, columns: List[str], split_weights: List[int], *, discard_weight: int = 0
) -> "AsyncPermutationBuilder": ...
def split_sequential(
self,
*,
ratios: Optional[List[float]] = None,
counts: Optional[List[int]] = None,
fixed: Optional[int] = None,
) -> "AsyncPermutationBuilder": ...
def split_calculated(self, calculation: str) -> "AsyncPermutationBuilder": ...
def shuffle(
self, seed: Optional[int], clump_size: Optional[int]
) -> "AsyncPermutationBuilder": ...
def filter(self, filter: str) -> "AsyncPermutationBuilder": ...
async def execute(self) -> Table: ...
def async_permutation_builder(
table: Table, dest_table_name: str
) -> AsyncPermutationBuilder: ...

View File

@@ -5,20 +5,11 @@
from __future__ import annotations
from abc import abstractmethod
from datetime import timedelta
from pathlib import Path
import sys
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
if sys.version_info >= (3, 12):
from typing import override
class EnforceOverrides:
pass
else:
from overrides import EnforceOverrides, override # type: ignore
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
from overrides import EnforceOverrides, override # type: ignore
from lancedb.common import data_to_reader, sanitize_uri, validate_schema
from lancedb.background_loop import LOOP
@@ -41,6 +32,7 @@ import deprecation
if TYPE_CHECKING:
import pyarrow as pa
from .pydantic import LanceModel
from datetime import timedelta
from ._lancedb import Connection as LanceDbConnection
from .common import DATA, URI
@@ -452,12 +444,7 @@ class LanceDBConnection(DBConnection):
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
_inner: Optional[LanceDbConnection] = None,
):
if _inner is not None:
self._conn = _inner
return
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
@@ -466,6 +453,11 @@ class LanceDBConnection(DBConnection):
uri = Path(uri)
uri = uri.expanduser().absolute()
Path(uri).mkdir(parents=True, exist_ok=True)
self._uri = str(uri)
self._entered = False
self.read_consistency_interval = read_consistency_interval
self.storage_options = storage_options
self.session = session
if read_consistency_interval is not None:
read_consistency_interval_secs = read_consistency_interval.total_seconds()
@@ -484,32 +476,10 @@ class LanceDBConnection(DBConnection):
session,
)
# TODO: It would be nice if we didn't store self.storage_options but it is
# currently used by the LanceTable.to_lance method. This doesn't _really_
# work because some paths like LanceDBConnection.from_inner will lose the
# storage_options. Also, this class really shouldn't be holding any state
# beyond _conn.
self.storage_options = storage_options
self._conn = AsyncConnection(LOOP.run(do_connect()))
@property
def read_consistency_interval(self) -> Optional[timedelta]:
return LOOP.run(self._conn.get_read_consistency_interval())
@property
def session(self) -> Optional[Session]:
return self._conn.session
@property
def uri(self) -> str:
return self._conn.uri
@classmethod
def from_inner(cls, inner: LanceDbConnection):
return cls(None, _inner=inner)
def __repr__(self) -> str:
val = f"{self.__class__.__name__}(uri={self._conn.uri!r}"
val = f"{self.__class__.__name__}(uri={self._uri!r}"
if self.read_consistency_interval is not None:
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
val += ")"
@@ -519,10 +489,6 @@ class LanceDBConnection(DBConnection):
conn = AsyncConnection(await lancedb_connect(self.uri))
return await conn.table_names(start_after=start_after, limit=limit)
@property
def _inner(self) -> LanceDbConnection:
return self._conn._inner
@override
def list_namespaces(
self,
@@ -882,13 +848,6 @@ class AsyncConnection(object):
def uri(self) -> str:
return self._inner.uri
async def get_read_consistency_interval(self) -> Optional[timedelta]:
interval_secs = await self._inner.get_read_consistency_interval()
if interval_secs is not None:
return timedelta(seconds=interval_secs)
else:
return None
async def list_namespaces(
self,
namespace: List[str] = [],

View File

@@ -3,11 +3,9 @@
from functools import lru_cache
from logging import warning
from typing import List, Union, Optional, Any, Callable
from typing import List, Union, Optional, Any
import numpy as np
import io
import warnings
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
@@ -21,52 +19,35 @@ class ColPaliEmbeddings(EmbeddingFunction):
An embedding function that uses the ColPali engine for
multimodal multi-vector embeddings.
This embedding function supports ColPali models, producing multivector outputs
for both text and image inputs.
This embedding function supports ColQwen2.5 models, producing multivector outputs
for both text and image inputs. The output embeddings are lists of vectors, each
vector being 128-dimensional by default, represented as List[List[float]].
Parameters
----------
model_name : str
The name of the model to use (e.g., "Metric-AI/ColQwen2.5-3b-multilingual-v1.0")
Supports models based on these engines:
- ColPali: "vidore/colpali-v1.3" and others
- ColQwen2.5: "Metric-AI/ColQwen2.5-3b-multilingual-v1.0" and others
- ColQwen2: "vidore/colqwen2-v1.0" and others
- ColSmol: "vidore/colSmol-256M" and others
device : str
The device for inference (default "auto").
The device for inference (default "cuda:0").
dtype : str
Data type for model weights (default "bfloat16").
use_token_pooling : bool
DEPRECATED. Whether to use token pooling. Use `pooling_strategy` instead.
pooling_strategy : str, optional
The token pooling strategy to use, by default "hierarchical".
- "hierarchical": Progressively pools tokens to reduce sequence length.
- "lambda": A simpler pooling that uses a custom `pooling_func`.
pooling_func: typing.Callable, optional
A function to use for pooling when `pooling_strategy` is "lambda".
Whether to use token pooling to reduce embedding size (default True).
pool_factor : int
Factor to reduce sequence length if token pooling is enabled (default 2).
quantization_config : Optional[BitsAndBytesConfig]
Quantization configuration for the model. (default None, bitsandbytes needed)
batch_size : int
Batch size for processing inputs (default 2).
offload_folder: str, optional
Folder to offload model weights if using CPU offloading (default None). This is
useful for large models that do not fit in memory.
"""
model_name: str = "Metric-AI/ColQwen2.5-3b-multilingual-v1.0"
device: str = "auto"
dtype: str = "bfloat16"
use_token_pooling: bool = True
pooling_strategy: Optional[str] = "hierarchical"
pooling_func: Optional[Any] = None
pool_factor: int = 2
quantization_config: Optional[Any] = None
batch_size: int = 2
offload_folder: Optional[str] = None
_model = None
_processor = None
@@ -75,43 +56,15 @@ class ColPaliEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
torch = attempt_import_or_raise("torch", "torch")
if not self.use_token_pooling:
warnings.warn(
"use_token_pooling is deprecated, use pooling_strategy=None instead",
DeprecationWarning,
)
self.pooling_strategy = None
if self.pooling_strategy == "lambda" and self.pooling_func is None:
raise ValueError(
"pooling_func must be provided when pooling_strategy is 'lambda'"
)
device = self.device
if device == "auto":
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
dtype = self.dtype
if device == "mps" and dtype == "bfloat16":
dtype = "float32" # Avoid NaNs on MPS
(
self._model,
self._processor,
self._token_pooler,
) = self._load_model(
self.model_name,
dtype,
device,
self.pooling_strategy,
self.pooling_func,
self.dtype,
self.device,
self.use_token_pooling,
self.quantization_config,
)
@@ -121,26 +74,16 @@ class ColPaliEmbeddings(EmbeddingFunction):
model_name: str,
dtype: str,
device: str,
pooling_strategy: Optional[str],
pooling_func: Optional[Callable],
use_token_pooling: bool,
quantization_config: Optional[Any],
):
"""
Initialize and cache the ColPali model, processor, and token pooler.
"""
if device.startswith("mps"):
# warn some torch ops in late interaction architecture result in nans on mps
warning(
"MPS device detected. Some operations may result in NaNs. "
"If you encounter issues, consider using 'cpu' or 'cuda' devices."
)
torch = attempt_import_or_raise("torch", "torch")
transformers = attempt_import_or_raise("transformers", "transformers")
colpali_engine = attempt_import_or_raise("colpali_engine", "colpali_engine")
from colpali_engine.compression.token_pooling import (
HierarchicalTokenPooler,
LambdaTokenPooler,
)
from colpali_engine.compression.token_pooling import HierarchicalTokenPooler
if quantization_config is not None:
if not isinstance(quantization_config, transformers.BitsAndBytesConfig):
@@ -155,45 +98,21 @@ class ColPaliEmbeddings(EmbeddingFunction):
else:
torch_dtype = torch.float32
model_class, processor_class = None, None
model_name_lower = model_name.lower()
if "colqwen2.5" in model_name_lower:
model_class = colpali_engine.models.ColQwen2_5
processor_class = colpali_engine.models.ColQwen2_5_Processor
elif "colsmol" in model_name_lower or "colidefics3" in model_name_lower:
model_class = colpali_engine.models.ColIdefics3
processor_class = colpali_engine.models.ColIdefics3Processor
elif "colqwen" in model_name_lower:
model_class = colpali_engine.models.ColQwen2
processor_class = colpali_engine.models.ColQwen2Processor
elif "colpali" in model_name_lower:
model_class = colpali_engine.models.ColPali
processor_class = colpali_engine.models.ColPaliProcessor
if model_class is None:
raise ValueError(f"Unsupported model: {model_name}")
model = model_class.from_pretrained(
model = colpali_engine.models.ColQwen2_5.from_pretrained(
model_name,
torch_dtype=torch_dtype,
device_map=device,
quantization_config=quantization_config
if quantization_config is not None
else None,
attn_implementation="flash_attention_2"
if is_flash_attn_2_available()
else None,
low_cpu_mem_usage=True,
).eval()
model = model.to(device)
model = model.to(torch_dtype) # Force cast after moving to device
processor = processor_class.from_pretrained(model_name)
token_pooler = None
if pooling_strategy == "hierarchical":
token_pooler = HierarchicalTokenPooler()
elif pooling_strategy == "lambda":
token_pooler = LambdaTokenPooler(pool_func=pooling_func)
processor = colpali_engine.models.ColQwen2_5_Processor.from_pretrained(
model_name
)
token_pooler = HierarchicalTokenPooler() if use_token_pooling else None
return model, processor, token_pooler
def ndims(self):
@@ -209,7 +128,7 @@ class ColPaliEmbeddings(EmbeddingFunction):
with torch.no_grad():
query_embeddings = self._model(**batch_queries)
if self.pooling_strategy and self._token_pooler is not None:
if self.use_token_pooling and self._token_pooler is not None:
query_embeddings = self._token_pooler.pool_embeddings(
query_embeddings,
pool_factor=self.pool_factor,
@@ -226,20 +145,13 @@ class ColPaliEmbeddings(EmbeddingFunction):
Use token pooling if enabled.
"""
torch = attempt_import_or_raise("torch", "torch")
if self.pooling_strategy and self._token_pooler is not None:
if self.pooling_strategy == "hierarchical":
embeddings = self._token_pooler.pool_embeddings(
embeddings,
pool_factor=self.pool_factor,
padding=True,
padding_side=self._processor.tokenizer.padding_side,
)
elif self.pooling_strategy == "lambda":
embeddings = self._token_pooler.pool_embeddings(
embeddings,
padding=True,
padding_side=self._processor.tokenizer.padding_side,
)
if self.use_token_pooling and self._token_pooler is not None:
embeddings = self._token_pooler.pool_embeddings(
embeddings,
pool_factor=self.pool_factor,
padding=True,
padding_side=self._processor.tokenizer.padding_side,
)
if isinstance(embeddings, torch.Tensor):
tensors = embeddings.detach().cpu()
@@ -267,7 +179,6 @@ class ColPaliEmbeddings(EmbeddingFunction):
)
with torch.no_grad():
query_embeddings = self._model(**batch_queries)
query_embeddings = torch.nan_to_num(query_embeddings)
all_embeddings.extend(self._process_embeddings(query_embeddings))
return all_embeddings
@@ -314,7 +225,6 @@ class ColPaliEmbeddings(EmbeddingFunction):
)
with torch.no_grad():
image_embeddings = self._model(**batch_images)
image_embeddings = torch.nan_to_num(image_embeddings)
all_embeddings.extend(self._process_embeddings(image_embeddings))
return all_embeddings

View File

@@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import base64
import os
from typing import ClassVar, TYPE_CHECKING, List, Union, Any, Generator
from typing import ClassVar, TYPE_CHECKING, List, Union, Any
from pathlib import Path
from urllib.parse import urlparse
@@ -19,23 +19,6 @@ from .utils import api_key_not_found_help, IMAGES, TEXT
if TYPE_CHECKING:
import PIL
# Token limits for different VoyageAI models
VOYAGE_TOTAL_TOKEN_LIMITS = {
"voyage-context-3": 32_000,
"voyage-3.5-lite": 1_000_000,
"voyage-3.5": 320_000,
"voyage-3-lite": 120_000,
"voyage-3": 120_000,
"voyage-multimodal-3": 120_000,
"voyage-finance-2": 120_000,
"voyage-multilingual-2": 120_000,
"voyage-law-2": 120_000,
"voyage-code-2": 120_000,
}
# Batch size for embedding requests (max number of items per batch)
BATCH_SIZE = 1000
def is_valid_url(text):
try:
@@ -137,9 +120,6 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
name: str
The name of the model to use. List of acceptable models:
* voyage-context-3
* voyage-3.5
* voyage-3.5-lite
* voyage-3
* voyage-3-lite
* voyage-multimodal-3
@@ -177,35 +157,25 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
name: str
client: ClassVar = None
text_embedding_models: list = [
"voyage-3.5",
"voyage-3.5-lite",
"voyage-3",
"voyage-3-lite",
"voyage-finance-2",
"voyage-multilingual-2",
"voyage-law-2",
"voyage-code-2",
]
multimodal_embedding_models: list = ["voyage-multimodal-3"]
contextual_embedding_models: list = ["voyage-context-3"]
def _is_multimodal_model(self, model_name: str):
return (
model_name in self.multimodal_embedding_models or "multimodal" in model_name
)
def _is_contextual_model(self, model_name: str):
return model_name in self.contextual_embedding_models or "context" in model_name
def ndims(self):
if self.name == "voyage-3-lite":
return 512
elif self.name == "voyage-code-2":
return 1536
elif self.name in [
"voyage-context-3",
"voyage-3.5",
"voyage-3.5-lite",
"voyage-3",
"voyage-multimodal-3",
"voyage-finance-2",
@@ -237,11 +207,6 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
result = client.multimodal_embed(
inputs=[[query]], model=self.name, input_type="query", **kwargs
)
elif self._is_contextual_model(self.name):
result = client.contextualized_embed(
inputs=[[query]], model=self.name, input_type="query", **kwargs
)
result = result.results[0]
else:
result = client.embed(
texts=[query], model=self.name, input_type="query", **kwargs
@@ -266,164 +231,18 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
List[np.array]: the list of embeddings
"""
client = VoyageAIEmbeddingFunction._get_client()
# For multimodal models, check if inputs contain images
if self._is_multimodal_model(self.name):
sanitized = sanitize_multimodal_input(inputs)
has_images = any(
inp["content"][0].get("type") != "text" for inp in sanitized
inputs = sanitize_multimodal_input(inputs)
result = client.multimodal_embed(
inputs=inputs, model=self.name, input_type="document", **kwargs
)
if has_images:
# Use non-batched API for images
result = client.multimodal_embed(
inputs=sanitized, model=self.name, input_type="document", **kwargs
)
return result.embeddings
# Extract texts for batching
inputs = [inp["content"][0]["text"] for inp in sanitized]
else:
inputs = sanitize_text_input(inputs)
result = client.embed(
texts=inputs, model=self.name, input_type="document", **kwargs
)
# Use batching for all text inputs
return self._embed_with_batching(
client, inputs, input_type="document", **kwargs
)
def _build_batches(
self, client, texts: List[str]
) -> Generator[List[str], None, None]:
"""
Generate batches of texts based on token limits using a generator.
Parameters
----------
client : voyageai.Client
The VoyageAI client instance.
texts : List[str]
List of texts to batch.
Yields
------
List[str]: Batches of texts.
"""
if not texts:
return
max_tokens_per_batch = VOYAGE_TOTAL_TOKEN_LIMITS.get(self.name, 120_000)
current_batch: List[str] = []
current_batch_tokens = 0
# Tokenize all texts in one API call
token_lists = client.tokenize(texts, model=self.name)
token_counts = [len(token_list) for token_list in token_lists]
for i, text in enumerate(texts):
n_tokens = token_counts[i]
# Check if adding this text would exceed limits
if current_batch and (
len(current_batch) >= BATCH_SIZE
or (current_batch_tokens + n_tokens > max_tokens_per_batch)
):
# Yield the current batch and start a new one
yield current_batch
current_batch = []
current_batch_tokens = 0
current_batch.append(text)
current_batch_tokens += n_tokens
# Yield the last batch (always has at least one text)
if current_batch:
yield current_batch
def _get_embed_function(
self, client, input_type: str = "document", **kwargs
) -> callable:
"""
Get the appropriate embedding function based on model type.
Parameters
----------
client : voyageai.Client
The VoyageAI client instance.
input_type : str
Either "query" or "document"
**kwargs
Additional arguments to pass to the embedding API
Returns
-------
callable: A function that takes a batch of texts and returns embeddings.
"""
if self._is_multimodal_model(self.name):
def embed_batch(batch: List[str]) -> List[np.array]:
batch_inputs = sanitize_multimodal_input(batch)
result = client.multimodal_embed(
inputs=batch_inputs,
model=self.name,
input_type=input_type,
**kwargs,
)
return result.embeddings
return embed_batch
elif self._is_contextual_model(self.name):
def embed_batch(batch: List[str]) -> List[np.array]:
result = client.contextualized_embed(
inputs=[batch], model=self.name, input_type=input_type, **kwargs
)
return result.results[0].embeddings
return embed_batch
else:
def embed_batch(batch: List[str]) -> List[np.array]:
result = client.embed(
texts=batch, model=self.name, input_type=input_type, **kwargs
)
return result.embeddings
return embed_batch
def _embed_with_batching(
self, client, texts: List[str], input_type: str = "document", **kwargs
) -> List[np.array]:
"""
Embed texts with automatic batching based on token limits.
Parameters
----------
client : voyageai.Client
The VoyageAI client instance.
texts : List[str]
List of texts to embed.
input_type : str
Either "query" or "document"
**kwargs
Additional arguments to pass to the embedding API
Returns
-------
List[np.array]: List of embeddings.
"""
if not texts:
return []
# Get the appropriate embedding function for this model type
embed_fn = self._get_embed_function(client, input_type=input_type, **kwargs)
# Process each batch
all_embeddings = []
for batch in self._build_batches(client, texts):
batch_embeddings = embed_fn(batch)
all_embeddings.extend(batch_embeddings)
return all_embeddings
return result.embeddings
@staticmethod
def _get_client():

View File

@@ -12,18 +12,13 @@ from __future__ import annotations
from typing import Dict, Iterable, List, Optional, Union
import os
import sys
if sys.version_info >= (3, 12):
from typing import override
else:
from overrides import override
from lancedb.db import DBConnection
from lancedb.table import LanceTable, Table
from lancedb.util import validate_table_name
from lancedb.common import validate_schema
from lancedb.table import sanitize_create_table
from overrides import override
from lance_namespace import LanceNamespace, connect as namespace_connect
from lance_namespace_urllib3_client.models import (

View File

@@ -1,72 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from ._lancedb import async_permutation_builder
from .table import LanceTable
from .background_loop import LOOP
from typing import Optional
class PermutationBuilder:
def __init__(self, table: LanceTable):
self._async = async_permutation_builder(table)
def select(self, projections: dict[str, str]) -> "PermutationBuilder":
self._async.select(projections)
return self
def split_random(
self,
*,
ratios: Optional[list[float]] = None,
counts: Optional[list[int]] = None,
fixed: Optional[int] = None,
seed: Optional[int] = None,
) -> "PermutationBuilder":
self._async.split_random(ratios=ratios, counts=counts, fixed=fixed, seed=seed)
return self
def split_hash(
self,
columns: list[str],
split_weights: list[int],
*,
discard_weight: Optional[int] = None,
) -> "PermutationBuilder":
self._async.split_hash(columns, split_weights, discard_weight=discard_weight)
return self
def split_sequential(
self,
*,
ratios: Optional[list[float]] = None,
counts: Optional[list[int]] = None,
fixed: Optional[int] = None,
) -> "PermutationBuilder":
self._async.split_sequential(ratios=ratios, counts=counts, fixed=fixed)
return self
def split_calculated(self, calculation: str) -> "PermutationBuilder":
self._async.split_calculated(calculation)
return self
def shuffle(
self, *, seed: Optional[int] = None, clump_size: Optional[int] = None
) -> "PermutationBuilder":
self._async.shuffle(seed=seed, clump_size=clump_size)
return self
def filter(self, filter: str) -> "PermutationBuilder":
self._async.filter(filter)
return self
def execute(self) -> LanceTable:
async def do_execute():
inner_tbl = await self._async.execute()
return LanceTable.from_inner(inner_tbl)
return LOOP.run(do_execute())
def permutation_builder(table: LanceTable) -> PermutationBuilder:
return PermutationBuilder(table)

View File

@@ -1237,14 +1237,6 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._refine_factor = refine_factor
return self
def output_schema(self) -> pa.Schema:
"""
Return the output schema for the query
This does not execute the query.
"""
return self._table._output_schema(self.to_query_object())
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
"""
Execute the query and return the results as an
@@ -1460,14 +1452,6 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
offset=self._offset,
)
def output_schema(self) -> pa.Schema:
"""
Return the output schema for the query
This does not execute the query.
"""
return self._table._output_schema(self.to_query_object())
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
path, fs, exist = self._table._get_fts_index_path()
if exist:
@@ -1611,10 +1595,6 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
offset=self._offset,
)
def output_schema(self) -> pa.Schema:
query = self.to_query_object()
return self._table._output_schema(query)
def to_batches(
self, /, batch_size: Optional[int] = None, timeout: Optional[timedelta] = None
) -> pa.RecordBatchReader:
@@ -2258,14 +2238,6 @@ class AsyncQueryBase(object):
)
)
async def output_schema(self) -> pa.Schema:
"""
Return the output schema for the query
This does not execute the query.
"""
return await self._inner.output_schema()
async def to_arrow(self, timeout: Optional[timedelta] = None) -> pa.Table:
"""
Execute the query and collect the results into an Apache Arrow Table.
@@ -3221,14 +3193,6 @@ class BaseQueryBuilder(object):
self._inner.with_row_id()
return self
def output_schema(self) -> pa.Schema:
"""
Return the output schema for the query
This does not execute the query.
"""
return LOOP.run(self._inner.output_schema())
def to_batches(
self,
*,

View File

@@ -5,20 +5,15 @@
from datetime import timedelta
import logging
from concurrent.futures import ThreadPoolExecutor
import sys
from typing import Any, Dict, Iterable, List, Optional, Union
from urllib.parse import urlparse
import warnings
if sys.version_info >= (3, 12):
from typing import override
else:
from overrides import override
# Remove this import to fix circular dependency
# from lancedb import connect_async
from lancedb.remote import ClientConfig
import pyarrow as pa
from overrides import override
from ..common import DATA
from ..db import DBConnection, LOOP

View File

@@ -114,7 +114,7 @@ class RemoteTable(Table):
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST", "scalar"] = "scalar",
*,
replace: bool = False,
wait_timeout: Optional[timedelta] = None,
wait_timeout: timedelta = None,
name: Optional[str] = None,
):
"""Creates a scalar index
@@ -153,7 +153,7 @@ class RemoteTable(Table):
column: str,
*,
replace: bool = False,
wait_timeout: Optional[timedelta] = None,
wait_timeout: timedelta = None,
with_position: bool = False,
# tokenizer configs:
base_tokenizer: str = "simple",
@@ -436,9 +436,6 @@ class RemoteTable(Table):
def _analyze_plan(self, query: Query) -> str:
return LOOP.run(self._table._analyze_plan(query))
def _output_schema(self, query: Query) -> pa.Schema:
return LOOP.run(self._table._output_schema(query))
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
"""Returns a [`LanceMergeInsertBuilder`][lancedb.merge.LanceMergeInsertBuilder]
that can be used to create a "merge insert" operation.

View File

@@ -21,8 +21,6 @@ class VoyageAIReranker(Reranker):
----------
model_name : str, default "rerank-english-v2.0"
The name of the cross encoder model to use. Available voyageai models are:
- rerank-2.5
- rerank-2.5-lite
- rerank-2
- rerank-2-lite
column : str, default "text"

View File

@@ -74,7 +74,6 @@ from .index import lang_mapping
if TYPE_CHECKING:
from .db import LanceDBConnection
from ._lancedb import (
Table as LanceDBTable,
OptimizeStats,
@@ -89,6 +88,7 @@ if TYPE_CHECKING:
MergeResult,
UpdateResult,
)
from .db import LanceDBConnection
from .index import IndexConfig
import pandas
import PIL
@@ -1248,9 +1248,6 @@ class Table(ABC):
@abstractmethod
def _analyze_plan(self, query: Query) -> str: ...
@abstractmethod
def _output_schema(self, query: Query) -> pa.Schema: ...
@abstractmethod
def _do_merge(
self,
@@ -1710,38 +1707,22 @@ class LanceTable(Table):
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
_async: AsyncTable = None,
):
self._conn = connection
self._namespace = namespace
if _async is not None:
self._table = _async
else:
self._table = LOOP.run(
connection._conn.open_table(
name,
namespace=namespace,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
self._table = LOOP.run(
connection._conn.open_table(
name,
namespace=namespace,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
)
@property
def name(self) -> str:
return self._table.name
@classmethod
def from_inner(cls, tbl: LanceDBTable):
from .db import LanceDBConnection
async_tbl = AsyncTable(tbl)
conn = LanceDBConnection.from_inner(tbl.database())
return cls(
conn,
async_tbl.name,
_async=async_tbl,
)
@classmethod
def open(cls, db, name, *, namespace: List[str] = [], **kwargs):
tbl = cls(db, name, namespace=namespace, **kwargs)
@@ -2764,9 +2745,6 @@ class LanceTable(Table):
def _analyze_plan(self, query: Query) -> str:
return LOOP.run(self._table._analyze_plan(query))
def _output_schema(self, query: Query) -> pa.Schema:
return LOOP.run(self._table._output_schema(query))
def _do_merge(
self,
merge: LanceMergeInsertBuilder,
@@ -2778,10 +2756,6 @@ class LanceTable(Table):
self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)
)
@property
def _inner(self) -> LanceDBTable:
return self._table._inner
@deprecation.deprecated(
deprecated_in="0.21.0",
current_version=__version__,
@@ -3924,10 +3898,6 @@ class AsyncTable:
async_query = self._sync_query_to_async(query)
return await async_query.analyze_plan()
async def _output_schema(self, query: Query) -> pa.Schema:
async_query = self._sync_query_to_async(query)
return await async_query.output_schema()
async def _do_merge(
self,
merge: LanceMergeInsertBuilder,

View File

@@ -532,27 +532,6 @@ def test_voyageai_embedding_function():
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
)
def test_voyageai_embedding_function_contextual_model():
voyageai = (
get_registry().get("voyageai").create(name="voyage-context-3", max_retries=0)
)
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
@@ -677,106 +656,6 @@ def test_colpali(tmp_path):
)
@pytest.mark.slow
@pytest.mark.skipif(
importlib.util.find_spec("colpali_engine") is None,
reason="colpali_engine not installed",
)
@pytest.mark.parametrize(
"model_name",
[
"vidore/colSmol-256M",
"vidore/colqwen2.5-v0.2",
"vidore/colpali-v1.3",
"vidore/colqwen2-v1.0",
],
)
def test_colpali_models(tmp_path, model_name):
import requests
from lancedb.pydantic import LanceModel
db = lancedb.connect(tmp_path)
registry = get_registry()
func = registry.get("colpali").create(model_name=model_name)
class MediaItems(LanceModel):
text: str
image_uri: str = func.SourceField()
image_bytes: bytes = func.SourceField()
image_vectors: MultiVector(func.ndims()) = func.VectorField()
table = db.create_table(f"media_{model_name.replace('/', '_')}", schema=MediaItems)
texts = [
"a cute cat playing with yarn",
]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
]
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"text": texts, "image_uri": uris, "image_bytes": image_bytes})
)
image_results = (
table.search("fluffy companion", vector_column_name="image_vectors")
.limit(1)
.to_pydantic(MediaItems)[0]
)
assert "cat" in image_results.text.lower() or "puppy" in image_results.text.lower()
first_row = table.to_arrow().to_pylist()[0]
assert len(first_row["image_vectors"]) > 1, "Should have multiple image vectors"
assert len(first_row["image_vectors"][0]) == func.ndims(), (
"Vector dimension mismatch"
)
@pytest.mark.slow
@pytest.mark.skipif(
importlib.util.find_spec("colpali_engine") is None,
reason="colpali_engine not installed",
)
def test_colpali_pooling(tmp_path):
registry = get_registry()
model_name = "vidore/colSmol-256M"
test_sentence = "a test sentence for pooling"
# 1. Get embeddings with no pooling
func_no_pool = registry.get("colpali").create(
model_name=model_name, pooling_strategy=None
)
unpooled_embeddings = func_no_pool.generate_text_embeddings([test_sentence])[0]
original_length = len(unpooled_embeddings)
assert original_length > 1
# 2. Test hierarchical pooling
func_hierarchical = registry.get("colpali").create(
model_name=model_name, pooling_strategy="hierarchical", pool_factor=2
)
hierarchical_embeddings = func_hierarchical.generate_text_embeddings(
[test_sentence]
)[0]
expected_hierarchical_length = (original_length + 1) // 2
assert len(hierarchical_embeddings) == expected_hierarchical_length
# 3. Test lambda pooling
def simple_pool_func(tensor):
return tensor[::2]
func_lambda = registry.get("colpali").create(
model_name=model_name,
pooling_strategy="lambda",
pooling_func=simple_pool_func,
)
lambda_embeddings = func_lambda.generate_text_embeddings([test_sentence])[0]
expected_lambda_length = (original_length + 1) // 2
assert len(lambda_embeddings) == expected_lambda_length
@pytest.mark.slow
def test_siglip(tmp_path, test_images, query_image_bytes):
from PIL import Image

View File

@@ -59,14 +59,6 @@ class TempNamespace(LanceNamespace):
root
] # Reference to shared namespaces
def namespace_id(self) -> str:
"""Return a human-readable unique identifier for this namespace instance.
Returns:
A unique identifier string based on the root directory
"""
return f"TempNamespace {{ root: '{self.config.root}' }}"
def list_tables(self, request: ListTablesRequest) -> ListTablesResponse:
"""List all tables in the namespace."""
if not request.id:

View File

@@ -1,462 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import pyarrow as pa
import pytest
from lancedb.permutation import permutation_builder
def test_split_random_ratios(mem_db):
"""Test random splitting with ratios."""
tbl = mem_db.create_table(
"test_table", pa.table({"x": range(100), "y": range(100)})
)
permutation_tbl = permutation_builder(tbl).split_random(ratios=[0.3, 0.7]).execute()
# Check that the table was created and has data
assert permutation_tbl.count_rows() == 100
# Check that split_id column exists and has correct values
data = permutation_tbl.search(None).to_arrow().to_pydict()
split_ids = data["split_id"]
assert set(split_ids) == {0, 1}
# Check approximate split sizes (allowing for rounding)
split_0_count = split_ids.count(0)
split_1_count = split_ids.count(1)
assert 25 <= split_0_count <= 35 # ~30% ± tolerance
assert 65 <= split_1_count <= 75 # ~70% ± tolerance
def test_split_random_counts(mem_db):
"""Test random splitting with absolute counts."""
tbl = mem_db.create_table(
"test_table", pa.table({"x": range(100), "y": range(100)})
)
permutation_tbl = permutation_builder(tbl).split_random(counts=[20, 30]).execute()
# Check that we have exactly the requested counts
assert permutation_tbl.count_rows() == 50
data = permutation_tbl.search(None).to_arrow().to_pydict()
split_ids = data["split_id"]
assert split_ids.count(0) == 20
assert split_ids.count(1) == 30
def test_split_random_fixed(mem_db):
"""Test random splitting with fixed number of splits."""
tbl = mem_db.create_table(
"test_table", pa.table({"x": range(100), "y": range(100)})
)
permutation_tbl = permutation_builder(tbl).split_random(fixed=4).execute()
# Check that we have 4 splits with 25 rows each
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
split_ids = data["split_id"]
assert set(split_ids) == {0, 1, 2, 3}
for split_id in range(4):
assert split_ids.count(split_id) == 25
def test_split_random_with_seed(mem_db):
"""Test that seeded random splits are reproducible."""
tbl = mem_db.create_table("test_table", pa.table({"x": range(50), "y": range(50)}))
# Create two identical permutations with same seed
perm1 = permutation_builder(tbl).split_random(ratios=[0.6, 0.4], seed=42).execute()
perm2 = permutation_builder(tbl).split_random(ratios=[0.6, 0.4], seed=42).execute()
# Results should be identical
data1 = perm1.search(None).to_arrow().to_pydict()
data2 = perm2.search(None).to_arrow().to_pydict()
assert data1["row_id"] == data2["row_id"]
assert data1["split_id"] == data2["split_id"]
def test_split_hash(mem_db):
"""Test hash-based splitting."""
tbl = mem_db.create_table(
"test_table",
pa.table(
{
"id": range(100),
"category": (["A", "B", "C"] * 34)[:100], # Repeating pattern
"value": range(100),
}
),
)
permutation_tbl = (
permutation_builder(tbl)
.split_hash(["category"], [1, 1], discard_weight=0)
.execute()
)
# Should have all 100 rows (no discard)
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
split_ids = data["split_id"]
assert set(split_ids) == {0, 1}
# Verify that each split has roughly 50 rows (allowing for hash variance)
split_0_count = split_ids.count(0)
split_1_count = split_ids.count(1)
assert 30 <= split_0_count <= 70 # ~50 ± 20 tolerance for hash distribution
assert 30 <= split_1_count <= 70 # ~50 ± 20 tolerance for hash distribution
# Hash splits should be deterministic - same category should go to same split
# Let's verify by creating another permutation and checking consistency
perm2 = (
permutation_builder(tbl)
.split_hash(["category"], [1, 1], discard_weight=0)
.execute()
)
data2 = perm2.search(None).to_arrow().to_pydict()
assert data["split_id"] == data2["split_id"] # Should be identical
def test_split_hash_with_discard(mem_db):
"""Test hash-based splitting with discard weight."""
tbl = mem_db.create_table(
"test_table",
pa.table({"id": range(100), "category": ["A", "B"] * 50, "value": range(100)}),
)
permutation_tbl = (
permutation_builder(tbl)
.split_hash(["category"], [1, 1], discard_weight=2) # Should discard ~50%
.execute()
)
# Should have fewer than 100 rows due to discard
row_count = permutation_tbl.count_rows()
assert row_count < 100
assert row_count > 0 # But not empty
def test_split_sequential(mem_db):
"""Test sequential splitting."""
tbl = mem_db.create_table(
"test_table", pa.table({"x": range(100), "y": range(100)})
)
permutation_tbl = (
permutation_builder(tbl).split_sequential(counts=[30, 40]).execute()
)
assert permutation_tbl.count_rows() == 70
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
split_ids = data["split_id"]
# Sequential should maintain order
assert row_ids == sorted(row_ids)
# First 30 should be split 0, next 40 should be split 1
assert split_ids[:30] == [0] * 30
assert split_ids[30:] == [1] * 40
def test_split_calculated(mem_db):
"""Test calculated splitting."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(100), "value": range(100)})
)
permutation_tbl = (
permutation_builder(tbl)
.split_calculated("id % 3") # Split based on id modulo 3
.execute()
)
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
split_ids = data["split_id"]
# Verify the calculation: each row's split_id should equal row_id % 3
for i, (row_id, split_id) in enumerate(zip(row_ids, split_ids)):
assert split_id == row_id % 3
def test_split_error_cases(mem_db):
"""Test error handling for invalid split parameters."""
tbl = mem_db.create_table("test_table", pa.table({"x": range(10), "y": range(10)}))
# Test split_random with no parameters
with pytest.raises(Exception):
permutation_builder(tbl).split_random().execute()
# Test split_random with multiple parameters
with pytest.raises(Exception):
permutation_builder(tbl).split_random(
ratios=[0.5, 0.5], counts=[5, 5]
).execute()
# Test split_sequential with no parameters
with pytest.raises(Exception):
permutation_builder(tbl).split_sequential().execute()
# Test split_sequential with multiple parameters
with pytest.raises(Exception):
permutation_builder(tbl).split_sequential(ratios=[0.5, 0.5], fixed=2).execute()
def test_shuffle_no_seed(mem_db):
"""Test shuffling without a seed."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(100), "value": range(100)})
)
# Create a permutation with shuffling (no seed)
permutation_tbl = permutation_builder(tbl).shuffle().execute()
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
# Row IDs should not be in sequential order due to shuffling
# This is probabilistic but with 100 rows, it's extremely unlikely they'd stay
# in order
assert row_ids != list(range(100))
def test_shuffle_with_seed(mem_db):
"""Test that shuffling with a seed is reproducible."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(50), "value": range(50)})
)
# Create two identical permutations with same shuffle seed
perm1 = permutation_builder(tbl).shuffle(seed=42).execute()
perm2 = permutation_builder(tbl).shuffle(seed=42).execute()
# Results should be identical due to same seed
data1 = perm1.search(None).to_arrow().to_pydict()
data2 = perm2.search(None).to_arrow().to_pydict()
assert data1["row_id"] == data2["row_id"]
assert data1["split_id"] == data2["split_id"]
def test_shuffle_with_clump_size(mem_db):
"""Test shuffling with clump size."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(100), "value": range(100)})
)
# Create a permutation with shuffling using clumps
permutation_tbl = (
permutation_builder(tbl)
.shuffle(clump_size=10) # 10-row clumps
.execute()
)
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
for i in range(10):
start = row_ids[i * 10]
assert row_ids[i * 10 : (i + 1) * 10] == list(range(start, start + 10))
def test_shuffle_different_seeds(mem_db):
"""Test that different seeds produce different shuffle orders."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(50), "value": range(50)})
)
# Create two permutations with different shuffle seeds
perm1 = permutation_builder(tbl).split_random(fixed=2).shuffle(seed=42).execute()
perm2 = permutation_builder(tbl).split_random(fixed=2).shuffle(seed=123).execute()
# Results should be different due to different seeds
data1 = perm1.search(None).to_arrow().to_pydict()
data2 = perm2.search(None).to_arrow().to_pydict()
# Row order should be different
assert data1["row_id"] != data2["row_id"]
def test_shuffle_combined_with_splits(mem_db):
"""Test shuffling combined with different split strategies."""
tbl = mem_db.create_table(
"test_table",
pa.table(
{
"id": range(100),
"category": (["A", "B", "C"] * 34)[:100],
"value": range(100),
}
),
)
# Test shuffle with random splits
perm_random = (
permutation_builder(tbl)
.split_random(ratios=[0.6, 0.4], seed=42)
.shuffle(seed=123, clump_size=None)
.execute()
)
# Test shuffle with hash splits
perm_hash = (
permutation_builder(tbl)
.split_hash(["category"], [1, 1], discard_weight=0)
.shuffle(seed=456, clump_size=5)
.execute()
)
# Test shuffle with sequential splits
perm_sequential = (
permutation_builder(tbl)
.split_sequential(counts=[40, 35])
.shuffle(seed=789, clump_size=None)
.execute()
)
# Verify all permutations work and have expected properties
assert perm_random.count_rows() == 100
assert perm_hash.count_rows() == 100
assert perm_sequential.count_rows() == 75
# Verify shuffle affected the order
data_random = perm_random.search(None).to_arrow().to_pydict()
data_sequential = perm_sequential.search(None).to_arrow().to_pydict()
assert data_random["row_id"] != list(range(100))
assert data_sequential["row_id"] != list(range(75))
def test_no_shuffle_maintains_order(mem_db):
"""Test that not calling shuffle maintains the original order."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(50), "value": range(50)})
)
# Create permutation without shuffle (should maintain some order)
permutation_tbl = (
permutation_builder(tbl)
.split_sequential(counts=[25, 25]) # Sequential maintains order
.execute()
)
assert permutation_tbl.count_rows() == 50
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
# With sequential splits and no shuffle, should maintain order
assert row_ids == list(range(50))
def test_filter_basic(mem_db):
"""Test basic filtering functionality."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(100), "value": range(100, 200)})
)
# Filter to only include rows where id < 50
permutation_tbl = permutation_builder(tbl).filter("id < 50").execute()
assert permutation_tbl.count_rows() == 50
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
# All row_ids should be less than 50
assert all(row_id < 50 for row_id in row_ids)
def test_filter_with_splits(mem_db):
"""Test filtering combined with split strategies."""
tbl = mem_db.create_table(
"test_table",
pa.table(
{
"id": range(100),
"category": (["A", "B", "C"] * 34)[:100],
"value": range(100),
}
),
)
# Filter to only category A and B, then split
permutation_tbl = (
permutation_builder(tbl)
.filter("category IN ('A', 'B')")
.split_random(ratios=[0.5, 0.5])
.execute()
)
# Should have fewer than 100 rows due to filtering
row_count = permutation_tbl.count_rows()
assert row_count == 67
data = permutation_tbl.search(None).to_arrow().to_pydict()
categories = data["category"]
# All categories should be A or B
assert all(cat in ["A", "B"] for cat in categories)
def test_filter_with_shuffle(mem_db):
"""Test filtering combined with shuffling."""
tbl = mem_db.create_table(
"test_table",
pa.table(
{
"id": range(100),
"category": (["A", "B", "C", "D"] * 25)[:100],
"value": range(100),
}
),
)
# Filter and shuffle
permutation_tbl = (
permutation_builder(tbl)
.filter("category IN ('A', 'C')")
.shuffle(seed=42)
.execute()
)
row_count = permutation_tbl.count_rows()
assert row_count == 50 # Should have 50 rows (A and C categories)
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
assert row_ids != sorted(row_ids)
def test_filter_empty_result(mem_db):
"""Test filtering that results in empty set."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(10), "value": range(10)})
)
# Filter that matches nothing
permutation_tbl = (
permutation_builder(tbl)
.filter("value > 100") # No values > 100 in our data
.execute()
)
assert permutation_tbl.count_rows() == 0

View File

@@ -1298,79 +1298,6 @@ async def test_query_serialization_async(table_async: AsyncTable):
)
def test_query_schema(tmp_path):
db = lancedb.connect(tmp_path)
tbl = db.create_table(
"test",
pa.table(
{
"a": [1, 2, 3],
"text": ["a", "b", "c"],
"vec": pa.array(
[[1, 2], [3, 4], [5, 6]], pa.list_(pa.float32(), list_size=2)
),
}
),
)
assert tbl.search(None).output_schema() == pa.schema(
{
"a": pa.int64(),
"text": pa.string(),
"vec": pa.list_(pa.float32(), list_size=2),
}
)
assert tbl.search(None).select({"bl": "a * 2"}).output_schema() == pa.schema(
{"bl": pa.int64()}
)
assert tbl.search([1, 2]).select(["a"]).output_schema() == pa.schema(
{"a": pa.int64(), "_distance": pa.float32()}
)
assert tbl.search("blah").select(["a"]).output_schema() == pa.schema(
{"a": pa.int64()}
)
assert tbl.take_offsets([0]).select(["text"]).output_schema() == pa.schema(
{"text": pa.string()}
)
@pytest.mark.asyncio
async def test_query_schema_async(tmp_path):
db = await lancedb.connect_async(tmp_path)
tbl = await db.create_table(
"test",
pa.table(
{
"a": [1, 2, 3],
"text": ["a", "b", "c"],
"vec": pa.array(
[[1, 2], [3, 4], [5, 6]], pa.list_(pa.float32(), list_size=2)
),
}
),
)
assert await tbl.query().output_schema() == pa.schema(
{
"a": pa.int64(),
"text": pa.string(),
"vec": pa.list_(pa.float32(), list_size=2),
}
)
assert await tbl.query().select({"bl": "a * 2"}).output_schema() == pa.schema(
{"bl": pa.int64()}
)
assert await tbl.vector_search([1, 2]).select(["a"]).output_schema() == pa.schema(
{"a": pa.int64(), "_distance": pa.float32()}
)
assert await (await tbl.search("blah")).select(["a"]).output_schema() == pa.schema(
{"a": pa.int64()}
)
assert await tbl.take_offsets([0]).select(["text"]).output_schema() == pa.schema(
{"text": pa.string()}
)
def test_query_timeout(tmp_path):
# Use local directory instead of memory:// to add a bit of latency to
# operations so a timeout of zero will trigger exceptions.

View File

@@ -484,7 +484,7 @@ def test_jina_reranker(tmp_path, use_tantivy):
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_voyageai_reranker(tmp_path, use_tantivy):
pytest.importorskip("voyageai")
reranker = VoyageAIReranker(model_name="rerank-2.5")
reranker = VoyageAIReranker(model_name="rerank-2")
table, schema = get_test_table(tmp_path, use_tantivy)
_run_test_reranker(reranker, table, "single player experience", None, schema)

View File

@@ -4,10 +4,7 @@
use std::{collections::HashMap, sync::Arc, time::Duration};
use arrow::{datatypes::Schema, ffi_stream::ArrowArrayStreamReader, pyarrow::FromPyArrow};
use lancedb::{
connection::Connection as LanceConnection,
database::{CreateTableMode, ReadConsistency},
};
use lancedb::{connection::Connection as LanceConnection, database::CreateTableMode};
use pyo3::{
exceptions::{PyRuntimeError, PyValueError},
pyclass, pyfunction, pymethods, Bound, FromPyObject, Py, PyAny, PyRef, PyResult, Python,
@@ -26,7 +23,7 @@ impl Connection {
Self { inner: Some(inner) }
}
pub(crate) fn get_inner(&self) -> PyResult<&LanceConnection> {
fn get_inner(&self) -> PyResult<&LanceConnection> {
self.inner
.as_ref()
.ok_or_else(|| PyRuntimeError::new_err("Connection is closed"))
@@ -66,18 +63,6 @@ impl Connection {
self.get_inner().map(|inner| inner.uri().to_string())
}
#[pyo3(signature = ())]
pub fn get_read_consistency_interval(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
future_into_py(self_.py(), async move {
Ok(match inner.read_consistency().await.infer_error()? {
ReadConsistency::Manual => None,
ReadConsistency::Eventual(duration) => Some(duration.as_secs_f64()),
ReadConsistency::Strong => Some(0.0_f64),
})
})
}
#[pyo3(signature = (namespace=vec![], start_after=None, limit=None))]
pub fn table_names(
self_: PyRef<'_, Self>,

View File

@@ -5,7 +5,6 @@ use arrow::RecordBatchStream;
use connection::{connect, Connection};
use env_logger::Env;
use index::IndexConfig;
use permutation::PyAsyncPermutationBuilder;
use pyo3::{
pymodule,
types::{PyModule, PyModuleMethods},
@@ -23,7 +22,6 @@ pub mod connection;
pub mod error;
pub mod header;
pub mod index;
pub mod permutation;
pub mod query;
pub mod session;
pub mod table;
@@ -51,9 +49,7 @@ pub fn _lancedb(_py: Python, m: &Bound<'_, PyModule>) -> PyResult<()> {
m.add_class::<DeleteResult>()?;
m.add_class::<DropColumnsResult>()?;
m.add_class::<UpdateResult>()?;
m.add_class::<PyAsyncPermutationBuilder>()?;
m.add_function(wrap_pyfunction!(connect, m)?)?;
m.add_function(wrap_pyfunction!(permutation::async_permutation_builder, m)?)?;
m.add_function(wrap_pyfunction!(util::validate_table_name, m)?)?;
m.add("__version__", env!("CARGO_PKG_VERSION"))?;
Ok(())

View File

@@ -1,170 +0,0 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::{Arc, Mutex};
use crate::{error::PythonErrorExt, table::Table};
use lancedb::dataloader::{
permutation::builder::{PermutationBuilder as LancePermutationBuilder, ShuffleStrategy},
permutation::split::{SplitSizes, SplitStrategy},
};
use pyo3::{
exceptions::PyRuntimeError, pyclass, pymethods, types::PyAnyMethods, Bound, PyAny, PyRefMut,
PyResult,
};
use pyo3_async_runtimes::tokio::future_into_py;
/// Create a permutation builder for the given table
#[pyo3::pyfunction]
pub fn async_permutation_builder(table: Bound<'_, PyAny>) -> PyResult<PyAsyncPermutationBuilder> {
let table = table.getattr("_inner")?.downcast_into::<Table>()?;
let inner_table = table.borrow().inner_ref()?.clone();
let inner_builder = LancePermutationBuilder::new(inner_table);
Ok(PyAsyncPermutationBuilder {
state: Arc::new(Mutex::new(PyAsyncPermutationBuilderState {
builder: Some(inner_builder),
})),
})
}
struct PyAsyncPermutationBuilderState {
builder: Option<LancePermutationBuilder>,
}
#[pyclass(name = "AsyncPermutationBuilder")]
pub struct PyAsyncPermutationBuilder {
state: Arc<Mutex<PyAsyncPermutationBuilderState>>,
}
impl PyAsyncPermutationBuilder {
fn modify(
&self,
func: impl FnOnce(LancePermutationBuilder) -> LancePermutationBuilder,
) -> PyResult<Self> {
let mut state = self.state.lock().unwrap();
let builder = state
.builder
.take()
.ok_or_else(|| PyRuntimeError::new_err("Builder already consumed"))?;
state.builder = Some(func(builder));
Ok(Self {
state: self.state.clone(),
})
}
}
#[pymethods]
impl PyAsyncPermutationBuilder {
#[pyo3(signature = (*, ratios=None, counts=None, fixed=None, seed=None))]
pub fn split_random(
slf: PyRefMut<'_, Self>,
ratios: Option<Vec<f64>>,
counts: Option<Vec<u64>>,
fixed: Option<u64>,
seed: Option<u64>,
) -> PyResult<Self> {
// Check that exactly one split type is provided
let split_args_count = [ratios.is_some(), counts.is_some(), fixed.is_some()]
.iter()
.filter(|&&x| x)
.count();
if split_args_count != 1 {
return Err(pyo3::exceptions::PyValueError::new_err(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
));
}
let sizes = if let Some(ratios) = ratios {
SplitSizes::Percentages(ratios)
} else if let Some(counts) = counts {
SplitSizes::Counts(counts)
} else if let Some(fixed) = fixed {
SplitSizes::Fixed(fixed)
} else {
unreachable!("One of the split arguments must be provided");
};
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Random { seed, sizes }))
}
#[pyo3(signature = (columns, split_weights, *, discard_weight=0))]
pub fn split_hash(
slf: PyRefMut<'_, Self>,
columns: Vec<String>,
split_weights: Vec<u64>,
discard_weight: u64,
) -> PyResult<Self> {
slf.modify(|builder| {
builder.with_split_strategy(SplitStrategy::Hash {
columns,
split_weights,
discard_weight,
})
})
}
#[pyo3(signature = (*, ratios=None, counts=None, fixed=None))]
pub fn split_sequential(
slf: PyRefMut<'_, Self>,
ratios: Option<Vec<f64>>,
counts: Option<Vec<u64>>,
fixed: Option<u64>,
) -> PyResult<Self> {
// Check that exactly one split type is provided
let split_args_count = [ratios.is_some(), counts.is_some(), fixed.is_some()]
.iter()
.filter(|&&x| x)
.count();
if split_args_count != 1 {
return Err(pyo3::exceptions::PyValueError::new_err(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
));
}
let sizes = if let Some(ratios) = ratios {
SplitSizes::Percentages(ratios)
} else if let Some(counts) = counts {
SplitSizes::Counts(counts)
} else if let Some(fixed) = fixed {
SplitSizes::Fixed(fixed)
} else {
unreachable!("One of the split arguments must be provided");
};
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Sequential { sizes }))
}
pub fn split_calculated(slf: PyRefMut<'_, Self>, calculation: String) -> PyResult<Self> {
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Calculated { calculation }))
}
pub fn shuffle(
slf: PyRefMut<'_, Self>,
seed: Option<u64>,
clump_size: Option<u64>,
) -> PyResult<Self> {
slf.modify(|builder| {
builder.with_shuffle_strategy(ShuffleStrategy::Random { seed, clump_size })
})
}
pub fn filter(slf: PyRefMut<'_, Self>, filter: String) -> PyResult<Self> {
slf.modify(|builder| builder.with_filter(filter))
}
pub fn execute(slf: PyRefMut<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let mut state = slf.state.lock().unwrap();
let builder = state
.builder
.take()
.ok_or_else(|| PyRuntimeError::new_err("Builder already consumed"))?;
future_into_py(slf.py(), async move {
let table = builder.build().await.infer_error()?;
Ok(Table::new(table))
})
}
}

View File

@@ -9,7 +9,6 @@ use arrow::array::Array;
use arrow::array::ArrayData;
use arrow::pyarrow::FromPyArrow;
use arrow::pyarrow::IntoPyArrow;
use arrow::pyarrow::ToPyArrow;
use lancedb::index::scalar::{
BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
Operator, PhraseQuery,
@@ -31,7 +30,6 @@ use pyo3::IntoPyObject;
use pyo3::PyAny;
use pyo3::PyRef;
use pyo3::PyResult;
use pyo3::Python;
use pyo3::{exceptions::PyRuntimeError, FromPyObject};
use pyo3::{
exceptions::{PyNotImplementedError, PyValueError},
@@ -447,15 +445,6 @@ impl Query {
})
}
#[pyo3(signature = ())]
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
let schema = inner.output_schema().await.infer_error()?;
Python::with_gil(|py| schema.to_pyarrow(py))
})
}
#[pyo3(signature = (max_batch_length=None, timeout=None))]
pub fn execute(
self_: PyRef<'_, Self>,
@@ -526,15 +515,6 @@ impl TakeQuery {
self.inner = self.inner.clone().with_row_id();
}
#[pyo3(signature = ())]
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
let schema = inner.output_schema().await.infer_error()?;
Python::with_gil(|py| schema.to_pyarrow(py))
})
}
#[pyo3(signature = (max_batch_length=None, timeout=None))]
pub fn execute(
self_: PyRef<'_, Self>,
@@ -621,15 +601,6 @@ impl FTSQuery {
self.inner = self.inner.clone().postfilter();
}
#[pyo3(signature = ())]
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
let schema = inner.output_schema().await.infer_error()?;
Python::with_gil(|py| schema.to_pyarrow(py))
})
}
#[pyo3(signature = (max_batch_length=None, timeout=None))]
pub fn execute(
self_: PyRef<'_, Self>,
@@ -800,15 +771,6 @@ impl VectorQuery {
self.inner = self.inner.clone().bypass_vector_index()
}
#[pyo3(signature = ())]
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
let schema = inner.output_schema().await.infer_error()?;
Python::with_gil(|py| schema.to_pyarrow(py))
})
}
#[pyo3(signature = (max_batch_length=None, timeout=None))]
pub fn execute(
self_: PyRef<'_, Self>,

View File

@@ -3,7 +3,6 @@
use std::{collections::HashMap, sync::Arc};
use crate::{
connection::Connection,
error::PythonErrorExt,
index::{extract_index_params, IndexConfig},
query::{Query, TakeQuery},
@@ -250,7 +249,7 @@ impl Table {
}
impl Table {
pub(crate) fn inner_ref(&self) -> PyResult<&LanceDbTable> {
fn inner_ref(&self) -> PyResult<&LanceDbTable> {
self.inner
.as_ref()
.ok_or_else(|| PyRuntimeError::new_err(format!("Table {} is closed", self.name)))
@@ -273,13 +272,6 @@ impl Table {
self.inner.take();
}
pub fn database(&self) -> PyResult<Connection> {
let inner = self.inner_ref()?.clone();
let inner_connection =
lancedb::Connection::new(inner.database().clone(), inner.embedding_registry().clone());
Ok(Connection::new(inner_connection))
}
pub fn schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {

View File

@@ -1,2 +1,2 @@
[toolchain]
channel = "1.90.0"
channel = "1.86.0"

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.22.3-beta.3"
version = "0.22.2-beta.0"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -11,12 +11,10 @@ rust-version.workspace = true
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
ahash = { workspace = true }
arrow = { workspace = true }
arrow-array = { workspace = true }
arrow-data = { workspace = true }
arrow-schema = { workspace = true }
arrow-select = { workspace = true }
arrow-ord = { workspace = true }
arrow-cast = { workspace = true }
arrow-ipc.workspace = true
@@ -26,25 +24,19 @@ datafusion-common.workspace = true
datafusion-execution.workspace = true
datafusion-expr.workspace = true
datafusion-physical-plan.workspace = true
datafusion.workspace = true
object_store = { workspace = true }
snafu = { workspace = true }
half = { workspace = true }
lazy_static.workspace = true
lance = { workspace = true }
lance-core = { workspace = true }
lance-datafusion.workspace = true
lance-datagen = { workspace = true }
lance-file = { workspace = true }
lance-io = { workspace = true }
lance-index = { workspace = true }
lance-table = { workspace = true }
lance-linalg = { workspace = true }
lance-testing = { workspace = true }
lance-encoding = { workspace = true }
lance-arrow = { workspace = true }
lance-namespace = { workspace = true }
lance-namespace-impls = { workspace = true }
moka = { workspace = true }
pin-project = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
@@ -54,13 +46,11 @@ bytes = "1"
futures.workspace = true
num-traits.workspace = true
url.workspace = true
rand.workspace = true
regex.workspace = true
serde = { version = "^1" }
serde_json = { version = "1" }
async-openai = { version = "0.20.0", optional = true }
serde_with = { version = "3.8.1" }
tempfile = "3.5.0"
aws-sdk-bedrockruntime = { version = "1.27.0", optional = true }
# For remote feature
reqwest = { version = "0.12.0", default-features = false, features = [
@@ -71,8 +61,9 @@ reqwest = { version = "0.12.0", default-features = false, features = [
"macos-system-configuration",
"stream",
], optional = true }
rand = { version = "0.9", features = ["small_rng"], optional = true }
http = { version = "1", optional = true } # Matching what is in reqwest
uuid = { version = "1.7.0", features = ["v4"] }
uuid = { version = "1.7.0", features = ["v4"], optional = true }
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
polars = { version = ">=0.37,<0.40.0", optional = true }
hf-hub = { version = "0.4.1", optional = true, default-features = false, features = [
@@ -93,6 +84,7 @@ bytemuck_derive.workspace = true
[dev-dependencies]
anyhow = "1"
tempfile = "3.5.0"
rand = { version = "0.9", features = ["small_rng"] }
random_word = { version = "0.4.3", features = ["en"] }
uuid = { version = "1.7.0", features = ["v4"] }
walkdir = "2"
@@ -104,7 +96,6 @@ aws-smithy-runtime = { version = "1.9.1" }
datafusion.workspace = true
http-body = "1" # Matching reqwest
rstest = "0.23.0"
test-log = "0.2"
[features]
@@ -114,7 +105,7 @@ oss = ["lance/oss", "lance-io/oss"]
gcs = ["lance/gcp", "lance-io/gcp"]
azure = ["lance/azure", "lance-io/azure"]
dynamodb = ["lance/dynamodb", "aws"]
remote = ["dep:reqwest", "dep:http"]
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = []
bedrock = ["dep:aws-sdk-bedrockruntime"]

View File

@@ -7,7 +7,6 @@ pub use arrow_schema;
use datafusion_common::DataFusionError;
use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
use futures::{Stream, StreamExt, TryStreamExt};
use lance_datagen::{BatchCount, BatchGeneratorBuilder, RowCount};
#[cfg(feature = "polars")]
use {crate::polars_arrow_convertors, polars::frame::ArrowChunk, polars::prelude::DataFrame};
@@ -162,26 +161,6 @@ impl IntoArrowStream for datafusion_physical_plan::SendableRecordBatchStream {
}
}
pub trait LanceDbDatagenExt {
fn into_ldb_stream(
self,
batch_size: RowCount,
num_batches: BatchCount,
) -> SendableRecordBatchStream;
}
impl LanceDbDatagenExt for BatchGeneratorBuilder {
fn into_ldb_stream(
self,
batch_size: RowCount,
num_batches: BatchCount,
) -> SendableRecordBatchStream {
let (stream, schema) = self.into_reader_stream(batch_size, num_batches);
let stream = stream.map_err(|err| Error::Arrow { source: err });
Box::pin(SimpleRecordBatchStream::new(stream, schema))
}
}
#[cfg(feature = "polars")]
/// An iterator of record batches formed from a Polars DataFrame.
pub struct PolarsDataFrameRecordBatchReader {

View File

@@ -19,7 +19,7 @@ use crate::database::listing::{
use crate::database::{
CloneTableRequest, CreateNamespaceRequest, CreateTableData, CreateTableMode,
CreateTableRequest, Database, DatabaseOptions, DropNamespaceRequest, ListNamespacesRequest,
OpenTableRequest, ReadConsistency, TableNamesRequest,
OpenTableRequest, TableNamesRequest,
};
use crate::embeddings::{
EmbeddingDefinition, EmbeddingFunction, EmbeddingRegistry, MemoryRegistry, WithEmbeddings,
@@ -152,7 +152,6 @@ impl CreateTableBuilder<true> {
let request = self.into_request()?;
Ok(Table::new_with_embedding_registry(
parent.create_table(request).await?,
parent,
embedding_registry,
))
}
@@ -212,9 +211,9 @@ impl CreateTableBuilder<false> {
/// Execute the create table operation
pub async fn execute(self) -> Result<Table> {
let parent = self.parent.clone();
let table = parent.create_table(self.request).await?;
Ok(Table::new(table, parent))
Ok(Table::new(
self.parent.clone().create_table(self.request).await?,
))
}
}
@@ -463,10 +462,8 @@ impl OpenTableBuilder {
/// Open the table
pub async fn execute(self) -> Result<Table> {
let table = self.parent.open_table(self.request).await?;
Ok(Table::new_with_embedding_registry(
table,
self.parent,
self.parent.clone().open_table(self.request).await?,
self.embedding_registry,
))
}
@@ -522,15 +519,16 @@ impl CloneTableBuilder {
/// Execute the clone operation
pub async fn execute(self) -> Result<Table> {
let parent = self.parent.clone();
let table = parent.clone_table(self.request).await?;
Ok(Table::new(table, parent))
Ok(Table::new(
self.parent.clone().clone_table(self.request).await?,
))
}
}
/// A connection to LanceDB
#[derive(Clone)]
pub struct Connection {
uri: String,
internal: Arc<dyn Database>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
}
@@ -542,19 +540,9 @@ impl std::fmt::Display for Connection {
}
impl Connection {
pub fn new(
internal: Arc<dyn Database>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
) -> Self {
Self {
internal,
embedding_registry,
}
}
/// Get the URI of the connection
pub fn uri(&self) -> &str {
self.internal.uri()
self.uri.as_str()
}
/// Get access to the underlying database
@@ -687,11 +675,6 @@ impl Connection {
.await
}
/// Get the read consistency of the connection
pub async fn read_consistency(&self) -> Result<ReadConsistency> {
self.internal.read_consistency().await
}
/// Drop a table in the database.
///
/// # Arguments
@@ -990,6 +973,7 @@ impl ConnectBuilder {
)?);
Ok(Connection {
internal,
uri: self.request.uri,
embedding_registry: self
.embedding_registry
.unwrap_or_else(|| Arc::new(MemoryRegistry::new())),
@@ -1012,6 +996,7 @@ impl ConnectBuilder {
let internal = Arc::new(ListingDatabase::connect_with_options(&self.request).await?);
Ok(Connection {
internal,
uri: self.request.uri,
embedding_registry: self
.embedding_registry
.unwrap_or_else(|| Arc::new(MemoryRegistry::new())),
@@ -1119,6 +1104,7 @@ impl ConnectNamespaceBuilder {
Ok(Connection {
internal,
uri: format!("namespace://{}", self.ns_impl),
embedding_registry: self
.embedding_registry
.unwrap_or_else(|| Arc::new(MemoryRegistry::new())),
@@ -1153,6 +1139,7 @@ mod test_utils {
let internal = Arc::new(crate::remote::db::RemoteDatabase::new_mock(handler));
Self {
internal,
uri: "db://test".to_string(),
embedding_registry: Arc::new(MemoryRegistry::new()),
}
}
@@ -1169,6 +1156,7 @@ mod test_utils {
));
Self {
internal,
uri: "db://test".to_string(),
embedding_registry: Arc::new(MemoryRegistry::new()),
}
}
@@ -1182,13 +1170,13 @@ mod tests {
use crate::database::listing::{ListingDatabaseOptions, NewTableConfig};
use crate::query::QueryBase;
use crate::query::{ExecutableQuery, QueryExecutionOptions};
use crate::test_utils::connection::new_test_connection;
use crate::test_connection::test_utils::new_test_connection;
use arrow::compute::concat_batches;
use arrow_array::RecordBatchReader;
use arrow_schema::{DataType, Field, Schema};
use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
use futures::{stream, TryStreamExt};
use lance_core::error::{ArrowResult, DataFusionResult};
use lance::error::{ArrowResult, DataFusionResult};
use lance_testing::datagen::{BatchGenerator, IncrementingInt32};
use tempfile::tempdir;
@@ -1199,7 +1187,7 @@ mod tests {
#[tokio::test]
async fn test_connect() {
let tc = new_test_connection().await.unwrap();
assert_eq!(tc.connection.uri(), tc.uri);
assert_eq!(tc.connection.uri, tc.uri);
}
#[cfg(not(windows))]
@@ -1220,7 +1208,7 @@ mod tests {
.await
.unwrap();
assert_eq!(db.uri(), relative_uri.to_str().unwrap().to_string());
assert_eq!(db.uri, relative_uri.to_str().unwrap().to_string());
}
#[tokio::test]

View File

@@ -52,13 +52,13 @@ pub fn infer_vector_columns(
for field in reader.schema().fields() {
match field.data_type() {
DataType::FixedSizeList(sub_field, _) if sub_field.data_type().is_floating() => {
columns.push(field.name().clone());
columns.push(field.name().to_string());
}
DataType::List(sub_field) if sub_field.data_type().is_floating() && !strict => {
columns_to_infer.insert(field.name().clone(), None);
columns_to_infer.insert(field.name().to_string(), None);
}
DataType::LargeList(sub_field) if sub_field.data_type().is_floating() && !strict => {
columns_to_infer.insert(field.name().clone(), None);
columns_to_infer.insert(field.name().to_string(), None);
}
_ => {}
}

View File

@@ -12,7 +12,7 @@ use arrow_array::{
use arrow_cast::{can_cast_types, cast};
use arrow_schema::{ArrowError, DataType, Field, Schema};
use half::f16;
use lance_arrow::{DataTypeExt, FixedSizeListArrayExt};
use lance::arrow::{DataTypeExt, FixedSizeListArrayExt};
use log::warn;
use num_traits::cast::AsPrimitive;
@@ -189,7 +189,7 @@ mod tests {
};
use arrow_schema::Field;
use half::f16;
use lance_arrow::FixedSizeListArrayExt;
use lance::arrow::FixedSizeListArrayExt;
#[test]
fn test_coerce_list_to_fixed_size_list() {

View File

@@ -16,7 +16,6 @@
use std::collections::HashMap;
use std::sync::Arc;
use std::time::Duration;
use arrow_array::RecordBatchReader;
use async_trait::async_trait;
@@ -214,20 +213,6 @@ impl CloneTableRequest {
}
}
/// How long until a change is reflected from one Table instance to another
///
/// Tables are always internally consistent. If a write method is called on
/// a table instance it will be immediately visible in that same table instance.
pub enum ReadConsistency {
/// Changes will not be automatically propagated until the checkout_latest
/// method is called on the target table
Manual,
/// Changes will be propagated automatically within the given duration
Eventual(Duration),
/// Changes are immediately visible in target tables
Strong,
}
/// The `Database` trait defines the interface for database implementations.
///
/// A database is responsible for managing tables and their metadata.
@@ -235,10 +220,6 @@ pub enum ReadConsistency {
pub trait Database:
Send + Sync + std::any::Any + std::fmt::Debug + std::fmt::Display + 'static
{
/// Get the uri of the database
fn uri(&self) -> &str;
/// Get the read consistency of the database
async fn read_consistency(&self) -> Result<ReadConsistency>;
/// List immediate child namespace names in the given namespace
async fn list_namespaces(&self, request: ListNamespacesRequest) -> Result<Vec<String>>;
/// Create a new namespace

Some files were not shown because too many files have changed in this diff Show More