Compare commits

...

1 Commits

Author SHA1 Message Date
ayush chaurasia
5904aec34b update 2025-10-27 14:39:22 +05:30
2 changed files with 25 additions and 10 deletions

View File

@@ -4,7 +4,7 @@
import os
from functools import cached_property
from typing import List, Union
from typing import List, Optional, Union
import numpy as np
@@ -46,10 +46,11 @@ class GeminiText(TextEmbeddingFunction):
Parameters
----------
name: str, default "models/embedding-001"
name: str, default "models/text-embedding-004"
The name of the model to use. See the Gemini documentation for a list of
available models.
dims: int, optional
The dimension of the embedding, otherwise it will be inferred.
query_task_type: str, default "retrieval_query"
Sets the task type for the queries.
source_task_type: str, default "retrieval_document"
@@ -77,9 +78,10 @@ class GeminiText(TextEmbeddingFunction):
"""
name: str = "models/embedding-001"
name: str = "models/text-embedding-004"
query_task_type: str = "retrieval_query"
source_task_type: str = "retrieval_document"
dims: Optional[int] = None
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
@@ -89,9 +91,18 @@ class GeminiText(TextEmbeddingFunction):
model_config = dict()
model_config["ignored_types"] = (cached_property,)
def ndims(self):
# TODO: fix hardcoding
return 768
@cached_property
def _model(self):
return self.client.get_model(self.name)
def ndims(self) -> int:
if self.dims:
return self.dims
if hasattr(self._model, "output_dimensionality"):
return self._model.output_dimensionality
# Fallback for older versions of the library
# or models that don't have the attribute
return len(self.generate_embeddings(["lancedb"])[0])
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, task_type=self.query_task_type)
@@ -119,6 +130,8 @@ class GeminiText(TextEmbeddingFunction):
): # Provide a title to use existing API design
title = "Embedding of a document"
kwargs["title"] = title
if self.dims:
kwargs["output_dimensionality"] = self.dims
return [
self.client.embed_content(model=self.name, content=text, **kwargs)[
@@ -131,6 +144,8 @@ class GeminiText(TextEmbeddingFunction):
def client(self):
genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
if not os.environ.get("GOOGLE_API_KEY"):
api_key = os.environ.get("GOOGLE_API_KEY")
if not api_key:
api_key_not_found_help("google")
genai.configure(api_key=api_key)
return genai

View File

@@ -308,7 +308,7 @@ def test_instructor_embedding(tmp_path):
os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set"
)
def test_gemini_embedding(tmp_path):
model = get_registry().get("gemini-text").create(max_retries=0)
model = get_registry().get("gemini-text").create(max_retries=0, dims=512)
class TextModel(LanceModel):
text: str = model.SourceField()
@@ -319,7 +319,7 @@ def test_gemini_embedding(tmp_path):
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert len(tbl.to_pandas()["vector"][0]) == model.ndims() == 512
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"