Compare commits

...

186 Commits

Author SHA1 Message Date
Lance Release
0a16e29b93 [python] Bump version: 0.4.3 → 0.4.4 2024-01-11 21:29:00 +00:00
Will Jones
cf7d7a19f5 upgrade lance (#809) 2024-01-11 13:28:10 -08:00
Lei Xu
fe2fb91a8b chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-11 10:58:49 -08:00
Chang She
81af350d85 feat(node): align incoming data to table schema (#802) 2024-01-10 16:44:00 -08:00
Sebastian Law
99adfe065a use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-10 00:07:50 -05:00
Chang She
277406509e chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-09 20:20:13 -08:00
Chang She
63411b4d8b feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-09 19:41:31 -08:00
Chang She
d998f80b04 feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-09 19:33:03 -08:00
Chang She
629379a532 fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-09 19:27:38 -08:00
Chang She
99ba5331f0 feat(python): support new style optional syntax (#793) 2024-01-09 07:03:29 -08:00
Chang She
121687231c chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-08 21:49:31 -08:00
Chang She
ac40d4b235 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-08 21:12:48 -08:00
Lei Xu
c5a52565ac chore: bump lance to 0.9.5 (#790) 2024-01-07 19:27:47 -08:00
Chang She
b0a88a7286 feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-07 15:15:13 -08:00
lucasiscovici
d41d849e0e raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-07 14:34:04 -08:00
sudhir
bf5202f196 Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-07 14:27:56 -08:00
Chris
8be2861061 Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-07 14:27:40 -08:00
Vladimir Varankin
0560e3a0e5 Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-07 14:26:35 -08:00
QianZhu
b83fbfc344 small bug fix for example code in SaaS JS doc (#770) 2024-01-04 14:30:34 -08:00
Chang She
60b22d84bf chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-04 11:45:12 -08:00
Bengsoon Chuah
7d55a94efd Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-04 11:15:42 -08:00
QianZhu
4d8e401d34 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-03 16:24:21 -08:00
Chang She
684eb8b087 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-02 20:55:33 -08:00
Lance Release
4e3b82feaa Updating package-lock.json 2023-12-30 03:16:41 +00:00
Lance Release
8e248a9d67 Updating package-lock.json 2023-12-30 00:53:51 +00:00
Lance Release
065ffde443 Bump version: 0.4.1 → 0.4.2 2023-12-30 00:53:30 +00:00
Lance Release
c3059dc689 [python] Bump version: 0.4.2 → 0.4.3 2023-12-30 00:52:54 +00:00
Lei Xu
a9caa5f2d4 chore: bump pylance to 0.9.2 (#754) 2023-12-29 16:39:45 -08:00
Xin Hao
8411c36b96 docs: fix link (#752) 2023-12-29 15:33:24 -08:00
Chang She
7773bda7ee feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2023-12-29 15:33:03 -08:00
Lance Release
392777952f [python] Bump version: 0.4.1 → 0.4.2 2023-12-29 00:19:21 +00:00
Chang She
7e75e50d3a chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2023-12-28 15:05:57 -08:00
Chang She
4b8af261a3 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2023-12-28 11:02:56 -08:00
Chang She
c8728d4ca1 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-27 09:31:04 -08:00
Aidan
446f837335 fix: createIndex index cache size (#741) 2023-12-27 09:25:13 -08:00
Chang She
8f9ad978f5 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2023-12-27 09:10:09 -08:00
Lance Release
0df38341d5 Updating package-lock.json 2023-12-26 17:21:51 +00:00
Lance Release
60260018cf [python] Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:16 +00:00
Lance Release
bb100c5c19 Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:09 +00:00
elliottRobinson
eab9072bb5 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2023-12-26 19:24:22 +05:30
Will Jones
ee0f0611d9 docs: update node API reference (#734)
This command hasn't been run for a while...
2023-12-22 10:14:31 -08:00
Will Jones
34966312cb docs: enhance Update user guide (#735)
Closes #705
2023-12-22 10:14:21 -08:00
Bert
756188358c docs: fix JS api docs for update method (#738) 2023-12-21 13:48:00 -05:00
Weston Pace
dc5126d8d1 feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2023-12-21 09:50:10 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
Chang She
7856a94d2c feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 12:28:53 -08:00
Chang She
371d2f979e feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-12-20 12:23:07 -08:00
Aidan
fff8e399a3 feat: Node create index API (#720) 2023-12-20 15:22:35 -05:00
Aidan
73e4015797 feat: Node Schema API (#717) 2023-12-20 12:16:40 -05:00
Lance Release
5142a27482 Updating package-lock.json 2023-12-18 18:15:50 +00:00
Lance Release
81df2a524e Updating package-lock.json 2023-12-18 17:29:58 +00:00
Lance Release
40638e5515 Bump version: 0.3.11 → 0.4.0 2023-12-18 17:29:47 +00:00
Lance Release
018314a5c1 [python] Bump version: 0.3.6 → 0.4.0 2023-12-18 17:27:26 +00:00
Lei Xu
409eb30ea5 chore: bump lance version to 0.9 (#715) 2023-12-17 22:11:42 -05:00
Lance Release
ff9872fd44 Updating package-lock.json 2023-12-15 18:25:06 +00:00
Lance Release
a0608044a1 [python] Bump version: 0.3.5 → 0.3.6 2023-12-15 18:20:55 +00:00
Lance Release
2e4ea7d2bc Updating package-lock.json 2023-12-15 18:01:45 +00:00
Lance Release
57e5695a54 Bump version: 0.3.10 → 0.3.11 2023-12-15 18:01:34 +00:00
Bert
ce58ea7c38 chore: fix package lock (#711) 2023-12-15 11:49:16 -05:00
Bert
57207eff4a implement update for remote clients (#706) 2023-12-15 09:06:40 -05:00
Rob Meng
2d78bff120 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2023-12-15 00:19:08 -05:00
Rob Meng
7c09b9b9a9 feat: allow custom column name in query (#709) 2023-12-14 23:29:26 -05:00
Chang She
bd0034a157 feat: support nested pydantic schema (#707) 2023-12-14 18:20:45 -08:00
Will Jones
144b3b5d83 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2023-12-14 12:09:28 -08:00
Lance Release
b6f0a31686 Updating package-lock.json 2023-12-14 19:31:56 +00:00
Lance Release
9ec526f73f Bump version: 0.3.9 → 0.3.10 2023-12-14 19:31:41 +00:00
Lance Release
600bfd7237 [python] Bump version: 0.3.4 → 0.3.5 2023-12-14 19:31:22 +00:00
Will Jones
d087e7891d feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2023-12-14 11:28:32 -08:00
Chang She
098e397cf0 feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2023-12-13 22:59:01 -08:00
Bert
63ee8fa6a1 Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-13 14:53:06 -05:00
Ayush Chaurasia
693091db29 chore(python): Reduce posthog event count (#661)
- Register open_table as event 
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2023-12-08 11:00:51 -08:00
Ayush Chaurasia
dca4533dbe docs: Update roboflow tutorial position (#666) 2023-12-08 11:00:11 -08:00
QianZhu
f6bbe199dc Qian/minor fix doc (#695) 2023-12-08 09:58:53 -08:00
Kaushal Kumar Choudhary
366e522c2b docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2023-12-08 20:55:04 +05:30
Chang She
244b6919cc chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2023-12-07 15:49:52 -08:00
QianZhu
aca785ff98 saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2023-12-07 14:47:56 -08:00
Chang She
bbdebf2c38 chore: update package lock (#689) 2023-12-06 17:14:56 -08:00
Chang She
1336cce0dc chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2023-12-06 14:20:46 -08:00
Lance Release
6c83b6a513 Updating package-lock.json 2023-12-04 18:34:43 +00:00
Lance Release
6bec4bec51 Updating package-lock.json 2023-12-04 17:02:48 +00:00
Lance Release
23d30dfc78 Bump version: 0.3.8 → 0.3.9 2023-12-04 17:02:35 +00:00
Rob Meng
94c8c50f96 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2023-12-04 12:01:16 -05:00
Rob Meng
72765d8e1a feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2023-12-01 16:49:10 -05:00
Rob Meng
a2a8f9615e chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2023-12-01 00:44:14 -05:00
James
b085d9aaa1 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2023-11-27 20:39:01 +05:30
Bert
6eb662de9b fix: python remote correct open_table error message (#659) 2023-11-24 19:28:33 -05:00
Lance Release
2bb2bb581a Updating package-lock.json 2023-11-19 00:45:51 +00:00
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
Lance Release
123a49df77 Bump version: 0.3.7 → 0.3.8 2023-11-19 00:03:58 +00:00
Will Jones
a57aa4b142 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2023-11-18 15:57:23 -08:00
Rok Mihevc
d8e3e54226 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2023-11-18 14:17:40 -08:00
Ayush Chaurasia
ccfdf4853a [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2023-11-18 06:08:26 +05:30
Ayush Chaurasia
87e5d86e90 [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2023-11-18 06:08:13 +05:30
Aidan
1cf8a3e4e0 SaaS create_index API (#649) 2023-11-15 19:12:52 -05:00
Lance Release
5372843281 Updating package-lock.json 2023-11-15 03:15:10 +00:00
Lance Release
54677b8f0b Updating package-lock.json 2023-11-15 02:42:38 +00:00
Lance Release
ebcf9bf6ae Bump version: 0.3.6 → 0.3.7 2023-11-15 02:42:25 +00:00
Bert
797514bcbf fix: node remote implement table.countRows (#648) 2023-11-13 17:43:20 -05:00
Rok Mihevc
1c872ce501 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2023-11-13 21:43:48 +01:00
Bert
479f471c14 fix: node send db header for GET requests (#646) 2023-11-11 16:33:25 -05:00
Ayush Chaurasia
ae0d2f2599 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2023-11-10 15:02:38 +05:30
Ayush Chaurasia
1e8678f11a Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2023-11-09 12:34:18 +05:30
QianZhu
662968559d fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2023-11-07 17:34:38 -08:00
Rob Meng
9d895801f2 upgrade lance to 0.8.14 (#636)
upgrade lance
2023-11-07 19:01:29 -05:00
Rob Meng
80613a40fd skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2023-11-07 12:33:32 -05:00
Lei Xu
d43ef7f11e chore: apple silicon runner (#633)
Close #632
2023-11-06 21:04:32 -08:00
Lei Xu
554e068917 chore: improve create_table API consistency between local and remote SDK (#627) 2023-11-03 13:15:11 -07:00
Bert
567734dd6e fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2023-11-03 10:24:56 -04:00
Ayush Chaurasia
1589499f89 Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2023-11-02 19:20:10 +05:30
Lance Release
682e95fa83 Updating package-lock.json 2023-11-01 22:20:49 +00:00
Lance Release
1ad5e7f2f0 Updating package-lock.json 2023-11-01 21:16:20 +00:00
Lance Release
ddb3ef4ce5 Bump version: 0.3.5 → 0.3.6 2023-11-01 21:16:06 +00:00
Lance Release
ef20b2a138 [python] Bump version: 0.3.2 → 0.3.3 2023-11-01 21:15:55 +00:00
Lei Xu
2e0f251bfd chore: bump lance to 8.10 (#622) 2023-11-01 14:14:38 -07:00
Ayush Chaurasia
2cb91e818d Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2023-11-02 01:13:16 +05:30
Chang She
2835c76336 doc: node sdk now supports windows (#616) 2023-11-01 10:04:18 -07:00
Bert
8068a2bbc3 ci: cancel in progress runs on new push (#620) 2023-11-01 11:33:48 -04:00
Bert
24111d543a fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2023-11-01 10:50:09 -04:00
QianZhu
7eec2b8f9a Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2023-10-31 19:50:05 -07:00
Will Jones
b2b70ea399 increment pylance (#618) 2023-10-31 18:07:03 -07:00
Bert
e50a3c1783 added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-10-31 16:39:32 -04:00
Weston Pace
b517134309 feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2023-10-31 13:11:03 -07:00
Lei Xu
6fb539b5bf doc: add doc to use GPU for indexing (#611) 2023-10-30 15:25:00 -07:00
Lance Release
f37fe120fd Updating package-lock.json 2023-10-26 22:30:16 +00:00
Lance Release
2e115acb9a Updating package-lock.json 2023-10-26 21:48:01 +00:00
Lance Release
27a638362d Bump version: 0.3.4 → 0.3.5 2023-10-26 21:47:44 +00:00
Bert
22a6695d7a fix conv version (#605) 2023-10-26 17:44:11 -04:00
Lance Release
57eff82ee7 Updating package-lock.json 2023-10-26 21:03:07 +00:00
Lance Release
7732f7d41c Bump version: 0.3.3 → 0.3.4 2023-10-26 21:02:52 +00:00
Bert
5ca98c326f feat: added dataset stats api to node (#604) 2023-10-26 17:00:48 -04:00
Bert
b55db397eb feat: added data stats apis (#596) 2023-10-26 13:10:17 -04:00
Rob Meng
c04d72ac8a expose remap index api (#603)
expose index remap options in `compact_files`
2023-10-25 22:10:37 -04:00
Rob Meng
28b02fb72a feat: expose optimize index api (#602)
expose `optimize_index` api.
2023-10-25 19:40:23 -04:00
Lance Release
f3cf986777 [python] Bump version: 0.3.1 → 0.3.2 2023-10-24 19:06:38 +00:00
Bert
c73fcc8898 update lance to 0.8.7 (#598) 2023-10-24 14:49:36 -04:00
Chang She
cd9debc3b7 fix(python): fix multiple embedding functions bug (#597)
Closes #594

The embedding functions are pydantic models so multiple instances with
the same parameters are considered ==, which means that if you have
multiple embedding columns it's possible for the embeddings to get
overwritten. Instead we use `is` instead of == to avoid this problem.

testing: modified unit test to include this case
2023-10-24 13:05:05 -04:00
Rob Meng
26a97ba997 feat: add checkout method to table to reuse existing store and connections (#593)
Prior to this PR, to get a new version of a table, we need to re-open
the table. This has a few downsides w.r.t. performance:
* Object store is recreated, which takes time and throws away existing
warm connections
* Commit handler is thrown aways as well, which also may contain warm
connections
2023-10-23 12:06:13 -04:00
Rob Meng
ce19fedb08 feat: include manifest files in mirrow store (#589) 2023-10-21 12:21:41 -04:00
Will Jones
14e8e48de2 Revert "[python] Bump version: 0.3.2 → 0.3.3"
This reverts commit c30faf6083.
2023-10-20 17:52:49 -07:00
Will Jones
c30faf6083 [python] Bump version: 0.3.2 → 0.3.3 2023-10-20 17:30:00 -07:00
Ayush Chaurasia
64a4f025bb [Docs]: Minor Fixes (#587)
* Filename typo
* Remove rick_morty csv as users won't really be able to use it.. We can
create a an executable colab and download it from a bucket or smth.
2023-10-20 16:14:35 +02:00
Ayush Chaurasia
6dc968e7d3 [Docs] Embeddings API: Add multi-lingual semantic search example (#582) 2023-10-20 18:40:49 +05:30
Ayush Chaurasia
06b5b69f1e [Docs]Versioning docs (#586)
closes #564

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-20 18:40:16 +05:30
Lance Release
6bd3a838fc Updating package-lock.json 2023-10-19 20:45:39 +00:00
Lance Release
f36fea8f20 Updating package-lock.json 2023-10-19 20:06:10 +00:00
Lance Release
0a30591729 Bump version: 0.3.2 → 0.3.3 2023-10-19 20:05:57 +00:00
Chang She
0ed39b6146 chore: bump lance version in python/rust lancedb (#584)
To include latest v0.8.6

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-19 13:05:12 -07:00
Ayush Chaurasia
a8c7f80073 [Docs] Update embedding function docs (#581) 2023-10-18 13:04:42 +05:30
Ayush Chaurasia
0293bbe142 [Python]Embeddings API refactor (#580)
Sets things up for this -> https://github.com/lancedb/lancedb/issues/579
- Just separates out the registry/ingestion code from the function
implementation code
- adds a `get_registry` util
- package name "open-clip" -> "open-clip-torch"
2023-10-17 22:32:19 -07:00
Ayush Chaurasia
7372656369 [Docs] Add posthog telemetry to docs (#577)
Allows creation of funnels and user journeys
2023-10-17 21:11:59 -07:00
QianZhu
d46bc5dd6e list table pagination draft (#574) 2023-10-16 21:09:20 -07:00
Prashanth Rao
86efb11572 Add pyarrow date and timestamp type conversion from pydantic (#576) 2023-10-16 19:42:24 -07:00
Chang She
bb01ad5290 doc: fix broken link and add README (#573)
Fix broken link to embedding functions

testing: broken link was verified after local docs build to have been
repaired

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-16 16:13:07 -07:00
Lance Release
1b8cda0941 Updating package-lock.json 2023-10-16 16:10:07 +00:00
Lance Release
bc85a749a3 Updating package-lock.json 2023-10-16 15:12:15 +00:00
Lance Release
02c35d3457 Bump version: 0.3.1 → 0.3.2 2023-10-16 15:11:57 +00:00
Rob Meng
345c136cfb implement remote api calls for table mutation (#567)
Add more APIs to remote table for Node SDK
* `add` rows
* `overwrite` table with rows
* `create` table

This has been tested against dev stack
2023-10-16 11:07:58 -04:00
Rok Mihevc
043e388254 docs: show source of documented functions (#569) 2023-10-15 09:05:36 -07:00
Lei Xu
fe64fc4671 feat(python,js): deletion operation on remote tables (#568) 2023-10-14 15:47:19 -07:00
Rok Mihevc
6d66404506 docs: switch python examples to be row based (#554) 2023-10-14 14:07:43 -07:00
Lei Xu
eff94ecea8 chore: bump lance to 0.8.5 (#561)
Bump lance to 0.5.8
2023-10-14 12:38:43 -07:00
Ayush Chaurasia
7dfb555fea [DOCS][PYTHON] Update embeddings API docs & Example (#516)
This PR adds an overview of embeddings docs:
- 2 ways to vectorize your data using lancedb - explicit & implicit
- explicit - manually vectorize your data using `wit_embedding` function
- Implicit - automatically vectorize your data as it comes by ingesting
your embedding function details as table metadata
- Multi-modal example w/ disappearing embedding function
2023-10-14 07:56:07 +05:30
Lance Release
f762a669e7 Updating package-lock.json 2023-10-13 22:27:48 +00:00
Lance Release
0bdc7140dd Updating package-lock.json 2023-10-13 21:24:05 +00:00
Lance Release
8f6e955b24 Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:54 +00:00
Lance Release
1096da09da [python] Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:47 +00:00
Ayush Chaurasia
683824f1e9 Add cohere embedding function (#550) 2023-10-13 16:27:34 +05:30
Will Jones
db7bdefe77 feat: cleanup and compaction (#518)
#488
2023-10-11 12:49:12 -07:00
Ayush Chaurasia
e41894b071 [Docs] Improve visibility of table ops (#553)
A little verbose, but better than being non-discoverable 
![Screenshot from 2023-10-11
16-26-02](https://github.com/lancedb/lancedb/assets/15766192/9ba539a7-0cf8-4d9e-94e7-ce5d37c35df0)
2023-10-11 12:20:46 -07:00
Chang She
e1ae2bcbd8 feat: add to_list and to_pandas api's (#556)
Add `to_list` to return query results as list of python dict (so we're
not too pandas-centric). Closes #555

Add `to_pandas` API and add deprecation warning on `to_df`. Closes #545

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-11 12:18:55 -07:00
Ankur Goyal
ababc3f8ec Use query.limit(..) in README (#543)
If you run the README javascript example in typescript, it complains
that the type of limit is a function and cannot be set to a number.
2023-10-11 11:54:14 -07:00
Ayush Chaurasia
a1377afcaa feat: telemetry, error tracking, CLI & config manager (#538)
Co-authored-by: Lance Release <lance-dev@lancedb.com>
Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: rmeng <rob@lancedb.com>
Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Rok Mihevc <rok@mihevc.org>
2023-10-08 23:11:39 +05:30
Lei Xu
a26c8f3316 feat: use GPU for index creation. (#540)
Bump lance to 0.8.3 to include GPU training

---------

Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
2023-10-05 20:49:00 -07:00
Josh Wein
88d8d7249e Typo cleanup (#539) 2023-10-05 23:07:28 -04:00
Rob Meng
0eb7c9ea0c fix stackoverflow (#542)
closes #541 

two functions was calling itself instead of routing to primary
2023-10-05 20:05:04 -04:00
Rob Meng
1db66c6980 implement mirroring object store (#537)
This PR implements a mirroring object store and allows and table to be
mirrored to a local path when param `mirroredStore` is set in the url
2023-10-04 21:23:34 -04:00
Lance Release
c58da8fc8a Updating package-lock.json 2023-10-03 22:59:02 +00:00
Lance Release
448c4a835d Updating package-lock.json 2023-10-03 22:09:00 +00:00
Lance Release
850f80de99 Bump version: 0.2.6 → 0.3.0 2023-10-03 22:08:44 +00:00
161 changed files with 13226 additions and 2033 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.2.6
current_version = 0.4.2
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

33
.github/ISSUE_TEMPLATE/bug-node.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Node / Typescript
description: File a bug report
title: "bug(node): "
labels: [bug, typescript]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `npm list | grep vectordb`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

33
.github/ISSUE_TEMPLATE/bug-python.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Python
description: File a bug report
title: "bug(python): "
labels: [bug, python]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,5 @@
blank_issues_enabled: true
contact_links:
- name: Discord Community Support
url: https://discord.com/invite/zMM32dvNtd
about: Please ask and answer questions here.

View File

@@ -0,0 +1,23 @@
name: 'Documentation improvement'
description: Report an issue with the documentation.
labels: [documentation]
body:
- type: textarea
id: description
attributes:
label: Description
description: >
Describe the issue with the documentation and how it can be fixed or improved.
validations:
required: true
- type: input
id: link
attributes:
label: Link
description: >
Provide a link to the existing documentation, if applicable.
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
validations:
required: false

31
.github/ISSUE_TEMPLATE/feature.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Feature suggestion
description: Suggestion a new feature for LanceDB
title: "Feature: "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Share a new idea for a feature or improvement. Be sure to search existing
issues first to avoid duplicates.
- type: dropdown
id: sdk
attributes:
label: SDK
description: Which SDK are you using? This helps us prioritize.
options:
- Python
- Node
- Rust
default: 0
validations:
required: false
- type: textarea
id: description
attributes:
label: Description
description: |
Describe the feature and why it would be useful. If applicable, consider
providing a code example of what it might be like to use the feature.
validations:
required: true

View File

@@ -88,6 +88,9 @@ jobs:
cd docs/test
node md_testing.js
- name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: |
cd docs/test/node
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done

View File

@@ -11,6 +11,10 @@ on:
- .github/workflows/node.yml
- docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.

View File

@@ -38,13 +38,17 @@ jobs:
node/vectordb-*.tgz
node-macos:
runs-on: macos-12
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-13-xlarge
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
@@ -54,17 +58,15 @@ jobs:
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu

View File

@@ -8,6 +8,11 @@ on:
paths:
- python/**
- .github/workflows/python.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
linux:
timeout-minutes: 30
@@ -32,18 +37,26 @@ jobs:
run: |
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
pip install pytest pytest-mock ruff
- name: Lint
run: ruff format --check .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac:
platform:
name: "Platform: ${{ matrix.config.name }}"
timeout-minutes: 30
runs-on: "macos-12"
strategy:
matrix:
config:
- name: x86 Mac
runner: macos-13
- name: Arm Mac
runner: macos-13-xlarge
- name: x86 Windows
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
defaults:
run:
shell: bash
@@ -61,9 +74,7 @@ jobs:
run: |
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black
- name: Black
run: black --check --diff --no-color --quiet .
pip install pytest pytest-mock
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x:
@@ -87,12 +98,8 @@ jobs:
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
pip install pytest pytest-mock
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
run: pytest --doctest-modules lancedb

View File

@@ -10,6 +10,10 @@ on:
- rust/**
- .github/workflows/rust.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
@@ -20,6 +24,29 @@ env:
RUST_BACKTRACE: "1"
jobs:
lint:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --all --all-features -- -D warnings
linux:
timeout-minutes: 30
runs-on: ubuntu-22.04
@@ -44,8 +71,11 @@ jobs:
- name: Run tests
run: cargo test --all-features
macos:
runs-on: macos-12
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
shell: bash

View File

@@ -5,21 +5,24 @@ exclude = ["python"]
resolver = "2"
[workspace.dependencies]
lance = { "version" = "=0.8.1", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.8.1" }
lance = { "version" = "=0.9.6", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.6" }
lance-linalg = { "version" = "=0.9.6" }
lance-testing = { "version" = "=0.9.6" }
# Note that this one does not include pyarrow
arrow = { version = "43.0.0", optional = false }
arrow-array = "43.0"
arrow-data = "43.0"
arrow-ipc = "43.0"
arrow-ord = "43.0"
arrow-schema = "43.0"
arrow-arith = "43.0"
arrow-cast = "43.0"
half = { "version" = "=2.2.1", default-features = false, features = [
"num-traits"
arrow = { version = "49.0.0", optional = false }
arrow-array = "49.0"
arrow-data = "49.0"
arrow-ipc = "49.0"
arrow-ord = "49.0"
arrow-schema = "49.0"
arrow-arith = "49.0"
arrow-cast = "49.0"
chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits",
] }
log = "0.4"
object_store = "0.6.1"
object_store = "0.8.0"
snafu = "0.7.4"
url = "2"

158
README.md
View File

@@ -1,78 +1,80 @@
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
**Developer-friendly, serverless vector database for AI applications**
<a href="https://lancedb.github.io/lancedb/">Documentation</a>
<a href="https://blog.lancedb.com/">Blog</a>
<a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a>
</p>
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
</p>
</div>
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
**Javascript**
```shell
npm install vectordb
```
```javascript
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]);
query.limit = 20;
const results = await query.execute();
```
**Python**
```shell
pip install lancedb
```
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
**Developer-friendly, serverless vector database for AI applications**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
</p>
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
</p>
</div>
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
**Javascript**
```shell
npm install vectordb
```
```javascript
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
```
**Python**
```shell
pip install lancedb
```
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>

View File

@@ -1,6 +1,7 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.

26
docs/README.md Normal file
View File

@@ -0,0 +1,26 @@
# LanceDB Documentation
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features.
## Building the docs
### Setup
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
3. Make sure you have node and npm setup
4. Make sure protobuf and libssl are installed
### Building node module and create markdown files
See [Javascript docs README](docs/src/javascript/README.md)
### Build docs
From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally.

View File

@@ -1,4 +1,5 @@
site_name: LanceDB Docs
site_url: https://lancedb.github.io/lancedb/
repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb
@@ -21,6 +22,7 @@ theme:
- navigation.tracking
- navigation.instant
- navigation.indexes
- navigation.expand
icon:
repo: fontawesome/brands/github
custom_dir: overrides
@@ -36,7 +38,7 @@ plugins:
docstring_style: numpy
rendering:
heading_level: 4
show_source: false
show_source: true
show_symbol_type_in_heading: true
show_signature_annotations: true
show_root_heading: true
@@ -68,11 +70,18 @@ nav:
- 🏢 Home: index.md
- 💡 Basics: basic.md
- 📚 Guides:
- Tables: guides/tables.md
- Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- 🧬 Embeddings: embedding.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- 🧬 Embeddings:
- embeddings/index.md
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- 🔍 Python full-text search: fts.md
- 🔌 Integrations:
- integrations/index.md
@@ -89,6 +98,7 @@ nav:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 🌐 Javascript examples:
@@ -96,13 +106,22 @@ nav:
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- ⚙️ CLI & Config: cli_config.md
- Basics: basic.md
- Guides:
- Tables: guides/tables.md
- Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- Embeddings: embedding.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Embeddings:
- embeddings/index.md
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- Python full-text search: fts.md
- Integrations:
- integrations/index.md
@@ -127,8 +146,10 @@ nav:
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API references:
- Python API: python/python.md
- OSS Python API: python/python.md
- SaaS Python API: python/saas-python.md
- Javascript API: javascript/modules.md
- SaaS Javascript API: javascript/saas-modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
extra_css:

View File

@@ -2,3 +2,4 @@ mkdocs==1.4.2
mkdocs-jupyter==0.24.1
mkdocs-material==9.1.3
mkdocstrings[python]==0.20.0
pydantic

View File

@@ -68,6 +68,44 @@ a single PQ code.
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure>
### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index.
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
=== "Linux"
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
=== "Macos"
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
Trouble shootings:
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index
@@ -91,7 +129,7 @@ There are a couple of parameters that can be used to fine-tune the search:
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_df()
.to_pandas()
```
```
vector item _distance
@@ -118,7 +156,7 @@ You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "Javascript"
@@ -126,6 +164,7 @@ You can further filter the elements returned by a search using a where clause.
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute()
```
@@ -135,7 +174,7 @@ You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
```
vector _distance
@@ -149,6 +188,7 @@ You can select the columns returned by the query using a select clause.
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute()
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 342 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 245 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

View File

@@ -64,18 +64,26 @@ We'll cover the basics of using LanceDB on your local machine in this section.
tbl = db.create_table("table_from_df", data=df)
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Javascript"
```javascript
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
const tb = await db.createTable(
"myTable",
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `"overwrite"`
to the `createTable` function like this: `await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })`
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
@@ -108,7 +116,7 @@ Once created, you can open a table using the following code:
=== "Javascript"
```javascript
const tbl = await db.openTable("my_table");
const tbl = await db.openTable("myTable");
```
If you forget the name of your table, you can always get a listing of all table names:
@@ -146,7 +154,7 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_df()
tbl.search([100, 100]).limit(2).to_pandas()
```
This returns a pandas DataFrame with the results.
@@ -194,10 +202,17 @@ Use the `drop_table()` method on the database to remove a table.
db.drop_table("my_table")
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "JavaScript"
```javascript
await db.dropTable('myTable')
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## What's next

37
docs/src/cli_config.md Normal file
View File

@@ -0,0 +1,37 @@
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
Get usage help.
```
lancedb diagnostics --help
```
Disable diagnostics
```
lancedb diagnostics --disabled
```
Enable diagnostics
```
lancedb diagnostics --enabled
```

213
docs/src/embeddings/api.md Normal file
View File

@@ -0,0 +1,213 @@
To use your own custom embedding function, you need to follow these 2 simple steps.
1. Create your embedding function by implementing the `EmbeddingFunction` interface
2. Register your embedding function in the global `EmbeddingFunctionRegistry`.
Let us see how this looks like in action.
![](../assets/embeddings_api.png)
`EmbeddingFunction` & `EmbeddingFunctionRegistry` handle low-level details for serializing schema and model information as metadata. To build a custom embdding function, you don't need to worry about those details and simply focus on setting up the model.
## `TextEmbeddingFunction` Interface
There is another optional layer of abstraction provided in form of `TextEmbeddingFunction`. You can use this if your model isn't multi-modal in nature and only operates on text. In such case both source and vector fields will have the same pathway for vectorization, so you simply just need to setup the model and rest is handled by `TextEmbeddingFunction`. You can read more about the class and its attributes in the class reference.
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python
from lancedb.embeddings import register
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
```python
from lancedb.pydantic import LanceModel, Vector
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
tbl = db.create_table("table", schema=TextModelSchema)
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
NOTE:
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```

View File

@@ -0,0 +1,208 @@
There are various Embedding functions available out of the box with LanceDB. We're working on supporting other popular embedding APIs.
## Text Embedding Functions
Here are the text embedding functions registered by default.
Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff.
Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
### Sentence Transformers
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"all-MiniLM-L6-v2"` | The name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model. |
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("sentence-transformers").create(device="cpu")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAIEmbeddings
LanceDB has OpenAI embeddings function in the registry by default. It is registered as `openai` and here are the parameters that you can customize when creating the instances
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("openai").create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Instructor Embeddings
Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.
### OpenClipEmbeddings
We support CLIP model embeddings using the open source alternative, open-clip which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
NOTE:
LanceDB supports ingesting images directly from accessible links.
```python
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue.

View File

@@ -0,0 +1,104 @@
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves can be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
Our new embedding functions API allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and can simply focus on the DB aspects of VectorDB.
You can simply follow these steps and forget about the details of your embedding functions as long as you don't intend to change it.
### Step 1 - Define the embedding function
We have some pre-defined embedding functions in the global registry with more coming soon. Here's let's an implementation of CLIP as example.
```
from lancedb.embeddings import EmbeddingFunctionRegistry
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses PyDantic Model which can be utilized to write complex schemas simply as we'll see next!
### Step 2 - Define the Data Model or Schema
Our embedding function from the previous section abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how
```python
from lancedb.pydantic import LanceModel, Vector
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for `vector` column & `SourceField` tells that when adding data, automatically use the embedding function to encode `image_uri`.
### Step 3 - Create LanceDB Table
Now that we have chosen/defined our embedding function and the schema, we can create the table
```python
import lancedb
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
```
That's it! We have ingested all the information needed to embed source and query inputs. We can now forget about the model and dimension details and start to build our VectorDB.
### Step 4 - Ingest lots of data and run vector search!
Now you can just add the data and it'll be vectorized automatically
```python
table.add([{"image_uri": u} for u in uris])
```
Our OpenCLIP query embedding function support querying via both text and images.
```python
result = table.search("dog")
```
Let's query an image
```python
from pathlib import Path
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
table.search(query_image)
```
### Rate limit Handling
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default the maximum retires is set to 7. You can tune it by setting it to a different number or disable it by setting it to 0. Example:
```python
clip = registry.get("open-clip").create() # Defaults to 7 max retries
clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
```
NOTE:
Embedding functions can also fail due to other errors that have nothing to do with rate limits. This is why the errors are also logged.
### A little fun with PyDantic
LanceDB is integrated with PyDantic. In fact, we've used the integration in the above example to define the schema. It is also being used behind the scene by the embedding function API to ingest useful information as table metadata.
You can also use it for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let's define a utility function to plot the image.
```python
from lancedb.pydantic import LanceModel, Vector
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
@property
def image(self):
return Image.open(self.image_uri)
```
Now, you can covert your search results to PyDantic model and use its property.
```python
rs = table.search(query_image).limit(3).to_pydantic(Pets)
rs[2].image
```
![](../assets/dog_clip_output.png)
Now that you have the basic idea about LanceDB embedding function, let us dive deeper into the API that you can use to implement your own embedding functions!

View File

@@ -1,13 +1,20 @@
# Embedding Functions
# Embedding
Embeddings are high dimensional floating-point vector representations of your data or query.
Anything can be embedded using some embedding model or function.
For a given embedding function, the output will always have the same number of dimensions.
Embeddings are high dimensional floating-point vector representations of your data or query. Anything can be embedded using some embedding model or function. Position of embedding in a high dimensional vector space has semantic significance to a degree that depends on the type of modal and training. These embeddings when projected in a 2-D space generally group similar entities close-by forming groups.
## Creating an embedding function
![](../assets/embedding_intro.png)
Any function that takes as input a batch (list) of data and outputs a batch (list) of embeddings
can be used by LanceDB as an embedding function. The input and output batch sizes should be the same.
# Creating an embedding function
LanceDB supports 2 major ways of vectorizing your data, explicit and implicit.
1. By manually embedding the data before ingesting in the table
2. By automatically embedding the data and query as they come, by ingesting embedding function information in the table itself! Covered in [Next Section](embedding_functions.md)
Whatever workflow you prefer, we have the tools to support you.
## Explicit Vectorization
In this workflow, you can create your embedding function and vectorize your data using lancedb's `with_embedding` function. Let's look at some examples.
### HuggingFace example
@@ -118,7 +125,7 @@ belong in the same latent space and your results will be nonsensical.
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df()
tbl.search(query_vector).limit(10).to_pandas()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
@@ -134,9 +141,9 @@ belong in the same latent space and your results will be nonsensical.
The above snippet returns an array of records with the 10 closest vectors to the query.
## Roadmap
## Implicit vectorization / Ingesting embedding functions
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
In the near future, we'll be integrating the embedding functions deeper into LanceDB<br/>.
The goal is that you just have to configure the function once when you create the table,
and then you'll never have to deal with embeddings / vectors after that unless you want to.
We'll also integrate more popular models and APIs.
This is main motivation behind our new embedding functions API, that allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and simply focus on the DB aspects of VectorDB.
Learn more in the Next Section

View File

@@ -0,0 +1,165 @@
# How to Load Image Embeddings into LanceDB
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, lets get started!
## Step #1: Install Roboflow Inference
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
Inference provides a HTTP API through which you can run vision models.
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
To get started, first install the Inference CLI:
```
pip install inference-cli
```
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
```
inference server start
```
An Inference server will start running at http://localhost:9001.
## Step #2: Set Up a LanceDB Vector Database
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
Once you have a dataset ready, install LanceDB with the following command:
```
pip install lancedb
```
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
```
Create a new Python file and add the following code:
```python
import cv2
import supervision as sv
import requests
import lancedb
db = lancedb.connect("./embeddings")
IMAGE_DIR = "images/"
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
SERVER_URL = "http://localhost:9001"
results = []
for i, image in enumerate(os.listdir(IMAGE_DIR)):
infer_clip_payload = {
#Images can be provided as urls or as base64 encoded strings
"image": {
"type": "base64",
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
},
}
res = requests.post(
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
print("Calculated embedding for image: ", image)
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
results.append(image)
tbl = db.create_table("images", data=results)
tbl.create_fts_index("name")
```
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
```
export ROBOFLOW_API_KEY=""
```
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "name": "image1.png"},
{"vector": [5.9, 26.5], "name": "image2.png"}
]
tbl = db.open_table("images")
tbl.add(make_batches())
```
Replacing the `make_batches()` function with code to load embeddings for images.
## Step #3: Run a Search Query
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
Lets calculate a text embedding for the query “cat”, then run a search query:
```python
infer_clip_payload = {
"text": "cat",
}
res = requests.post(
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
df = tbl.search(embeddings[0]).limit(3).to_list()
print("Results:")
for i in df:
print(i["name"])
```
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
```
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
```
Lets open the top image:
![Cat](https://media.roboflow.com/cat_lancedb.jpg)
The top image was a cat. Our search was successful.
## Conclusion
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
To learn more about Inference and its capabilities, refer to the Inference documentation.

View File

@@ -80,14 +80,14 @@ def handler(event, context):
# Shape of SIFT is (128,1M), d=float32
query_vector = np.array(event['query_vector'], dtype=np.float32)
rs = table.search(query_vector).limit(2).to_df()
rs = table.search(query_vector).limit(2).to_list()
return {
"statusCode": status_code,
"headers": {
"Content-Type": "application/json"
},
"body": rs.to_json()
"body": json.dumps(rs)
}
```

View File

@@ -29,8 +29,9 @@ uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}])
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy", "meta": "foo"},
{"vector": [5.9, 26.5], "text": "Sam was a loyal puppy", "meta": "bar"},
{"vector": [15.9, 6.5], "text": "There are several kittens playing"}])
```
@@ -43,7 +44,13 @@ table.create_fts_index("text")
To search:
```python
df = table.search("puppy").limit(10).select(["text"]).to_df()
table.search("puppy").limit(10).select(["text"]).to_list()
```
Which returns a list of dictionaries:
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
```
LanceDB automatically looks for an FTS index if the input is str.
@@ -58,10 +65,51 @@ table.create_fts_index(["text1", "text2"])
Note that the search API call does not change - you can search over all indexed columns at once.
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Syntax
For full-text search you can perform either a phrase query like "the old man and the sea",
or a structured search query like "(Old AND Man) AND Sea".
Double quotes are used to disambiguate.
For example:
If you intended "they could have been dogs OR cats" as a phrase query, this actually
raises a syntax error since `OR` is a recognized operator. If you make `or` lower case,
this avoids the syntax error. However, it is cumbersome to have to remember what will
conflict with the query syntax. Instead, if you search using
`table.search('"they could have been dogs OR cats"')`, then the syntax checker avoids
checking inside the quotes.
## Configurations
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
```python
# configure a 512MB heap size
heap = 1024 * 1024 * 512
table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
```
## Current limitations
1. Currently we do not yet support incremental writes.
If you add data after fts index creation, it won't be reflected
in search results until you do a full reindex.
If you add data after fts index creation, it won't be reflected
in search results until you do a full reindex.
2. We currently only support local filesystem paths for the fts index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.
2. We currently only support local filesystem paths for the fts index.

View File

@@ -1,5 +1,7 @@
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
A Table is a collection of Records in a LanceDB Database. You can follow along on colab!
A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time.
This guide will show how to create tables, insert data into them, and update the data. You can follow along on colab!
## Creating a LanceDB Table
@@ -116,6 +118,84 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
table = db.create_table(table_name, schema=Content)
```
#### Nested schemas
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
```python
class Document(BaseModel):
content: str
source: str
```
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
#### Validators
Note that neither pydantic nor pyarrow automatically validates that input data
is of the *correct* timezone, but this is easy to add as a custom field validator:
```python
from datetime import datetime
from zoneinfo import ZoneInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
tzname = "America/New_York"
tz = ZoneInfo(tzname)
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
@field_validator('dt_with_tz')
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
ok = TestModel(dt_with_tz=datetime.now(tz))
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
print("A ValidationError was raised.")
pass
```
When you run this code it should print "A ValidationError was raised."
#### Pydantic custom types
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
### Using Iterators / Writing Large Datasets
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
@@ -151,7 +231,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
## Creating Empty Table
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
You can create empty tables in python. Initialize it with schema and later ingest data into it.
```python
import lancedb
@@ -201,8 +281,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```javascript
data
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! info "Note"
@@ -251,8 +331,9 @@ After a table has been created, you can always add more data to it using
### Adding Pandas DataFrame
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
df = pd.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["fizz", "buzz"], "price": [100.0, 200.0]
})
tbl.add(df)
```
@@ -261,17 +342,12 @@ After a table has been created, you can always add more data to it using
### Adding to table using Iterator
```python
import pandas as pd
def make_batches():
for i in range(5):
yield pd.DataFrame(
{
"vector": [[3.1, 4.1], [1, 1]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
})
yield [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
tbl.add(make_batches())
```
@@ -306,9 +382,10 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
```python
import lancedb
import pandas as pd
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
data = [{"x": 1, "vector": [1, 2]},
{"x": 2, "vector": [3, 4]},
{"x": 3, "vector": [5, 6]}]
db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data)
table.to_pandas()
@@ -364,6 +441,106 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
await tbl.countRows() // Returns 1
```
## Updating a Table
This can be used to update zero to all rows depending on how many rows match the where clause. The update queries follow the form of a SQL UPDATE statement. The `where` parameter is a SQL filter that matches on the metadata columns. The `values` or `values_sql` parameters are used to provide the new values for the columns.
| Parameter | Type | Description |
|---|---|---|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
| `values_sql` | `dict` | The values to update. The keys are the column names and the values are the SQL expressions to set. For example, `{'x': 'x + 1'}` will increment the value of the `x` column by 1. |
!!! info "SQL syntax"
See [SQL filters](sql.md) for more information on the supported SQL syntax.
!!! warning "Warning"
Updating nested columns is not yet supported.
=== "Python"
API Reference: [lancedb.table.Table.update][]
```python
import lancedb
import pandas as pd
# Create a lancedb connection
db = lancedb.connect("./.lancedb")
# Create a table from a pandas DataFrame
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
table = db.create_table("my_table", data)
# Update the table where x = 2
table.update(where="x = 2", values={"vector": [10, 10]})
# Get the updated table as a pandas DataFrame
df = table.to_pandas()
# Print the DataFrame
print(df)
```
Output
```shell
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
```
=== "Javascript/Typescript"
API Reference: [vectordb.Table.update](../../javascript/interfaces/Table/#update)
```javascript
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
```python
# Update the table where x = 2
table.update(valuesSql={"x": "x + 1"})
print(table.to_pandas())
```
Output
```shell
x vector
0 2 [1.0, 2.0]
1 4 [5.0, 6.0]
2 3 [10.0, 10.0]
```
=== "Javascript/Typescript"
```javascript
await tbl.update({ valuesSql: { x: "x + 1" } })
```
!!! info "Note"
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## What's Next?
Learn how to Query your tables and create indices

View File

@@ -36,7 +36,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
result = table.search([100, 100]).limit(2).to_list()
```
=== "Javascript"
@@ -67,7 +67,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
## Documentation Quick Links
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
* [`Embedding Functions`](embedding.md) - functions for working with embeddings.
* [`Embedding Functions`](embeddings/index.md) - functions for working with embeddings.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.

View File

@@ -11,8 +11,13 @@ npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
support:
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / DefaultWriteOptions
# Class: DefaultWriteOptions
Write options when creating a Table.
## Implements
- [`WriteOptions`](../interfaces/WriteOptions.md)
## Table of contents
### Constructors
- [constructor](DefaultWriteOptions.md#constructor)
### Properties
- [writeMode](DefaultWriteOptions.md#writemode)
## Constructors
### constructor
**new DefaultWriteOptions**()
## Properties
### writeMode
**writeMode**: [`WriteMode`](../enums/WriteMode.md) = `WriteMode.Create`
A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Implementation of
[WriteOptions](../interfaces/WriteOptions.md).[writeMode](../interfaces/WriteOptions.md#writemode)
#### Defined in
[index.ts:778](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L778)

View File

@@ -26,7 +26,7 @@ A connection to a LanceDB database.
### Methods
- [createTable](LocalConnection.md#createtable)
- [createTableArrow](LocalConnection.md#createtablearrow)
- [createTableImpl](LocalConnection.md#createtableimpl)
- [dropTable](LocalConnection.md#droptable)
- [openTable](LocalConnection.md#opentable)
- [tableNames](LocalConnection.md#tablenames)
@@ -46,7 +46,7 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184)
[index.ts:355](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L355)
## Properties
@@ -56,17 +56,25 @@ A connection to a LanceDB database.
#### Defined in
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182)
[index.ts:353](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L353)
___
### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
`Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Type declaration
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
##### Returns
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181)
[index.ts:352](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L352)
## Accessors
@@ -84,27 +92,34 @@ ___
#### Defined in
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189)
[index.ts:360](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L360)
## Methods
### createTable
**createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
**createTable**\<`T`\>(`name`, `data?`, `optsOrEmbedding?`, `opt?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Creates a new Table and initialize it with new data.
Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| Name | Type |
| :------ | :------ |
| `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
| `data?` | `Record`\<`string`, `unknown`\>[] |
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of
@@ -112,120 +127,44 @@ Creates a new Table and initialize it with new data.
#### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
[index.ts:395](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L395)
___
### createTableArrow
### createTableImpl
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
`Private` **createTableImpl**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
| `«destructured»` | `Object` |
|  `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
|  `embeddingFunction?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|  `name` | `string` |
|  `schema?` | `Schema`\<`any`\> |
|  `writeOptions?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266)
[index.ts:413](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L413)
___
### dropTable
**dropTable**(`name`): `Promise`<`void`\>
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table.
@@ -237,7 +176,7 @@ Drop an existing table.
#### Returns
`Promise`<`void`\>
`Promise`\<`void`\>
#### Implementation of
@@ -245,13 +184,13 @@ Drop an existing table.
#### Defined in
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276)
[index.ts:453](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L453)
___
### openTable
**openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
**openTable**(`name`): `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
Open a table in the database.
@@ -263,7 +202,7 @@ Open a table in the database.
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
`Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
#### Implementation of
@@ -271,9 +210,9 @@ Open a table in the database.
#### Defined in
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205)
[index.ts:376](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L376)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
**openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Open a table in the database.
@@ -288,11 +227,11 @@ Open a table in the database.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of
@@ -300,9 +239,9 @@ Connection.openTable
#### Defined in
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212)
[index.ts:384](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L384)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
**openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters
@@ -315,11 +254,11 @@ Connection.openTable
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of
@@ -327,19 +266,19 @@ Connection.openTable
#### Defined in
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213)
[index.ts:385](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L385)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
**tableNames**(): `Promise`\<`string`[]\>
Get the names of all tables in the database.
#### Returns
`Promise`<`string`[]\>
`Promise`\<`string`[]\>
#### Implementation of
@@ -347,4 +286,4 @@ Get the names of all tables in the database.
#### Defined in
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196)
[index.ts:367](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L367)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable
# Class: LocalTable<T\>
# Class: LocalTable\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
@@ -12,7 +12,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
## Implements
- [`Table`](../interfaces/Table.md)<`T`\>
- [`Table`](../interfaces/Table.md)\<`T`\>
## Table of contents
@@ -26,6 +26,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [\_name](LocalTable.md#_name)
- [\_options](LocalTable.md#_options)
- [\_tbl](LocalTable.md#_tbl)
- [where](LocalTable.md#where)
### Accessors
@@ -34,17 +35,23 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### Methods
- [add](LocalTable.md#add)
- [cleanupOldVersions](LocalTable.md#cleanupoldversions)
- [compactFiles](LocalTable.md#compactfiles)
- [countRows](LocalTable.md#countrows)
- [createIndex](LocalTable.md#createindex)
- [delete](LocalTable.md#delete)
- [filter](LocalTable.md#filter)
- [indexStats](LocalTable.md#indexstats)
- [listIndices](LocalTable.md#listindices)
- [overwrite](LocalTable.md#overwrite)
- [search](LocalTable.md#search)
- [update](LocalTable.md#update)
## Constructors
### constructor
**new LocalTable**<`T`\>(`tbl`, `name`, `options`)
**new LocalTable**\<`T`\>(`tbl`, `name`, `options`)
#### Type parameters
@@ -62,9 +69,9 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287)
[index.ts:464](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L464)
**new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`)
**new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
#### Type parameters
@@ -79,21 +86,21 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| `tbl` | `any` | |
| `name` | `string` | |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294)
[index.ts:471](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L471)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284)
[index.ts:461](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L461)
___
@@ -103,27 +110,61 @@ ___
#### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283)
[index.ts:460](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L460)
___
### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
`Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Type declaration
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
##### Returns
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285)
[index.ts:462](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L462)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
`Private` **\_tbl**: `any`
#### Defined in
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282)
[index.ts:459](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L459)
___
### where
**where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
#### Type declaration
▸ (`value`): [`Query`](Query.md)\<`T`\>
Creates a filter query to find all rows matching the specified criteria
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
##### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:499](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L499)
## Accessors
@@ -141,13 +182,13 @@ ___
#### Defined in
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302)
[index.ts:479](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L479)
## Methods
### add
**add**(`data`): `Promise`<`number`\>
**add**(`data`): `Promise`\<`number`\>
Insert records into this Table.
@@ -155,11 +196,11 @@ Insert records into this Table.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
`Promise`\<`number`\>
The number of rows added to the table
@@ -169,19 +210,69 @@ The number of rows added to the table
#### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320)
[index.ts:507](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L507)
___
### cleanupOldVersions
**cleanupOldVersions**(`olderThan?`, `deleteUnverified?`): `Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
Clean up old versions of the table, freeing disk space.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `olderThan?` | `number` | The minimum age in minutes of the versions to delete. If not provided, defaults to two weeks. |
| `deleteUnverified?` | `boolean` | Because they may be part of an in-progress transaction, uncommitted files newer than 7 days old are not deleted by default. This means that failed transactions can leave around data that takes up disk space for up to 7 days. You can override this safety mechanism by setting this option to `true`, only if you promise there are no in progress writes while you run this operation. Failure to uphold this promise can lead to corrupted tables. |
#### Returns
`Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
#### Defined in
[index.ts:596](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L596)
___
### compactFiles
**compactFiles**(`options?`): `Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
Run the compaction process on the table.
This can be run after making several small appends to optimize the table
for faster reads.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | [`CompactionOptions`](../interfaces/CompactionOptions.md) | Advanced options configuring compaction. In most cases, you can omit this arguments, as the default options are sensible for most tables. |
#### Returns
`Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
Metrics about the compaction operation.
#### Defined in
[index.ts:615](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L615)
___
### countRows
**countRows**(): `Promise`<`number`\>
**countRows**(): `Promise`\<`number`\>
Returns the number of rows in this table.
#### Returns
`Promise`<`number`\>
`Promise`\<`number`\>
#### Implementation of
@@ -189,20 +280,16 @@ Returns the number of rows in this table.
#### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362)
[index.ts:543](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L543)
___
### createIndex
**createIndex**(`indexParams`): `Promise`<`any`\>
**createIndex**(`indexParams`): `Promise`\<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters
| Name | Type | Description |
@@ -211,7 +298,11 @@ VectorIndexParams.
#### Returns
`Promise`<`any`\>
`Promise`\<`any`\>
**`See`**
VectorIndexParams.
#### Implementation of
@@ -219,13 +310,13 @@ VectorIndexParams.
#### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355)
[index.ts:536](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L536)
___
### delete
**delete**(`filter`): `Promise`<`void`\>
**delete**(`filter`): `Promise`\<`void`\>
Delete rows from this table.
@@ -237,7 +328,7 @@ Delete rows from this table.
#### Returns
`Promise`<`void`\>
`Promise`\<`void`\>
#### Implementation of
@@ -245,13 +336,81 @@ Delete rows from this table.
#### Defined in
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371)
[index.ts:552](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L552)
___
### filter
**filter**(`value`): [`Query`](Query.md)\<`T`\>
Creates a filter query to find all rows matching the specified criteria
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:495](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L495)
___
### indexStats
**indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
Get statistics about an index.
#### Parameters
| Name | Type |
| :------ | :------ |
| `indexUuid` | `string` |
#### Returns
`Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
#### Implementation of
[Table](../interfaces/Table.md).[indexStats](../interfaces/Table.md#indexstats)
#### Defined in
[index.ts:628](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L628)
___
### listIndices
**listIndices**(): `Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
List the indicies on this table.
#### Returns
`Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
#### Implementation of
[Table](../interfaces/Table.md).[listIndices](../interfaces/Table.md#listindices)
#### Defined in
[index.ts:624](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L624)
___
### overwrite
**overwrite**(`data`): `Promise`<`number`\>
**overwrite**(`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents.
@@ -259,11 +418,11 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
`Promise`\<`number`\>
The number of rows added to the table
@@ -273,13 +432,13 @@ The number of rows added to the table
#### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338)
[index.ts:522](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L522)
___
### search
**search**(`query`): [`Query`](Query.md)<`T`\>
**search**(`query`): [`Query`](Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term
@@ -291,7 +450,7 @@ Creates a search query to find the nearest neighbors of the given search term
#### Returns
[`Query`](Query.md)<`T`\>
[`Query`](Query.md)\<`T`\>
#### Implementation of
@@ -299,4 +458,30 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310)
[index.ts:487](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L487)
___
### update
**update**(`args`): `Promise`\<`void`\>
Update rows in this table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](../interfaces/UpdateArgs.md) \| [`UpdateSqlArgs`](../interfaces/UpdateSqlArgs.md) | see [UpdateArgs](../interfaces/UpdateArgs.md) and [UpdateSqlArgs](../interfaces/UpdateSqlArgs.md) for more details |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[update](../interfaces/Table.md#update)
#### Defined in
[index.ts:563](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L563)

View File

@@ -6,7 +6,7 @@ An embedding function that automatically creates vector representation for a giv
## Implements
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`string`\>
## Table of contents
@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21)
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L21)
## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19)
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L19)
___
@@ -60,7 +60,7 @@ ___
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18)
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L18)
___
@@ -76,13 +76,13 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50)
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L50)
## Methods
### embed
**embed**(`data`): `Promise`<`number`[][]\>
**embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
@@ -94,7 +94,7 @@ Creates a vector representation for the given values.
#### Returns
`Promise`<`number`[][]\>
`Promise`\<`number`[][]\>
#### Implementation of
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38)
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L38)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / Query
# Class: Query<T\>
# Class: Query\<T\>
A builder for nearest neighbor queries for LanceDB.
@@ -23,6 +23,7 @@ A builder for nearest neighbor queries for LanceDB.
- [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype)
- [\_nprobes](Query.md#_nprobes)
- [\_prefilter](Query.md#_prefilter)
- [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor)
@@ -34,9 +35,11 @@ A builder for nearest neighbor queries for LanceDB.
- [execute](Query.md#execute)
- [filter](Query.md#filter)
- [isElectron](Query.md#iselectron)
- [limit](Query.md#limit)
- [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes)
- [prefilter](Query.md#prefilter)
- [refineFactor](Query.md#refinefactor)
- [select](Query.md#select)
@@ -44,7 +47,7 @@ A builder for nearest neighbor queries for LanceDB.
### constructor
**new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
**new Query**\<`T`\>(`query?`, `tbl?`, `embeddings?`)
#### Type parameters
@@ -56,23 +59,23 @@ A builder for nearest neighbor queries for LanceDB.
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `query` | `T` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
| `query?` | `T` |
| `tbl?` | `any` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448)
[query.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L38)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
`Protected` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446)
[query.ts:36](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L36)
___
@@ -82,17 +85,17 @@ ___
#### Defined in
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444)
[query.ts:33](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L33)
___
### \_limit
`Private` **\_limit**: `number`
`Private` `Optional` **\_limit**: `number`
#### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440)
[query.ts:29](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L29)
___
@@ -102,7 +105,7 @@ ___
#### Defined in
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445)
[query.ts:34](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L34)
___
@@ -112,17 +115,27 @@ ___
#### Defined in
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442)
[query.ts:31](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L31)
___
### \_prefilter
`Private` **\_prefilter**: `boolean`
#### Defined in
[query.ts:35](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L35)
___
### \_query
`Private` `Readonly` **\_query**: `T`
`Private` `Optional` `Readonly` **\_query**: `T`
#### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438)
[query.ts:26](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L26)
___
@@ -132,7 +145,7 @@ ___
#### Defined in
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439)
[query.ts:28](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L28)
___
@@ -142,7 +155,7 @@ ___
#### Defined in
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441)
[query.ts:30](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L30)
___
@@ -152,27 +165,27 @@ ___
#### Defined in
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443)
[query.ts:32](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L32)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
`Private` `Optional` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437)
[query.ts:27](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L27)
___
### where
**where**: (`value`: `string`) => [`Query`](Query.md)<`T`\>
**where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
#### Type declaration
▸ (`value`): [`Query`](Query.md)<`T`\>
▸ (`value`): [`Query`](Query.md)\<`T`\>
A filter statement to be applied to this query.
@@ -184,17 +197,17 @@ A filter statement to be applied to this query.
##### Returns
[`Query`](Query.md)<`T`\>
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496)
[query.ts:87](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L87)
## Methods
### execute
**execute**<`T`\>(): `Promise`<`T`[]\>
**execute**\<`T`\>(): `Promise`\<`T`[]\>
Execute the query and return the results as an Array of Objects
@@ -202,21 +215,21 @@ Execute the query and return the results as an Array of Objects
| Name | Type |
| :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> |
| `T` | `Record`\<`string`, `unknown`\> |
#### Returns
`Promise`<`T`[]\>
`Promise`\<`T`[]\>
#### Defined in
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519)
[query.ts:115](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L115)
___
### filter
**filter**(`value`): [`Query`](Query.md)<`T`\>
**filter**(`value`): [`Query`](Query.md)\<`T`\>
A filter statement to be applied to this query.
@@ -228,17 +241,31 @@ A filter statement to be applied to this query.
#### Returns
[`Query`](Query.md)<`T`\>
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491)
[query.ts:82](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L82)
___
### isElectron
`Private` **isElectron**(): `boolean`
#### Returns
`boolean`
#### Defined in
[query.ts:142](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L142)
___
### limit
**limit**(`value`): [`Query`](Query.md)<`T`\>
**limit**(`value`): [`Query`](Query.md)\<`T`\>
Sets the number of results that will be returned
@@ -250,24 +277,20 @@ Sets the number of results that will be returned
#### Returns
[`Query`](Query.md)<`T`\>
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464)
[query.ts:55](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L55)
___
### metricType
**metricType**(`value`): [`Query`](Query.md)<`T`\>
**metricType**(`value`): [`Query`](Query.md)\<`T`\>
The MetricType used for this Query.
**`See`**
MetricType for the different options
#### Parameters
| Name | Type | Description |
@@ -276,17 +299,21 @@ MetricType for the different options
#### Returns
[`Query`](Query.md)<`T`\>
[`Query`](Query.md)\<`T`\>
**`See`**
MetricType for the different options
#### Defined in
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511)
[query.ts:102](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L102)
___
### nprobes
**nprobes**(`value`): [`Query`](Query.md)<`T`\>
**nprobes**(`value`): [`Query`](Query.md)\<`T`\>
The number of probes used. A higher number makes search more accurate but also slower.
@@ -298,17 +325,37 @@ The number of probes used. A higher number makes search more accurate but also s
#### Returns
[`Query`](Query.md)<`T`\>
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482)
[query.ts:73](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L73)
___
### prefilter
**prefilter**(`value`): [`Query`](Query.md)\<`T`\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `boolean` |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[query.ts:107](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L107)
___
### refineFactor
**refineFactor**(`value`): [`Query`](Query.md)<`T`\>
**refineFactor**(`value`): [`Query`](Query.md)\<`T`\>
Refine the results by reading extra elements and re-ranking them in memory.
@@ -320,17 +367,17 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Returns
[`Query`](Query.md)<`T`\>
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473)
[query.ts:64](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L64)
___
### select
**select**(`value`): [`Query`](Query.md)<`T`\>
**select**(`value`): [`Query`](Query.md)\<`T`\>
Return only the specified columns.
@@ -342,8 +389,8 @@ Return only the specified columns.
#### Returns
[`Query`](Query.md)<`T`\>
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502)
[query.ts:93](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L93)

View File

@@ -0,0 +1,226 @@
[vectordb](../README.md) / [Exports](../saas-modules.md) / RemoteConnection
# Class: RemoteConnection
A connection to a remote LanceDB database. The class RemoteConnection implements interface Connection
## Implements
- [`Connection`](../interfaces/Connection.md)
## Table of contents
### Constructors
- [constructor](RemoteConnection.md#constructor)
### Methods
- [createTable](RemoteConnection.md#createtable)
- [tableNames](RemoteConnection.md#tablenames)
- [openTable](RemoteConnection.md#opentable)
- [dropTable](RemoteConnection.md#droptable)
## Constructors
### constructor
**new RemoteConnection**(`client`, `dbName`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `client` | `HttpLancedbClient` |
| `dbName` | `string` |
#### Defined in
[remote/index.ts:37](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L37)
## Methods
### createTable
**createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTable](../interfaces/Connection.md#createtable)
#### Defined in
[remote/index.ts:75](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L75)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
Connection.createTable
#### Defined in
[remote/index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
___
### dropTable
**dropTable**(`name`): `Promise`<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`<`void`\>
#### Implementation of
[Connection](../interfaces/Connection.md).[dropTable](../interfaces/Connection.md#droptable)
#### Defined in
[remote/index.ts:131](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L131)
___
### openTable
**openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[openTable](../interfaces/Connection.md#opentable)
#### Defined in
[remote/index.ts:65](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L65)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[remote/index.ts:66](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L66)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[remote/index.ts:67](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L67)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
Get the names of all tables in the database, with pagination.
#### Parameters
| Name | Type |
| :------ | :------ |
| `pageToken` | `string` |
| `limit` | `int` |
#### Returns
`Promise`<`string`[]\>
#### Implementation of
[Connection](../interfaces/Connection.md).[tableNames](../interfaces/Connection.md#tablenames)
#### Defined in
[remote/index.ts:60](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L60)

View File

@@ -0,0 +1,76 @@
[vectordb](../README.md) / [Exports](../saas-modules.md) / RemoteQuery
# Class: Query<T\>
A builder for nearest neighbor queries for LanceDB.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](RemoteQuery.md#constructor)
### Properties
- [\_embeddings](RemoteQuery.md#_embeddings)
- [\_query](RemoteQuery.md#_query)
- [\_name](RemoteQuery.md#_name)
- [\_client](RemoteQuery.md#_client)
### Methods
- [execute](RemoteQuery.md#execute)
## Constructors
### constructor
**new Query**<`T`\>(`name`, `client`, `query`, `embeddings?`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `client` | `HttpLancedbClient` |
| `query` | `T` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Defined in
[remote/index.ts:137](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L137)
## Methods
### execute
**execute**<`T`\>(): `Promise`<`T`[]\>
Execute the query and return the results as an Array of Objects
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> |
#### Returns
`Promise`<`T`[]\>
#### Defined in
[remote/index.ts:143](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L143)

View File

@@ -0,0 +1,355 @@
[vectordb](../README.md) / [Exports](../saas-modules.md) / RemoteTable
# Class: RemoteTable<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Implements
- [`Table`](../interfaces/Table.md)<`T`\>
## Table of contents
### Constructors
- [constructor](RemoteTable.md#constructor)
### Properties
- [\_name](RemoteTable.md#_name)
- [\_client](RemoteTable.md#_client)
- [\_embeddings](RemoteTable.md#_embeddings)
### Accessors
- [name](RemoteTable.md#name)
### Methods
- [add](RemoteTable.md#add)
- [countRows](RemoteTable.md#countrows)
- [createIndex](RemoteTable.md#createindex)
- [delete](RemoteTable.md#delete)
- [listIndices](classes/RemoteTable.md#listindices)
- [indexStats](classes/RemoteTable.md#liststats)
- [overwrite](RemoteTable.md#overwrite)
- [search](RemoteTable.md#search)
- [schema](classes/RemoteTable.md#schema)
- [update](RemoteTable.md#update)
## Constructors
### constructor
**new RemoteTable**<`T`\>(`client`, `name`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `client` | `HttpLancedbClient` |
| `name` | `string` |
#### Defined in
[remote/index.ts:186](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L186)
**new RemoteTable**<`T`\>(`client`, `name`, `embeddings`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `client` | `HttpLancedbClient` | |
| `name` | `string` | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[remote/index.ts:187](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L187)
## Accessors
### name
`get` **name**(): `string`
#### Returns
`string`
#### Implementation of
[Table](../interfaces/Table.md).[name](../interfaces/Table.md#name)
#### Defined in
[remote/index.ts:194](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L194)
## Methods
### add
**add**(`data`): `Promise`<`number`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Implementation of
[Table](../interfaces/Table.md).[add](../interfaces/Table.md#add)
#### Defined in
[remote/index.ts:293](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L293)
___
### countRows
**countRows**(): `Promise`<`number`\>
Returns the number of rows in this table.
#### Returns
`Promise`<`number`\>
#### Implementation of
[Table](../interfaces/Table.md).[countRows](../interfaces/Table.md#countrows)
#### Defined in
[remote/index.ts:290](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L290)
___
### createIndex
**createIndex**(`metric_type`, `column`, `index_cache_size`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `metric_type` | `string` | distance metric type, L2 or cosine or dot |
| `column` | `string` | the name of the column to be indexed |
#### Returns
`Promise`<`any`\>
#### Implementation of
[Table](../interfaces/Table.md).[createIndex](../interfaces/Table.md#createindex)
#### Defined in
[remote/index.ts:249](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L249)
___
### delete
**delete**(`filter`): `Promise`<`void`\>
Delete rows from this table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
#### Returns
`Promise`<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[delete](../interfaces/Table.md#delete)
#### Defined in
[remote/index.ts:295](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L295)
___
### overwrite
**overwrite**(`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Implementation of
[Table](../interfaces/Table.md).[overwrite](../interfaces/Table.md#overwrite)
#### Defined in
[remote/index.ts:231](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L231)
___
### search
**search**(`query`): [`Query`](Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
#### Returns
[`Query`](Query.md)<`T`\>
#### Implementation of
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#search)
#### Defined in
[remote/index.ts:209](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L209)
___
### update
**update**(`args`): `Promise`<`void`\>
Update zero to all rows depending on how many rows match the where clause.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | `UpdateArgs` or `UpdateSqlArgs` | The query search arguments |
#### Returns
`Promise`<`any`\>
#### Implementation of
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#update)
#### Defined in
[remote/index.ts:299](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L299)
___
### schema
**schema**(): `Promise`<`void`\>
Get the schema of the table
#### Returns
`Promise`<`any`\>
#### Implementation of
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#schema)
#### Defined in
[remote/index.ts:198](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L198)
___
### listIndices
**listIndices**(): `Promise`<`void`\>
List the indices of the table
#### Returns
`Promise`<`any`\>
#### Implementation of
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#listIndices)
#### Defined in
[remote/index.ts:319](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L319)
___
### indexStats
**indexStats**(`indexUuid`): `Promise`<`void`\>
Get the indexed/unindexed of rows from the table
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexUuid` | `string` | the uuid of the index |
#### Returns
`Promise`<`numIndexedRows`\>
`Promise`<`numUnindexedRows`\>
#### Implementation of
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#indexStats)
#### Defined in
[remote/index.ts:328](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L328)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567)
[index.ts:798](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L798)
___
@@ -34,7 +34,7 @@ Dot product
#### Defined in
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572)
[index.ts:803](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L803)
___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562)
[index.ts:793](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L793)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552)
[index.ts:766](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L766)
___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548)
[index.ts:762](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L762)
___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550)
[index.ts:764](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L764)

View File

@@ -18,7 +18,7 @@
#### Defined in
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31)
[index.ts:34](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L34)
___
@@ -28,7 +28,7 @@ ___
#### Defined in
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33)
[index.ts:36](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L36)
___
@@ -38,4 +38,4 @@ ___
#### Defined in
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35)
[index.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L38)

View File

@@ -0,0 +1,34 @@
[vectordb](../README.md) / [Exports](../modules.md) / CleanupStats
# Interface: CleanupStats
## Table of contents
### Properties
- [bytesRemoved](CleanupStats.md#bytesremoved)
- [oldVersions](CleanupStats.md#oldversions)
## Properties
### bytesRemoved
**bytesRemoved**: `number`
The number of bytes removed from disk.
#### Defined in
[index.ts:637](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L637)
___
### oldVersions
**oldVersions**: `number`
The number of old table versions removed.
#### Defined in
[index.ts:641](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L641)

View File

@@ -0,0 +1,62 @@
[vectordb](../README.md) / [Exports](../modules.md) / CompactionMetrics
# Interface: CompactionMetrics
## Table of contents
### Properties
- [filesAdded](CompactionMetrics.md#filesadded)
- [filesRemoved](CompactionMetrics.md#filesremoved)
- [fragmentsAdded](CompactionMetrics.md#fragmentsadded)
- [fragmentsRemoved](CompactionMetrics.md#fragmentsremoved)
## Properties
### filesAdded
**filesAdded**: `number`
The number of files added. This is typically equal to the number of
fragments added.
#### Defined in
[index.ts:692](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L692)
___
### filesRemoved
**filesRemoved**: `number`
The number of files that were removed. Each fragment may have more than one
file.
#### Defined in
[index.ts:687](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L687)
___
### fragmentsAdded
**fragmentsAdded**: `number`
The number of new fragments that were created.
#### Defined in
[index.ts:682](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L682)
___
### fragmentsRemoved
**fragmentsRemoved**: `number`
The number of fragments that were removed.
#### Defined in
[index.ts:678](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L678)

View File

@@ -0,0 +1,80 @@
[vectordb](../README.md) / [Exports](../modules.md) / CompactionOptions
# Interface: CompactionOptions
## Table of contents
### Properties
- [materializeDeletions](CompactionOptions.md#materializedeletions)
- [materializeDeletionsThreshold](CompactionOptions.md#materializedeletionsthreshold)
- [maxRowsPerGroup](CompactionOptions.md#maxrowspergroup)
- [numThreads](CompactionOptions.md#numthreads)
- [targetRowsPerFragment](CompactionOptions.md#targetrowsperfragment)
## Properties
### materializeDeletions
`Optional` **materializeDeletions**: `boolean`
If true, fragments that have rows that are deleted may be compacted to
remove the deleted rows. This can improve the performance of queries.
Default is true.
#### Defined in
[index.ts:660](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L660)
___
### materializeDeletionsThreshold
`Optional` **materializeDeletionsThreshold**: `number`
A number between 0 and 1, representing the proportion of rows that must be
marked deleted before a fragment is a candidate for compaction to remove
the deleted rows. Default is 10%.
#### Defined in
[index.ts:666](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L666)
___
### maxRowsPerGroup
`Optional` **maxRowsPerGroup**: `number`
The maximum number of rows per group. Defaults to 1024.
#### Defined in
[index.ts:654](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L654)
___
### numThreads
`Optional` **numThreads**: `number`
The number of threads to use for compaction. If not provided, defaults to
the number of cores on the machine.
#### Defined in
[index.ts:671](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L671)
___
### targetRowsPerFragment
`Optional` **targetRowsPerFragment**: `number`
The number of rows per fragment to target. Fragments that have fewer rows
will be compacted into adjacent fragments to produce larger fragments.
Defaults to 1024 * 1024.
#### Defined in
[index.ts:650](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L650)

View File

@@ -19,7 +19,6 @@ Connection could be local against filesystem or remote against a server.
### Methods
- [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [dropTable](Connection.md#droptable)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
@@ -32,13 +31,76 @@ Connection could be local against filesystem or remote against a server.
#### Defined in
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70)
[index.ts:125](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L125)
## Methods
### createTable
**createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
**createTable**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `«destructured»` | [`CreateTableOptions`](CreateTableOptions.md)\<`T`\> |
#### Returns
`Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in
[index.ts:146](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L146)
**createTable**(`name`, `data`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
#### Returns
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
#### Defined in
[index.ts:154](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L154)
**createTable**(`name`, `data`, `options`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
#### Defined in
[index.ts:163](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L163)
**createTable**\<`T`\>(`name`, `data`, `embeddings`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Creates a new Table and initialize it with new data.
@@ -53,44 +115,49 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
`Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90)
[index.ts:172](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L172)
___
**createTable**\<`T`\>(`name`, `data`, `embeddings`, `options`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
### createTableArrow
Creates a new Table and initialize it with new data.
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
`Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92)
[index.ts:181](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L181)
___
### dropTable
**dropTable**(`name`): `Promise`<`void`\>
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table.
@@ -102,17 +169,17 @@ Drop an existing table.
#### Returns
`Promise`<`void`\>
`Promise`\<`void`\>
#### Defined in
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98)
[index.ts:187](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L187)
___
### openTable
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
**openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Open a table in the database.
@@ -127,26 +194,26 @@ Open a table in the database.
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
`Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80)
[index.ts:135](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L135)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
**tableNames**(): `Promise`\<`string`[]\>
#### Returns
`Promise`<`string`[]\>
`Promise`\<`string`[]\>
#### Defined in
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72)
[index.ts:127](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L127)

View File

@@ -6,18 +6,62 @@
### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [awsCredentials](ConnectionOptions.md#awscredentials)
- [awsRegion](ConnectionOptions.md#awsregion)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [region](ConnectionOptions.md#region)
- [uri](ConnectionOptions.md#uri)
## Properties
### apiKey
`Optional` **apiKey**: `string`
#### Defined in
[index.ts:49](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L49)
___
### awsCredentials
`Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
#### Defined in
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40)
[index.ts:44](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L44)
___
### awsRegion
`Optional` **awsRegion**: `string`
#### Defined in
[index.ts:46](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L46)
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
[index.ts:54](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L54)
___
### region
`Optional` **region**: `string`
#### Defined in
[index.ts:51](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L51)
___
@@ -27,4 +71,4 @@ ___
#### Defined in
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39)
[index.ts:42](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L42)

View File

@@ -0,0 +1,69 @@
[vectordb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions\<T\>
## Type parameters
| Name |
| :------ |
| `T` |
## Table of contents
### Properties
- [data](CreateTableOptions.md#data)
- [embeddingFunction](CreateTableOptions.md#embeddingfunction)
- [name](CreateTableOptions.md#name)
- [schema](CreateTableOptions.md#schema)
- [writeOptions](CreateTableOptions.md#writeoptions)
## Properties
### data
`Optional` **data**: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]
#### Defined in
[index.ts:79](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L79)
___
### embeddingFunction
`Optional` **embeddingFunction**: [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\>
#### Defined in
[index.ts:85](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L85)
___
### name
**name**: `string`
#### Defined in
[index.ts:76](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L76)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[index.ts:82](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L82)
___
### writeOptions
`Optional` **writeOptions**: [`WriteOptions`](WriteOptions.md)
#### Defined in
[index.ts:88](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L88)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
# Interface: EmbeddingFunction<T\>
# Interface: EmbeddingFunction\<T\>
An embedding function that automatically creates vector representation for a given column.
@@ -25,11 +25,11 @@ An embedding function that automatically creates vector representation for a giv
### embed
**embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
**embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
#### Type declaration
▸ (`data`): `Promise`<`number`[][]\>
▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
@@ -41,11 +41,11 @@ Creates a vector representation for the given values.
##### Returns
`Promise`<`number`[][]\>
`Promise`\<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27)
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/embedding_function.ts#L27)
___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22)
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,30 @@
[vectordb](../README.md) / [Exports](../modules.md) / IndexStats
# Interface: IndexStats
## Table of contents
### Properties
- [numIndexedRows](IndexStats.md#numindexedrows)
- [numUnindexedRows](IndexStats.md#numunindexedrows)
## Properties
### numIndexedRows
**numIndexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:344](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L344)
___
### numUnindexedRows
• **numUnindexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:345](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L345)

View File

@@ -7,6 +7,7 @@
### Properties
- [column](IvfPQIndexConfig.md#column)
- [index\_cache\_size](IvfPQIndexConfig.md#index_cache_size)
- [index\_name](IvfPQIndexConfig.md#index_name)
- [max\_iters](IvfPQIndexConfig.md#max_iters)
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
@@ -28,7 +29,19 @@ The column to be indexed
#### Defined in
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382)
[index.ts:701](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L701)
___
### index\_cache\_size
`Optional` **index\_cache\_size**: `number`
Cache size of the index
#### Defined in
[index.ts:750](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L750)
___
@@ -40,7 +53,7 @@ A unique name for the index
#### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387)
[index.ts:706](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L706)
___
@@ -52,7 +65,7 @@ The max number of iterations for kmeans training.
#### Defined in
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402)
[index.ts:721](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L721)
___
@@ -64,7 +77,7 @@ Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421)
[index.ts:740](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L740)
___
@@ -76,7 +89,7 @@ Metric type, L2 or Cosine
#### Defined in
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392)
[index.ts:711](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L711)
___
@@ -88,7 +101,7 @@ The number of bits to present one PQ centroid.
#### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416)
[index.ts:735](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L735)
___
@@ -100,7 +113,7 @@ The number of partitions this index
#### Defined in
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397)
[index.ts:716](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L716)
___
@@ -112,7 +125,7 @@ Number of subvectors to build PQ code
#### Defined in
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412)
[index.ts:731](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L731)
___
@@ -124,7 +137,7 @@ Replace an existing index with the same name if it exists.
#### Defined in
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426)
[index.ts:745](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L745)
___
@@ -134,7 +147,7 @@ ___
#### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428)
[index.ts:752](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L752)
___
@@ -146,4 +159,4 @@ Train as optimized product quantization.
#### Defined in
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407)
[index.ts:726](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L726)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table
# Interface: Table<T\>
# Interface: Table\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
@@ -22,19 +22,22 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [indexStats](Table.md#indexstats)
- [listIndices](Table.md#listindices)
- [name](Table.md#name)
- [overwrite](Table.md#overwrite)
- [search](Table.md#search)
- [update](Table.md#update)
## Properties
### add
**add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
**add**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration
▸ (`data`): `Promise`<`number`\>
▸ (`data`): `Promise`\<`number`\>
Insert records into this Table.
@@ -42,54 +45,50 @@ Insert records into this Table.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
`Promise`<`number`\>
`Promise`\<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120)
[index.ts:209](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L209)
___
### countRows
**countRows**: () => `Promise`<`number`\>
**countRows**: () => `Promise`\<`number`\>
#### Type declaration
▸ (): `Promise`<`number`\>
▸ (): `Promise`\<`number`\>
Returns the number of rows in this table.
##### Returns
`Promise`<`number`\>
`Promise`\<`number`\>
#### Defined in
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140)
[index.ts:229](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L229)
___
### createIndex
**createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\>
**createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`\<`any`\>
#### Type declaration
▸ (`indexParams`): `Promise`<`any`\>
▸ (`indexParams`): `Promise`\<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
##### Parameters
| Name | Type | Description |
@@ -98,27 +97,41 @@ VectorIndexParams.
##### Returns
`Promise`<`any`\>
`Promise`\<`any`\>
**`See`**
VectorIndexParams.
#### Defined in
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135)
[index.ts:224](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L224)
___
### delete
**delete**: (`filter`: `string`) => `Promise`<`void`\>
**delete**: (`filter`: `string`) => `Promise`\<`void`\>
#### Type declaration
▸ (`filter`): `Promise`<`void`\>
▸ (`filter`): `Promise`\<`void`\>
Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
##### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
@@ -142,19 +155,55 @@ await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
#### Defined in
[index.ts:263](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L263)
___
### indexStats
**indexStats**: (`indexUuid`: `string`) => `Promise`\<[`IndexStats`](IndexStats.md)\>
#### Type declaration
▸ (`indexUuid`): `Promise`\<[`IndexStats`](IndexStats.md)\>
Get statistics about an index.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
| Name | Type |
| :------ | :------ |
| `indexUuid` | `string` |
##### Returns
`Promise`<`void`\>
`Promise`\<[`IndexStats`](IndexStats.md)\>
#### Defined in
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174)
[index.ts:306](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L306)
___
### listIndices
**listIndices**: () => `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
#### Type declaration
▸ (): `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
List the indicies on this table.
##### Returns
`Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
#### Defined in
[index.ts:301](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L301)
___
@@ -164,17 +213,17 @@ ___
#### Defined in
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106)
[index.ts:195](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L195)
___
### overwrite
**overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
**overwrite**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration
▸ (`data`): `Promise`<`number`\>
▸ (`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents.
@@ -182,27 +231,27 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
`Promise`<`number`\>
`Promise`\<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128)
[index.ts:217](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L217)
___
### search
**search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\>
**search**: (`query`: `T`) => [`Query`](../classes/Query.md)\<`T`\>
#### Type declaration
▸ (`query`): [`Query`](../classes/Query.md)<`T`\>
▸ (`query`): [`Query`](../classes/Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term
@@ -214,8 +263,59 @@ Creates a search query to find the nearest neighbors of the given search term
##### Returns
[`Query`](../classes/Query.md)<`T`\>
[`Query`](../classes/Query.md)\<`T`\>
#### Defined in
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112)
[index.ts:201](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L201)
___
### update
**update**: (`args`: [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md)) => `Promise`\<`void`\>
#### Type declaration
▸ (`args`): `Promise`\<`void`\>
Update rows in this table.
This can be used to update a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md) | see [UpdateArgs](UpdateArgs.md) and [UpdateSqlArgs](UpdateSqlArgs.md) for more details |
##### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [3, 3], name: 'Ye'},
{id: 2, vector: [4, 4], name: 'Mike'},
];
const tbl = await con.createTable("my_table", data)
await tbl.update({
filter: "id = 2",
updates: { vector: [2, 2], name: "Michael" },
})
let results = await tbl.search([1, 1]).execute();
// Returns [
// {id: 2, vector: [2, 2], name: 'Michael'}
// {id: 1, vector: [3, 3], name: 'Ye'}
// ]
```
#### Defined in
[index.ts:296](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L296)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / UpdateArgs
# Interface: UpdateArgs
## Table of contents
### Properties
- [values](UpdateArgs.md#values)
- [where](UpdateArgs.md#where)
## Properties
### values
**values**: `Record`\<`string`, `Literal`\>
A key-value map of updates. The keys are the column names, and the values are the
new values to set
#### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L320)
___
### where
`Optional` **where**: `string`
A filter in the same format used by a sql WHERE clause. The filter may be empty,
in which case all rows will be updated.
#### Defined in
[index.ts:314](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L314)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / UpdateSqlArgs
# Interface: UpdateSqlArgs
## Table of contents
### Properties
- [valuesSql](UpdateSqlArgs.md#valuessql)
- [where](UpdateSqlArgs.md#where)
## Properties
### valuesSql
**valuesSql**: `Record`\<`string`, `string`\>
A key-value map of updates. The keys are the column names, and the values are the
new values to set as SQL expressions.
#### Defined in
[index.ts:334](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L334)
___
### where
`Optional` **where**: `string`
A filter in the same format used by a sql WHERE clause. The filter may be empty,
in which case all rows will be updated.
#### Defined in
[index.ts:328](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L328)

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / VectorIndex
# Interface: VectorIndex
## Table of contents
### Properties
- [columns](VectorIndex.md#columns)
- [name](VectorIndex.md#name)
- [uuid](VectorIndex.md#uuid)
## Properties
### columns
**columns**: `string`[]
#### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L338)
___
### name
**name**: `string`
#### Defined in
[index.ts:339](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L339)
___
### uuid
**uuid**: `string`
#### Defined in
[index.ts:340](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L340)

View File

@@ -0,0 +1,27 @@
[vectordb](../README.md) / [Exports](../modules.md) / WriteOptions
# Interface: WriteOptions
Write options when creating a Table.
## Implemented by
- [`DefaultWriteOptions`](../classes/DefaultWriteOptions.md)
## Table of contents
### Properties
- [writeMode](WriteOptions.md#writemode)
## Properties
### writeMode
`Optional` **writeMode**: [`WriteMode`](../enums/WriteMode.md)
A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Defined in
[index.ts:774](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L774)

View File

@@ -11,6 +11,7 @@
### Classes
- [DefaultWriteOptions](classes/DefaultWriteOptions.md)
- [LocalConnection](classes/LocalConnection.md)
- [LocalTable](classes/LocalTable.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
@@ -19,11 +20,20 @@
### Interfaces
- [AwsCredentials](interfaces/AwsCredentials.md)
- [CleanupStats](interfaces/CleanupStats.md)
- [CompactionMetrics](interfaces/CompactionMetrics.md)
- [CompactionOptions](interfaces/CompactionOptions.md)
- [Connection](interfaces/Connection.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [IndexStats](interfaces/IndexStats.md)
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
- [Table](interfaces/Table.md)
- [UpdateArgs](interfaces/UpdateArgs.md)
- [UpdateSqlArgs](interfaces/UpdateSqlArgs.md)
- [VectorIndex](interfaces/VectorIndex.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases
@@ -32,6 +42,7 @@
### Functions
- [connect](modules.md#connect)
- [isWriteOptions](modules.md#iswriteoptions)
## Type Aliases
@@ -41,13 +52,13 @@
#### Defined in
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431)
[index.ts:755](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L755)
## Functions
### connect
**connect**(`uri`): `Promise`<[`Connection`](interfaces/Connection.md)\>
**connect**(`uri`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
Connect to a LanceDB instance at the given URI
@@ -59,24 +70,44 @@ Connect to a LanceDB instance at the given URI
#### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\>
`Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47)
[index.ts:95](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L95)
**connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\>
**connect**(`opts`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
| `opts` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
#### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\>
`Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Defined in
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48)
[index.ts:96](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L96)
___
### isWriteOptions
**isWriteOptions**(`value`): value is WriteOptions
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `any` |
#### Returns
value is WriteOptions
#### Defined in
[index.ts:781](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L781)

View File

@@ -0,0 +1,92 @@
# Table of contents
## Installation
```bash
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Classes
- [RemoteConnection](classes/RemoteConnection.md)
- [RemoteTable](classes/RemoteTable.md)
- [RemoteQuery](classes/RemoteQuery.md)
## Methods
- [add](classes/RemoteTable.md#add)
- [countRows](classes/RemoteTable.md#countrows)
- [createIndex](classes/RemoteTable.md#createindex)
- [createTable](classes/RemoteConnection.md#createtable)
- [delete](classes/RemoteTable.md#delete)
- [dropTable](classes/RemoteConnection.md#droptable)
- [listIndices](classes/RemoteTable.md#listindices)
- [indexStats](classes/RemoteTable.md#liststats)
- [openTable](classes/RemoteConnection.md#opentable)
- [overwrite](classes/RemoteTable.md#overwrite)
- [schema](classes/RemoteTable.md#schema)
- [search](classes/RemoteTable.md#search)
- [tableNames](classes/RemoteConnection.md#tablenames)
- [update](classes/RemoteTable.md#update)
## Example code
```javascript
const lancedb = require('vectordb');
const { Schema, Field, Int32, Float32, Utf8, FixedSizeList } = require ("apache-arrow/Arrow.node")
// connect to a remote DB
const devApiKey = process.env.LANCEDB_DEV_API_KEY
const dbURI = process.env.LANCEDB_URI
const db = await lancedb.connect({
uri: dbURI, // replace dbURI with your project, e.g. "db://your-project-name"
apiKey: devApiKey, // replace dbURI with your api key
region: "us-east-1-dev"
});
// create a new table
const tableName = "my_table_000"
const data = [
{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }
]
const schema = new Schema(
[
new Field('id', new Int32()),
new Field('vector', new FixedSizeList(2, new Field('float32', new Float32()))),
new Field('item', new Utf8()),
new Field('price', new Float32())
]
)
const table = await db.createTable({
name: tableName,
schema,
}, data)
// list the table
const tableNames_1 = await db.tableNames('')
// add some data and search should be okay
const newData = [
{ id: 3, vector: [10.3, 1.9], item: "test1", price: 30.0 },
{ id: 4, vector: [6.2, 9.2], item: "test2", price: 40.0 }
]
await table.add(newData)
// create the index for the table
await table.createIndex({
metric_type: "L2",
column: "vector"
})
let result = await table.search([2.8, 4.3]).select(["vector", "price"]).limit(1).execute()
// update the data
await table.update({
where: "id == 1",
values: { item: "foo1" }
})
//drop the table
await db.dropTable(tableName)
```

File diff suppressed because one or more lines are too long

View File

@@ -44,15 +44,14 @@
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"from openai import OpenAI\n",
"import os\n",
"\n",
"# Configuring the environment variable OPENAI_API_KEY\n",
"if \"OPENAI_API_KEY\" not in os.environ:\n",
" # OR set the key here as a variable\n",
" openai.api_key = \"sk-...\"\n",
" \n",
"assert len(openai.Model.list()[\"data\"]) > 0"
" os.environ[\"OPENAI_API_KEY\"] = \"sk-...\"\n",
"client = OpenAI()\n",
"assert len(client.models.list().data) > 0"
]
},
{
@@ -144,7 +143,7 @@
"source": [
"# Pre-processing and loading the documentation\n",
"\n",
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time yyou do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time you do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
]
},
{
@@ -255,7 +254,7 @@
"id": "28d93b85",
"metadata": {},
"source": [
"And thats it! We're all setup. The next step is to run some queries, let's try a few:"
"And that's it! We're all set up. The next step is to run some queries, let's try a few:"
]
},
{

File diff suppressed because one or more lines are too long

View File

@@ -19,11 +19,11 @@
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
]
}
],
@@ -39,6 +39,7 @@
"outputs": [],
"source": [
"import io\n",
"\n",
"import PIL\n",
"import duckdb\n",
"import lancedb"
@@ -158,18 +159,18 @@
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n",
" \"tbl.search(embedding).limit(9).to_pandas()\"\n",
" )\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
" return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n",
"\n",
"def find_image_keywords(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
" f\"tbl.search('{query}').limit(9).to_pandas()\"\n",
" )\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
" return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n",
"\n",
"def find_image_sql(query):\n",
" code = (\n",

File diff suppressed because it is too large Load Diff

View File

@@ -114,13 +114,10 @@
}
],
"source": [
"import pandas as pd\n",
"\n",
"data = pd.DataFrame({\n",
" \"vector\": [[1.1, 1.2], [0.2, 1.8]],\n",
" \"lat\": [45.5, 40.1],\n",
" \"long\": [-122.7, -74.1]\n",
"})\n",
"data = [\n",
" {\"vector\": [1.1, 1.2], \"lat\": 45.5, \"long\": -122.7},\n",
" {\"vector\": [0.2, 1.8], \"lat\": 40.1, \"long\": -74.1},\n",
"]\n",
"\n",
"db.create_table(\"table2\", data)\n",
"\n",
@@ -366,11 +363,11 @@
"def make_batches():\n",
" for i in range(5):\n",
" yield pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
"\n",
"tbl = db.create_table(\"table5\", make_batches(), schema=PydanticSchema)\n",
"tbl.schema"
@@ -572,9 +569,11 @@
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame([{\"vector\": [1.3, 1.4], \"item\": \"fizz\", \"price\": 100.0},\n",
" {\"vector\": [9.5, 56.2], \"item\": \"buzz\", \"price\": 200.0}])\n",
"tbl.add(df)"
"data = [\n",
" {\"vector\": [1.3, 1.4], \"item\": \"fizz\", \"price\": 100.0},\n",
" {\"vector\": [9.5, 56.2], \"item\": \"buzz\", \"price\": 200.0}\n",
"]\n",
"tbl.add(data)"
]
},
{
@@ -596,17 +595,12 @@
"metadata": {},
"outputs": [],
"source": [
"\n",
"import pandas as pd\n",
"\n",
"def make_batches():\n",
" for i in range(5):\n",
" yield pd.DataFrame(\n",
" {\n",
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
" \"item\": [\"foo\", \"bar\"],\n",
" \"price\": [10.0, 20.0],\n",
" })\n",
" yield [\n",
" {\"vector\": [3.1, 4.1], \"item\": \"foo\", \"price\": 10.0},\n",
" {\"vector\": [1, 1], \"item\": \"bar\", \"price\": 20.0},\n",
" ]\n",
"tbl.add(make_batches())"
]
},

View File

@@ -184,7 +184,7 @@
"df = (contextualize(data.to_pandas())\n",
" .groupby(\"title\").text_col(\"text\")\n",
" .window(20).stride(4)\n",
" .to_df())\n",
" .to_pandas())\n",
"df.head(1)"
]
},
@@ -206,15 +206,16 @@
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"from openai import OpenAI\n",
"import os\n",
"\n",
"# Configuring the environment variable OPENAI_API_KEY\n",
"if \"OPENAI_API_KEY\" not in os.environ:\n",
" # OR set the key here as a variable\n",
" openai.api_key = \"sk-...\"\n",
" os.environ[\"OPENAI_API_KEY\"] = \"sk-...\"\n",
" \n",
"assert len(openai.Model.list()[\"data\"]) > 0"
"client = OpenAI()\n",
"assert len(client.models.list().data) > 0"
]
},
{
@@ -234,8 +235,8 @@
"outputs": [],
"source": [
"def embed_func(c): \n",
" rs = openai.Embedding.create(input=c, engine=\"text-embedding-ada-002\")\n",
" return [record[\"embedding\"] for record in rs[\"data\"]]"
" rs = client.embeddings.create(input=c, model=\"text-embedding-ada-002\")\n",
" return [rs.data[0].embedding]"
]
},
{
@@ -536,9 +537,8 @@
],
"source": [
"def complete(prompt):\n",
" # query text-davinci-003\n",
" res = openai.Completion.create(\n",
" engine='text-davinci-003',\n",
" res = client.completions.create(\n",
" model='text-davinci-003',\n",
" prompt=prompt,\n",
" temperature=0,\n",
" max_tokens=400,\n",
@@ -547,7 +547,7 @@
" presence_penalty=0,\n",
" stop=None\n",
" )\n",
" return res['choices'][0]['text'].strip()\n",
" return res.choices[0].text\n",
"\n",
"# check that it works\n",
"query = \"who was the 12th person on the moon and when did they land?\"\n",
@@ -603,7 +603,7 @@
"outputs": [],
"source": [
"# Use LanceDB to get top 3 most relevant context\n",
"context = tbl.search(emb).limit(3).to_df()"
"context = tbl.search(emb).limit(3).to_pandas()"
]
},
{

View File

@@ -39,7 +39,6 @@ to lazily generate data:
from typing import Iterable
import pyarrow as pa
import lancedb
def make_batches() -> Iterable[pa.RecordBatch]:
for i in range(5):
@@ -74,7 +73,7 @@ table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
df = table.search(query_vector).limit(1).to_pandas()
print(df)
```
@@ -89,12 +88,12 @@ If you have more complex criteria, you can always apply the filter to the result
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
results = table.search([100, 100]).where("price < 15").to_pandas()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
df = results = table.search([100, 100]).to_pandas()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"

View File

@@ -11,15 +11,13 @@ pip install duckdb lancedb
We will re-use [the dataset created previously](./arrow.md):
```python
import pandas as pd
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
```

View File

@@ -7,7 +7,7 @@ LanceDB integrates with Pydantic for schema inference, data ingestion, and query
LanceDB supports to create Apache Arrow Schema from a
[Pydantic BaseModel](https://docs.pydantic.dev/latest/api/main/#pydantic.main.BaseModel)
via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) method.
via [pydantic_to_schema()](python.md#lancedb.pydantic.pydantic_to_schema) method.
::: lancedb.pydantic.pydantic_to_schema

View File

@@ -22,21 +22,19 @@ pip install lancedb
::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder
## Embeddings
::: lancedb.embeddings.functions.EmbeddingFunctionRegistry
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
::: lancedb.embeddings.functions.EmbeddingFunction
::: lancedb.embeddings.base.EmbeddingFunction
::: lancedb.embeddings.functions.TextEmbeddingFunction
::: lancedb.embeddings.base.TextEmbeddingFunction
::: lancedb.embeddings.functions.SentenceTransformerEmbeddings
::: lancedb.embeddings.sentence_transformers.SentenceTransformerEmbeddings
::: lancedb.embeddings.functions.OpenAIEmbeddings
::: lancedb.embeddings.openai.OpenAIEmbeddings
::: lancedb.embeddings.functions.OpenClipEmbeddings
::: lancedb.embeddings.open_clip.OpenClipEmbeddings
::: lancedb.embeddings.with_embeddings
@@ -56,7 +54,7 @@ pip install lancedb
## Utilities
::: lancedb.vector
::: lancedb.schema.vector
## Integrations

View File

@@ -0,0 +1,18 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.remote.db.RemoteDBConnection
## Table
::: lancedb.remote.table.RemoteTable

1
docs/src/robots.txt Normal file
View File

@@ -0,0 +1 @@
User-agent: *

View File

@@ -0,0 +1,4 @@
window.addEventListener("DOMContentLoaded", (event) => {
!function(t,e){var o,n,p,r;e.__SV||(window.posthog=e,e._i=[],e.init=function(i,s,a){function g(t,e){var o=e.split(".");2==o.length&&(t=t[o[0]],e=o[1]),t[e]=function(){t.push([e].concat(Array.prototype.slice.call(arguments,0)))}}(p=t.createElement("script")).type="text/javascript",p.async=!0,p.src=s.api_host+"/static/array.js",(r=t.getElementsByTagName("script")[0]).parentNode.insertBefore(p,r);var u=e;for(void 0!==a?u=e[a]=[]:a="posthog",u.people=u.people||[],u.toString=function(t){var e="posthog";return"posthog"!==a&&(e+="."+a),t||(e+=" (stub)"),e},u.people.toString=function(){return u.toString(1)+".people (stub)"},o="capture identify alias people.set people.set_once set_config register register_once unregister opt_out_capturing has_opted_out_capturing opt_in_capturing reset isFeatureEnabled onFeatureFlags getFeatureFlag getFeatureFlagPayload reloadFeatureFlags group updateEarlyAccessFeatureEnrollment getEarlyAccessFeatures getActiveMatchingSurveys getSurveys".split(" "),n=0;n<o.length;n++)g(u,o[n]);e._i.push([i,s,a])},e.__SV=1)}(document,window.posthog||[]);
posthog.init('phc_oENDjGgHtmIDrV6puUiFem2RB4JA8gGWulfdulmMdZP',{api_host:'https://app.posthog.com'})
});

View File

@@ -4,7 +4,7 @@
In a recommendation system or search engine, you can find similar products from
the one you searched.
In LLM and other AI applications,
each data point can be [presented by the embeddings generated from some models](embedding.md),
each data point can be [presented by the embeddings generated from some models](embeddings/index.md),
it returns the most relevant features.
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
@@ -67,7 +67,7 @@ await db_setup.createTable('my_vectors', data)
df = tbl.search(np.random.random((1536))) \
.limit(10) \
.to_df()
.to_list()
```
=== "JavaScript"
@@ -92,7 +92,7 @@ as well.
df = tbl.search(np.random.random((1536))) \
.metric("cosine") \
.limit(10) \
.to_df()
.to_list()
```
@@ -118,4 +118,101 @@ However, fast vector search using indices often entails making a trade-off with
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
always returns 100% recall.
See [ANN Index](ann_indexes.md) for more details.
See [ANN Index](ann_indexes.md) for more details.
### Output formats
LanceDB returns results in many different formats commonly used in python.
Let's create a LanceDB table with a nested schema:
```python
from datetime import datetime
import lancedb
from lancedb.pydantic import LanceModel, Vector
import numpy as np
from pydantic import BaseModel
uri = "data/sample-lancedb-nested"
class Metadata(BaseModel):
source: str
timestamp: datetime
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(1536)
payload: Document
# Let's add 100 sample rows to our dataset
data = [LanceSchema(
id=f"id{i}",
vector=np.random.randn(1536),
payload=Document(
content=f"document{i}", meta=Metadata(source=f"source{i%10}", timestamp=datetime.now())
),
) for i in range(100)]
tbl = db.create_table("documents", data=data)
```
#### As a pyarrow table
Using `to_arrow()` we can get the results back as a pyarrow Table.
This result table has the same columns as the LanceDB table, with
the addition of an `_distance` column for vector search or a `score`
column for full text search.
```python
tbl.search(np.random.randn(1536)).to_arrow()
```
#### As a pandas dataframe
You can also get the results as a pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas()
```
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
python dict column, which makes it difficult to support nested references.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)
```
If your table has a deeply nested struct, you can control how many levels
of nesting to flatten by passing in a positive integer.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=1)
```
#### As a list of python dicts
You can of course return results as a list of python dicts.
```python
tbl.search(np.random.randn(1536)).to_list()
```
#### As a list of pydantic models
We can add data using pydantic models, and we can certainly
retrieve results as pydantic models
```python
tbl.search(np.random.randn(1536)).to_pydantic(LanceSchema)
```
Note that in this case the extra `_distance` field is discarded since
it's not part of the LanceSchema.

View File

@@ -1,7 +1,7 @@
# SQL filters
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
filters. It can be used during hybrid vector search and deletion operations.
filters. It can be used during hybrid vector search, update, and deletion operations.
Currently, Lance supports a growing list of expressions.
@@ -22,7 +22,7 @@ import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"}
data = [{"vector": row, "item": f"item {i}", "id": i}
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
tbl = db.create_table("my_vectors", data=data)
@@ -35,33 +35,25 @@ const db = await vectordb.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
data.push({vector: Array(1536).fill(i), id: i, item: `item ${i}`, strId: `${i}`})
}
const tbl = await db.createTable('my_vectors', data)
const tbl = await db.createTable('myVectors', data)
```
-->
=== "Python"
```python
tbl.search([100, 102]) \
.where("""(
(label IN [10, 20])
AND
(note.email IS NOT NULL)
) OR NOT note.created
""")
.where("(item IN ('item 0', 'item 2')) AND (id > 10)") \
.to_arrow()
```
=== "Javascript"
```javascript
tbl.search([100, 102])
.where(`(
(label IN [10, 20])
AND
(note.email IS NOT NULL)
) OR NOT note.created
`)
await tbl.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.execute()
```
@@ -118,3 +110,22 @@ The mapping from SQL types to Arrow types is:
[^1]: See precision mapping in previous table.
## Filtering without Vector Search
You can also filter your data without search.
=== "Python"
```python
tbl.search().where("id=10").limit(10).to_arrow()
```
=== "JavaScript"
```javascript
await tbl.where('id=10').limit(10).execute()
```
!!! warning
If your table is large, this could potentially return a very large
amount of data. Please be sure to use a `limit` clause unless
you're sure you want to return the whole result set.

View File

@@ -8,6 +8,7 @@ const excludedGlobs = [
"../src/embedding.md",
"../src/examples/*.md",
"../src/guides/tables.md",
"../src/embeddings/*.md",
];
const nodePrefix = "javascript";

View File

@@ -10,6 +10,7 @@ excluded_globs = [
"../src/integrations/voxel51.md",
"../src/guides/tables.md",
"../src/python/duckdb.md",
"../src/embeddings/*.md",
]
python_prefix = "py"
@@ -17,29 +18,45 @@ python_file = ".py"
python_folder = "python"
files = glob.glob(glob_string, recursive=True)
excluded_files = [f for excluded_glob in excluded_globs for f in glob.glob(excluded_glob, recursive=True)]
excluded_files = [
f
for excluded_glob in excluded_globs
for f in glob.glob(excluded_glob, recursive=True)
]
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False
# Python code has strict indentation
strip_length = 0
skip_test = False
for line in lines:
if "skip-test" in line:
skip_test = True
if line.strip().startswith(prefix + python_prefix):
in_code_block = True
strip_length = len(line) - len(line.lstrip())
elif in_code_block and line.strip().startswith(suffix):
in_code_block = False
yield "\n"
if not skip_test:
yield "\n"
skip_test = False
elif in_code_block:
yield line[strip_length:]
if not skip_test:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files):
with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```"))
if len(lines) > 0:
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file)
print(lines)
out_path = (
Path(python_folder)
/ Path(file).name.strip(".md")
/ (Path(file).name.strip(".md") + python_file)
)
print(out_path)
out_path.parent.mkdir(exist_ok=True, parents=True)
with open(out_path, "w") as out:
out.writelines(lines)
out.writelines(lines)

View File

@@ -1,5 +1,8 @@
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python
-e ../../python
numpy
pandas
pylance
duckdb
duckdb
--extra-index-url https://download.pytorch.org/whl/cpu
torch

View File

@@ -9,8 +9,13 @@ npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
support:
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage

594
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.2.6",
"version": "0.4.2",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.2.6",
"version": "0.4.2",
"cpu": [
"x64",
"arm64"
@@ -18,9 +18,9 @@
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
@@ -53,39 +53,59 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.6",
"@lancedb/vectordb-darwin-x64": "0.2.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
"@lancedb/vectordb-linux-x64-gnu": "0.2.6",
"@lancedb/vectordb-win32-x64-msvc": "0.2.6"
"@lancedb/vectordb-darwin-arm64": "0.4.2",
"@lancedb/vectordb-darwin-x64": "0.4.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.2",
"@lancedb/vectordb-linux-x64-gnu": "0.4.2",
"@lancedb/vectordb-win32-x64-msvc": "0.4.2"
}
},
"node_modules/@75lb/deep-merge": {
"version": "1.1.1",
"resolved": "https://registry.npmjs.org/@75lb/deep-merge/-/deep-merge-1.1.1.tgz",
"integrity": "sha512-xvgv6pkMGBA6GwdyJbNAnDmfAIR/DfWhrj9jgWh3TY7gRm3KO46x/GPjRg6wJ0nOepwqrNxFfojebh0Df4h4Tw==",
"dependencies": {
"lodash.assignwith": "^4.2.0",
"typical": "^7.1.1"
},
"engines": {
"node": ">=12.17"
}
},
"node_modules/@75lb/deep-merge/node_modules/typical": {
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
"engines": {
"node": ">=12.17"
}
},
"node_modules/@apache-arrow/ts": {
"version": "12.0.0",
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-12.0.0.tgz",
"integrity": "sha512-ArJ3Fw5W9RAeNWuyCU2CdjL/nEAZSVDG1p3jz/ZtLo/q3NTz2w7HUCOJeszejH/5alGX+QirYrJ5c6BW++/P7g==",
"version": "14.0.2",
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz",
"integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==",
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "18.14.5",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "6.1.3",
"flatbuffers": "23.3.3",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.0"
"tslib": "^2.5.3"
}
},
"node_modules/@apache-arrow/ts/node_modules/@types/node": {
"version": "18.14.5",
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
},
"node_modules/@apache-arrow/ts/node_modules/tslib": {
"version": "2.5.0",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
},
"node_modules/@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
@@ -317,9 +337,9 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.2.tgz",
"integrity": "sha512-Ec73W2IHnZK4VC8g/7JyLbgcwcpNb9YI20yEhfTjEEFjJKoElZhDD/ZgghC3QQSRnrXFTxDzPK1V9BDT5QB2Hg==",
"cpu": [
"arm64"
],
@@ -329,9 +349,9 @@
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.2.tgz",
"integrity": "sha512-tj0JJlOfOdeSAfmM7EZhrhFdCFjoq9Bmrjt4741BNjtF+Nv4Otl53lFtUQrexTr4oh/E1yY1qaydJ7K++8u3UA==",
"cpu": [
"x64"
],
@@ -341,9 +361,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.2.tgz",
"integrity": "sha512-OQ7ra5Q5RrLLwxIyI338KfQ2sSl8NJfqAHWvwiMtjCYFFYxIJGjX7U0I2MjSEPqJ5/ZoyjV4mjsvs0G1q20u+Q==",
"cpu": [
"arm64"
],
@@ -353,9 +373,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.2.tgz",
"integrity": "sha512-9tgIFSOYqNJzonnYsQr7v2gGdJm8aZ62UsVX2SWAIVhypoP4A05tAlbzjBgKO3R5xy5gpcW8tt/Pt8IsYWON7Q==",
"cpu": [
"x64"
],
@@ -365,9 +385,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.2.tgz",
"integrity": "sha512-jhG3MqZ3r8BexXANLRNX57RAnCZT9psdSBORG3KTu5qe2xaunRlJNSA2kk8a79tf+gtUT/BAmMiXMzAi/dwq8w==",
"cpu": [
"x64"
],
@@ -866,7 +886,6 @@
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
"dev": true,
"dependencies": {
"color-convert": "^2.0.1"
},
@@ -891,34 +910,34 @@
}
},
"node_modules/apache-arrow": {
"version": "12.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-12.0.0.tgz",
"integrity": "sha512-uI+hnZZsGfNJiR/wG8j5yPQuDjmOHx4hZpkA743G4x3TlFrCpA3MMX7KUkIOIw0e/CwZ8NYuaMzaQsblA47qVA==",
"version": "14.0.2",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz",
"integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==",
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "18.14.5",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "6.1.3",
"flatbuffers": "23.3.3",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.0"
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/apache-arrow/node_modules/@types/node": {
"version": "18.14.5",
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
},
"node_modules/apache-arrow/node_modules/tslib": {
"version": "2.5.0",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
},
"node_modules/arg": {
"version": "4.1.3",
@@ -1170,7 +1189,6 @@
"version": "4.1.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
"dev": true,
"dependencies": {
"ansi-styles": "^4.1.0",
"supports-color": "^7.1.0"
@@ -1182,11 +1200,24 @@
"url": "https://github.com/chalk/chalk?sponsor=1"
}
},
"node_modules/chalk-template": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/chalk-template/-/chalk-template-0.4.0.tgz",
"integrity": "sha512-/ghrgmhfY8RaSdeo43hNXxpoHAtxdbskUHjPpfqUWGttFgycUhYPGx3YZBCnUCvOa7Doivn1IZec3DEGFoMgLg==",
"dependencies": {
"chalk": "^4.1.2"
},
"engines": {
"node": ">=12"
},
"funding": {
"url": "https://github.com/chalk/chalk-template?sponsor=1"
}
},
"node_modules/chalk/node_modules/supports-color": {
"version": "7.2.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true,
"dependencies": {
"has-flag": "^4.0.0"
},
@@ -1245,7 +1276,6 @@
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
"dev": true,
"dependencies": {
"color-name": "~1.1.4"
},
@@ -1256,8 +1286,7 @@
"node_modules/color-name": {
"version": "1.1.4",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"dev": true
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA=="
},
"node_modules/combined-stream": {
"version": "1.0.8",
@@ -1285,97 +1314,33 @@
}
},
"node_modules/command-line-usage": {
"version": "6.1.3",
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-6.1.3.tgz",
"integrity": "sha512-sH5ZSPr+7UStsloltmDh7Ce5fb8XPlHyoPzTpyyMuYCtervL65+ubVZ6Q61cFtFl62UyJlc8/JwERRbAFPUqgw==",
"version": "7.0.1",
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-7.0.1.tgz",
"integrity": "sha512-NCyznE//MuTjwi3y84QVUGEOT+P5oto1e1Pk/jFPVdPPfsG03qpTIl3yw6etR+v73d0lXsoojRpvbru2sqePxQ==",
"dependencies": {
"array-back": "^4.0.2",
"chalk": "^2.4.2",
"table-layout": "^1.0.2",
"typical": "^5.2.0"
"array-back": "^6.2.2",
"chalk-template": "^0.4.0",
"table-layout": "^3.0.0",
"typical": "^7.1.1"
},
"engines": {
"node": ">=8.0.0"
}
},
"node_modules/command-line-usage/node_modules/ansi-styles": {
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
"dependencies": {
"color-convert": "^1.9.0"
},
"engines": {
"node": ">=4"
"node": ">=12.20.0"
}
},
"node_modules/command-line-usage/node_modules/array-back": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg==",
"version": "6.2.2",
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw==",
"engines": {
"node": ">=8"
}
},
"node_modules/command-line-usage/node_modules/chalk": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
"dependencies": {
"ansi-styles": "^3.2.1",
"escape-string-regexp": "^1.0.5",
"supports-color": "^5.3.0"
},
"engines": {
"node": ">=4"
}
},
"node_modules/command-line-usage/node_modules/color-convert": {
"version": "1.9.3",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
"dependencies": {
"color-name": "1.1.3"
}
},
"node_modules/command-line-usage/node_modules/color-name": {
"version": "1.1.3",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw=="
},
"node_modules/command-line-usage/node_modules/escape-string-regexp": {
"version": "1.0.5",
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==",
"engines": {
"node": ">=0.8.0"
}
},
"node_modules/command-line-usage/node_modules/has-flag": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==",
"engines": {
"node": ">=4"
}
},
"node_modules/command-line-usage/node_modules/supports-color": {
"version": "5.5.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
"dependencies": {
"has-flag": "^3.0.0"
},
"engines": {
"node": ">=4"
"node": ">=12.17"
}
},
"node_modules/command-line-usage/node_modules/typical": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
"engines": {
"node": ">=8"
"node": ">=12.17"
}
},
"node_modules/concat-map": {
@@ -1451,14 +1416,6 @@
"node": ">=6"
}
},
"node_modules/deep-extend": {
"version": "0.6.0",
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA==",
"engines": {
"node": ">=4.0.0"
}
},
"node_modules/deep-is": {
"version": "0.1.4",
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
@@ -2237,9 +2194,9 @@
}
},
"node_modules/flatbuffers": {
"version": "23.3.3",
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.3.3.tgz",
"integrity": "sha512-jmreOaAT1t55keaf+Z259Tvh8tR/Srry9K8dgCgvizhKSEr6gLGgaOJI2WFL5fkOpGOGRZwxUrlFn0GCmXUy6g=="
"version": "23.5.26",
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.5.26.tgz",
"integrity": "sha512-vE+SI9vrJDwi1oETtTIFldC/o9GsVKRM+s6EL0nQgxXlYV1Vc4Tk30hj4xGICftInKQKj1F3up2n8UbIVobISQ=="
},
"node_modules/flatted": {
"version": "3.2.7",
@@ -2535,7 +2492,6 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
"dev": true,
"engines": {
"node": ">=8"
}
@@ -3048,6 +3004,11 @@
"url": "https://github.com/sponsors/sindresorhus"
}
},
"node_modules/lodash.assignwith": {
"version": "4.2.0",
"resolved": "https://registry.npmjs.org/lodash.assignwith/-/lodash.assignwith-4.2.0.tgz",
"integrity": "sha512-ZznplvbvtjK2gMvnQ1BR/zqPFZmS6jbK4p+6Up4xcRYA7yMIwxHCfbTcrYxXKzzqLsQ05eJPVznEW3tuwV7k1g=="
},
"node_modules/lodash.camelcase": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
@@ -3668,14 +3629,6 @@
"node": ">=8.10.0"
}
},
"node_modules/reduce-flatten": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/reduce-flatten/-/reduce-flatten-2.0.0.tgz",
"integrity": "sha512-EJ4UNY/U1t2P/2k6oqotuX2Cc3T6nxJwsM0N0asT7dhrtH1ltUxDn4NalSYmPE2rCkVpcf/X6R0wDwcFpzhd4w==",
"engines": {
"node": ">=6"
}
},
"node_modules/regexp.prototype.flags": {
"version": "1.5.0",
"resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.5.0.tgz",
@@ -3965,6 +3918,14 @@
"source-map": "^0.6.0"
}
},
"node_modules/stream-read-all": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/stream-read-all/-/stream-read-all-3.0.1.tgz",
"integrity": "sha512-EWZT9XOceBPlVJRrYcykW8jyRSZYbkb/0ZK36uLEmoWVO5gxBOnntNTseNzfREsqxqdfEGQrD8SXQ3QWbBmq8A==",
"engines": {
"node": ">=10"
}
},
"node_modules/string-width": {
"version": "4.2.3",
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
@@ -4082,33 +4043,39 @@
}
},
"node_modules/table-layout": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-1.0.2.tgz",
"integrity": "sha512-qd/R7n5rQTRFi+Zf2sk5XVVd9UQl6ZkduPFC3S7WEGJAmetDTjY3qPN50eSKzwuzEyQKy5TN2TiZdkIjos2L6A==",
"version": "3.0.2",
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-3.0.2.tgz",
"integrity": "sha512-rpyNZYRw+/C+dYkcQ3Pr+rLxW4CfHpXjPDnG7lYhdRoUcZTUt+KEsX+94RGp/aVp/MQU35JCITv2T/beY4m+hw==",
"dependencies": {
"array-back": "^4.0.1",
"deep-extend": "~0.6.0",
"typical": "^5.2.0",
"wordwrapjs": "^4.0.0"
"@75lb/deep-merge": "^1.1.1",
"array-back": "^6.2.2",
"command-line-args": "^5.2.1",
"command-line-usage": "^7.0.0",
"stream-read-all": "^3.0.1",
"typical": "^7.1.1",
"wordwrapjs": "^5.1.0"
},
"bin": {
"table-layout": "bin/cli.js"
},
"engines": {
"node": ">=8.0.0"
"node": ">=12.17"
}
},
"node_modules/table-layout/node_modules/array-back": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg==",
"version": "6.2.2",
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw==",
"engines": {
"node": ">=8"
"node": ">=12.17"
}
},
"node_modules/table-layout/node_modules/typical": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
"engines": {
"node": ">=8"
"node": ">=12.17"
}
},
"node_modules/temp": {
@@ -4553,23 +4520,11 @@
"dev": true
},
"node_modules/wordwrapjs": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
"integrity": "sha512-kKlNACbvHrkpIw6oPeYDSmdCTu2hdMHoyXLTcUKala++lx5Y+wjJ/e474Jqv5abnVmwxw08DiTuHmw69lJGksA==",
"dependencies": {
"reduce-flatten": "^2.0.0",
"typical": "^5.2.0"
},
"version": "5.1.0",
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-5.1.0.tgz",
"integrity": "sha512-JNjcULU2e4KJwUNv6CHgI46UvDGitb6dGryHajXTDiLgg1/RiGoPSDw4kZfYnwGtEXf2ZMeIewDQgFGzkCB2Sg==",
"engines": {
"node": ">=8.0.0"
}
},
"node_modules/wordwrapjs/node_modules/typical": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
"engines": {
"node": ">=8"
"node": ">=12.17"
}
},
"node_modules/workerpool": {
@@ -4690,32 +4645,48 @@
}
},
"dependencies": {
"@75lb/deep-merge": {
"version": "1.1.1",
"resolved": "https://registry.npmjs.org/@75lb/deep-merge/-/deep-merge-1.1.1.tgz",
"integrity": "sha512-xvgv6pkMGBA6GwdyJbNAnDmfAIR/DfWhrj9jgWh3TY7gRm3KO46x/GPjRg6wJ0nOepwqrNxFfojebh0Df4h4Tw==",
"requires": {
"lodash.assignwith": "^4.2.0",
"typical": "^7.1.1"
},
"dependencies": {
"typical": {
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
}
}
},
"@apache-arrow/ts": {
"version": "12.0.0",
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-12.0.0.tgz",
"integrity": "sha512-ArJ3Fw5W9RAeNWuyCU2CdjL/nEAZSVDG1p3jz/ZtLo/q3NTz2w7HUCOJeszejH/5alGX+QirYrJ5c6BW++/P7g==",
"version": "14.0.2",
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz",
"integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==",
"requires": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "18.14.5",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "6.1.3",
"flatbuffers": "23.3.3",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.0"
"tslib": "^2.5.3"
},
"dependencies": {
"@types/node": {
"version": "18.14.5",
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
},
"tslib": {
"version": "2.5.0",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
}
}
},
@@ -4869,33 +4840,33 @@
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.2.tgz",
"integrity": "sha512-Ec73W2IHnZK4VC8g/7JyLbgcwcpNb9YI20yEhfTjEEFjJKoElZhDD/ZgghC3QQSRnrXFTxDzPK1V9BDT5QB2Hg==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.2.tgz",
"integrity": "sha512-tj0JJlOfOdeSAfmM7EZhrhFdCFjoq9Bmrjt4741BNjtF+Nv4Otl53lFtUQrexTr4oh/E1yY1qaydJ7K++8u3UA==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.2.tgz",
"integrity": "sha512-OQ7ra5Q5RrLLwxIyI338KfQ2sSl8NJfqAHWvwiMtjCYFFYxIJGjX7U0I2MjSEPqJ5/ZoyjV4mjsvs0G1q20u+Q==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.2.tgz",
"integrity": "sha512-9tgIFSOYqNJzonnYsQr7v2gGdJm8aZ62UsVX2SWAIVhypoP4A05tAlbzjBgKO3R5xy5gpcW8tt/Pt8IsYWON7Q==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
"version": "0.4.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.2.tgz",
"integrity": "sha512-jhG3MqZ3r8BexXANLRNX57RAnCZT9psdSBORG3KTu5qe2xaunRlJNSA2kk8a79tf+gtUT/BAmMiXMzAi/dwq8w==",
"optional": true
},
"@neon-rs/cli": {
@@ -5268,7 +5239,6 @@
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
"dev": true,
"requires": {
"color-convert": "^2.0.1"
}
@@ -5284,31 +5254,31 @@
}
},
"apache-arrow": {
"version": "12.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-12.0.0.tgz",
"integrity": "sha512-uI+hnZZsGfNJiR/wG8j5yPQuDjmOHx4hZpkA743G4x3TlFrCpA3MMX7KUkIOIw0e/CwZ8NYuaMzaQsblA47qVA==",
"version": "14.0.2",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz",
"integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==",
"requires": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "18.14.5",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "6.1.3",
"flatbuffers": "23.3.3",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.0"
"tslib": "^2.5.3"
},
"dependencies": {
"@types/node": {
"version": "18.14.5",
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
},
"tslib": {
"version": "2.5.0",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
}
}
},
@@ -5505,7 +5475,6 @@
"version": "4.1.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
"dev": true,
"requires": {
"ansi-styles": "^4.1.0",
"supports-color": "^7.1.0"
@@ -5515,13 +5484,20 @@
"version": "7.2.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true,
"requires": {
"has-flag": "^4.0.0"
}
}
}
},
"chalk-template": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/chalk-template/-/chalk-template-0.4.0.tgz",
"integrity": "sha512-/ghrgmhfY8RaSdeo43hNXxpoHAtxdbskUHjPpfqUWGttFgycUhYPGx3YZBCnUCvOa7Doivn1IZec3DEGFoMgLg==",
"requires": {
"chalk": "^4.1.2"
}
},
"check-error": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/check-error/-/check-error-1.0.2.tgz",
@@ -5559,7 +5535,6 @@
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
"dev": true,
"requires": {
"color-name": "~1.1.4"
}
@@ -5567,8 +5542,7 @@
"color-name": {
"version": "1.1.4",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"dev": true
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA=="
},
"combined-stream": {
"version": "1.0.8",
@@ -5590,74 +5564,25 @@
}
},
"command-line-usage": {
"version": "6.1.3",
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-6.1.3.tgz",
"integrity": "sha512-sH5ZSPr+7UStsloltmDh7Ce5fb8XPlHyoPzTpyyMuYCtervL65+ubVZ6Q61cFtFl62UyJlc8/JwERRbAFPUqgw==",
"version": "7.0.1",
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-7.0.1.tgz",
"integrity": "sha512-NCyznE//MuTjwi3y84QVUGEOT+P5oto1e1Pk/jFPVdPPfsG03qpTIl3yw6etR+v73d0lXsoojRpvbru2sqePxQ==",
"requires": {
"array-back": "^4.0.2",
"chalk": "^2.4.2",
"table-layout": "^1.0.2",
"typical": "^5.2.0"
"array-back": "^6.2.2",
"chalk-template": "^0.4.0",
"table-layout": "^3.0.0",
"typical": "^7.1.1"
},
"dependencies": {
"ansi-styles": {
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
"requires": {
"color-convert": "^1.9.0"
}
},
"array-back": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg=="
},
"chalk": {
"version": "2.4.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
"requires": {
"ansi-styles": "^3.2.1",
"escape-string-regexp": "^1.0.5",
"supports-color": "^5.3.0"
}
},
"color-convert": {
"version": "1.9.3",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
"requires": {
"color-name": "1.1.3"
}
},
"color-name": {
"version": "1.1.3",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw=="
},
"escape-string-regexp": {
"version": "1.0.5",
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg=="
},
"has-flag": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw=="
},
"supports-color": {
"version": "5.5.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
"requires": {
"has-flag": "^3.0.0"
}
"version": "6.2.2",
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw=="
},
"typical": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
}
}
},
@@ -5716,11 +5641,6 @@
"type-detect": "^4.0.0"
}
},
"deep-extend": {
"version": "0.6.0",
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA=="
},
"deep-is": {
"version": "0.1.4",
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
@@ -6297,9 +6217,9 @@
}
},
"flatbuffers": {
"version": "23.3.3",
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.3.3.tgz",
"integrity": "sha512-jmreOaAT1t55keaf+Z259Tvh8tR/Srry9K8dgCgvizhKSEr6gLGgaOJI2WFL5fkOpGOGRZwxUrlFn0GCmXUy6g=="
"version": "23.5.26",
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.5.26.tgz",
"integrity": "sha512-vE+SI9vrJDwi1oETtTIFldC/o9GsVKRM+s6EL0nQgxXlYV1Vc4Tk30hj4xGICftInKQKj1F3up2n8UbIVobISQ=="
},
"flatted": {
"version": "3.2.7",
@@ -6502,8 +6422,7 @@
"has-flag": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
"dev": true
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ=="
},
"has-property-descriptors": {
"version": "1.0.0",
@@ -6856,6 +6775,11 @@
"p-locate": "^5.0.0"
}
},
"lodash.assignwith": {
"version": "4.2.0",
"resolved": "https://registry.npmjs.org/lodash.assignwith/-/lodash.assignwith-4.2.0.tgz",
"integrity": "sha512-ZznplvbvtjK2gMvnQ1BR/zqPFZmS6jbK4p+6Up4xcRYA7yMIwxHCfbTcrYxXKzzqLsQ05eJPVznEW3tuwV7k1g=="
},
"lodash.camelcase": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
@@ -7323,11 +7247,6 @@
"picomatch": "^2.2.1"
}
},
"reduce-flatten": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/reduce-flatten/-/reduce-flatten-2.0.0.tgz",
"integrity": "sha512-EJ4UNY/U1t2P/2k6oqotuX2Cc3T6nxJwsM0N0asT7dhrtH1ltUxDn4NalSYmPE2rCkVpcf/X6R0wDwcFpzhd4w=="
},
"regexp.prototype.flags": {
"version": "1.5.0",
"resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.5.0.tgz",
@@ -7523,6 +7442,11 @@
"source-map": "^0.6.0"
}
},
"stream-read-all": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/stream-read-all/-/stream-read-all-3.0.1.tgz",
"integrity": "sha512-EWZT9XOceBPlVJRrYcykW8jyRSZYbkb/0ZK36uLEmoWVO5gxBOnntNTseNzfREsqxqdfEGQrD8SXQ3QWbBmq8A=="
},
"string-width": {
"version": "4.2.3",
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
@@ -7604,25 +7528,28 @@
"dev": true
},
"table-layout": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-1.0.2.tgz",
"integrity": "sha512-qd/R7n5rQTRFi+Zf2sk5XVVd9UQl6ZkduPFC3S7WEGJAmetDTjY3qPN50eSKzwuzEyQKy5TN2TiZdkIjos2L6A==",
"version": "3.0.2",
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-3.0.2.tgz",
"integrity": "sha512-rpyNZYRw+/C+dYkcQ3Pr+rLxW4CfHpXjPDnG7lYhdRoUcZTUt+KEsX+94RGp/aVp/MQU35JCITv2T/beY4m+hw==",
"requires": {
"array-back": "^4.0.1",
"deep-extend": "~0.6.0",
"typical": "^5.2.0",
"wordwrapjs": "^4.0.0"
"@75lb/deep-merge": "^1.1.1",
"array-back": "^6.2.2",
"command-line-args": "^5.2.1",
"command-line-usage": "^7.0.0",
"stream-read-all": "^3.0.1",
"typical": "^7.1.1",
"wordwrapjs": "^5.1.0"
},
"dependencies": {
"array-back": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg=="
"version": "6.2.2",
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw=="
},
"typical": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
}
}
},
@@ -7940,20 +7867,9 @@
"dev": true
},
"wordwrapjs": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
"integrity": "sha512-kKlNACbvHrkpIw6oPeYDSmdCTu2hdMHoyXLTcUKala++lx5Y+wjJ/e474Jqv5abnVmwxw08DiTuHmw69lJGksA==",
"requires": {
"reduce-flatten": "^2.0.0",
"typical": "^5.2.0"
},
"dependencies": {
"typical": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
}
}
"version": "5.1.0",
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-5.1.0.tgz",
"integrity": "sha512-JNjcULU2e4KJwUNv6CHgI46UvDGitb6dGryHajXTDiLgg1/RiGoPSDw4kZfYnwGtEXf2ZMeIewDQgFGzkCB2Sg=="
},
"workerpool": {
"version": "6.2.1",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.2.6",
"version": "0.4.2",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -57,9 +57,9 @@
"uuid": "^9.0.0"
},
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"os": [
@@ -81,10 +81,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.6",
"@lancedb/vectordb-darwin-x64": "0.2.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
"@lancedb/vectordb-linux-x64-gnu": "0.2.6",
"@lancedb/vectordb-win32-x64-msvc": "0.2.6"
"@lancedb/vectordb-darwin-arm64": "0.4.2",
"@lancedb/vectordb-darwin-x64": "0.4.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.2",
"@lancedb/vectordb-linux-x64-gnu": "0.4.2",
"@lancedb/vectordb-win32-x64-msvc": "0.4.2"
}
}

View File

@@ -17,10 +17,9 @@ import {
Float32,
makeBuilder,
RecordBatchFileWriter,
Utf8,
type Vector,
Utf8, type Vector,
FixedSizeList,
vectorFromArray, type Schema, Table as ArrowTable
vectorFromArray, type Schema, Table as ArrowTable, RecordBatchStreamWriter, List, Float64, RecordBatch, makeData, Struct
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
@@ -59,7 +58,26 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else if (Array.isArray(values[0])) {
const elementType = getElementType(values[0])
let innerType
if (elementType === 'string') {
innerType = new Utf8()
} else if (elementType === 'number') {
innerType = new Float64()
} else {
// TODO: pass in schema if it exists, else keep going to the next element
throw new Error(`Unsupported array element type ${elementType}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', innerType, true))
})
for (const value of values) {
listBuilder.append(value)
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
// TODO if this is a struct field then recursively align the subfields
records[columnsKey] = vectorFromArray(values)
}
}
@@ -68,6 +86,14 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
return new ArrowTable(records)
}
function getElementType (arr: any[]): string {
if (arr.length === 0) {
return 'undefined'
}
return typeof arr[0]
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
return makeBuilder({
@@ -77,19 +103,34 @@ function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> {
const children = new Field<Float32>('item', new Float32())
// Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<Float32>('item', new Float32(), true)
return new FixedSizeList(dim, children)
}
// Converts an Array of records into Arrow IPC format
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Array of records into Arrow IPC stream format
export async function fromRecordsToStreamBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC format
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
@@ -101,10 +142,56 @@ export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: Embe
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC stream format
export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
function alignBatch (batch: RecordBatch, schema: Schema): RecordBatch {
const alignedChildren = []
for (const field of schema.fields) {
const indexInBatch = batch.schema.fields?.findIndex((f) => f.name === field.name)
if (indexInBatch < 0) {
throw new Error(`The column ${field.name} was not found in the Arrow Table`)
}
alignedChildren.push(batch.data.children[indexInBatch])
}
const newData = makeData({
type: new Struct(schema.fields),
length: batch.numRows,
nullCount: batch.nullCount,
children: alignedChildren
})
return new RecordBatch(schema, newData)
}
function alignTable (table: ArrowTable, schema: Schema): ArrowTable {
const alignedBatches = table.batches.map(batch => alignBatch(batch, schema))
return new ArrowTable(schema, alignedBatches)
}
// Creates an empty Arrow Table
export function createEmptyTable (schema: Schema): ArrowTable {
return new ArrowTable(schema)

View File

@@ -14,16 +14,18 @@
import {
type Schema,
Table as ArrowTable
Table as ArrowTable,
tableFromIPC
} from 'apache-arrow'
import { createEmptyTable, fromRecordsToBuffer, fromTableToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateScalarIndex, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats, tableSchema } = require('../native.js')
export { Query }
export type { EmbeddingFunction }
@@ -222,6 +224,56 @@ export interface Table<T = number[]> {
*/
createIndex: (indexParams: VectorIndexParams) => Promise<any>
/**
* Create a scalar index on this Table for the given column
*
* @param column The column to index
* @param replace If false, fail if an index already exists on the column
*
* Scalar indices, like vector indices, can be used to speed up scans. A scalar
* index can speed up scans that contain filter expressions on the indexed column.
* For example, the following scan will be faster if the column `my_col` has
* a scalar index:
*
* ```ts
* const con = await lancedb.connect('./.lancedb');
* const table = await con.openTable('images');
* const results = await table.where('my_col = 7').execute();
* ```
*
* Scalar indices can also speed up scans containing a vector search and a
* prefilter:
*
* ```ts
* const con = await lancedb.connect('././lancedb');
* const table = await con.openTable('images');
* const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true);
* ```
*
* Scalar indices can only speed up scans for basic filters using
* equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set
* membership (e.g. `my_col IN (0, 1, 2)`)
*
* Scalar indices can be used if the filter contains multiple indexed columns and
* the filter criteria are AND'd or OR'd together
* (e.g. `my_col < 0 AND other_col> 100`)
*
* Scalar indices may be used if the filter contains non-indexed columns but,
* depending on the structure of the filter, they may not be usable. For example,
* if the column `not_indexed` does not have a scalar index then the filter
* `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on
* `my_col`.
*
* @examples
*
* ```ts
* const con = await lancedb.connect('././lancedb')
* const table = await con.openTable('images')
* await table.createScalarIndex('my_col')
* ```
*/
createScalarIndex: (column: string, replace: boolean) => Promise<void>
/**
* Returns the number of rows in this table.
*/
@@ -260,6 +312,90 @@ export interface Table<T = number[]> {
* ```
*/
delete: (filter: string) => Promise<void>
/**
* Update rows in this table.
*
* This can be used to update a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [3, 3], name: 'Ye'},
* {id: 2, vector: [4, 4], name: 'Mike'},
* ];
* const tbl = await con.createTable("my_table", data)
*
* await tbl.update({
* where: "id = 2",
* values: { vector: [2, 2], name: "Michael" },
* })
*
* let results = await tbl.search([1, 1]).execute();
* // Returns [
* // {id: 2, vector: [2, 2], name: 'Michael'}
* // {id: 1, vector: [3, 3], name: 'Ye'}
* // ]
* ```
*
*/
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/**
* List the indicies on this table.
*/
listIndices: () => Promise<VectorIndex[]>
/**
* Get statistics about an index.
*/
indexStats: (indexUuid: string) => Promise<IndexStats>
schema: Promise<Schema>
}
export interface UpdateArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set
*/
values: Record<string, Literal>
}
export interface UpdateSqlArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set as SQL expressions.
*/
valuesSql: Record<string, string>
}
export interface VectorIndex {
columns: string[]
name: string
uuid: string
}
export interface IndexStats {
numIndexedRows: number | null
numUnindexedRows: number | null
}
/**
@@ -349,10 +485,10 @@ export class LocalConnection implements Connection {
}
buffer = await fromTableToBuffer(createEmptyTable(schema))
} else if (data instanceof ArrowTable) {
buffer = await fromTableToBuffer(data, embeddingFunction)
buffer = await fromTableToBuffer(data, embeddingFunction, schema)
} else {
// data is Array<Record<...>>
buffer = await fromRecordsToBuffer(data, embeddingFunction)
buffer = await fromRecordsToBuffer(data, embeddingFunction, schema)
}
const tbl = await tableCreate.call(this._db, name, buffer, writeOptions?.writeMode?.toString(), ...getAwsArgs(this._options()))
@@ -375,6 +511,7 @@ export class LocalConnection implements Connection {
export class LocalTable<T = number[]> implements Table<T> {
private _tbl: any
private readonly _name: string
private readonly _isElectron: boolean
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _options: () => ConnectionOptions
@@ -391,6 +528,7 @@ export class LocalTable<T = number[]> implements Table<T> {
this._name = name
this._embeddings = embeddings
this._options = () => options
this._isElectron = this.checkElectron()
}
get name (): string {
@@ -405,6 +543,16 @@ export class LocalTable<T = number[]> implements Table<T> {
return new Query(query, this._tbl, this._embeddings)
}
/**
* Creates a filter query to find all rows matching the specified criteria
* @param value The filter criteria (like SQL where clause syntax)
*/
filter (value: string): Query<T> {
return new Query(undefined, this._tbl, this._embeddings).filter(value)
}
where = this.filter
/**
* Insert records into this Table.
*
@@ -412,9 +560,10 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
const schema = await this.schema
return tableAdd.call(
this._tbl,
await fromRecordsToBuffer(data, this._embeddings),
await fromRecordsToBuffer(data, this._embeddings, schema),
WriteMode.Append.toString(),
...getAwsArgs(this._options())
).then((newTable: any) => { this._tbl = newTable })
@@ -444,6 +593,10 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
}
async createScalarIndex (column: string, replace: boolean): Promise<void> {
return tableCreateScalarIndex.call(this._tbl, column, replace)
}
/**
* Returns the number of rows in this table.
*/
@@ -459,6 +612,165 @@ export class LocalTable<T = number[]> implements Table<T> {
async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
}
/**
* Update rows in this table.
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @returns
*/
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
return tableUpdate.call(this._tbl, filter, updates).then((newTable: any) => { this._tbl = newTable })
}
/**
* Clean up old versions of the table, freeing disk space.
*
* @param olderThan The minimum age in minutes of the versions to delete. If not
* provided, defaults to two weeks.
* @param deleteUnverified Because they may be part of an in-progress
* transaction, uncommitted files newer than 7 days old are
* not deleted by default. This means that failed transactions
* can leave around data that takes up disk space for up to
* 7 days. You can override this safety mechanism by setting
* this option to `true`, only if you promise there are no
* in progress writes while you run this operation. Failure to
* uphold this promise can lead to corrupted tables.
* @returns
*/
async cleanupOldVersions (olderThan?: number, deleteUnverified?: boolean): Promise<CleanupStats> {
return tableCleanupOldVersions.call(this._tbl, olderThan, deleteUnverified)
.then((res: { newTable: any, metrics: CleanupStats }) => {
this._tbl = res.newTable
return res.metrics
})
}
/**
* Run the compaction process on the table.
*
* This can be run after making several small appends to optimize the table
* for faster reads.
*
* @param options Advanced options configuring compaction. In most cases, you
* can omit this arguments, as the default options are sensible
* for most tables.
* @returns Metrics about the compaction operation.
*/
async compactFiles (options?: CompactionOptions): Promise<CompactionMetrics> {
const optionsArg = options ?? {}
return tableCompactFiles.call(this._tbl, optionsArg)
.then((res: { newTable: any, metrics: CompactionMetrics }) => {
this._tbl = res.newTable
return res.metrics
})
}
async listIndices (): Promise<VectorIndex[]> {
return tableListIndices.call(this._tbl)
}
async indexStats (indexUuid: string): Promise<IndexStats> {
return tableIndexStats.call(this._tbl, indexUuid)
}
get schema (): Promise<Schema> {
// empty table
return this.getSchema()
}
private async getSchema (): Promise<Schema> {
const buffer = await tableSchema.call(this._tbl, this._isElectron)
const table = tableFromIPC(buffer)
return table.schema
}
// See https://github.com/electron/electron/issues/2288
private checkElectron (): boolean {
try {
// eslint-disable-next-line no-prototype-builtins
return (process?.versions?.hasOwnProperty('electron') || navigator?.userAgent?.toLowerCase()?.includes(' electron'))
} catch (e) {
return false
}
}
}
export interface CleanupStats {
/**
* The number of bytes removed from disk.
*/
bytesRemoved: number
/**
* The number of old table versions removed.
*/
oldVersions: number
}
export interface CompactionOptions {
/**
* The number of rows per fragment to target. Fragments that have fewer rows
* will be compacted into adjacent fragments to produce larger fragments.
* Defaults to 1024 * 1024.
*/
targetRowsPerFragment?: number
/**
* The maximum number of rows per group. Defaults to 1024.
*/
maxRowsPerGroup?: number
/**
* If true, fragments that have rows that are deleted may be compacted to
* remove the deleted rows. This can improve the performance of queries.
* Default is true.
*/
materializeDeletions?: boolean
/**
* A number between 0 and 1, representing the proportion of rows that must be
* marked deleted before a fragment is a candidate for compaction to remove
* the deleted rows. Default is 10%.
*/
materializeDeletionsThreshold?: number
/**
* The number of threads to use for compaction. If not provided, defaults to
* the number of cores on the machine.
*/
numThreads?: number
}
export interface CompactionMetrics {
/**
* The number of fragments that were removed.
*/
fragmentsRemoved: number
/**
* The number of new fragments that were created.
*/
fragmentsAdded: number
/**
* The number of files that were removed. Each fragment may have more than one
* file.
*/
filesRemoved: number
/**
* The number of files added. This is typically equal to the number of
* fragments added.
*/
filesAdded: number
}
/// Config to build IVF_PQ index.
@@ -513,6 +825,11 @@ export interface IvfPQIndexConfig {
*/
replace?: boolean
/**
* Cache size of the index
*/
index_cache_size?: number
type: 'ivf_pq'
}

View File

@@ -18,6 +18,9 @@ import * as chaiAsPromised from 'chai-as-promised'
import { v4 as uuidv4 } from 'uuid'
import * as lancedb from '../index'
import { tmpdir } from 'os'
import * as fs from 'fs'
import * as path from 'path'
const assert = chai.assert
chai.use(chaiAsPromised)
@@ -41,3 +44,137 @@ describe('LanceDB AWS Integration test', function () {
assert.equal(await table.countRows(), 6)
})
})
describe('LanceDB Mirrored Store Integration test', function () {
it('s3://...?mirroredStore=... param is processed correctly', async function () {
this.timeout(600000)
const dir = tmpdir()
console.log(dir)
const conn = await lancedb.connect(`s3://lancedb-integtest?mirroredStore=${dir}`)
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 1 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 2 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 3 }))
const tableName = uuidv4()
// try create table and check if it's mirrored
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const mirroredPath = path.join(dir, `${tableName}.lance`)
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be three dirs
assert.equal(files.length, 3)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, '_versions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.manifest'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
})
// try create index and check if it's mirrored
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be four dirs
assert.equal(files.length, 4)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
// Two TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 2)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
})
// try delete and check if it's mirrored
await t.delete('id = 0')
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be five dirs
assert.equal(files.length, 5)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
assert.isTrue(files[3].isDirectory())
assert.isTrue(files[4].isDirectory())
// Three TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 3)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.arrow'))
})
})
})
})

View File

@@ -23,27 +23,29 @@ const { tableSearch } = require('../native.js')
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _query: T
private readonly _query?: T
private readonly _tbl?: any
private _queryVector?: number[]
private _limit: number
private _limit?: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
private _prefilter: boolean
protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._limit = undefined
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
this._prefilter = false
}
/***
@@ -102,14 +104,21 @@ export class Query<T = number[]> {
return this
}
prefilter (value: boolean): Query<T> {
this._prefilter = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
if (this._query !== undefined) {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
}
const isElectron = this.isElectron()

View File

@@ -38,6 +38,7 @@ export class HttpLancedbClient {
vector: number[],
k: number,
nprobes: number,
prefilter: boolean,
refineFactor?: number,
columns?: string[],
filter?: string
@@ -50,7 +51,8 @@ export class HttpLancedbClient {
nprobes,
refineFactor,
columns,
filter
filter,
prefilter
},
{
headers: {
@@ -63,6 +65,9 @@ export class HttpLancedbClient {
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
@@ -86,13 +91,17 @@ export class HttpLancedbClient {
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey()
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
@@ -108,13 +117,18 @@ export class HttpLancedbClient {
/**
* Sent POST request.
*/
public async post (path: string, data?: any, params?: Record<string, string | number>): Promise<AxiosResponse> {
public async post (
path: string,
data?: any,
params?: Record<string, string | number>,
content?: string | undefined
): Promise<AxiosResponse> {
const response = await axios.post(
`${this._url}${path}`,
data,
{
headers: {
'Content-Type': 'application/json',
'Content-Type': content ?? 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
@@ -123,6 +137,9 @@ export class HttpLancedbClient {
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {

View File

@@ -14,12 +14,18 @@
import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type WriteOptions
type ConnectionOptions, type CreateTableOptions, type VectorIndex,
type WriteOptions,
type IndexStats,
type UpdateArgs, type UpdateSqlArgs
} from '../index'
import { Query } from '../query'
import { Vector } from 'apache-arrow'
import { Vector, Table as ArrowTable } from 'apache-arrow'
import { HttpLancedbClient } from './client'
import { isEmbeddingFunction } from '../embedding/embedding_function'
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
import { toSQL } from '../util'
/**
* Remote connection.
@@ -51,8 +57,8 @@ export class RemoteConnection implements Connection {
return 'db://' + this._client.uri
}
async tableNames (): Promise<string[]> {
const response = await this._client.get('/v1/table/')
async tableNames (pageToken: string = '', limit: number = 10): Promise<string[]> {
const response = await this._client.get('/v1/table/', { limit, page_token: pageToken })
return response.data.tables
}
@@ -66,8 +72,60 @@ export class RemoteConnection implements Connection {
}
}
async createTable<T> (name: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
throw new Error('Not implemented')
async createTable<T> (nameOrOpts: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
// Logic copied from LocatlConnection, refactor these to a base class + connectionImpl pattern
let schema
let embeddings: undefined | EmbeddingFunction<T>
let tableName: string
if (typeof nameOrOpts === 'string') {
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
embeddings = optsOrEmbedding
}
tableName = nameOrOpts
} else {
schema = nameOrOpts.schema
embeddings = nameOrOpts.embeddingFunction
tableName = nameOrOpts.name
}
let buffer: Buffer
function isEmpty (data: Array<Record<string, unknown>> | ArrowTable<any>): boolean {
if (data instanceof ArrowTable) {
return data.data.length === 0
}
return data.length === 0
}
if ((data === undefined) || isEmpty(data)) {
if (schema === undefined) {
throw new Error('Either data or schema needs to defined')
}
buffer = await fromTableToStreamBuffer(createEmptyTable(schema))
} else if (data instanceof ArrowTable) {
buffer = await fromTableToStreamBuffer(data, embeddings)
} else {
// data is Array<Record<...>>
buffer = await fromRecordsToStreamBuffer(data, embeddings)
}
const res = await this._client.post(
`/v1/table/${tableName}/create/`,
buffer,
undefined,
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
if (embeddings === undefined) {
return new RemoteTable(this._client, tableName)
} else {
return new RemoteTable(this._client, tableName, embeddings)
}
}
async dropTable (name: string): Promise<void> {
@@ -98,6 +156,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
queryVector,
(this as any)._limit,
(this as any)._nprobes,
(this as any)._prefilter,
(this as any)._refineFactor,
(this as any)._select,
(this as any)._filter
@@ -136,27 +195,141 @@ export class RemoteTable<T = number[]> implements Table<T> {
return this._name
}
get schema (): Promise<any> {
return this._client.post(`/v1/table/${this._name}/describe/`).then(res => {
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return res.data?.schema
})
}
search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
}
async add (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented')
const buffer = await fromRecordsToStreamBuffer(data, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/insert/`,
buffer,
{
mode: 'append'
},
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return data.length
}
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented')
const buffer = await fromRecordsToStreamBuffer(data, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/insert/`,
buffer,
{
mode: 'overwrite'
},
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return data.length
}
async createIndex (indexParams: VectorIndexParams): Promise<any> {
async createIndex (indexParams: VectorIndexParams): Promise<void> {
const unsupportedParams = [
'index_name',
'num_partitions',
'max_iters',
'use_opq',
'num_sub_vectors',
'num_bits',
'max_opq_iters',
'replace'
]
for (const param of unsupportedParams) {
// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
if (indexParams[param as keyof VectorIndexParams]) {
throw new Error(`${param} is not supported for remote connections`)
}
}
const column = indexParams.column ?? 'vector'
const indexType = 'vector' // only vector index is supported for remote connections
const metricType = indexParams.metric_type ?? 'L2'
const indexCacheSize = indexParams.index_cache_size ?? null
const data = {
column,
index_type: indexType,
metric_type: metricType,
index_cache_size: indexCacheSize
}
const res = await this._client.post(`/v1/table/${this._name}/create_index/`, data)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
}
async createScalarIndex (column: string, replace: boolean): Promise<void> {
throw new Error('Not implemented')
}
async countRows (): Promise<number> {
throw new Error('Not implemented')
const result = await this._client.post(`/v1/table/${this._name}/describe/`)
return result.data?.stats?.num_rows
}
async delete (filter: string): Promise<void> {
throw new Error('Not implemented')
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
}
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
await this._client.post(`/v1/table/${this._name}/update/`, {
predicate: filter,
updates: Object.entries(updates).map(([key, value]) => [key, value])
})
}
async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
return results.data.indexes?.map((index: any) => ({
columns: index.columns,
name: index.index_name,
uuid: index.index_uuid
}))
}
async indexStats (indexUuid: string): Promise<IndexStats> {
const results = await this._client.post(`/v1/table/${this._name}/index/${indexUuid}/stats/`)
return {
numIndexedRows: results.data.num_indexed_rows,
numUnindexedRows: results.data.num_unindexed_rows
}
}
}

View File

@@ -18,7 +18,7 @@ import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions, type LocalTable } from '../index'
import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow'
const expect = chai.expect
@@ -78,12 +78,31 @@ describe('LanceDB client', function () {
})
it('limits # of results', async function () {
const uri = await createTestDB()
const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).limit(1).execute()
let results = await table.search([0.1, 0.3]).limit(1).execute()
assert.equal(results.length, 1)
assert.equal(results[0].id, 1)
// there is a default limit if unspecified
results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 10)
})
it('uses a filter / where clause without vector search', async function () {
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
const assertResults = (results: Array<Record<string, unknown>>) => {
assert.equal(results.length, 50)
}
const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri)
const table = (await con.openTable('vectors')) as LocalTable
let results = await table.filter('id % 2 = 0').execute()
assertResults(results)
results = await table.where('id % 2 = 0').execute()
assertResults(results)
})
it('uses a filter / where clause', async function () {
@@ -102,6 +121,31 @@ describe('LanceDB client', function () {
assertResults(results)
})
it('should correctly process prefilter/postfilter', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
// post filter should return less than the limit
let results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(false).execute()
assert.isTrue(results.length < 10)
// pre filter should return exactly the limit
results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('should allow creation and use of scalar indices', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createScalarIndex('id', true)
// Prefiltering should still work the same
const results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('select only a subset of columns', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
@@ -132,6 +176,26 @@ describe('LanceDB client', function () {
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('create a table with a schema and records', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('id', new Int32()),
new Field('name', new Utf8()),
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), false)
]
)
const data = [
{ vector: [0.5, 0.2], name: 'foo', id: 0 },
{ vector: [0.3, 0.1], name: 'bar', id: 1 }
]
// even thought the keys in data is out of order it should still work
const table = await con.createTable({ name: 'vectors', data, schema })
assert.equal(table.name, 'vectors')
assert.deepEqual(await con.tableNames(), ['vectors'])
})
it('create a table with a empty data array', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -174,6 +238,25 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('creates a new table from javascript objects with variable sized list', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, vector: [0.1, 0.2], list_of_str: ['a', 'b', 'c'], list_of_num: [1, 2, 3] },
{ id: 2, vector: [1.1, 1.2], list_of_str: ['x', 'y'], list_of_num: [4, 5, 6] }
]
const tableName = 'with_variable_sized_list'
const table = await con.createTable(tableName, data) as LocalTable
assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 2)
const rs = await table.filter('id>1').execute()
assert.equal(rs.length, 1)
assert.deepEqual(rs[0].list_of_str, ['x', 'y'])
assert.isTrue(rs[0].list_of_num instanceof Float64Array)
})
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -231,6 +314,25 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 4)
})
it('appends records with fields in a different order', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, vector: [0.1, 0.2], price: 10, name: 'a' },
{ id: 2, vector: [1.1, 1.2], price: 50, name: 'b' }
]
const table = await con.createTable('vectors', data)
const dataAdd = [
{ id: 3, vector: [2.1, 2.2], name: 'c', price: 10 },
{ id: 4, vector: [3.1, 3.2], name: 'd', price: 50 }
]
await table.add(dataAdd)
assert.equal(await table.countRows(), 4)
})
it('overwrite all records in a table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
@@ -246,6 +348,46 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('can update records in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update the records using a literal value', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', values: { price: 100 } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update every record in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 100)
})
it('can delete records from a table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
@@ -282,7 +424,8 @@ describe('LanceDB client', function () {
)
const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }])
await table.delete('vector IS NOT NULL')
// https://github.com/lancedb/lance/issues/1635
await table.delete('true')
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
@@ -328,6 +471,24 @@ describe('LanceDB client', function () {
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
})
it('should be able to list index and stats', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
const indices = await table.listIndices()
expect(indices).to.have.lengthOf(1)
expect(indices[0].name).to.equal('vector_idx')
expect(indices[0].uuid).to.not.be.equal(undefined)
expect(indices[0].columns).to.have.lengthOf(1)
expect(indices[0].columns[0]).to.equal('vector')
const stats = await table.indexStats(indices[0].uuid)
expect(stats.numIndexedRows).to.equal(300)
expect(stats.numUnindexedRows).to.equal(0)
}).timeout(50_000)
})
describe('when using a custom embedding function', function () {
@@ -376,6 +537,61 @@ describe('LanceDB client', function () {
assert.equal(results.length, 2)
})
})
describe('when inspecting the schema', function () {
it('should return the schema', async function () {
const uri = await createTestDB()
const db = await lancedb.connect(uri)
// the fsl inner field must be named 'item' and be nullable
const expectedSchema = new Schema(
[
new Field('id', new Int32()),
new Field('vector', new FixedSizeList(128, new Field('item', new Float32(), true))),
new Field('s', new Utf8())
]
)
const table = await db.createTable({
name: 'some_table',
schema: expectedSchema
})
const schema = await table.schema
assert.deepEqual(expectedSchema, schema)
})
})
})
describe('Remote LanceDB client', function () {
describe('when the server is not reachable', function () {
it('produces a network error', async function () {
const con = await lancedb.connect({
uri: 'db://test-1234',
region: 'asdfasfasfdf',
apiKey: 'some-api-key'
})
// GET
try {
await con.tableNames()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// POST
try {
await con.createTable({ name: 'vectors', schema: new Schema([]) })
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// Search
const table = await con.openTable('vectors')
try {
await table.search([0.1, 0.3]).execute()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
})
})
})
describe('Query object', function () {
@@ -446,3 +662,45 @@ describe('WriteOptions', function () {
})
})
})
describe('Compact and cleanup', function () {
it('can cleanup after compaction', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ price: 10, name: 'foo', vector: [1, 2, 3] },
{ price: 50, name: 'bar', vector: [4, 5, 6] }
]
const table = await con.createTable('t1', data) as LocalTable
const newData = [
{ price: 30, name: 'baz', vector: [7, 8, 9] }
]
await table.add(newData)
const compactionMetrics = await table.compactFiles({
numThreads: 2
})
assert.equal(compactionMetrics.fragmentsRemoved, 2)
assert.equal(compactionMetrics.fragmentsAdded, 1)
assert.equal(await table.countRows(), 3)
await table.cleanupOldVersions()
assert.equal(await table.countRows(), 3)
// should have no effect, but this validates the arguments are parsed.
await table.compactFiles({
targetRowsPerFragment: 102410,
maxRowsPerGroup: 1024,
materializeDeletions: true,
materializeDeletionsThreshold: 0.5,
numThreads: 2
})
const cleanupMetrics = await table.cleanupOldVersions(0, true)
assert.isAtLeast(cleanupMetrics.bytesRemoved, 1)
assert.isAtLeast(cleanupMetrics.oldVersions, 1)
assert.equal(await table.countRows(), 3)
})
})

45
node/src/test/util.ts Normal file
View File

@@ -0,0 +1,45 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { toSQL } from '../util'
import * as chai from 'chai'
const expect = chai.expect
describe('toSQL', function () {
it('should turn string to SQL expression', function () {
expect(toSQL('foo')).to.equal("'foo'")
})
it('should turn number to SQL expression', function () {
expect(toSQL(123)).to.equal('123')
})
it('should turn boolean to SQL expression', function () {
expect(toSQL(true)).to.equal('TRUE')
})
it('should turn null to SQL expression', function () {
expect(toSQL(null)).to.equal('NULL')
})
it('should turn Date to SQL expression', function () {
const date = new Date('05 October 2011 14:48 UTC')
expect(toSQL(date)).to.equal("'2011-10-05T14:48:00.000Z'")
})
it('should turn array to SQL expression', function () {
expect(toSQL(['foo', 'bar', true, 1])).to.equal("['foo', 'bar', TRUE, 1]")
})
})

44
node/src/util.ts Normal file
View File

@@ -0,0 +1,44 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
export type Literal = string | number | boolean | null | Date | Literal[]
export function toSQL (value: Literal): string {
if (typeof value === 'string') {
return `'${value}'`
}
if (typeof value === 'number') {
return value.toString()
}
if (typeof value === 'boolean') {
return value ? 'TRUE' : 'FALSE'
}
if (value === null) {
return 'NULL'
}
if (value instanceof Date) {
return `'${value.toISOString()}'`
}
if (Array.isArray(value)) {
return `[${value.map(toSQL).join(', ')}]`
}
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw new Error(`Unsupported value type: ${typeof value} value: (${value})`)
}

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.0
current_version = 0.4.4
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

1
python/LICENSE Symbolic link
View File

@@ -0,0 +1 @@
../LICENSE

View File

@@ -16,7 +16,7 @@ pip install lancedb
import lancedb
db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>')
table = db.open_table('my_table')
results = table.search([0.1, 0.3]).limit(20).to_df()
results = table.search([0.1, 0.3]).limit(20).to_list()
print(results)
```
@@ -45,8 +45,8 @@ pytest
To run linter and automatically fix all errors:
```bash
black .
isort .
ruff format python
ruff --fix python
```
If any packages are missing, install them with:
@@ -82,4 +82,4 @@ pip install tantivy
To run the unit tests:
```bash
pytest
```
```

View File

@@ -14,18 +14,20 @@
import importlib.metadata
from typing import Optional
from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection
from .schema import vector
__version__ = importlib.metadata.version("lancedb")
from .common import URI
from .db import DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection
from .schema import vector # noqa: F401
from .utils import sentry_log # noqa: F401
def connect(
uri: URI,
*,
api_key: Optional[str] = None,
region: str = "us-west-2",
region: str = "us-east-1",
host_override: Optional[str] = None,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -37,7 +39,7 @@ def connect(
api_key: str, optional
If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage.
region: str, default "us-west-2"
region: str, default "us-east-1"
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.

View File

@@ -0,0 +1,12 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

46
python/lancedb/cli/cli.py Normal file
View File

@@ -0,0 +1,46 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import click
from lancedb.utils import CONFIG
@click.group()
@click.version_option(help="LanceDB command line interface entry point")
def cli():
"LanceDB command line interface"
diagnostics_help = """
Enable or disable LanceDB diagnostics. When enabled, LanceDB will send anonymous events to help us improve LanceDB.
These diagnostics are used only for error reporting and no data is collected. You can find more about diagnosis on
our docs: https://lancedb.github.io/lancedb/cli_config/
"""
@cli.command(help=diagnostics_help)
@click.option("--enabled/--disabled", default=True)
def diagnostics(enabled):
CONFIG.update({"diagnostics": True if enabled else False})
click.echo("LanceDB diagnostics is %s" % ("enabled" if enabled else "disabled"))
@cli.command(help="Show current LanceDB configuration")
def config():
# TODO: pretty print as table with colors and formatting
click.echo("Current LanceDB configuration:")
cfg = CONFIG.copy()
cfg.pop("uuid") # Don't show uuid as it is not configurable
for item, amount in cfg.items():
click.echo("{} ({})".format(item, amount))

View File

@@ -1,4 +1,6 @@
import os
import time
from typing import Any
import numpy as np
import pytest
@@ -38,3 +40,26 @@ class MockTextEmbeddingFunction(TextEmbeddingFunction):
def ndims(self):
return 10
class RateLimitedAPI:
rate_limit = 0.1 # 1 request per 0.1 second
last_request_time = 0
@staticmethod
def make_request():
current_time = time.time()
if current_time - RateLimitedAPI.last_request_time < RateLimitedAPI.rate_limit:
raise Exception("Rate limit exceeded. Please try again later.")
# Simulate a successful request
RateLimitedAPI.last_request_time = current_time
return "Request successful"
@registry.register("test-rate-limited")
class MockRateLimitedEmbeddingFunction(MockTextEmbeddingFunction):
def generate_embeddings(self, texts):
RateLimitedAPI.make_request()
return [self._compute_one_embedding(row) for row in texts]

View File

@@ -12,6 +12,9 @@
# limitations under the License.
from __future__ import annotations
import deprecation
from . import __version__
from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas
@@ -43,7 +46,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
this how many tokens, but depending on the input data, it could be sentences,
paragraphs, messages, etc.
>>> contextualize(data).window(3).stride(1).text_col('token').to_df()
>>> contextualize(data).window(3).stride(1).text_col('token').to_pandas()
token document_id
0 The quick brown 1
1 quick brown fox 1
@@ -56,7 +59,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
8 dog I love 1
9 I love sandwiches 2
10 love sandwiches 2
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_df()
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_pandas()
token document_id
0 The quick brown fox jumped over the 1
1 quick brown fox jumped over the lazy 1
@@ -68,7 +71,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
``stride`` determines how many rows to skip between each window start. This can
be used to reduce the total number of windows generated.
>>> contextualize(data).window(4).stride(2).text_col('token').to_df()
>>> contextualize(data).window(4).stride(2).text_col('token').to_pandas()
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
@@ -81,7 +84,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_df()
>>> (contextualize(data)
... .window(4).stride(2).text_col('token').groupby('document_id')
... .to_pandas())
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
@@ -89,18 +94,24 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
6 the lazy dog 1
9 I love sandwiches 2
``min_window_size`` determines the minimum size of the context windows that are generated
This can be used to trim the last few context windows which have size less than
``min_window_size``. By default context windows of size 1 are skipped.
``min_window_size`` determines the minimum size of the context windows
that are generated.This can be used to trim the last few context windows
which have size less than ``min_window_size``.
By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_df()
>>> (contextualize(data)
... .window(6).stride(3).text_col('token').groupby('document_id')
... .to_pandas())
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
6 the lazy dog 1
9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_df()
>>> (contextualize(data)
... .window(6).stride(3).min_window_size(4).text_col('token')
... .groupby('document_id')
... .to_pandas())
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
@@ -110,7 +121,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
class Contextualizer:
"""Create context windows from a DataFrame. See [lancedb.context.contextualize][]."""
"""Create context windows from a DataFrame.
See [lancedb.context.contextualize][].
"""
def __init__(self, raw_df):
self._text_col = None
@@ -176,7 +189,16 @@ class Contextualizer:
self._min_window_size = min_window_size
return self
@deprecation.deprecated(
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use to_pandas() instead",
)
def to_df(self) -> "pd.DataFrame":
return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame":
"""Create the context windows and return a DataFrame."""
if pd is None:
raise ImportError(

View File

@@ -14,26 +14,39 @@
from __future__ import annotations
import os
from abc import ABC, abstractmethod
from abc import abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pyarrow as pa
from overrides import EnforceOverrides, override
from pyarrow import fs
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING:
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
class DBConnection(ABC):
class DBConnection(EnforceOverrides):
"""An active LanceDB connection interface."""
@abstractmethod
def table_names(self) -> list[str]:
"""List all table names in the database."""
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List all table in this database
Parameters
----------
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
limit: int, default 10
The size of the page to return.
"""
pass
@abstractmethod
@@ -45,6 +58,7 @@ class DBConnection(ABC):
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
@@ -52,12 +66,24 @@ class DBConnection(ABC):
----------
name: str
The name of the table.
data: list, tuple, dict, pd.DataFrame; optional
The data to initialize the table. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema or LanceModel; optional
The schema of the table.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite".
The mode to use when creating the table.
Can be either "create" or "overwrite".
By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite".
on_bad_vectors: str, default "error"
@@ -150,7 +176,8 @@ class DBConnection(ABC):
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
@@ -249,23 +276,25 @@ class LanceDBConnection(DBConnection):
def uri(self) -> str:
return self._uri
def table_names(self) -> list[str]:
"""Get the names of all tables in the database.
@override
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""Get the names of all tables in the database. The names are sorted.
Returns
-------
list of str
Iterator of str.
A list of table names.
"""
try:
filesystem, path = fs_from_uri(self.uri)
filesystem = fs_from_uri(self.uri)[0]
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
try:
paths = filesystem.get_file_info(
fs.FileSelector(get_uri_location(self.uri))
)
loc = get_uri_location(self.uri)
paths = filesystem.get_file_info(fs.FileSelector(loc))
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
@@ -274,6 +303,7 @@ class LanceDBConnection(DBConnection):
for file_info in paths
if file_info.extension == "lance"
]
tables.sort()
return tables
def __len__(self) -> int:
@@ -282,6 +312,7 @@ class LanceDBConnection(DBConnection):
def __contains__(self, name: str) -> bool:
return name in self.table_names()
@override
def create_table(
self,
name: str,
@@ -313,6 +344,7 @@ class LanceDBConnection(DBConnection):
)
return tbl
@override
def open_table(self, name: str) -> LanceTable:
"""Open a table in the database.
@@ -327,6 +359,7 @@ class LanceDBConnection(DBConnection):
"""
return LanceTable.open(self, name)
@override
def drop_table(self, name: str, ignore_missing: bool = False):
"""Drop a table from the database.
@@ -339,12 +372,13 @@ class LanceDBConnection(DBConnection):
"""
try:
filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
table_path = join_uri(path, name + ".lance")
filesystem.delete_dir(table_path)
except FileNotFoundError:
if not ignore_missing:
raise
@override
def drop_database(self):
filesystem, path = fs_from_uri(self.uri)
filesystem.delete_dir(path)

Some files were not shown because too many files have changed in this diff Show More