mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 21:39:57 +00:00
Compare commits
140 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0a16e29b93 | ||
|
|
cf7d7a19f5 | ||
|
|
fe2fb91a8b | ||
|
|
81af350d85 | ||
|
|
99adfe065a | ||
|
|
277406509e | ||
|
|
63411b4d8b | ||
|
|
d998f80b04 | ||
|
|
629379a532 | ||
|
|
99ba5331f0 | ||
|
|
121687231c | ||
|
|
ac40d4b235 | ||
|
|
c5a52565ac | ||
|
|
b0a88a7286 | ||
|
|
d41d849e0e | ||
|
|
bf5202f196 | ||
|
|
8be2861061 | ||
|
|
0560e3a0e5 | ||
|
|
b83fbfc344 | ||
|
|
60b22d84bf | ||
|
|
7d55a94efd | ||
|
|
4d8e401d34 | ||
|
|
684eb8b087 | ||
|
|
4e3b82feaa | ||
|
|
8e248a9d67 | ||
|
|
065ffde443 | ||
|
|
c3059dc689 | ||
|
|
a9caa5f2d4 | ||
|
|
8411c36b96 | ||
|
|
7773bda7ee | ||
|
|
392777952f | ||
|
|
7e75e50d3a | ||
|
|
4b8af261a3 | ||
|
|
c8728d4ca1 | ||
|
|
446f837335 | ||
|
|
8f9ad978f5 | ||
|
|
0df38341d5 | ||
|
|
60260018cf | ||
|
|
bb100c5c19 | ||
|
|
eab9072bb5 | ||
|
|
ee0f0611d9 | ||
|
|
34966312cb | ||
|
|
756188358c | ||
|
|
dc5126d8d1 | ||
|
|
50c20af060 | ||
|
|
0965d7dd5a | ||
|
|
7bbb2872de | ||
|
|
e81d2975da | ||
|
|
2c7f96ba4f | ||
|
|
f9dd7a5d8a | ||
|
|
1d4943688d | ||
|
|
7856a94d2c | ||
|
|
371d2f979e | ||
|
|
fff8e399a3 | ||
|
|
73e4015797 | ||
|
|
5142a27482 | ||
|
|
81df2a524e | ||
|
|
40638e5515 | ||
|
|
018314a5c1 | ||
|
|
409eb30ea5 | ||
|
|
ff9872fd44 | ||
|
|
a0608044a1 | ||
|
|
2e4ea7d2bc | ||
|
|
57e5695a54 | ||
|
|
ce58ea7c38 | ||
|
|
57207eff4a | ||
|
|
2d78bff120 | ||
|
|
7c09b9b9a9 | ||
|
|
bd0034a157 | ||
|
|
144b3b5d83 | ||
|
|
b6f0a31686 | ||
|
|
9ec526f73f | ||
|
|
600bfd7237 | ||
|
|
d087e7891d | ||
|
|
098e397cf0 | ||
|
|
63ee8fa6a1 | ||
|
|
693091db29 | ||
|
|
dca4533dbe | ||
|
|
f6bbe199dc | ||
|
|
366e522c2b | ||
|
|
244b6919cc | ||
|
|
aca785ff98 | ||
|
|
bbdebf2c38 | ||
|
|
1336cce0dc | ||
|
|
6c83b6a513 | ||
|
|
6bec4bec51 | ||
|
|
23d30dfc78 | ||
|
|
94c8c50f96 | ||
|
|
72765d8e1a | ||
|
|
a2a8f9615e | ||
|
|
b085d9aaa1 | ||
|
|
6eb662de9b | ||
|
|
2bb2bb581a | ||
|
|
38321fa226 | ||
|
|
22749c3fa2 | ||
|
|
123a49df77 | ||
|
|
a57aa4b142 | ||
|
|
d8e3e54226 | ||
|
|
ccfdf4853a | ||
|
|
87e5d86e90 | ||
|
|
1cf8a3e4e0 | ||
|
|
5372843281 | ||
|
|
54677b8f0b | ||
|
|
ebcf9bf6ae | ||
|
|
797514bcbf | ||
|
|
1c872ce501 | ||
|
|
479f471c14 | ||
|
|
ae0d2f2599 | ||
|
|
1e8678f11a | ||
|
|
662968559d | ||
|
|
9d895801f2 | ||
|
|
80613a40fd | ||
|
|
d43ef7f11e | ||
|
|
554e068917 | ||
|
|
567734dd6e | ||
|
|
1589499f89 | ||
|
|
682e95fa83 | ||
|
|
1ad5e7f2f0 | ||
|
|
ddb3ef4ce5 | ||
|
|
ef20b2a138 | ||
|
|
2e0f251bfd | ||
|
|
2cb91e818d | ||
|
|
2835c76336 | ||
|
|
8068a2bbc3 | ||
|
|
24111d543a | ||
|
|
7eec2b8f9a | ||
|
|
b2b70ea399 | ||
|
|
e50a3c1783 | ||
|
|
b517134309 | ||
|
|
6fb539b5bf | ||
|
|
f37fe120fd | ||
|
|
2e115acb9a | ||
|
|
27a638362d | ||
|
|
22a6695d7a | ||
|
|
57eff82ee7 | ||
|
|
7732f7d41c | ||
|
|
5ca98c326f | ||
|
|
b55db397eb | ||
|
|
c04d72ac8a | ||
|
|
28b02fb72a |
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.3.3
|
current_version = 0.4.2
|
||||||
commit = True
|
commit = True
|
||||||
message = Bump version: {current_version} → {new_version}
|
message = Bump version: {current_version} → {new_version}
|
||||||
tag = True
|
tag = True
|
||||||
|
|||||||
33
.github/ISSUE_TEMPLATE/bug-node.yml
vendored
Normal file
33
.github/ISSUE_TEMPLATE/bug-node.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
name: Bug Report - Node / Typescript
|
||||||
|
description: File a bug report
|
||||||
|
title: "bug(node): "
|
||||||
|
labels: [bug, typescript]
|
||||||
|
body:
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
Thanks for taking the time to fill out this bug report!
|
||||||
|
- type: input
|
||||||
|
id: version
|
||||||
|
attributes:
|
||||||
|
label: LanceDB version
|
||||||
|
description: What version of LanceDB are you using? `npm list | grep vectordb`.
|
||||||
|
placeholder: v0.3.2
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: textarea
|
||||||
|
id: what-happened
|
||||||
|
attributes:
|
||||||
|
label: What happened?
|
||||||
|
description: Also tell us, what did you expect to happen?
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: reproduction
|
||||||
|
attributes:
|
||||||
|
label: Are there known steps to reproduce?
|
||||||
|
description: |
|
||||||
|
Let us know how to reproduce the bug and we may be able to fix it more
|
||||||
|
quickly. This is not required, but it is helpful.
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
33
.github/ISSUE_TEMPLATE/bug-python.yml
vendored
Normal file
33
.github/ISSUE_TEMPLATE/bug-python.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
name: Bug Report - Python
|
||||||
|
description: File a bug report
|
||||||
|
title: "bug(python): "
|
||||||
|
labels: [bug, python]
|
||||||
|
body:
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
Thanks for taking the time to fill out this bug report!
|
||||||
|
- type: input
|
||||||
|
id: version
|
||||||
|
attributes:
|
||||||
|
label: LanceDB version
|
||||||
|
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
|
||||||
|
placeholder: v0.3.2
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: textarea
|
||||||
|
id: what-happened
|
||||||
|
attributes:
|
||||||
|
label: What happened?
|
||||||
|
description: Also tell us, what did you expect to happen?
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: reproduction
|
||||||
|
attributes:
|
||||||
|
label: Are there known steps to reproduce?
|
||||||
|
description: |
|
||||||
|
Let us know how to reproduce the bug and we may be able to fix it more
|
||||||
|
quickly. This is not required, but it is helpful.
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
blank_issues_enabled: true
|
||||||
|
contact_links:
|
||||||
|
- name: Discord Community Support
|
||||||
|
url: https://discord.com/invite/zMM32dvNtd
|
||||||
|
about: Please ask and answer questions here.
|
||||||
23
.github/ISSUE_TEMPLATE/documentation.yml
vendored
Normal file
23
.github/ISSUE_TEMPLATE/documentation.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
name: 'Documentation improvement'
|
||||||
|
description: Report an issue with the documentation.
|
||||||
|
labels: [documentation]
|
||||||
|
|
||||||
|
body:
|
||||||
|
- type: textarea
|
||||||
|
id: description
|
||||||
|
attributes:
|
||||||
|
label: Description
|
||||||
|
description: >
|
||||||
|
Describe the issue with the documentation and how it can be fixed or improved.
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: input
|
||||||
|
id: link
|
||||||
|
attributes:
|
||||||
|
label: Link
|
||||||
|
description: >
|
||||||
|
Provide a link to the existing documentation, if applicable.
|
||||||
|
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
31
.github/ISSUE_TEMPLATE/feature.yml
vendored
Normal file
31
.github/ISSUE_TEMPLATE/feature.yml
vendored
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
name: Feature suggestion
|
||||||
|
description: Suggestion a new feature for LanceDB
|
||||||
|
title: "Feature: "
|
||||||
|
labels: [enhancement]
|
||||||
|
body:
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
Share a new idea for a feature or improvement. Be sure to search existing
|
||||||
|
issues first to avoid duplicates.
|
||||||
|
- type: dropdown
|
||||||
|
id: sdk
|
||||||
|
attributes:
|
||||||
|
label: SDK
|
||||||
|
description: Which SDK are you using? This helps us prioritize.
|
||||||
|
options:
|
||||||
|
- Python
|
||||||
|
- Node
|
||||||
|
- Rust
|
||||||
|
default: 0
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: textarea
|
||||||
|
id: description
|
||||||
|
attributes:
|
||||||
|
label: Description
|
||||||
|
description: |
|
||||||
|
Describe the feature and why it would be useful. If applicable, consider
|
||||||
|
providing a code example of what it might be like to use the feature.
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
3
.github/workflows/docs_test.yml
vendored
3
.github/workflows/docs_test.yml
vendored
@@ -88,6 +88,9 @@ jobs:
|
|||||||
cd docs/test
|
cd docs/test
|
||||||
node md_testing.js
|
node md_testing.js
|
||||||
- name: Test
|
- name: Test
|
||||||
|
env:
|
||||||
|
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
|
||||||
|
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
|
||||||
run: |
|
run: |
|
||||||
cd docs/test/node
|
cd docs/test/node
|
||||||
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
|
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
|
||||||
|
|||||||
4
.github/workflows/node.yml
vendored
4
.github/workflows/node.yml
vendored
@@ -11,6 +11,10 @@ on:
|
|||||||
- .github/workflows/node.yml
|
- .github/workflows/node.yml
|
||||||
- docker-compose.yml
|
- docker-compose.yml
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
env:
|
env:
|
||||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
# "1" means line tables only, which is useful for panic tracebacks.
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
|
|||||||
20
.github/workflows/npm-publish.yml
vendored
20
.github/workflows/npm-publish.yml
vendored
@@ -38,13 +38,17 @@ jobs:
|
|||||||
node/vectordb-*.tgz
|
node/vectordb-*.tgz
|
||||||
|
|
||||||
node-macos:
|
node-macos:
|
||||||
runs-on: macos-12
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64-apple-darwin
|
||||||
|
runner: macos-13
|
||||||
|
- arch: aarch64-apple-darwin
|
||||||
|
# xlarge is implicitly arm64.
|
||||||
|
runner: macos-13-xlarge
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
target: [x86_64-apple-darwin, aarch64-apple-darwin]
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -54,17 +58,15 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
cd node
|
cd node
|
||||||
npm ci
|
npm ci
|
||||||
- name: Install rustup target
|
|
||||||
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
|
|
||||||
run: rustup target add aarch64-apple-darwin
|
|
||||||
- name: Build MacOS native node modules
|
- name: Build MacOS native node modules
|
||||||
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
|
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
|
||||||
- name: Upload Darwin Artifacts
|
- name: Upload Darwin Artifacts
|
||||||
uses: actions/upload-artifact@v3
|
uses: actions/upload-artifact@v3
|
||||||
with:
|
with:
|
||||||
name: native-darwin
|
name: native-darwin
|
||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-darwin*.tgz
|
node/dist/lancedb-vectordb-darwin*.tgz
|
||||||
|
|
||||||
|
|
||||||
node-linux:
|
node-linux:
|
||||||
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||||
|
|||||||
39
.github/workflows/python.yml
vendored
39
.github/workflows/python.yml
vendored
@@ -8,6 +8,11 @@ on:
|
|||||||
paths:
|
paths:
|
||||||
- python/**
|
- python/**
|
||||||
- .github/workflows/python.yml
|
- .github/workflows/python.yml
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
linux:
|
linux:
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
@@ -32,18 +37,26 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
pip install -e .[tests]
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock black isort
|
pip install pytest pytest-mock ruff
|
||||||
- name: Black
|
- name: Lint
|
||||||
run: black --check --diff --no-color --quiet .
|
run: ruff format --check .
|
||||||
- name: isort
|
|
||||||
run: isort --check --diff --quiet .
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -m "not slow" -x -v --durations=30 tests
|
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||||
- name: doctest
|
- name: doctest
|
||||||
run: pytest --doctest-modules lancedb
|
run: pytest --doctest-modules lancedb
|
||||||
mac:
|
platform:
|
||||||
|
name: "Platform: ${{ matrix.config.name }}"
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
runs-on: "macos-12"
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- name: x86 Mac
|
||||||
|
runner: macos-13
|
||||||
|
- name: Arm Mac
|
||||||
|
runner: macos-13-xlarge
|
||||||
|
- name: x86 Windows
|
||||||
|
runner: windows-latest
|
||||||
|
runs-on: "${{ matrix.config.runner }}"
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
@@ -61,9 +74,7 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
pip install -e .[tests]
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock black
|
pip install pytest pytest-mock
|
||||||
- name: Black
|
|
||||||
run: black --check --diff --no-color --quiet .
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -m "not slow" -x -v --durations=30 tests
|
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||||
pydantic1x:
|
pydantic1x:
|
||||||
@@ -87,12 +98,8 @@ jobs:
|
|||||||
pip install "pydantic<2"
|
pip install "pydantic<2"
|
||||||
pip install -e .[tests]
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock black isort
|
pip install pytest pytest-mock
|
||||||
- name: Black
|
|
||||||
run: black --check --diff --no-color --quiet .
|
|
||||||
- name: isort
|
|
||||||
run: isort --check --diff --quiet .
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -m "not slow" -x -v --durations=30 tests
|
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||||
- name: doctest
|
- name: doctest
|
||||||
run: pytest --doctest-modules lancedb
|
run: pytest --doctest-modules lancedb
|
||||||
|
|||||||
32
.github/workflows/rust.yml
vendored
32
.github/workflows/rust.yml
vendored
@@ -10,6 +10,10 @@ on:
|
|||||||
- rust/**
|
- rust/**
|
||||||
- .github/workflows/rust.yml
|
- .github/workflows/rust.yml
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
env:
|
env:
|
||||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||||
# key, so we set it to make sure it is always consistent.
|
# key, so we set it to make sure it is always consistent.
|
||||||
@@ -20,6 +24,29 @@ env:
|
|||||||
RUST_BACKTRACE: "1"
|
RUST_BACKTRACE: "1"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
|
lint:
|
||||||
|
timeout-minutes: 30
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: rust
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: rust
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Run format
|
||||||
|
run: cargo fmt --all -- --check
|
||||||
|
- name: Run clippy
|
||||||
|
run: cargo clippy --all --all-features -- -D warnings
|
||||||
linux:
|
linux:
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-22.04
|
||||||
@@ -44,8 +71,11 @@ jobs:
|
|||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: cargo test --all-features
|
run: cargo test --all-features
|
||||||
macos:
|
macos:
|
||||||
runs-on: macos-12
|
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
mac-runner: [ "macos-13", "macos-13-xlarge" ]
|
||||||
|
runs-on: "${{ matrix.mac-runner }}"
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
|
|||||||
27
Cargo.toml
27
Cargo.toml
@@ -5,23 +5,24 @@ exclude = ["python"]
|
|||||||
resolver = "2"
|
resolver = "2"
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
lance = { "version" = "=0.8.7", "features" = ["dynamodb"] }
|
lance = { "version" = "=0.9.6", "features" = ["dynamodb"] }
|
||||||
lance-linalg = { "version" = "=0.8.7" }
|
lance-index = { "version" = "=0.9.6" }
|
||||||
lance-testing = { "version" = "=0.8.7" }
|
lance-linalg = { "version" = "=0.9.6" }
|
||||||
|
lance-testing = { "version" = "=0.9.6" }
|
||||||
# Note that this one does not include pyarrow
|
# Note that this one does not include pyarrow
|
||||||
arrow = { version = "47.0.0", optional = false }
|
arrow = { version = "49.0.0", optional = false }
|
||||||
arrow-array = "47.0"
|
arrow-array = "49.0"
|
||||||
arrow-data = "47.0"
|
arrow-data = "49.0"
|
||||||
arrow-ipc = "47.0"
|
arrow-ipc = "49.0"
|
||||||
arrow-ord = "47.0"
|
arrow-ord = "49.0"
|
||||||
arrow-schema = "47.0"
|
arrow-schema = "49.0"
|
||||||
arrow-arith = "47.0"
|
arrow-arith = "49.0"
|
||||||
arrow-cast = "47.0"
|
arrow-cast = "49.0"
|
||||||
chrono = "0.4.23"
|
chrono = "0.4.23"
|
||||||
half = { "version" = "=2.3.1", default-features = false, features = [
|
half = { "version" = "=2.3.1", default-features = false, features = [
|
||||||
"num-traits"
|
"num-traits",
|
||||||
] }
|
] }
|
||||||
log = "0.4"
|
log = "0.4"
|
||||||
object_store = "0.7.1"
|
object_store = "0.8.0"
|
||||||
snafu = "0.7.4"
|
snafu = "0.7.4"
|
||||||
url = "2"
|
url = "2"
|
||||||
|
|||||||
@@ -5,10 +5,11 @@
|
|||||||
|
|
||||||
**Developer-friendly, serverless vector database for AI applications**
|
**Developer-friendly, serverless vector database for AI applications**
|
||||||
|
|
||||||
<a href="https://lancedb.github.io/lancedb/">Documentation</a> •
|
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||||
<a href="https://blog.lancedb.com/">Blog</a> •
|
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||||
<a href="https://discord.gg/zMM32dvNtd">Discord</a> •
|
[](https://blog.lancedb.com/)
|
||||||
<a href="https://twitter.com/lancedb">Twitter</a>
|
[](https://discord.gg/zMM32dvNtd)
|
||||||
|
[](https://twitter.com/lancedb)
|
||||||
|
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
# Builds the macOS artifacts (node binaries).
|
# Builds the macOS artifacts (node binaries).
|
||||||
# Usage: ./ci/build_macos_artifacts.sh [target]
|
# Usage: ./ci/build_macos_artifacts.sh [target]
|
||||||
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
||||||
|
set -e
|
||||||
|
|
||||||
prebuild_rust() {
|
prebuild_rust() {
|
||||||
# Building here for the sake of easier debugging.
|
# Building here for the sake of easier debugging.
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
site_name: LanceDB Docs
|
site_name: LanceDB Docs
|
||||||
|
site_url: https://lancedb.github.io/lancedb/
|
||||||
repo_url: https://github.com/lancedb/lancedb
|
repo_url: https://github.com/lancedb/lancedb
|
||||||
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
|
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
|
||||||
repo_name: lancedb/lancedb
|
repo_name: lancedb/lancedb
|
||||||
@@ -97,6 +98,7 @@ nav:
|
|||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
|
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
|
||||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
- 🌐 Javascript examples:
|
- 🌐 Javascript examples:
|
||||||
@@ -144,14 +146,14 @@ nav:
|
|||||||
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
|
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
|
||||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
- API references:
|
- API references:
|
||||||
- Python API: python/python.md
|
- OSS Python API: python/python.md
|
||||||
|
- SaaS Python API: python/saas-python.md
|
||||||
- Javascript API: javascript/modules.md
|
- Javascript API: javascript/modules.md
|
||||||
|
- SaaS Javascript API: javascript/saas-modules.md
|
||||||
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
|
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
|
||||||
|
|
||||||
extra_css:
|
extra_css:
|
||||||
- styles/global.css
|
- styles/global.css
|
||||||
extra_javascript:
|
|
||||||
- scripts/posthog.js
|
|
||||||
|
|
||||||
extra:
|
extra:
|
||||||
analytics:
|
analytics:
|
||||||
|
|||||||
@@ -2,3 +2,4 @@ mkdocs==1.4.2
|
|||||||
mkdocs-jupyter==0.24.1
|
mkdocs-jupyter==0.24.1
|
||||||
mkdocs-material==9.1.3
|
mkdocs-material==9.1.3
|
||||||
mkdocstrings[python]==0.20.0
|
mkdocstrings[python]==0.20.0
|
||||||
|
pydantic
|
||||||
@@ -71,9 +71,41 @@ a single PQ code.
|
|||||||
### Use GPU to build vector index
|
### Use GPU to build vector index
|
||||||
|
|
||||||
Lance Python SDK has experimental GPU support for creating IVF index.
|
Lance Python SDK has experimental GPU support for creating IVF index.
|
||||||
|
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
|
||||||
|
|
||||||
You can specify the GPU device to train IVF partitions via
|
You can specify the GPU device to train IVF partitions via
|
||||||
|
|
||||||
- **accelerator**: Specify to `"cuda"`` to enable GPU training.
|
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
|
||||||
|
|
||||||
|
=== "Linux"
|
||||||
|
|
||||||
|
<!-- skip-test -->
|
||||||
|
``` { .python .copy }
|
||||||
|
# Create index using CUDA on Nvidia GPUs.
|
||||||
|
tbl.create_index(
|
||||||
|
num_partitions=256,
|
||||||
|
num_sub_vectors=96,
|
||||||
|
accelerator="cuda"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Macos"
|
||||||
|
|
||||||
|
<!-- skip-test -->
|
||||||
|
```python
|
||||||
|
# Create index using MPS on Apple Silicon.
|
||||||
|
tbl.create_index(
|
||||||
|
num_partitions=256,
|
||||||
|
num_sub_vectors=96,
|
||||||
|
accelerator="mps"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
Trouble shootings:
|
||||||
|
|
||||||
|
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
|
||||||
|
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
|
||||||
|
|
||||||
|
|
||||||
## Querying an ANN Index
|
## Querying an ANN Index
|
||||||
|
|
||||||
@@ -132,6 +164,7 @@ You can further filter the elements returned by a search using a where clause.
|
|||||||
const results_2 = await table
|
const results_2 = await table
|
||||||
.search(Array(1536).fill(1.2))
|
.search(Array(1536).fill(1.2))
|
||||||
.where("id != '1141'")
|
.where("id != '1141'")
|
||||||
|
.limit(2)
|
||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -155,6 +188,7 @@ You can select the columns returned by the query using a select clause.
|
|||||||
const results_3 = await table
|
const results_3 = await table
|
||||||
.search(Array(1536).fill(1.2))
|
.search(Array(1536).fill(1.2))
|
||||||
.select(["id"])
|
.select(["id"])
|
||||||
|
.limit(2)
|
||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|||||||
@@ -64,18 +64,26 @@ We'll cover the basics of using LanceDB on your local machine in this section.
|
|||||||
tbl = db.create_table("table_from_df", data=df)
|
tbl = db.create_table("table_from_df", data=df)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
|
||||||
|
If the table already exists, LanceDB will raise an error by default.
|
||||||
|
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||||
|
to the `createTable` function.
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
```javascript
|
```javascript
|
||||||
const tb = await db.createTable("my_table",
|
const tb = await db.createTable(
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
"myTable",
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! warning
|
|
||||||
|
|
||||||
If the table already exists, LanceDB will raise an error by default.
|
!!! warning
|
||||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
|
||||||
to the `createTable` function.
|
If the table already exists, LanceDB will raise an error by default.
|
||||||
|
If you want to overwrite the table, you can pass in `"overwrite"`
|
||||||
|
to the `createTable` function like this: `await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })`
|
||||||
|
|
||||||
|
|
||||||
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||||
|
|
||||||
@@ -108,7 +116,7 @@ Once created, you can open a table using the following code:
|
|||||||
|
|
||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
```javascript
|
```javascript
|
||||||
const tbl = await db.openTable("my_table");
|
const tbl = await db.openTable("myTable");
|
||||||
```
|
```
|
||||||
|
|
||||||
If you forget the name of your table, you can always get a listing of all table names:
|
If you forget the name of your table, you can always get a listing of all table names:
|
||||||
@@ -194,10 +202,17 @@ Use the `drop_table()` method on the database to remove a table.
|
|||||||
db.drop_table("my_table")
|
db.drop_table("my_table")
|
||||||
```
|
```
|
||||||
|
|
||||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||||
By default, if the table does not exist an exception is raised. To suppress this,
|
By default, if the table does not exist an exception is raised. To suppress this,
|
||||||
you can pass in `ignore_missing=True`.
|
you can pass in `ignore_missing=True`.
|
||||||
|
|
||||||
|
=== "JavaScript"
|
||||||
|
```javascript
|
||||||
|
await db.dropTable('myTable')
|
||||||
|
```
|
||||||
|
|
||||||
|
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||||
|
If the table does not exist an exception is raised.
|
||||||
|
|
||||||
## What's next
|
## What's next
|
||||||
|
|
||||||
|
|||||||
@@ -1,7 +1,9 @@
|
|||||||
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs.
|
There are various Embedding functions available out of the box with LanceDB. We're working on supporting other popular embedding APIs.
|
||||||
|
|
||||||
## Text Embedding Functions
|
## Text Embedding Functions
|
||||||
Here are the text embedding functions registered by default
|
Here are the text embedding functions registered by default.
|
||||||
|
Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff.
|
||||||
|
Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
|
||||||
|
|
||||||
### Sentence Transformers
|
### Sentence Transformers
|
||||||
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
|
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
|
||||||
@@ -66,11 +68,61 @@ actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
|||||||
print(actual.text)
|
print(actual.text)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Instructor Embeddings
|
||||||
|
Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
|
||||||
|
|
||||||
|
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
|
||||||
|
|
||||||
|
Represent the `domain` `text_type` for `task_objective`:
|
||||||
|
|
||||||
|
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
|
||||||
|
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
|
||||||
|
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
|
||||||
|
|
||||||
|
More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding
|
||||||
|
|
||||||
|
| Argument | Type | Default | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
|
||||||
|
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
|
||||||
|
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
|
||||||
|
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
|
||||||
|
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
|
||||||
|
| `quantize` | `bool` | `False` | Whether to quantize the model |
|
||||||
|
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
|
||||||
|
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
|
||||||
|
|
||||||
|
instructor = get_registry().get("instructor").create(
|
||||||
|
source_instruction="represent the docuement for retreival",
|
||||||
|
query_instruction="represent the document for retreiving the most similar documents"
|
||||||
|
)
|
||||||
|
|
||||||
|
class Schema(LanceModel):
|
||||||
|
vector: Vector(instructor.ndims()) = instructor.VectorField()
|
||||||
|
text: str = instructor.SourceField()
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||||
|
|
||||||
|
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
|
||||||
|
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
|
||||||
|
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
|
||||||
|
|
||||||
|
tbl.add(texts)
|
||||||
|
```
|
||||||
|
|
||||||
## Multi-modal embedding functions
|
## Multi-modal embedding functions
|
||||||
Multi-modal embedding functions allow you query your table using both images and text.
|
Multi-modal embedding functions allow you to query your table using both images and text.
|
||||||
|
|
||||||
### OpenClipEmbeddings
|
### OpenClipEmbeddings
|
||||||
We support CLIP model embeddings using the open souce alternbative, open-clip which support various customizations. It is registered as `open-clip` and supports following customizations.
|
We support CLIP model embeddings using the open source alternative, open-clip which supports various customizations. It is registered as `open-clip` and supports the following customizations:
|
||||||
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
| Parameter | Type | Default Value | Description |
|
||||||
@@ -153,4 +205,4 @@ print(actual.label)
|
|||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue.
|
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue.
|
||||||
|
|||||||
@@ -1,13 +1,14 @@
|
|||||||
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
|
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves can be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
|
||||||
|
|
||||||
This is main motivation behind our new embedding functions API, that allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and simply focus on the DB aspects of VectorDB.
|
|
||||||
|
|
||||||
|
Our new embedding functions API allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and can simply focus on the DB aspects of VectorDB.
|
||||||
|
|
||||||
You can simply follow these steps and forget about the details of your embedding functions as long as you don't intend to change it.
|
You can simply follow these steps and forget about the details of your embedding functions as long as you don't intend to change it.
|
||||||
|
|
||||||
### Step 1 - Define the embedding function
|
### Step 1 - Define the embedding function
|
||||||
We have some pre-defined embedding functions in the global registry with more coming soon. Here's let's an implementation of CLIP as example.
|
We have some pre-defined embedding functions in the global registry with more coming soon. Here's let's an implementation of CLIP as example.
|
||||||
```
|
```
|
||||||
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
registry = EmbeddingFunctionRegistry.get_instance()
|
registry = EmbeddingFunctionRegistry.get_instance()
|
||||||
clip = registry.get("open-clip").create()
|
clip = registry.get("open-clip").create()
|
||||||
|
|
||||||
@@ -15,9 +16,11 @@ clip = registry.get("open-clip").create()
|
|||||||
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses PyDantic Model which can be utilized to write complex schemas simply as we'll see next!
|
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses PyDantic Model which can be utilized to write complex schemas simply as we'll see next!
|
||||||
|
|
||||||
### Step 2 - Define the Data Model or Schema
|
### Step 2 - Define the Data Model or Schema
|
||||||
Our embedding function from the previous section abstracts away all the details about the models and dimensions required to define the schema. You can simply set a feild as **source** or **vector** column. Here's how
|
Our embedding function from the previous section abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
|
||||||
class Pets(LanceModel):
|
class Pets(LanceModel):
|
||||||
vector: Vector(clip.ndims) = clip.VectorField()
|
vector: Vector(clip.ndims) = clip.VectorField()
|
||||||
image_uri: str = clip.SourceField()
|
image_uri: str = clip.SourceField()
|
||||||
@@ -30,11 +33,13 @@ class Pets(LanceModel):
|
|||||||
Now that we have chosen/defined our embedding function and the schema, we can create the table
|
Now that we have chosen/defined our embedding function and the schema, we can create the table
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
import lancedb
|
||||||
|
|
||||||
db = lancedb.connect("~/lancedb")
|
db = lancedb.connect("~/lancedb")
|
||||||
table = db.create_table("pets", schema=Pets)
|
table = db.create_table("pets", schema=Pets)
|
||||||
|
|
||||||
```
|
```
|
||||||
That's it! We have ingested all the information needed to embed source and query inputs. We can now forget about the model and dimension details and start to build or VectorDB
|
|
||||||
|
That's it! We have ingested all the information needed to embed source and query inputs. We can now forget about the model and dimension details and start to build our VectorDB.
|
||||||
|
|
||||||
### Step 4 - Ingest lots of data and run vector search!
|
### Step 4 - Ingest lots of data and run vector search!
|
||||||
Now you can just add the data and it'll be vectorized automatically
|
Now you can just add the data and it'll be vectorized automatically
|
||||||
@@ -52,16 +57,32 @@ result = table.search("dog")
|
|||||||
Let's query an image
|
Let's query an image
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
p = Path("path/to/images/samoyed_100.jpg")
|
p = Path("path/to/images/samoyed_100.jpg")
|
||||||
query_image = Image.open(p)
|
query_image = Image.open(p)
|
||||||
table.search(query_image)
|
table.search(query_image)
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### A little fun with PyDantic
|
### Rate limit Handling
|
||||||
LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata.
|
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default the maximum retires is set to 7. You can tune it by setting it to a different number or disable it by setting it to 0. Example:
|
||||||
You can also use it for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let us define a utility function to plot the image.
|
|
||||||
```python
|
```python
|
||||||
|
clip = registry.get("open-clip").create() # Defaults to 7 max retries
|
||||||
|
clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
|
||||||
|
clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
|
||||||
|
```
|
||||||
|
|
||||||
|
NOTE:
|
||||||
|
Embedding functions can also fail due to other errors that have nothing to do with rate limits. This is why the errors are also logged.
|
||||||
|
|
||||||
|
### A little fun with PyDantic
|
||||||
|
LanceDB is integrated with PyDantic. In fact, we've used the integration in the above example to define the schema. It is also being used behind the scene by the embedding function API to ingest useful information as table metadata.
|
||||||
|
You can also use it for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let's define a utility function to plot the image.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
|
||||||
class Pets(LanceModel):
|
class Pets(LanceModel):
|
||||||
vector: Vector(clip.ndims) = clip.VectorField()
|
vector: Vector(clip.ndims) = clip.VectorField()
|
||||||
image_uri: str = clip.SourceField()
|
image_uri: str = clip.SourceField()
|
||||||
@@ -70,7 +91,8 @@ class Pets(LanceModel):
|
|||||||
def image(self):
|
def image(self):
|
||||||
return Image.open(self.image_uri)
|
return Image.open(self.image_uri)
|
||||||
```
|
```
|
||||||
Now, you can covert your search results to pydantic model and use this property.
|
|
||||||
|
Now, you can covert your search results to PyDantic model and use its property.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
rs = table.search(query_image).limit(3).to_pydantic(Pets)
|
rs = table.search(query_image).limit(3).to_pydantic(Pets)
|
||||||
@@ -79,4 +101,4 @@ rs[2].image
|
|||||||
|
|
||||||

|

|
||||||
|
|
||||||
Now that you've the basic idea about LanceDB embedding function, let us now dive deeper into the API that you can use to implement your own embedding functions!
|
Now that you have the basic idea about LanceDB embedding function, let us dive deeper into the API that you can use to implement your own embedding functions!
|
||||||
|
|||||||
165
docs/src/examples/image_embeddings_roboflow.md
Normal file
165
docs/src/examples/image_embeddings_roboflow.md
Normal file
@@ -0,0 +1,165 @@
|
|||||||
|
# How to Load Image Embeddings into LanceDB
|
||||||
|
|
||||||
|
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
|
||||||
|
|
||||||
|
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
|
||||||
|
|
||||||
|
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, let’s get started!
|
||||||
|
|
||||||
|
## Step #1: Install Roboflow Inference
|
||||||
|
|
||||||
|
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
|
||||||
|
|
||||||
|
Inference provides a HTTP API through which you can run vision models.
|
||||||
|
|
||||||
|
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
|
||||||
|
|
||||||
|
To get started, first install the Inference CLI:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install inference-cli
|
||||||
|
```
|
||||||
|
|
||||||
|
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
|
||||||
|
|
||||||
|
```
|
||||||
|
inference server start
|
||||||
|
```
|
||||||
|
|
||||||
|
An Inference server will start running at ‘http://localhost:9001’.
|
||||||
|
|
||||||
|
## Step #2: Set Up a LanceDB Vector Database
|
||||||
|
|
||||||
|
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
|
||||||
|
|
||||||
|
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
|
||||||
|
|
||||||
|
Once you have a dataset ready, install LanceDB with the following command:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
|
```
|
||||||
|
|
||||||
|
Create a new Python file and add the following code:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import cv2
|
||||||
|
import supervision as sv
|
||||||
|
import requests
|
||||||
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("./embeddings")
|
||||||
|
|
||||||
|
IMAGE_DIR = "images/"
|
||||||
|
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
|
||||||
|
SERVER_URL = "http://localhost:9001"
|
||||||
|
|
||||||
|
results = []
|
||||||
|
|
||||||
|
for i, image in enumerate(os.listdir(IMAGE_DIR)):
|
||||||
|
infer_clip_payload = {
|
||||||
|
#Images can be provided as urls or as base64 encoded strings
|
||||||
|
"image": {
|
||||||
|
"type": "base64",
|
||||||
|
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
|
||||||
|
json=infer_clip_payload,
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = res.json()['embeddings']
|
||||||
|
|
||||||
|
print("Calculated embedding for image: ", image)
|
||||||
|
|
||||||
|
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
|
||||||
|
|
||||||
|
results.append(image)
|
||||||
|
|
||||||
|
tbl = db.create_table("images", data=results)
|
||||||
|
|
||||||
|
tbl.create_fts_index("name")
|
||||||
|
```
|
||||||
|
|
||||||
|
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
|
||||||
|
|
||||||
|
```
|
||||||
|
export ROBOFLOW_API_KEY=""
|
||||||
|
```
|
||||||
|
|
||||||
|
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
|
||||||
|
|
||||||
|
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
|
||||||
|
|
||||||
|
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def make_batches():
|
||||||
|
for i in range(5):
|
||||||
|
yield [
|
||||||
|
{"vector": [3.1, 4.1], "name": "image1.png"},
|
||||||
|
{"vector": [5.9, 26.5], "name": "image2.png"}
|
||||||
|
]
|
||||||
|
|
||||||
|
tbl = db.open_table("images")
|
||||||
|
tbl.add(make_batches())
|
||||||
|
```
|
||||||
|
|
||||||
|
Replacing the `make_batches()` function with code to load embeddings for images.
|
||||||
|
|
||||||
|
## Step #3: Run a Search Query
|
||||||
|
|
||||||
|
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
|
||||||
|
|
||||||
|
Let’s calculate a text embedding for the query “cat”, then run a search query:
|
||||||
|
|
||||||
|
```python
|
||||||
|
infer_clip_payload = {
|
||||||
|
"text": "cat",
|
||||||
|
}
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
|
||||||
|
json=infer_clip_payload,
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = res.json()['embeddings']
|
||||||
|
|
||||||
|
df = tbl.search(embeddings[0]).limit(3).to_list()
|
||||||
|
|
||||||
|
print("Results:")
|
||||||
|
|
||||||
|
for i in df:
|
||||||
|
print(i["name"])
|
||||||
|
```
|
||||||
|
|
||||||
|
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
|
||||||
|
|
||||||
|
```
|
||||||
|
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
|
||||||
|
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
|
||||||
|
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
|
||||||
|
```
|
||||||
|
|
||||||
|
Let’s open the top image:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
The top image was a cat. Our search was successful.
|
||||||
|
|
||||||
|
## Conclusion
|
||||||
|
|
||||||
|
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
|
||||||
|
|
||||||
|
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
|
||||||
|
|
||||||
|
To learn more about Inference and its capabilities, refer to the Inference documentation.
|
||||||
@@ -29,8 +29,9 @@ uri = "data/sample-lancedb"
|
|||||||
db = lancedb.connect(uri)
|
db = lancedb.connect(uri)
|
||||||
|
|
||||||
table = db.create_table("my_table",
|
table = db.create_table("my_table",
|
||||||
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy", "meta": "foo"},
|
||||||
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}])
|
{"vector": [5.9, 26.5], "text": "Sam was a loyal puppy", "meta": "bar"},
|
||||||
|
{"vector": [15.9, 6.5], "text": "There are several kittens playing"}])
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -64,10 +65,51 @@ table.create_fts_index(["text1", "text2"])
|
|||||||
|
|
||||||
Note that the search API call does not change - you can search over all indexed columns at once.
|
Note that the search API call does not change - you can search over all indexed columns at once.
|
||||||
|
|
||||||
|
## Filtering
|
||||||
|
|
||||||
|
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
|
||||||
|
applied on top of the full text search results. This can be invoked via the familiar
|
||||||
|
`where` syntax:
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Syntax
|
||||||
|
|
||||||
|
For full-text search you can perform either a phrase query like "the old man and the sea",
|
||||||
|
or a structured search query like "(Old AND Man) AND Sea".
|
||||||
|
Double quotes are used to disambiguate.
|
||||||
|
|
||||||
|
For example:
|
||||||
|
|
||||||
|
If you intended "they could have been dogs OR cats" as a phrase query, this actually
|
||||||
|
raises a syntax error since `OR` is a recognized operator. If you make `or` lower case,
|
||||||
|
this avoids the syntax error. However, it is cumbersome to have to remember what will
|
||||||
|
conflict with the query syntax. Instead, if you search using
|
||||||
|
`table.search('"they could have been dogs OR cats"')`, then the syntax checker avoids
|
||||||
|
checking inside the quotes.
|
||||||
|
|
||||||
|
|
||||||
|
## Configurations
|
||||||
|
|
||||||
|
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
||||||
|
reduce this if running on a smaller node, or increase this for faster performance while
|
||||||
|
indexing a larger corpus.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# configure a 512MB heap size
|
||||||
|
heap = 1024 * 1024 * 512
|
||||||
|
table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
|
||||||
|
```
|
||||||
|
|
||||||
## Current limitations
|
## Current limitations
|
||||||
|
|
||||||
1. Currently we do not yet support incremental writes.
|
1. Currently we do not yet support incremental writes.
|
||||||
If you add data after fts index creation, it won't be reflected
|
If you add data after fts index creation, it won't be reflected
|
||||||
in search results until you do a full reindex.
|
in search results until you do a full reindex.
|
||||||
|
|
||||||
|
2. We currently only support local filesystem paths for the fts index.
|
||||||
|
This is a tantivy limitation. We've implemented an object store plugin
|
||||||
|
but there's no way in tantivy-py to specify to use it.
|
||||||
|
|
||||||
2. We currently only support local filesystem paths for the fts index.
|
|
||||||
@@ -1,5 +1,7 @@
|
|||||||
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
||||||
A Table is a collection of Records in a LanceDB Database. You can follow along on colab!
|
A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time.
|
||||||
|
|
||||||
|
This guide will show how to create tables, insert data into them, and update the data. You can follow along on colab!
|
||||||
|
|
||||||
## Creating a LanceDB Table
|
## Creating a LanceDB Table
|
||||||
|
|
||||||
@@ -116,6 +118,84 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
|
|||||||
table = db.create_table(table_name, schema=Content)
|
table = db.create_table(table_name, schema=Content)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
#### Nested schemas
|
||||||
|
|
||||||
|
Sometimes your data model may contain nested objects.
|
||||||
|
For example, you may want to store the document string
|
||||||
|
and the document soure name as a nested Document object:
|
||||||
|
|
||||||
|
```python
|
||||||
|
class Document(BaseModel):
|
||||||
|
content: str
|
||||||
|
source: str
|
||||||
|
```
|
||||||
|
|
||||||
|
This can be used as the type of a LanceDB table column:
|
||||||
|
|
||||||
|
```python
|
||||||
|
class NestedSchema(LanceModel):
|
||||||
|
id: str
|
||||||
|
vector: Vector(1536)
|
||||||
|
document: Document
|
||||||
|
|
||||||
|
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
|
||||||
|
```
|
||||||
|
|
||||||
|
This creates a struct column called "document" that has two subfields
|
||||||
|
called "content" and "source":
|
||||||
|
|
||||||
|
```
|
||||||
|
In [28]: tbl.schema
|
||||||
|
Out[28]:
|
||||||
|
id: string not null
|
||||||
|
vector: fixed_size_list<item: float>[1536] not null
|
||||||
|
child 0, item: float
|
||||||
|
document: struct<content: string not null, source: string not null> not null
|
||||||
|
child 0, content: string not null
|
||||||
|
child 1, source: string not null
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Validators
|
||||||
|
|
||||||
|
Note that neither pydantic nor pyarrow automatically validates that input data
|
||||||
|
is of the *correct* timezone, but this is easy to add as a custom field validator:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from datetime import datetime
|
||||||
|
from zoneinfo import ZoneInfo
|
||||||
|
|
||||||
|
from lancedb.pydantic import LanceModel
|
||||||
|
from pydantic import Field, field_validator, ValidationError, ValidationInfo
|
||||||
|
|
||||||
|
tzname = "America/New_York"
|
||||||
|
tz = ZoneInfo(tzname)
|
||||||
|
|
||||||
|
class TestModel(LanceModel):
|
||||||
|
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
|
||||||
|
|
||||||
|
@field_validator('dt_with_tz')
|
||||||
|
@classmethod
|
||||||
|
def tz_must_match(cls, dt: datetime) -> datetime:
|
||||||
|
assert dt.tzinfo == tz
|
||||||
|
return dt
|
||||||
|
|
||||||
|
ok = TestModel(dt_with_tz=datetime.now(tz))
|
||||||
|
|
||||||
|
try:
|
||||||
|
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
|
||||||
|
assert 0 == 1, "this should raise ValidationError"
|
||||||
|
except ValidationError:
|
||||||
|
print("A ValidationError was raised.")
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
When you run this code it should print "A ValidationError was raised."
|
||||||
|
|
||||||
|
#### Pydantic custom types
|
||||||
|
|
||||||
|
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
|
||||||
|
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
|
||||||
|
|
||||||
### Using Iterators / Writing Large Datasets
|
### Using Iterators / Writing Large Datasets
|
||||||
|
|
||||||
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
|
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
|
||||||
@@ -151,7 +231,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
|
|||||||
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
|
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
|
||||||
|
|
||||||
## Creating Empty Table
|
## Creating Empty Table
|
||||||
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
|
You can create empty tables in python. Initialize it with schema and later ingest data into it.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
@@ -201,8 +281,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
|
|||||||
```javascript
|
```javascript
|
||||||
data
|
data
|
||||||
const tb = await db.createTable("my_table",
|
const tb = await db.createTable("my_table",
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! info "Note"
|
!!! info "Note"
|
||||||
@@ -361,19 +441,28 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
|
|||||||
await tbl.countRows() // Returns 1
|
await tbl.countRows() // Returns 1
|
||||||
```
|
```
|
||||||
|
|
||||||
### Updating a Table [Experimental]
|
## Updating a Table
|
||||||
EXPERIMENTAL: Update rows in the table (not threadsafe).
|
|
||||||
|
|
||||||
This can be used to update zero to all rows depending on how many rows match the where clause.
|
This can be used to update zero to all rows depending on how many rows match the where clause. The update queries follow the form of a SQL UPDATE statement. The `where` parameter is a SQL filter that matches on the metadata columns. The `values` or `values_sql` parameters are used to provide the new values for the columns.
|
||||||
|
|
||||||
| Parameter | Type | Description |
|
| Parameter | Type | Description |
|
||||||
|---|---|---|
|
|---|---|---|
|
||||||
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
|
||||||
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
|
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
|
||||||
|
| `values_sql` | `dict` | The values to update. The keys are the column names and the values are the SQL expressions to set. For example, `{'x': 'x + 1'}` will increment the value of the `x` column by 1. |
|
||||||
|
|
||||||
|
!!! info "SQL syntax"
|
||||||
|
|
||||||
|
See [SQL filters](sql.md) for more information on the supported SQL syntax.
|
||||||
|
|
||||||
|
!!! warning "Warning"
|
||||||
|
|
||||||
|
Updating nested columns is not yet supported.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
API Reference: [lancedb.table.Table.update][]
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@@ -403,6 +492,55 @@ This can be used to update zero to all rows depending on how many rows match the
|
|||||||
2 2 [10.0, 10.0]
|
2 2 [10.0, 10.0]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
API Reference: [vectordb.Table.update](../../javascript/interfaces/Table/#update)
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const lancedb = require("vectordb");
|
||||||
|
|
||||||
|
const db = await lancedb.connect("./.lancedb");
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{x: 1, vector: [1, 2]},
|
||||||
|
{x: 2, vector: [3, 4]},
|
||||||
|
{x: 3, vector: [5, 6]},
|
||||||
|
];
|
||||||
|
const tbl = await db.createTable("my_table", data)
|
||||||
|
|
||||||
|
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
|
||||||
|
```
|
||||||
|
|
||||||
|
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Update the table where x = 2
|
||||||
|
table.update(valuesSql={"x": "x + 1"})
|
||||||
|
|
||||||
|
print(table.to_pandas())
|
||||||
|
```
|
||||||
|
|
||||||
|
Output
|
||||||
|
```shell
|
||||||
|
x vector
|
||||||
|
0 2 [1.0, 2.0]
|
||||||
|
1 4 [5.0, 6.0]
|
||||||
|
2 3 [10.0, 10.0]
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
await tbl.update({ valuesSql: { x: "x + 1" } })
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info "Note"
|
||||||
|
|
||||||
|
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
|
||||||
|
|
||||||
|
|
||||||
## What's Next?
|
## What's Next?
|
||||||
|
|
||||||
Learn how to Query your tables and create indices
|
Learn how to Query your tables and create indices
|
||||||
@@ -11,8 +11,13 @@ npm install vectordb
|
|||||||
```
|
```
|
||||||
|
|
||||||
This will download the appropriate native library for your platform. We currently
|
This will download the appropriate native library for your platform. We currently
|
||||||
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
|
support:
|
||||||
yet support Windows or musl-based Linux (such as Alpine Linux).
|
|
||||||
|
* Linux (x86_64 and aarch64)
|
||||||
|
* MacOS (Intel and ARM/M1/M2)
|
||||||
|
* Windows (x86_64 only)
|
||||||
|
|
||||||
|
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
|
|||||||
41
docs/src/javascript/classes/DefaultWriteOptions.md
Normal file
41
docs/src/javascript/classes/DefaultWriteOptions.md
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / DefaultWriteOptions
|
||||||
|
|
||||||
|
# Class: DefaultWriteOptions
|
||||||
|
|
||||||
|
Write options when creating a Table.
|
||||||
|
|
||||||
|
## Implements
|
||||||
|
|
||||||
|
- [`WriteOptions`](../interfaces/WriteOptions.md)
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](DefaultWriteOptions.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [writeMode](DefaultWriteOptions.md#writemode)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new DefaultWriteOptions**()
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### writeMode
|
||||||
|
|
||||||
|
• **writeMode**: [`WriteMode`](../enums/WriteMode.md) = `WriteMode.Create`
|
||||||
|
|
||||||
|
A [WriteMode](../enums/WriteMode.md) to use on this operation
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[WriteOptions](../interfaces/WriteOptions.md).[writeMode](../interfaces/WriteOptions.md#writemode)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:778](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L778)
|
||||||
@@ -26,7 +26,7 @@ A connection to a LanceDB database.
|
|||||||
### Methods
|
### Methods
|
||||||
|
|
||||||
- [createTable](LocalConnection.md#createtable)
|
- [createTable](LocalConnection.md#createtable)
|
||||||
- [createTableArrow](LocalConnection.md#createtablearrow)
|
- [createTableImpl](LocalConnection.md#createtableimpl)
|
||||||
- [dropTable](LocalConnection.md#droptable)
|
- [dropTable](LocalConnection.md#droptable)
|
||||||
- [openTable](LocalConnection.md#opentable)
|
- [openTable](LocalConnection.md#opentable)
|
||||||
- [tableNames](LocalConnection.md#tablenames)
|
- [tableNames](LocalConnection.md#tablenames)
|
||||||
@@ -46,7 +46,7 @@ A connection to a LanceDB database.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184)
|
[index.ts:355](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L355)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
@@ -56,17 +56,25 @@ A connection to a LanceDB database.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182)
|
[index.ts:353](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L353)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### \_options
|
### \_options
|
||||||
|
|
||||||
• `Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
• `Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181)
|
[index.ts:352](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L352)
|
||||||
|
|
||||||
## Accessors
|
## Accessors
|
||||||
|
|
||||||
@@ -84,27 +92,34 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189)
|
[index.ts:360](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L360)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### createTable
|
### createTable
|
||||||
|
|
||||||
▸ **createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
▸ **createTable**\<`T`\>(`name`, `data?`, `optsOrEmbedding?`, `opt?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
Creates a new Table and initialize it with new data.
|
Creates a new Table, optionally initializing it with new data.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ |
|
||||||
| `name` | `string` | The name of the table. |
|
| `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
| `data?` | `Record`\<`string`, `unknown`\>[] |
|
||||||
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||||
|
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -112,120 +127,44 @@ Creates a new Table and initialize it with new data.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230)
|
[index.ts:395](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L395)
|
||||||
|
|
||||||
▸ **createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `name` | `string` |
|
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] |
|
|
||||||
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
|
||||||
|
|
||||||
#### Implementation of
|
|
||||||
|
|
||||||
Connection.createTable
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
|
|
||||||
|
|
||||||
▸ **createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
|
||||||
|
|
||||||
Creates a new Table and initialize it with new data.
|
|
||||||
|
|
||||||
#### Type parameters
|
|
||||||
|
|
||||||
| Name |
|
|
||||||
| :------ |
|
|
||||||
| `T` |
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table. |
|
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
|
||||||
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
|
||||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
|
||||||
|
|
||||||
#### Implementation of
|
|
||||||
|
|
||||||
Connection.createTable
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
|
|
||||||
|
|
||||||
▸ **createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
|
||||||
|
|
||||||
#### Type parameters
|
|
||||||
|
|
||||||
| Name |
|
|
||||||
| :------ |
|
|
||||||
| `T` |
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `name` | `string` |
|
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] |
|
|
||||||
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
|
|
||||||
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
|
||||||
|
|
||||||
#### Implementation of
|
|
||||||
|
|
||||||
Connection.createTable
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
|
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### createTableArrow
|
### createTableImpl
|
||||||
|
|
||||||
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
▸ `Private` **createTableImpl**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
| Name | Type |
|
||||||
| :------ | :------ |
|
| :------ | :------ |
|
||||||
| `name` | `string` |
|
| `«destructured»` | `Object` |
|
||||||
| `table` | `Table`<`any`\> |
|
| › `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
|
||||||
|
| › `embeddingFunction?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||||
|
| › `name` | `string` |
|
||||||
|
| › `schema?` | `Schema`\<`any`\> |
|
||||||
|
| › `writeOptions?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
#### Implementation of
|
|
||||||
|
|
||||||
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
|
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266)
|
[index.ts:413](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L413)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### dropTable
|
### dropTable
|
||||||
|
|
||||||
▸ **dropTable**(`name`): `Promise`<`void`\>
|
▸ **dropTable**(`name`): `Promise`\<`void`\>
|
||||||
|
|
||||||
Drop an existing table.
|
Drop an existing table.
|
||||||
|
|
||||||
@@ -237,7 +176,7 @@ Drop an existing table.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`void`\>
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -245,13 +184,13 @@ Drop an existing table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276)
|
[index.ts:453](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L453)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### openTable
|
### openTable
|
||||||
|
|
||||||
▸ **openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
▸ **openTable**(`name`): `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
|
||||||
|
|
||||||
Open a table in the database.
|
Open a table in the database.
|
||||||
|
|
||||||
@@ -263,7 +202,7 @@ Open a table in the database.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
`Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -271,9 +210,9 @@ Open a table in the database.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205)
|
[index.ts:376](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L376)
|
||||||
|
|
||||||
▸ **openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
▸ **openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
Open a table in the database.
|
Open a table in the database.
|
||||||
|
|
||||||
@@ -288,11 +227,11 @@ Open a table in the database.
|
|||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `name` | `string` | The name of the table. |
|
| `name` | `string` | The name of the table. |
|
||||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use on this Table |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -300,9 +239,9 @@ Connection.openTable
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212)
|
[index.ts:384](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L384)
|
||||||
|
|
||||||
▸ **openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
▸ **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
#### Type parameters
|
#### Type parameters
|
||||||
|
|
||||||
@@ -315,11 +254,11 @@ Connection.openTable
|
|||||||
| Name | Type |
|
| Name | Type |
|
||||||
| :------ | :------ |
|
| :------ | :------ |
|
||||||
| `name` | `string` |
|
| `name` | `string` |
|
||||||
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
`Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -327,19 +266,19 @@ Connection.openTable
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213)
|
[index.ts:385](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L385)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### tableNames
|
### tableNames
|
||||||
|
|
||||||
▸ **tableNames**(): `Promise`<`string`[]\>
|
▸ **tableNames**(): `Promise`\<`string`[]\>
|
||||||
|
|
||||||
Get the names of all tables in the database.
|
Get the names of all tables in the database.
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`string`[]\>
|
`Promise`\<`string`[]\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -347,4 +286,4 @@ Get the names of all tables in the database.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196)
|
[index.ts:367](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L367)
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable
|
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable
|
||||||
|
|
||||||
# Class: LocalTable<T\>
|
# Class: LocalTable\<T\>
|
||||||
|
|
||||||
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||||
|
|
||||||
@@ -12,7 +12,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
|
|
||||||
## Implements
|
## Implements
|
||||||
|
|
||||||
- [`Table`](../interfaces/Table.md)<`T`\>
|
- [`Table`](../interfaces/Table.md)\<`T`\>
|
||||||
|
|
||||||
## Table of contents
|
## Table of contents
|
||||||
|
|
||||||
@@ -26,6 +26,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
- [\_name](LocalTable.md#_name)
|
- [\_name](LocalTable.md#_name)
|
||||||
- [\_options](LocalTable.md#_options)
|
- [\_options](LocalTable.md#_options)
|
||||||
- [\_tbl](LocalTable.md#_tbl)
|
- [\_tbl](LocalTable.md#_tbl)
|
||||||
|
- [where](LocalTable.md#where)
|
||||||
|
|
||||||
### Accessors
|
### Accessors
|
||||||
|
|
||||||
@@ -34,17 +35,23 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
### Methods
|
### Methods
|
||||||
|
|
||||||
- [add](LocalTable.md#add)
|
- [add](LocalTable.md#add)
|
||||||
|
- [cleanupOldVersions](LocalTable.md#cleanupoldversions)
|
||||||
|
- [compactFiles](LocalTable.md#compactfiles)
|
||||||
- [countRows](LocalTable.md#countrows)
|
- [countRows](LocalTable.md#countrows)
|
||||||
- [createIndex](LocalTable.md#createindex)
|
- [createIndex](LocalTable.md#createindex)
|
||||||
- [delete](LocalTable.md#delete)
|
- [delete](LocalTable.md#delete)
|
||||||
|
- [filter](LocalTable.md#filter)
|
||||||
|
- [indexStats](LocalTable.md#indexstats)
|
||||||
|
- [listIndices](LocalTable.md#listindices)
|
||||||
- [overwrite](LocalTable.md#overwrite)
|
- [overwrite](LocalTable.md#overwrite)
|
||||||
- [search](LocalTable.md#search)
|
- [search](LocalTable.md#search)
|
||||||
|
- [update](LocalTable.md#update)
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### constructor
|
||||||
|
|
||||||
• **new LocalTable**<`T`\>(`tbl`, `name`, `options`)
|
• **new LocalTable**\<`T`\>(`tbl`, `name`, `options`)
|
||||||
|
|
||||||
#### Type parameters
|
#### Type parameters
|
||||||
|
|
||||||
@@ -62,9 +69,9 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287)
|
[index.ts:464](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L464)
|
||||||
|
|
||||||
• **new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`)
|
• **new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
|
||||||
|
|
||||||
#### Type parameters
|
#### Type parameters
|
||||||
|
|
||||||
@@ -79,21 +86,21 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
| `tbl` | `any` | |
|
| `tbl` | `any` | |
|
||||||
| `name` | `string` | |
|
| `name` | `string` | |
|
||||||
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
|
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
|
||||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use when interacting with this table |
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294)
|
[index.ts:471](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L471)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### \_embeddings
|
### \_embeddings
|
||||||
|
|
||||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284)
|
[index.ts:461](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L461)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -103,27 +110,61 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283)
|
[index.ts:460](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L460)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### \_options
|
### \_options
|
||||||
|
|
||||||
• `Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
• `Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285)
|
[index.ts:462](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L462)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### \_tbl
|
### \_tbl
|
||||||
|
|
||||||
• `Private` `Readonly` **\_tbl**: `any`
|
• `Private` **\_tbl**: `any`
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282)
|
[index.ts:459](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L459)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### where
|
||||||
|
|
||||||
|
• **where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
Creates a filter query to find all rows matching the specified criteria
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:499](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L499)
|
||||||
|
|
||||||
## Accessors
|
## Accessors
|
||||||
|
|
||||||
@@ -141,13 +182,13 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302)
|
[index.ts:479](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L479)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### add
|
### add
|
||||||
|
|
||||||
▸ **add**(`data`): `Promise`<`number`\>
|
▸ **add**(`data`): `Promise`\<`number`\>
|
||||||
|
|
||||||
Insert records into this Table.
|
Insert records into this Table.
|
||||||
|
|
||||||
@@ -155,11 +196,11 @@ Insert records into this Table.
|
|||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`number`\>
|
`Promise`\<`number`\>
|
||||||
|
|
||||||
The number of rows added to the table
|
The number of rows added to the table
|
||||||
|
|
||||||
@@ -169,19 +210,69 @@ The number of rows added to the table
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320)
|
[index.ts:507](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L507)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### cleanupOldVersions
|
||||||
|
|
||||||
|
▸ **cleanupOldVersions**(`olderThan?`, `deleteUnverified?`): `Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
|
||||||
|
|
||||||
|
Clean up old versions of the table, freeing disk space.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `olderThan?` | `number` | The minimum age in minutes of the versions to delete. If not provided, defaults to two weeks. |
|
||||||
|
| `deleteUnverified?` | `boolean` | Because they may be part of an in-progress transaction, uncommitted files newer than 7 days old are not deleted by default. This means that failed transactions can leave around data that takes up disk space for up to 7 days. You can override this safety mechanism by setting this option to `true`, only if you promise there are no in progress writes while you run this operation. Failure to uphold this promise can lead to corrupted tables. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:596](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L596)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### compactFiles
|
||||||
|
|
||||||
|
▸ **compactFiles**(`options?`): `Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
|
||||||
|
|
||||||
|
Run the compaction process on the table.
|
||||||
|
|
||||||
|
This can be run after making several small appends to optimize the table
|
||||||
|
for faster reads.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `options?` | [`CompactionOptions`](../interfaces/CompactionOptions.md) | Advanced options configuring compaction. In most cases, you can omit this arguments, as the default options are sensible for most tables. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
|
||||||
|
|
||||||
|
Metrics about the compaction operation.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:615](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L615)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### countRows
|
### countRows
|
||||||
|
|
||||||
▸ **countRows**(): `Promise`<`number`\>
|
▸ **countRows**(): `Promise`\<`number`\>
|
||||||
|
|
||||||
Returns the number of rows in this table.
|
Returns the number of rows in this table.
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`number`\>
|
`Promise`\<`number`\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -189,20 +280,16 @@ Returns the number of rows in this table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362)
|
[index.ts:543](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L543)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### createIndex
|
### createIndex
|
||||||
|
|
||||||
▸ **createIndex**(`indexParams`): `Promise`<`any`\>
|
▸ **createIndex**(`indexParams`): `Promise`\<`any`\>
|
||||||
|
|
||||||
Create an ANN index on this Table vector index.
|
Create an ANN index on this Table vector index.
|
||||||
|
|
||||||
**`See`**
|
|
||||||
|
|
||||||
VectorIndexParams.
|
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
@@ -211,7 +298,11 @@ VectorIndexParams.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`any`\>
|
`Promise`\<`any`\>
|
||||||
|
|
||||||
|
**`See`**
|
||||||
|
|
||||||
|
VectorIndexParams.
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -219,13 +310,13 @@ VectorIndexParams.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355)
|
[index.ts:536](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L536)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### delete
|
### delete
|
||||||
|
|
||||||
▸ **delete**(`filter`): `Promise`<`void`\>
|
▸ **delete**(`filter`): `Promise`\<`void`\>
|
||||||
|
|
||||||
Delete rows from this table.
|
Delete rows from this table.
|
||||||
|
|
||||||
@@ -237,7 +328,7 @@ Delete rows from this table.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`void`\>
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -245,13 +336,81 @@ Delete rows from this table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371)
|
[index.ts:552](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L552)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### filter
|
||||||
|
|
||||||
|
▸ **filter**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
Creates a filter query to find all rows matching the specified criteria
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:495](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L495)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### indexStats
|
||||||
|
|
||||||
|
▸ **indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
|
||||||
|
|
||||||
|
Get statistics about an index.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `indexUuid` | `string` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[indexStats](../interfaces/Table.md#indexstats)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:628](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L628)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### listIndices
|
||||||
|
|
||||||
|
▸ **listIndices**(): `Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
|
||||||
|
|
||||||
|
List the indicies on this table.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[listIndices](../interfaces/Table.md#listindices)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:624](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L624)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### overwrite
|
### overwrite
|
||||||
|
|
||||||
▸ **overwrite**(`data`): `Promise`<`number`\>
|
▸ **overwrite**(`data`): `Promise`\<`number`\>
|
||||||
|
|
||||||
Insert records into this Table, replacing its contents.
|
Insert records into this Table, replacing its contents.
|
||||||
|
|
||||||
@@ -259,11 +418,11 @@ Insert records into this Table, replacing its contents.
|
|||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`number`\>
|
`Promise`\<`number`\>
|
||||||
|
|
||||||
The number of rows added to the table
|
The number of rows added to the table
|
||||||
|
|
||||||
@@ -273,13 +432,13 @@ The number of rows added to the table
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338)
|
[index.ts:522](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L522)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### search
|
### search
|
||||||
|
|
||||||
▸ **search**(`query`): [`Query`](Query.md)<`T`\>
|
▸ **search**(`query`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
Creates a search query to find the nearest neighbors of the given search term
|
Creates a search query to find the nearest neighbors of the given search term
|
||||||
|
|
||||||
@@ -291,7 +450,7 @@ Creates a search query to find the nearest neighbors of the given search term
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -299,4 +458,30 @@ Creates a search query to find the nearest neighbors of the given search term
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310)
|
[index.ts:487](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L487)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### update
|
||||||
|
|
||||||
|
▸ **update**(`args`): `Promise`\<`void`\>
|
||||||
|
|
||||||
|
Update rows in this table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `args` | [`UpdateArgs`](../interfaces/UpdateArgs.md) \| [`UpdateSqlArgs`](../interfaces/UpdateSqlArgs.md) | see [UpdateArgs](../interfaces/UpdateArgs.md) and [UpdateSqlArgs](../interfaces/UpdateSqlArgs.md) for more details |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[update](../interfaces/Table.md#update)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:563](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L563)
|
||||||
|
|||||||
@@ -6,7 +6,7 @@ An embedding function that automatically creates vector representation for a giv
|
|||||||
|
|
||||||
## Implements
|
## Implements
|
||||||
|
|
||||||
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
|
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`string`\>
|
||||||
|
|
||||||
## Table of contents
|
## Table of contents
|
||||||
|
|
||||||
@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21)
|
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L21)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19)
|
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L19)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -60,7 +60,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18)
|
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L18)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -76,13 +76,13 @@ The name of the column that will be used as input for the Embedding Function.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50)
|
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L50)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### embed
|
### embed
|
||||||
|
|
||||||
▸ **embed**(`data`): `Promise`<`number`[][]\>
|
▸ **embed**(`data`): `Promise`\<`number`[][]\>
|
||||||
|
|
||||||
Creates a vector representation for the given values.
|
Creates a vector representation for the given values.
|
||||||
|
|
||||||
@@ -94,7 +94,7 @@ Creates a vector representation for the given values.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`number`[][]\>
|
`Promise`\<`number`[][]\>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38)
|
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L38)
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[vectordb](../README.md) / [Exports](../modules.md) / Query
|
[vectordb](../README.md) / [Exports](../modules.md) / Query
|
||||||
|
|
||||||
# Class: Query<T\>
|
# Class: Query\<T\>
|
||||||
|
|
||||||
A builder for nearest neighbor queries for LanceDB.
|
A builder for nearest neighbor queries for LanceDB.
|
||||||
|
|
||||||
@@ -23,6 +23,7 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
- [\_limit](Query.md#_limit)
|
- [\_limit](Query.md#_limit)
|
||||||
- [\_metricType](Query.md#_metrictype)
|
- [\_metricType](Query.md#_metrictype)
|
||||||
- [\_nprobes](Query.md#_nprobes)
|
- [\_nprobes](Query.md#_nprobes)
|
||||||
|
- [\_prefilter](Query.md#_prefilter)
|
||||||
- [\_query](Query.md#_query)
|
- [\_query](Query.md#_query)
|
||||||
- [\_queryVector](Query.md#_queryvector)
|
- [\_queryVector](Query.md#_queryvector)
|
||||||
- [\_refineFactor](Query.md#_refinefactor)
|
- [\_refineFactor](Query.md#_refinefactor)
|
||||||
@@ -34,9 +35,11 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
|
|
||||||
- [execute](Query.md#execute)
|
- [execute](Query.md#execute)
|
||||||
- [filter](Query.md#filter)
|
- [filter](Query.md#filter)
|
||||||
|
- [isElectron](Query.md#iselectron)
|
||||||
- [limit](Query.md#limit)
|
- [limit](Query.md#limit)
|
||||||
- [metricType](Query.md#metrictype)
|
- [metricType](Query.md#metrictype)
|
||||||
- [nprobes](Query.md#nprobes)
|
- [nprobes](Query.md#nprobes)
|
||||||
|
- [prefilter](Query.md#prefilter)
|
||||||
- [refineFactor](Query.md#refinefactor)
|
- [refineFactor](Query.md#refinefactor)
|
||||||
- [select](Query.md#select)
|
- [select](Query.md#select)
|
||||||
|
|
||||||
@@ -44,7 +47,7 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
|
|
||||||
### constructor
|
### constructor
|
||||||
|
|
||||||
• **new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
|
• **new Query**\<`T`\>(`query?`, `tbl?`, `embeddings?`)
|
||||||
|
|
||||||
#### Type parameters
|
#### Type parameters
|
||||||
|
|
||||||
@@ -56,23 +59,23 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
|
|
||||||
| Name | Type |
|
| Name | Type |
|
||||||
| :------ | :------ |
|
| :------ | :------ |
|
||||||
| `tbl` | `any` |
|
| `query?` | `T` |
|
||||||
| `query` | `T` |
|
| `tbl?` | `any` |
|
||||||
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448)
|
[query.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L38)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### \_embeddings
|
### \_embeddings
|
||||||
|
|
||||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
• `Protected` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446)
|
[query.ts:36](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L36)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -82,17 +85,17 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444)
|
[query.ts:33](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L33)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### \_limit
|
### \_limit
|
||||||
|
|
||||||
• `Private` **\_limit**: `number`
|
• `Private` `Optional` **\_limit**: `number`
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440)
|
[query.ts:29](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L29)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -102,7 +105,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445)
|
[query.ts:34](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L34)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -112,17 +115,27 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442)
|
[query.ts:31](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L31)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_prefilter
|
||||||
|
|
||||||
|
• `Private` **\_prefilter**: `boolean`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[query.ts:35](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L35)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### \_query
|
### \_query
|
||||||
|
|
||||||
• `Private` `Readonly` **\_query**: `T`
|
• `Private` `Optional` `Readonly` **\_query**: `T`
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438)
|
[query.ts:26](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L26)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -132,7 +145,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439)
|
[query.ts:28](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L28)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -142,7 +155,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441)
|
[query.ts:30](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L30)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -152,27 +165,27 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443)
|
[query.ts:32](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L32)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### \_tbl
|
### \_tbl
|
||||||
|
|
||||||
• `Private` `Readonly` **\_tbl**: `any`
|
• `Private` `Optional` `Readonly` **\_tbl**: `any`
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437)
|
[query.ts:27](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L27)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### where
|
### where
|
||||||
|
|
||||||
• **where**: (`value`: `string`) => [`Query`](Query.md)<`T`\>
|
• **where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Type declaration
|
#### Type declaration
|
||||||
|
|
||||||
▸ (`value`): [`Query`](Query.md)<`T`\>
|
▸ (`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
A filter statement to be applied to this query.
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
@@ -184,17 +197,17 @@ A filter statement to be applied to this query.
|
|||||||
|
|
||||||
##### Returns
|
##### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496)
|
[query.ts:87](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L87)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### execute
|
### execute
|
||||||
|
|
||||||
▸ **execute**<`T`\>(): `Promise`<`T`[]\>
|
▸ **execute**\<`T`\>(): `Promise`\<`T`[]\>
|
||||||
|
|
||||||
Execute the query and return the results as an Array of Objects
|
Execute the query and return the results as an Array of Objects
|
||||||
|
|
||||||
@@ -202,21 +215,21 @@ Execute the query and return the results as an Array of Objects
|
|||||||
|
|
||||||
| Name | Type |
|
| Name | Type |
|
||||||
| :------ | :------ |
|
| :------ | :------ |
|
||||||
| `T` | `Record`<`string`, `unknown`\> |
|
| `T` | `Record`\<`string`, `unknown`\> |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`T`[]\>
|
`Promise`\<`T`[]\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519)
|
[query.ts:115](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L115)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### filter
|
### filter
|
||||||
|
|
||||||
▸ **filter**(`value`): [`Query`](Query.md)<`T`\>
|
▸ **filter**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
A filter statement to be applied to this query.
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
@@ -228,17 +241,31 @@ A filter statement to be applied to this query.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491)
|
[query.ts:82](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L82)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### isElectron
|
||||||
|
|
||||||
|
▸ `Private` **isElectron**(): `boolean`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`boolean`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[query.ts:142](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L142)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### limit
|
### limit
|
||||||
|
|
||||||
▸ **limit**(`value`): [`Query`](Query.md)<`T`\>
|
▸ **limit**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
Sets the number of results that will be returned
|
Sets the number of results that will be returned
|
||||||
|
|
||||||
@@ -250,24 +277,20 @@ Sets the number of results that will be returned
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464)
|
[query.ts:55](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L55)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### metricType
|
### metricType
|
||||||
|
|
||||||
▸ **metricType**(`value`): [`Query`](Query.md)<`T`\>
|
▸ **metricType**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
The MetricType used for this Query.
|
The MetricType used for this Query.
|
||||||
|
|
||||||
**`See`**
|
|
||||||
|
|
||||||
MetricType for the different options
|
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
@@ -276,17 +299,21 @@ MetricType for the different options
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
**`See`**
|
||||||
|
|
||||||
|
MetricType for the different options
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511)
|
[query.ts:102](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L102)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### nprobes
|
### nprobes
|
||||||
|
|
||||||
▸ **nprobes**(`value`): [`Query`](Query.md)<`T`\>
|
▸ **nprobes**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
The number of probes used. A higher number makes search more accurate but also slower.
|
The number of probes used. A higher number makes search more accurate but also slower.
|
||||||
|
|
||||||
@@ -298,17 +325,37 @@ The number of probes used. A higher number makes search more accurate but also s
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482)
|
[query.ts:73](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L73)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### prefilter
|
||||||
|
|
||||||
|
▸ **prefilter**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `value` | `boolean` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[query.ts:107](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L107)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### refineFactor
|
### refineFactor
|
||||||
|
|
||||||
▸ **refineFactor**(`value`): [`Query`](Query.md)<`T`\>
|
▸ **refineFactor**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
Refine the results by reading extra elements and re-ranking them in memory.
|
Refine the results by reading extra elements and re-ranking them in memory.
|
||||||
|
|
||||||
@@ -320,17 +367,17 @@ Refine the results by reading extra elements and re-ranking them in memory.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473)
|
[query.ts:64](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L64)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### select
|
### select
|
||||||
|
|
||||||
▸ **select**(`value`): [`Query`](Query.md)<`T`\>
|
▸ **select**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
Return only the specified columns.
|
Return only the specified columns.
|
||||||
|
|
||||||
@@ -342,8 +389,8 @@ Return only the specified columns.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502)
|
[query.ts:93](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L93)
|
||||||
|
|||||||
226
docs/src/javascript/classes/RemoteConnection.md
Normal file
226
docs/src/javascript/classes/RemoteConnection.md
Normal file
@@ -0,0 +1,226 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../saas-modules.md) / RemoteConnection
|
||||||
|
|
||||||
|
# Class: RemoteConnection
|
||||||
|
|
||||||
|
A connection to a remote LanceDB database. The class RemoteConnection implements interface Connection
|
||||||
|
|
||||||
|
## Implements
|
||||||
|
|
||||||
|
- [`Connection`](../interfaces/Connection.md)
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](RemoteConnection.md#constructor)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [createTable](RemoteConnection.md#createtable)
|
||||||
|
- [tableNames](RemoteConnection.md#tablenames)
|
||||||
|
- [openTable](RemoteConnection.md#opentable)
|
||||||
|
- [dropTable](RemoteConnection.md#droptable)
|
||||||
|
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new RemoteConnection**(`client`, `dbName`)
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `client` | `HttpLancedbClient` |
|
||||||
|
| `dbName` | `string` |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:37](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L37)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### createTable
|
||||||
|
|
||||||
|
▸ **createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||||
|
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[createTable](../interfaces/Connection.md#createtable)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:75](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L75)
|
||||||
|
|
||||||
|
▸ **createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] |
|
||||||
|
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
Connection.createTable
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### dropTable
|
||||||
|
|
||||||
|
▸ **dropTable**(`name`): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Drop an existing table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table to drop. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[dropTable](../interfaces/Connection.md#droptable)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:131](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L131)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### openTable
|
||||||
|
|
||||||
|
▸ **openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
Open a table in the database.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[openTable](../interfaces/Connection.md#opentable)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:65](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L65)
|
||||||
|
|
||||||
|
▸ **openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
Open a table in the database.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
Connection.openTable
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:66](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L66)
|
||||||
|
|
||||||
|
▸ **openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
Connection.openTable
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:67](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L67)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### tableNames
|
||||||
|
|
||||||
|
▸ **tableNames**(): `Promise`<`string`[]\>
|
||||||
|
|
||||||
|
Get the names of all tables in the database, with pagination.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `pageToken` | `string` |
|
||||||
|
| `limit` | `int` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`string`[]\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[tableNames](../interfaces/Connection.md#tablenames)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:60](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L60)
|
||||||
76
docs/src/javascript/classes/RemoteQuery.md
Normal file
76
docs/src/javascript/classes/RemoteQuery.md
Normal file
@@ -0,0 +1,76 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../saas-modules.md) / RemoteQuery
|
||||||
|
|
||||||
|
# Class: Query<T\>
|
||||||
|
|
||||||
|
A builder for nearest neighbor queries for LanceDB.
|
||||||
|
|
||||||
|
## Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](RemoteQuery.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [\_embeddings](RemoteQuery.md#_embeddings)
|
||||||
|
- [\_query](RemoteQuery.md#_query)
|
||||||
|
- [\_name](RemoteQuery.md#_name)
|
||||||
|
- [\_client](RemoteQuery.md#_client)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [execute](RemoteQuery.md#execute)
|
||||||
|
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new Query**<`T`\>(`name`, `client`, `query`, `embeddings?`)
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `client` | `HttpLancedbClient` |
|
||||||
|
| `query` | `T` |
|
||||||
|
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:137](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L137)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### execute
|
||||||
|
|
||||||
|
▸ **execute**<`T`\>(): `Promise`<`T`[]\>
|
||||||
|
|
||||||
|
Execute the query and return the results as an Array of Objects
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `Record`<`string`, `unknown`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`T`[]\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:143](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L143)
|
||||||
355
docs/src/javascript/classes/RemoteTable.md
Normal file
355
docs/src/javascript/classes/RemoteTable.md
Normal file
@@ -0,0 +1,355 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../saas-modules.md) / RemoteTable
|
||||||
|
|
||||||
|
# Class: RemoteTable<T\>
|
||||||
|
|
||||||
|
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||||
|
|
||||||
|
## Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
## Implements
|
||||||
|
|
||||||
|
- [`Table`](../interfaces/Table.md)<`T`\>
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](RemoteTable.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [\_name](RemoteTable.md#_name)
|
||||||
|
- [\_client](RemoteTable.md#_client)
|
||||||
|
- [\_embeddings](RemoteTable.md#_embeddings)
|
||||||
|
|
||||||
|
### Accessors
|
||||||
|
|
||||||
|
- [name](RemoteTable.md#name)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [add](RemoteTable.md#add)
|
||||||
|
- [countRows](RemoteTable.md#countrows)
|
||||||
|
- [createIndex](RemoteTable.md#createindex)
|
||||||
|
- [delete](RemoteTable.md#delete)
|
||||||
|
- [listIndices](classes/RemoteTable.md#listindices)
|
||||||
|
- [indexStats](classes/RemoteTable.md#liststats)
|
||||||
|
- [overwrite](RemoteTable.md#overwrite)
|
||||||
|
- [search](RemoteTable.md#search)
|
||||||
|
- [schema](classes/RemoteTable.md#schema)
|
||||||
|
- [update](RemoteTable.md#update)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new RemoteTable**<`T`\>(`client`, `name`)
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `client` | `HttpLancedbClient` |
|
||||||
|
| `name` | `string` |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:186](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L186)
|
||||||
|
|
||||||
|
• **new RemoteTable**<`T`\>(`client`, `name`, `embeddings`)
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `client` | `HttpLancedbClient` | |
|
||||||
|
| `name` | `string` | |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:187](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L187)
|
||||||
|
|
||||||
|
## Accessors
|
||||||
|
|
||||||
|
### name
|
||||||
|
|
||||||
|
• `get` **name**(): `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`string`
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[name](../interfaces/Table.md#name)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:194](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L194)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### add
|
||||||
|
|
||||||
|
▸ **add**(`data`): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Insert records into this Table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
The number of rows added to the table
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[add](../interfaces/Table.md#add)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:293](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L293)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### countRows
|
||||||
|
|
||||||
|
▸ **countRows**(): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Returns the number of rows in this table.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[countRows](../interfaces/Table.md#countrows)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:290](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L290)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### createIndex
|
||||||
|
|
||||||
|
▸ **createIndex**(`metric_type`, `column`, `index_cache_size`): `Promise`<`any`\>
|
||||||
|
|
||||||
|
Create an ANN index on this Table vector index.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `metric_type` | `string` | distance metric type, L2 or cosine or dot |
|
||||||
|
| `column` | `string` | the name of the column to be indexed |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`any`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[createIndex](../interfaces/Table.md#createindex)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:249](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L249)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### delete
|
||||||
|
|
||||||
|
▸ **delete**(`filter`): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Delete rows from this table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[delete](../interfaces/Table.md#delete)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:295](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L295)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### overwrite
|
||||||
|
|
||||||
|
▸ **overwrite**(`data`): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Insert records into this Table, replacing its contents.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
The number of rows added to the table
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[overwrite](../interfaces/Table.md#overwrite)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:231](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L231)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### search
|
||||||
|
|
||||||
|
▸ **search**(`query`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
Creates a search query to find the nearest neighbors of the given search term
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `query` | `T` | The query search term |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#search)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:209](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L209)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### update
|
||||||
|
|
||||||
|
▸ **update**(`args`): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Update zero to all rows depending on how many rows match the where clause.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `args` | `UpdateArgs` or `UpdateSqlArgs` | The query search arguments |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`any`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#update)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:299](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L299)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### schema
|
||||||
|
|
||||||
|
▸ **schema**(): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Get the schema of the table
|
||||||
|
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`any`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#schema)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:198](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L198)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### listIndices
|
||||||
|
|
||||||
|
▸ **listIndices**(): `Promise`<`void`\>
|
||||||
|
|
||||||
|
List the indices of the table
|
||||||
|
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`any`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#listIndices)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:319](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L319)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### indexStats
|
||||||
|
|
||||||
|
▸ **indexStats**(`indexUuid`): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Get the indexed/unindexed of rows from the table
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `indexUuid` | `string` | the uuid of the index |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`numIndexedRows`\>
|
||||||
|
`Promise`<`numUnindexedRows`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#indexStats)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[remote/index.ts:328](https://github.com/lancedb/lancedb/blob/main/node/src/remote/index.ts#L328)
|
||||||
@@ -22,7 +22,7 @@ Cosine distance
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567)
|
[index.ts:798](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L798)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -34,7 +34,7 @@ Dot product
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572)
|
[index.ts:803](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L803)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -46,4 +46,4 @@ Euclidean distance
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562)
|
[index.ts:793](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L793)
|
||||||
|
|||||||
@@ -22,7 +22,7 @@ Append new data to the table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552)
|
[index.ts:766](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L766)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548)
|
[index.ts:762](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L762)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550)
|
[index.ts:764](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L764)
|
||||||
|
|||||||
@@ -18,7 +18,7 @@
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31)
|
[index.ts:34](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L34)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -28,7 +28,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33)
|
[index.ts:36](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L36)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -38,4 +38,4 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35)
|
[index.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L38)
|
||||||
|
|||||||
34
docs/src/javascript/interfaces/CleanupStats.md
Normal file
34
docs/src/javascript/interfaces/CleanupStats.md
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / CleanupStats
|
||||||
|
|
||||||
|
# Interface: CleanupStats
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [bytesRemoved](CleanupStats.md#bytesremoved)
|
||||||
|
- [oldVersions](CleanupStats.md#oldversions)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### bytesRemoved
|
||||||
|
|
||||||
|
• **bytesRemoved**: `number`
|
||||||
|
|
||||||
|
The number of bytes removed from disk.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:637](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L637)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### oldVersions
|
||||||
|
|
||||||
|
• **oldVersions**: `number`
|
||||||
|
|
||||||
|
The number of old table versions removed.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:641](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L641)
|
||||||
62
docs/src/javascript/interfaces/CompactionMetrics.md
Normal file
62
docs/src/javascript/interfaces/CompactionMetrics.md
Normal file
@@ -0,0 +1,62 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / CompactionMetrics
|
||||||
|
|
||||||
|
# Interface: CompactionMetrics
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [filesAdded](CompactionMetrics.md#filesadded)
|
||||||
|
- [filesRemoved](CompactionMetrics.md#filesremoved)
|
||||||
|
- [fragmentsAdded](CompactionMetrics.md#fragmentsadded)
|
||||||
|
- [fragmentsRemoved](CompactionMetrics.md#fragmentsremoved)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### filesAdded
|
||||||
|
|
||||||
|
• **filesAdded**: `number`
|
||||||
|
|
||||||
|
The number of files added. This is typically equal to the number of
|
||||||
|
fragments added.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:692](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L692)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### filesRemoved
|
||||||
|
|
||||||
|
• **filesRemoved**: `number`
|
||||||
|
|
||||||
|
The number of files that were removed. Each fragment may have more than one
|
||||||
|
file.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:687](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L687)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### fragmentsAdded
|
||||||
|
|
||||||
|
• **fragmentsAdded**: `number`
|
||||||
|
|
||||||
|
The number of new fragments that were created.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:682](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L682)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### fragmentsRemoved
|
||||||
|
|
||||||
|
• **fragmentsRemoved**: `number`
|
||||||
|
|
||||||
|
The number of fragments that were removed.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:678](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L678)
|
||||||
80
docs/src/javascript/interfaces/CompactionOptions.md
Normal file
80
docs/src/javascript/interfaces/CompactionOptions.md
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / CompactionOptions
|
||||||
|
|
||||||
|
# Interface: CompactionOptions
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [materializeDeletions](CompactionOptions.md#materializedeletions)
|
||||||
|
- [materializeDeletionsThreshold](CompactionOptions.md#materializedeletionsthreshold)
|
||||||
|
- [maxRowsPerGroup](CompactionOptions.md#maxrowspergroup)
|
||||||
|
- [numThreads](CompactionOptions.md#numthreads)
|
||||||
|
- [targetRowsPerFragment](CompactionOptions.md#targetrowsperfragment)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### materializeDeletions
|
||||||
|
|
||||||
|
• `Optional` **materializeDeletions**: `boolean`
|
||||||
|
|
||||||
|
If true, fragments that have rows that are deleted may be compacted to
|
||||||
|
remove the deleted rows. This can improve the performance of queries.
|
||||||
|
Default is true.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:660](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L660)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### materializeDeletionsThreshold
|
||||||
|
|
||||||
|
• `Optional` **materializeDeletionsThreshold**: `number`
|
||||||
|
|
||||||
|
A number between 0 and 1, representing the proportion of rows that must be
|
||||||
|
marked deleted before a fragment is a candidate for compaction to remove
|
||||||
|
the deleted rows. Default is 10%.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:666](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L666)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### maxRowsPerGroup
|
||||||
|
|
||||||
|
• `Optional` **maxRowsPerGroup**: `number`
|
||||||
|
|
||||||
|
The maximum number of rows per group. Defaults to 1024.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:654](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L654)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### numThreads
|
||||||
|
|
||||||
|
• `Optional` **numThreads**: `number`
|
||||||
|
|
||||||
|
The number of threads to use for compaction. If not provided, defaults to
|
||||||
|
the number of cores on the machine.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:671](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L671)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### targetRowsPerFragment
|
||||||
|
|
||||||
|
• `Optional` **targetRowsPerFragment**: `number`
|
||||||
|
|
||||||
|
The number of rows per fragment to target. Fragments that have fewer rows
|
||||||
|
will be compacted into adjacent fragments to produce larger fragments.
|
||||||
|
Defaults to 1024 * 1024.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:650](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L650)
|
||||||
@@ -19,7 +19,6 @@ Connection could be local against filesystem or remote against a server.
|
|||||||
### Methods
|
### Methods
|
||||||
|
|
||||||
- [createTable](Connection.md#createtable)
|
- [createTable](Connection.md#createtable)
|
||||||
- [createTableArrow](Connection.md#createtablearrow)
|
|
||||||
- [dropTable](Connection.md#droptable)
|
- [dropTable](Connection.md#droptable)
|
||||||
- [openTable](Connection.md#opentable)
|
- [openTable](Connection.md#opentable)
|
||||||
- [tableNames](Connection.md#tablenames)
|
- [tableNames](Connection.md#tablenames)
|
||||||
@@ -32,13 +31,76 @@ Connection could be local against filesystem or remote against a server.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70)
|
[index.ts:125](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L125)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### createTable
|
### createTable
|
||||||
|
|
||||||
▸ **createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
▸ **createTable**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||||
|
|
||||||
|
Creates a new Table, optionally initializing it with new data.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `«destructured»` | [`CreateTableOptions`](CreateTableOptions.md)\<`T`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:146](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L146)
|
||||||
|
|
||||||
|
▸ **createTable**(`name`, `data`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
|
||||||
|
|
||||||
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:154](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L154)
|
||||||
|
|
||||||
|
▸ **createTable**(`name`, `data`, `options`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
|
||||||
|
|
||||||
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||||
|
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:163](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L163)
|
||||||
|
|
||||||
|
▸ **createTable**\<`T`\>(`name`, `data`, `embeddings`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||||
|
|
||||||
Creates a new Table and initialize it with new data.
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
@@ -53,44 +115,49 @@ Creates a new Table and initialize it with new data.
|
|||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `name` | `string` | The name of the table. |
|
| `name` | `string` | The name of the table. |
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||||
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
|
||||||
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Table`](Table.md)<`T`\>\>
|
`Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90)
|
[index.ts:172](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L172)
|
||||||
|
|
||||||
___
|
▸ **createTable**\<`T`\>(`name`, `data`, `embeddings`, `options`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||||
|
|
||||||
### createTableArrow
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
| Name | Type | Description |
|
||||||
| :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `name` | `string` |
|
| `name` | `string` | The name of the table. |
|
||||||
| `table` | `Table`<`any`\> |
|
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
|
||||||
|
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
`Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92)
|
[index.ts:181](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L181)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### dropTable
|
### dropTable
|
||||||
|
|
||||||
▸ **dropTable**(`name`): `Promise`<`void`\>
|
▸ **dropTable**(`name`): `Promise`\<`void`\>
|
||||||
|
|
||||||
Drop an existing table.
|
Drop an existing table.
|
||||||
|
|
||||||
@@ -102,17 +169,17 @@ Drop an existing table.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`void`\>
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98)
|
[index.ts:187](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L187)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### openTable
|
### openTable
|
||||||
|
|
||||||
▸ **openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
▸ **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||||
|
|
||||||
Open a table in the database.
|
Open a table in the database.
|
||||||
|
|
||||||
@@ -127,26 +194,26 @@ Open a table in the database.
|
|||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `name` | `string` | The name of the table. |
|
| `name` | `string` | The name of the table. |
|
||||||
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
|
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Table`](Table.md)<`T`\>\>
|
`Promise`\<[`Table`](Table.md)\<`T`\>\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80)
|
[index.ts:135](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L135)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### tableNames
|
### tableNames
|
||||||
|
|
||||||
▸ **tableNames**(): `Promise`<`string`[]\>
|
▸ **tableNames**(): `Promise`\<`string`[]\>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<`string`[]\>
|
`Promise`\<`string`[]\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72)
|
[index.ts:127](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L127)
|
||||||
|
|||||||
@@ -6,18 +6,62 @@
|
|||||||
|
|
||||||
### Properties
|
### Properties
|
||||||
|
|
||||||
|
- [apiKey](ConnectionOptions.md#apikey)
|
||||||
- [awsCredentials](ConnectionOptions.md#awscredentials)
|
- [awsCredentials](ConnectionOptions.md#awscredentials)
|
||||||
|
- [awsRegion](ConnectionOptions.md#awsregion)
|
||||||
|
- [hostOverride](ConnectionOptions.md#hostoverride)
|
||||||
|
- [region](ConnectionOptions.md#region)
|
||||||
- [uri](ConnectionOptions.md#uri)
|
- [uri](ConnectionOptions.md#uri)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
|
### apiKey
|
||||||
|
|
||||||
|
• `Optional` **apiKey**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:49](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L49)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
### awsCredentials
|
### awsCredentials
|
||||||
|
|
||||||
• `Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
|
• `Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40)
|
[index.ts:44](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L44)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### awsRegion
|
||||||
|
|
||||||
|
• `Optional` **awsRegion**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:46](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L46)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### hostOverride
|
||||||
|
|
||||||
|
• `Optional` **hostOverride**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:54](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L54)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### region
|
||||||
|
|
||||||
|
• `Optional` **region**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:51](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L51)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -27,4 +71,4 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39)
|
[index.ts:42](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L42)
|
||||||
|
|||||||
69
docs/src/javascript/interfaces/CreateTableOptions.md
Normal file
69
docs/src/javascript/interfaces/CreateTableOptions.md
Normal file
@@ -0,0 +1,69 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / CreateTableOptions
|
||||||
|
|
||||||
|
# Interface: CreateTableOptions\<T\>
|
||||||
|
|
||||||
|
## Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [data](CreateTableOptions.md#data)
|
||||||
|
- [embeddingFunction](CreateTableOptions.md#embeddingfunction)
|
||||||
|
- [name](CreateTableOptions.md#name)
|
||||||
|
- [schema](CreateTableOptions.md#schema)
|
||||||
|
- [writeOptions](CreateTableOptions.md#writeoptions)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### data
|
||||||
|
|
||||||
|
• `Optional` **data**: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:79](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L79)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### embeddingFunction
|
||||||
|
|
||||||
|
• `Optional` **embeddingFunction**: [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:85](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L85)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### name
|
||||||
|
|
||||||
|
• **name**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:76](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L76)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### schema
|
||||||
|
|
||||||
|
• `Optional` **schema**: `Schema`\<`any`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:82](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L82)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### writeOptions
|
||||||
|
|
||||||
|
• `Optional` **writeOptions**: [`WriteOptions`](WriteOptions.md)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:88](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L88)
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
|
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
|
||||||
|
|
||||||
# Interface: EmbeddingFunction<T\>
|
# Interface: EmbeddingFunction\<T\>
|
||||||
|
|
||||||
An embedding function that automatically creates vector representation for a given column.
|
An embedding function that automatically creates vector representation for a given column.
|
||||||
|
|
||||||
@@ -25,11 +25,11 @@ An embedding function that automatically creates vector representation for a giv
|
|||||||
|
|
||||||
### embed
|
### embed
|
||||||
|
|
||||||
• **embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
|
• **embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
|
||||||
|
|
||||||
#### Type declaration
|
#### Type declaration
|
||||||
|
|
||||||
▸ (`data`): `Promise`<`number`[][]\>
|
▸ (`data`): `Promise`\<`number`[][]\>
|
||||||
|
|
||||||
Creates a vector representation for the given values.
|
Creates a vector representation for the given values.
|
||||||
|
|
||||||
@@ -41,11 +41,11 @@ Creates a vector representation for the given values.
|
|||||||
|
|
||||||
##### Returns
|
##### Returns
|
||||||
|
|
||||||
`Promise`<`number`[][]\>
|
`Promise`\<`number`[][]\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27)
|
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/embedding_function.ts#L27)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22)
|
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/embedding_function.ts#L22)
|
||||||
|
|||||||
30
docs/src/javascript/interfaces/IndexStats.md
Normal file
30
docs/src/javascript/interfaces/IndexStats.md
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / IndexStats
|
||||||
|
|
||||||
|
# Interface: IndexStats
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [numIndexedRows](IndexStats.md#numindexedrows)
|
||||||
|
- [numUnindexedRows](IndexStats.md#numunindexedrows)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### numIndexedRows
|
||||||
|
|
||||||
|
• **numIndexedRows**: ``null`` \| `number`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:344](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L344)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### numUnindexedRows
|
||||||
|
|
||||||
|
• **numUnindexedRows**: ``null`` \| `number`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:345](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L345)
|
||||||
@@ -7,6 +7,7 @@
|
|||||||
### Properties
|
### Properties
|
||||||
|
|
||||||
- [column](IvfPQIndexConfig.md#column)
|
- [column](IvfPQIndexConfig.md#column)
|
||||||
|
- [index\_cache\_size](IvfPQIndexConfig.md#index_cache_size)
|
||||||
- [index\_name](IvfPQIndexConfig.md#index_name)
|
- [index\_name](IvfPQIndexConfig.md#index_name)
|
||||||
- [max\_iters](IvfPQIndexConfig.md#max_iters)
|
- [max\_iters](IvfPQIndexConfig.md#max_iters)
|
||||||
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
|
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
|
||||||
@@ -28,7 +29,19 @@ The column to be indexed
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382)
|
[index.ts:701](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L701)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### index\_cache\_size
|
||||||
|
|
||||||
|
• `Optional` **index\_cache\_size**: `number`
|
||||||
|
|
||||||
|
Cache size of the index
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:750](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L750)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -40,7 +53,7 @@ A unique name for the index
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387)
|
[index.ts:706](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L706)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -52,7 +65,7 @@ The max number of iterations for kmeans training.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402)
|
[index.ts:721](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L721)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -64,7 +77,7 @@ Max number of iterations to train OPQ, if `use_opq` is true.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421)
|
[index.ts:740](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L740)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -76,7 +89,7 @@ Metric type, L2 or Cosine
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392)
|
[index.ts:711](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L711)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -88,7 +101,7 @@ The number of bits to present one PQ centroid.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416)
|
[index.ts:735](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L735)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -100,7 +113,7 @@ The number of partitions this index
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397)
|
[index.ts:716](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L716)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -112,7 +125,7 @@ Number of subvectors to build PQ code
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412)
|
[index.ts:731](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L731)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -124,7 +137,7 @@ Replace an existing index with the same name if it exists.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426)
|
[index.ts:745](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L745)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -134,7 +147,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428)
|
[index.ts:752](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L752)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -146,4 +159,4 @@ Train as optimized product quantization.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407)
|
[index.ts:726](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L726)
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[vectordb](../README.md) / [Exports](../modules.md) / Table
|
[vectordb](../README.md) / [Exports](../modules.md) / Table
|
||||||
|
|
||||||
# Interface: Table<T\>
|
# Interface: Table\<T\>
|
||||||
|
|
||||||
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||||
|
|
||||||
@@ -22,19 +22,22 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
- [countRows](Table.md#countrows)
|
- [countRows](Table.md#countrows)
|
||||||
- [createIndex](Table.md#createindex)
|
- [createIndex](Table.md#createindex)
|
||||||
- [delete](Table.md#delete)
|
- [delete](Table.md#delete)
|
||||||
|
- [indexStats](Table.md#indexstats)
|
||||||
|
- [listIndices](Table.md#listindices)
|
||||||
- [name](Table.md#name)
|
- [name](Table.md#name)
|
||||||
- [overwrite](Table.md#overwrite)
|
- [overwrite](Table.md#overwrite)
|
||||||
- [search](Table.md#search)
|
- [search](Table.md#search)
|
||||||
|
- [update](Table.md#update)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### add
|
### add
|
||||||
|
|
||||||
• **add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
|
• **add**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
|
||||||
|
|
||||||
#### Type declaration
|
#### Type declaration
|
||||||
|
|
||||||
▸ (`data`): `Promise`<`number`\>
|
▸ (`data`): `Promise`\<`number`\>
|
||||||
|
|
||||||
Insert records into this Table.
|
Insert records into this Table.
|
||||||
|
|
||||||
@@ -42,54 +45,50 @@ Insert records into this Table.
|
|||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
##### Returns
|
##### Returns
|
||||||
|
|
||||||
`Promise`<`number`\>
|
`Promise`\<`number`\>
|
||||||
|
|
||||||
The number of rows added to the table
|
The number of rows added to the table
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120)
|
[index.ts:209](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L209)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### countRows
|
### countRows
|
||||||
|
|
||||||
• **countRows**: () => `Promise`<`number`\>
|
• **countRows**: () => `Promise`\<`number`\>
|
||||||
|
|
||||||
#### Type declaration
|
#### Type declaration
|
||||||
|
|
||||||
▸ (): `Promise`<`number`\>
|
▸ (): `Promise`\<`number`\>
|
||||||
|
|
||||||
Returns the number of rows in this table.
|
Returns the number of rows in this table.
|
||||||
|
|
||||||
##### Returns
|
##### Returns
|
||||||
|
|
||||||
`Promise`<`number`\>
|
`Promise`\<`number`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140)
|
[index.ts:229](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L229)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### createIndex
|
### createIndex
|
||||||
|
|
||||||
• **createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\>
|
• **createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`\<`any`\>
|
||||||
|
|
||||||
#### Type declaration
|
#### Type declaration
|
||||||
|
|
||||||
▸ (`indexParams`): `Promise`<`any`\>
|
▸ (`indexParams`): `Promise`\<`any`\>
|
||||||
|
|
||||||
Create an ANN index on this Table vector index.
|
Create an ANN index on this Table vector index.
|
||||||
|
|
||||||
**`See`**
|
|
||||||
|
|
||||||
VectorIndexParams.
|
|
||||||
|
|
||||||
##### Parameters
|
##### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
@@ -98,27 +97,41 @@ VectorIndexParams.
|
|||||||
|
|
||||||
##### Returns
|
##### Returns
|
||||||
|
|
||||||
`Promise`<`any`\>
|
`Promise`\<`any`\>
|
||||||
|
|
||||||
|
**`See`**
|
||||||
|
|
||||||
|
VectorIndexParams.
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135)
|
[index.ts:224](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L224)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### delete
|
### delete
|
||||||
|
|
||||||
• **delete**: (`filter`: `string`) => `Promise`<`void`\>
|
• **delete**: (`filter`: `string`) => `Promise`\<`void`\>
|
||||||
|
|
||||||
#### Type declaration
|
#### Type declaration
|
||||||
|
|
||||||
▸ (`filter`): `Promise`<`void`\>
|
▸ (`filter`): `Promise`\<`void`\>
|
||||||
|
|
||||||
Delete rows from this table.
|
Delete rows from this table.
|
||||||
|
|
||||||
This can be used to delete a single row, many rows, all rows, or
|
This can be used to delete a single row, many rows, all rows, or
|
||||||
sometimes no rows (if your predicate matches nothing).
|
sometimes no rows (if your predicate matches nothing).
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
**`Examples`**
|
**`Examples`**
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
@@ -142,19 +155,55 @@ await tbl.delete(`id IN (${to_remove.join(",")})`)
|
|||||||
await tbl.countRows() // Returns 1
|
await tbl.countRows() // Returns 1
|
||||||
```
|
```
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:263](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L263)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### indexStats
|
||||||
|
|
||||||
|
• **indexStats**: (`indexUuid`: `string`) => `Promise`\<[`IndexStats`](IndexStats.md)\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`indexUuid`): `Promise`\<[`IndexStats`](IndexStats.md)\>
|
||||||
|
|
||||||
|
Get statistics about an index.
|
||||||
|
|
||||||
##### Parameters
|
##### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ |
|
||||||
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
|
| `indexUuid` | `string` |
|
||||||
|
|
||||||
##### Returns
|
##### Returns
|
||||||
|
|
||||||
`Promise`<`void`\>
|
`Promise`\<[`IndexStats`](IndexStats.md)\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174)
|
[index.ts:306](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L306)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### listIndices
|
||||||
|
|
||||||
|
• **listIndices**: () => `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (): `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
|
||||||
|
|
||||||
|
List the indicies on this table.
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:301](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L301)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -164,17 +213,17 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106)
|
[index.ts:195](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L195)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### overwrite
|
### overwrite
|
||||||
|
|
||||||
• **overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
|
• **overwrite**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
|
||||||
|
|
||||||
#### Type declaration
|
#### Type declaration
|
||||||
|
|
||||||
▸ (`data`): `Promise`<`number`\>
|
▸ (`data`): `Promise`\<`number`\>
|
||||||
|
|
||||||
Insert records into this Table, replacing its contents.
|
Insert records into this Table, replacing its contents.
|
||||||
|
|
||||||
@@ -182,27 +231,27 @@ Insert records into this Table, replacing its contents.
|
|||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
##### Returns
|
##### Returns
|
||||||
|
|
||||||
`Promise`<`number`\>
|
`Promise`\<`number`\>
|
||||||
|
|
||||||
The number of rows added to the table
|
The number of rows added to the table
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128)
|
[index.ts:217](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L217)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### search
|
### search
|
||||||
|
|
||||||
• **search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\>
|
• **search**: (`query`: `T`) => [`Query`](../classes/Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Type declaration
|
#### Type declaration
|
||||||
|
|
||||||
▸ (`query`): [`Query`](../classes/Query.md)<`T`\>
|
▸ (`query`): [`Query`](../classes/Query.md)\<`T`\>
|
||||||
|
|
||||||
Creates a search query to find the nearest neighbors of the given search term
|
Creates a search query to find the nearest neighbors of the given search term
|
||||||
|
|
||||||
@@ -214,8 +263,59 @@ Creates a search query to find the nearest neighbors of the given search term
|
|||||||
|
|
||||||
##### Returns
|
##### Returns
|
||||||
|
|
||||||
[`Query`](../classes/Query.md)<`T`\>
|
[`Query`](../classes/Query.md)\<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112)
|
[index.ts:201](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L201)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### update
|
||||||
|
|
||||||
|
• **update**: (`args`: [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md)) => `Promise`\<`void`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`args`): `Promise`\<`void`\>
|
||||||
|
|
||||||
|
Update rows in this table.
|
||||||
|
|
||||||
|
This can be used to update a single row, many rows, all rows, or
|
||||||
|
sometimes no rows (if your predicate matches nothing).
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `args` | [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md) | see [UpdateArgs](UpdateArgs.md) and [UpdateSqlArgs](UpdateSqlArgs.md) for more details |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
|
**`Examples`**
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const con = await lancedb.connect("./.lancedb")
|
||||||
|
const data = [
|
||||||
|
{id: 1, vector: [3, 3], name: 'Ye'},
|
||||||
|
{id: 2, vector: [4, 4], name: 'Mike'},
|
||||||
|
];
|
||||||
|
const tbl = await con.createTable("my_table", data)
|
||||||
|
|
||||||
|
await tbl.update({
|
||||||
|
filter: "id = 2",
|
||||||
|
updates: { vector: [2, 2], name: "Michael" },
|
||||||
|
})
|
||||||
|
|
||||||
|
let results = await tbl.search([1, 1]).execute();
|
||||||
|
// Returns [
|
||||||
|
// {id: 2, vector: [2, 2], name: 'Michael'}
|
||||||
|
// {id: 1, vector: [3, 3], name: 'Ye'}
|
||||||
|
// ]
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:296](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L296)
|
||||||
|
|||||||
36
docs/src/javascript/interfaces/UpdateArgs.md
Normal file
36
docs/src/javascript/interfaces/UpdateArgs.md
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / UpdateArgs
|
||||||
|
|
||||||
|
# Interface: UpdateArgs
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [values](UpdateArgs.md#values)
|
||||||
|
- [where](UpdateArgs.md#where)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### values
|
||||||
|
|
||||||
|
• **values**: `Record`\<`string`, `Literal`\>
|
||||||
|
|
||||||
|
A key-value map of updates. The keys are the column names, and the values are the
|
||||||
|
new values to set
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:320](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L320)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### where
|
||||||
|
|
||||||
|
• `Optional` **where**: `string`
|
||||||
|
|
||||||
|
A filter in the same format used by a sql WHERE clause. The filter may be empty,
|
||||||
|
in which case all rows will be updated.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:314](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L314)
|
||||||
36
docs/src/javascript/interfaces/UpdateSqlArgs.md
Normal file
36
docs/src/javascript/interfaces/UpdateSqlArgs.md
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / UpdateSqlArgs
|
||||||
|
|
||||||
|
# Interface: UpdateSqlArgs
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [valuesSql](UpdateSqlArgs.md#valuessql)
|
||||||
|
- [where](UpdateSqlArgs.md#where)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### valuesSql
|
||||||
|
|
||||||
|
• **valuesSql**: `Record`\<`string`, `string`\>
|
||||||
|
|
||||||
|
A key-value map of updates. The keys are the column names, and the values are the
|
||||||
|
new values to set as SQL expressions.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:334](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L334)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### where
|
||||||
|
|
||||||
|
• `Optional` **where**: `string`
|
||||||
|
|
||||||
|
A filter in the same format used by a sql WHERE clause. The filter may be empty,
|
||||||
|
in which case all rows will be updated.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:328](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L328)
|
||||||
41
docs/src/javascript/interfaces/VectorIndex.md
Normal file
41
docs/src/javascript/interfaces/VectorIndex.md
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / VectorIndex
|
||||||
|
|
||||||
|
# Interface: VectorIndex
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [columns](VectorIndex.md#columns)
|
||||||
|
- [name](VectorIndex.md#name)
|
||||||
|
- [uuid](VectorIndex.md#uuid)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### columns
|
||||||
|
|
||||||
|
• **columns**: `string`[]
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:338](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L338)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### name
|
||||||
|
|
||||||
|
• **name**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:339](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L339)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### uuid
|
||||||
|
|
||||||
|
• **uuid**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:340](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L340)
|
||||||
27
docs/src/javascript/interfaces/WriteOptions.md
Normal file
27
docs/src/javascript/interfaces/WriteOptions.md
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / WriteOptions
|
||||||
|
|
||||||
|
# Interface: WriteOptions
|
||||||
|
|
||||||
|
Write options when creating a Table.
|
||||||
|
|
||||||
|
## Implemented by
|
||||||
|
|
||||||
|
- [`DefaultWriteOptions`](../classes/DefaultWriteOptions.md)
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [writeMode](WriteOptions.md#writemode)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### writeMode
|
||||||
|
|
||||||
|
• `Optional` **writeMode**: [`WriteMode`](../enums/WriteMode.md)
|
||||||
|
|
||||||
|
A [WriteMode](../enums/WriteMode.md) to use on this operation
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:774](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L774)
|
||||||
@@ -11,6 +11,7 @@
|
|||||||
|
|
||||||
### Classes
|
### Classes
|
||||||
|
|
||||||
|
- [DefaultWriteOptions](classes/DefaultWriteOptions.md)
|
||||||
- [LocalConnection](classes/LocalConnection.md)
|
- [LocalConnection](classes/LocalConnection.md)
|
||||||
- [LocalTable](classes/LocalTable.md)
|
- [LocalTable](classes/LocalTable.md)
|
||||||
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
||||||
@@ -19,11 +20,20 @@
|
|||||||
### Interfaces
|
### Interfaces
|
||||||
|
|
||||||
- [AwsCredentials](interfaces/AwsCredentials.md)
|
- [AwsCredentials](interfaces/AwsCredentials.md)
|
||||||
|
- [CleanupStats](interfaces/CleanupStats.md)
|
||||||
|
- [CompactionMetrics](interfaces/CompactionMetrics.md)
|
||||||
|
- [CompactionOptions](interfaces/CompactionOptions.md)
|
||||||
- [Connection](interfaces/Connection.md)
|
- [Connection](interfaces/Connection.md)
|
||||||
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
||||||
|
- [CreateTableOptions](interfaces/CreateTableOptions.md)
|
||||||
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
|
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
|
||||||
|
- [IndexStats](interfaces/IndexStats.md)
|
||||||
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
|
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
|
||||||
- [Table](interfaces/Table.md)
|
- [Table](interfaces/Table.md)
|
||||||
|
- [UpdateArgs](interfaces/UpdateArgs.md)
|
||||||
|
- [UpdateSqlArgs](interfaces/UpdateSqlArgs.md)
|
||||||
|
- [VectorIndex](interfaces/VectorIndex.md)
|
||||||
|
- [WriteOptions](interfaces/WriteOptions.md)
|
||||||
|
|
||||||
### Type Aliases
|
### Type Aliases
|
||||||
|
|
||||||
@@ -32,6 +42,7 @@
|
|||||||
### Functions
|
### Functions
|
||||||
|
|
||||||
- [connect](modules.md#connect)
|
- [connect](modules.md#connect)
|
||||||
|
- [isWriteOptions](modules.md#iswriteoptions)
|
||||||
|
|
||||||
## Type Aliases
|
## Type Aliases
|
||||||
|
|
||||||
@@ -41,13 +52,13 @@
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431)
|
[index.ts:755](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L755)
|
||||||
|
|
||||||
## Functions
|
## Functions
|
||||||
|
|
||||||
### connect
|
### connect
|
||||||
|
|
||||||
▸ **connect**(`uri`): `Promise`<[`Connection`](interfaces/Connection.md)\>
|
▸ **connect**(`uri`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
|
||||||
|
|
||||||
Connect to a LanceDB instance at the given URI
|
Connect to a LanceDB instance at the given URI
|
||||||
|
|
||||||
@@ -59,24 +70,44 @@ Connect to a LanceDB instance at the given URI
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Connection`](interfaces/Connection.md)\>
|
`Promise`\<[`Connection`](interfaces/Connection.md)\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47)
|
[index.ts:95](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L95)
|
||||||
|
|
||||||
▸ **connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\>
|
▸ **connect**(`opts`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
| Name | Type |
|
||||||
| :------ | :------ |
|
| :------ | :------ |
|
||||||
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
|
| `opts` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Connection`](interfaces/Connection.md)\>
|
`Promise`\<[`Connection`](interfaces/Connection.md)\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48)
|
[index.ts:96](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L96)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### isWriteOptions
|
||||||
|
|
||||||
|
▸ **isWriteOptions**(`value`): value is WriteOptions
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `value` | `any` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
value is WriteOptions
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:781](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L781)
|
||||||
|
|||||||
92
docs/src/javascript/saas-modules.md
Normal file
92
docs/src/javascript/saas-modules.md
Normal file
@@ -0,0 +1,92 @@
|
|||||||
|
# Table of contents
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm install vectordb
|
||||||
|
```
|
||||||
|
|
||||||
|
This will download the appropriate native library for your platform. We currently
|
||||||
|
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
|
||||||
|
yet support Windows or musl-based Linux (such as Alpine Linux).
|
||||||
|
|
||||||
|
|
||||||
|
## Classes
|
||||||
|
- [RemoteConnection](classes/RemoteConnection.md)
|
||||||
|
- [RemoteTable](classes/RemoteTable.md)
|
||||||
|
- [RemoteQuery](classes/RemoteQuery.md)
|
||||||
|
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
- [add](classes/RemoteTable.md#add)
|
||||||
|
- [countRows](classes/RemoteTable.md#countrows)
|
||||||
|
- [createIndex](classes/RemoteTable.md#createindex)
|
||||||
|
- [createTable](classes/RemoteConnection.md#createtable)
|
||||||
|
- [delete](classes/RemoteTable.md#delete)
|
||||||
|
- [dropTable](classes/RemoteConnection.md#droptable)
|
||||||
|
- [listIndices](classes/RemoteTable.md#listindices)
|
||||||
|
- [indexStats](classes/RemoteTable.md#liststats)
|
||||||
|
- [openTable](classes/RemoteConnection.md#opentable)
|
||||||
|
- [overwrite](classes/RemoteTable.md#overwrite)
|
||||||
|
- [schema](classes/RemoteTable.md#schema)
|
||||||
|
- [search](classes/RemoteTable.md#search)
|
||||||
|
- [tableNames](classes/RemoteConnection.md#tablenames)
|
||||||
|
- [update](classes/RemoteTable.md#update)
|
||||||
|
|
||||||
|
|
||||||
|
## Example code
|
||||||
|
```javascript
|
||||||
|
|
||||||
|
const lancedb = require('vectordb');
|
||||||
|
const { Schema, Field, Int32, Float32, Utf8, FixedSizeList } = require ("apache-arrow/Arrow.node")
|
||||||
|
|
||||||
|
// connect to a remote DB
|
||||||
|
const devApiKey = process.env.LANCEDB_DEV_API_KEY
|
||||||
|
const dbURI = process.env.LANCEDB_URI
|
||||||
|
const db = await lancedb.connect({
|
||||||
|
uri: dbURI, // replace dbURI with your project, e.g. "db://your-project-name"
|
||||||
|
apiKey: devApiKey, // replace dbURI with your api key
|
||||||
|
region: "us-east-1-dev"
|
||||||
|
});
|
||||||
|
// create a new table
|
||||||
|
const tableName = "my_table_000"
|
||||||
|
const data = [
|
||||||
|
{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
|
||||||
|
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }
|
||||||
|
]
|
||||||
|
const schema = new Schema(
|
||||||
|
[
|
||||||
|
new Field('id', new Int32()),
|
||||||
|
new Field('vector', new FixedSizeList(2, new Field('float32', new Float32()))),
|
||||||
|
new Field('item', new Utf8()),
|
||||||
|
new Field('price', new Float32())
|
||||||
|
]
|
||||||
|
)
|
||||||
|
const table = await db.createTable({
|
||||||
|
name: tableName,
|
||||||
|
schema,
|
||||||
|
}, data)
|
||||||
|
|
||||||
|
// list the table
|
||||||
|
const tableNames_1 = await db.tableNames('')
|
||||||
|
// add some data and search should be okay
|
||||||
|
const newData = [
|
||||||
|
{ id: 3, vector: [10.3, 1.9], item: "test1", price: 30.0 },
|
||||||
|
{ id: 4, vector: [6.2, 9.2], item: "test2", price: 40.0 }
|
||||||
|
]
|
||||||
|
await table.add(newData)
|
||||||
|
// create the index for the table
|
||||||
|
await table.createIndex({
|
||||||
|
metric_type: "L2",
|
||||||
|
column: "vector"
|
||||||
|
})
|
||||||
|
let result = await table.search([2.8, 4.3]).select(["vector", "price"]).limit(1).execute()
|
||||||
|
// update the data
|
||||||
|
await table.update({
|
||||||
|
where: "id == 1",
|
||||||
|
values: { item: "foo1" }
|
||||||
|
})
|
||||||
|
//drop the table
|
||||||
|
await db.dropTable(tableName)
|
||||||
|
```
|
||||||
@@ -44,15 +44,14 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import openai\n",
|
"from openai import OpenAI\n",
|
||||||
"import os\n",
|
"import os\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Configuring the environment variable OPENAI_API_KEY\n",
|
"# Configuring the environment variable OPENAI_API_KEY\n",
|
||||||
"if \"OPENAI_API_KEY\" not in os.environ:\n",
|
"if \"OPENAI_API_KEY\" not in os.environ:\n",
|
||||||
" # OR set the key here as a variable\n",
|
" os.environ[\"OPENAI_API_KEY\"] = \"sk-...\"\n",
|
||||||
" openai.api_key = \"sk-...\"\n",
|
"client = OpenAI()\n",
|
||||||
" \n",
|
"assert len(client.models.list().data) > 0"
|
||||||
"assert len(openai.Model.list()[\"data\"]) > 0"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -27,11 +27,11 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"\n",
|
"\n",
|
||||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
||||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
||||||
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@@ -206,15 +206,16 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import openai\n",
|
"from openai import OpenAI\n",
|
||||||
"import os\n",
|
"import os\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Configuring the environment variable OPENAI_API_KEY\n",
|
"# Configuring the environment variable OPENAI_API_KEY\n",
|
||||||
"if \"OPENAI_API_KEY\" not in os.environ:\n",
|
"if \"OPENAI_API_KEY\" not in os.environ:\n",
|
||||||
" # OR set the key here as a variable\n",
|
" # OR set the key here as a variable\n",
|
||||||
" openai.api_key = \"sk-...\"\n",
|
" os.environ[\"OPENAI_API_KEY\"] = \"sk-...\"\n",
|
||||||
" \n",
|
" \n",
|
||||||
"assert len(openai.Model.list()[\"data\"]) > 0"
|
"client = OpenAI()\n",
|
||||||
|
"assert len(client.models.list().data) > 0"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -234,8 +235,8 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"def embed_func(c): \n",
|
"def embed_func(c): \n",
|
||||||
" rs = openai.Embedding.create(input=c, engine=\"text-embedding-ada-002\")\n",
|
" rs = client.embeddings.create(input=c, model=\"text-embedding-ada-002\")\n",
|
||||||
" return [record[\"embedding\"] for record in rs[\"data\"]]"
|
" return [rs.data[0].embedding]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -536,9 +537,8 @@
|
|||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"def complete(prompt):\n",
|
"def complete(prompt):\n",
|
||||||
" # query text-davinci-003\n",
|
" res = client.completions.create(\n",
|
||||||
" res = openai.Completion.create(\n",
|
" model='text-davinci-003',\n",
|
||||||
" engine='text-davinci-003',\n",
|
|
||||||
" prompt=prompt,\n",
|
" prompt=prompt,\n",
|
||||||
" temperature=0,\n",
|
" temperature=0,\n",
|
||||||
" max_tokens=400,\n",
|
" max_tokens=400,\n",
|
||||||
@@ -547,7 +547,7 @@
|
|||||||
" presence_penalty=0,\n",
|
" presence_penalty=0,\n",
|
||||||
" stop=None\n",
|
" stop=None\n",
|
||||||
" )\n",
|
" )\n",
|
||||||
" return res['choices'][0]['text'].strip()\n",
|
" return res.choices[0].text\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# check that it works\n",
|
"# check that it works\n",
|
||||||
"query = \"who was the 12th person on the moon and when did they land?\"\n",
|
"query = \"who was the 12th person on the moon and when did they land?\"\n",
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ LanceDB integrates with Pydantic for schema inference, data ingestion, and query
|
|||||||
|
|
||||||
LanceDB supports to create Apache Arrow Schema from a
|
LanceDB supports to create Apache Arrow Schema from a
|
||||||
[Pydantic BaseModel](https://docs.pydantic.dev/latest/api/main/#pydantic.main.BaseModel)
|
[Pydantic BaseModel](https://docs.pydantic.dev/latest/api/main/#pydantic.main.BaseModel)
|
||||||
via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) method.
|
via [pydantic_to_schema()](python.md#lancedb.pydantic.pydantic_to_schema) method.
|
||||||
|
|
||||||
::: lancedb.pydantic.pydantic_to_schema
|
::: lancedb.pydantic.pydantic_to_schema
|
||||||
|
|
||||||
|
|||||||
@@ -22,8 +22,6 @@ pip install lancedb
|
|||||||
|
|
||||||
::: lancedb.query.LanceQueryBuilder
|
::: lancedb.query.LanceQueryBuilder
|
||||||
|
|
||||||
::: lancedb.query.LanceFtsQueryBuilder
|
|
||||||
|
|
||||||
## Embeddings
|
## Embeddings
|
||||||
|
|
||||||
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
|
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
|
||||||
@@ -56,7 +54,7 @@ pip install lancedb
|
|||||||
|
|
||||||
## Utilities
|
## Utilities
|
||||||
|
|
||||||
::: lancedb.vector
|
::: lancedb.schema.vector
|
||||||
|
|
||||||
## Integrations
|
## Integrations
|
||||||
|
|
||||||
|
|||||||
18
docs/src/python/saas-python.md
Normal file
18
docs/src/python/saas-python.md
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
# LanceDB Python API Reference
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
## Connection
|
||||||
|
|
||||||
|
::: lancedb.connect
|
||||||
|
|
||||||
|
::: lancedb.remote.db.RemoteDBConnection
|
||||||
|
|
||||||
|
## Table
|
||||||
|
|
||||||
|
::: lancedb.remote.table.RemoteTable
|
||||||
|
|
||||||
1
docs/src/robots.txt
Normal file
1
docs/src/robots.txt
Normal file
@@ -0,0 +1 @@
|
|||||||
|
User-agent: *
|
||||||
@@ -118,4 +118,101 @@ However, fast vector search using indices often entails making a trade-off with
|
|||||||
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
|
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
|
||||||
always returns 100% recall.
|
always returns 100% recall.
|
||||||
|
|
||||||
See [ANN Index](ann_indexes.md) for more details.
|
See [ANN Index](ann_indexes.md) for more details.
|
||||||
|
|
||||||
|
|
||||||
|
### Output formats
|
||||||
|
|
||||||
|
LanceDB returns results in many different formats commonly used in python.
|
||||||
|
Let's create a LanceDB table with a nested schema:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from datetime import datetime
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
import numpy as np
|
||||||
|
from pydantic import BaseModel
|
||||||
|
uri = "data/sample-lancedb-nested"
|
||||||
|
|
||||||
|
class Metadata(BaseModel):
|
||||||
|
source: str
|
||||||
|
timestamp: datetime
|
||||||
|
|
||||||
|
class Document(BaseModel):
|
||||||
|
content: str
|
||||||
|
meta: Metadata
|
||||||
|
|
||||||
|
class LanceSchema(LanceModel):
|
||||||
|
id: str
|
||||||
|
vector: Vector(1536)
|
||||||
|
payload: Document
|
||||||
|
|
||||||
|
# Let's add 100 sample rows to our dataset
|
||||||
|
data = [LanceSchema(
|
||||||
|
id=f"id{i}",
|
||||||
|
vector=np.random.randn(1536),
|
||||||
|
payload=Document(
|
||||||
|
content=f"document{i}", meta=Metadata(source=f"source{i%10}", timestamp=datetime.now())
|
||||||
|
),
|
||||||
|
) for i in range(100)]
|
||||||
|
|
||||||
|
tbl = db.create_table("documents", data=data)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### As a pyarrow table
|
||||||
|
|
||||||
|
Using `to_arrow()` we can get the results back as a pyarrow Table.
|
||||||
|
This result table has the same columns as the LanceDB table, with
|
||||||
|
the addition of an `_distance` column for vector search or a `score`
|
||||||
|
column for full text search.
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.search(np.random.randn(1536)).to_arrow()
|
||||||
|
```
|
||||||
|
|
||||||
|
#### As a pandas dataframe
|
||||||
|
|
||||||
|
You can also get the results as a pandas dataframe.
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.search(np.random.randn(1536)).to_pandas()
|
||||||
|
```
|
||||||
|
|
||||||
|
While other formats like Arrow/Pydantic/Python dicts have a natural
|
||||||
|
way to handle nested schemas, pandas can only store nested data as a
|
||||||
|
python dict column, which makes it difficult to support nested references.
|
||||||
|
So for convenience, you can also tell LanceDB to flatten a nested schema
|
||||||
|
when creating the pandas dataframe.
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
If your table has a deeply nested struct, you can control how many levels
|
||||||
|
of nesting to flatten by passing in a positive integer.
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.search(np.random.randn(1536)).to_pandas(flatten=1)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### As a list of python dicts
|
||||||
|
|
||||||
|
You can of course return results as a list of python dicts.
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.search(np.random.randn(1536)).to_list()
|
||||||
|
```
|
||||||
|
|
||||||
|
#### As a list of pydantic models
|
||||||
|
|
||||||
|
We can add data using pydantic models, and we can certainly
|
||||||
|
retrieve results as pydantic models
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.search(np.random.randn(1536)).to_pydantic(LanceSchema)
|
||||||
|
```
|
||||||
|
|
||||||
|
Note that in this case the extra `_distance` field is discarded since
|
||||||
|
it's not part of the LanceSchema.
|
||||||
|
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
# SQL filters
|
# SQL filters
|
||||||
|
|
||||||
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
|
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
|
||||||
filters. It can be used during hybrid vector search and deletion operations.
|
filters. It can be used during hybrid vector search, update, and deletion operations.
|
||||||
|
|
||||||
Currently, Lance supports a growing list of expressions.
|
Currently, Lance supports a growing list of expressions.
|
||||||
|
|
||||||
@@ -22,7 +22,7 @@ import numpy as np
|
|||||||
uri = "data/sample-lancedb"
|
uri = "data/sample-lancedb"
|
||||||
db = lancedb.connect(uri)
|
db = lancedb.connect(uri)
|
||||||
|
|
||||||
data = [{"vector": row, "item": f"item {i}"}
|
data = [{"vector": row, "item": f"item {i}", "id": i}
|
||||||
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
|
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
|
||||||
|
|
||||||
tbl = db.create_table("my_vectors", data=data)
|
tbl = db.create_table("my_vectors", data=data)
|
||||||
@@ -35,33 +35,25 @@ const db = await vectordb.connect('data/sample-lancedb')
|
|||||||
|
|
||||||
let data = []
|
let data = []
|
||||||
for (let i = 0; i < 10_000; i++) {
|
for (let i = 0; i < 10_000; i++) {
|
||||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
data.push({vector: Array(1536).fill(i), id: i, item: `item ${i}`, strId: `${i}`})
|
||||||
}
|
}
|
||||||
const tbl = await db.createTable('my_vectors', data)
|
const tbl = await db.createTable('myVectors', data)
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.search([100, 102]) \
|
tbl.search([100, 102]) \
|
||||||
.where("""(
|
.where("(item IN ('item 0', 'item 2')) AND (id > 10)") \
|
||||||
(label IN [10, 20])
|
.to_arrow()
|
||||||
AND
|
|
||||||
(note.email IS NOT NULL)
|
|
||||||
) OR NOT note.created
|
|
||||||
""")
|
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
|
|
||||||
```javascript
|
```javascript
|
||||||
tbl.search([100, 102])
|
await tbl.search(Array(1536).fill(0))
|
||||||
.where(`(
|
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
|
||||||
(label IN [10, 20])
|
.execute()
|
||||||
AND
|
|
||||||
(note.email IS NOT NULL)
|
|
||||||
) OR NOT note.created
|
|
||||||
`)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
@@ -118,3 +110,22 @@ The mapping from SQL types to Arrow types is:
|
|||||||
|
|
||||||
[^1]: See precision mapping in previous table.
|
[^1]: See precision mapping in previous table.
|
||||||
|
|
||||||
|
|
||||||
|
## Filtering without Vector Search
|
||||||
|
|
||||||
|
You can also filter your data without search.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
tbl.search().where("id=10").limit(10).to_arrow()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "JavaScript"
|
||||||
|
```javascript
|
||||||
|
await tbl.where('id=10').limit(10).execute()
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
If your table is large, this could potentially return a very large
|
||||||
|
amount of data. Please be sure to use a `limit` clause unless
|
||||||
|
you're sure you want to return the whole result set.
|
||||||
|
|||||||
@@ -18,29 +18,45 @@ python_file = ".py"
|
|||||||
python_folder = "python"
|
python_folder = "python"
|
||||||
|
|
||||||
files = glob.glob(glob_string, recursive=True)
|
files = glob.glob(glob_string, recursive=True)
|
||||||
excluded_files = [f for excluded_glob in excluded_globs for f in glob.glob(excluded_glob, recursive=True)]
|
excluded_files = [
|
||||||
|
f
|
||||||
|
for excluded_glob in excluded_globs
|
||||||
|
for f in glob.glob(excluded_glob, recursive=True)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
|
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
|
||||||
in_code_block = False
|
in_code_block = False
|
||||||
# Python code has strict indentation
|
# Python code has strict indentation
|
||||||
strip_length = 0
|
strip_length = 0
|
||||||
|
skip_test = False
|
||||||
for line in lines:
|
for line in lines:
|
||||||
|
if "skip-test" in line:
|
||||||
|
skip_test = True
|
||||||
if line.strip().startswith(prefix + python_prefix):
|
if line.strip().startswith(prefix + python_prefix):
|
||||||
in_code_block = True
|
in_code_block = True
|
||||||
strip_length = len(line) - len(line.lstrip())
|
strip_length = len(line) - len(line.lstrip())
|
||||||
elif in_code_block and line.strip().startswith(suffix):
|
elif in_code_block and line.strip().startswith(suffix):
|
||||||
in_code_block = False
|
in_code_block = False
|
||||||
yield "\n"
|
if not skip_test:
|
||||||
|
yield "\n"
|
||||||
|
skip_test = False
|
||||||
elif in_code_block:
|
elif in_code_block:
|
||||||
yield line[strip_length:]
|
if not skip_test:
|
||||||
|
yield line[strip_length:]
|
||||||
|
|
||||||
for file in filter(lambda file: file not in excluded_files, files):
|
for file in filter(lambda file: file not in excluded_files, files):
|
||||||
with open(file, "r") as f:
|
with open(file, "r") as f:
|
||||||
lines = list(yield_lines(iter(f), "```", "```"))
|
lines = list(yield_lines(iter(f), "```", "```"))
|
||||||
|
|
||||||
if len(lines) > 0:
|
if len(lines) > 0:
|
||||||
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file)
|
print(lines)
|
||||||
|
out_path = (
|
||||||
|
Path(python_folder)
|
||||||
|
/ Path(file).name.strip(".md")
|
||||||
|
/ (Path(file).name.strip(".md") + python_file)
|
||||||
|
)
|
||||||
print(out_path)
|
print(out_path)
|
||||||
out_path.parent.mkdir(exist_ok=True, parents=True)
|
out_path.parent.mkdir(exist_ok=True, parents=True)
|
||||||
with open(out_path, "w") as out:
|
with open(out_path, "w") as out:
|
||||||
out.writelines(lines)
|
out.writelines(lines)
|
||||||
|
|||||||
@@ -9,8 +9,13 @@ npm install vectordb
|
|||||||
```
|
```
|
||||||
|
|
||||||
This will download the appropriate native library for your platform. We currently
|
This will download the appropriate native library for your platform. We currently
|
||||||
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
|
support:
|
||||||
yet support Windows or musl-based Linux (such as Alpine Linux).
|
|
||||||
|
* Linux (x86_64 and aarch64)
|
||||||
|
* MacOS (Intel and ARM/M1/M2)
|
||||||
|
* Windows (x86_64 only)
|
||||||
|
|
||||||
|
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
|
|||||||
594
node/package-lock.json
generated
594
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"lockfileVersion": 2,
|
"lockfileVersion": 2,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -18,9 +18,9 @@
|
|||||||
"win32"
|
"win32"
|
||||||
],
|
],
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@apache-arrow/ts": "^12.0.0",
|
"@apache-arrow/ts": "^14.0.2",
|
||||||
"@neon-rs/load": "^0.0.74",
|
"@neon-rs/load": "^0.0.74",
|
||||||
"apache-arrow": "^12.0.0",
|
"apache-arrow": "^14.0.2",
|
||||||
"axios": "^1.4.0"
|
"axios": "^1.4.0"
|
||||||
},
|
},
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
@@ -53,39 +53,59 @@
|
|||||||
"uuid": "^9.0.0"
|
"uuid": "^9.0.0"
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.3.3",
|
"@lancedb/vectordb-darwin-arm64": "0.4.2",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.3.3",
|
"@lancedb/vectordb-darwin-x64": "0.4.2",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.3",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.4.2",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.3",
|
"@lancedb/vectordb-linux-x64-gnu": "0.4.2",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.3"
|
"@lancedb/vectordb-win32-x64-msvc": "0.4.2"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/@75lb/deep-merge": {
|
||||||
|
"version": "1.1.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/@75lb/deep-merge/-/deep-merge-1.1.1.tgz",
|
||||||
|
"integrity": "sha512-xvgv6pkMGBA6GwdyJbNAnDmfAIR/DfWhrj9jgWh3TY7gRm3KO46x/GPjRg6wJ0nOepwqrNxFfojebh0Df4h4Tw==",
|
||||||
|
"dependencies": {
|
||||||
|
"lodash.assignwith": "^4.2.0",
|
||||||
|
"typical": "^7.1.1"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=12.17"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/@75lb/deep-merge/node_modules/typical": {
|
||||||
|
"version": "7.1.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||||
|
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=12.17"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@apache-arrow/ts": {
|
"node_modules/@apache-arrow/ts": {
|
||||||
"version": "12.0.0",
|
"version": "14.0.2",
|
||||||
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-12.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz",
|
||||||
"integrity": "sha512-ArJ3Fw5W9RAeNWuyCU2CdjL/nEAZSVDG1p3jz/ZtLo/q3NTz2w7HUCOJeszejH/5alGX+QirYrJ5c6BW++/P7g==",
|
"integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@types/command-line-args": "5.2.0",
|
"@types/command-line-args": "5.2.0",
|
||||||
"@types/command-line-usage": "5.0.2",
|
"@types/command-line-usage": "5.0.2",
|
||||||
"@types/node": "18.14.5",
|
"@types/node": "20.3.0",
|
||||||
"@types/pad-left": "2.1.1",
|
"@types/pad-left": "2.1.1",
|
||||||
"command-line-args": "5.2.1",
|
"command-line-args": "5.2.1",
|
||||||
"command-line-usage": "6.1.3",
|
"command-line-usage": "7.0.1",
|
||||||
"flatbuffers": "23.3.3",
|
"flatbuffers": "23.5.26",
|
||||||
"json-bignum": "^0.0.3",
|
"json-bignum": "^0.0.3",
|
||||||
"pad-left": "^2.1.0",
|
"pad-left": "^2.1.0",
|
||||||
"tslib": "^2.5.0"
|
"tslib": "^2.5.3"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@apache-arrow/ts/node_modules/@types/node": {
|
"node_modules/@apache-arrow/ts/node_modules/@types/node": {
|
||||||
"version": "18.14.5",
|
"version": "20.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
|
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||||
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
|
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||||
},
|
},
|
||||||
"node_modules/@apache-arrow/ts/node_modules/tslib": {
|
"node_modules/@apache-arrow/ts/node_modules/tslib": {
|
||||||
"version": "2.5.0",
|
"version": "2.6.2",
|
||||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
|
||||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
|
||||||
},
|
},
|
||||||
"node_modules/@cargo-messages/android-arm-eabi": {
|
"node_modules/@cargo-messages/android-arm-eabi": {
|
||||||
"version": "0.0.160",
|
"version": "0.0.160",
|
||||||
@@ -317,9 +337,9 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.2.tgz",
|
||||||
"integrity": "sha512-nvyj7xNX2/wb/PH5TjyhLR/NQ1jVuoBw2B5UaSg7qf8Tnm5SSXWQ7F25RVKcKwh72fz1qB+CWW24ftZnRzbT/Q==",
|
"integrity": "sha512-Ec73W2IHnZK4VC8g/7JyLbgcwcpNb9YI20yEhfTjEEFjJKoElZhDD/ZgghC3QQSRnrXFTxDzPK1V9BDT5QB2Hg==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"arm64"
|
"arm64"
|
||||||
],
|
],
|
||||||
@@ -329,9 +349,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.2.tgz",
|
||||||
"integrity": "sha512-7CW+nILyPHp6cua0Rl0xaTDWw/vajEn/jCsEjFYgDmE+rtf5Z5Fum41FxR9C2TtIAvUK+nWb5mkYeOLqU6vRvg==",
|
"integrity": "sha512-tj0JJlOfOdeSAfmM7EZhrhFdCFjoq9Bmrjt4741BNjtF+Nv4Otl53lFtUQrexTr4oh/E1yY1qaydJ7K++8u3UA==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -341,9 +361,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.2.tgz",
|
||||||
"integrity": "sha512-MmhwbacKxZPkLwwOqysVY8mUb8lFoyFIPlYhSLV4xS1C8X4HWALljIul1qMl1RYudp9Uc3PsOzRexl+OvCGfUw==",
|
"integrity": "sha512-OQ7ra5Q5RrLLwxIyI338KfQ2sSl8NJfqAHWvwiMtjCYFFYxIJGjX7U0I2MjSEPqJ5/ZoyjV4mjsvs0G1q20u+Q==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"arm64"
|
"arm64"
|
||||||
],
|
],
|
||||||
@@ -353,9 +373,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.2.tgz",
|
||||||
"integrity": "sha512-OrNlsKi/QPw59Po040oRKn8IuqFEk4upc/4FaFKqVkcmQjjZrMg5Kgy9ZfWIhHdAnWXXggZZIPArpt0X1B0ceA==",
|
"integrity": "sha512-9tgIFSOYqNJzonnYsQr7v2gGdJm8aZ62UsVX2SWAIVhypoP4A05tAlbzjBgKO3R5xy5gpcW8tt/Pt8IsYWON7Q==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -365,9 +385,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.2.tgz",
|
||||||
"integrity": "sha512-lIT0A7a6eqX51IfGyhECtpXXgsr//kgbd+HZbcCdPy2GMmNezSch/7V22zExDSpF32hX8WfgcTLYCVWVilggDQ==",
|
"integrity": "sha512-jhG3MqZ3r8BexXANLRNX57RAnCZT9psdSBORG3KTu5qe2xaunRlJNSA2kk8a79tf+gtUT/BAmMiXMzAi/dwq8w==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -866,7 +886,6 @@
|
|||||||
"version": "4.3.0",
|
"version": "4.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
|
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
|
||||||
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
|
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"color-convert": "^2.0.1"
|
"color-convert": "^2.0.1"
|
||||||
},
|
},
|
||||||
@@ -891,34 +910,34 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/apache-arrow": {
|
"node_modules/apache-arrow": {
|
||||||
"version": "12.0.0",
|
"version": "14.0.2",
|
||||||
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-12.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz",
|
||||||
"integrity": "sha512-uI+hnZZsGfNJiR/wG8j5yPQuDjmOHx4hZpkA743G4x3TlFrCpA3MMX7KUkIOIw0e/CwZ8NYuaMzaQsblA47qVA==",
|
"integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@types/command-line-args": "5.2.0",
|
"@types/command-line-args": "5.2.0",
|
||||||
"@types/command-line-usage": "5.0.2",
|
"@types/command-line-usage": "5.0.2",
|
||||||
"@types/node": "18.14.5",
|
"@types/node": "20.3.0",
|
||||||
"@types/pad-left": "2.1.1",
|
"@types/pad-left": "2.1.1",
|
||||||
"command-line-args": "5.2.1",
|
"command-line-args": "5.2.1",
|
||||||
"command-line-usage": "6.1.3",
|
"command-line-usage": "7.0.1",
|
||||||
"flatbuffers": "23.3.3",
|
"flatbuffers": "23.5.26",
|
||||||
"json-bignum": "^0.0.3",
|
"json-bignum": "^0.0.3",
|
||||||
"pad-left": "^2.1.0",
|
"pad-left": "^2.1.0",
|
||||||
"tslib": "^2.5.0"
|
"tslib": "^2.5.3"
|
||||||
},
|
},
|
||||||
"bin": {
|
"bin": {
|
||||||
"arrow2csv": "bin/arrow2csv.js"
|
"arrow2csv": "bin/arrow2csv.js"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/apache-arrow/node_modules/@types/node": {
|
"node_modules/apache-arrow/node_modules/@types/node": {
|
||||||
"version": "18.14.5",
|
"version": "20.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
|
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||||
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
|
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||||
},
|
},
|
||||||
"node_modules/apache-arrow/node_modules/tslib": {
|
"node_modules/apache-arrow/node_modules/tslib": {
|
||||||
"version": "2.5.0",
|
"version": "2.6.2",
|
||||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
|
||||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
|
||||||
},
|
},
|
||||||
"node_modules/arg": {
|
"node_modules/arg": {
|
||||||
"version": "4.1.3",
|
"version": "4.1.3",
|
||||||
@@ -1170,7 +1189,6 @@
|
|||||||
"version": "4.1.2",
|
"version": "4.1.2",
|
||||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
||||||
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
|
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"ansi-styles": "^4.1.0",
|
"ansi-styles": "^4.1.0",
|
||||||
"supports-color": "^7.1.0"
|
"supports-color": "^7.1.0"
|
||||||
@@ -1182,11 +1200,24 @@
|
|||||||
"url": "https://github.com/chalk/chalk?sponsor=1"
|
"url": "https://github.com/chalk/chalk?sponsor=1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/chalk-template": {
|
||||||
|
"version": "0.4.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/chalk-template/-/chalk-template-0.4.0.tgz",
|
||||||
|
"integrity": "sha512-/ghrgmhfY8RaSdeo43hNXxpoHAtxdbskUHjPpfqUWGttFgycUhYPGx3YZBCnUCvOa7Doivn1IZec3DEGFoMgLg==",
|
||||||
|
"dependencies": {
|
||||||
|
"chalk": "^4.1.2"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=12"
|
||||||
|
},
|
||||||
|
"funding": {
|
||||||
|
"url": "https://github.com/chalk/chalk-template?sponsor=1"
|
||||||
|
}
|
||||||
|
},
|
||||||
"node_modules/chalk/node_modules/supports-color": {
|
"node_modules/chalk/node_modules/supports-color": {
|
||||||
"version": "7.2.0",
|
"version": "7.2.0",
|
||||||
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
|
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
|
||||||
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
|
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"has-flag": "^4.0.0"
|
"has-flag": "^4.0.0"
|
||||||
},
|
},
|
||||||
@@ -1245,7 +1276,6 @@
|
|||||||
"version": "2.0.1",
|
"version": "2.0.1",
|
||||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
||||||
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
|
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"color-name": "~1.1.4"
|
"color-name": "~1.1.4"
|
||||||
},
|
},
|
||||||
@@ -1256,8 +1286,7 @@
|
|||||||
"node_modules/color-name": {
|
"node_modules/color-name": {
|
||||||
"version": "1.1.4",
|
"version": "1.1.4",
|
||||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
|
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
|
||||||
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
|
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA=="
|
||||||
"dev": true
|
|
||||||
},
|
},
|
||||||
"node_modules/combined-stream": {
|
"node_modules/combined-stream": {
|
||||||
"version": "1.0.8",
|
"version": "1.0.8",
|
||||||
@@ -1285,97 +1314,33 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/command-line-usage": {
|
"node_modules/command-line-usage": {
|
||||||
"version": "6.1.3",
|
"version": "7.0.1",
|
||||||
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-6.1.3.tgz",
|
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-7.0.1.tgz",
|
||||||
"integrity": "sha512-sH5ZSPr+7UStsloltmDh7Ce5fb8XPlHyoPzTpyyMuYCtervL65+ubVZ6Q61cFtFl62UyJlc8/JwERRbAFPUqgw==",
|
"integrity": "sha512-NCyznE//MuTjwi3y84QVUGEOT+P5oto1e1Pk/jFPVdPPfsG03qpTIl3yw6etR+v73d0lXsoojRpvbru2sqePxQ==",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"array-back": "^4.0.2",
|
"array-back": "^6.2.2",
|
||||||
"chalk": "^2.4.2",
|
"chalk-template": "^0.4.0",
|
||||||
"table-layout": "^1.0.2",
|
"table-layout": "^3.0.0",
|
||||||
"typical": "^5.2.0"
|
"typical": "^7.1.1"
|
||||||
},
|
},
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=8.0.0"
|
"node": ">=12.20.0"
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/command-line-usage/node_modules/ansi-styles": {
|
|
||||||
"version": "3.2.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
|
|
||||||
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
|
|
||||||
"dependencies": {
|
|
||||||
"color-convert": "^1.9.0"
|
|
||||||
},
|
|
||||||
"engines": {
|
|
||||||
"node": ">=4"
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/command-line-usage/node_modules/array-back": {
|
"node_modules/command-line-usage/node_modules/array-back": {
|
||||||
"version": "4.0.2",
|
"version": "6.2.2",
|
||||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
|
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
|
||||||
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg==",
|
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw==",
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=8"
|
"node": ">=12.17"
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/command-line-usage/node_modules/chalk": {
|
|
||||||
"version": "2.4.2",
|
|
||||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
|
|
||||||
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
|
|
||||||
"dependencies": {
|
|
||||||
"ansi-styles": "^3.2.1",
|
|
||||||
"escape-string-regexp": "^1.0.5",
|
|
||||||
"supports-color": "^5.3.0"
|
|
||||||
},
|
|
||||||
"engines": {
|
|
||||||
"node": ">=4"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/command-line-usage/node_modules/color-convert": {
|
|
||||||
"version": "1.9.3",
|
|
||||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
|
|
||||||
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
|
|
||||||
"dependencies": {
|
|
||||||
"color-name": "1.1.3"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/command-line-usage/node_modules/color-name": {
|
|
||||||
"version": "1.1.3",
|
|
||||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
|
|
||||||
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw=="
|
|
||||||
},
|
|
||||||
"node_modules/command-line-usage/node_modules/escape-string-regexp": {
|
|
||||||
"version": "1.0.5",
|
|
||||||
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
|
|
||||||
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==",
|
|
||||||
"engines": {
|
|
||||||
"node": ">=0.8.0"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/command-line-usage/node_modules/has-flag": {
|
|
||||||
"version": "3.0.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
|
|
||||||
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==",
|
|
||||||
"engines": {
|
|
||||||
"node": ">=4"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/command-line-usage/node_modules/supports-color": {
|
|
||||||
"version": "5.5.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
|
|
||||||
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
|
|
||||||
"dependencies": {
|
|
||||||
"has-flag": "^3.0.0"
|
|
||||||
},
|
|
||||||
"engines": {
|
|
||||||
"node": ">=4"
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/command-line-usage/node_modules/typical": {
|
"node_modules/command-line-usage/node_modules/typical": {
|
||||||
"version": "5.2.0",
|
"version": "7.1.1",
|
||||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
|
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=8"
|
"node": ">=12.17"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/concat-map": {
|
"node_modules/concat-map": {
|
||||||
@@ -1451,14 +1416,6 @@
|
|||||||
"node": ">=6"
|
"node": ">=6"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/deep-extend": {
|
|
||||||
"version": "0.6.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
|
|
||||||
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA==",
|
|
||||||
"engines": {
|
|
||||||
"node": ">=4.0.0"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/deep-is": {
|
"node_modules/deep-is": {
|
||||||
"version": "0.1.4",
|
"version": "0.1.4",
|
||||||
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
|
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
|
||||||
@@ -2237,9 +2194,9 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/flatbuffers": {
|
"node_modules/flatbuffers": {
|
||||||
"version": "23.3.3",
|
"version": "23.5.26",
|
||||||
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.5.26.tgz",
|
||||||
"integrity": "sha512-jmreOaAT1t55keaf+Z259Tvh8tR/Srry9K8dgCgvizhKSEr6gLGgaOJI2WFL5fkOpGOGRZwxUrlFn0GCmXUy6g=="
|
"integrity": "sha512-vE+SI9vrJDwi1oETtTIFldC/o9GsVKRM+s6EL0nQgxXlYV1Vc4Tk30hj4xGICftInKQKj1F3up2n8UbIVobISQ=="
|
||||||
},
|
},
|
||||||
"node_modules/flatted": {
|
"node_modules/flatted": {
|
||||||
"version": "3.2.7",
|
"version": "3.2.7",
|
||||||
@@ -2535,7 +2492,6 @@
|
|||||||
"version": "4.0.0",
|
"version": "4.0.0",
|
||||||
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
|
||||||
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
|
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
|
||||||
"dev": true,
|
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=8"
|
"node": ">=8"
|
||||||
}
|
}
|
||||||
@@ -3048,6 +3004,11 @@
|
|||||||
"url": "https://github.com/sponsors/sindresorhus"
|
"url": "https://github.com/sponsors/sindresorhus"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/lodash.assignwith": {
|
||||||
|
"version": "4.2.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/lodash.assignwith/-/lodash.assignwith-4.2.0.tgz",
|
||||||
|
"integrity": "sha512-ZznplvbvtjK2gMvnQ1BR/zqPFZmS6jbK4p+6Up4xcRYA7yMIwxHCfbTcrYxXKzzqLsQ05eJPVznEW3tuwV7k1g=="
|
||||||
|
},
|
||||||
"node_modules/lodash.camelcase": {
|
"node_modules/lodash.camelcase": {
|
||||||
"version": "4.3.0",
|
"version": "4.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
|
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
|
||||||
@@ -3668,14 +3629,6 @@
|
|||||||
"node": ">=8.10.0"
|
"node": ">=8.10.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/reduce-flatten": {
|
|
||||||
"version": "2.0.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/reduce-flatten/-/reduce-flatten-2.0.0.tgz",
|
|
||||||
"integrity": "sha512-EJ4UNY/U1t2P/2k6oqotuX2Cc3T6nxJwsM0N0asT7dhrtH1ltUxDn4NalSYmPE2rCkVpcf/X6R0wDwcFpzhd4w==",
|
|
||||||
"engines": {
|
|
||||||
"node": ">=6"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/regexp.prototype.flags": {
|
"node_modules/regexp.prototype.flags": {
|
||||||
"version": "1.5.0",
|
"version": "1.5.0",
|
||||||
"resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.5.0.tgz",
|
||||||
@@ -3965,6 +3918,14 @@
|
|||||||
"source-map": "^0.6.0"
|
"source-map": "^0.6.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/stream-read-all": {
|
||||||
|
"version": "3.0.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/stream-read-all/-/stream-read-all-3.0.1.tgz",
|
||||||
|
"integrity": "sha512-EWZT9XOceBPlVJRrYcykW8jyRSZYbkb/0ZK36uLEmoWVO5gxBOnntNTseNzfREsqxqdfEGQrD8SXQ3QWbBmq8A==",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=10"
|
||||||
|
}
|
||||||
|
},
|
||||||
"node_modules/string-width": {
|
"node_modules/string-width": {
|
||||||
"version": "4.2.3",
|
"version": "4.2.3",
|
||||||
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
|
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
|
||||||
@@ -4082,33 +4043,39 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/table-layout": {
|
"node_modules/table-layout": {
|
||||||
"version": "1.0.2",
|
"version": "3.0.2",
|
||||||
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-1.0.2.tgz",
|
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-3.0.2.tgz",
|
||||||
"integrity": "sha512-qd/R7n5rQTRFi+Zf2sk5XVVd9UQl6ZkduPFC3S7WEGJAmetDTjY3qPN50eSKzwuzEyQKy5TN2TiZdkIjos2L6A==",
|
"integrity": "sha512-rpyNZYRw+/C+dYkcQ3Pr+rLxW4CfHpXjPDnG7lYhdRoUcZTUt+KEsX+94RGp/aVp/MQU35JCITv2T/beY4m+hw==",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"array-back": "^4.0.1",
|
"@75lb/deep-merge": "^1.1.1",
|
||||||
"deep-extend": "~0.6.0",
|
"array-back": "^6.2.2",
|
||||||
"typical": "^5.2.0",
|
"command-line-args": "^5.2.1",
|
||||||
"wordwrapjs": "^4.0.0"
|
"command-line-usage": "^7.0.0",
|
||||||
|
"stream-read-all": "^3.0.1",
|
||||||
|
"typical": "^7.1.1",
|
||||||
|
"wordwrapjs": "^5.1.0"
|
||||||
|
},
|
||||||
|
"bin": {
|
||||||
|
"table-layout": "bin/cli.js"
|
||||||
},
|
},
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=8.0.0"
|
"node": ">=12.17"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/table-layout/node_modules/array-back": {
|
"node_modules/table-layout/node_modules/array-back": {
|
||||||
"version": "4.0.2",
|
"version": "6.2.2",
|
||||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
|
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
|
||||||
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg==",
|
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw==",
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=8"
|
"node": ">=12.17"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/table-layout/node_modules/typical": {
|
"node_modules/table-layout/node_modules/typical": {
|
||||||
"version": "5.2.0",
|
"version": "7.1.1",
|
||||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
|
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=8"
|
"node": ">=12.17"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/temp": {
|
"node_modules/temp": {
|
||||||
@@ -4553,23 +4520,11 @@
|
|||||||
"dev": true
|
"dev": true
|
||||||
},
|
},
|
||||||
"node_modules/wordwrapjs": {
|
"node_modules/wordwrapjs": {
|
||||||
"version": "4.0.1",
|
"version": "5.1.0",
|
||||||
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
|
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-5.1.0.tgz",
|
||||||
"integrity": "sha512-kKlNACbvHrkpIw6oPeYDSmdCTu2hdMHoyXLTcUKala++lx5Y+wjJ/e474Jqv5abnVmwxw08DiTuHmw69lJGksA==",
|
"integrity": "sha512-JNjcULU2e4KJwUNv6CHgI46UvDGitb6dGryHajXTDiLgg1/RiGoPSDw4kZfYnwGtEXf2ZMeIewDQgFGzkCB2Sg==",
|
||||||
"dependencies": {
|
|
||||||
"reduce-flatten": "^2.0.0",
|
|
||||||
"typical": "^5.2.0"
|
|
||||||
},
|
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=8.0.0"
|
"node": ">=12.17"
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/wordwrapjs/node_modules/typical": {
|
|
||||||
"version": "5.2.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
|
||||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
|
|
||||||
"engines": {
|
|
||||||
"node": ">=8"
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/workerpool": {
|
"node_modules/workerpool": {
|
||||||
@@ -4690,32 +4645,48 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
|
"@75lb/deep-merge": {
|
||||||
|
"version": "1.1.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/@75lb/deep-merge/-/deep-merge-1.1.1.tgz",
|
||||||
|
"integrity": "sha512-xvgv6pkMGBA6GwdyJbNAnDmfAIR/DfWhrj9jgWh3TY7gRm3KO46x/GPjRg6wJ0nOepwqrNxFfojebh0Df4h4Tw==",
|
||||||
|
"requires": {
|
||||||
|
"lodash.assignwith": "^4.2.0",
|
||||||
|
"typical": "^7.1.1"
|
||||||
|
},
|
||||||
|
"dependencies": {
|
||||||
|
"typical": {
|
||||||
|
"version": "7.1.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||||
|
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
"@apache-arrow/ts": {
|
"@apache-arrow/ts": {
|
||||||
"version": "12.0.0",
|
"version": "14.0.2",
|
||||||
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-12.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz",
|
||||||
"integrity": "sha512-ArJ3Fw5W9RAeNWuyCU2CdjL/nEAZSVDG1p3jz/ZtLo/q3NTz2w7HUCOJeszejH/5alGX+QirYrJ5c6BW++/P7g==",
|
"integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==",
|
||||||
"requires": {
|
"requires": {
|
||||||
"@types/command-line-args": "5.2.0",
|
"@types/command-line-args": "5.2.0",
|
||||||
"@types/command-line-usage": "5.0.2",
|
"@types/command-line-usage": "5.0.2",
|
||||||
"@types/node": "18.14.5",
|
"@types/node": "20.3.0",
|
||||||
"@types/pad-left": "2.1.1",
|
"@types/pad-left": "2.1.1",
|
||||||
"command-line-args": "5.2.1",
|
"command-line-args": "5.2.1",
|
||||||
"command-line-usage": "6.1.3",
|
"command-line-usage": "7.0.1",
|
||||||
"flatbuffers": "23.3.3",
|
"flatbuffers": "23.5.26",
|
||||||
"json-bignum": "^0.0.3",
|
"json-bignum": "^0.0.3",
|
||||||
"pad-left": "^2.1.0",
|
"pad-left": "^2.1.0",
|
||||||
"tslib": "^2.5.0"
|
"tslib": "^2.5.3"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@types/node": {
|
"@types/node": {
|
||||||
"version": "18.14.5",
|
"version": "20.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
|
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||||
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
|
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||||
},
|
},
|
||||||
"tslib": {
|
"tslib": {
|
||||||
"version": "2.5.0",
|
"version": "2.6.2",
|
||||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
|
||||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@@ -4869,33 +4840,33 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-darwin-arm64": {
|
"@lancedb/vectordb-darwin-arm64": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.2.tgz",
|
||||||
"integrity": "sha512-nvyj7xNX2/wb/PH5TjyhLR/NQ1jVuoBw2B5UaSg7qf8Tnm5SSXWQ7F25RVKcKwh72fz1qB+CWW24ftZnRzbT/Q==",
|
"integrity": "sha512-Ec73W2IHnZK4VC8g/7JyLbgcwcpNb9YI20yEhfTjEEFjJKoElZhDD/ZgghC3QQSRnrXFTxDzPK1V9BDT5QB2Hg==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-darwin-x64": {
|
"@lancedb/vectordb-darwin-x64": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.2.tgz",
|
||||||
"integrity": "sha512-7CW+nILyPHp6cua0Rl0xaTDWw/vajEn/jCsEjFYgDmE+rtf5Z5Fum41FxR9C2TtIAvUK+nWb5mkYeOLqU6vRvg==",
|
"integrity": "sha512-tj0JJlOfOdeSAfmM7EZhrhFdCFjoq9Bmrjt4741BNjtF+Nv4Otl53lFtUQrexTr4oh/E1yY1qaydJ7K++8u3UA==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.2.tgz",
|
||||||
"integrity": "sha512-MmhwbacKxZPkLwwOqysVY8mUb8lFoyFIPlYhSLV4xS1C8X4HWALljIul1qMl1RYudp9Uc3PsOzRexl+OvCGfUw==",
|
"integrity": "sha512-OQ7ra5Q5RrLLwxIyI338KfQ2sSl8NJfqAHWvwiMtjCYFFYxIJGjX7U0I2MjSEPqJ5/ZoyjV4mjsvs0G1q20u+Q==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-linux-x64-gnu": {
|
"@lancedb/vectordb-linux-x64-gnu": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.2.tgz",
|
||||||
"integrity": "sha512-OrNlsKi/QPw59Po040oRKn8IuqFEk4upc/4FaFKqVkcmQjjZrMg5Kgy9ZfWIhHdAnWXXggZZIPArpt0X1B0ceA==",
|
"integrity": "sha512-9tgIFSOYqNJzonnYsQr7v2gGdJm8aZ62UsVX2SWAIVhypoP4A05tAlbzjBgKO3R5xy5gpcW8tt/Pt8IsYWON7Q==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-win32-x64-msvc": {
|
"@lancedb/vectordb-win32-x64-msvc": {
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.2.tgz",
|
||||||
"integrity": "sha512-lIT0A7a6eqX51IfGyhECtpXXgsr//kgbd+HZbcCdPy2GMmNezSch/7V22zExDSpF32hX8WfgcTLYCVWVilggDQ==",
|
"integrity": "sha512-jhG3MqZ3r8BexXANLRNX57RAnCZT9psdSBORG3KTu5qe2xaunRlJNSA2kk8a79tf+gtUT/BAmMiXMzAi/dwq8w==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@neon-rs/cli": {
|
"@neon-rs/cli": {
|
||||||
@@ -5268,7 +5239,6 @@
|
|||||||
"version": "4.3.0",
|
"version": "4.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
|
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
|
||||||
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
|
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
"requires": {
|
||||||
"color-convert": "^2.0.1"
|
"color-convert": "^2.0.1"
|
||||||
}
|
}
|
||||||
@@ -5284,31 +5254,31 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"apache-arrow": {
|
"apache-arrow": {
|
||||||
"version": "12.0.0",
|
"version": "14.0.2",
|
||||||
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-12.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz",
|
||||||
"integrity": "sha512-uI+hnZZsGfNJiR/wG8j5yPQuDjmOHx4hZpkA743G4x3TlFrCpA3MMX7KUkIOIw0e/CwZ8NYuaMzaQsblA47qVA==",
|
"integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==",
|
||||||
"requires": {
|
"requires": {
|
||||||
"@types/command-line-args": "5.2.0",
|
"@types/command-line-args": "5.2.0",
|
||||||
"@types/command-line-usage": "5.0.2",
|
"@types/command-line-usage": "5.0.2",
|
||||||
"@types/node": "18.14.5",
|
"@types/node": "20.3.0",
|
||||||
"@types/pad-left": "2.1.1",
|
"@types/pad-left": "2.1.1",
|
||||||
"command-line-args": "5.2.1",
|
"command-line-args": "5.2.1",
|
||||||
"command-line-usage": "6.1.3",
|
"command-line-usage": "7.0.1",
|
||||||
"flatbuffers": "23.3.3",
|
"flatbuffers": "23.5.26",
|
||||||
"json-bignum": "^0.0.3",
|
"json-bignum": "^0.0.3",
|
||||||
"pad-left": "^2.1.0",
|
"pad-left": "^2.1.0",
|
||||||
"tslib": "^2.5.0"
|
"tslib": "^2.5.3"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@types/node": {
|
"@types/node": {
|
||||||
"version": "18.14.5",
|
"version": "20.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
|
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||||
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
|
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||||
},
|
},
|
||||||
"tslib": {
|
"tslib": {
|
||||||
"version": "2.5.0",
|
"version": "2.6.2",
|
||||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
|
||||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@@ -5505,7 +5475,6 @@
|
|||||||
"version": "4.1.2",
|
"version": "4.1.2",
|
||||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
||||||
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
|
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
"requires": {
|
||||||
"ansi-styles": "^4.1.0",
|
"ansi-styles": "^4.1.0",
|
||||||
"supports-color": "^7.1.0"
|
"supports-color": "^7.1.0"
|
||||||
@@ -5515,13 +5484,20 @@
|
|||||||
"version": "7.2.0",
|
"version": "7.2.0",
|
||||||
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
|
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
|
||||||
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
|
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
"requires": {
|
||||||
"has-flag": "^4.0.0"
|
"has-flag": "^4.0.0"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"chalk-template": {
|
||||||
|
"version": "0.4.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/chalk-template/-/chalk-template-0.4.0.tgz",
|
||||||
|
"integrity": "sha512-/ghrgmhfY8RaSdeo43hNXxpoHAtxdbskUHjPpfqUWGttFgycUhYPGx3YZBCnUCvOa7Doivn1IZec3DEGFoMgLg==",
|
||||||
|
"requires": {
|
||||||
|
"chalk": "^4.1.2"
|
||||||
|
}
|
||||||
|
},
|
||||||
"check-error": {
|
"check-error": {
|
||||||
"version": "1.0.2",
|
"version": "1.0.2",
|
||||||
"resolved": "https://registry.npmjs.org/check-error/-/check-error-1.0.2.tgz",
|
"resolved": "https://registry.npmjs.org/check-error/-/check-error-1.0.2.tgz",
|
||||||
@@ -5559,7 +5535,6 @@
|
|||||||
"version": "2.0.1",
|
"version": "2.0.1",
|
||||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
||||||
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
|
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
"requires": {
|
||||||
"color-name": "~1.1.4"
|
"color-name": "~1.1.4"
|
||||||
}
|
}
|
||||||
@@ -5567,8 +5542,7 @@
|
|||||||
"color-name": {
|
"color-name": {
|
||||||
"version": "1.1.4",
|
"version": "1.1.4",
|
||||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
|
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
|
||||||
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
|
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA=="
|
||||||
"dev": true
|
|
||||||
},
|
},
|
||||||
"combined-stream": {
|
"combined-stream": {
|
||||||
"version": "1.0.8",
|
"version": "1.0.8",
|
||||||
@@ -5590,74 +5564,25 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"command-line-usage": {
|
"command-line-usage": {
|
||||||
"version": "6.1.3",
|
"version": "7.0.1",
|
||||||
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-6.1.3.tgz",
|
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-7.0.1.tgz",
|
||||||
"integrity": "sha512-sH5ZSPr+7UStsloltmDh7Ce5fb8XPlHyoPzTpyyMuYCtervL65+ubVZ6Q61cFtFl62UyJlc8/JwERRbAFPUqgw==",
|
"integrity": "sha512-NCyznE//MuTjwi3y84QVUGEOT+P5oto1e1Pk/jFPVdPPfsG03qpTIl3yw6etR+v73d0lXsoojRpvbru2sqePxQ==",
|
||||||
"requires": {
|
"requires": {
|
||||||
"array-back": "^4.0.2",
|
"array-back": "^6.2.2",
|
||||||
"chalk": "^2.4.2",
|
"chalk-template": "^0.4.0",
|
||||||
"table-layout": "^1.0.2",
|
"table-layout": "^3.0.0",
|
||||||
"typical": "^5.2.0"
|
"typical": "^7.1.1"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"ansi-styles": {
|
|
||||||
"version": "3.2.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
|
|
||||||
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
|
|
||||||
"requires": {
|
|
||||||
"color-convert": "^1.9.0"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"array-back": {
|
"array-back": {
|
||||||
"version": "4.0.2",
|
"version": "6.2.2",
|
||||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
|
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
|
||||||
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg=="
|
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw=="
|
||||||
},
|
|
||||||
"chalk": {
|
|
||||||
"version": "2.4.2",
|
|
||||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
|
|
||||||
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
|
|
||||||
"requires": {
|
|
||||||
"ansi-styles": "^3.2.1",
|
|
||||||
"escape-string-regexp": "^1.0.5",
|
|
||||||
"supports-color": "^5.3.0"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"color-convert": {
|
|
||||||
"version": "1.9.3",
|
|
||||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
|
|
||||||
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
|
|
||||||
"requires": {
|
|
||||||
"color-name": "1.1.3"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"color-name": {
|
|
||||||
"version": "1.1.3",
|
|
||||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
|
|
||||||
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw=="
|
|
||||||
},
|
|
||||||
"escape-string-regexp": {
|
|
||||||
"version": "1.0.5",
|
|
||||||
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
|
|
||||||
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg=="
|
|
||||||
},
|
|
||||||
"has-flag": {
|
|
||||||
"version": "3.0.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
|
|
||||||
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw=="
|
|
||||||
},
|
|
||||||
"supports-color": {
|
|
||||||
"version": "5.5.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
|
|
||||||
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
|
|
||||||
"requires": {
|
|
||||||
"has-flag": "^3.0.0"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"typical": {
|
"typical": {
|
||||||
"version": "5.2.0",
|
"version": "7.1.1",
|
||||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
|
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@@ -5716,11 +5641,6 @@
|
|||||||
"type-detect": "^4.0.0"
|
"type-detect": "^4.0.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"deep-extend": {
|
|
||||||
"version": "0.6.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
|
|
||||||
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA=="
|
|
||||||
},
|
|
||||||
"deep-is": {
|
"deep-is": {
|
||||||
"version": "0.1.4",
|
"version": "0.1.4",
|
||||||
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
|
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
|
||||||
@@ -6297,9 +6217,9 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"flatbuffers": {
|
"flatbuffers": {
|
||||||
"version": "23.3.3",
|
"version": "23.5.26",
|
||||||
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.3.3.tgz",
|
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.5.26.tgz",
|
||||||
"integrity": "sha512-jmreOaAT1t55keaf+Z259Tvh8tR/Srry9K8dgCgvizhKSEr6gLGgaOJI2WFL5fkOpGOGRZwxUrlFn0GCmXUy6g=="
|
"integrity": "sha512-vE+SI9vrJDwi1oETtTIFldC/o9GsVKRM+s6EL0nQgxXlYV1Vc4Tk30hj4xGICftInKQKj1F3up2n8UbIVobISQ=="
|
||||||
},
|
},
|
||||||
"flatted": {
|
"flatted": {
|
||||||
"version": "3.2.7",
|
"version": "3.2.7",
|
||||||
@@ -6502,8 +6422,7 @@
|
|||||||
"has-flag": {
|
"has-flag": {
|
||||||
"version": "4.0.0",
|
"version": "4.0.0",
|
||||||
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
|
||||||
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
|
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ=="
|
||||||
"dev": true
|
|
||||||
},
|
},
|
||||||
"has-property-descriptors": {
|
"has-property-descriptors": {
|
||||||
"version": "1.0.0",
|
"version": "1.0.0",
|
||||||
@@ -6856,6 +6775,11 @@
|
|||||||
"p-locate": "^5.0.0"
|
"p-locate": "^5.0.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"lodash.assignwith": {
|
||||||
|
"version": "4.2.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/lodash.assignwith/-/lodash.assignwith-4.2.0.tgz",
|
||||||
|
"integrity": "sha512-ZznplvbvtjK2gMvnQ1BR/zqPFZmS6jbK4p+6Up4xcRYA7yMIwxHCfbTcrYxXKzzqLsQ05eJPVznEW3tuwV7k1g=="
|
||||||
|
},
|
||||||
"lodash.camelcase": {
|
"lodash.camelcase": {
|
||||||
"version": "4.3.0",
|
"version": "4.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
|
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
|
||||||
@@ -7323,11 +7247,6 @@
|
|||||||
"picomatch": "^2.2.1"
|
"picomatch": "^2.2.1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"reduce-flatten": {
|
|
||||||
"version": "2.0.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/reduce-flatten/-/reduce-flatten-2.0.0.tgz",
|
|
||||||
"integrity": "sha512-EJ4UNY/U1t2P/2k6oqotuX2Cc3T6nxJwsM0N0asT7dhrtH1ltUxDn4NalSYmPE2rCkVpcf/X6R0wDwcFpzhd4w=="
|
|
||||||
},
|
|
||||||
"regexp.prototype.flags": {
|
"regexp.prototype.flags": {
|
||||||
"version": "1.5.0",
|
"version": "1.5.0",
|
||||||
"resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.5.0.tgz",
|
||||||
@@ -7523,6 +7442,11 @@
|
|||||||
"source-map": "^0.6.0"
|
"source-map": "^0.6.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"stream-read-all": {
|
||||||
|
"version": "3.0.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/stream-read-all/-/stream-read-all-3.0.1.tgz",
|
||||||
|
"integrity": "sha512-EWZT9XOceBPlVJRrYcykW8jyRSZYbkb/0ZK36uLEmoWVO5gxBOnntNTseNzfREsqxqdfEGQrD8SXQ3QWbBmq8A=="
|
||||||
|
},
|
||||||
"string-width": {
|
"string-width": {
|
||||||
"version": "4.2.3",
|
"version": "4.2.3",
|
||||||
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
|
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
|
||||||
@@ -7604,25 +7528,28 @@
|
|||||||
"dev": true
|
"dev": true
|
||||||
},
|
},
|
||||||
"table-layout": {
|
"table-layout": {
|
||||||
"version": "1.0.2",
|
"version": "3.0.2",
|
||||||
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-1.0.2.tgz",
|
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-3.0.2.tgz",
|
||||||
"integrity": "sha512-qd/R7n5rQTRFi+Zf2sk5XVVd9UQl6ZkduPFC3S7WEGJAmetDTjY3qPN50eSKzwuzEyQKy5TN2TiZdkIjos2L6A==",
|
"integrity": "sha512-rpyNZYRw+/C+dYkcQ3Pr+rLxW4CfHpXjPDnG7lYhdRoUcZTUt+KEsX+94RGp/aVp/MQU35JCITv2T/beY4m+hw==",
|
||||||
"requires": {
|
"requires": {
|
||||||
"array-back": "^4.0.1",
|
"@75lb/deep-merge": "^1.1.1",
|
||||||
"deep-extend": "~0.6.0",
|
"array-back": "^6.2.2",
|
||||||
"typical": "^5.2.0",
|
"command-line-args": "^5.2.1",
|
||||||
"wordwrapjs": "^4.0.0"
|
"command-line-usage": "^7.0.0",
|
||||||
|
"stream-read-all": "^3.0.1",
|
||||||
|
"typical": "^7.1.1",
|
||||||
|
"wordwrapjs": "^5.1.0"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"array-back": {
|
"array-back": {
|
||||||
"version": "4.0.2",
|
"version": "6.2.2",
|
||||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
|
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
|
||||||
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg=="
|
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw=="
|
||||||
},
|
},
|
||||||
"typical": {
|
"typical": {
|
||||||
"version": "5.2.0",
|
"version": "7.1.1",
|
||||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
|
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@@ -7940,20 +7867,9 @@
|
|||||||
"dev": true
|
"dev": true
|
||||||
},
|
},
|
||||||
"wordwrapjs": {
|
"wordwrapjs": {
|
||||||
"version": "4.0.1",
|
"version": "5.1.0",
|
||||||
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
|
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-5.1.0.tgz",
|
||||||
"integrity": "sha512-kKlNACbvHrkpIw6oPeYDSmdCTu2hdMHoyXLTcUKala++lx5Y+wjJ/e474Jqv5abnVmwxw08DiTuHmw69lJGksA==",
|
"integrity": "sha512-JNjcULU2e4KJwUNv6CHgI46UvDGitb6dGryHajXTDiLgg1/RiGoPSDw4kZfYnwGtEXf2ZMeIewDQgFGzkCB2Sg=="
|
||||||
"requires": {
|
|
||||||
"reduce-flatten": "^2.0.0",
|
|
||||||
"typical": "^5.2.0"
|
|
||||||
},
|
|
||||||
"dependencies": {
|
|
||||||
"typical": {
|
|
||||||
"version": "5.2.0",
|
|
||||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
|
||||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"workerpool": {
|
"workerpool": {
|
||||||
"version": "6.2.1",
|
"version": "6.2.1",
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.3.3",
|
"version": "0.4.2",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
@@ -57,9 +57,9 @@
|
|||||||
"uuid": "^9.0.0"
|
"uuid": "^9.0.0"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@apache-arrow/ts": "^12.0.0",
|
"@apache-arrow/ts": "^14.0.2",
|
||||||
"@neon-rs/load": "^0.0.74",
|
"@neon-rs/load": "^0.0.74",
|
||||||
"apache-arrow": "^12.0.0",
|
"apache-arrow": "^14.0.2",
|
||||||
"axios": "^1.4.0"
|
"axios": "^1.4.0"
|
||||||
},
|
},
|
||||||
"os": [
|
"os": [
|
||||||
@@ -81,10 +81,10 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.3.3",
|
"@lancedb/vectordb-darwin-arm64": "0.4.2",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.3.3",
|
"@lancedb/vectordb-darwin-x64": "0.4.2",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.3",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.4.2",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.3",
|
"@lancedb/vectordb-linux-x64-gnu": "0.4.2",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.3"
|
"@lancedb/vectordb-win32-x64-msvc": "0.4.2"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -17,10 +17,9 @@ import {
|
|||||||
Float32,
|
Float32,
|
||||||
makeBuilder,
|
makeBuilder,
|
||||||
RecordBatchFileWriter,
|
RecordBatchFileWriter,
|
||||||
Utf8,
|
Utf8, type Vector,
|
||||||
type Vector,
|
|
||||||
FixedSizeList,
|
FixedSizeList,
|
||||||
vectorFromArray, type Schema, Table as ArrowTable, RecordBatchStreamWriter
|
vectorFromArray, type Schema, Table as ArrowTable, RecordBatchStreamWriter, List, Float64, RecordBatch, makeData, Struct
|
||||||
} from 'apache-arrow'
|
} from 'apache-arrow'
|
||||||
import { type EmbeddingFunction } from './index'
|
import { type EmbeddingFunction } from './index'
|
||||||
|
|
||||||
@@ -59,7 +58,26 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
|
|||||||
if (typeof values[0] === 'string') {
|
if (typeof values[0] === 'string') {
|
||||||
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
|
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
|
||||||
records[columnsKey] = vectorFromArray(values, new Utf8())
|
records[columnsKey] = vectorFromArray(values, new Utf8())
|
||||||
|
} else if (Array.isArray(values[0])) {
|
||||||
|
const elementType = getElementType(values[0])
|
||||||
|
let innerType
|
||||||
|
if (elementType === 'string') {
|
||||||
|
innerType = new Utf8()
|
||||||
|
} else if (elementType === 'number') {
|
||||||
|
innerType = new Float64()
|
||||||
|
} else {
|
||||||
|
// TODO: pass in schema if it exists, else keep going to the next element
|
||||||
|
throw new Error(`Unsupported array element type ${elementType}`)
|
||||||
|
}
|
||||||
|
const listBuilder = makeBuilder({
|
||||||
|
type: new List(new Field('item', innerType, true))
|
||||||
|
})
|
||||||
|
for (const value of values) {
|
||||||
|
listBuilder.append(value)
|
||||||
|
}
|
||||||
|
records[columnsKey] = listBuilder.finish().toVector()
|
||||||
} else {
|
} else {
|
||||||
|
// TODO if this is a struct field then recursively align the subfields
|
||||||
records[columnsKey] = vectorFromArray(values)
|
records[columnsKey] = vectorFromArray(values)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -68,6 +86,14 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
|
|||||||
return new ArrowTable(records)
|
return new ArrowTable(records)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function getElementType (arr: any[]): string {
|
||||||
|
if (arr.length === 0) {
|
||||||
|
return 'undefined'
|
||||||
|
}
|
||||||
|
|
||||||
|
return typeof arr[0]
|
||||||
|
}
|
||||||
|
|
||||||
// Creates a new Arrow ListBuilder that stores a Vector column
|
// Creates a new Arrow ListBuilder that stores a Vector column
|
||||||
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
|
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
|
||||||
return makeBuilder({
|
return makeBuilder({
|
||||||
@@ -84,21 +110,27 @@ function newVectorType (dim: number): FixedSizeList<Float32> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Converts an Array of records into Arrow IPC format
|
// Converts an Array of records into Arrow IPC format
|
||||||
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
|
||||||
const table = await convertToTable(data, embeddings)
|
let table = await convertToTable(data, embeddings)
|
||||||
|
if (schema !== undefined) {
|
||||||
|
table = alignTable(table, schema)
|
||||||
|
}
|
||||||
const writer = RecordBatchFileWriter.writeAll(table)
|
const writer = RecordBatchFileWriter.writeAll(table)
|
||||||
return Buffer.from(await writer.toUint8Array())
|
return Buffer.from(await writer.toUint8Array())
|
||||||
}
|
}
|
||||||
|
|
||||||
// Converts an Array of records into Arrow IPC stream format
|
// Converts an Array of records into Arrow IPC stream format
|
||||||
export async function fromRecordsToStreamBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
export async function fromRecordsToStreamBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
|
||||||
const table = await convertToTable(data, embeddings)
|
let table = await convertToTable(data, embeddings)
|
||||||
|
if (schema !== undefined) {
|
||||||
|
table = alignTable(table, schema)
|
||||||
|
}
|
||||||
const writer = RecordBatchStreamWriter.writeAll(table)
|
const writer = RecordBatchStreamWriter.writeAll(table)
|
||||||
return Buffer.from(await writer.toUint8Array())
|
return Buffer.from(await writer.toUint8Array())
|
||||||
}
|
}
|
||||||
|
|
||||||
// Converts an Arrow Table into Arrow IPC format
|
// Converts an Arrow Table into Arrow IPC format
|
||||||
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
|
||||||
if (embeddings !== undefined) {
|
if (embeddings !== undefined) {
|
||||||
const source = table.getChild(embeddings.sourceColumn)
|
const source = table.getChild(embeddings.sourceColumn)
|
||||||
|
|
||||||
@@ -110,12 +142,15 @@ export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: Embe
|
|||||||
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
||||||
table = table.assign(new ArrowTable({ vector: column }))
|
table = table.assign(new ArrowTable({ vector: column }))
|
||||||
}
|
}
|
||||||
|
if (schema !== undefined) {
|
||||||
|
table = alignTable(table, schema)
|
||||||
|
}
|
||||||
const writer = RecordBatchFileWriter.writeAll(table)
|
const writer = RecordBatchFileWriter.writeAll(table)
|
||||||
return Buffer.from(await writer.toUint8Array())
|
return Buffer.from(await writer.toUint8Array())
|
||||||
}
|
}
|
||||||
|
|
||||||
// Converts an Arrow Table into Arrow IPC stream format
|
// Converts an Arrow Table into Arrow IPC stream format
|
||||||
export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
|
||||||
if (embeddings !== undefined) {
|
if (embeddings !== undefined) {
|
||||||
const source = table.getChild(embeddings.sourceColumn)
|
const source = table.getChild(embeddings.sourceColumn)
|
||||||
|
|
||||||
@@ -127,10 +162,36 @@ export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?
|
|||||||
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
||||||
table = table.assign(new ArrowTable({ vector: column }))
|
table = table.assign(new ArrowTable({ vector: column }))
|
||||||
}
|
}
|
||||||
|
if (schema !== undefined) {
|
||||||
|
table = alignTable(table, schema)
|
||||||
|
}
|
||||||
const writer = RecordBatchStreamWriter.writeAll(table)
|
const writer = RecordBatchStreamWriter.writeAll(table)
|
||||||
return Buffer.from(await writer.toUint8Array())
|
return Buffer.from(await writer.toUint8Array())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function alignBatch (batch: RecordBatch, schema: Schema): RecordBatch {
|
||||||
|
const alignedChildren = []
|
||||||
|
for (const field of schema.fields) {
|
||||||
|
const indexInBatch = batch.schema.fields?.findIndex((f) => f.name === field.name)
|
||||||
|
if (indexInBatch < 0) {
|
||||||
|
throw new Error(`The column ${field.name} was not found in the Arrow Table`)
|
||||||
|
}
|
||||||
|
alignedChildren.push(batch.data.children[indexInBatch])
|
||||||
|
}
|
||||||
|
const newData = makeData({
|
||||||
|
type: new Struct(schema.fields),
|
||||||
|
length: batch.numRows,
|
||||||
|
nullCount: batch.nullCount,
|
||||||
|
children: alignedChildren
|
||||||
|
})
|
||||||
|
return new RecordBatch(schema, newData)
|
||||||
|
}
|
||||||
|
|
||||||
|
function alignTable (table: ArrowTable, schema: Schema): ArrowTable {
|
||||||
|
const alignedBatches = table.batches.map(batch => alignBatch(batch, schema))
|
||||||
|
return new ArrowTable(schema, alignedBatches)
|
||||||
|
}
|
||||||
|
|
||||||
// Creates an empty Arrow Table
|
// Creates an empty Arrow Table
|
||||||
export function createEmptyTable (schema: Schema): ArrowTable {
|
export function createEmptyTable (schema: Schema): ArrowTable {
|
||||||
return new ArrowTable(schema)
|
return new ArrowTable(schema)
|
||||||
|
|||||||
@@ -14,16 +14,18 @@
|
|||||||
|
|
||||||
import {
|
import {
|
||||||
type Schema,
|
type Schema,
|
||||||
Table as ArrowTable
|
Table as ArrowTable,
|
||||||
|
tableFromIPC
|
||||||
} from 'apache-arrow'
|
} from 'apache-arrow'
|
||||||
import { createEmptyTable, fromRecordsToBuffer, fromTableToBuffer } from './arrow'
|
import { createEmptyTable, fromRecordsToBuffer, fromTableToBuffer } from './arrow'
|
||||||
import type { EmbeddingFunction } from './embedding/embedding_function'
|
import type { EmbeddingFunction } from './embedding/embedding_function'
|
||||||
import { RemoteConnection } from './remote'
|
import { RemoteConnection } from './remote'
|
||||||
import { Query } from './query'
|
import { Query } from './query'
|
||||||
import { isEmbeddingFunction } from './embedding/embedding_function'
|
import { isEmbeddingFunction } from './embedding/embedding_function'
|
||||||
|
import { type Literal, toSQL } from './util'
|
||||||
|
|
||||||
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles } = require('../native.js')
|
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateScalarIndex, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats, tableSchema } = require('../native.js')
|
||||||
|
|
||||||
export { Query }
|
export { Query }
|
||||||
export type { EmbeddingFunction }
|
export type { EmbeddingFunction }
|
||||||
@@ -222,6 +224,56 @@ export interface Table<T = number[]> {
|
|||||||
*/
|
*/
|
||||||
createIndex: (indexParams: VectorIndexParams) => Promise<any>
|
createIndex: (indexParams: VectorIndexParams) => Promise<any>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create a scalar index on this Table for the given column
|
||||||
|
*
|
||||||
|
* @param column The column to index
|
||||||
|
* @param replace If false, fail if an index already exists on the column
|
||||||
|
*
|
||||||
|
* Scalar indices, like vector indices, can be used to speed up scans. A scalar
|
||||||
|
* index can speed up scans that contain filter expressions on the indexed column.
|
||||||
|
* For example, the following scan will be faster if the column `my_col` has
|
||||||
|
* a scalar index:
|
||||||
|
*
|
||||||
|
* ```ts
|
||||||
|
* const con = await lancedb.connect('./.lancedb');
|
||||||
|
* const table = await con.openTable('images');
|
||||||
|
* const results = await table.where('my_col = 7').execute();
|
||||||
|
* ```
|
||||||
|
*
|
||||||
|
* Scalar indices can also speed up scans containing a vector search and a
|
||||||
|
* prefilter:
|
||||||
|
*
|
||||||
|
* ```ts
|
||||||
|
* const con = await lancedb.connect('././lancedb');
|
||||||
|
* const table = await con.openTable('images');
|
||||||
|
* const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true);
|
||||||
|
* ```
|
||||||
|
*
|
||||||
|
* Scalar indices can only speed up scans for basic filters using
|
||||||
|
* equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set
|
||||||
|
* membership (e.g. `my_col IN (0, 1, 2)`)
|
||||||
|
*
|
||||||
|
* Scalar indices can be used if the filter contains multiple indexed columns and
|
||||||
|
* the filter criteria are AND'd or OR'd together
|
||||||
|
* (e.g. `my_col < 0 AND other_col> 100`)
|
||||||
|
*
|
||||||
|
* Scalar indices may be used if the filter contains non-indexed columns but,
|
||||||
|
* depending on the structure of the filter, they may not be usable. For example,
|
||||||
|
* if the column `not_indexed` does not have a scalar index then the filter
|
||||||
|
* `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on
|
||||||
|
* `my_col`.
|
||||||
|
*
|
||||||
|
* @examples
|
||||||
|
*
|
||||||
|
* ```ts
|
||||||
|
* const con = await lancedb.connect('././lancedb')
|
||||||
|
* const table = await con.openTable('images')
|
||||||
|
* await table.createScalarIndex('my_col')
|
||||||
|
* ```
|
||||||
|
*/
|
||||||
|
createScalarIndex: (column: string, replace: boolean) => Promise<void>
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the number of rows in this table.
|
* Returns the number of rows in this table.
|
||||||
*/
|
*/
|
||||||
@@ -260,6 +312,90 @@ export interface Table<T = number[]> {
|
|||||||
* ```
|
* ```
|
||||||
*/
|
*/
|
||||||
delete: (filter: string) => Promise<void>
|
delete: (filter: string) => Promise<void>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Update rows in this table.
|
||||||
|
*
|
||||||
|
* This can be used to update a single row, many rows, all rows, or
|
||||||
|
* sometimes no rows (if your predicate matches nothing).
|
||||||
|
*
|
||||||
|
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
|
||||||
|
*
|
||||||
|
* @examples
|
||||||
|
*
|
||||||
|
* ```ts
|
||||||
|
* const con = await lancedb.connect("./.lancedb")
|
||||||
|
* const data = [
|
||||||
|
* {id: 1, vector: [3, 3], name: 'Ye'},
|
||||||
|
* {id: 2, vector: [4, 4], name: 'Mike'},
|
||||||
|
* ];
|
||||||
|
* const tbl = await con.createTable("my_table", data)
|
||||||
|
*
|
||||||
|
* await tbl.update({
|
||||||
|
* where: "id = 2",
|
||||||
|
* values: { vector: [2, 2], name: "Michael" },
|
||||||
|
* })
|
||||||
|
*
|
||||||
|
* let results = await tbl.search([1, 1]).execute();
|
||||||
|
* // Returns [
|
||||||
|
* // {id: 2, vector: [2, 2], name: 'Michael'}
|
||||||
|
* // {id: 1, vector: [3, 3], name: 'Ye'}
|
||||||
|
* // ]
|
||||||
|
* ```
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* List the indicies on this table.
|
||||||
|
*/
|
||||||
|
listIndices: () => Promise<VectorIndex[]>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get statistics about an index.
|
||||||
|
*/
|
||||||
|
indexStats: (indexUuid: string) => Promise<IndexStats>
|
||||||
|
|
||||||
|
schema: Promise<Schema>
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface UpdateArgs {
|
||||||
|
/**
|
||||||
|
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
|
||||||
|
* in which case all rows will be updated.
|
||||||
|
*/
|
||||||
|
where?: string
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A key-value map of updates. The keys are the column names, and the values are the
|
||||||
|
* new values to set
|
||||||
|
*/
|
||||||
|
values: Record<string, Literal>
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface UpdateSqlArgs {
|
||||||
|
/**
|
||||||
|
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
|
||||||
|
* in which case all rows will be updated.
|
||||||
|
*/
|
||||||
|
where?: string
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A key-value map of updates. The keys are the column names, and the values are the
|
||||||
|
* new values to set as SQL expressions.
|
||||||
|
*/
|
||||||
|
valuesSql: Record<string, string>
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface VectorIndex {
|
||||||
|
columns: string[]
|
||||||
|
name: string
|
||||||
|
uuid: string
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface IndexStats {
|
||||||
|
numIndexedRows: number | null
|
||||||
|
numUnindexedRows: number | null
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -349,10 +485,10 @@ export class LocalConnection implements Connection {
|
|||||||
}
|
}
|
||||||
buffer = await fromTableToBuffer(createEmptyTable(schema))
|
buffer = await fromTableToBuffer(createEmptyTable(schema))
|
||||||
} else if (data instanceof ArrowTable) {
|
} else if (data instanceof ArrowTable) {
|
||||||
buffer = await fromTableToBuffer(data, embeddingFunction)
|
buffer = await fromTableToBuffer(data, embeddingFunction, schema)
|
||||||
} else {
|
} else {
|
||||||
// data is Array<Record<...>>
|
// data is Array<Record<...>>
|
||||||
buffer = await fromRecordsToBuffer(data, embeddingFunction)
|
buffer = await fromRecordsToBuffer(data, embeddingFunction, schema)
|
||||||
}
|
}
|
||||||
|
|
||||||
const tbl = await tableCreate.call(this._db, name, buffer, writeOptions?.writeMode?.toString(), ...getAwsArgs(this._options()))
|
const tbl = await tableCreate.call(this._db, name, buffer, writeOptions?.writeMode?.toString(), ...getAwsArgs(this._options()))
|
||||||
@@ -375,6 +511,7 @@ export class LocalConnection implements Connection {
|
|||||||
export class LocalTable<T = number[]> implements Table<T> {
|
export class LocalTable<T = number[]> implements Table<T> {
|
||||||
private _tbl: any
|
private _tbl: any
|
||||||
private readonly _name: string
|
private readonly _name: string
|
||||||
|
private readonly _isElectron: boolean
|
||||||
private readonly _embeddings?: EmbeddingFunction<T>
|
private readonly _embeddings?: EmbeddingFunction<T>
|
||||||
private readonly _options: () => ConnectionOptions
|
private readonly _options: () => ConnectionOptions
|
||||||
|
|
||||||
@@ -391,6 +528,7 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
this._name = name
|
this._name = name
|
||||||
this._embeddings = embeddings
|
this._embeddings = embeddings
|
||||||
this._options = () => options
|
this._options = () => options
|
||||||
|
this._isElectron = this.checkElectron()
|
||||||
}
|
}
|
||||||
|
|
||||||
get name (): string {
|
get name (): string {
|
||||||
@@ -405,6 +543,16 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
return new Query(query, this._tbl, this._embeddings)
|
return new Query(query, this._tbl, this._embeddings)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a filter query to find all rows matching the specified criteria
|
||||||
|
* @param value The filter criteria (like SQL where clause syntax)
|
||||||
|
*/
|
||||||
|
filter (value: string): Query<T> {
|
||||||
|
return new Query(undefined, this._tbl, this._embeddings).filter(value)
|
||||||
|
}
|
||||||
|
|
||||||
|
where = this.filter
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Insert records into this Table.
|
* Insert records into this Table.
|
||||||
*
|
*
|
||||||
@@ -412,9 +560,10 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
* @return The number of rows added to the table
|
* @return The number of rows added to the table
|
||||||
*/
|
*/
|
||||||
async add (data: Array<Record<string, unknown>>): Promise<number> {
|
async add (data: Array<Record<string, unknown>>): Promise<number> {
|
||||||
|
const schema = await this.schema
|
||||||
return tableAdd.call(
|
return tableAdd.call(
|
||||||
this._tbl,
|
this._tbl,
|
||||||
await fromRecordsToBuffer(data, this._embeddings),
|
await fromRecordsToBuffer(data, this._embeddings, schema),
|
||||||
WriteMode.Append.toString(),
|
WriteMode.Append.toString(),
|
||||||
...getAwsArgs(this._options())
|
...getAwsArgs(this._options())
|
||||||
).then((newTable: any) => { this._tbl = newTable })
|
).then((newTable: any) => { this._tbl = newTable })
|
||||||
@@ -444,6 +593,10 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
|
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async createScalarIndex (column: string, replace: boolean): Promise<void> {
|
||||||
|
return tableCreateScalarIndex.call(this._tbl, column, replace)
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the number of rows in this table.
|
* Returns the number of rows in this table.
|
||||||
*/
|
*/
|
||||||
@@ -460,6 +613,31 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
|
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Update rows in this table.
|
||||||
|
*
|
||||||
|
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
|
||||||
|
*
|
||||||
|
* @returns
|
||||||
|
*/
|
||||||
|
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
|
||||||
|
let filter: string | null
|
||||||
|
let updates: Record<string, string>
|
||||||
|
|
||||||
|
if ('valuesSql' in args) {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = args.valuesSql
|
||||||
|
} else {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = {}
|
||||||
|
for (const [key, value] of Object.entries(args.values)) {
|
||||||
|
updates[key] = toSQL(value)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return tableUpdate.call(this._tbl, filter, updates).then((newTable: any) => { this._tbl = newTable })
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Clean up old versions of the table, freeing disk space.
|
* Clean up old versions of the table, freeing disk space.
|
||||||
*
|
*
|
||||||
@@ -502,6 +680,35 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
return res.metrics
|
return res.metrics
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async listIndices (): Promise<VectorIndex[]> {
|
||||||
|
return tableListIndices.call(this._tbl)
|
||||||
|
}
|
||||||
|
|
||||||
|
async indexStats (indexUuid: string): Promise<IndexStats> {
|
||||||
|
return tableIndexStats.call(this._tbl, indexUuid)
|
||||||
|
}
|
||||||
|
|
||||||
|
get schema (): Promise<Schema> {
|
||||||
|
// empty table
|
||||||
|
return this.getSchema()
|
||||||
|
}
|
||||||
|
|
||||||
|
private async getSchema (): Promise<Schema> {
|
||||||
|
const buffer = await tableSchema.call(this._tbl, this._isElectron)
|
||||||
|
const table = tableFromIPC(buffer)
|
||||||
|
return table.schema
|
||||||
|
}
|
||||||
|
|
||||||
|
// See https://github.com/electron/electron/issues/2288
|
||||||
|
private checkElectron (): boolean {
|
||||||
|
try {
|
||||||
|
// eslint-disable-next-line no-prototype-builtins
|
||||||
|
return (process?.versions?.hasOwnProperty('electron') || navigator?.userAgent?.toLowerCase()?.includes(' electron'))
|
||||||
|
} catch (e) {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
export interface CleanupStats {
|
export interface CleanupStats {
|
||||||
@@ -618,6 +825,11 @@ export interface IvfPQIndexConfig {
|
|||||||
*/
|
*/
|
||||||
replace?: boolean
|
replace?: boolean
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Cache size of the index
|
||||||
|
*/
|
||||||
|
index_cache_size?: number
|
||||||
|
|
||||||
type: 'ivf_pq'
|
type: 'ivf_pq'
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -23,27 +23,29 @@ const { tableSearch } = require('../native.js')
|
|||||||
* A builder for nearest neighbor queries for LanceDB.
|
* A builder for nearest neighbor queries for LanceDB.
|
||||||
*/
|
*/
|
||||||
export class Query<T = number[]> {
|
export class Query<T = number[]> {
|
||||||
private readonly _query: T
|
private readonly _query?: T
|
||||||
private readonly _tbl?: any
|
private readonly _tbl?: any
|
||||||
private _queryVector?: number[]
|
private _queryVector?: number[]
|
||||||
private _limit: number
|
private _limit?: number
|
||||||
private _refineFactor?: number
|
private _refineFactor?: number
|
||||||
private _nprobes: number
|
private _nprobes: number
|
||||||
private _select?: string[]
|
private _select?: string[]
|
||||||
private _filter?: string
|
private _filter?: string
|
||||||
private _metricType?: MetricType
|
private _metricType?: MetricType
|
||||||
|
private _prefilter: boolean
|
||||||
protected readonly _embeddings?: EmbeddingFunction<T>
|
protected readonly _embeddings?: EmbeddingFunction<T>
|
||||||
|
|
||||||
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
|
constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
|
||||||
this._tbl = tbl
|
this._tbl = tbl
|
||||||
this._query = query
|
this._query = query
|
||||||
this._limit = 10
|
this._limit = undefined
|
||||||
this._nprobes = 20
|
this._nprobes = 20
|
||||||
this._refineFactor = undefined
|
this._refineFactor = undefined
|
||||||
this._select = undefined
|
this._select = undefined
|
||||||
this._filter = undefined
|
this._filter = undefined
|
||||||
this._metricType = undefined
|
this._metricType = undefined
|
||||||
this._embeddings = embeddings
|
this._embeddings = embeddings
|
||||||
|
this._prefilter = false
|
||||||
}
|
}
|
||||||
|
|
||||||
/***
|
/***
|
||||||
@@ -102,14 +104,21 @@ export class Query<T = number[]> {
|
|||||||
return this
|
return this
|
||||||
}
|
}
|
||||||
|
|
||||||
|
prefilter (value: boolean): Query<T> {
|
||||||
|
this._prefilter = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Execute the query and return the results as an Array of Objects
|
* Execute the query and return the results as an Array of Objects
|
||||||
*/
|
*/
|
||||||
async execute<T = Record<string, unknown>> (): Promise<T[]> {
|
async execute<T = Record<string, unknown>> (): Promise<T[]> {
|
||||||
if (this._embeddings !== undefined) {
|
if (this._query !== undefined) {
|
||||||
this._queryVector = (await this._embeddings.embed([this._query]))[0]
|
if (this._embeddings !== undefined) {
|
||||||
} else {
|
this._queryVector = (await this._embeddings.embed([this._query]))[0]
|
||||||
this._queryVector = this._query as number[]
|
} else {
|
||||||
|
this._queryVector = this._query as number[]
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const isElectron = this.isElectron()
|
const isElectron = this.isElectron()
|
||||||
|
|||||||
@@ -38,6 +38,7 @@ export class HttpLancedbClient {
|
|||||||
vector: number[],
|
vector: number[],
|
||||||
k: number,
|
k: number,
|
||||||
nprobes: number,
|
nprobes: number,
|
||||||
|
prefilter: boolean,
|
||||||
refineFactor?: number,
|
refineFactor?: number,
|
||||||
columns?: string[],
|
columns?: string[],
|
||||||
filter?: string
|
filter?: string
|
||||||
@@ -50,7 +51,8 @@ export class HttpLancedbClient {
|
|||||||
nprobes,
|
nprobes,
|
||||||
refineFactor,
|
refineFactor,
|
||||||
columns,
|
columns,
|
||||||
filter
|
filter,
|
||||||
|
prefilter
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
headers: {
|
headers: {
|
||||||
@@ -63,6 +65,9 @@ export class HttpLancedbClient {
|
|||||||
}
|
}
|
||||||
).catch((err) => {
|
).catch((err) => {
|
||||||
console.error('error: ', err)
|
console.error('error: ', err)
|
||||||
|
if (err.response === undefined) {
|
||||||
|
throw new Error(`Network Error: ${err.message as string}`)
|
||||||
|
}
|
||||||
return err.response
|
return err.response
|
||||||
})
|
})
|
||||||
if (response.status !== 200) {
|
if (response.status !== 200) {
|
||||||
@@ -86,13 +91,17 @@ export class HttpLancedbClient {
|
|||||||
{
|
{
|
||||||
headers: {
|
headers: {
|
||||||
'Content-Type': 'application/json',
|
'Content-Type': 'application/json',
|
||||||
'x-api-key': this._apiKey()
|
'x-api-key': this._apiKey(),
|
||||||
|
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
|
||||||
},
|
},
|
||||||
params,
|
params,
|
||||||
timeout: 10000
|
timeout: 10000
|
||||||
}
|
}
|
||||||
).catch((err) => {
|
).catch((err) => {
|
||||||
console.error('error: ', err)
|
console.error('error: ', err)
|
||||||
|
if (err.response === undefined) {
|
||||||
|
throw new Error(`Network Error: ${err.message as string}`)
|
||||||
|
}
|
||||||
return err.response
|
return err.response
|
||||||
})
|
})
|
||||||
if (response.status !== 200) {
|
if (response.status !== 200) {
|
||||||
@@ -128,6 +137,9 @@ export class HttpLancedbClient {
|
|||||||
}
|
}
|
||||||
).catch((err) => {
|
).catch((err) => {
|
||||||
console.error('error: ', err)
|
console.error('error: ', err)
|
||||||
|
if (err.response === undefined) {
|
||||||
|
throw new Error(`Network Error: ${err.message as string}`)
|
||||||
|
}
|
||||||
return err.response
|
return err.response
|
||||||
})
|
})
|
||||||
if (response.status !== 200) {
|
if (response.status !== 200) {
|
||||||
|
|||||||
@@ -14,7 +14,10 @@
|
|||||||
|
|
||||||
import {
|
import {
|
||||||
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
|
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
|
||||||
type ConnectionOptions, type CreateTableOptions, type WriteOptions
|
type ConnectionOptions, type CreateTableOptions, type VectorIndex,
|
||||||
|
type WriteOptions,
|
||||||
|
type IndexStats,
|
||||||
|
type UpdateArgs, type UpdateSqlArgs
|
||||||
} from '../index'
|
} from '../index'
|
||||||
import { Query } from '../query'
|
import { Query } from '../query'
|
||||||
|
|
||||||
@@ -22,6 +25,7 @@ import { Vector, Table as ArrowTable } from 'apache-arrow'
|
|||||||
import { HttpLancedbClient } from './client'
|
import { HttpLancedbClient } from './client'
|
||||||
import { isEmbeddingFunction } from '../embedding/embedding_function'
|
import { isEmbeddingFunction } from '../embedding/embedding_function'
|
||||||
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
|
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
|
||||||
|
import { toSQL } from '../util'
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Remote connection.
|
* Remote connection.
|
||||||
@@ -53,8 +57,8 @@ export class RemoteConnection implements Connection {
|
|||||||
return 'db://' + this._client.uri
|
return 'db://' + this._client.uri
|
||||||
}
|
}
|
||||||
|
|
||||||
async tableNames (): Promise<string[]> {
|
async tableNames (pageToken: string = '', limit: number = 10): Promise<string[]> {
|
||||||
const response = await this._client.get('/v1/table/')
|
const response = await this._client.get('/v1/table/', { limit, page_token: pageToken })
|
||||||
return response.data.tables
|
return response.data.tables
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -152,6 +156,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
|
|||||||
queryVector,
|
queryVector,
|
||||||
(this as any)._limit,
|
(this as any)._limit,
|
||||||
(this as any)._nprobes,
|
(this as any)._nprobes,
|
||||||
|
(this as any)._prefilter,
|
||||||
(this as any)._refineFactor,
|
(this as any)._refineFactor,
|
||||||
(this as any)._select,
|
(this as any)._select,
|
||||||
(this as any)._filter
|
(this as any)._filter
|
||||||
@@ -190,6 +195,17 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
|||||||
return this._name
|
return this._name
|
||||||
}
|
}
|
||||||
|
|
||||||
|
get schema (): Promise<any> {
|
||||||
|
return this._client.post(`/v1/table/${this._name}/describe/`).then(res => {
|
||||||
|
if (res.status !== 200) {
|
||||||
|
throw new Error(`Server Error, status: ${res.status}, ` +
|
||||||
|
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||||
|
`message: ${res.statusText}: ${res.data}`)
|
||||||
|
}
|
||||||
|
return res.data?.schema
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
search (query: T): Query<T> {
|
search (query: T): Query<T> {
|
||||||
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
|
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
|
||||||
}
|
}
|
||||||
@@ -230,15 +246,90 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
|||||||
return data.length
|
return data.length
|
||||||
}
|
}
|
||||||
|
|
||||||
async createIndex (indexParams: VectorIndexParams): Promise<any> {
|
async createIndex (indexParams: VectorIndexParams): Promise<void> {
|
||||||
|
const unsupportedParams = [
|
||||||
|
'index_name',
|
||||||
|
'num_partitions',
|
||||||
|
'max_iters',
|
||||||
|
'use_opq',
|
||||||
|
'num_sub_vectors',
|
||||||
|
'num_bits',
|
||||||
|
'max_opq_iters',
|
||||||
|
'replace'
|
||||||
|
]
|
||||||
|
for (const param of unsupportedParams) {
|
||||||
|
// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
|
||||||
|
if (indexParams[param as keyof VectorIndexParams]) {
|
||||||
|
throw new Error(`${param} is not supported for remote connections`)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const column = indexParams.column ?? 'vector'
|
||||||
|
const indexType = 'vector' // only vector index is supported for remote connections
|
||||||
|
const metricType = indexParams.metric_type ?? 'L2'
|
||||||
|
const indexCacheSize = indexParams.index_cache_size ?? null
|
||||||
|
|
||||||
|
const data = {
|
||||||
|
column,
|
||||||
|
index_type: indexType,
|
||||||
|
metric_type: metricType,
|
||||||
|
index_cache_size: indexCacheSize
|
||||||
|
}
|
||||||
|
const res = await this._client.post(`/v1/table/${this._name}/create_index/`, data)
|
||||||
|
if (res.status !== 200) {
|
||||||
|
throw new Error(`Server Error, status: ${res.status}, ` +
|
||||||
|
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||||
|
`message: ${res.statusText}: ${res.data}`)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async createScalarIndex (column: string, replace: boolean): Promise<void> {
|
||||||
throw new Error('Not implemented')
|
throw new Error('Not implemented')
|
||||||
}
|
}
|
||||||
|
|
||||||
async countRows (): Promise<number> {
|
async countRows (): Promise<number> {
|
||||||
throw new Error('Not implemented')
|
const result = await this._client.post(`/v1/table/${this._name}/describe/`)
|
||||||
|
return result.data?.stats?.num_rows
|
||||||
}
|
}
|
||||||
|
|
||||||
async delete (filter: string): Promise<void> {
|
async delete (filter: string): Promise<void> {
|
||||||
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
|
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
|
||||||
|
let filter: string | null
|
||||||
|
let updates: Record<string, string>
|
||||||
|
|
||||||
|
if ('valuesSql' in args) {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = args.valuesSql
|
||||||
|
} else {
|
||||||
|
filter = args.where ?? null
|
||||||
|
updates = {}
|
||||||
|
for (const [key, value] of Object.entries(args.values)) {
|
||||||
|
updates[key] = toSQL(value)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
await this._client.post(`/v1/table/${this._name}/update/`, {
|
||||||
|
predicate: filter,
|
||||||
|
updates: Object.entries(updates).map(([key, value]) => [key, value])
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
async listIndices (): Promise<VectorIndex[]> {
|
||||||
|
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
|
||||||
|
return results.data.indexes?.map((index: any) => ({
|
||||||
|
columns: index.columns,
|
||||||
|
name: index.index_name,
|
||||||
|
uuid: index.index_uuid
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
async indexStats (indexUuid: string): Promise<IndexStats> {
|
||||||
|
const results = await this._client.post(`/v1/table/${this._name}/index/${indexUuid}/stats/`)
|
||||||
|
return {
|
||||||
|
numIndexedRows: results.data.num_indexed_rows,
|
||||||
|
numUnindexedRows: results.data.num_unindexed_rows
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -78,12 +78,31 @@ describe('LanceDB client', function () {
|
|||||||
})
|
})
|
||||||
|
|
||||||
it('limits # of results', async function () {
|
it('limits # of results', async function () {
|
||||||
const uri = await createTestDB()
|
const uri = await createTestDB(2, 100)
|
||||||
const con = await lancedb.connect(uri)
|
const con = await lancedb.connect(uri)
|
||||||
const table = await con.openTable('vectors')
|
const table = await con.openTable('vectors')
|
||||||
const results = await table.search([0.1, 0.3]).limit(1).execute()
|
let results = await table.search([0.1, 0.3]).limit(1).execute()
|
||||||
assert.equal(results.length, 1)
|
assert.equal(results.length, 1)
|
||||||
assert.equal(results[0].id, 1)
|
assert.equal(results[0].id, 1)
|
||||||
|
|
||||||
|
// there is a default limit if unspecified
|
||||||
|
results = await table.search([0.1, 0.3]).execute()
|
||||||
|
assert.equal(results.length, 10)
|
||||||
|
})
|
||||||
|
|
||||||
|
it('uses a filter / where clause without vector search', async function () {
|
||||||
|
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
|
||||||
|
const assertResults = (results: Array<Record<string, unknown>>) => {
|
||||||
|
assert.equal(results.length, 50)
|
||||||
|
}
|
||||||
|
|
||||||
|
const uri = await createTestDB(2, 100)
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = (await con.openTable('vectors')) as LocalTable
|
||||||
|
let results = await table.filter('id % 2 = 0').execute()
|
||||||
|
assertResults(results)
|
||||||
|
results = await table.where('id % 2 = 0').execute()
|
||||||
|
assertResults(results)
|
||||||
})
|
})
|
||||||
|
|
||||||
it('uses a filter / where clause', async function () {
|
it('uses a filter / where clause', async function () {
|
||||||
@@ -102,6 +121,31 @@ describe('LanceDB client', function () {
|
|||||||
assertResults(results)
|
assertResults(results)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('should correctly process prefilter/postfilter', async function () {
|
||||||
|
const uri = await createTestDB(16, 300)
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
|
||||||
|
// post filter should return less than the limit
|
||||||
|
let results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(false).execute()
|
||||||
|
assert.isTrue(results.length < 10)
|
||||||
|
|
||||||
|
// pre filter should return exactly the limit
|
||||||
|
results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
|
||||||
|
assert.isTrue(results.length === 10)
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should allow creation and use of scalar indices', async function () {
|
||||||
|
const uri = await createTestDB(16, 300)
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
await table.createScalarIndex('id', true)
|
||||||
|
|
||||||
|
// Prefiltering should still work the same
|
||||||
|
const results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
|
||||||
|
assert.isTrue(results.length === 10)
|
||||||
|
})
|
||||||
|
|
||||||
it('select only a subset of columns', async function () {
|
it('select only a subset of columns', async function () {
|
||||||
const uri = await createTestDB()
|
const uri = await createTestDB()
|
||||||
const con = await lancedb.connect(uri)
|
const con = await lancedb.connect(uri)
|
||||||
@@ -132,6 +176,26 @@ describe('LanceDB client', function () {
|
|||||||
assert.deepEqual(await con.tableNames(), ['vectors'])
|
assert.deepEqual(await con.tableNames(), ['vectors'])
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('create a table with a schema and records', async function () {
|
||||||
|
const dir = await track().mkdir('lancejs')
|
||||||
|
const con = await lancedb.connect(dir)
|
||||||
|
|
||||||
|
const schema = new Schema(
|
||||||
|
[new Field('id', new Int32()),
|
||||||
|
new Field('name', new Utf8()),
|
||||||
|
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), false)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
const data = [
|
||||||
|
{ vector: [0.5, 0.2], name: 'foo', id: 0 },
|
||||||
|
{ vector: [0.3, 0.1], name: 'bar', id: 1 }
|
||||||
|
]
|
||||||
|
// even thought the keys in data is out of order it should still work
|
||||||
|
const table = await con.createTable({ name: 'vectors', data, schema })
|
||||||
|
assert.equal(table.name, 'vectors')
|
||||||
|
assert.deepEqual(await con.tableNames(), ['vectors'])
|
||||||
|
})
|
||||||
|
|
||||||
it('create a table with a empty data array', async function () {
|
it('create a table with a empty data array', async function () {
|
||||||
const dir = await track().mkdir('lancejs')
|
const dir = await track().mkdir('lancejs')
|
||||||
const con = await lancedb.connect(dir)
|
const con = await lancedb.connect(dir)
|
||||||
@@ -174,6 +238,25 @@ describe('LanceDB client', function () {
|
|||||||
assert.equal(await table.countRows(), 2)
|
assert.equal(await table.countRows(), 2)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('creates a new table from javascript objects with variable sized list', async function () {
|
||||||
|
const dir = await track().mkdir('lancejs')
|
||||||
|
const con = await lancedb.connect(dir)
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{ id: 1, vector: [0.1, 0.2], list_of_str: ['a', 'b', 'c'], list_of_num: [1, 2, 3] },
|
||||||
|
{ id: 2, vector: [1.1, 1.2], list_of_str: ['x', 'y'], list_of_num: [4, 5, 6] }
|
||||||
|
]
|
||||||
|
|
||||||
|
const tableName = 'with_variable_sized_list'
|
||||||
|
const table = await con.createTable(tableName, data) as LocalTable
|
||||||
|
assert.equal(table.name, tableName)
|
||||||
|
assert.equal(await table.countRows(), 2)
|
||||||
|
const rs = await table.filter('id>1').execute()
|
||||||
|
assert.equal(rs.length, 1)
|
||||||
|
assert.deepEqual(rs[0].list_of_str, ['x', 'y'])
|
||||||
|
assert.isTrue(rs[0].list_of_num instanceof Float64Array)
|
||||||
|
})
|
||||||
|
|
||||||
it('fails to create a new table when the vector column is missing', async function () {
|
it('fails to create a new table when the vector column is missing', async function () {
|
||||||
const dir = await track().mkdir('lancejs')
|
const dir = await track().mkdir('lancejs')
|
||||||
const con = await lancedb.connect(dir)
|
const con = await lancedb.connect(dir)
|
||||||
@@ -231,6 +314,25 @@ describe('LanceDB client', function () {
|
|||||||
assert.equal(await table.countRows(), 4)
|
assert.equal(await table.countRows(), 4)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('appends records with fields in a different order', async function () {
|
||||||
|
const dir = await track().mkdir('lancejs')
|
||||||
|
const con = await lancedb.connect(dir)
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{ id: 1, vector: [0.1, 0.2], price: 10, name: 'a' },
|
||||||
|
{ id: 2, vector: [1.1, 1.2], price: 50, name: 'b' }
|
||||||
|
]
|
||||||
|
|
||||||
|
const table = await con.createTable('vectors', data)
|
||||||
|
|
||||||
|
const dataAdd = [
|
||||||
|
{ id: 3, vector: [2.1, 2.2], name: 'c', price: 10 },
|
||||||
|
{ id: 4, vector: [3.1, 3.2], name: 'd', price: 50 }
|
||||||
|
]
|
||||||
|
await table.add(dataAdd)
|
||||||
|
assert.equal(await table.countRows(), 4)
|
||||||
|
})
|
||||||
|
|
||||||
it('overwrite all records in a table', async function () {
|
it('overwrite all records in a table', async function () {
|
||||||
const uri = await createTestDB()
|
const uri = await createTestDB()
|
||||||
const con = await lancedb.connect(uri)
|
const con = await lancedb.connect(uri)
|
||||||
@@ -246,6 +348,46 @@ describe('LanceDB client', function () {
|
|||||||
assert.equal(await table.countRows(), 2)
|
assert.equal(await table.countRows(), 2)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('can update records in the table', async function () {
|
||||||
|
const uri = await createTestDB()
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
assert.equal(await table.countRows(), 2)
|
||||||
|
|
||||||
|
await table.update({ where: 'price = 10', valuesSql: { price: '100' } })
|
||||||
|
const results = await table.search([0.1, 0.2]).execute()
|
||||||
|
assert.equal(results[0].price, 100)
|
||||||
|
assert.equal(results[1].price, 11)
|
||||||
|
})
|
||||||
|
|
||||||
|
it('can update the records using a literal value', async function () {
|
||||||
|
const uri = await createTestDB()
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
assert.equal(await table.countRows(), 2)
|
||||||
|
|
||||||
|
await table.update({ where: 'price = 10', values: { price: 100 } })
|
||||||
|
const results = await table.search([0.1, 0.2]).execute()
|
||||||
|
assert.equal(results[0].price, 100)
|
||||||
|
assert.equal(results[1].price, 11)
|
||||||
|
})
|
||||||
|
|
||||||
|
it('can update every record in the table', async function () {
|
||||||
|
const uri = await createTestDB()
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
assert.equal(await table.countRows(), 2)
|
||||||
|
|
||||||
|
await table.update({ valuesSql: { price: '100' } })
|
||||||
|
const results = await table.search([0.1, 0.2]).execute()
|
||||||
|
|
||||||
|
assert.equal(results[0].price, 100)
|
||||||
|
assert.equal(results[1].price, 100)
|
||||||
|
})
|
||||||
|
|
||||||
it('can delete records from a table', async function () {
|
it('can delete records from a table', async function () {
|
||||||
const uri = await createTestDB()
|
const uri = await createTestDB()
|
||||||
const con = await lancedb.connect(uri)
|
const con = await lancedb.connect(uri)
|
||||||
@@ -282,7 +424,8 @@ describe('LanceDB client', function () {
|
|||||||
)
|
)
|
||||||
const table = await con.createTable({ name: 'vectors', schema })
|
const table = await con.createTable({ name: 'vectors', schema })
|
||||||
await table.add([{ vector: Array(128).fill(0.1) }])
|
await table.add([{ vector: Array(128).fill(0.1) }])
|
||||||
await table.delete('vector IS NOT NULL')
|
// https://github.com/lancedb/lance/issues/1635
|
||||||
|
await table.delete('true')
|
||||||
const result = await table.search(Array(128).fill(0.1)).execute()
|
const result = await table.search(Array(128).fill(0.1)).execute()
|
||||||
assert.isEmpty(result)
|
assert.isEmpty(result)
|
||||||
})
|
})
|
||||||
@@ -328,6 +471,24 @@ describe('LanceDB client', function () {
|
|||||||
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
|
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
|
||||||
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
|
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('should be able to list index and stats', async function () {
|
||||||
|
const uri = await createTestDB(32, 300)
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
|
||||||
|
|
||||||
|
const indices = await table.listIndices()
|
||||||
|
expect(indices).to.have.lengthOf(1)
|
||||||
|
expect(indices[0].name).to.equal('vector_idx')
|
||||||
|
expect(indices[0].uuid).to.not.be.equal(undefined)
|
||||||
|
expect(indices[0].columns).to.have.lengthOf(1)
|
||||||
|
expect(indices[0].columns[0]).to.equal('vector')
|
||||||
|
|
||||||
|
const stats = await table.indexStats(indices[0].uuid)
|
||||||
|
expect(stats.numIndexedRows).to.equal(300)
|
||||||
|
expect(stats.numUnindexedRows).to.equal(0)
|
||||||
|
}).timeout(50_000)
|
||||||
})
|
})
|
||||||
|
|
||||||
describe('when using a custom embedding function', function () {
|
describe('when using a custom embedding function', function () {
|
||||||
@@ -376,6 +537,61 @@ describe('LanceDB client', function () {
|
|||||||
assert.equal(results.length, 2)
|
assert.equal(results.length, 2)
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
|
|
||||||
|
describe('when inspecting the schema', function () {
|
||||||
|
it('should return the schema', async function () {
|
||||||
|
const uri = await createTestDB()
|
||||||
|
const db = await lancedb.connect(uri)
|
||||||
|
// the fsl inner field must be named 'item' and be nullable
|
||||||
|
const expectedSchema = new Schema(
|
||||||
|
[
|
||||||
|
new Field('id', new Int32()),
|
||||||
|
new Field('vector', new FixedSizeList(128, new Field('item', new Float32(), true))),
|
||||||
|
new Field('s', new Utf8())
|
||||||
|
]
|
||||||
|
)
|
||||||
|
const table = await db.createTable({
|
||||||
|
name: 'some_table',
|
||||||
|
schema: expectedSchema
|
||||||
|
})
|
||||||
|
const schema = await table.schema
|
||||||
|
assert.deepEqual(expectedSchema, schema)
|
||||||
|
})
|
||||||
|
})
|
||||||
|
})
|
||||||
|
|
||||||
|
describe('Remote LanceDB client', function () {
|
||||||
|
describe('when the server is not reachable', function () {
|
||||||
|
it('produces a network error', async function () {
|
||||||
|
const con = await lancedb.connect({
|
||||||
|
uri: 'db://test-1234',
|
||||||
|
region: 'asdfasfasfdf',
|
||||||
|
apiKey: 'some-api-key'
|
||||||
|
})
|
||||||
|
|
||||||
|
// GET
|
||||||
|
try {
|
||||||
|
await con.tableNames()
|
||||||
|
} catch (err) {
|
||||||
|
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
|
||||||
|
}
|
||||||
|
|
||||||
|
// POST
|
||||||
|
try {
|
||||||
|
await con.createTable({ name: 'vectors', schema: new Schema([]) })
|
||||||
|
} catch (err) {
|
||||||
|
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
|
||||||
|
}
|
||||||
|
|
||||||
|
// Search
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
try {
|
||||||
|
await table.search([0.1, 0.3]).execute()
|
||||||
|
} catch (err) {
|
||||||
|
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
|
||||||
|
}
|
||||||
|
})
|
||||||
|
})
|
||||||
})
|
})
|
||||||
|
|
||||||
describe('Query object', function () {
|
describe('Query object', function () {
|
||||||
@@ -475,7 +691,7 @@ describe('Compact and cleanup', function () {
|
|||||||
|
|
||||||
// should have no effect, but this validates the arguments are parsed.
|
// should have no effect, but this validates the arguments are parsed.
|
||||||
await table.compactFiles({
|
await table.compactFiles({
|
||||||
targetRowsPerFragment: 1024 * 10,
|
targetRowsPerFragment: 102410,
|
||||||
maxRowsPerGroup: 1024,
|
maxRowsPerGroup: 1024,
|
||||||
materializeDeletions: true,
|
materializeDeletions: true,
|
||||||
materializeDeletionsThreshold: 0.5,
|
materializeDeletionsThreshold: 0.5,
|
||||||
|
|||||||
45
node/src/test/util.ts
Normal file
45
node/src/test/util.ts
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
// Copyright 2023 LanceDB Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
import { toSQL } from '../util'
|
||||||
|
import * as chai from 'chai'
|
||||||
|
|
||||||
|
const expect = chai.expect
|
||||||
|
|
||||||
|
describe('toSQL', function () {
|
||||||
|
it('should turn string to SQL expression', function () {
|
||||||
|
expect(toSQL('foo')).to.equal("'foo'")
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn number to SQL expression', function () {
|
||||||
|
expect(toSQL(123)).to.equal('123')
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn boolean to SQL expression', function () {
|
||||||
|
expect(toSQL(true)).to.equal('TRUE')
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn null to SQL expression', function () {
|
||||||
|
expect(toSQL(null)).to.equal('NULL')
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn Date to SQL expression', function () {
|
||||||
|
const date = new Date('05 October 2011 14:48 UTC')
|
||||||
|
expect(toSQL(date)).to.equal("'2011-10-05T14:48:00.000Z'")
|
||||||
|
})
|
||||||
|
|
||||||
|
it('should turn array to SQL expression', function () {
|
||||||
|
expect(toSQL(['foo', 'bar', true, 1])).to.equal("['foo', 'bar', TRUE, 1]")
|
||||||
|
})
|
||||||
|
})
|
||||||
44
node/src/util.ts
Normal file
44
node/src/util.ts
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
// Copyright 2023 LanceDB Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
export type Literal = string | number | boolean | null | Date | Literal[]
|
||||||
|
|
||||||
|
export function toSQL (value: Literal): string {
|
||||||
|
if (typeof value === 'string') {
|
||||||
|
return `'${value}'`
|
||||||
|
}
|
||||||
|
|
||||||
|
if (typeof value === 'number') {
|
||||||
|
return value.toString()
|
||||||
|
}
|
||||||
|
|
||||||
|
if (typeof value === 'boolean') {
|
||||||
|
return value ? 'TRUE' : 'FALSE'
|
||||||
|
}
|
||||||
|
|
||||||
|
if (value === null) {
|
||||||
|
return 'NULL'
|
||||||
|
}
|
||||||
|
|
||||||
|
if (value instanceof Date) {
|
||||||
|
return `'${value.toISOString()}'`
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Array.isArray(value)) {
|
||||||
|
return `[${value.map(toSQL).join(', ')}]`
|
||||||
|
}
|
||||||
|
|
||||||
|
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||||
|
throw new Error(`Unsupported value type: ${typeof value} value: (${value})`)
|
||||||
|
}
|
||||||
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.3.2
|
current_version = 0.4.4
|
||||||
commit = True
|
commit = True
|
||||||
message = [python] Bump version: {current_version} → {new_version}
|
message = [python] Bump version: {current_version} → {new_version}
|
||||||
tag = True
|
tag = True
|
||||||
|
|||||||
@@ -45,8 +45,8 @@ pytest
|
|||||||
To run linter and automatically fix all errors:
|
To run linter and automatically fix all errors:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
black .
|
ruff format python
|
||||||
isort .
|
ruff --fix python
|
||||||
```
|
```
|
||||||
|
|
||||||
If any packages are missing, install them with:
|
If any packages are missing, install them with:
|
||||||
@@ -82,4 +82,4 @@ pip install tantivy
|
|||||||
To run the unit tests:
|
To run the unit tests:
|
||||||
```bash
|
```bash
|
||||||
pytest
|
pytest
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -16,17 +16,18 @@ from typing import Optional
|
|||||||
|
|
||||||
__version__ = importlib.metadata.version("lancedb")
|
__version__ = importlib.metadata.version("lancedb")
|
||||||
|
|
||||||
from .db import URI, DBConnection, LanceDBConnection
|
from .common import URI
|
||||||
|
from .db import DBConnection, LanceDBConnection
|
||||||
from .remote.db import RemoteDBConnection
|
from .remote.db import RemoteDBConnection
|
||||||
from .schema import vector
|
from .schema import vector # noqa: F401
|
||||||
from .utils import sentry_log
|
from .utils import sentry_log # noqa: F401
|
||||||
|
|
||||||
|
|
||||||
def connect(
|
def connect(
|
||||||
uri: URI,
|
uri: URI,
|
||||||
*,
|
*,
|
||||||
api_key: Optional[str] = None,
|
api_key: Optional[str] = None,
|
||||||
region: str = "us-west-2",
|
region: str = "us-east-1",
|
||||||
host_override: Optional[str] = None,
|
host_override: Optional[str] = None,
|
||||||
) -> DBConnection:
|
) -> DBConnection:
|
||||||
"""Connect to a LanceDB database.
|
"""Connect to a LanceDB database.
|
||||||
@@ -38,7 +39,7 @@ def connect(
|
|||||||
api_key: str, optional
|
api_key: str, optional
|
||||||
If presented, connect to LanceDB cloud.
|
If presented, connect to LanceDB cloud.
|
||||||
Otherwise, connect to a database on file system or cloud storage.
|
Otherwise, connect to a database on file system or cloud storage.
|
||||||
region: str, default "us-west-2"
|
region: str, default "us-east-1"
|
||||||
The region to use for LanceDB Cloud.
|
The region to use for LanceDB Cloud.
|
||||||
host_override: str, optional
|
host_override: str, optional
|
||||||
The override url for LanceDB Cloud.
|
The override url for LanceDB Cloud.
|
||||||
|
|||||||
@@ -1,4 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
|
import time
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pytest
|
import pytest
|
||||||
@@ -38,3 +40,26 @@ class MockTextEmbeddingFunction(TextEmbeddingFunction):
|
|||||||
|
|
||||||
def ndims(self):
|
def ndims(self):
|
||||||
return 10
|
return 10
|
||||||
|
|
||||||
|
|
||||||
|
class RateLimitedAPI:
|
||||||
|
rate_limit = 0.1 # 1 request per 0.1 second
|
||||||
|
last_request_time = 0
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def make_request():
|
||||||
|
current_time = time.time()
|
||||||
|
|
||||||
|
if current_time - RateLimitedAPI.last_request_time < RateLimitedAPI.rate_limit:
|
||||||
|
raise Exception("Rate limit exceeded. Please try again later.")
|
||||||
|
|
||||||
|
# Simulate a successful request
|
||||||
|
RateLimitedAPI.last_request_time = current_time
|
||||||
|
return "Request successful"
|
||||||
|
|
||||||
|
|
||||||
|
@registry.register("test-rate-limited")
|
||||||
|
class MockRateLimitedEmbeddingFunction(MockTextEmbeddingFunction):
|
||||||
|
def generate_embeddings(self, texts):
|
||||||
|
RateLimitedAPI.make_request()
|
||||||
|
return [self._compute_one_embedding(row) for row in texts]
|
||||||
|
|||||||
@@ -84,7 +84,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
|||||||
context windows that don't cross document boundaries. In this case, we can
|
context windows that don't cross document boundaries. In this case, we can
|
||||||
pass ``document_id`` as the group by.
|
pass ``document_id`` as the group by.
|
||||||
|
|
||||||
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_pandas()
|
>>> (contextualize(data)
|
||||||
|
... .window(4).stride(2).text_col('token').groupby('document_id')
|
||||||
|
... .to_pandas())
|
||||||
token document_id
|
token document_id
|
||||||
0 The quick brown fox 1
|
0 The quick brown fox 1
|
||||||
2 brown fox jumped over 1
|
2 brown fox jumped over 1
|
||||||
@@ -92,18 +94,24 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
|||||||
6 the lazy dog 1
|
6 the lazy dog 1
|
||||||
9 I love sandwiches 2
|
9 I love sandwiches 2
|
||||||
|
|
||||||
``min_window_size`` determines the minimum size of the context windows that are generated
|
``min_window_size`` determines the minimum size of the context windows
|
||||||
This can be used to trim the last few context windows which have size less than
|
that are generated.This can be used to trim the last few context windows
|
||||||
``min_window_size``. By default context windows of size 1 are skipped.
|
which have size less than ``min_window_size``.
|
||||||
|
By default context windows of size 1 are skipped.
|
||||||
|
|
||||||
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_pandas()
|
>>> (contextualize(data)
|
||||||
|
... .window(6).stride(3).text_col('token').groupby('document_id')
|
||||||
|
... .to_pandas())
|
||||||
token document_id
|
token document_id
|
||||||
0 The quick brown fox jumped over 1
|
0 The quick brown fox jumped over 1
|
||||||
3 fox jumped over the lazy dog 1
|
3 fox jumped over the lazy dog 1
|
||||||
6 the lazy dog 1
|
6 the lazy dog 1
|
||||||
9 I love sandwiches 2
|
9 I love sandwiches 2
|
||||||
|
|
||||||
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_pandas()
|
>>> (contextualize(data)
|
||||||
|
... .window(6).stride(3).min_window_size(4).text_col('token')
|
||||||
|
... .groupby('document_id')
|
||||||
|
... .to_pandas())
|
||||||
token document_id
|
token document_id
|
||||||
0 The quick brown fox jumped over 1
|
0 The quick brown fox jumped over 1
|
||||||
3 fox jumped over the lazy dog 1
|
3 fox jumped over the lazy dog 1
|
||||||
@@ -113,7 +121,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
|||||||
|
|
||||||
|
|
||||||
class Contextualizer:
|
class Contextualizer:
|
||||||
"""Create context windows from a DataFrame. See [lancedb.context.contextualize][]."""
|
"""Create context windows from a DataFrame.
|
||||||
|
See [lancedb.context.contextualize][].
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, raw_df):
|
def __init__(self, raw_df):
|
||||||
self._text_col = None
|
self._text_col = None
|
||||||
@@ -183,7 +193,7 @@ class Contextualizer:
|
|||||||
deprecated_in="0.3.1",
|
deprecated_in="0.3.1",
|
||||||
removed_in="0.4.0",
|
removed_in="0.4.0",
|
||||||
current_version=__version__,
|
current_version=__version__,
|
||||||
details="Use the bar function instead",
|
details="Use to_pandas() instead",
|
||||||
)
|
)
|
||||||
def to_df(self) -> "pd.DataFrame":
|
def to_df(self) -> "pd.DataFrame":
|
||||||
return self.to_pandas()
|
return self.to_pandas()
|
||||||
|
|||||||
@@ -14,26 +14,39 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import os
|
import os
|
||||||
from abc import ABC, abstractmethod
|
from abc import abstractmethod
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List, Optional, Union
|
from typing import TYPE_CHECKING, Iterable, List, Optional, Union
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
from overrides import EnforceOverrides, override
|
||||||
from pyarrow import fs
|
from pyarrow import fs
|
||||||
|
|
||||||
from .common import DATA, URI
|
|
||||||
from .embeddings import EmbeddingFunctionConfig
|
|
||||||
from .pydantic import LanceModel
|
|
||||||
from .table import LanceTable, Table
|
from .table import LanceTable, Table
|
||||||
from .util import fs_from_uri, get_uri_location, get_uri_scheme
|
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from .common import DATA, URI
|
||||||
|
from .embeddings import EmbeddingFunctionConfig
|
||||||
|
from .pydantic import LanceModel
|
||||||
|
|
||||||
|
|
||||||
class DBConnection(ABC):
|
class DBConnection(EnforceOverrides):
|
||||||
"""An active LanceDB connection interface."""
|
"""An active LanceDB connection interface."""
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def table_names(self) -> list[str]:
|
def table_names(
|
||||||
"""List all table names in the database."""
|
self, page_token: Optional[str] = None, limit: int = 10
|
||||||
|
) -> Iterable[str]:
|
||||||
|
"""List all table in this database
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
page_token: str, optional
|
||||||
|
The token to use for pagination. If not present, start from the beginning.
|
||||||
|
limit: int, default 10
|
||||||
|
The size of the page to return.
|
||||||
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
@@ -45,6 +58,7 @@ class DBConnection(ABC):
|
|||||||
mode: str = "create",
|
mode: str = "create",
|
||||||
on_bad_vectors: str = "error",
|
on_bad_vectors: str = "error",
|
||||||
fill_value: float = 0.0,
|
fill_value: float = 0.0,
|
||||||
|
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||||
) -> Table:
|
) -> Table:
|
||||||
"""Create a [Table][lancedb.table.Table] in the database.
|
"""Create a [Table][lancedb.table.Table] in the database.
|
||||||
|
|
||||||
@@ -52,12 +66,24 @@ class DBConnection(ABC):
|
|||||||
----------
|
----------
|
||||||
name: str
|
name: str
|
||||||
The name of the table.
|
The name of the table.
|
||||||
data: list, tuple, dict, pd.DataFrame; optional
|
data: The data to initialize the table, *optional*
|
||||||
The data to initialize the table. User must provide at least one of `data` or `schema`.
|
User must provide at least one of `data` or `schema`.
|
||||||
schema: pyarrow.Schema or LanceModel; optional
|
Acceptable types are:
|
||||||
The schema of the table.
|
|
||||||
|
- dict or list-of-dict
|
||||||
|
|
||||||
|
- pandas.DataFrame
|
||||||
|
|
||||||
|
- pyarrow.Table or pyarrow.RecordBatch
|
||||||
|
schema: The schema of the table, *optional*
|
||||||
|
Acceptable types are:
|
||||||
|
|
||||||
|
- pyarrow.Schema
|
||||||
|
|
||||||
|
- [LanceModel][lancedb.pydantic.LanceModel]
|
||||||
mode: str; default "create"
|
mode: str; default "create"
|
||||||
The mode to use when creating the table. Can be either "create" or "overwrite".
|
The mode to use when creating the table.
|
||||||
|
Can be either "create" or "overwrite".
|
||||||
By default, if the table already exists, an exception is raised.
|
By default, if the table already exists, an exception is raised.
|
||||||
If you want to overwrite the table, use mode="overwrite".
|
If you want to overwrite the table, use mode="overwrite".
|
||||||
on_bad_vectors: str, default "error"
|
on_bad_vectors: str, default "error"
|
||||||
@@ -150,7 +176,8 @@ class DBConnection(ABC):
|
|||||||
... for i in range(5):
|
... for i in range(5):
|
||||||
... yield pa.RecordBatch.from_arrays(
|
... yield pa.RecordBatch.from_arrays(
|
||||||
... [
|
... [
|
||||||
... pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
|
... pa.array([[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
... pa.list_(pa.float32(), 2)),
|
||||||
... pa.array(["foo", "bar"]),
|
... pa.array(["foo", "bar"]),
|
||||||
... pa.array([10.0, 20.0]),
|
... pa.array([10.0, 20.0]),
|
||||||
... ],
|
... ],
|
||||||
@@ -249,23 +276,25 @@ class LanceDBConnection(DBConnection):
|
|||||||
def uri(self) -> str:
|
def uri(self) -> str:
|
||||||
return self._uri
|
return self._uri
|
||||||
|
|
||||||
def table_names(self) -> list[str]:
|
@override
|
||||||
"""Get the names of all tables in the database.
|
def table_names(
|
||||||
|
self, page_token: Optional[str] = None, limit: int = 10
|
||||||
|
) -> Iterable[str]:
|
||||||
|
"""Get the names of all tables in the database. The names are sorted.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
list of str
|
Iterator of str.
|
||||||
A list of table names.
|
A list of table names.
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
filesystem, path = fs_from_uri(self.uri)
|
filesystem = fs_from_uri(self.uri)[0]
|
||||||
except pa.ArrowInvalid:
|
except pa.ArrowInvalid:
|
||||||
raise NotImplementedError("Unsupported scheme: " + self.uri)
|
raise NotImplementedError("Unsupported scheme: " + self.uri)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
paths = filesystem.get_file_info(
|
loc = get_uri_location(self.uri)
|
||||||
fs.FileSelector(get_uri_location(self.uri))
|
paths = filesystem.get_file_info(fs.FileSelector(loc))
|
||||||
)
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
# It is ok if the file does not exist since it will be created
|
# It is ok if the file does not exist since it will be created
|
||||||
paths = []
|
paths = []
|
||||||
@@ -274,6 +303,7 @@ class LanceDBConnection(DBConnection):
|
|||||||
for file_info in paths
|
for file_info in paths
|
||||||
if file_info.extension == "lance"
|
if file_info.extension == "lance"
|
||||||
]
|
]
|
||||||
|
tables.sort()
|
||||||
return tables
|
return tables
|
||||||
|
|
||||||
def __len__(self) -> int:
|
def __len__(self) -> int:
|
||||||
@@ -282,6 +312,7 @@ class LanceDBConnection(DBConnection):
|
|||||||
def __contains__(self, name: str) -> bool:
|
def __contains__(self, name: str) -> bool:
|
||||||
return name in self.table_names()
|
return name in self.table_names()
|
||||||
|
|
||||||
|
@override
|
||||||
def create_table(
|
def create_table(
|
||||||
self,
|
self,
|
||||||
name: str,
|
name: str,
|
||||||
@@ -313,6 +344,7 @@ class LanceDBConnection(DBConnection):
|
|||||||
)
|
)
|
||||||
return tbl
|
return tbl
|
||||||
|
|
||||||
|
@override
|
||||||
def open_table(self, name: str) -> LanceTable:
|
def open_table(self, name: str) -> LanceTable:
|
||||||
"""Open a table in the database.
|
"""Open a table in the database.
|
||||||
|
|
||||||
@@ -327,6 +359,7 @@ class LanceDBConnection(DBConnection):
|
|||||||
"""
|
"""
|
||||||
return LanceTable.open(self, name)
|
return LanceTable.open(self, name)
|
||||||
|
|
||||||
|
@override
|
||||||
def drop_table(self, name: str, ignore_missing: bool = False):
|
def drop_table(self, name: str, ignore_missing: bool = False):
|
||||||
"""Drop a table from the database.
|
"""Drop a table from the database.
|
||||||
|
|
||||||
@@ -339,12 +372,13 @@ class LanceDBConnection(DBConnection):
|
|||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
filesystem, path = fs_from_uri(self.uri)
|
filesystem, path = fs_from_uri(self.uri)
|
||||||
table_path = os.path.join(path, name + ".lance")
|
table_path = join_uri(path, name + ".lance")
|
||||||
filesystem.delete_dir(table_path)
|
filesystem.delete_dir(table_path)
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
if not ignore_missing:
|
if not ignore_missing:
|
||||||
raise
|
raise
|
||||||
|
|
||||||
|
@override
|
||||||
def drop_database(self):
|
def drop_database(self):
|
||||||
filesystem, path = fs_from_uri(self.uri)
|
filesystem, path = fs_from_uri(self.uri)
|
||||||
filesystem.delete_dir(path)
|
filesystem.delete_dir(path)
|
||||||
|
|||||||
@@ -11,8 +11,10 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
# ruff: noqa: F401
|
||||||
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
|
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
|
||||||
from .cohere import CohereEmbeddingFunction
|
from .cohere import CohereEmbeddingFunction
|
||||||
|
from .instructor import InstructorEmbeddingFunction
|
||||||
from .open_clip import OpenClipEmbeddings
|
from .open_clip import OpenClipEmbeddings
|
||||||
from .openai import OpenAIEmbeddings
|
from .openai import OpenAIEmbeddings
|
||||||
from .registry import EmbeddingFunctionRegistry, get_registry
|
from .registry import EmbeddingFunctionRegistry, get_registry
|
||||||
|
|||||||
@@ -1,3 +1,15 @@
|
|||||||
|
# Copyright (c) 2023. LanceDB Developers
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
import importlib
|
import importlib
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from typing import List, Union
|
from typing import List, Union
|
||||||
@@ -6,7 +18,7 @@ import numpy as np
|
|||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from pydantic import BaseModel, Field, PrivateAttr
|
from pydantic import BaseModel, Field, PrivateAttr
|
||||||
|
|
||||||
from .utils import TEXT
|
from .utils import TEXT, retry_with_exponential_backoff
|
||||||
|
|
||||||
|
|
||||||
class EmbeddingFunction(BaseModel, ABC):
|
class EmbeddingFunction(BaseModel, ABC):
|
||||||
@@ -21,6 +33,10 @@ class EmbeddingFunction(BaseModel, ABC):
|
|||||||
3. ndims method which returns the number of dimensions of the vector column
|
3. ndims method which returns the number of dimensions of the vector column
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
__slots__ = ("__weakref__",) # pydantic 1.x compatibility
|
||||||
|
max_retries: int = (
|
||||||
|
7 # Setitng 0 disables retires. Maybe this should not be enabled by default,
|
||||||
|
)
|
||||||
_ndims: int = PrivateAttr()
|
_ndims: int = PrivateAttr()
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@@ -44,6 +60,25 @@ class EmbeddingFunction(BaseModel, ABC):
|
|||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def compute_query_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
|
||||||
|
"""
|
||||||
|
Compute the embeddings for a given user query with retries
|
||||||
|
"""
|
||||||
|
return retry_with_exponential_backoff(
|
||||||
|
self.compute_query_embeddings, max_retries=self.max_retries
|
||||||
|
)(
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
def compute_source_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
|
||||||
|
"""
|
||||||
|
Compute the embeddings for the source column in the database with retries
|
||||||
|
"""
|
||||||
|
return retry_with_exponential_backoff(
|
||||||
|
self.compute_source_embeddings, max_retries=self.max_retries
|
||||||
|
)(*args, **kwargs)
|
||||||
|
|
||||||
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
|
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
|
||||||
"""
|
"""
|
||||||
Sanitize the input to the embedding function.
|
Sanitize the input to the embedding function.
|
||||||
@@ -103,6 +138,14 @@ class EmbeddingFunction(BaseModel, ABC):
|
|||||||
"""
|
"""
|
||||||
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
|
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
|
||||||
|
|
||||||
|
def __eq__(self, __value: object) -> bool:
|
||||||
|
if not hasattr(__value, "__dict__"):
|
||||||
|
return False
|
||||||
|
return vars(self) == vars(__value)
|
||||||
|
|
||||||
|
def __hash__(self) -> int:
|
||||||
|
return hash(frozenset(vars(self).items()))
|
||||||
|
|
||||||
|
|
||||||
class EmbeddingFunctionConfig(BaseModel):
|
class EmbeddingFunctionConfig(BaseModel):
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -31,7 +31,8 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
|
|||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
name: str, default "embed-multilingual-v2.0"
|
name: str, default "embed-multilingual-v2.0"
|
||||||
The name of the model to use. See the Cohere documentation for a list of available models.
|
The name of the model to use. See the Cohere documentation for
|
||||||
|
a list of available models.
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
@@ -39,7 +40,10 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
|
|||||||
from lancedb.pydantic import LanceModel, Vector
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0")
|
cohere = EmbeddingFunctionRegistry
|
||||||
|
.get_instance()
|
||||||
|
.get("cohere")
|
||||||
|
.create(name="embed-multilingual-v2.0")
|
||||||
|
|
||||||
class TextModel(LanceModel):
|
class TextModel(LanceModel):
|
||||||
text: str = cohere.SourceField()
|
text: str = cohere.SourceField()
|
||||||
|
|||||||
137
python/lancedb/embeddings/instructor.py
Normal file
137
python/lancedb/embeddings/instructor.py
Normal file
@@ -0,0 +1,137 @@
|
|||||||
|
# Copyright (c) 2023. LanceDB Developers
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from .base import TextEmbeddingFunction
|
||||||
|
from .registry import register
|
||||||
|
from .utils import TEXT, weak_lru
|
||||||
|
|
||||||
|
|
||||||
|
@register("instructor")
|
||||||
|
class InstructorEmbeddingFunction(TextEmbeddingFunction):
|
||||||
|
"""
|
||||||
|
An embedding function that uses the InstructorEmbedding library. Instructor models support multi-task learning, and can be used for a
|
||||||
|
variety of tasks, including text classification, sentence similarity, and document retrieval.
|
||||||
|
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
|
||||||
|
"Represent the `domain` `text_type` for `task_objective`":
|
||||||
|
|
||||||
|
* domain is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
|
||||||
|
* text_type is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
|
||||||
|
* task_objective is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
|
||||||
|
|
||||||
|
For example, if you want to calculate embeddings for a document, you may write the instruction as follows:
|
||||||
|
"Represent the document for retreival"
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
name: str
|
||||||
|
The name of the model to use. Available models are listed at https://github.com/xlang-ai/instructor-embedding#model-list;
|
||||||
|
The default model is hkunlp/instructor-base
|
||||||
|
batch_size: int, default 32
|
||||||
|
The batch size to use when generating embeddings
|
||||||
|
device: str, default "cpu"
|
||||||
|
The device to use when generating embeddings
|
||||||
|
show_progress_bar: bool, default True
|
||||||
|
Whether to show a progress bar when generating embeddings
|
||||||
|
normalize_embeddings: bool, default True
|
||||||
|
Whether to normalize the embeddings
|
||||||
|
quantize: bool, default False
|
||||||
|
Whether to quantize the model
|
||||||
|
source_instruction: str, default "represent the docuement for retreival"
|
||||||
|
The instruction for the source column
|
||||||
|
query_instruction: str, default "represent the document for retreiving the most similar documents"
|
||||||
|
The instruction for the query
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
|
||||||
|
|
||||||
|
instructor = get_registry().get("instructor").create(
|
||||||
|
source_instruction="represent the docuement for retreival",
|
||||||
|
query_instruction="represent the document for retreiving the most similar documents"
|
||||||
|
)
|
||||||
|
|
||||||
|
class Schema(LanceModel):
|
||||||
|
vector: Vector(instructor.ndims()) = instructor.VectorField()
|
||||||
|
text: str = instructor.SourceField()
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||||
|
|
||||||
|
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
|
||||||
|
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
|
||||||
|
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
|
||||||
|
|
||||||
|
tbl.add(texts)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str = "hkunlp/instructor-base"
|
||||||
|
batch_size: int = 32
|
||||||
|
device: str = "cpu"
|
||||||
|
show_progress_bar: bool = True
|
||||||
|
normalize_embeddings: bool = True
|
||||||
|
quantize: bool = False
|
||||||
|
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
|
||||||
|
|
||||||
|
source_instruction: str = "represent the document for retrieval"
|
||||||
|
query_instruction: str = (
|
||||||
|
"represent the document for retrieving the most similar documents"
|
||||||
|
)
|
||||||
|
|
||||||
|
@weak_lru(maxsize=1)
|
||||||
|
def ndims(self):
|
||||||
|
model = self.get_model()
|
||||||
|
return model.encode("foo").shape[0]
|
||||||
|
|
||||||
|
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
|
||||||
|
return self.generate_embeddings([[self.query_instruction, query]])
|
||||||
|
|
||||||
|
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
|
||||||
|
texts = self.sanitize_input(texts)
|
||||||
|
texts_formatted = []
|
||||||
|
for text in texts:
|
||||||
|
texts_formatted.append([self.source_instruction, text])
|
||||||
|
return self.generate_embeddings(texts_formatted)
|
||||||
|
|
||||||
|
def generate_embeddings(self, texts: List) -> List:
|
||||||
|
model = self.get_model()
|
||||||
|
res = model.encode(
|
||||||
|
texts,
|
||||||
|
batch_size=self.batch_size,
|
||||||
|
show_progress_bar=self.show_progress_bar,
|
||||||
|
normalize_embeddings=self.normalize_embeddings,
|
||||||
|
).tolist()
|
||||||
|
return res
|
||||||
|
|
||||||
|
@weak_lru(maxsize=1)
|
||||||
|
def get_model(self):
|
||||||
|
instructor_embedding = self.safe_import(
|
||||||
|
"InstructorEmbedding", "InstructorEmbedding"
|
||||||
|
)
|
||||||
|
torch = self.safe_import("torch", "torch")
|
||||||
|
|
||||||
|
model = instructor_embedding.INSTRUCTOR(self.name)
|
||||||
|
if self.quantize:
|
||||||
|
if (
|
||||||
|
"qnnpack" in torch.backends.quantized.supported_engines
|
||||||
|
): # fix for https://github.com/pytorch/pytorch/issues/29327
|
||||||
|
torch.backends.quantized.engine = "qnnpack"
|
||||||
|
model = torch.quantization.quantize_dynamic(
|
||||||
|
model, {torch.nn.Linear}, dtype=torch.qint8
|
||||||
|
)
|
||||||
|
return model
|
||||||
@@ -1,3 +1,15 @@
|
|||||||
|
# Copyright (c) 2023. LanceDB Developers
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
import concurrent.futures
|
import concurrent.futures
|
||||||
import io
|
import io
|
||||||
import os
|
import os
|
||||||
|
|||||||
@@ -1,3 +1,16 @@
|
|||||||
|
# Copyright (c) 2023. LanceDB Developers
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from functools import cached_property
|
||||||
from typing import List, Union
|
from typing import List, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -32,6 +45,10 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
|||||||
The texts to embed
|
The texts to embed
|
||||||
"""
|
"""
|
||||||
# TODO retry, rate limit, token limit
|
# TODO retry, rate limit, token limit
|
||||||
|
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
|
||||||
|
return [v.embedding for v in rs.data]
|
||||||
|
|
||||||
|
@cached_property
|
||||||
|
def _openai_client(self):
|
||||||
openai = self.safe_import("openai")
|
openai = self.safe_import("openai")
|
||||||
rs = openai.Embedding.create(input=texts, model=self.name)["data"]
|
return openai.OpenAI()
|
||||||
return [v["embedding"] for v in rs]
|
|
||||||
|
|||||||
@@ -1,3 +1,15 @@
|
|||||||
|
# Copyright (c) 2023. LanceDB Developers
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
from typing import List, Union
|
from typing import List, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -5,6 +17,7 @@ from cachetools import cached
|
|||||||
|
|
||||||
from .base import TextEmbeddingFunction
|
from .base import TextEmbeddingFunction
|
||||||
from .registry import register
|
from .registry import register
|
||||||
|
from .utils import weak_lru
|
||||||
|
|
||||||
|
|
||||||
@register("sentence-transformers")
|
@register("sentence-transformers")
|
||||||
@@ -30,7 +43,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
|||||||
name and device. This is cached so that the model is only loaded
|
name and device. This is cached so that the model is only loaded
|
||||||
once per process.
|
once per process.
|
||||||
"""
|
"""
|
||||||
return self.__class__.get_embedding_model(self.name, self.device)
|
return self.get_embedding_model()
|
||||||
|
|
||||||
def ndims(self):
|
def ndims(self):
|
||||||
if self._ndims is None:
|
if self._ndims is None:
|
||||||
@@ -54,9 +67,8 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
|||||||
normalize_embeddings=self.normalize,
|
normalize_embeddings=self.normalize,
|
||||||
).tolist()
|
).tolist()
|
||||||
|
|
||||||
@classmethod
|
@weak_lru(maxsize=1)
|
||||||
@cached(cache={})
|
def get_embedding_model(self):
|
||||||
def get_embedding_model(cls, name, device):
|
|
||||||
"""
|
"""
|
||||||
Get the sentence-transformers embedding model specified by the
|
Get the sentence-transformers embedding model specified by the
|
||||||
name and device. This is cached so that the model is only loaded
|
name and device. This is cached so that the model is only loaded
|
||||||
@@ -71,7 +83,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
|||||||
|
|
||||||
TODO: use lru_cache instead with a reasonable/configurable maxsize
|
TODO: use lru_cache instead with a reasonable/configurable maxsize
|
||||||
"""
|
"""
|
||||||
sentence_transformers = cls.safe_import(
|
sentence_transformers = self.safe_import(
|
||||||
"sentence_transformers", "sentence-transformers"
|
"sentence_transformers", "sentence-transformers"
|
||||||
)
|
)
|
||||||
return sentence_transformers.SentenceTransformer(name, device=device)
|
return sentence_transformers.SentenceTransformer(self.name, device=self.device)
|
||||||
|
|||||||
@@ -11,10 +11,14 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
import functools
|
||||||
import math
|
import math
|
||||||
|
import random
|
||||||
import socket
|
import socket
|
||||||
import sys
|
import sys
|
||||||
|
import time
|
||||||
import urllib.error
|
import urllib.error
|
||||||
|
import weakref
|
||||||
from typing import Callable, List, Union
|
from typing import Callable, List, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -162,6 +166,99 @@ class FunctionWrapper:
|
|||||||
yield from _chunker(arr)
|
yield from _chunker(arr)
|
||||||
|
|
||||||
|
|
||||||
|
def weak_lru(maxsize=128):
|
||||||
|
"""
|
||||||
|
LRU cache that keeps weak references to the objects it caches. Only caches the latest instance of the objects to make sure memory usage
|
||||||
|
is bounded.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
maxsize : int, default 128
|
||||||
|
The maximum number of objects to cache.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
Callable
|
||||||
|
A decorator that can be applied to a method.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> class Foo:
|
||||||
|
... @weak_lru()
|
||||||
|
... def bar(self, x):
|
||||||
|
... return x
|
||||||
|
>>> foo = Foo()
|
||||||
|
>>> foo.bar(1)
|
||||||
|
1
|
||||||
|
>>> foo.bar(2)
|
||||||
|
2
|
||||||
|
>>> foo.bar(1)
|
||||||
|
1
|
||||||
|
"""
|
||||||
|
|
||||||
|
def wrapper(func):
|
||||||
|
@functools.lru_cache(maxsize)
|
||||||
|
def _func(_self, *args, **kwargs):
|
||||||
|
return func(_self(), *args, **kwargs)
|
||||||
|
|
||||||
|
@functools.wraps(func)
|
||||||
|
def inner(self, *args, **kwargs):
|
||||||
|
return _func(weakref.ref(self), *args, **kwargs)
|
||||||
|
|
||||||
|
return inner
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
|
def retry_with_exponential_backoff(
|
||||||
|
func,
|
||||||
|
initial_delay: float = 1,
|
||||||
|
exponential_base: float = 2,
|
||||||
|
jitter: bool = True,
|
||||||
|
max_retries: int = 7,
|
||||||
|
# errors: tuple = (),
|
||||||
|
):
|
||||||
|
"""Retry a function with exponential backoff.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
func (function): The function to be retried.
|
||||||
|
initial_delay (float): Initial delay in seconds (default is 1).
|
||||||
|
exponential_base (float): The base for exponential backoff (default is 2).
|
||||||
|
jitter (bool): Whether to add jitter to the delay (default is True).
|
||||||
|
max_retries (int): Maximum number of retries (default is 10).
|
||||||
|
errors (tuple): Tuple of specific exceptions to retry on (default is (openai.error.RateLimitError,)).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
function: The decorated function.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
num_retries = 0
|
||||||
|
delay = initial_delay
|
||||||
|
|
||||||
|
# Loop until a successful response or max_retries is hit or an exception is raised
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
return func(*args, **kwargs)
|
||||||
|
|
||||||
|
# Currently retrying on all exceptions as there is no way to know the format of the error msgs used by different APIs
|
||||||
|
# We'll log the error and say that it is assumed that if this portion errors out, it's due to rate limit but the user
|
||||||
|
# should check the error message to be sure
|
||||||
|
except Exception as e:
|
||||||
|
num_retries += 1
|
||||||
|
|
||||||
|
if num_retries > max_retries:
|
||||||
|
raise Exception(
|
||||||
|
f"Maximum number of retries ({max_retries}) exceeded.", e
|
||||||
|
)
|
||||||
|
|
||||||
|
delay *= exponential_base * (1 + jitter * random.random())
|
||||||
|
LOGGER.info(f"Retrying in {delay:.2f} seconds due to {e}")
|
||||||
|
time.sleep(delay)
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
def url_retrieve(url: str):
|
def url_retrieve(url: str):
|
||||||
"""
|
"""
|
||||||
Parameters
|
Parameters
|
||||||
|
|||||||
@@ -13,7 +13,7 @@
|
|||||||
|
|
||||||
"""Full text search index using tantivy-py"""
|
"""Full text search index using tantivy-py"""
|
||||||
import os
|
import os
|
||||||
from typing import List, Tuple
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
|
||||||
@@ -56,7 +56,12 @@ def create_index(index_path: str, text_fields: List[str]) -> tantivy.Index:
|
|||||||
return index
|
return index
|
||||||
|
|
||||||
|
|
||||||
def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -> int:
|
def populate_index(
|
||||||
|
index: tantivy.Index,
|
||||||
|
table: LanceTable,
|
||||||
|
fields: List[str],
|
||||||
|
writer_heap_size: int = 1024 * 1024 * 1024,
|
||||||
|
) -> int:
|
||||||
"""
|
"""
|
||||||
Populate an index with data from a LanceTable
|
Populate an index with data from a LanceTable
|
||||||
|
|
||||||
@@ -68,6 +73,8 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
|
|||||||
The table to index
|
The table to index
|
||||||
fields : List[str]
|
fields : List[str]
|
||||||
List of fields to index
|
List of fields to index
|
||||||
|
writer_heap_size : int
|
||||||
|
The writer heap size in bytes, defaults to 1GB
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
@@ -75,29 +82,71 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
|
|||||||
The number of rows indexed
|
The number of rows indexed
|
||||||
"""
|
"""
|
||||||
# first check the fields exist and are string or large string type
|
# first check the fields exist and are string or large string type
|
||||||
|
nested = []
|
||||||
for name in fields:
|
for name in fields:
|
||||||
f = table.schema.field(name) # raises KeyError if not found
|
try:
|
||||||
|
f = table.schema.field(name) # raises KeyError if not found
|
||||||
|
except KeyError:
|
||||||
|
f = resolve_path(table.schema, name)
|
||||||
|
nested.append(name)
|
||||||
|
|
||||||
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
|
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
|
||||||
raise TypeError(f"Field {name} is not a string type")
|
raise TypeError(f"Field {name} is not a string type")
|
||||||
|
|
||||||
# create a tantivy writer
|
# create a tantivy writer
|
||||||
writer = index.writer()
|
writer = index.writer(heap_size=writer_heap_size)
|
||||||
# write data into index
|
# write data into index
|
||||||
dataset = table.to_lance()
|
dataset = table.to_lance()
|
||||||
row_id = 0
|
row_id = 0
|
||||||
|
|
||||||
|
max_nested_level = 0
|
||||||
|
if len(nested) > 0:
|
||||||
|
max_nested_level = max([len(name.split(".")) for name in nested])
|
||||||
|
|
||||||
for b in dataset.to_batches(columns=fields):
|
for b in dataset.to_batches(columns=fields):
|
||||||
|
if max_nested_level > 0:
|
||||||
|
b = pa.Table.from_batches([b])
|
||||||
|
for _ in range(max_nested_level - 1):
|
||||||
|
b = b.flatten()
|
||||||
for i in range(b.num_rows):
|
for i in range(b.num_rows):
|
||||||
doc = tantivy.Document()
|
doc = tantivy.Document()
|
||||||
doc.add_integer("doc_id", row_id)
|
|
||||||
for name in fields:
|
for name in fields:
|
||||||
doc.add_text(name, b[name][i].as_py())
|
value = b[name][i].as_py()
|
||||||
writer.add_document(doc)
|
if value is not None:
|
||||||
|
doc.add_text(name, value)
|
||||||
|
if not doc.is_empty:
|
||||||
|
doc.add_integer("doc_id", row_id)
|
||||||
|
writer.add_document(doc)
|
||||||
row_id += 1
|
row_id += 1
|
||||||
# commit changes
|
# commit changes
|
||||||
writer.commit()
|
writer.commit()
|
||||||
return row_id
|
return row_id
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_path(schema, field_name: str) -> pa.Field:
|
||||||
|
"""
|
||||||
|
Resolve a nested field path to a list of field names
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
field_name : str
|
||||||
|
The field name to resolve
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
List[str]
|
||||||
|
The resolved path
|
||||||
|
"""
|
||||||
|
path = field_name.split(".")
|
||||||
|
field = schema.field(path.pop(0))
|
||||||
|
for segment in path:
|
||||||
|
if pa.types.is_struct(field.type):
|
||||||
|
field = field.type.field(segment)
|
||||||
|
else:
|
||||||
|
raise KeyError(f"field {field_name} not found in schema {schema}")
|
||||||
|
return field
|
||||||
|
|
||||||
|
|
||||||
def search_index(
|
def search_index(
|
||||||
index: tantivy.Index, query: str, limit: int = 10
|
index: tantivy.Index, query: str, limit: int = 10
|
||||||
) -> Tuple[Tuple[int], Tuple[float]]:
|
) -> Tuple[Tuple[int], Tuple[float]]:
|
||||||
|
|||||||
@@ -26,6 +26,7 @@ import numpy as np
|
|||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
import pydantic
|
import pydantic
|
||||||
import semver
|
import semver
|
||||||
|
from pydantic.fields import FieldInfo
|
||||||
|
|
||||||
from .embeddings import EmbeddingFunctionRegistry
|
from .embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
@@ -142,8 +143,8 @@ def Vector(
|
|||||||
return FixedSizeList
|
return FixedSizeList
|
||||||
|
|
||||||
|
|
||||||
def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
|
def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType:
|
||||||
"""Convert Python Type to Arrow DataType.
|
"""Convert a field with native Python type to Arrow data type.
|
||||||
|
|
||||||
Raises
|
Raises
|
||||||
------
|
------
|
||||||
@@ -163,9 +164,13 @@ def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
|
|||||||
elif py_type == date:
|
elif py_type == date:
|
||||||
return pa.date32()
|
return pa.date32()
|
||||||
elif py_type == datetime:
|
elif py_type == datetime:
|
||||||
return pa.timestamp("us")
|
tz = get_extras(field, "tz")
|
||||||
|
return pa.timestamp("us", tz=tz)
|
||||||
|
elif getattr(py_type, "__origin__", None) in (list, tuple):
|
||||||
|
child = py_type.__args__[0]
|
||||||
|
return pa.list_(_py_type_to_arrow_type(child, field))
|
||||||
raise TypeError(
|
raise TypeError(
|
||||||
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}"
|
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -187,6 +192,7 @@ else:
|
|||||||
|
|
||||||
def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
|
def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
|
||||||
"""Convert a Pydantic FieldInfo to Arrow DataType"""
|
"""Convert a Pydantic FieldInfo to Arrow DataType"""
|
||||||
|
|
||||||
if isinstance(field.annotation, _GenericAlias) or (
|
if isinstance(field.annotation, _GenericAlias) or (
|
||||||
sys.version_info > (3, 9) and isinstance(field.annotation, types.GenericAlias)
|
sys.version_info > (3, 9) and isinstance(field.annotation, types.GenericAlias)
|
||||||
):
|
):
|
||||||
@@ -194,10 +200,17 @@ def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
|
|||||||
args = field.annotation.__args__
|
args = field.annotation.__args__
|
||||||
if origin == list:
|
if origin == list:
|
||||||
child = args[0]
|
child = args[0]
|
||||||
return pa.list_(_py_type_to_arrow_type(child))
|
return pa.list_(_py_type_to_arrow_type(child, field))
|
||||||
elif origin == Union:
|
elif origin == Union:
|
||||||
if len(args) == 2 and args[1] == type(None):
|
if len(args) == 2 and args[1] == type(None):
|
||||||
return _py_type_to_arrow_type(args[0])
|
return _py_type_to_arrow_type(args[0], field)
|
||||||
|
elif sys.version_info >= (3, 10) and isinstance(field.annotation, types.UnionType):
|
||||||
|
args = field.annotation.__args__
|
||||||
|
if len(args) == 2:
|
||||||
|
for typ in args:
|
||||||
|
if typ == type(None):
|
||||||
|
continue
|
||||||
|
return _py_type_to_arrow_type(typ, field)
|
||||||
elif inspect.isclass(field.annotation):
|
elif inspect.isclass(field.annotation):
|
||||||
if issubclass(field.annotation, pydantic.BaseModel):
|
if issubclass(field.annotation, pydantic.BaseModel):
|
||||||
# Struct
|
# Struct
|
||||||
@@ -205,7 +218,7 @@ def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
|
|||||||
return pa.struct(fields)
|
return pa.struct(fields)
|
||||||
elif issubclass(field.annotation, FixedSizeListMixin):
|
elif issubclass(field.annotation, FixedSizeListMixin):
|
||||||
return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim())
|
return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim())
|
||||||
return _py_type_to_arrow_type(field.annotation)
|
return _py_type_to_arrow_type(field.annotation, field)
|
||||||
|
|
||||||
|
|
||||||
def is_nullable(field: pydantic.fields.FieldInfo) -> bool:
|
def is_nullable(field: pydantic.fields.FieldInfo) -> bool:
|
||||||
@@ -216,6 +229,11 @@ def is_nullable(field: pydantic.fields.FieldInfo) -> bool:
|
|||||||
if origin == Union:
|
if origin == Union:
|
||||||
if len(args) == 2 and args[1] == type(None):
|
if len(args) == 2 and args[1] == type(None):
|
||||||
return True
|
return True
|
||||||
|
elif sys.version_info >= (3, 10) and isinstance(field.annotation, types.UnionType):
|
||||||
|
args = field.annotation.__args__
|
||||||
|
for typ in args:
|
||||||
|
if typ == type(None):
|
||||||
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
@@ -348,3 +366,20 @@ def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
|
|||||||
if PYDANTIC_VERSION.major >= 2:
|
if PYDANTIC_VERSION.major >= 2:
|
||||||
return (field_info.json_schema_extra or {}).get(key)
|
return (field_info.json_schema_extra or {}).get(key)
|
||||||
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
||||||
|
|
||||||
|
|
||||||
|
if PYDANTIC_VERSION.major < 2:
|
||||||
|
|
||||||
|
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Convert a Pydantic model to a dictionary.
|
||||||
|
"""
|
||||||
|
return model.dict()
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Convert a Pydantic model to a dictionary.
|
||||||
|
"""
|
||||||
|
return model.model_dump()
|
||||||
|
|||||||
@@ -14,7 +14,8 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from typing import List, Literal, Optional, Type, Union
|
from pathlib import Path
|
||||||
|
from typing import TYPE_CHECKING, List, Literal, Optional, Type, Union
|
||||||
|
|
||||||
import deprecation
|
import deprecation
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -23,19 +24,54 @@ import pydantic
|
|||||||
|
|
||||||
from . import __version__
|
from . import __version__
|
||||||
from .common import VECTOR_COLUMN_NAME
|
from .common import VECTOR_COLUMN_NAME
|
||||||
from .pydantic import LanceModel
|
|
||||||
from .util import safe_import_pandas
|
from .util import safe_import_pandas
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from .pydantic import LanceModel
|
||||||
|
|
||||||
pd = safe_import_pandas()
|
pd = safe_import_pandas()
|
||||||
|
|
||||||
|
|
||||||
class Query(pydantic.BaseModel):
|
class Query(pydantic.BaseModel):
|
||||||
"""A Query"""
|
"""The LanceDB Query
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
vector : List[float]
|
||||||
|
the vector to search for
|
||||||
|
filter : Optional[str]
|
||||||
|
sql filter to refine the query with, optional
|
||||||
|
prefilter : bool
|
||||||
|
if True then apply the filter before vector search
|
||||||
|
k : int
|
||||||
|
top k results to return
|
||||||
|
metric : str
|
||||||
|
the distance metric between a pair of vectors,
|
||||||
|
|
||||||
|
can support L2 (default), Cosine and Dot.
|
||||||
|
[metric definitions][search]
|
||||||
|
columns : Optional[List[str]]
|
||||||
|
which columns to return in the results
|
||||||
|
nprobes : int
|
||||||
|
The number of probes used - optional
|
||||||
|
|
||||||
|
- A higher number makes search more accurate but also slower.
|
||||||
|
|
||||||
|
- See discussion in [Querying an ANN Index][querying-an-ann-index] for
|
||||||
|
tuning advice.
|
||||||
|
refine_factor : Optional[int]
|
||||||
|
Refine the results by reading extra elements and re-ranking them in memory - optional
|
||||||
|
|
||||||
|
- A higher number makes search more accurate but also slower.
|
||||||
|
|
||||||
|
- See discussion in [Querying an ANN Index][querying-an-ann-index] for
|
||||||
|
tuning advice.
|
||||||
|
"""
|
||||||
|
|
||||||
vector_column: str = VECTOR_COLUMN_NAME
|
vector_column: str = VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
# vector to search for
|
# vector to search for
|
||||||
vector: List[float]
|
vector: Union[List[float], List[List[float]]]
|
||||||
|
|
||||||
# sql filter to refine the query with
|
# sql filter to refine the query with
|
||||||
filter: Optional[str] = None
|
filter: Optional[str] = None
|
||||||
@@ -61,6 +97,10 @@ class Query(pydantic.BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class LanceQueryBuilder(ABC):
|
class LanceQueryBuilder(ABC):
|
||||||
|
"""Build LanceDB query based on specific query type:
|
||||||
|
vector or full text search.
|
||||||
|
"""
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def create(
|
def create(
|
||||||
cls,
|
cls,
|
||||||
@@ -103,7 +143,7 @@ class LanceQueryBuilder(ABC):
|
|||||||
if not isinstance(query, (list, np.ndarray)):
|
if not isinstance(query, (list, np.ndarray)):
|
||||||
conf = table.embedding_functions.get(vector_column_name)
|
conf = table.embedding_functions.get(vector_column_name)
|
||||||
if conf is not None:
|
if conf is not None:
|
||||||
query = conf.function.compute_query_embeddings(query)[0]
|
query = conf.function.compute_query_embeddings_with_retry(query)[0]
|
||||||
else:
|
else:
|
||||||
msg = f"No embedding function for {vector_column_name}"
|
msg = f"No embedding function for {vector_column_name}"
|
||||||
raise ValueError(msg)
|
raise ValueError(msg)
|
||||||
@@ -114,7 +154,7 @@ class LanceQueryBuilder(ABC):
|
|||||||
else:
|
else:
|
||||||
conf = table.embedding_functions.get(vector_column_name)
|
conf = table.embedding_functions.get(vector_column_name)
|
||||||
if conf is not None:
|
if conf is not None:
|
||||||
query = conf.function.compute_query_embeddings(query)[0]
|
query = conf.function.compute_query_embeddings_with_retry(query)[0]
|
||||||
return query, "vector"
|
return query, "vector"
|
||||||
else:
|
else:
|
||||||
return query, "fts"
|
return query, "fts"
|
||||||
@@ -133,11 +173,11 @@ class LanceQueryBuilder(ABC):
|
|||||||
deprecated_in="0.3.1",
|
deprecated_in="0.3.1",
|
||||||
removed_in="0.4.0",
|
removed_in="0.4.0",
|
||||||
current_version=__version__,
|
current_version=__version__,
|
||||||
details="Use the bar function instead",
|
details="Use to_pandas() instead",
|
||||||
)
|
)
|
||||||
def to_df(self) -> "pd.DataFrame":
|
def to_df(self) -> "pd.DataFrame":
|
||||||
"""
|
"""
|
||||||
Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.
|
*Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.*
|
||||||
|
|
||||||
Execute the query and return the results as a pandas DataFrame.
|
Execute the query and return the results as a pandas DataFrame.
|
||||||
In addition to the selected columns, LanceDB also returns a vector
|
In addition to the selected columns, LanceDB also returns a vector
|
||||||
@@ -146,14 +186,40 @@ class LanceQueryBuilder(ABC):
|
|||||||
"""
|
"""
|
||||||
return self.to_pandas()
|
return self.to_pandas()
|
||||||
|
|
||||||
def to_pandas(self) -> "pd.DataFrame":
|
def to_pandas(self, flatten: Optional[Union[int, bool]] = None) -> "pd.DataFrame":
|
||||||
"""
|
"""
|
||||||
Execute the query and return the results as a pandas DataFrame.
|
Execute the query and return the results as a pandas DataFrame.
|
||||||
In addition to the selected columns, LanceDB also returns a vector
|
In addition to the selected columns, LanceDB also returns a vector
|
||||||
and also the "_distance" column which is the distance between the query
|
and also the "_distance" column which is the distance between the query
|
||||||
vector and the returned vector.
|
vector and the returned vector.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
flatten: Optional[Union[int, bool]]
|
||||||
|
If flatten is True, flatten all nested columns.
|
||||||
|
If flatten is an integer, flatten the nested columns up to the
|
||||||
|
specified depth.
|
||||||
|
If unspecified, do not flatten the nested columns.
|
||||||
"""
|
"""
|
||||||
return self.to_arrow().to_pandas()
|
tbl = self.to_arrow()
|
||||||
|
if flatten is True:
|
||||||
|
while True:
|
||||||
|
tbl = tbl.flatten()
|
||||||
|
has_struct = False
|
||||||
|
# loop through all columns to check if there is any struct column
|
||||||
|
if any(pa.types.is_struct(col.type) for col in tbl.schema):
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
elif isinstance(flatten, int):
|
||||||
|
if flatten <= 0:
|
||||||
|
raise ValueError(
|
||||||
|
"Please specify a positive integer for flatten or the boolean value `True`"
|
||||||
|
)
|
||||||
|
while flatten > 0:
|
||||||
|
tbl = tbl.flatten()
|
||||||
|
flatten -= 1
|
||||||
|
return tbl.to_pandas()
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def to_arrow(self) -> pa.Table:
|
def to_arrow(self) -> pa.Table:
|
||||||
@@ -194,20 +260,30 @@ class LanceQueryBuilder(ABC):
|
|||||||
for row in self.to_arrow().to_pylist()
|
for row in self.to_arrow().to_pylist()
|
||||||
]
|
]
|
||||||
|
|
||||||
def limit(self, limit: int) -> LanceQueryBuilder:
|
def limit(self, limit: Union[int, None]) -> LanceQueryBuilder:
|
||||||
"""Set the maximum number of results to return.
|
"""Set the maximum number of results to return.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
limit: int
|
limit: int
|
||||||
The maximum number of results to return.
|
The maximum number of results to return.
|
||||||
|
By default the query is limited to the first 10.
|
||||||
|
Call this method and pass 0, a negative value,
|
||||||
|
or None to remove the limit.
|
||||||
|
*WARNING* if you have a large dataset, removing
|
||||||
|
the limit can potentially result in reading a
|
||||||
|
large amount of data into memory and cause
|
||||||
|
out of memory issues.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
LanceQueryBuilder
|
LanceQueryBuilder
|
||||||
The LanceQueryBuilder object.
|
The LanceQueryBuilder object.
|
||||||
"""
|
"""
|
||||||
self._limit = limit
|
if limit is None or limit <= 0:
|
||||||
|
self._limit = None
|
||||||
|
else:
|
||||||
|
self._limit = limit
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def select(self, columns: list) -> LanceQueryBuilder:
|
def select(self, columns: list) -> LanceQueryBuilder:
|
||||||
@@ -226,13 +302,20 @@ class LanceQueryBuilder(ABC):
|
|||||||
self._columns = columns
|
self._columns = columns
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def where(self, where) -> LanceQueryBuilder:
|
def where(self, where: str, prefilter: bool = False) -> LanceQueryBuilder:
|
||||||
"""Set the where clause.
|
"""Set the where clause.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
where: str
|
where: str
|
||||||
The where clause.
|
The where clause which is a valid SQL where clause. See
|
||||||
|
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
|
||||||
|
for valid SQL expressions.
|
||||||
|
prefilter: bool, default False
|
||||||
|
If True, apply the filter before vector search, otherwise the
|
||||||
|
filter is applied on the result of vector search.
|
||||||
|
This feature is **EXPERIMENTAL** and may be removed and modified
|
||||||
|
without warning in the future.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
@@ -240,13 +323,12 @@ class LanceQueryBuilder(ABC):
|
|||||||
The LanceQueryBuilder object.
|
The LanceQueryBuilder object.
|
||||||
"""
|
"""
|
||||||
self._where = where
|
self._where = where
|
||||||
|
self._prefilter = prefilter
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
|
||||||
class LanceVectorQueryBuilder(LanceQueryBuilder):
|
class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||||
"""
|
"""
|
||||||
A builder for nearest neighbor queries for LanceDB.
|
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
>>> import lancedb
|
>>> import lancedb
|
||||||
@@ -302,7 +384,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
Higher values will yield better recall (more likely to find vectors if
|
Higher values will yield better recall (more likely to find vectors if
|
||||||
they exist) at the expense of latency.
|
they exist) at the expense of latency.
|
||||||
|
|
||||||
See discussion in [Querying an ANN Index][../querying-an-ann-index] for
|
See discussion in [Querying an ANN Index][querying-an-ann-index] for
|
||||||
tuning advice.
|
tuning advice.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
@@ -350,6 +432,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
vector and the returned vectors.
|
vector and the returned vectors.
|
||||||
"""
|
"""
|
||||||
vector = self._query if isinstance(self._query, list) else self._query.tolist()
|
vector = self._query if isinstance(self._query, list) else self._query.tolist()
|
||||||
|
if isinstance(vector[0], np.ndarray):
|
||||||
|
vector = [v.tolist() for v in vector]
|
||||||
query = Query(
|
query = Query(
|
||||||
vector=vector,
|
vector=vector,
|
||||||
filter=self._where,
|
filter=self._where,
|
||||||
@@ -369,14 +453,14 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
where: str
|
where: str
|
||||||
The where clause.
|
The where clause which is a valid SQL where clause. See
|
||||||
|
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
|
||||||
|
for valid SQL expressions.
|
||||||
prefilter: bool, default False
|
prefilter: bool, default False
|
||||||
If True, apply the filter before vector search, otherwise the
|
If True, apply the filter before vector search, otherwise the
|
||||||
filter is applied on the result of vector search.
|
filter is applied on the result of vector search.
|
||||||
This feature is **EXPERIMENTAL** and may be removed and modified
|
This feature is **EXPERIMENTAL** and may be removed and modified
|
||||||
without warning in the future. Currently this is only supported
|
without warning in the future.
|
||||||
in OSS and can only be used with a table that does not have an ANN
|
|
||||||
index.
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
@@ -389,9 +473,29 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
|
|
||||||
|
|
||||||
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||||
|
"""A builder for full text search for LanceDB."""
|
||||||
|
|
||||||
def __init__(self, table: "lancedb.table.Table", query: str):
|
def __init__(self, table: "lancedb.table.Table", query: str):
|
||||||
super().__init__(table)
|
super().__init__(table)
|
||||||
self._query = query
|
self._query = query
|
||||||
|
self._phrase_query = False
|
||||||
|
|
||||||
|
def phrase_query(self, phrase_query: bool = True) -> LanceFtsQueryBuilder:
|
||||||
|
"""Set whether to use phrase query.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
phrase_query: bool, default True
|
||||||
|
If True, then the query will be wrapped in quotes and
|
||||||
|
double quotes replaced by single quotes.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceFtsQueryBuilder
|
||||||
|
The LanceFtsQueryBuilder object.
|
||||||
|
"""
|
||||||
|
self._phrase_query = phrase_query
|
||||||
|
return self
|
||||||
|
|
||||||
def to_arrow(self) -> pa.Table:
|
def to_arrow(self) -> pa.Table:
|
||||||
try:
|
try:
|
||||||
@@ -405,16 +509,47 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
|||||||
|
|
||||||
# get the index path
|
# get the index path
|
||||||
index_path = self._table._get_fts_index_path()
|
index_path = self._table._get_fts_index_path()
|
||||||
|
# check if the index exist
|
||||||
|
if not Path(index_path).exists():
|
||||||
|
raise FileNotFoundError(
|
||||||
|
"Fts index does not exist."
|
||||||
|
f"Please first call table.create_fts_index(['<field_names>']) to create the fts index."
|
||||||
|
)
|
||||||
# open the index
|
# open the index
|
||||||
index = tantivy.Index.open(index_path)
|
index = tantivy.Index.open(index_path)
|
||||||
# get the scores and doc ids
|
# get the scores and doc ids
|
||||||
row_ids, scores = search_index(index, self._query, self._limit)
|
query = self._query
|
||||||
|
if self._phrase_query:
|
||||||
|
query = query.replace('"', "'")
|
||||||
|
query = f'"{query}"'
|
||||||
|
row_ids, scores = search_index(index, query, self._limit)
|
||||||
if len(row_ids) == 0:
|
if len(row_ids) == 0:
|
||||||
empty_schema = pa.schema([pa.field("score", pa.float32())])
|
empty_schema = pa.schema([pa.field("score", pa.float32())])
|
||||||
return pa.Table.from_pylist([], schema=empty_schema)
|
return pa.Table.from_pylist([], schema=empty_schema)
|
||||||
scores = pa.array(scores)
|
scores = pa.array(scores)
|
||||||
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
||||||
output_tbl = output_tbl.append_column("score", scores)
|
output_tbl = output_tbl.append_column("score", scores)
|
||||||
|
|
||||||
|
if self._where is not None:
|
||||||
|
try:
|
||||||
|
# TODO would be great to have Substrait generate pyarrow compute expressions
|
||||||
|
# or conversely have pyarrow support SQL expressions using Substrait
|
||||||
|
import duckdb
|
||||||
|
|
||||||
|
output_tbl = (
|
||||||
|
duckdb.sql(f"SELECT * FROM output_tbl")
|
||||||
|
.filter(self._where)
|
||||||
|
.to_arrow_table()
|
||||||
|
)
|
||||||
|
except ImportError:
|
||||||
|
import lance
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
# TODO Use "memory://" instead once that's supported
|
||||||
|
with tempfile.TemporaryDirectory() as tmp:
|
||||||
|
ds = lance.write_dataset(output_tbl, tmp)
|
||||||
|
output_tbl = ds.to_table(filter=self._where)
|
||||||
|
|
||||||
return output_tbl
|
return output_tbl
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -18,6 +18,8 @@ import attrs
|
|||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from lancedb.common import VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
|
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
|
||||||
|
|
||||||
|
|
||||||
@@ -43,6 +45,8 @@ class VectorQuery(BaseModel):
|
|||||||
|
|
||||||
refine_factor: Optional[int] = None
|
refine_factor: Optional[int] = None
|
||||||
|
|
||||||
|
vector_column: str = VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
|
|
||||||
@attrs.define
|
@attrs.define
|
||||||
class VectorQueryResult:
|
class VectorQueryResult:
|
||||||
|
|||||||
@@ -13,9 +13,10 @@
|
|||||||
|
|
||||||
|
|
||||||
import functools
|
import functools
|
||||||
from typing import Any, Callable, Dict, Optional, Union
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
||||||
|
from urllib.parse import urljoin
|
||||||
|
|
||||||
import aiohttp
|
import requests
|
||||||
import attrs
|
import attrs
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
@@ -37,8 +38,8 @@ def _check_not_closed(f):
|
|||||||
return wrapped
|
return wrapped
|
||||||
|
|
||||||
|
|
||||||
async def _read_ipc(resp: aiohttp.ClientResponse) -> pa.Table:
|
def _read_ipc(resp: requests.Response) -> pa.Table:
|
||||||
resp_body = await resp.read()
|
resp_body = resp.content
|
||||||
with pa.ipc.open_file(pa.BufferReader(resp_body)) as reader:
|
with pa.ipc.open_file(pa.BufferReader(resp_body)) as reader:
|
||||||
return reader.read_all()
|
return reader.read_all()
|
||||||
|
|
||||||
@@ -53,15 +54,18 @@ class RestfulLanceDBClient:
|
|||||||
closed: bool = attrs.field(default=False, init=False)
|
closed: bool = attrs.field(default=False, init=False)
|
||||||
|
|
||||||
@functools.cached_property
|
@functools.cached_property
|
||||||
def session(self) -> aiohttp.ClientSession:
|
def session(self) -> requests.Session:
|
||||||
url = (
|
return requests.Session()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def url(self) -> str:
|
||||||
|
return (
|
||||||
self.host_override
|
self.host_override
|
||||||
or f"https://{self.db_name}.{self.region}.api.lancedb.com"
|
or f"https://{self.db_name}.{self.region}.api.lancedb.com"
|
||||||
)
|
)
|
||||||
return aiohttp.ClientSession(url)
|
|
||||||
|
|
||||||
async def close(self):
|
def close(self):
|
||||||
await self.session.close()
|
self.session.close()
|
||||||
self.closed = True
|
self.closed = True
|
||||||
|
|
||||||
@functools.cached_property
|
@functools.cached_property
|
||||||
@@ -76,38 +80,38 @@ class RestfulLanceDBClient:
|
|||||||
return headers
|
return headers
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
async def _check_status(resp: aiohttp.ClientResponse):
|
def _check_status(resp: requests.Response):
|
||||||
if resp.status == 404:
|
if resp.status_code == 404:
|
||||||
raise LanceDBClientError(f"Not found: {await resp.text()}")
|
raise LanceDBClientError(f"Not found: {resp.text}")
|
||||||
elif 400 <= resp.status < 500:
|
elif 400 <= resp.status_code < 500:
|
||||||
raise LanceDBClientError(
|
raise LanceDBClientError(
|
||||||
f"Bad Request: {resp.status}, error: {await resp.text()}"
|
f"Bad Request: {resp.status_code}, error: {resp.text}"
|
||||||
)
|
)
|
||||||
elif 500 <= resp.status < 600:
|
elif 500 <= resp.status_code < 600:
|
||||||
raise LanceDBClientError(
|
raise LanceDBClientError(
|
||||||
f"Internal Server Error: {resp.status}, error: {await resp.text()}"
|
f"Internal Server Error: {resp.status_code}, error: {resp.text}"
|
||||||
)
|
)
|
||||||
elif resp.status != 200:
|
elif resp.status_code != 200:
|
||||||
raise LanceDBClientError(
|
raise LanceDBClientError(
|
||||||
f"Unknown Error: {resp.status}, error: {await resp.text()}"
|
f"Unknown Error: {resp.status_code}, error: {resp.text}"
|
||||||
)
|
)
|
||||||
|
|
||||||
@_check_not_closed
|
@_check_not_closed
|
||||||
async def get(self, uri: str, params: Union[Dict[str, Any], BaseModel] = None):
|
def get(self, uri: str, params: Union[Dict[str, Any], BaseModel] = None):
|
||||||
"""Send a GET request and returns the deserialized response payload."""
|
"""Send a GET request and returns the deserialized response payload."""
|
||||||
if isinstance(params, BaseModel):
|
if isinstance(params, BaseModel):
|
||||||
params: Dict[str, Any] = params.dict(exclude_none=True)
|
params: Dict[str, Any] = params.dict(exclude_none=True)
|
||||||
async with self.session.get(
|
with self.session.get(
|
||||||
uri,
|
urljoin(self.url, uri),
|
||||||
params=params,
|
params=params,
|
||||||
headers=self.headers,
|
headers=self.headers,
|
||||||
timeout=aiohttp.ClientTimeout(total=30),
|
timeout=(5.0, 30.0),
|
||||||
) as resp:
|
) as resp:
|
||||||
await self._check_status(resp)
|
self._check_status(resp)
|
||||||
return await resp.json()
|
return resp.json()
|
||||||
|
|
||||||
@_check_not_closed
|
@_check_not_closed
|
||||||
async def post(
|
def post(
|
||||||
self,
|
self,
|
||||||
uri: str,
|
uri: str,
|
||||||
data: Optional[Union[Dict[str, Any], BaseModel, bytes]] = None,
|
data: Optional[Union[Dict[str, Any], BaseModel, bytes]] = None,
|
||||||
@@ -139,32 +143,26 @@ class RestfulLanceDBClient:
|
|||||||
headers["content-type"] = content_type
|
headers["content-type"] = content_type
|
||||||
if request_id is not None:
|
if request_id is not None:
|
||||||
headers["x-request-id"] = request_id
|
headers["x-request-id"] = request_id
|
||||||
async with self.session.post(
|
with self.session.post(
|
||||||
uri,
|
urljoin(self.url, uri),
|
||||||
headers=headers,
|
headers=headers,
|
||||||
params=params,
|
params=params,
|
||||||
timeout=aiohttp.ClientTimeout(total=30),
|
timeout=(5.0, 30.0),
|
||||||
**req_kwargs,
|
**req_kwargs,
|
||||||
) as resp:
|
) as resp:
|
||||||
resp: aiohttp.ClientResponse = resp
|
self._check_status(resp)
|
||||||
await self._check_status(resp)
|
return deserialize(resp)
|
||||||
return await deserialize(resp)
|
|
||||||
|
|
||||||
@_check_not_closed
|
@_check_not_closed
|
||||||
async def list_tables(self, limit: int, page_token: str):
|
def list_tables(self, limit: int, page_token: Optional[str] = None) -> List[str]:
|
||||||
"""List all tables in the database."""
|
"""List all tables in the database."""
|
||||||
try:
|
if page_token is None:
|
||||||
json = await self.get(
|
page_token = ""
|
||||||
"/v1/table/", {"limit": limit, "page_token": page_token}
|
json = self.get("/v1/table/", {"limit": limit, "page_token": page_token})
|
||||||
)
|
return json["tables"]
|
||||||
return json["tables"]
|
|
||||||
except StopAsyncIteration:
|
|
||||||
return []
|
|
||||||
|
|
||||||
@_check_not_closed
|
@_check_not_closed
|
||||||
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
|
def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
|
||||||
"""Query a table."""
|
"""Query a table."""
|
||||||
tbl = await self.post(
|
tbl = self.post(f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc)
|
||||||
f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc
|
|
||||||
)
|
|
||||||
return VectorQueryResult(tbl)
|
return VectorQueryResult(tbl)
|
||||||
|
|||||||
@@ -12,17 +12,23 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import asyncio
|
import asyncio
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
import uuid
|
import uuid
|
||||||
from typing import Iterator, Optional
|
from typing import Iterable, List, Optional, Union
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
from overrides import override
|
||||||
|
|
||||||
from ..common import DATA
|
from ..common import DATA
|
||||||
from ..db import DBConnection
|
from ..db import DBConnection
|
||||||
|
from ..embeddings import EmbeddingFunctionConfig
|
||||||
|
from ..pydantic import LanceModel
|
||||||
from ..table import Table, _sanitize_data
|
from ..table import Table, _sanitize_data
|
||||||
from .arrow import to_ipc_binary
|
from .arrow import to_ipc_binary
|
||||||
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
|
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
|
||||||
|
from .errors import LanceDBClientError
|
||||||
|
|
||||||
|
|
||||||
class RemoteDBConnection(DBConnection):
|
class RemoteDBConnection(DBConnection):
|
||||||
@@ -44,36 +50,38 @@ class RemoteDBConnection(DBConnection):
|
|||||||
self._client = RestfulLanceDBClient(
|
self._client = RestfulLanceDBClient(
|
||||||
self.db_name, region, api_key, host_override
|
self.db_name, region, api_key, host_override
|
||||||
)
|
)
|
||||||
try:
|
|
||||||
self._loop = asyncio.get_running_loop()
|
|
||||||
except RuntimeError:
|
|
||||||
self._loop = asyncio.get_event_loop()
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
def __repr__(self) -> str:
|
||||||
return f"RemoveConnect(name={self.db_name})"
|
return f"RemoteConnect(name={self.db_name})"
|
||||||
|
|
||||||
def table_names(self, last_token: str, limit=10) -> Iterator[str]:
|
@override
|
||||||
|
def table_names(
|
||||||
|
self, page_token: Optional[str] = None, limit: int = 10
|
||||||
|
) -> Iterable[str]:
|
||||||
"""List the names of all tables in the database.
|
"""List the names of all tables in the database.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
last_token: str
|
page_token: str
|
||||||
The last token to start the new page.
|
The last token to start the new page.
|
||||||
|
limit: int, default 10
|
||||||
|
The maximum number of tables to return for each page.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
An iterator of table names.
|
An iterator of table names.
|
||||||
"""
|
"""
|
||||||
while True:
|
while True:
|
||||||
result = self._loop.run_until_complete(
|
result = self._client.list_tables(limit, page_token)
|
||||||
self._client.list_tables(limit, last_token)
|
|
||||||
)
|
|
||||||
if len(result) > 0:
|
if len(result) > 0:
|
||||||
last_token = result[len(result) - 1]
|
page_token = result[len(result) - 1]
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
for item in result:
|
for item in result:
|
||||||
yield result
|
yield item
|
||||||
|
|
||||||
|
@override
|
||||||
def open_table(self, name: str) -> Table:
|
def open_table(self, name: str) -> Table:
|
||||||
"""Open a Lance Table in the database.
|
"""Open a Lance Table in the database.
|
||||||
|
|
||||||
@@ -88,23 +96,140 @@ class RemoteDBConnection(DBConnection):
|
|||||||
"""
|
"""
|
||||||
from .table import RemoteTable
|
from .table import RemoteTable
|
||||||
|
|
||||||
# TODO: check if table exists
|
# check if table exists
|
||||||
|
try:
|
||||||
|
self._client.post(f"/v1/table/{name}/describe/")
|
||||||
|
except LanceDBClientError as err:
|
||||||
|
if str(err).startswith("Not found"):
|
||||||
|
logging.error(
|
||||||
|
f"Table {name} does not exist. "
|
||||||
|
f"Please first call db.create_table({name}, data)"
|
||||||
|
)
|
||||||
return RemoteTable(self, name)
|
return RemoteTable(self, name)
|
||||||
|
|
||||||
|
@override
|
||||||
def create_table(
|
def create_table(
|
||||||
self,
|
self,
|
||||||
name: str,
|
name: str,
|
||||||
data: DATA = None,
|
data: DATA = None,
|
||||||
schema: pa.Schema = None,
|
schema: Optional[Union[pa.Schema, LanceModel]] = None,
|
||||||
on_bad_vectors: str = "error",
|
on_bad_vectors: str = "error",
|
||||||
fill_value: float = 0.0,
|
fill_value: float = 0.0,
|
||||||
|
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||||
) -> Table:
|
) -> Table:
|
||||||
|
"""Create a [Table][lancedb.table.Table] in the database.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
name: str
|
||||||
|
The name of the table.
|
||||||
|
data: The data to initialize the table, *optional*
|
||||||
|
User must provide at least one of `data` or `schema`.
|
||||||
|
Acceptable types are:
|
||||||
|
|
||||||
|
- dict or list-of-dict
|
||||||
|
|
||||||
|
- pandas.DataFrame
|
||||||
|
|
||||||
|
- pyarrow.Table or pyarrow.RecordBatch
|
||||||
|
schema: The schema of the table, *optional*
|
||||||
|
Acceptable types are:
|
||||||
|
|
||||||
|
- pyarrow.Schema
|
||||||
|
|
||||||
|
- [LanceModel][lancedb.pydantic.LanceModel]
|
||||||
|
on_bad_vectors: str, default "error"
|
||||||
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
|
One of "error", "drop", "fill".
|
||||||
|
fill_value: float
|
||||||
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceTable
|
||||||
|
A reference to the newly created table.
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
|
||||||
|
The vector index won't be created by default.
|
||||||
|
To create the index, call the `create_index` method on the table.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
|
||||||
|
Can create with list of tuples or dictionaries:
|
||||||
|
|
||||||
|
>>> import lancedb
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
||||||
|
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
||||||
|
>>> db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
LanceTable(my_table)
|
||||||
|
|
||||||
|
You can also pass a pandas DataFrame:
|
||||||
|
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> data = pd.DataFrame({
|
||||||
|
... "vector": [[1.1, 1.2], [0.2, 1.8]],
|
||||||
|
... "lat": [45.5, 40.1],
|
||||||
|
... "long": [-122.7, -74.1]
|
||||||
|
... })
|
||||||
|
>>> db.create_table("table2", data) # doctest: +SKIP
|
||||||
|
LanceTable(table2)
|
||||||
|
|
||||||
|
>>> custom_schema = pa.schema([
|
||||||
|
... pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||||
|
... pa.field("lat", pa.float32()),
|
||||||
|
... pa.field("long", pa.float32())
|
||||||
|
... ])
|
||||||
|
>>> db.create_table("table3", data, schema = custom_schema) # doctest: +SKIP
|
||||||
|
LanceTable(table3)
|
||||||
|
|
||||||
|
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
|
||||||
|
|
||||||
|
>>> import pyarrow as pa
|
||||||
|
>>> def make_batches():
|
||||||
|
... for i in range(5):
|
||||||
|
... yield pa.RecordBatch.from_arrays(
|
||||||
|
... [
|
||||||
|
... pa.array([[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
... pa.list_(pa.float32(), 2)),
|
||||||
|
... pa.array(["foo", "bar"]),
|
||||||
|
... pa.array([10.0, 20.0]),
|
||||||
|
... ],
|
||||||
|
... ["vector", "item", "price"],
|
||||||
|
... )
|
||||||
|
>>> schema=pa.schema([
|
||||||
|
... pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||||
|
... pa.field("item", pa.utf8()),
|
||||||
|
... pa.field("price", pa.float32()),
|
||||||
|
... ])
|
||||||
|
>>> db.create_table("table4", make_batches(), schema=schema) # doctest: +SKIP
|
||||||
|
LanceTable(table4)
|
||||||
|
|
||||||
|
"""
|
||||||
if data is None and schema is None:
|
if data is None and schema is None:
|
||||||
raise ValueError("Either data or schema must be provided.")
|
raise ValueError("Either data or schema must be provided.")
|
||||||
|
if embedding_functions is not None:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"embedding_functions is not supported for remote databases."
|
||||||
|
"Please vote https://github.com/lancedb/lancedb/issues/626 "
|
||||||
|
"for this feature."
|
||||||
|
)
|
||||||
|
|
||||||
|
if inspect.isclass(schema) and issubclass(schema, LanceModel):
|
||||||
|
# convert LanceModel to pyarrow schema
|
||||||
|
# note that it's possible this contains
|
||||||
|
# embedding function metadata already
|
||||||
|
schema = schema.to_arrow_schema()
|
||||||
|
|
||||||
if data is not None:
|
if data is not None:
|
||||||
data = _sanitize_data(
|
data = _sanitize_data(
|
||||||
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
data,
|
||||||
|
schema,
|
||||||
|
metadata=None,
|
||||||
|
on_bad_vectors=on_bad_vectors,
|
||||||
|
fill_value=fill_value,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
if schema is None:
|
if schema is None:
|
||||||
@@ -116,16 +241,16 @@ class RemoteDBConnection(DBConnection):
|
|||||||
data = to_ipc_binary(data)
|
data = to_ipc_binary(data)
|
||||||
request_id = uuid.uuid4().hex
|
request_id = uuid.uuid4().hex
|
||||||
|
|
||||||
self._loop.run_until_complete(
|
self._client.post(
|
||||||
self._client.post(
|
f"/v1/table/{name}/create/",
|
||||||
f"/v1/table/{name}/create/",
|
data=data,
|
||||||
data=data,
|
request_id=request_id,
|
||||||
request_id=request_id,
|
content_type=ARROW_STREAM_CONTENT_TYPE,
|
||||||
content_type=ARROW_STREAM_CONTENT_TYPE,
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return RemoteTable(self, name)
|
return RemoteTable(self, name)
|
||||||
|
|
||||||
|
@override
|
||||||
def drop_table(self, name: str):
|
def drop_table(self, name: str):
|
||||||
"""Drop a table from the database.
|
"""Drop a table from the database.
|
||||||
|
|
||||||
@@ -134,13 +259,11 @@ class RemoteDBConnection(DBConnection):
|
|||||||
name: str
|
name: str
|
||||||
The name of the table.
|
The name of the table.
|
||||||
"""
|
"""
|
||||||
self._loop.run_until_complete(
|
|
||||||
self._client.post(
|
self._client.post(
|
||||||
f"/v1/table/{name}/drop/",
|
f"/v1/table/{name}/drop/",
|
||||||
)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
async def close(self):
|
async def close(self):
|
||||||
"""Close the connection to the database."""
|
"""Close the connection to the database."""
|
||||||
self._loop.close()
|
self._client.close()
|
||||||
await self._client.close()
|
|
||||||
|
|||||||
@@ -11,9 +11,10 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
import asyncio
|
||||||
import uuid
|
import uuid
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import Optional, Union
|
from typing import Dict, Optional, Union
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from lance import json_to_schema
|
from lance import json_to_schema
|
||||||
@@ -22,6 +23,7 @@ from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
|||||||
|
|
||||||
from ..query import LanceVectorQueryBuilder
|
from ..query import LanceVectorQueryBuilder
|
||||||
from ..table import Query, Table, _sanitize_data
|
from ..table import Query, Table, _sanitize_data
|
||||||
|
from ..util import value_to_sql
|
||||||
from .arrow import to_ipc_binary
|
from .arrow import to_ipc_binary
|
||||||
from .client import ARROW_STREAM_CONTENT_TYPE
|
from .client import ARROW_STREAM_CONTENT_TYPE
|
||||||
from .db import RemoteDBConnection
|
from .db import RemoteDBConnection
|
||||||
@@ -37,34 +39,84 @@ class RemoteTable(Table):
|
|||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def schema(self) -> pa.Schema:
|
def schema(self) -> pa.Schema:
|
||||||
"""Return the schema of the table."""
|
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
|
||||||
resp = self._conn._loop.run_until_complete(
|
of this Table
|
||||||
self._conn._client.post(f"/v1/table/{self._name}/describe/")
|
|
||||||
)
|
"""
|
||||||
|
resp = self._conn._client.post(f"/v1/table/{self._name}/describe/")
|
||||||
schema = json_to_schema(resp["schema"])
|
schema = json_to_schema(resp["schema"])
|
||||||
return schema
|
return schema
|
||||||
|
|
||||||
|
@property
|
||||||
|
def version(self) -> int:
|
||||||
|
"""Get the current version of the table"""
|
||||||
|
resp = self._conn._client.post(f"/v1/table/{self._name}/describe/")
|
||||||
|
return resp["version"]
|
||||||
|
|
||||||
def to_arrow(self) -> pa.Table:
|
def to_arrow(self) -> pa.Table:
|
||||||
"""Return the table as an Arrow table."""
|
"""to_arrow() is not supported on the LanceDB cloud"""
|
||||||
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
|
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
|
||||||
|
|
||||||
def to_pandas(self):
|
def to_pandas(self):
|
||||||
"""Return the table as a Pandas DataFrame.
|
"""to_pandas() is not supported on the LanceDB cloud"""
|
||||||
|
|
||||||
Intercept `to_arrow()` for better error message.
|
|
||||||
"""
|
|
||||||
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
|
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
|
||||||
|
|
||||||
|
def create_scalar_index(self, *args, **kwargs):
|
||||||
|
"""Creates a scalar index"""
|
||||||
|
return NotImplementedError(
|
||||||
|
"create_scalar_index() is not supported on the LanceDB cloud"
|
||||||
|
)
|
||||||
|
|
||||||
def create_index(
|
def create_index(
|
||||||
self,
|
self,
|
||||||
metric="L2",
|
metric="L2",
|
||||||
num_partitions=256,
|
|
||||||
num_sub_vectors=96,
|
|
||||||
vector_column_name: str = VECTOR_COLUMN_NAME,
|
vector_column_name: str = VECTOR_COLUMN_NAME,
|
||||||
replace: bool = True,
|
index_cache_size: Optional[int] = None,
|
||||||
accelerator: Optional[str] = None,
|
|
||||||
):
|
):
|
||||||
raise NotImplementedError
|
"""Create an index on the table.
|
||||||
|
Currently, the only parameters that matter are
|
||||||
|
the metric and the vector column name.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
metric : str
|
||||||
|
The metric to use for the index. Default is "L2".
|
||||||
|
vector_column_name : str
|
||||||
|
The name of the vector column. Default is "vector".
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> import uuid
|
||||||
|
>>> from lancedb.schema import vector
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> table_name = uuid.uuid4().hex
|
||||||
|
>>> schema = pa.schema(
|
||||||
|
... [
|
||||||
|
... pa.field("id", pa.uint32(), False),
|
||||||
|
... pa.field("vector", vector(128), False),
|
||||||
|
... pa.field("s", pa.string(), False),
|
||||||
|
... ]
|
||||||
|
... )
|
||||||
|
>>> table = db.create_table( # doctest: +SKIP
|
||||||
|
... table_name, # doctest: +SKIP
|
||||||
|
... schema=schema, # doctest: +SKIP
|
||||||
|
... )
|
||||||
|
>>> table.create_index("L2", "vector") # doctest: +SKIP
|
||||||
|
"""
|
||||||
|
index_type = "vector"
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"column": vector_column_name,
|
||||||
|
"index_type": index_type,
|
||||||
|
"metric_type": metric,
|
||||||
|
"index_cache_size": index_cache_size,
|
||||||
|
}
|
||||||
|
resp = self._conn._client.post(
|
||||||
|
f"/v1/table/{self._name}/create_index/", data=data
|
||||||
|
)
|
||||||
|
|
||||||
|
return resp
|
||||||
|
|
||||||
def add(
|
def add(
|
||||||
self,
|
self,
|
||||||
@@ -73,6 +125,28 @@ class RemoteTable(Table):
|
|||||||
on_bad_vectors: str = "error",
|
on_bad_vectors: str = "error",
|
||||||
fill_value: float = 0.0,
|
fill_value: float = 0.0,
|
||||||
) -> int:
|
) -> int:
|
||||||
|
"""Add more data to the [Table](Table). It has the same API signature as the OSS version.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data: DATA
|
||||||
|
The data to insert into the table. Acceptable types are:
|
||||||
|
|
||||||
|
- dict or list-of-dict
|
||||||
|
|
||||||
|
- pandas.DataFrame
|
||||||
|
|
||||||
|
- pyarrow.Table or pyarrow.RecordBatch
|
||||||
|
mode: str
|
||||||
|
The mode to use when writing the data. Valid values are
|
||||||
|
"append" and "overwrite".
|
||||||
|
on_bad_vectors: str, default "error"
|
||||||
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
|
One of "error", "drop", "fill".
|
||||||
|
fill_value: float, default 0.
|
||||||
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
|
|
||||||
|
"""
|
||||||
data = _sanitize_data(
|
data = _sanitize_data(
|
||||||
data,
|
data,
|
||||||
self.schema,
|
self.schema,
|
||||||
@@ -84,29 +158,203 @@ class RemoteTable(Table):
|
|||||||
|
|
||||||
request_id = uuid.uuid4().hex
|
request_id = uuid.uuid4().hex
|
||||||
|
|
||||||
self._conn._loop.run_until_complete(
|
self._conn._client.post(
|
||||||
self._conn._client.post(
|
f"/v1/table/{self._name}/insert/",
|
||||||
f"/v1/table/{self._name}/insert/",
|
data=payload,
|
||||||
data=payload,
|
params={"request_id": request_id, "mode": mode},
|
||||||
params={"request_id": request_id, "mode": mode},
|
content_type=ARROW_STREAM_CONTENT_TYPE,
|
||||||
content_type=ARROW_STREAM_CONTENT_TYPE,
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def search(
|
def search(
|
||||||
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
|
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
|
||||||
) -> LanceVectorQueryBuilder:
|
) -> LanceVectorQueryBuilder:
|
||||||
|
"""Create a search query to find the nearest neighbors
|
||||||
|
of the given query vector. We currently support [vector search][search]
|
||||||
|
|
||||||
|
All query options are defined in [Query][lancedb.query.Query].
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> data = [
|
||||||
|
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
|
||||||
|
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
|
||||||
|
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
|
||||||
|
... ]
|
||||||
|
>>> table = db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
>>> query = [0.4, 1.4, 2.4]
|
||||||
|
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
|
||||||
|
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
|
||||||
|
... .select(["caption", "original_width"]) # doctest: +SKIP
|
||||||
|
... .limit(2) # doctest: +SKIP
|
||||||
|
... .to_pandas()) # doctest: +SKIP
|
||||||
|
caption original_width vector _distance # doctest: +SKIP
|
||||||
|
0 foo 2000 [0.5, 3.4, 1.3] 5.220000 # doctest: +SKIP
|
||||||
|
1 test 3000 [0.3, 6.2, 2.6] 23.089996 # doctest: +SKIP
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
query: list/np.ndarray/str/PIL.Image.Image, default None
|
||||||
|
The targetted vector to search for.
|
||||||
|
|
||||||
|
- *default None*.
|
||||||
|
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
||||||
|
|
||||||
|
- If None then the select/where/limit clauses are applied to filter
|
||||||
|
the table
|
||||||
|
vector_column_name: str
|
||||||
|
The name of the vector column to search.
|
||||||
|
*default "vector"*
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceQueryBuilder
|
||||||
|
A query builder object representing the query.
|
||||||
|
Once executed, the query returns
|
||||||
|
|
||||||
|
- selected columns
|
||||||
|
|
||||||
|
- the vector
|
||||||
|
|
||||||
|
- and also the "_distance" column which is the distance between the query
|
||||||
|
vector and the returned vector.
|
||||||
|
"""
|
||||||
return LanceVectorQueryBuilder(self, query, vector_column_name)
|
return LanceVectorQueryBuilder(self, query, vector_column_name)
|
||||||
|
|
||||||
def _execute_query(self, query: Query) -> pa.Table:
|
def _execute_query(self, query: Query) -> pa.Table:
|
||||||
if query.prefilter:
|
if (
|
||||||
raise NotImplementedError("Cloud support for prefiltering is coming soon")
|
query.vector is not None
|
||||||
result = self._conn._client.query(self._name, query)
|
and len(query.vector) > 0
|
||||||
return self._conn._loop.run_until_complete(result).to_arrow()
|
and not isinstance(query.vector[0], float)
|
||||||
|
):
|
||||||
|
results = []
|
||||||
|
for v in query.vector:
|
||||||
|
v = list(v)
|
||||||
|
q = query.copy()
|
||||||
|
q.vector = v
|
||||||
|
results.append(self._conn._client.query(self._name, q))
|
||||||
|
|
||||||
|
return pa.concat_tables(
|
||||||
|
[add_index(r.to_arrow(), i) for i, r in enumerate(results)]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
result = self._conn._client.query(self._name, query)
|
||||||
|
return result.to_arrow()
|
||||||
|
|
||||||
def delete(self, predicate: str):
|
def delete(self, predicate: str):
|
||||||
"""Delete rows from the table."""
|
"""Delete rows from the table.
|
||||||
|
|
||||||
|
This can be used to delete a single row, many rows, all rows, or
|
||||||
|
sometimes no rows (if your predicate matches nothing).
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
predicate: str
|
||||||
|
The SQL where clause to use when deleting rows.
|
||||||
|
|
||||||
|
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
|
||||||
|
|
||||||
|
The filter must not be empty, or it will error.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> data = [
|
||||||
|
... {"x": 1, "vector": [1, 2]},
|
||||||
|
... {"x": 2, "vector": [3, 4]},
|
||||||
|
... {"x": 3, "vector": [5, 6]}
|
||||||
|
... ]
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> table = db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
|
||||||
|
x vector _distance # doctest: +SKIP
|
||||||
|
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
|
||||||
|
1 2 [3.0, 4.0] 85.0 # doctest: +SKIP
|
||||||
|
2 1 [1.0, 2.0] 145.0 # doctest: +SKIP
|
||||||
|
>>> table.delete("x = 2") # doctest: +SKIP
|
||||||
|
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
|
||||||
|
x vector _distance # doctest: +SKIP
|
||||||
|
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
|
||||||
|
1 1 [1.0, 2.0] 145.0 # doctest: +SKIP
|
||||||
|
|
||||||
|
If you have a list of values to delete, you can combine them into a
|
||||||
|
stringified list and use the `IN` operator:
|
||||||
|
|
||||||
|
>>> to_remove = [1, 3] # doctest: +SKIP
|
||||||
|
>>> to_remove = ", ".join([str(v) for v in to_remove]) # doctest: +SKIP
|
||||||
|
>>> table.delete(f"x IN ({to_remove})") # doctest: +SKIP
|
||||||
|
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
|
||||||
|
x vector _distance # doctest: +SKIP
|
||||||
|
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
|
||||||
|
"""
|
||||||
payload = {"predicate": predicate}
|
payload = {"predicate": predicate}
|
||||||
self._conn._loop.run_until_complete(
|
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
|
||||||
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
|
|
||||||
)
|
def update(
|
||||||
|
self,
|
||||||
|
where: Optional[str] = None,
|
||||||
|
values: Optional[dict] = None,
|
||||||
|
*,
|
||||||
|
values_sql: Optional[Dict[str, str]] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
This can be used to update zero to all rows depending on how many
|
||||||
|
rows match the where clause.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
where: str, optional
|
||||||
|
The SQL where clause to use when updating rows. For example, 'x = 2'
|
||||||
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
||||||
|
values: dict, optional
|
||||||
|
The values to update. The keys are the column names and the values
|
||||||
|
are the values to set.
|
||||||
|
values_sql: dict, optional
|
||||||
|
The values to update, expressed as SQL expression strings. These can
|
||||||
|
reference existing columns. For example, {"x": "x + 1"} will increment
|
||||||
|
the x column by 1.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> data = [
|
||||||
|
... {"x": 1, "vector": [1, 2]},
|
||||||
|
... {"x": 2, "vector": [3, 4]},
|
||||||
|
... {"x": 3, "vector": [5, 6]}
|
||||||
|
... ]
|
||||||
|
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
|
||||||
|
>>> table = db.create_table("my_table", data) # doctest: +SKIP
|
||||||
|
>>> table.to_pandas() # doctest: +SKIP
|
||||||
|
x vector # doctest: +SKIP
|
||||||
|
0 1 [1.0, 2.0] # doctest: +SKIP
|
||||||
|
1 2 [3.0, 4.0] # doctest: +SKIP
|
||||||
|
2 3 [5.0, 6.0] # doctest: +SKIP
|
||||||
|
>>> table.update(where="x = 2", values={"vector": [10, 10]}) # doctest: +SKIP
|
||||||
|
>>> table.to_pandas() # doctest: +SKIP
|
||||||
|
x vector # doctest: +SKIP
|
||||||
|
0 1 [1.0, 2.0] # doctest: +SKIP
|
||||||
|
1 3 [5.0, 6.0] # doctest: +SKIP
|
||||||
|
2 2 [10.0, 10.0] # doctest: +SKIP
|
||||||
|
|
||||||
|
"""
|
||||||
|
if values is not None and values_sql is not None:
|
||||||
|
raise ValueError("Only one of values or values_sql can be provided")
|
||||||
|
if values is None and values_sql is None:
|
||||||
|
raise ValueError("Either values or values_sql must be provided")
|
||||||
|
|
||||||
|
if values is not None:
|
||||||
|
updates = [[k, value_to_sql(v)] for k, v in values.items()]
|
||||||
|
else:
|
||||||
|
updates = [[k, v] for k, v in values_sql.items()]
|
||||||
|
|
||||||
|
payload = {"predicate": where, "updates": updates}
|
||||||
|
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
|
||||||
|
|
||||||
|
|
||||||
|
def add_index(tbl: pa.Table, i: int) -> pa.Table:
|
||||||
|
return tbl.add_column(
|
||||||
|
0,
|
||||||
|
pa.field("query_index", pa.uint32()),
|
||||||
|
pa.array([i] * len(tbl), pa.uint32()),
|
||||||
|
)
|
||||||
|
|||||||
@@ -16,25 +16,30 @@ from __future__ import annotations
|
|||||||
import inspect
|
import inspect
|
||||||
import os
|
import os
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from datetime import timedelta
|
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import Any, Iterable, List, Optional, Union
|
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
|
||||||
|
|
||||||
import lance
|
import lance
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
import pyarrow.compute as pc
|
import pyarrow.compute as pc
|
||||||
|
import pyarrow.fs as pa_fs
|
||||||
from lance import LanceDataset
|
from lance import LanceDataset
|
||||||
from lance.dataset import CleanupStats, ReaderLike
|
|
||||||
from lance.vector import vec_to_table
|
from lance.vector import vec_to_table
|
||||||
|
|
||||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||||
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||||
from .pydantic import LanceModel
|
from .pydantic import LanceModel, model_to_dict
|
||||||
from .query import LanceQueryBuilder, Query
|
from .query import LanceQueryBuilder, Query
|
||||||
from .util import fs_from_uri, safe_import_pandas
|
from .util import fs_from_uri, safe_import_pandas, value_to_sql, join_uri
|
||||||
from .utils.events import register_event
|
from .utils.events import register_event
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from datetime import timedelta
|
||||||
|
|
||||||
|
from lance.dataset import CleanupStats, ReaderLike
|
||||||
|
|
||||||
|
|
||||||
pd = safe_import_pandas()
|
pd = safe_import_pandas()
|
||||||
|
|
||||||
|
|
||||||
@@ -49,8 +54,10 @@ def _sanitize_data(
|
|||||||
# convert to list of dict if data is a bunch of LanceModels
|
# convert to list of dict if data is a bunch of LanceModels
|
||||||
if isinstance(data[0], LanceModel):
|
if isinstance(data[0], LanceModel):
|
||||||
schema = data[0].__class__.to_arrow_schema()
|
schema = data[0].__class__.to_arrow_schema()
|
||||||
data = [dict(d) for d in data]
|
data = [model_to_dict(d) for d in data]
|
||||||
data = pa.Table.from_pylist(data)
|
data = pa.Table.from_pylist(data, schema=schema)
|
||||||
|
else:
|
||||||
|
data = pa.Table.from_pylist(data)
|
||||||
elif isinstance(data, dict):
|
elif isinstance(data, dict):
|
||||||
data = vec_to_table(data)
|
data = vec_to_table(data)
|
||||||
elif pd is not None and isinstance(data, pd.DataFrame):
|
elif pd is not None and isinstance(data, pd.DataFrame):
|
||||||
@@ -86,7 +93,9 @@ def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schem
|
|||||||
for vector_column, conf in functions.items():
|
for vector_column, conf in functions.items():
|
||||||
func = conf.function
|
func = conf.function
|
||||||
if vector_column not in data.column_names:
|
if vector_column not in data.column_names:
|
||||||
col_data = func.compute_source_embeddings(data[conf.source_column])
|
col_data = func.compute_source_embeddings_with_retry(
|
||||||
|
data[conf.source_column]
|
||||||
|
)
|
||||||
if schema is not None:
|
if schema is not None:
|
||||||
dtype = schema.field(vector_column).type
|
dtype = schema.field(vector_column).type
|
||||||
else:
|
else:
|
||||||
@@ -149,13 +158,13 @@ class Table(ABC):
|
|||||||
@property
|
@property
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def schema(self) -> pa.Schema:
|
def schema(self) -> pa.Schema:
|
||||||
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
|
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
|
||||||
this Table
|
of this Table
|
||||||
|
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def to_pandas(self):
|
def to_pandas(self) -> "pd.DataFrame":
|
||||||
"""Return the table as a pandas DataFrame.
|
"""Return the table as a pandas DataFrame.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
@@ -182,6 +191,7 @@ class Table(ABC):
|
|||||||
vector_column_name: str = VECTOR_COLUMN_NAME,
|
vector_column_name: str = VECTOR_COLUMN_NAME,
|
||||||
replace: bool = True,
|
replace: bool = True,
|
||||||
accelerator: Optional[str] = None,
|
accelerator: Optional[str] = None,
|
||||||
|
index_cache_size: Optional[int] = None,
|
||||||
):
|
):
|
||||||
"""Create an index on the table.
|
"""Create an index on the table.
|
||||||
|
|
||||||
@@ -191,20 +201,94 @@ class Table(ABC):
|
|||||||
The distance metric to use when creating the index.
|
The distance metric to use when creating the index.
|
||||||
Valid values are "L2", "cosine", or "dot".
|
Valid values are "L2", "cosine", or "dot".
|
||||||
L2 is euclidean distance.
|
L2 is euclidean distance.
|
||||||
num_partitions: int
|
num_partitions: int, default 256
|
||||||
The number of IVF partitions to use when creating the index.
|
The number of IVF partitions to use when creating the index.
|
||||||
Default is 256.
|
Default is 256.
|
||||||
num_sub_vectors: int
|
num_sub_vectors: int, default 96
|
||||||
The number of PQ sub-vectors to use when creating the index.
|
The number of PQ sub-vectors to use when creating the index.
|
||||||
Default is 96.
|
Default is 96.
|
||||||
vector_column_name: str, default "vector"
|
vector_column_name: str, default "vector"
|
||||||
The vector column name to create the index.
|
The vector column name to create the index.
|
||||||
replace: bool, default True
|
replace: bool, default True
|
||||||
If True, replace the existing index if it exists.
|
- If True, replace the existing index if it exists.
|
||||||
If False, raise an error if duplicate index exists.
|
|
||||||
|
- If False, raise an error if duplicate index exists.
|
||||||
accelerator: str, default None
|
accelerator: str, default None
|
||||||
If set, use the given accelerator to create the index.
|
If set, use the given accelerator to create the index.
|
||||||
Only support "cuda" for now.
|
Only support "cuda" for now.
|
||||||
|
index_cache_size : int, optional
|
||||||
|
The size of the index cache in number of entries. Default value is 256.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def create_scalar_index(
|
||||||
|
self,
|
||||||
|
column: str,
|
||||||
|
*,
|
||||||
|
replace: bool = True,
|
||||||
|
):
|
||||||
|
"""Create a scalar index on a column.
|
||||||
|
|
||||||
|
Scalar indices, like vector indices, can be used to speed up scans. A scalar
|
||||||
|
index can speed up scans that contain filter expressions on the indexed column.
|
||||||
|
For example, the following scan will be faster if the column ``my_col`` has
|
||||||
|
a scalar index:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("/data/lance")
|
||||||
|
img_table = db.open_table("images")
|
||||||
|
my_df = img_table.search().where("my_col = 7", prefilter=True).to_pandas()
|
||||||
|
|
||||||
|
Scalar indices can also speed up scans containing a vector search and a
|
||||||
|
prefilter:
|
||||||
|
|
||||||
|
.. code-block::python
|
||||||
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("/data/lance")
|
||||||
|
img_table = db.open_table("images")
|
||||||
|
img_table.search([1, 2, 3, 4], vector_column_name="vector")
|
||||||
|
.where("my_col != 7", prefilter=True)
|
||||||
|
.to_pandas()
|
||||||
|
|
||||||
|
Scalar indices can only speed up scans for basic filters using
|
||||||
|
equality, comparison, range (e.g. ``my_col BETWEEN 0 AND 100``), and set
|
||||||
|
membership (e.g. `my_col IN (0, 1, 2)`)
|
||||||
|
|
||||||
|
Scalar indices can be used if the filter contains multiple indexed columns and
|
||||||
|
the filter criteria are AND'd or OR'd together
|
||||||
|
(e.g. ``my_col < 0 AND other_col> 100``)
|
||||||
|
|
||||||
|
Scalar indices may be used if the filter contains non-indexed columns but,
|
||||||
|
depending on the structure of the filter, they may not be usable. For example,
|
||||||
|
if the column ``not_indexed`` does not have a scalar index then the filter
|
||||||
|
``my_col = 0 OR not_indexed = 1`` will not be able to use any scalar index on
|
||||||
|
``my_col``.
|
||||||
|
|
||||||
|
**Experimental API**
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
column : str
|
||||||
|
The column to be indexed. Must be a boolean, integer, float,
|
||||||
|
or string column.
|
||||||
|
replace : bool, default True
|
||||||
|
Replace the existing index if it exists.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import lance
|
||||||
|
|
||||||
|
dataset = lance.dataset("/tmp/images.lance")
|
||||||
|
dataset.create_scalar_index("category")
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
@@ -220,8 +304,14 @@ class Table(ABC):
|
|||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
data: list-of-dict, dict, pd.DataFrame
|
data: DATA
|
||||||
The data to insert into the table.
|
The data to insert into the table. Acceptable types are:
|
||||||
|
|
||||||
|
- dict or list-of-dict
|
||||||
|
|
||||||
|
- pandas.DataFrame
|
||||||
|
|
||||||
|
- pyarrow.Table or pyarrow.RecordBatch
|
||||||
mode: str
|
mode: str
|
||||||
The mode to use when writing the data. Valid values are
|
The mode to use when writing the data. Valid values are
|
||||||
"append" and "overwrite".
|
"append" and "overwrite".
|
||||||
@@ -242,31 +332,70 @@ class Table(ABC):
|
|||||||
query_type: str = "auto",
|
query_type: str = "auto",
|
||||||
) -> LanceQueryBuilder:
|
) -> LanceQueryBuilder:
|
||||||
"""Create a search query to find the nearest neighbors
|
"""Create a search query to find the nearest neighbors
|
||||||
of the given query vector.
|
of the given query vector. We currently support [vector search][search]
|
||||||
|
and [full-text search][experimental-full-text-search].
|
||||||
|
|
||||||
|
All query options are defined in [Query][lancedb.query.Query].
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
|
>>> data = [
|
||||||
|
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
|
||||||
|
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
|
||||||
|
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
|
||||||
|
... ]
|
||||||
|
>>> table = db.create_table("my_table", data)
|
||||||
|
>>> query = [0.4, 1.4, 2.4]
|
||||||
|
>>> (table.search(query, vector_column_name="vector")
|
||||||
|
... .where("original_width > 1000", prefilter=True)
|
||||||
|
... .select(["caption", "original_width"])
|
||||||
|
... .limit(2)
|
||||||
|
... .to_pandas())
|
||||||
|
caption original_width vector _distance
|
||||||
|
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
|
||||||
|
1 test 3000 [0.3, 6.2, 2.6] 23.089996
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
query: str, list, np.ndarray, PIL.Image.Image, default None
|
query: list/np.ndarray/str/PIL.Image.Image, default None
|
||||||
The query to search for. If None then
|
The targetted vector to search for.
|
||||||
the select/where/limit clauses are applied to filter
|
|
||||||
|
- *default None*.
|
||||||
|
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
||||||
|
|
||||||
|
- If None then the select/where/limit clauses are applied to filter
|
||||||
the table
|
the table
|
||||||
vector_column_name: str, default "vector"
|
vector_column_name: str
|
||||||
The name of the vector column to search.
|
The name of the vector column to search.
|
||||||
query_type: str, default "auto"
|
*default "vector"*
|
||||||
"vector", "fts", or "auto"
|
query_type: str
|
||||||
If "auto" then the query type is inferred from the query;
|
*default "auto"*.
|
||||||
If `query` is a list/np.ndarray then the query type is "vector";
|
Acceptable types are: "vector", "fts", or "auto"
|
||||||
If `query` is a PIL.Image.Image then either do vector search
|
|
||||||
or raise an error if no corresponding embedding function is found.
|
- If "auto" then the query type is inferred from the query;
|
||||||
If `query` is a string, then the query type is "vector" if the
|
|
||||||
|
- If `query` is a list/np.ndarray then the query type is
|
||||||
|
"vector";
|
||||||
|
|
||||||
|
- If `query` is a PIL.Image.Image then either do vector search,
|
||||||
|
or raise an error if no corresponding embedding function is found.
|
||||||
|
|
||||||
|
- If `query` is a string, then the query type is "vector" if the
|
||||||
table has embedding functions else the query type is "fts"
|
table has embedding functions else the query type is "fts"
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
LanceQueryBuilder
|
LanceQueryBuilder
|
||||||
A query builder object representing the query.
|
A query builder object representing the query.
|
||||||
Once executed, the query returns selected columns, the vector,
|
Once executed, the query returns
|
||||||
and also the "_distance" column which is the distance between the query
|
|
||||||
|
- selected columns
|
||||||
|
|
||||||
|
- the vector
|
||||||
|
|
||||||
|
- and also the "_distance" column which is the distance between the query
|
||||||
vector and the returned vector.
|
vector and the returned vector.
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -285,14 +414,19 @@ class Table(ABC):
|
|||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
where: str
|
where: str
|
||||||
The SQL where clause to use when deleting rows. For example, 'x = 2'
|
The SQL where clause to use when deleting rows.
|
||||||
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
|
||||||
|
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
|
||||||
|
|
||||||
|
The filter must not be empty, or it will error.
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
>>> import lancedb
|
>>> import lancedb
|
||||||
>>> data = [
|
>>> data = [
|
||||||
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
|
... {"x": 1, "vector": [1, 2]},
|
||||||
|
... {"x": 2, "vector": [3, 4]},
|
||||||
|
... {"x": 3, "vector": [5, 6]}
|
||||||
... ]
|
... ]
|
||||||
>>> db = lancedb.connect("./.lancedb")
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
>>> table = db.create_table("my_table", data)
|
>>> table = db.create_table("my_table", data)
|
||||||
@@ -321,6 +455,62 @@ class Table(ABC):
|
|||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def update(
|
||||||
|
self,
|
||||||
|
where: Optional[str] = None,
|
||||||
|
values: Optional[dict] = None,
|
||||||
|
*,
|
||||||
|
values_sql: Optional[Dict[str, str]] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
This can be used to update zero to all rows depending on how many
|
||||||
|
rows match the where clause. If no where clause is provided, then
|
||||||
|
all rows will be updated.
|
||||||
|
|
||||||
|
Either `values` or `values_sql` must be provided. You cannot provide
|
||||||
|
both.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
where: str, optional
|
||||||
|
The SQL where clause to use when updating rows. For example, 'x = 2'
|
||||||
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
||||||
|
values: dict, optional
|
||||||
|
The values to update. The keys are the column names and the values
|
||||||
|
are the values to set.
|
||||||
|
values_sql: dict, optional
|
||||||
|
The values to update, expressed as SQL expression strings. These can
|
||||||
|
reference existing columns. For example, {"x": "x + 1"} will increment
|
||||||
|
the x column by 1.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||||
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
|
>>> table = db.create_table("my_table", data)
|
||||||
|
>>> table.to_pandas()
|
||||||
|
x vector
|
||||||
|
0 1 [1.0, 2.0]
|
||||||
|
1 2 [3.0, 4.0]
|
||||||
|
2 3 [5.0, 6.0]
|
||||||
|
>>> table.update(where="x = 2", values={"vector": [10, 10]})
|
||||||
|
>>> table.to_pandas()
|
||||||
|
x vector
|
||||||
|
0 1 [1.0, 2.0]
|
||||||
|
1 3 [5.0, 6.0]
|
||||||
|
2 2 [10.0, 10.0]
|
||||||
|
>>> table.update(values_sql={"x": "x + 1"})
|
||||||
|
>>> table.to_pandas()
|
||||||
|
x vector
|
||||||
|
0 2 [1.0, 2.0]
|
||||||
|
1 4 [5.0, 6.0]
|
||||||
|
2 3 [10.0, 10.0]
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
class LanceTable(Table):
|
class LanceTable(Table):
|
||||||
"""
|
"""
|
||||||
@@ -377,7 +567,8 @@ class LanceTable(Table):
|
|||||||
--------
|
--------
|
||||||
>>> import lancedb
|
>>> import lancedb
|
||||||
>>> db = lancedb.connect("./.lancedb")
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
|
>>> table = db.create_table("my_table",
|
||||||
|
... [{"vector": [1.1, 0.9], "type": "vector"}])
|
||||||
>>> table.version
|
>>> table.version
|
||||||
2
|
2
|
||||||
>>> table.to_pandas()
|
>>> table.to_pandas()
|
||||||
@@ -424,7 +615,8 @@ class LanceTable(Table):
|
|||||||
--------
|
--------
|
||||||
>>> import lancedb
|
>>> import lancedb
|
||||||
>>> db = lancedb.connect("./.lancedb")
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
|
>>> table = db.create_table("my_table", [
|
||||||
|
... {"vector": [1.1, 0.9], "type": "vector"}])
|
||||||
>>> table.version
|
>>> table.version
|
||||||
2
|
2
|
||||||
>>> table.to_pandas()
|
>>> table.to_pandas()
|
||||||
@@ -455,8 +647,19 @@ class LanceTable(Table):
|
|||||||
self._dataset.restore()
|
self._dataset.restore()
|
||||||
self._reset_dataset()
|
self._reset_dataset()
|
||||||
|
|
||||||
|
def count_rows(self, filter: Optional[str] = None) -> int:
|
||||||
|
"""
|
||||||
|
Count the number of rows in the table.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
filter: str, optional
|
||||||
|
A SQL where clause to filter the rows to count.
|
||||||
|
"""
|
||||||
|
return self._dataset.count_rows(filter)
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return self._dataset.count_rows()
|
return self.count_rows()
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
def __repr__(self) -> str:
|
||||||
return f"LanceTable({self.name})"
|
return f"LanceTable({self.name})"
|
||||||
@@ -487,7 +690,7 @@ class LanceTable(Table):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def _dataset_uri(self) -> str:
|
def _dataset_uri(self) -> str:
|
||||||
return os.path.join(self._conn.uri, f"{self.name}.lance")
|
return join_uri(self._conn.uri, f"{self.name}.lance")
|
||||||
|
|
||||||
def create_index(
|
def create_index(
|
||||||
self,
|
self,
|
||||||
@@ -497,6 +700,7 @@ class LanceTable(Table):
|
|||||||
vector_column_name=VECTOR_COLUMN_NAME,
|
vector_column_name=VECTOR_COLUMN_NAME,
|
||||||
replace: bool = True,
|
replace: bool = True,
|
||||||
accelerator: Optional[str] = None,
|
accelerator: Optional[str] = None,
|
||||||
|
index_cache_size: Optional[int] = None,
|
||||||
):
|
):
|
||||||
"""Create an index on the table."""
|
"""Create an index on the table."""
|
||||||
self._dataset.create_index(
|
self._dataset.create_index(
|
||||||
@@ -507,11 +711,21 @@ class LanceTable(Table):
|
|||||||
num_sub_vectors=num_sub_vectors,
|
num_sub_vectors=num_sub_vectors,
|
||||||
replace=replace,
|
replace=replace,
|
||||||
accelerator=accelerator,
|
accelerator=accelerator,
|
||||||
|
index_cache_size=index_cache_size,
|
||||||
)
|
)
|
||||||
self._reset_dataset()
|
self._reset_dataset()
|
||||||
register_event("create_index")
|
register_event("create_index")
|
||||||
|
|
||||||
def create_fts_index(self, field_names: Union[str, List[str]]):
|
def create_scalar_index(self, column: str, *, replace: bool = True):
|
||||||
|
self._dataset.create_scalar_index(column, index_type="BTREE", replace=replace)
|
||||||
|
|
||||||
|
def create_fts_index(
|
||||||
|
self,
|
||||||
|
field_names: Union[str, List[str]],
|
||||||
|
*,
|
||||||
|
replace: bool = False,
|
||||||
|
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
|
||||||
|
):
|
||||||
"""Create a full-text search index on the table.
|
"""Create a full-text search index on the table.
|
||||||
|
|
||||||
Warning - this API is highly experimental and is highly likely to change
|
Warning - this API is highly experimental and is highly likely to change
|
||||||
@@ -521,17 +735,32 @@ class LanceTable(Table):
|
|||||||
----------
|
----------
|
||||||
field_names: str or list of str
|
field_names: str or list of str
|
||||||
The name(s) of the field to index.
|
The name(s) of the field to index.
|
||||||
|
replace: bool, default False
|
||||||
|
If True, replace the existing index if it exists. Note that this is
|
||||||
|
not yet an atomic operation; the index will be temporarily
|
||||||
|
unavailable while the new index is being created.
|
||||||
|
writer_heap_size: int, default 1GB
|
||||||
"""
|
"""
|
||||||
from .fts import create_index, populate_index
|
from .fts import create_index, populate_index
|
||||||
|
|
||||||
if isinstance(field_names, str):
|
if isinstance(field_names, str):
|
||||||
field_names = [field_names]
|
field_names = [field_names]
|
||||||
|
|
||||||
|
fs, path = fs_from_uri(self._get_fts_index_path())
|
||||||
|
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
|
||||||
|
if index_exists:
|
||||||
|
if not replace:
|
||||||
|
raise ValueError(
|
||||||
|
f"Index already exists. Use replace=True to overwrite."
|
||||||
|
)
|
||||||
|
fs.delete_dir(path)
|
||||||
|
|
||||||
index = create_index(self._get_fts_index_path(), field_names)
|
index = create_index(self._get_fts_index_path(), field_names)
|
||||||
populate_index(index, self, field_names)
|
populate_index(index, self, field_names, writer_heap_size=writer_heap_size)
|
||||||
register_event("create_fts_index")
|
register_event("create_fts_index")
|
||||||
|
|
||||||
def _get_fts_index_path(self):
|
def _get_fts_index_path(self):
|
||||||
return os.path.join(self._dataset_uri, "_indices", "tantivy")
|
return join_uri(self._dataset_uri, "_indices", "tantivy")
|
||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def _dataset(self) -> LanceDataset:
|
def _dataset(self) -> LanceDataset:
|
||||||
@@ -669,14 +898,39 @@ class LanceTable(Table):
|
|||||||
query_type: str = "auto",
|
query_type: str = "auto",
|
||||||
) -> LanceQueryBuilder:
|
) -> LanceQueryBuilder:
|
||||||
"""Create a search query to find the nearest neighbors
|
"""Create a search query to find the nearest neighbors
|
||||||
of the given query vector.
|
of the given query vector. We currently support [vector search][search]
|
||||||
|
and [full-text search][search].
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
|
>>> data = [
|
||||||
|
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
|
||||||
|
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
|
||||||
|
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
|
||||||
|
... ]
|
||||||
|
>>> table = db.create_table("my_table", data)
|
||||||
|
>>> query = [0.4, 1.4, 2.4]
|
||||||
|
>>> (table.search(query, vector_column_name="vector")
|
||||||
|
... .where("original_width > 1000", prefilter=True)
|
||||||
|
... .select(["caption", "original_width"])
|
||||||
|
... .limit(2)
|
||||||
|
... .to_pandas())
|
||||||
|
caption original_width vector _distance
|
||||||
|
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
|
||||||
|
1 test 3000 [0.3, 6.2, 2.6] 23.089996
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
query: str, list, np.ndarray, a PIL Image or None
|
query: list/np.ndarray/str/PIL.Image.Image, default None
|
||||||
The query to search for. If None then
|
The targetted vector to search for.
|
||||||
the select/where/limit clauses are applied to filter
|
|
||||||
the table
|
- *default None*.
|
||||||
|
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
||||||
|
|
||||||
|
- If None then the select/[where][sql]/limit clauses are applied
|
||||||
|
to filter the table
|
||||||
vector_column_name: str, default "vector"
|
vector_column_name: str, default "vector"
|
||||||
The name of the vector column to search.
|
The name of the vector column to search.
|
||||||
query_type: str, default "auto"
|
query_type: str, default "auto"
|
||||||
@@ -685,7 +939,7 @@ class LanceTable(Table):
|
|||||||
If `query` is a list/np.ndarray then the query type is "vector";
|
If `query` is a list/np.ndarray then the query type is "vector";
|
||||||
If `query` is a PIL.Image.Image then either do vector search
|
If `query` is a PIL.Image.Image then either do vector search
|
||||||
or raise an error if no corresponding embedding function is found.
|
or raise an error if no corresponding embedding function is found.
|
||||||
If the query is a string, then the query type is "vector" if the
|
If the `query` is a string, then the query type is "vector" if the
|
||||||
table has embedding functions, else the query type is "fts"
|
table has embedding functions, else the query type is "fts"
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
@@ -696,7 +950,7 @@ class LanceTable(Table):
|
|||||||
and also the "_distance" column which is the distance between the query
|
and also the "_distance" column which is the distance between the query
|
||||||
vector and the returned vector.
|
vector and the returned vector.
|
||||||
"""
|
"""
|
||||||
register_event("search")
|
register_event("search_table")
|
||||||
return LanceQueryBuilder.create(
|
return LanceQueryBuilder.create(
|
||||||
self, query, query_type, vector_column_name=vector_column_name
|
self, query, query_type, vector_column_name=vector_column_name
|
||||||
)
|
)
|
||||||
@@ -720,7 +974,9 @@ class LanceTable(Table):
|
|||||||
--------
|
--------
|
||||||
>>> import lancedb
|
>>> import lancedb
|
||||||
>>> data = [
|
>>> data = [
|
||||||
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
|
... {"x": 1, "vector": [1, 2]},
|
||||||
|
... {"x": 2, "vector": [3, 4]},
|
||||||
|
... {"x": 3, "vector": [5, 6]}
|
||||||
... ]
|
... ]
|
||||||
>>> db = lancedb.connect("./.lancedb")
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
>>> table = db.create_table("my_table", data)
|
>>> table = db.create_table("my_table", data)
|
||||||
@@ -740,7 +996,8 @@ class LanceTable(Table):
|
|||||||
The data to insert into the table.
|
The data to insert into the table.
|
||||||
At least one of `data` or `schema` must be provided.
|
At least one of `data` or `schema` must be provided.
|
||||||
schema: pa.Schema or LanceModel, optional
|
schema: pa.Schema or LanceModel, optional
|
||||||
The schema of the table. If not provided, the schema is inferred from the data.
|
The schema of the table. If not provided,
|
||||||
|
the schema is inferred from the data.
|
||||||
At least one of `data` or `schema` must be provided.
|
At least one of `data` or `schema` must be provided.
|
||||||
mode: str, default "create"
|
mode: str, default "create"
|
||||||
The mode to use when writing the data. Valid values are
|
The mode to use when writing the data. Valid values are
|
||||||
@@ -811,35 +1068,45 @@ class LanceTable(Table):
|
|||||||
file_info = fs.get_file_info(path)
|
file_info = fs.get_file_info(path)
|
||||||
if file_info.type != pa.fs.FileType.Directory:
|
if file_info.type != pa.fs.FileType.Directory:
|
||||||
raise FileNotFoundError(
|
raise FileNotFoundError(
|
||||||
f"Table {name} does not exist. Please first call db.create_table({name}, data)"
|
f"Table {name} does not exist."
|
||||||
|
f"Please first call db.create_table({name}, data)"
|
||||||
)
|
)
|
||||||
|
register_event("open_table")
|
||||||
|
|
||||||
return tbl
|
return tbl
|
||||||
|
|
||||||
def delete(self, where: str):
|
def delete(self, where: str):
|
||||||
self._dataset.delete(where)
|
self._dataset.delete(where)
|
||||||
|
|
||||||
def update(self, where: str, values: dict):
|
def update(
|
||||||
|
self,
|
||||||
|
where: Optional[str] = None,
|
||||||
|
values: Optional[dict] = None,
|
||||||
|
*,
|
||||||
|
values_sql: Optional[Dict[str, str]] = None,
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
EXPERIMENTAL: Update rows in the table (not threadsafe).
|
|
||||||
|
|
||||||
This can be used to update zero to all rows depending on how many
|
This can be used to update zero to all rows depending on how many
|
||||||
rows match the where clause.
|
rows match the where clause.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
where: str
|
where: str, optional
|
||||||
The SQL where clause to use when updating rows. For example, 'x = 2'
|
The SQL where clause to use when updating rows. For example, 'x = 2'
|
||||||
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
||||||
values: dict
|
values: dict, optional
|
||||||
The values to update. The keys are the column names and the values
|
The values to update. The keys are the column names and the values
|
||||||
are the values to set.
|
are the values to set.
|
||||||
|
values_sql: dict, optional
|
||||||
|
The values to update, expressed as SQL expression strings. These can
|
||||||
|
reference existing columns. For example, {"x": "x + 1"} will increment
|
||||||
|
the x column by 1.
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
>>> import lancedb
|
>>> import lancedb
|
||||||
>>> data = [
|
>>> import pandas as pd
|
||||||
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
|
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||||
... ]
|
|
||||||
>>> db = lancedb.connect("./.lancedb")
|
>>> db = lancedb.connect("./.lancedb")
|
||||||
>>> table = db.create_table("my_table", data)
|
>>> table = db.create_table("my_table", data)
|
||||||
>>> table.to_pandas()
|
>>> table.to_pandas()
|
||||||
@@ -855,29 +1122,20 @@ class LanceTable(Table):
|
|||||||
2 2 [10.0, 10.0]
|
2 2 [10.0, 10.0]
|
||||||
|
|
||||||
"""
|
"""
|
||||||
orig_data = self._dataset.to_table(filter=where).combine_chunks()
|
if values is not None and values_sql is not None:
|
||||||
if len(orig_data) == 0:
|
raise ValueError("Only one of values or values_sql can be provided")
|
||||||
return
|
if values is None and values_sql is None:
|
||||||
for col, val in values.items():
|
raise ValueError("Either values or values_sql must be provided")
|
||||||
i = orig_data.column_names.index(col)
|
|
||||||
if i < 0:
|
if values is not None:
|
||||||
raise ValueError(f"Column {col} does not exist")
|
values_sql = {k: value_to_sql(v) for k, v in values.items()}
|
||||||
orig_data = orig_data.set_column(
|
|
||||||
i, col, pa.array([val] * len(orig_data), type=orig_data[col].type)
|
self.to_lance().update(values_sql, where)
|
||||||
)
|
|
||||||
self.delete(where)
|
|
||||||
self.add(orig_data, mode="append")
|
|
||||||
self._reset_dataset()
|
self._reset_dataset()
|
||||||
register_event("update")
|
register_event("update")
|
||||||
|
|
||||||
def _execute_query(self, query: Query) -> pa.Table:
|
def _execute_query(self, query: Query) -> pa.Table:
|
||||||
ds = self.to_lance()
|
ds = self.to_lance()
|
||||||
if query.prefilter:
|
|
||||||
for idx in ds.list_indices():
|
|
||||||
if query.vector_column in idx["fields"]:
|
|
||||||
raise NotImplementedError(
|
|
||||||
"Prefiltering for indexed vector column is coming soon."
|
|
||||||
)
|
|
||||||
return ds.to_table(
|
return ds.to_table(
|
||||||
columns=query.columns,
|
columns=query.columns,
|
||||||
filter=query.filter,
|
filter=query.filter,
|
||||||
@@ -1019,7 +1277,8 @@ def _sanitize_vector_column(
|
|||||||
# ChunkedArray is annoying to work with, so we combine chunks here
|
# ChunkedArray is annoying to work with, so we combine chunks here
|
||||||
vec_arr = data[vector_column_name].combine_chunks()
|
vec_arr = data[vector_column_name].combine_chunks()
|
||||||
if pa.types.is_list(data[vector_column_name].type):
|
if pa.types.is_list(data[vector_column_name].type):
|
||||||
# if it's a variable size list array we make sure the dimensions are all the same
|
# if it's a variable size list array,
|
||||||
|
# we make sure the dimensions are all the same
|
||||||
has_jagged_ndims = len(vec_arr.values) % len(data) != 0
|
has_jagged_ndims = len(vec_arr.values) % len(data) != 0
|
||||||
if has_jagged_ndims:
|
if has_jagged_ndims:
|
||||||
data = _sanitize_jagged(
|
data = _sanitize_jagged(
|
||||||
|
|||||||
@@ -12,9 +12,13 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
from typing import Tuple
|
from datetime import date, datetime
|
||||||
|
from functools import singledispatch
|
||||||
|
import pathlib
|
||||||
|
from typing import Tuple, Union
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import pyarrow.fs as pa_fs
|
import pyarrow.fs as pa_fs
|
||||||
|
|
||||||
|
|
||||||
@@ -59,6 +63,12 @@ def get_uri_location(uri: str) -> str:
|
|||||||
str: Location part of the URL, without scheme
|
str: Location part of the URL, without scheme
|
||||||
"""
|
"""
|
||||||
parsed = urlparse(uri)
|
parsed = urlparse(uri)
|
||||||
|
if len(parsed.scheme) == 1:
|
||||||
|
# Windows drive names are parsed as the scheme
|
||||||
|
# e.g. "c:\path" -> ParseResult(scheme="c", netloc="", path="/path", ...)
|
||||||
|
# So we add special handling here for schemes that are a single character
|
||||||
|
return uri
|
||||||
|
|
||||||
if not parsed.netloc:
|
if not parsed.netloc:
|
||||||
return parsed.path
|
return parsed.path
|
||||||
else:
|
else:
|
||||||
@@ -81,6 +91,29 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
|
|||||||
return pa_fs.FileSystem.from_uri(uri)
|
return pa_fs.FileSystem.from_uri(uri)
|
||||||
|
|
||||||
|
|
||||||
|
def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
|
||||||
|
"""
|
||||||
|
Join a URI with multiple parts, handles both local and remote paths
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
base : str
|
||||||
|
The base URI
|
||||||
|
parts : str
|
||||||
|
The parts to join to the base URI, each separated by the
|
||||||
|
appropriate path separator for the URI scheme and OS
|
||||||
|
"""
|
||||||
|
if isinstance(base, pathlib.Path):
|
||||||
|
return base.joinpath(*parts)
|
||||||
|
base = str(base)
|
||||||
|
if get_uri_scheme(base) == "file":
|
||||||
|
# using pathlib for local paths make this windows compatible
|
||||||
|
# `get_uri_scheme` returns `file` for windows drive names (e.g. `c:\path`)
|
||||||
|
return str(pathlib.Path(base, *parts))
|
||||||
|
# for remote paths, just use os.path.join
|
||||||
|
return "/".join([p.rstrip("/") for p in [base, *parts]])
|
||||||
|
|
||||||
|
|
||||||
def safe_import_pandas():
|
def safe_import_pandas():
|
||||||
try:
|
try:
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@@ -88,3 +121,53 @@ def safe_import_pandas():
|
|||||||
return pd
|
return pd
|
||||||
except ImportError:
|
except ImportError:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
@singledispatch
|
||||||
|
def value_to_sql(value):
|
||||||
|
raise NotImplementedError("SQL conversion is not implemented for this type")
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(str)
|
||||||
|
def _(value: str):
|
||||||
|
return f"'{value}'"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(int)
|
||||||
|
def _(value: int):
|
||||||
|
return str(value)
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(float)
|
||||||
|
def _(value: float):
|
||||||
|
return str(value)
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(bool)
|
||||||
|
def _(value: bool):
|
||||||
|
return str(value).upper()
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(type(None))
|
||||||
|
def _(value: type(None)):
|
||||||
|
return "NULL"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(datetime)
|
||||||
|
def _(value: datetime):
|
||||||
|
return f"'{value.isoformat()}'"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(date)
|
||||||
|
def _(value: date):
|
||||||
|
return f"'{value.isoformat()}'"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(list)
|
||||||
|
def _(value: list):
|
||||||
|
return "[" + ", ".join(map(value_to_sql, value)) + "]"
|
||||||
|
|
||||||
|
|
||||||
|
@value_to_sql.register(np.ndarray)
|
||||||
|
def _(value: np.ndarray):
|
||||||
|
return value_to_sql(value.tolist())
|
||||||
|
|||||||
@@ -64,8 +64,10 @@ class _Events:
|
|||||||
Initializes the Events object with default values for events, rate_limit, and metadata.
|
Initializes the Events object with default values for events, rate_limit, and metadata.
|
||||||
"""
|
"""
|
||||||
self.events = [] # events list
|
self.events = [] # events list
|
||||||
self.max_events = 25 # max events to store in memory
|
self.throttled_event_names = ["search_table"]
|
||||||
self.rate_limit = 60.0 # rate limit (seconds)
|
self.throttled_events = set()
|
||||||
|
self.max_events = 5 # max events to store in memory
|
||||||
|
self.rate_limit = 60.0 * 5 # rate limit (seconds)
|
||||||
self.time = 0.0
|
self.time = 0.0
|
||||||
|
|
||||||
if is_git_dir():
|
if is_git_dir():
|
||||||
@@ -112,18 +114,21 @@ class _Events:
|
|||||||
return
|
return
|
||||||
if (
|
if (
|
||||||
len(self.events) < self.max_events
|
len(self.events) < self.max_events
|
||||||
): # Events list limited to 25 events (drop any events past this)
|
): # Events list limited to self.max_events (drop any events past this)
|
||||||
params.update(self.metadata)
|
params.update(self.metadata)
|
||||||
self.events.append(
|
event = {
|
||||||
{
|
"event": event_name,
|
||||||
"event": event_name,
|
"properties": params,
|
||||||
"properties": params,
|
"timestamp": datetime.datetime.now(
|
||||||
"timestamp": datetime.datetime.now(
|
tz=datetime.timezone.utc
|
||||||
tz=datetime.timezone.utc
|
).isoformat(),
|
||||||
).isoformat(),
|
"distinct_id": CONFIG["uuid"],
|
||||||
"distinct_id": CONFIG["uuid"],
|
}
|
||||||
}
|
if event_name not in self.throttled_event_names:
|
||||||
)
|
self.events.append(event)
|
||||||
|
elif event_name not in self.throttled_events:
|
||||||
|
self.throttled_events.add(event_name)
|
||||||
|
self.events.append(event)
|
||||||
|
|
||||||
# Check rate limit
|
# Check rate limit
|
||||||
t = time.time()
|
t = time.time()
|
||||||
@@ -135,7 +140,6 @@ class _Events:
|
|||||||
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
|
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
|
||||||
"batch": self.events,
|
"batch": self.events,
|
||||||
}
|
}
|
||||||
|
|
||||||
# POST equivalent to requests.post(self.url, json=data).
|
# POST equivalent to requests.post(self.url, json=data).
|
||||||
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
|
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
|
||||||
# to avoid any possible disruption in the console.
|
# to avoid any possible disruption in the console.
|
||||||
@@ -150,6 +154,7 @@ class _Events:
|
|||||||
|
|
||||||
# Flush & Reset
|
# Flush & Reset
|
||||||
self.events = []
|
self.events = []
|
||||||
|
self.throttled_events = set()
|
||||||
self.time = t
|
self.time = t
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -63,7 +63,8 @@ def set_sentry():
|
|||||||
"""
|
"""
|
||||||
if "exc_info" in hint:
|
if "exc_info" in hint:
|
||||||
exc_type, exc_value, tb = hint["exc_info"]
|
exc_type, exc_value, tb = hint["exc_info"]
|
||||||
if "out of memory" in str(exc_value).lower():
|
ignored_errors = ["out of memory", "no space left on device", "testing"]
|
||||||
|
if any(error in str(exc_value).lower() for error in ignored_errors):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
if is_git_dir():
|
if is_git_dir():
|
||||||
@@ -97,7 +98,7 @@ def set_sentry():
|
|||||||
dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592",
|
dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592",
|
||||||
debug=False,
|
debug=False,
|
||||||
include_local_variables=False,
|
include_local_variables=False,
|
||||||
traces_sample_rate=1.0,
|
traces_sample_rate=0.5,
|
||||||
environment="production", # 'dev' or 'production'
|
environment="production", # 'dev' or 'production'
|
||||||
before_send=before_send,
|
before_send=before_send,
|
||||||
ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit],
|
ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit],
|
||||||
|
|||||||
@@ -1,20 +1,20 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "lancedb"
|
name = "lancedb"
|
||||||
version = "0.3.2"
|
version = "0.4.4"
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"deprecation",
|
"deprecation",
|
||||||
"pylance==0.8.7",
|
"pylance==0.9.6",
|
||||||
"ratelimiter~=1.0",
|
"ratelimiter~=1.0",
|
||||||
"retry>=0.9.2",
|
"retry>=0.9.2",
|
||||||
"tqdm>=4.1.0",
|
"tqdm>=4.27.0",
|
||||||
"aiohttp",
|
|
||||||
"pydantic>=1.10",
|
"pydantic>=1.10",
|
||||||
"attrs>=21.3.0",
|
"attrs>=21.3.0",
|
||||||
"semver>=3.0",
|
"semver>=3.0",
|
||||||
"cachetools",
|
"cachetools",
|
||||||
"pyyaml>=6.0",
|
"pyyaml>=6.0",
|
||||||
"click>=8.1.7",
|
"click>=8.1.7",
|
||||||
"requests>=2.31.0"
|
"requests>=2.31.0",
|
||||||
|
"overrides>=0.7"
|
||||||
]
|
]
|
||||||
description = "lancedb"
|
description = "lancedb"
|
||||||
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
|
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
|
||||||
@@ -48,11 +48,11 @@ classifiers = [
|
|||||||
repository = "https://github.com/lancedb/lancedb"
|
repository = "https://github.com/lancedb/lancedb"
|
||||||
|
|
||||||
[project.optional-dependencies]
|
[project.optional-dependencies]
|
||||||
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"]
|
tests = ["aiohttp", "pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "duckdb", "pytz"]
|
||||||
dev = ["ruff", "pre-commit", "black"]
|
dev = ["ruff", "pre-commit"]
|
||||||
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
|
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
|
||||||
clip = ["torch", "pillow", "open-clip"]
|
clip = ["torch", "pillow", "open-clip"]
|
||||||
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere"]
|
embeddings = ["openai>=1.6.1", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "InstructorEmbedding"]
|
||||||
|
|
||||||
[project.scripts]
|
[project.scripts]
|
||||||
lancedb = "lancedb.cli.cli:cli"
|
lancedb = "lancedb.cli.cli:cli"
|
||||||
@@ -61,8 +61,8 @@ lancedb = "lancedb.cli.cli:cli"
|
|||||||
requires = ["setuptools", "wheel"]
|
requires = ["setuptools", "wheel"]
|
||||||
build-backend = "setuptools.build_meta"
|
build-backend = "setuptools.build_meta"
|
||||||
|
|
||||||
[tool.isort]
|
[tool.ruff]
|
||||||
profile = "black"
|
select = ["F", "E", "W", "I", "G", "TCH", "PERF"]
|
||||||
|
|
||||||
[tool.pytest.ini_options]
|
[tool.pytest.ini_options]
|
||||||
addopts = "--strict-markers"
|
addopts = "--strict-markers"
|
||||||
|
|||||||
@@ -129,7 +129,7 @@ def test_ingest_iterator(tmp_path):
|
|||||||
[
|
[
|
||||||
PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0),
|
PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0),
|
||||||
PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0),
|
PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0),
|
||||||
]
|
],
|
||||||
# TODO: test pydict separately. it is unique column number and names contraint
|
# TODO: test pydict separately. it is unique column number and names contraint
|
||||||
]
|
]
|
||||||
|
|
||||||
@@ -150,6 +150,21 @@ def test_ingest_iterator(tmp_path):
|
|||||||
run_tests(PydanticSchema)
|
run_tests(PydanticSchema)
|
||||||
|
|
||||||
|
|
||||||
|
def test_table_names(tmp_path):
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
data = pd.DataFrame(
|
||||||
|
{
|
||||||
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
"item": ["foo", "bar"],
|
||||||
|
"price": [10.0, 20.0],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
db.create_table("test2", data=data)
|
||||||
|
db.create_table("test1", data=data)
|
||||||
|
db.create_table("test3", data=data)
|
||||||
|
assert db.table_names() == ["test1", "test2", "test3"]
|
||||||
|
|
||||||
|
|
||||||
def test_create_mode(tmp_path):
|
def test_create_mode(tmp_path):
|
||||||
db = lancedb.connect(tmp_path)
|
db = lancedb.connect(tmp_path)
|
||||||
data = pd.DataFrame(
|
data = pd.DataFrame(
|
||||||
@@ -286,4 +301,29 @@ def test_replace_index(tmp_path):
|
|||||||
num_partitions=2,
|
num_partitions=2,
|
||||||
num_sub_vectors=4,
|
num_sub_vectors=4,
|
||||||
replace=True,
|
replace=True,
|
||||||
|
index_cache_size=10,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_prefilter_with_index(tmp_path):
|
||||||
|
db = lancedb.connect(uri=tmp_path)
|
||||||
|
data = [
|
||||||
|
{"vector": np.random.rand(128), "item": "foo", "price": float(i)}
|
||||||
|
for i in range(1000)
|
||||||
|
]
|
||||||
|
sample_key = data[100]["vector"]
|
||||||
|
table = db.create_table(
|
||||||
|
"test",
|
||||||
|
data,
|
||||||
|
)
|
||||||
|
table.create_index(
|
||||||
|
num_partitions=2,
|
||||||
|
num_sub_vectors=4,
|
||||||
|
)
|
||||||
|
table = (
|
||||||
|
table.search(sample_key)
|
||||||
|
.where("price == 500", prefilter=True)
|
||||||
|
.limit(5)
|
||||||
|
.to_arrow()
|
||||||
|
)
|
||||||
|
assert table.num_rows == 1
|
||||||
|
|||||||
@@ -15,13 +15,16 @@ import sys
|
|||||||
import lance
|
import lance
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
import pytest
|
||||||
|
|
||||||
from lancedb.conftest import MockTextEmbeddingFunction
|
import lancedb
|
||||||
|
from lancedb.conftest import MockRateLimitedEmbeddingFunction, MockTextEmbeddingFunction
|
||||||
from lancedb.embeddings import (
|
from lancedb.embeddings import (
|
||||||
EmbeddingFunctionConfig,
|
EmbeddingFunctionConfig,
|
||||||
EmbeddingFunctionRegistry,
|
EmbeddingFunctionRegistry,
|
||||||
with_embeddings,
|
with_embeddings,
|
||||||
)
|
)
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
|
||||||
|
|
||||||
def mock_embed_func(input_data):
|
def mock_embed_func(input_data):
|
||||||
@@ -83,3 +86,29 @@ def test_embedding_function(tmp_path):
|
|||||||
expected = func.compute_query_embeddings("hello world")
|
expected = func.compute_query_embeddings("hello world")
|
||||||
|
|
||||||
assert np.allclose(actual, expected)
|
assert np.allclose(actual, expected)
|
||||||
|
|
||||||
|
|
||||||
|
def test_embedding_function_rate_limit(tmp_path):
|
||||||
|
def _get_schema_from_model(model):
|
||||||
|
class Schema(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
return Schema
|
||||||
|
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
registry = EmbeddingFunctionRegistry.get_instance()
|
||||||
|
model = registry.get("test-rate-limited").create(max_retries=0)
|
||||||
|
schema = _get_schema_from_model(model)
|
||||||
|
table = db.create_table("test", schema=schema, mode="overwrite")
|
||||||
|
table.add([{"text": "hello world"}])
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
table.add([{"text": "hello world"}])
|
||||||
|
assert len(table) == 1
|
||||||
|
|
||||||
|
model = registry.get("test-rate-limited").create()
|
||||||
|
schema = _get_schema_from_model(model)
|
||||||
|
table = db.create_table("test", schema=schema, mode="overwrite")
|
||||||
|
table.add([{"text": "hello world"}])
|
||||||
|
table.add([{"text": "hello world"}])
|
||||||
|
assert len(table) == 2
|
||||||
|
|||||||
@@ -29,11 +29,11 @@ from lancedb.pydantic import LanceModel, Vector
|
|||||||
|
|
||||||
@pytest.mark.slow
|
@pytest.mark.slow
|
||||||
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
|
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
|
||||||
def test_sentence_transformer(alias, tmp_path):
|
def test_basic_text_embeddings(alias, tmp_path):
|
||||||
db = lancedb.connect(tmp_path)
|
db = lancedb.connect(tmp_path)
|
||||||
registry = get_registry()
|
registry = get_registry()
|
||||||
func = registry.get(alias).create()
|
func = registry.get(alias).create(max_retries=0)
|
||||||
func2 = registry.get(alias).create()
|
func2 = registry.get(alias).create(max_retries=0)
|
||||||
|
|
||||||
class Words(LanceModel):
|
class Words(LanceModel):
|
||||||
text: str = func.SourceField()
|
text: str = func.SourceField()
|
||||||
@@ -150,7 +150,11 @@ def test_openclip(tmp_path):
|
|||||||
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
|
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
|
||||||
) # also skip if cohere not installed
|
) # also skip if cohere not installed
|
||||||
def test_cohere_embedding_function():
|
def test_cohere_embedding_function():
|
||||||
cohere = get_registry().get("cohere").create(name="embed-multilingual-v2.0")
|
cohere = (
|
||||||
|
get_registry()
|
||||||
|
.get("cohere")
|
||||||
|
.create(name="embed-multilingual-v2.0", max_retries=0)
|
||||||
|
)
|
||||||
|
|
||||||
class TextModel(LanceModel):
|
class TextModel(LanceModel):
|
||||||
text: str = cohere.SourceField()
|
text: str = cohere.SourceField()
|
||||||
@@ -162,3 +166,19 @@ def test_cohere_embedding_function():
|
|||||||
|
|
||||||
tbl.add(df)
|
tbl.add(df)
|
||||||
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()
|
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.slow
|
||||||
|
def test_instructor_embedding(tmp_path):
|
||||||
|
model = get_registry().get("instructor").create()
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(df)
|
||||||
|
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user