Compare commits

...

59 Commits

Author SHA1 Message Date
qzhu
8e25e0c7f0 reformatted 2023-12-07 12:08:05 -08:00
qzhu
5f989e86d2 SaaS python SDK doc 2023-12-07 12:01:03 -08:00
Chang She
1336cce0dc chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2023-12-06 14:20:46 -08:00
Lance Release
6c83b6a513 Updating package-lock.json 2023-12-04 18:34:43 +00:00
Lance Release
6bec4bec51 Updating package-lock.json 2023-12-04 17:02:48 +00:00
Lance Release
23d30dfc78 Bump version: 0.3.8 → 0.3.9 2023-12-04 17:02:35 +00:00
Rob Meng
94c8c50f96 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2023-12-04 12:01:16 -05:00
Rob Meng
72765d8e1a feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2023-12-01 16:49:10 -05:00
Rob Meng
a2a8f9615e chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2023-12-01 00:44:14 -05:00
James
b085d9aaa1 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2023-11-27 20:39:01 +05:30
Bert
6eb662de9b fix: python remote correct open_table error message (#659) 2023-11-24 19:28:33 -05:00
Lance Release
2bb2bb581a Updating package-lock.json 2023-11-19 00:45:51 +00:00
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
Lance Release
123a49df77 Bump version: 0.3.7 → 0.3.8 2023-11-19 00:03:58 +00:00
Will Jones
a57aa4b142 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2023-11-18 15:57:23 -08:00
Rok Mihevc
d8e3e54226 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2023-11-18 14:17:40 -08:00
Ayush Chaurasia
ccfdf4853a [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2023-11-18 06:08:26 +05:30
Ayush Chaurasia
87e5d86e90 [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2023-11-18 06:08:13 +05:30
Aidan
1cf8a3e4e0 SaaS create_index API (#649) 2023-11-15 19:12:52 -05:00
Lance Release
5372843281 Updating package-lock.json 2023-11-15 03:15:10 +00:00
Lance Release
54677b8f0b Updating package-lock.json 2023-11-15 02:42:38 +00:00
Lance Release
ebcf9bf6ae Bump version: 0.3.6 → 0.3.7 2023-11-15 02:42:25 +00:00
Bert
797514bcbf fix: node remote implement table.countRows (#648) 2023-11-13 17:43:20 -05:00
Rok Mihevc
1c872ce501 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2023-11-13 21:43:48 +01:00
Bert
479f471c14 fix: node send db header for GET requests (#646) 2023-11-11 16:33:25 -05:00
Ayush Chaurasia
ae0d2f2599 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2023-11-10 15:02:38 +05:30
Ayush Chaurasia
1e8678f11a Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2023-11-09 12:34:18 +05:30
QianZhu
662968559d fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2023-11-07 17:34:38 -08:00
Rob Meng
9d895801f2 upgrade lance to 0.8.14 (#636)
upgrade lance
2023-11-07 19:01:29 -05:00
Rob Meng
80613a40fd skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2023-11-07 12:33:32 -05:00
Lei Xu
d43ef7f11e chore: apple silicon runner (#633)
Close #632
2023-11-06 21:04:32 -08:00
Lei Xu
554e068917 chore: improve create_table API consistency between local and remote SDK (#627) 2023-11-03 13:15:11 -07:00
Bert
567734dd6e fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2023-11-03 10:24:56 -04:00
Ayush Chaurasia
1589499f89 Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2023-11-02 19:20:10 +05:30
Lance Release
682e95fa83 Updating package-lock.json 2023-11-01 22:20:49 +00:00
Lance Release
1ad5e7f2f0 Updating package-lock.json 2023-11-01 21:16:20 +00:00
Lance Release
ddb3ef4ce5 Bump version: 0.3.5 → 0.3.6 2023-11-01 21:16:06 +00:00
Lance Release
ef20b2a138 [python] Bump version: 0.3.2 → 0.3.3 2023-11-01 21:15:55 +00:00
Lei Xu
2e0f251bfd chore: bump lance to 8.10 (#622) 2023-11-01 14:14:38 -07:00
Ayush Chaurasia
2cb91e818d Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2023-11-02 01:13:16 +05:30
Chang She
2835c76336 doc: node sdk now supports windows (#616) 2023-11-01 10:04:18 -07:00
Bert
8068a2bbc3 ci: cancel in progress runs on new push (#620) 2023-11-01 11:33:48 -04:00
Bert
24111d543a fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2023-11-01 10:50:09 -04:00
QianZhu
7eec2b8f9a Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2023-10-31 19:50:05 -07:00
Will Jones
b2b70ea399 increment pylance (#618) 2023-10-31 18:07:03 -07:00
Bert
e50a3c1783 added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-10-31 16:39:32 -04:00
Weston Pace
b517134309 feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2023-10-31 13:11:03 -07:00
Lei Xu
6fb539b5bf doc: add doc to use GPU for indexing (#611) 2023-10-30 15:25:00 -07:00
Lance Release
f37fe120fd Updating package-lock.json 2023-10-26 22:30:16 +00:00
Lance Release
2e115acb9a Updating package-lock.json 2023-10-26 21:48:01 +00:00
Lance Release
27a638362d Bump version: 0.3.4 → 0.3.5 2023-10-26 21:47:44 +00:00
Bert
22a6695d7a fix conv version (#605) 2023-10-26 17:44:11 -04:00
Lance Release
57eff82ee7 Updating package-lock.json 2023-10-26 21:03:07 +00:00
Lance Release
7732f7d41c Bump version: 0.3.3 → 0.3.4 2023-10-26 21:02:52 +00:00
Bert
5ca98c326f feat: added dataset stats api to node (#604) 2023-10-26 17:00:48 -04:00
Bert
b55db397eb feat: added data stats apis (#596) 2023-10-26 13:10:17 -04:00
Rob Meng
c04d72ac8a expose remap index api (#603)
expose index remap options in `compact_files`
2023-10-25 22:10:37 -04:00
Rob Meng
28b02fb72a feat: expose optimize index api (#602)
expose `optimize_index` api.
2023-10-25 19:40:23 -04:00
60 changed files with 1836 additions and 273 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.3.3 current_version = 0.3.9
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -11,6 +11,10 @@ on:
- .github/workflows/node.yml - .github/workflows/node.yml
- docker-compose.yml - docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.

View File

@@ -38,7 +38,7 @@ jobs:
node/vectordb-*.tgz node/vectordb-*.tgz
node-macos: node-macos:
runs-on: macos-12 runs-on: macos-13
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
strategy: strategy:

View File

@@ -8,6 +8,11 @@ on:
paths: paths:
- python/** - python/**
- .github/workflows/python.yml - .github/workflows/python.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs: jobs:
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
@@ -32,18 +37,19 @@ jobs:
run: | run: |
pip install -e .[tests] pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort pip install pytest pytest-mock ruff
- name: Black - name: Lint
run: black --check --diff --no-color --quiet . run: ruff format --check .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests - name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest
run: pytest --doctest-modules lancedb run: pytest --doctest-modules lancedb
mac: mac:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "macos-12" strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
defaults: defaults:
run: run:
shell: bash shell: bash
@@ -62,8 +68,6 @@ jobs:
pip install -e .[tests] pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black pip install pytest pytest-mock black
- name: Black
run: black --check --diff --no-color --quiet .
- name: Run tests - name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x: pydantic1x:
@@ -95,4 +99,4 @@ jobs:
- name: Run tests - name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest
run: pytest --doctest-modules lancedb run: pytest --doctest-modules lancedb

View File

@@ -10,6 +10,10 @@ on:
- rust/** - rust/**
- .github/workflows/rust.yml - .github/workflows/rust.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env: env:
# This env var is used by Swatinem/rust-cache@v2 for the cache # This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent. # key, so we set it to make sure it is always consistent.
@@ -44,8 +48,11 @@ jobs:
- name: Run tests - name: Run tests
run: cargo test --all-features run: cargo test --all-features
macos: macos:
runs-on: macos-12
timeout-minutes: 30 timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
defaults: defaults:
run: run:
shell: bash shell: bash

View File

@@ -5,9 +5,10 @@ exclude = ["python"]
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.8.7", "features" = ["dynamodb"] } lance = { "version" = "=0.8.17", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.8.7" } lance-index = { "version" = "=0.8.17" }
lance-testing = { "version" = "=0.8.7" } lance-linalg = { "version" = "=0.8.17" }
lance-testing = { "version" = "=0.8.17" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false } arrow = { version = "47.0.0", optional = false }
arrow-array = "47.0" arrow-array = "47.0"
@@ -19,7 +20,7 @@ arrow-arith = "47.0"
arrow-cast = "47.0" arrow-cast = "47.0"
chrono = "0.4.23" chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [ half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits" "num-traits",
] } ] }
log = "0.4" log = "0.4"
object_store = "0.7.1" object_store = "0.7.1"

View File

@@ -1,6 +1,7 @@
# Builds the macOS artifacts (node binaries). # Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target] # Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin # Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() { prebuild_rust() {
# Building here for the sake of easier debugging. # Building here for the sake of easier debugging.

View File

@@ -1,4 +1,5 @@
site_name: LanceDB Docs site_name: LanceDB Docs
site_url: https://lancedb.github.io/lancedb/
repo_url: https://github.com/lancedb/lancedb repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb repo_name: lancedb/lancedb
@@ -79,6 +80,7 @@ nav:
- Ingest Embedding Functions: embeddings/embedding_functions.md - Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md - Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md - Create Custom Embedding Functions: embeddings/api.md
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb - Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb - Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- 🔍 Python full-text search: fts.md - 🔍 Python full-text search: fts.md
@@ -144,14 +146,13 @@ nav:
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md - Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API references: - API references:
- Python API: python/python.md - OSS Python API: python/python.md
- SaaS Python API: python/saas-python.md
- Javascript API: javascript/modules.md - Javascript API: javascript/modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms - LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
extra_css: extra_css:
- styles/global.css - styles/global.css
extra_javascript:
- scripts/posthog.js
extra: extra:
analytics: analytics:

View File

@@ -71,9 +71,41 @@ a single PQ code.
### Use GPU to build vector index ### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index. Lance Python SDK has experimental GPU support for creating IVF index.
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
You can specify the GPU device to train IVF partitions via You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `"cuda"`` to enable GPU training. - **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
=== "Linux"
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
=== "Macos"
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
Trouble shootings:
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index ## Querying an ANN Index

View File

@@ -1,7 +1,9 @@
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs. There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs.
## Text Embedding Functions ## Text Embedding Functions
Here are the text embedding functions registered by default Here are the text embedding functions registered by default.
Embedding functions have inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff.
Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the deafult value of 7.
### Sentence Transformers ### Sentence Transformers
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values: Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
@@ -66,6 +68,56 @@ actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
### Instructor Embeddings
Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) by simply providing the task instruction, without any finetuning
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
## Multi-modal embedding functions ## Multi-modal embedding functions
Multi-modal embedding functions allow you query your table using both images and text. Multi-modal embedding functions allow you query your table using both images and text.

View File

@@ -57,6 +57,19 @@ query_image = Image.open(p)
table.search(query_image) table.search(query_image)
``` ```
### Rate limit Handling
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default the maximum retires is set to 7. You can tune it by setting it to a different number or disable it by setting it to 0.
Example
----
```python
clip = registry.get("open-clip").create() # Defaults to 7 max retries
clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
````
NOTE:
Embedding functions can also fail due to other errors that have nothing to do with rate limits. This is why the error is also logged.
### A little fun with PyDantic ### A little fun with PyDantic
LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata. LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata.

View File

@@ -0,0 +1,165 @@
# How to Load Image Embeddings into LanceDB
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, lets get started!
## Step #1: Install Roboflow Inference
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
Inference provides a HTTP API through which you can run vision models.
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
To get started, first install the Inference CLI:
```
pip install inference-cli
```
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
```
inference server start
```
An Inference server will start running at http://localhost:9001.
## Step #2: Set Up a LanceDB Vector Database
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
Once you have a dataset ready, install LanceDB with the following command:
```
pip install lancedb
```
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
```
Create a new Python file and add the following code:
```python
import cv2
import supervision as sv
import requests
import lancedb
db = lancedb.connect("./embeddings")
IMAGE_DIR = "images/"
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
SERVER_URL = "http://localhost:9001"
results = []
for i, image in enumerate(os.listdir(IMAGE_DIR)):
infer_clip_payload = {
#Images can be provided as urls or as base64 encoded strings
"image": {
"type": "base64",
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
},
}
res = requests.post(
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
print("Calculated embedding for image: ", image)
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
results.append(image)
tbl = db.create_table("images", data=results)
tbl.create_fts_index("name")
```
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
```
export ROBOFLOW_API_KEY=""
```
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "name": "image1.png"},
{"vector": [5.9, 26.5], "name": "image2.png"}
]
tbl = db.open_table("images")
tbl.add(make_batches())
```
Replacing the `make_batches()` function with code to load embeddings for images.
## Step #3: Run a Search Query
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
Lets calculate a text embedding for the query “cat”, then run a search query:
```python
infer_clip_payload = {
"text": "cat",
}
res = requests.post(
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
df = tbl.search(embeddings[0]).limit(3).to_list()
print("Results:")
for i in df:
print(i["name"])
```
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
```
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
```
Lets open the top image:
![Cat](https://media.roboflow.com/cat_lancedb.jpg)
The top image was a cat. Our search was successful.
## Conclusion
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
To learn more about Inference and its capabilities, refer to the Inference documentation.

View File

@@ -22,8 +22,6 @@ pip install lancedb
::: lancedb.query.LanceQueryBuilder ::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder
## Embeddings ## Embeddings
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry ::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
@@ -56,7 +54,7 @@ pip install lancedb
## Utilities ## Utilities
::: lancedb.vector ::: lancedb.schema.vector
## Integrations ## Integrations

View File

@@ -0,0 +1,18 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.remote.db.RemoteDBConnection
## Table
::: lancedb.remote.table.RemoteTable

1
docs/src/robots.txt Normal file
View File

@@ -0,0 +1 @@
User-agent: *

View File

@@ -18,29 +18,45 @@ python_file = ".py"
python_folder = "python" python_folder = "python"
files = glob.glob(glob_string, recursive=True) files = glob.glob(glob_string, recursive=True)
excluded_files = [f for excluded_glob in excluded_globs for f in glob.glob(excluded_glob, recursive=True)] excluded_files = [
f
for excluded_glob in excluded_globs
for f in glob.glob(excluded_glob, recursive=True)
]
def yield_lines(lines: Iterator[str], prefix: str, suffix: str): def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False in_code_block = False
# Python code has strict indentation # Python code has strict indentation
strip_length = 0 strip_length = 0
skip_test = False
for line in lines: for line in lines:
if "skip-test" in line:
skip_test = True
if line.strip().startswith(prefix + python_prefix): if line.strip().startswith(prefix + python_prefix):
in_code_block = True in_code_block = True
strip_length = len(line) - len(line.lstrip()) strip_length = len(line) - len(line.lstrip())
elif in_code_block and line.strip().startswith(suffix): elif in_code_block and line.strip().startswith(suffix):
in_code_block = False in_code_block = False
yield "\n" if not skip_test:
yield "\n"
skip_test = False
elif in_code_block: elif in_code_block:
yield line[strip_length:] if not skip_test:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files): for file in filter(lambda file: file not in excluded_files, files):
with open(file, "r") as f: with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```")) lines = list(yield_lines(iter(f), "```", "```"))
if len(lines) > 0: if len(lines) > 0:
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file) print(lines)
out_path = (
Path(python_folder)
/ Path(file).name.strip(".md")
/ (Path(file).name.strip(".md") + python_file)
)
print(out_path) print(out_path)
out_path.parent.mkdir(exist_ok=True, parents=True) out_path.parent.mkdir(exist_ok=True, parents=True)
with open(out_path, "w") as out: with open(out_path, "w") as out:
out.writelines(lines) out.writelines(lines)

View File

@@ -10,7 +10,7 @@ npm install vectordb
This will download the appropriate native library for your platform. We currently This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux). yet support musl-based Linux (such as Alpine Linux).
## Usage ## Usage

80
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.3.3", "version": "0.3.9",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.3.3", "version": "0.3.9",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.3", "@lancedb/vectordb-darwin-arm64": "0.3.9",
"@lancedb/vectordb-darwin-x64": "0.3.3", "@lancedb/vectordb-darwin-x64": "0.3.9",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.3", "@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
"@lancedb/vectordb-linux-x64-gnu": "0.3.3", "@lancedb/vectordb-linux-x64-gnu": "0.3.9",
"@lancedb/vectordb-win32-x64-msvc": "0.3.3" "@lancedb/vectordb-win32-x64-msvc": "0.3.9"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -316,22 +316,10 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.3.tgz",
"integrity": "sha512-nvyj7xNX2/wb/PH5TjyhLR/NQ1jVuoBw2B5UaSg7qf8Tnm5SSXWQ7F25RVKcKwh72fz1qB+CWW24ftZnRzbT/Q==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.3.3", "version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.3.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
"integrity": "sha512-7CW+nILyPHp6cua0Rl0xaTDWw/vajEn/jCsEjFYgDmE+rtf5Z5Fum41FxR9C2TtIAvUK+nWb5mkYeOLqU6vRvg==", "integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -341,9 +329,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.3", "version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.3.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
"integrity": "sha512-MmhwbacKxZPkLwwOqysVY8mUb8lFoyFIPlYhSLV4xS1C8X4HWALljIul1qMl1RYudp9Uc3PsOzRexl+OvCGfUw==", "integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -353,9 +341,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.3", "version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.3.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
"integrity": "sha512-OrNlsKi/QPw59Po040oRKn8IuqFEk4upc/4FaFKqVkcmQjjZrMg5Kgy9ZfWIhHdAnWXXggZZIPArpt0X1B0ceA==", "integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -365,9 +353,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.3", "version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.3.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
"integrity": "sha512-lIT0A7a6eqX51IfGyhECtpXXgsr//kgbd+HZbcCdPy2GMmNezSch/7V22zExDSpF32hX8WfgcTLYCVWVilggDQ==", "integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -4868,34 +4856,28 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"@lancedb/vectordb-darwin-arm64": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.3.tgz",
"integrity": "sha512-nvyj7xNX2/wb/PH5TjyhLR/NQ1jVuoBw2B5UaSg7qf8Tnm5SSXWQ7F25RVKcKwh72fz1qB+CWW24ftZnRzbT/Q==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": { "@lancedb/vectordb-darwin-x64": {
"version": "0.3.3", "version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.3.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
"integrity": "sha512-7CW+nILyPHp6cua0Rl0xaTDWw/vajEn/jCsEjFYgDmE+rtf5Z5Fum41FxR9C2TtIAvUK+nWb5mkYeOLqU6vRvg==", "integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-arm64-gnu": { "@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.3", "version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.3.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
"integrity": "sha512-MmhwbacKxZPkLwwOqysVY8mUb8lFoyFIPlYhSLV4xS1C8X4HWALljIul1qMl1RYudp9Uc3PsOzRexl+OvCGfUw==", "integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-x64-gnu": { "@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.3", "version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.3.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
"integrity": "sha512-OrNlsKi/QPw59Po040oRKn8IuqFEk4upc/4FaFKqVkcmQjjZrMg5Kgy9ZfWIhHdAnWXXggZZIPArpt0X1B0ceA==", "integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-win32-x64-msvc": { "@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.3", "version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.3.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
"integrity": "sha512-lIT0A7a6eqX51IfGyhECtpXXgsr//kgbd+HZbcCdPy2GMmNezSch/7V22zExDSpF32hX8WfgcTLYCVWVilggDQ==", "integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
"optional": true "optional": true
}, },
"@neon-rs/cli": { "@neon-rs/cli": {

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.3.3", "version": "0.3.9",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.3", "@lancedb/vectordb-darwin-arm64": "0.3.9",
"@lancedb/vectordb-darwin-x64": "0.3.3", "@lancedb/vectordb-darwin-x64": "0.3.9",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.3", "@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
"@lancedb/vectordb-linux-x64-gnu": "0.3.3", "@lancedb/vectordb-linux-x64-gnu": "0.3.9",
"@lancedb/vectordb-win32-x64-msvc": "0.3.3" "@lancedb/vectordb-win32-x64-msvc": "0.3.9"
} }
} }

View File

@@ -23,7 +23,7 @@ import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function' import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
export { Query } export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
@@ -260,6 +260,27 @@ export interface Table<T = number[]> {
* ``` * ```
*/ */
delete: (filter: string) => Promise<void> delete: (filter: string) => Promise<void>
/**
* List the indicies on this table.
*/
listIndices: () => Promise<VectorIndex[]>
/**
* Get statistics about an index.
*/
indexStats: (indexUuid: string) => Promise<IndexStats>
}
export interface VectorIndex {
columns: string[]
name: string
uuid: string
}
export interface IndexStats {
numIndexedRows: number | null
numUnindexedRows: number | null
} }
/** /**
@@ -502,6 +523,14 @@ export class LocalTable<T = number[]> implements Table<T> {
return res.metrics return res.metrics
}) })
} }
async listIndices (): Promise<VectorIndex[]> {
return tableListIndices.call(this._tbl)
}
async indexStats (indexUuid: string): Promise<IndexStats> {
return tableIndexStats.call(this._tbl, indexUuid)
}
} }
export interface CleanupStats { export interface CleanupStats {

View File

@@ -32,6 +32,7 @@ export class Query<T = number[]> {
private _select?: string[] private _select?: string[]
private _filter?: string private _filter?: string
private _metricType?: MetricType private _metricType?: MetricType
private _prefilter: boolean
protected readonly _embeddings?: EmbeddingFunction<T> protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) { constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
@@ -44,6 +45,7 @@ export class Query<T = number[]> {
this._filter = undefined this._filter = undefined
this._metricType = undefined this._metricType = undefined
this._embeddings = embeddings this._embeddings = embeddings
this._prefilter = false
} }
/*** /***
@@ -102,6 +104,11 @@ export class Query<T = number[]> {
return this return this
} }
prefilter (value: boolean): Query<T> {
this._prefilter = value
return this
}
/** /**
* Execute the query and return the results as an Array of Objects * Execute the query and return the results as an Array of Objects
*/ */

View File

@@ -38,6 +38,7 @@ export class HttpLancedbClient {
vector: number[], vector: number[],
k: number, k: number,
nprobes: number, nprobes: number,
prefilter: boolean,
refineFactor?: number, refineFactor?: number,
columns?: string[], columns?: string[],
filter?: string filter?: string
@@ -50,7 +51,8 @@ export class HttpLancedbClient {
nprobes, nprobes,
refineFactor, refineFactor,
columns, columns,
filter filter,
prefilter
}, },
{ {
headers: { headers: {
@@ -63,6 +65,9 @@ export class HttpLancedbClient {
} }
).catch((err) => { ).catch((err) => {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response return err.response
}) })
if (response.status !== 200) { if (response.status !== 200) {
@@ -86,13 +91,17 @@ export class HttpLancedbClient {
{ {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
'x-api-key': this._apiKey() 'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
}, },
params, params,
timeout: 10000 timeout: 10000
} }
).catch((err) => { ).catch((err) => {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response return err.response
}) })
if (response.status !== 200) { if (response.status !== 200) {
@@ -128,6 +137,9 @@ export class HttpLancedbClient {
} }
).catch((err) => { ).catch((err) => {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response return err.response
}) })
if (response.status !== 200) { if (response.status !== 200) {

View File

@@ -14,7 +14,9 @@
import { import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection, type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type WriteOptions type ConnectionOptions, type CreateTableOptions, type VectorIndex,
type WriteOptions,
type IndexStats
} from '../index' } from '../index'
import { Query } from '../query' import { Query } from '../query'
@@ -152,6 +154,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
queryVector, queryVector,
(this as any)._limit, (this as any)._limit,
(this as any)._nprobes, (this as any)._nprobes,
(this as any)._prefilter,
(this as any)._refineFactor, (this as any)._refineFactor,
(this as any)._select, (this as any)._select,
(this as any)._filter (this as any)._filter
@@ -235,10 +238,28 @@ export class RemoteTable<T = number[]> implements Table<T> {
} }
async countRows (): Promise<number> { async countRows (): Promise<number> {
throw new Error('Not implemented') const result = await this._client.post(`/v1/table/${this._name}/describe/`)
return result.data?.stats?.num_rows
} }
async delete (filter: string): Promise<void> { async delete (filter: string): Promise<void> {
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter }) await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
} }
async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
return results.data.indexes?.map((index: any) => ({
columns: index.columns,
name: index.index_name,
uuid: index.index_uuid
}))
}
async indexStats (indexUuid: string): Promise<IndexStats> {
const results = await this._client.post(`/v1/table/${this._name}/index/${indexUuid}/stats/`)
return {
numIndexedRows: results.data.num_indexed_rows,
numUnindexedRows: results.data.num_unindexed_rows
}
}
} }

View File

@@ -102,6 +102,20 @@ describe('LanceDB client', function () {
assertResults(results) assertResults(results)
}) })
it('should correctly process prefilter/postfilter', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
// post filter should return less than the limit
let results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(false).execute()
assert.isTrue(results.length < 10)
// pre filter should return exactly the limit
results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('select only a subset of columns', async function () { it('select only a subset of columns', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
@@ -282,7 +296,8 @@ describe('LanceDB client', function () {
) )
const table = await con.createTable({ name: 'vectors', schema }) const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }]) await table.add([{ vector: Array(128).fill(0.1) }])
await table.delete('vector IS NOT NULL') // https://github.com/lancedb/lance/issues/1635
await table.delete('true')
const result = await table.search(Array(128).fill(0.1)).execute() const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result) assert.isEmpty(result)
}) })
@@ -328,6 +343,24 @@ describe('LanceDB client', function () {
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 }) const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0') await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
}) })
it('should be able to list index and stats', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
const indices = await table.listIndices()
expect(indices).to.have.lengthOf(1)
expect(indices[0].name).to.equal('vector_idx')
expect(indices[0].uuid).to.not.be.equal(undefined)
expect(indices[0].columns).to.have.lengthOf(1)
expect(indices[0].columns[0]).to.equal('vector')
const stats = await table.indexStats(indices[0].uuid)
expect(stats.numIndexedRows).to.equal(300)
expect(stats.numUnindexedRows).to.equal(0)
}).timeout(50_000)
}) })
describe('when using a custom embedding function', function () { describe('when using a custom embedding function', function () {
@@ -378,6 +411,40 @@ describe('LanceDB client', function () {
}) })
}) })
describe('Remote LanceDB client', function () {
describe('when the server is not reachable', function () {
it('produces a network error', async function () {
const con = await lancedb.connect({
uri: 'db://test-1234',
region: 'asdfasfasfdf',
apiKey: 'some-api-key'
})
// GET
try {
await con.tableNames()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// POST
try {
await con.createTable({ name: 'vectors', schema: new Schema([]) })
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
// Search
const table = await con.openTable('vectors')
try {
await table.search([0.1, 0.3]).execute()
} catch (err) {
expect(err).to.have.property('message', 'Network Error: getaddrinfo ENOTFOUND test-1234.asdfasfasfdf.api.lancedb.com')
}
})
})
})
describe('Query object', function () { describe('Query object', function () {
it('sets custom parameters', async function () { it('sets custom parameters', async function () {
const query = new Query([0.1, 0.3]) const query = new Query([0.1, 0.3])

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.3.2 current_version = 0.3.4
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -16,17 +16,18 @@ from typing import Optional
__version__ = importlib.metadata.version("lancedb") __version__ = importlib.metadata.version("lancedb")
from .db import URI, DBConnection, LanceDBConnection from .common import URI
from .db import DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection from .remote.db import RemoteDBConnection
from .schema import vector from .schema import vector # noqa: F401
from .utils import sentry_log from .utils import sentry_log # noqa: F401
def connect( def connect(
uri: URI, uri: URI,
*, *,
api_key: Optional[str] = None, api_key: Optional[str] = None,
region: str = "us-west-2", region: str = "us-east-1",
host_override: Optional[str] = None, host_override: Optional[str] = None,
) -> DBConnection: ) -> DBConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -38,7 +39,7 @@ def connect(
api_key: str, optional api_key: str, optional
If presented, connect to LanceDB cloud. If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage. Otherwise, connect to a database on file system or cloud storage.
region: str, default "us-west-2" region: str, default "us-east-1"
The region to use for LanceDB Cloud. The region to use for LanceDB Cloud.
host_override: str, optional host_override: str, optional
The override url for LanceDB Cloud. The override url for LanceDB Cloud.

View File

@@ -1,4 +1,6 @@
import os import os
import time
from typing import Any
import numpy as np import numpy as np
import pytest import pytest
@@ -38,3 +40,26 @@ class MockTextEmbeddingFunction(TextEmbeddingFunction):
def ndims(self): def ndims(self):
return 10 return 10
class RateLimitedAPI:
rate_limit = 0.1 # 1 request per 0.1 second
last_request_time = 0
@staticmethod
def make_request():
current_time = time.time()
if current_time - RateLimitedAPI.last_request_time < RateLimitedAPI.rate_limit:
raise Exception("Rate limit exceeded. Please try again later.")
# Simulate a successful request
RateLimitedAPI.last_request_time = current_time
return "Request successful"
@registry.register("test-rate-limited")
class MockRateLimitedEmbeddingFunction(MockTextEmbeddingFunction):
def generate_embeddings(self, texts):
RateLimitedAPI.make_request()
return [self._compute_one_embedding(row) for row in texts]

View File

@@ -84,7 +84,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
context windows that don't cross document boundaries. In this case, we can context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by. pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_pandas() >>> (contextualize(data)
... .window(4).stride(2).text_col('token').groupby('document_id')
... .to_pandas())
token document_id token document_id
0 The quick brown fox 1 0 The quick brown fox 1
2 brown fox jumped over 1 2 brown fox jumped over 1
@@ -92,18 +94,24 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
6 the lazy dog 1 6 the lazy dog 1
9 I love sandwiches 2 9 I love sandwiches 2
``min_window_size`` determines the minimum size of the context windows that are generated ``min_window_size`` determines the minimum size of the context windows
This can be used to trim the last few context windows which have size less than that are generated.This can be used to trim the last few context windows
``min_window_size``. By default context windows of size 1 are skipped. which have size less than ``min_window_size``.
By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_pandas() >>> (contextualize(data)
... .window(6).stride(3).text_col('token').groupby('document_id')
... .to_pandas())
token document_id token document_id
0 The quick brown fox jumped over 1 0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1 3 fox jumped over the lazy dog 1
6 the lazy dog 1 6 the lazy dog 1
9 I love sandwiches 2 9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_pandas() >>> (contextualize(data)
... .window(6).stride(3).min_window_size(4).text_col('token')
... .groupby('document_id')
... .to_pandas())
token document_id token document_id
0 The quick brown fox jumped over 1 0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1 3 fox jumped over the lazy dog 1
@@ -113,7 +121,9 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
class Contextualizer: class Contextualizer:
"""Create context windows from a DataFrame. See [lancedb.context.contextualize][].""" """Create context windows from a DataFrame.
See [lancedb.context.contextualize][].
"""
def __init__(self, raw_df): def __init__(self, raw_df):
self._text_col = None self._text_col = None
@@ -183,7 +193,7 @@ class Contextualizer:
deprecated_in="0.3.1", deprecated_in="0.3.1",
removed_in="0.4.0", removed_in="0.4.0",
current_version=__version__, current_version=__version__,
details="Use the bar function instead", details="Use to_pandas() instead",
) )
def to_df(self) -> "pd.DataFrame": def to_df(self) -> "pd.DataFrame":
return self.to_pandas() return self.to_pandas()

View File

@@ -14,26 +14,39 @@
from __future__ import annotations from __future__ import annotations
import os import os
from abc import ABC, abstractmethod from abc import abstractmethod
from pathlib import Path from pathlib import Path
from typing import List, Optional, Union from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pyarrow as pa import pyarrow as pa
from overrides import EnforceOverrides, override
from pyarrow import fs from pyarrow import fs
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
from .table import LanceTable, Table from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme from .util import fs_from_uri, get_uri_location, get_uri_scheme
if TYPE_CHECKING:
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
class DBConnection(ABC):
class DBConnection(EnforceOverrides):
"""An active LanceDB connection interface.""" """An active LanceDB connection interface."""
@abstractmethod @abstractmethod
def table_names(self) -> list[str]: def table_names(
"""List all table names in the database.""" self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List all table in this database
Parameters
----------
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
limit: int, default 10
The size of the page to return.
"""
pass pass
@abstractmethod @abstractmethod
@@ -45,6 +58,7 @@ class DBConnection(ABC):
mode: str = "create", mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table: ) -> Table:
"""Create a [Table][lancedb.table.Table] in the database. """Create a [Table][lancedb.table.Table] in the database.
@@ -52,12 +66,24 @@ class DBConnection(ABC):
---------- ----------
name: str name: str
The name of the table. The name of the table.
data: list, tuple, dict, pd.DataFrame; optional data: The data to initialize the table, *optional*
The data to initialize the table. User must provide at least one of `data` or `schema`. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema or LanceModel; optional Acceptable types are:
The schema of the table.
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
mode: str; default "create" mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite". The mode to use when creating the table.
Can be either "create" or "overwrite".
By default, if the table already exists, an exception is raised. By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite". If you want to overwrite the table, use mode="overwrite".
on_bad_vectors: str, default "error" on_bad_vectors: str, default "error"
@@ -150,7 +176,8 @@ class DBConnection(ABC):
... for i in range(5): ... for i in range(5):
... yield pa.RecordBatch.from_arrays( ... yield pa.RecordBatch.from_arrays(
... [ ... [
... pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)), ... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]), ... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]), ... pa.array([10.0, 20.0]),
... ], ... ],
@@ -249,12 +276,15 @@ class LanceDBConnection(DBConnection):
def uri(self) -> str: def uri(self) -> str:
return self._uri return self._uri
def table_names(self) -> list[str]: @override
"""Get the names of all tables in the database. def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""Get the names of all tables in the database. The names are sorted.
Returns Returns
------- -------
list of str Iterator of str.
A list of table names. A list of table names.
""" """
try: try:
@@ -274,6 +304,7 @@ class LanceDBConnection(DBConnection):
for file_info in paths for file_info in paths
if file_info.extension == "lance" if file_info.extension == "lance"
] ]
tables.sort()
return tables return tables
def __len__(self) -> int: def __len__(self) -> int:
@@ -282,6 +313,7 @@ class LanceDBConnection(DBConnection):
def __contains__(self, name: str) -> bool: def __contains__(self, name: str) -> bool:
return name in self.table_names() return name in self.table_names()
@override
def create_table( def create_table(
self, self,
name: str, name: str,
@@ -313,6 +345,7 @@ class LanceDBConnection(DBConnection):
) )
return tbl return tbl
@override
def open_table(self, name: str) -> LanceTable: def open_table(self, name: str) -> LanceTable:
"""Open a table in the database. """Open a table in the database.
@@ -327,6 +360,7 @@ class LanceDBConnection(DBConnection):
""" """
return LanceTable.open(self, name) return LanceTable.open(self, name)
@override
def drop_table(self, name: str, ignore_missing: bool = False): def drop_table(self, name: str, ignore_missing: bool = False):
"""Drop a table from the database. """Drop a table from the database.
@@ -345,6 +379,7 @@ class LanceDBConnection(DBConnection):
if not ignore_missing: if not ignore_missing:
raise raise
@override
def drop_database(self): def drop_database(self):
filesystem, path = fs_from_uri(self.uri) filesystem, path = fs_from_uri(self.uri)
filesystem.delete_dir(path) filesystem.delete_dir(path)

View File

@@ -11,8 +11,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ruff: noqa: F401
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
from .cohere import CohereEmbeddingFunction from .cohere import CohereEmbeddingFunction
from .instructor import InstructorEmbeddingFunction
from .open_clip import OpenClipEmbeddings from .open_clip import OpenClipEmbeddings
from .openai import OpenAIEmbeddings from .openai import OpenAIEmbeddings
from .registry import EmbeddingFunctionRegistry, get_registry from .registry import EmbeddingFunctionRegistry, get_registry

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib import importlib
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Union from typing import List, Union
@@ -6,7 +18,7 @@ import numpy as np
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel, Field, PrivateAttr from pydantic import BaseModel, Field, PrivateAttr
from .utils import TEXT from .utils import TEXT, retry_with_exponential_backoff
class EmbeddingFunction(BaseModel, ABC): class EmbeddingFunction(BaseModel, ABC):
@@ -21,6 +33,10 @@ class EmbeddingFunction(BaseModel, ABC):
3. ndims method which returns the number of dimensions of the vector column 3. ndims method which returns the number of dimensions of the vector column
""" """
__slots__ = ("__weakref__",) # pydantic 1.x compatibility
max_retries: int = (
7 # Setitng 0 disables retires. Maybe this should not be enabled by default,
)
_ndims: int = PrivateAttr() _ndims: int = PrivateAttr()
@classmethod @classmethod
@@ -44,6 +60,25 @@ class EmbeddingFunction(BaseModel, ABC):
""" """
pass pass
def compute_query_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query with retries
"""
return retry_with_exponential_backoff(
self.compute_query_embeddings, max_retries=self.max_retries
)(
*args,
**kwargs,
)
def compute_source_embeddings_with_retry(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database with retries
"""
return retry_with_exponential_backoff(
self.compute_source_embeddings, max_retries=self.max_retries
)(*args, **kwargs)
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]: def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
""" """
Sanitize the input to the embedding function. Sanitize the input to the embedding function.
@@ -103,6 +138,14 @@ class EmbeddingFunction(BaseModel, ABC):
""" """
return Field(json_schema_extra={"vector_column_for": self}, **kwargs) return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
def __eq__(self, __value: object) -> bool:
if not hasattr(__value, "__dict__"):
return False
return vars(self) == vars(__value)
def __hash__(self) -> int:
return hash(frozenset(vars(self).items()))
class EmbeddingFunctionConfig(BaseModel): class EmbeddingFunctionConfig(BaseModel):
""" """

View File

@@ -31,7 +31,8 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
Parameters Parameters
---------- ----------
name: str, default "embed-multilingual-v2.0" name: str, default "embed-multilingual-v2.0"
The name of the model to use. See the Cohere documentation for a list of available models. The name of the model to use. See the Cohere documentation for
a list of available models.
Examples Examples
-------- --------
@@ -39,7 +40,10 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0") cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel): class TextModel(LanceModel):
text: str = cohere.SourceField() text: str = cohere.SourceField()

View File

@@ -0,0 +1,137 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, weak_lru
@register("instructor")
class InstructorEmbeddingFunction(TextEmbeddingFunction):
"""
An embedding function that uses the InstructorEmbedding library. Instructor models support multi-task learning, and can be used for a
variety of tasks, including text classification, sentence similarity, and document retrieval.
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
"Represent the `domain` `text_type` for `task_objective`":
* domain is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
* text_type is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
* task_objective is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
For example, if you want to calculate embeddings for a document, you may write the instruction as follows:
"Represent the document for retreival"
Parameters
----------
name: str
The name of the model to use. Available models are listed at https://github.com/xlang-ai/instructor-embedding#model-list;
The default model is hkunlp/instructor-base
batch_size: int, default 32
The batch size to use when generating embeddings
device: str, default "cpu"
The device to use when generating embeddings
show_progress_bar: bool, default True
Whether to show a progress bar when generating embeddings
normalize_embeddings: bool, default True
Whether to normalize the embeddings
quantize: bool, default False
Whether to quantize the model
source_instruction: str, default "represent the docuement for retreival"
The instruction for the source column
query_instruction: str, default "represent the document for retreiving the most similar documents"
The instruction for the query
Examples
--------
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
"""
name: str = "hkunlp/instructor-base"
batch_size: int = 32
device: str = "cpu"
show_progress_bar: bool = True
normalize_embeddings: bool = True
quantize: bool = False
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval"
query_instruction: str = (
"represent the document for retrieving the most similar documents"
)
@weak_lru(maxsize=1)
def ndims(self):
model = self.get_model()
return model.encode("foo").shape[0]
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.generate_embeddings([[self.query_instruction, query]])
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
texts_formatted = []
for text in texts:
texts_formatted.append([self.source_instruction, text])
return self.generate_embeddings(texts_formatted)
def generate_embeddings(self, texts: List) -> List:
model = self.get_model()
res = model.encode(
texts,
batch_size=self.batch_size,
show_progress_bar=self.show_progress_bar,
normalize_embeddings=self.normalize_embeddings,
).tolist()
return res
@weak_lru(maxsize=1)
def get_model(self):
instructor_embedding = self.safe_import(
"InstructorEmbedding", "InstructorEmbedding"
)
torch = self.safe_import("torch", "torch")
model = instructor_embedding.INSTRUCTOR(self.name)
if self.quantize:
if (
"qnnpack" in torch.backends.quantized.supported_engines
): # fix for https://github.com/pytorch/pytorch/issues/29327
torch.backends.quantized.engine = "qnnpack"
model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
return model

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures import concurrent.futures
import io import io
import os import os

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union from typing import List, Union
import numpy as np import numpy as np

View File

@@ -1,3 +1,15 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union from typing import List, Union
import numpy as np import numpy as np
@@ -5,6 +17,7 @@ from cachetools import cached
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import weak_lru
@register("sentence-transformers") @register("sentence-transformers")
@@ -30,7 +43,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name and device. This is cached so that the model is only loaded name and device. This is cached so that the model is only loaded
once per process. once per process.
""" """
return self.__class__.get_embedding_model(self.name, self.device) return self.get_embedding_model()
def ndims(self): def ndims(self):
if self._ndims is None: if self._ndims is None:
@@ -54,9 +67,8 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
normalize_embeddings=self.normalize, normalize_embeddings=self.normalize,
).tolist() ).tolist()
@classmethod @weak_lru(maxsize=1)
@cached(cache={}) def get_embedding_model(self):
def get_embedding_model(cls, name, device):
""" """
Get the sentence-transformers embedding model specified by the Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded name and device. This is cached so that the model is only loaded
@@ -71,7 +83,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
TODO: use lru_cache instead with a reasonable/configurable maxsize TODO: use lru_cache instead with a reasonable/configurable maxsize
""" """
sentence_transformers = cls.safe_import( sentence_transformers = self.safe_import(
"sentence_transformers", "sentence-transformers" "sentence_transformers", "sentence-transformers"
) )
return sentence_transformers.SentenceTransformer(name, device=device) return sentence_transformers.SentenceTransformer(self.name, device=self.device)

View File

@@ -11,10 +11,14 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import functools
import math import math
import random
import socket import socket
import sys import sys
import time
import urllib.error import urllib.error
import weakref
from typing import Callable, List, Union from typing import Callable, List, Union
import numpy as np import numpy as np
@@ -162,6 +166,99 @@ class FunctionWrapper:
yield from _chunker(arr) yield from _chunker(arr)
def weak_lru(maxsize=128):
"""
LRU cache that keeps weak references to the objects it caches. Only caches the latest instance of the objects to make sure memory usage
is bounded.
Parameters
----------
maxsize : int, default 128
The maximum number of objects to cache.
Returns
-------
Callable
A decorator that can be applied to a method.
Examples
--------
>>> class Foo:
... @weak_lru()
... def bar(self, x):
... return x
>>> foo = Foo()
>>> foo.bar(1)
1
>>> foo.bar(2)
2
>>> foo.bar(1)
1
"""
def wrapper(func):
@functools.lru_cache(maxsize)
def _func(_self, *args, **kwargs):
return func(_self(), *args, **kwargs)
@functools.wraps(func)
def inner(self, *args, **kwargs):
return _func(weakref.ref(self), *args, **kwargs)
return inner
return wrapper
def retry_with_exponential_backoff(
func,
initial_delay: float = 1,
exponential_base: float = 2,
jitter: bool = True,
max_retries: int = 7,
# errors: tuple = (),
):
"""Retry a function with exponential backoff.
Args:
func (function): The function to be retried.
initial_delay (float): Initial delay in seconds (default is 1).
exponential_base (float): The base for exponential backoff (default is 2).
jitter (bool): Whether to add jitter to the delay (default is True).
max_retries (int): Maximum number of retries (default is 10).
errors (tuple): Tuple of specific exceptions to retry on (default is (openai.error.RateLimitError,)).
Returns:
function: The decorated function.
"""
def wrapper(*args, **kwargs):
num_retries = 0
delay = initial_delay
# Loop until a successful response or max_retries is hit or an exception is raised
while True:
try:
return func(*args, **kwargs)
# Currently retrying on all exceptions as there is no way to know the format of the error msgs used by different APIs
# We'll log the error and say that it is assumed that if this portion errors out, it's due to rate limit but the user
# should check the error message to be sure
except Exception as e:
num_retries += 1
if num_retries > max_retries:
raise Exception(
f"Maximum number of retries ({max_retries}) exceeded."
)
delay *= exponential_base * (1 + jitter * random.random())
LOGGER.info(f"Retrying in {delay:.2f} seconds due to {e}")
time.sleep(delay)
return wrapper
def url_retrieve(url: str): def url_retrieve(url: str):
""" """
Parameters Parameters

View File

@@ -14,7 +14,7 @@
from __future__ import annotations from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Literal, Optional, Type, Union from typing import TYPE_CHECKING, List, Literal, Optional, Type, Union
import deprecation import deprecation
import numpy as np import numpy as np
@@ -23,14 +23,49 @@ import pydantic
from . import __version__ from . import __version__
from .common import VECTOR_COLUMN_NAME from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .util import safe_import_pandas from .util import safe_import_pandas
if TYPE_CHECKING:
from .pydantic import LanceModel
pd = safe_import_pandas() pd = safe_import_pandas()
class Query(pydantic.BaseModel): class Query(pydantic.BaseModel):
"""A Query""" """The LanceDB Query
Attributes
----------
vector : List[float]
the vector to search for
filter : Optional[str]
sql filter to refine the query with, optional
prefilter : bool
if True then apply the filter before vector search
k : int
top k results to return
metric : str
the distance metric between a pair of vectors,
can support L2 (default), Cosine and Dot.
[metric definitions][search]
columns : Optional[List[str]]
which columns to return in the results
nprobes : int
The number of probes used - optional
- A higher number makes search more accurate but also slower.
- See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
refine_factor : Optional[int]
Refine the results by reading extra elements and re-ranking them in memory - optional
- A higher number makes search more accurate but also slower.
- See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
"""
vector_column: str = VECTOR_COLUMN_NAME vector_column: str = VECTOR_COLUMN_NAME
@@ -61,6 +96,10 @@ class Query(pydantic.BaseModel):
class LanceQueryBuilder(ABC): class LanceQueryBuilder(ABC):
"""Build LanceDB query based on specific query type:
vector or full text search.
"""
@classmethod @classmethod
def create( def create(
cls, cls,
@@ -103,7 +142,7 @@ class LanceQueryBuilder(ABC):
if not isinstance(query, (list, np.ndarray)): if not isinstance(query, (list, np.ndarray)):
conf = table.embedding_functions.get(vector_column_name) conf = table.embedding_functions.get(vector_column_name)
if conf is not None: if conf is not None:
query = conf.function.compute_query_embeddings(query)[0] query = conf.function.compute_query_embeddings_with_retry(query)[0]
else: else:
msg = f"No embedding function for {vector_column_name}" msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg) raise ValueError(msg)
@@ -114,7 +153,7 @@ class LanceQueryBuilder(ABC):
else: else:
conf = table.embedding_functions.get(vector_column_name) conf = table.embedding_functions.get(vector_column_name)
if conf is not None: if conf is not None:
query = conf.function.compute_query_embeddings(query)[0] query = conf.function.compute_query_embeddings_with_retry(query)[0]
return query, "vector" return query, "vector"
else: else:
return query, "fts" return query, "fts"
@@ -133,11 +172,11 @@ class LanceQueryBuilder(ABC):
deprecated_in="0.3.1", deprecated_in="0.3.1",
removed_in="0.4.0", removed_in="0.4.0",
current_version=__version__, current_version=__version__,
details="Use the bar function instead", details="Use to_pandas() instead",
) )
def to_df(self) -> "pd.DataFrame": def to_df(self) -> "pd.DataFrame":
""" """
Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead. *Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.*
Execute the query and return the results as a pandas DataFrame. Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
@@ -226,13 +265,20 @@ class LanceQueryBuilder(ABC):
self._columns = columns self._columns = columns
return self return self
def where(self, where) -> LanceQueryBuilder: def where(self, where: str, prefilter: bool = False) -> LanceQueryBuilder:
"""Set the where clause. """Set the where clause.
Parameters Parameters
---------- ----------
where: str where: str
The where clause. The where clause which is a valid SQL where clause. See
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
for valid SQL expressions.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future.
Returns Returns
------- -------
@@ -240,13 +286,12 @@ class LanceQueryBuilder(ABC):
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._where = where self._where = where
self._prefilter = prefilter
return self return self
class LanceVectorQueryBuilder(LanceQueryBuilder): class LanceVectorQueryBuilder(LanceQueryBuilder):
""" """
A builder for nearest neighbor queries for LanceDB.
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
@@ -302,7 +347,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Higher values will yield better recall (more likely to find vectors if Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency. they exist) at the expense of latency.
See discussion in [Querying an ANN Index][../querying-an-ann-index] for See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice. tuning advice.
Parameters Parameters
@@ -369,14 +414,14 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
Parameters Parameters
---------- ----------
where: str where: str
The where clause. The where clause which is a valid SQL where clause. See
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
for valid SQL expressions.
prefilter: bool, default False prefilter: bool, default False
If True, apply the filter before vector search, otherwise the If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search. filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future. Currently this is only supported without warning in the future.
in OSS and can only be used with a table that does not have an ANN
index.
Returns Returns
------- -------
@@ -389,6 +434,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
class LanceFtsQueryBuilder(LanceQueryBuilder): class LanceFtsQueryBuilder(LanceQueryBuilder):
"""A builder for full text search for LanceDB."""
def __init__(self, table: "lancedb.table.Table", query: str): def __init__(self, table: "lancedb.table.Table", query: str):
super().__init__(table) super().__init__(table)
self._query = query self._query = query

View File

@@ -13,7 +13,7 @@
import functools import functools
from typing import Any, Callable, Dict, Optional, Union from typing import Any, Callable, Dict, Iterable, Optional, Union
import aiohttp import aiohttp
import attrs import attrs
@@ -151,15 +151,14 @@ class RestfulLanceDBClient:
return await deserialize(resp) return await deserialize(resp)
@_check_not_closed @_check_not_closed
async def list_tables(self, limit: int, page_token: str): async def list_tables(
self, limit: int, page_token: Optional[str] = None
) -> Iterable[str]:
"""List all tables in the database.""" """List all tables in the database."""
try: if page_token is None:
json = await self.get( page_token = ""
"/v1/table/", {"limit": limit, "page_token": page_token} json = await self.get("/v1/table/", {"limit": limit, "page_token": page_token})
) return json["tables"]
return json["tables"]
except StopAsyncIteration:
return []
@_check_not_closed @_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult: async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:

View File

@@ -12,17 +12,23 @@
# limitations under the License. # limitations under the License.
import asyncio import asyncio
import inspect
import logging
import uuid import uuid
from typing import Iterator, Optional from typing import Iterable, List, Optional, Union
from urllib.parse import urlparse from urllib.parse import urlparse
import pyarrow as pa import pyarrow as pa
from overrides import override
from ..common import DATA from ..common import DATA
from ..db import DBConnection from ..db import DBConnection
from ..embeddings import EmbeddingFunctionConfig
from ..pydantic import LanceModel
from ..table import Table, _sanitize_data from ..table import Table, _sanitize_data
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
from .errors import LanceDBClientError
class RemoteDBConnection(DBConnection): class RemoteDBConnection(DBConnection):
@@ -52,12 +58,18 @@ class RemoteDBConnection(DBConnection):
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoveConnect(name={self.db_name})" return f"RemoveConnect(name={self.db_name})"
def table_names(self, last_token: str, limit=10) -> Iterator[str]: @override
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List the names of all tables in the database. """List the names of all tables in the database.
Parameters Parameters
---------- ----------
last_token: str page_token: str
The last token to start the new page. The last token to start the new page.
limit: int, default 10
The maximum number of tables to return for each page.
Returns Returns
------- -------
@@ -65,15 +77,16 @@ class RemoteDBConnection(DBConnection):
""" """
while True: while True:
result = self._loop.run_until_complete( result = self._loop.run_until_complete(
self._client.list_tables(limit, last_token) self._client.list_tables(limit, page_token)
) )
if len(result) > 0: if len(result) > 0:
last_token = result[len(result) - 1] page_token = result[len(result) - 1]
else: else:
break break
for item in result: for item in result:
yield result yield item
@override
def open_table(self, name: str) -> Table: def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database. """Open a Lance Table in the database.
@@ -88,23 +101,142 @@ class RemoteDBConnection(DBConnection):
""" """
from .table import RemoteTable from .table import RemoteTable
# TODO: check if table exists # check if table exists
try:
self._loop.run_until_complete(
self._client.post(f"/v1/table/{name}/describe/")
)
except LanceDBClientError as err:
if str(err).startswith("Not found"):
logging.error(
f"Table {name} does not exist. "
f"Please first call db.create_table({name}, data)"
)
return RemoteTable(self, name) return RemoteTable(self, name)
@override
def create_table( def create_table(
self, self,
name: str, name: str,
data: DATA = None, data: DATA = None,
schema: pa.Schema = None, schema: Optional[Union[pa.Schema, LanceModel]] = None,
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table: ) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
Parameters
----------
name: str
The name of the table.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
LanceTable
A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("db://test-project-8f45eb")
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(my_table)
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(table2)
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
"""
if data is None and schema is None: if data is None and schema is None:
raise ValueError("Either data or schema must be provided.") raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None:
raise NotImplementedError(
"embedding_functions is not supported for remote databases."
"Please vote https://github.com/lancedb/lancedb/issues/626 "
"for this feature."
)
if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema
# note that it's possible this contains
# embedding function metadata already
schema = schema.to_arrow_schema()
if data is not None: if data is not None:
data = _sanitize_data( data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value data,
schema,
metadata=None,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
) )
else: else:
if schema is None: if schema is None:
@@ -126,6 +258,7 @@ class RemoteDBConnection(DBConnection):
) )
return RemoteTable(self, name) return RemoteTable(self, name)
@override
def drop_table(self, name: str): def drop_table(self, name: str):
"""Drop a table from the database. """Drop a table from the database.

View File

@@ -37,34 +37,81 @@ class RemoteTable(Table):
@cached_property @cached_property
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""Return the schema of the table.""" """The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
of this Table
"""
resp = self._conn._loop.run_until_complete( resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/") self._conn._client.post(f"/v1/table/{self._name}/describe/")
) )
schema = json_to_schema(resp["schema"]) schema = json_to_schema(resp["schema"])
return schema return schema
@property
def version(self) -> int:
"""Get the current version of the table"""
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/")
)
return resp["version"]
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pa.Table:
"""Return the table as an Arrow table.""" """to_arrow() is not supported on the LanceDB cloud"""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud") raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self): def to_pandas(self):
"""Return the table as a Pandas DataFrame. """to_pandas() is not supported on the LanceDB cloud"""
Intercept `to_arrow()` for better error message.
"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud") return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
def create_index( def create_index(
self, self,
metric="L2", metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True, index_cache_size: Optional[int] = None,
accelerator: Optional[str] = None,
): ):
raise NotImplementedError """Create an index on the table.
Currently, the only parameters that matter are
the metric and the vector column name.
Parameters
----------
metric : str
The metric to use for the index. Default is "L2".
vector_column_name : str
The name of the vector column. Default is "vector".
Examples
--------
>>> import lancedb
>>> import uuid
>>> from lancedb.schema import vector
>>> conn = lancedb.connect("db://...", api_key="...", region="...")
>>> table_name = uuid.uuid4().hex
>>> schema = pa.schema(
... [
... pa.field("id", pa.uint32(), False),
... pa.field("vector", vector(128), False),
... pa.field("s", pa.string(), False),
... ]
... )
>>> table = conn.create_table(
>>> table_name,
>>> schema=schema,
>>> )
>>> table.create_index("L2", "vector")
"""
index_type = "vector"
data = {
"column": vector_column_name,
"index_type": index_type,
"metric_type": metric,
"index_cache_size": index_cache_size,
}
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/create_index/", data=data)
)
return resp
def add( def add(
self, self,
@@ -73,6 +120,28 @@ class RemoteTable(Table):
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> int: ) -> int:
"""Add more data to the [Table](Table). It has the same API signature as the OSS version.
Parameters
----------
data: DATA
The data to insert into the table. Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
mode: str
The mode to use when writing the data. Valid values are
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
data = _sanitize_data( data = _sanitize_data(
data, data,
self.schema, self.schema,
@@ -96,16 +165,112 @@ class RemoteTable(Table):
def search( def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
) -> LanceVectorQueryBuilder: ) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
All query options are defined in [Query][lancedb.query.Query].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters
----------
query: list/np.ndarray/str/PIL.Image.Image, default None
The targetted vector to search for.
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
The name of the vector column to search.
*default "vector"*
Returns
-------
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns
- selected columns
- the vector
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return LanceVectorQueryBuilder(self, query, vector_column_name) return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
if query.prefilter:
raise NotImplementedError("Cloud support for prefiltering is coming soon")
result = self._conn._client.query(self._name, query) result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow() return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str): def delete(self, predicate: str):
"""Delete rows from the table.""" """Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
Parameters
----------
predicate: str
The SQL where clause to use when deleting rows.
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
The filter must not be empty, or it will error.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...")
>>> table = db.create_table("my_table", data)
>>> table.search([10,10]).to_pandas()
x vector _distance
0 3 [5.0, 6.0] 41.0
1 2 [3.0, 4.0] 85.0
2 1 [1.0, 2.0] 145.0
>>> table.delete("x = 2")
>>> table.search([10,10]).to_pandas()
x vector _distance
0 3 [5.0, 6.0] 41.0
1 1 [1.0, 2.0] 145.0
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
>>> to_remove = [1, 3]
>>> to_remove = ", ".join([str(v) for v in to_remove])
>>> to_remove
'1, 3'
>>> table.delete(f"x IN ({to_remove})")
>>> table.search([10,10]).to_pandas()
x vector _distance
0 2 [3.0, 4.0] 85.0
"""
payload = {"predicate": predicate} payload = {"predicate": predicate}
self._conn._loop.run_until_complete( self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload) self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)

View File

@@ -16,16 +16,14 @@ from __future__ import annotations
import inspect import inspect
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from datetime import timedelta
from functools import cached_property from functools import cached_property
from typing import Any, Iterable, List, Optional, Union from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Union
import lance import lance
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
from lance import LanceDataset from lance import LanceDataset
from lance.dataset import CleanupStats, ReaderLike
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
@@ -35,6 +33,12 @@ from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas from .util import fs_from_uri, safe_import_pandas
from .utils.events import register_event from .utils.events import register_event
if TYPE_CHECKING:
from datetime import timedelta
from lance.dataset import CleanupStats, ReaderLike
pd = safe_import_pandas() pd = safe_import_pandas()
@@ -86,7 +90,9 @@ def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schem
for vector_column, conf in functions.items(): for vector_column, conf in functions.items():
func = conf.function func = conf.function
if vector_column not in data.column_names: if vector_column not in data.column_names:
col_data = func.compute_source_embeddings(data[conf.source_column]) col_data = func.compute_source_embeddings_with_retry(
data[conf.source_column]
)
if schema is not None: if schema is not None:
dtype = schema.field(vector_column).type dtype = schema.field(vector_column).type
else: else:
@@ -149,13 +155,13 @@ class Table(ABC):
@property @property
@abstractmethod @abstractmethod
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of """The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
this Table of this Table
""" """
raise NotImplementedError raise NotImplementedError
def to_pandas(self): def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame. """Return the table as a pandas DataFrame.
Returns Returns
@@ -182,6 +188,7 @@ class Table(ABC):
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None, accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
): ):
"""Create an index on the table. """Create an index on the table.
@@ -191,20 +198,23 @@ class Table(ABC):
The distance metric to use when creating the index. The distance metric to use when creating the index.
Valid values are "L2", "cosine", or "dot". Valid values are "L2", "cosine", or "dot".
L2 is euclidean distance. L2 is euclidean distance.
num_partitions: int num_partitions: int, default 256
The number of IVF partitions to use when creating the index. The number of IVF partitions to use when creating the index.
Default is 256. Default is 256.
num_sub_vectors: int num_sub_vectors: int, default 96
The number of PQ sub-vectors to use when creating the index. The number of PQ sub-vectors to use when creating the index.
Default is 96. Default is 96.
vector_column_name: str, default "vector" vector_column_name: str, default "vector"
The vector column name to create the index. The vector column name to create the index.
replace: bool, default True replace: bool, default True
If True, replace the existing index if it exists. - If True, replace the existing index if it exists.
If False, raise an error if duplicate index exists.
- If False, raise an error if duplicate index exists.
accelerator: str, default None accelerator: str, default None
If set, use the given accelerator to create the index. If set, use the given accelerator to create the index.
Only support "cuda" for now. Only support "cuda" for now.
index_cache_size : int, optional
The size of the index cache in number of entries. Default value is 256.
""" """
raise NotImplementedError raise NotImplementedError
@@ -220,8 +230,14 @@ class Table(ABC):
Parameters Parameters
---------- ----------
data: list-of-dict, dict, pd.DataFrame data: DATA
The data to insert into the table. The data to insert into the table. Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
mode: str mode: str
The mode to use when writing the data. Valid values are The mode to use when writing the data. Valid values are
"append" and "overwrite". "append" and "overwrite".
@@ -242,31 +258,70 @@ class Table(ABC):
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors """Create a search query to find the nearest neighbors
of the given query vector. of the given query vector. We currently support [vector search][search]
and [full-text search][experimental-full-text-search].
All query options are defined in [Query][lancedb.query.Query].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters Parameters
---------- ----------
query: str, list, np.ndarray, PIL.Image.Image, default None query: list/np.ndarray/str/PIL.Image.Image, default None
The query to search for. If None then The targetted vector to search for.
the select/where/limit clauses are applied to filter
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/where/limit clauses are applied to filter
the table the table
vector_column_name: str, default "vector" vector_column_name: str
The name of the vector column to search. The name of the vector column to search.
query_type: str, default "auto" *default "vector"*
"vector", "fts", or "auto" query_type: str
If "auto" then the query type is inferred from the query; *default "auto"*.
If `query` is a list/np.ndarray then the query type is "vector"; Acceptable types are: "vector", "fts", or "auto"
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found. - If "auto" then the query type is inferred from the query;
If `query` is a string, then the query type is "vector" if the
- If `query` is a list/np.ndarray then the query type is
"vector";
- If `query` is a PIL.Image.Image then either do vector search,
or raise an error if no corresponding embedding function is found.
- If `query` is a string, then the query type is "vector" if the
table has embedding functions else the query type is "fts" table has embedding functions else the query type is "fts"
Returns Returns
------- -------
LanceQueryBuilder LanceQueryBuilder
A query builder object representing the query. A query builder object representing the query.
Once executed, the query returns selected columns, the vector, Once executed, the query returns
and also the "_distance" column which is the distance between the query
- selected columns
- the vector
- and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
raise NotImplementedError raise NotImplementedError
@@ -285,14 +340,19 @@ class Table(ABC):
Parameters Parameters
---------- ----------
where: str where: str
The SQL where clause to use when deleting rows. For example, 'x = 2' The SQL where clause to use when deleting rows.
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
The filter must not be empty, or it will error.
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
>>> data = [ >>> data = [
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]} ... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ] ... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
@@ -377,7 +437,8 @@ class LanceTable(Table):
-------- --------
>>> import lancedb >>> import lancedb
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}]) >>> table = db.create_table("my_table",
... [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version >>> table.version
2 2
>>> table.to_pandas() >>> table.to_pandas()
@@ -424,7 +485,8 @@ class LanceTable(Table):
-------- --------
>>> import lancedb >>> import lancedb
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}]) >>> table = db.create_table("my_table", [
... {"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version >>> table.version
2 2
>>> table.to_pandas() >>> table.to_pandas()
@@ -497,6 +559,7 @@ class LanceTable(Table):
vector_column_name=VECTOR_COLUMN_NAME, vector_column_name=VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None, accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
): ):
"""Create an index on the table.""" """Create an index on the table."""
self._dataset.create_index( self._dataset.create_index(
@@ -507,6 +570,7 @@ class LanceTable(Table):
num_sub_vectors=num_sub_vectors, num_sub_vectors=num_sub_vectors,
replace=replace, replace=replace,
accelerator=accelerator, accelerator=accelerator,
index_cache_size=index_cache_size,
) )
self._reset_dataset() self._reset_dataset()
register_event("create_index") register_event("create_index")
@@ -669,14 +733,39 @@ class LanceTable(Table):
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors """Create a search query to find the nearest neighbors
of the given query vector. of the given query vector. We currently support [vector search][search]
and [full-text search][search].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters Parameters
---------- ----------
query: str, list, np.ndarray, a PIL Image or None query: list/np.ndarray/str/PIL.Image.Image, default None
The query to search for. If None then The targetted vector to search for.
the select/where/limit clauses are applied to filter
the table - *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/[where][sql]/limit clauses are applied
to filter the table
vector_column_name: str, default "vector" vector_column_name: str, default "vector"
The name of the vector column to search. The name of the vector column to search.
query_type: str, default "auto" query_type: str, default "auto"
@@ -685,7 +774,7 @@ class LanceTable(Table):
If `query` is a list/np.ndarray then the query type is "vector"; If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found. or raise an error if no corresponding embedding function is found.
If the query is a string, then the query type is "vector" if the If the `query` is a string, then the query type is "vector" if the
table has embedding functions, else the query type is "fts" table has embedding functions, else the query type is "fts"
Returns Returns
@@ -720,7 +809,9 @@ class LanceTable(Table):
-------- --------
>>> import lancedb >>> import lancedb
>>> data = [ >>> data = [
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]} ... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ] ... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
@@ -740,7 +831,8 @@ class LanceTable(Table):
The data to insert into the table. The data to insert into the table.
At least one of `data` or `schema` must be provided. At least one of `data` or `schema` must be provided.
schema: pa.Schema or LanceModel, optional schema: pa.Schema or LanceModel, optional
The schema of the table. If not provided, the schema is inferred from the data. The schema of the table. If not provided,
the schema is inferred from the data.
At least one of `data` or `schema` must be provided. At least one of `data` or `schema` must be provided.
mode: str, default "create" mode: str, default "create"
The mode to use when writing the data. Valid values are The mode to use when writing the data. Valid values are
@@ -811,7 +903,8 @@ class LanceTable(Table):
file_info = fs.get_file_info(path) file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory: if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError( raise FileNotFoundError(
f"Table {name} does not exist. Please first call db.create_table({name}, data)" f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
) )
return tbl return tbl
@@ -838,7 +931,9 @@ class LanceTable(Table):
-------- --------
>>> import lancedb >>> import lancedb
>>> data = [ >>> data = [
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]} ... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ] ... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
@@ -872,12 +967,6 @@ class LanceTable(Table):
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance() ds = self.to_lance()
if query.prefilter:
for idx in ds.list_indices():
if query.vector_column in idx["fields"]:
raise NotImplementedError(
"Prefiltering for indexed vector column is coming soon."
)
return ds.to_table( return ds.to_table(
columns=query.columns, columns=query.columns,
filter=query.filter, filter=query.filter,
@@ -1019,7 +1108,8 @@ def _sanitize_vector_column(
# ChunkedArray is annoying to work with, so we combine chunks here # ChunkedArray is annoying to work with, so we combine chunks here
vec_arr = data[vector_column_name].combine_chunks() vec_arr = data[vector_column_name].combine_chunks()
if pa.types.is_list(data[vector_column_name].type): if pa.types.is_list(data[vector_column_name].type):
# if it's a variable size list array we make sure the dimensions are all the same # if it's a variable size list array,
# we make sure the dimensions are all the same
has_jagged_ndims = len(vec_arr.values) % len(data) != 0 has_jagged_ndims = len(vec_arr.values) % len(data) != 0
if has_jagged_ndims: if has_jagged_ndims:
data = _sanitize_jagged( data = _sanitize_jagged(

View File

@@ -63,7 +63,8 @@ def set_sentry():
""" """
if "exc_info" in hint: if "exc_info" in hint:
exc_type, exc_value, tb = hint["exc_info"] exc_type, exc_value, tb = hint["exc_info"]
if "out of memory" in str(exc_value).lower(): ignored_errors = ["out of memory", "no space left on device", "testing"]
if any(error in str(exc_value).lower() for error in ignored_errors):
return None return None
if is_git_dir(): if is_git_dir():
@@ -97,7 +98,7 @@ def set_sentry():
dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592", dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592",
debug=False, debug=False,
include_local_variables=False, include_local_variables=False,
traces_sample_rate=1.0, traces_sample_rate=0.5,
environment="production", # 'dev' or 'production' environment="production", # 'dev' or 'production'
before_send=before_send, before_send=before_send,
ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit], ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit],

View File

@@ -1,9 +1,9 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.3.2" version = "0.3.4"
dependencies = [ dependencies = [
"deprecation", "deprecation",
"pylance==0.8.7", "pylance==0.8.17",
"ratelimiter~=1.0", "ratelimiter~=1.0",
"retry>=0.9.2", "retry>=0.9.2",
"tqdm>=4.1.0", "tqdm>=4.1.0",
@@ -14,7 +14,8 @@ dependencies = [
"cachetools", "cachetools",
"pyyaml>=6.0", "pyyaml>=6.0",
"click>=8.1.7", "click>=8.1.7",
"requests>=2.31.0" "requests>=2.31.0",
"overrides>=0.7"
] ]
description = "lancedb" description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }] authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
@@ -52,7 +53,7 @@ tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"]
dev = ["ruff", "pre-commit", "black"] dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"] clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere"] embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "InstructorEmbedding"]
[project.scripts] [project.scripts]
lancedb = "lancedb.cli.cli:cli" lancedb = "lancedb.cli.cli:cli"
@@ -64,6 +65,9 @@ build-backend = "setuptools.build_meta"
[tool.isort] [tool.isort]
profile = "black" profile = "black"
[tool.ruff]
select = ["F", "E", "W", "I", "G", "TCH", "PERF"]
[tool.pytest.ini_options] [tool.pytest.ini_options]
addopts = "--strict-markers" addopts = "--strict-markers"
markers = [ markers = [

View File

@@ -129,7 +129,7 @@ def test_ingest_iterator(tmp_path):
[ [
PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0), PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0),
PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0), PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0),
] ],
# TODO: test pydict separately. it is unique column number and names contraint # TODO: test pydict separately. it is unique column number and names contraint
] ]
@@ -150,6 +150,21 @@ def test_ingest_iterator(tmp_path):
run_tests(PydanticSchema) run_tests(PydanticSchema)
def test_table_names(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
db.create_table("test2", data=data)
db.create_table("test1", data=data)
db.create_table("test3", data=data)
assert db.table_names() == ["test1", "test2", "test3"]
def test_create_mode(tmp_path): def test_create_mode(tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
data = pd.DataFrame( data = pd.DataFrame(
@@ -286,4 +301,29 @@ def test_replace_index(tmp_path):
num_partitions=2, num_partitions=2,
num_sub_vectors=4, num_sub_vectors=4,
replace=True, replace=True,
index_cache_size=10,
) )
def test_prefilter_with_index(tmp_path):
db = lancedb.connect(uri=tmp_path)
data = [
{"vector": np.random.rand(128), "item": "foo", "price": float(i)}
for i in range(1000)
]
sample_key = data[100]["vector"]
table = db.create_table(
"test",
data,
)
table.create_index(
num_partitions=2,
num_sub_vectors=4,
)
table = (
table.search(sample_key)
.where("price == 500", prefilter=True)
.limit(5)
.to_arrow()
)
assert table.num_rows == 1

View File

@@ -15,13 +15,16 @@ import sys
import lance import lance
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
import pytest
from lancedb.conftest import MockTextEmbeddingFunction import lancedb
from lancedb.conftest import MockRateLimitedEmbeddingFunction, MockTextEmbeddingFunction
from lancedb.embeddings import ( from lancedb.embeddings import (
EmbeddingFunctionConfig, EmbeddingFunctionConfig,
EmbeddingFunctionRegistry, EmbeddingFunctionRegistry,
with_embeddings, with_embeddings,
) )
from lancedb.pydantic import LanceModel, Vector
def mock_embed_func(input_data): def mock_embed_func(input_data):
@@ -83,3 +86,29 @@ def test_embedding_function(tmp_path):
expected = func.compute_query_embeddings("hello world") expected = func.compute_query_embeddings("hello world")
assert np.allclose(actual, expected) assert np.allclose(actual, expected)
def test_embedding_function_rate_limit(tmp_path):
def _get_schema_from_model(model):
class Schema(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
return Schema
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("test-rate-limited").create(max_retries=0)
schema = _get_schema_from_model(model)
table = db.create_table("test", schema=schema, mode="overwrite")
table.add([{"text": "hello world"}])
with pytest.raises(Exception):
table.add([{"text": "hello world"}])
assert len(table) == 1
model = registry.get("test-rate-limited").create()
schema = _get_schema_from_model(model)
table = db.create_table("test", schema=schema, mode="overwrite")
table.add([{"text": "hello world"}])
table.add([{"text": "hello world"}])
assert len(table) == 2

View File

@@ -32,8 +32,8 @@ from lancedb.pydantic import LanceModel, Vector
def test_sentence_transformer(alias, tmp_path): def test_sentence_transformer(alias, tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
registry = get_registry() registry = get_registry()
func = registry.get(alias).create() func = registry.get(alias).create(max_retries=0)
func2 = registry.get(alias).create() func2 = registry.get(alias).create(max_retries=0)
class Words(LanceModel): class Words(LanceModel):
text: str = func.SourceField() text: str = func.SourceField()
@@ -150,7 +150,11 @@ def test_openclip(tmp_path):
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set" os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
) # also skip if cohere not installed ) # also skip if cohere not installed
def test_cohere_embedding_function(): def test_cohere_embedding_function():
cohere = get_registry().get("cohere").create(name="embed-multilingual-v2.0") cohere = (
get_registry()
.get("cohere")
.create(name="embed-multilingual-v2.0", max_retries=0)
)
class TextModel(LanceModel): class TextModel(LanceModel):
text: str = cohere.SourceField() text: str = cohere.SourceField()
@@ -162,3 +166,19 @@ def test_cohere_embedding_function():
tbl.add(df) tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims() assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()
@pytest.mark.slow
def test_instructor_embedding(tmp_path):
model = get_registry().get("instructor").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()

View File

@@ -26,6 +26,9 @@ class FakeLanceDBClient:
t = pa.schema([]).empty_table() t = pa.schema([]).empty_table()
return VectorQueryResult(t) return VectorQueryResult(t)
async def post(self, path: str):
pass
def test_remote_db(): def test_remote_db():
conn = lancedb.connect("db://client-will-be-injected", api_key="fake") conn = lancedb.connect("db://client-will-be-injected", api_key="fake")

View File

@@ -213,6 +213,7 @@ def test_create_index_method():
num_sub_vectors=96, num_sub_vectors=96,
vector_column_name="vector", vector_column_name="vector",
replace=True, replace=True,
index_cache_size=256,
) )
# Check that the _dataset.create_index method was called # Check that the _dataset.create_index method was called
@@ -225,6 +226,7 @@ def test_create_index_method():
num_sub_vectors=96, num_sub_vectors=96,
replace=True, replace=True,
accelerator=None, accelerator=None,
index_cache_size=256,
) )

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.3.3" version = "0.3.9"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"
@@ -19,6 +19,7 @@ once_cell = "1"
futures = "0.3" futures = "0.3"
half = { workspace = true } half = { workspace = true }
lance = { workspace = true } lance = { workspace = true }
lance-index = { workspace = true }
lance-linalg = { workspace = true } lance-linalg = { workspace = true }
vectordb = { path = "../../vectordb" } vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use lance::index::vector::{ivf::IvfBuildParams, pq::PQBuildParams}; use lance_index::vector::{ivf::IvfBuildParams, pq::PQBuildParams};
use lance_linalg::distance::MetricType; use lance_linalg::distance::MetricType;
use neon::context::FunctionContext; use neon::context::FunctionContext;
use neon::prelude::*; use neon::prelude::*;
@@ -70,7 +70,6 @@ fn get_index_params_builder(
.map(|mt| { .map(|mt| {
let metric_type = mt.unwrap(); let metric_type = mt.unwrap();
index_builder.metric_type(metric_type); index_builder.metric_type(metric_type);
pq_params.metric_type = metric_type;
}); });
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?; let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;

View File

@@ -239,6 +239,8 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableDelete", JsTable::js_delete)?; cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?; cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
cx.export_function("tableCompactFiles", JsTable::js_compact)?; cx.export_function("tableCompactFiles", JsTable::js_compact)?;
cx.export_function("tableListIndices", JsTable::js_list_indices)?;
cx.export_function("tableIndexStats", JsTable::js_index_stats)?;
cx.export_function( cx.export_function(
"tableCreateVectorIndex", "tableCreateVectorIndex",
index::vector::table_create_vector_index, index::vector::table_create_vector_index,

View File

@@ -48,6 +48,8 @@ impl JsQuery {
.map(|s| s.value(&mut cx)) .map(|s| s.value(&mut cx))
.map(|s| MetricType::try_from(s.as_str()).unwrap()); .map(|s| MetricType::try_from(s.as_str()).unwrap());
let prefilter = query_obj.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?.value(&mut cx);
let is_electron = cx let is_electron = cx
.argument::<JsBoolean>(1) .argument::<JsBoolean>(1)
.or_throw(&mut cx)? .or_throw(&mut cx)?
@@ -69,7 +71,8 @@ impl JsQuery {
.nprobes(nprobes) .nprobes(nprobes)
.filter(filter) .filter(filter)
.metric_type(metric_type) .metric_type(metric_type)
.select(select); .select(select)
.prefilter(prefilter);
let record_batch_stream = builder.execute(); let record_batch_stream = builder.execute();
let results = record_batch_stream let results = record_batch_stream
.and_then(|stream| { .and_then(|stream| {

View File

@@ -247,7 +247,7 @@ impl JsTable {
} }
rt.spawn(async move { rt.spawn(async move {
let stats = table.compact_files(options).await; let stats = table.compact_files(options, None).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let stats = stats.or_throw(&mut cx)?; let stats = stats.or_throw(&mut cx)?;
@@ -276,4 +276,91 @@ impl JsTable {
}); });
Ok(promise) Ok(promise)
} }
pub(crate) fn js_list_indices(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
// let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
let channel = cx.channel();
let table = js_table.table.clone();
rt.spawn(async move {
let indices = table.load_indices().await;
deferred.settle_with(&channel, move |mut cx| {
let indices = indices.or_throw(&mut cx)?;
let output = JsArray::new(&mut cx, indices.len() as u32);
for (i, index) in indices.iter().enumerate() {
let js_index = JsObject::new(&mut cx);
let index_name = cx.string(index.index_name.clone());
js_index.set(&mut cx, "name", index_name)?;
let index_uuid = cx.string(index.index_uuid.clone());
js_index.set(&mut cx, "uuid", index_uuid)?;
let js_index_columns = JsArray::new(&mut cx, index.columns.len() as u32);
for (j, column) in index.columns.iter().enumerate() {
let js_column = cx.string(column.clone());
js_index_columns.set(&mut cx, j as u32, js_column)?;
}
js_index.set(&mut cx, "columns", js_index_columns)?;
output.set(&mut cx, i as u32, js_index)?;
}
Ok(output)
})
});
Ok(promise)
}
pub(crate) fn js_index_stats(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let index_uuid = cx.argument::<JsString>(0)?.value(&mut cx);
let channel = cx.channel();
let table = js_table.table.clone();
rt.spawn(async move {
let load_stats = futures::try_join!(
table.count_indexed_rows(&index_uuid),
table.count_unindexed_rows(&index_uuid)
);
deferred.settle_with(&channel, move |mut cx| {
let (indexed_rows, unindexed_rows) = load_stats.or_throw(&mut cx)?;
let output = JsObject::new(&mut cx);
match indexed_rows {
Some(x) => {
let i = cx.number(x as f64);
output.set(&mut cx, "numIndexedRows", i)?;
}
None => {
let null = cx.null();
output.set(&mut cx, "numIndexedRows", null)?;
}
};
match unindexed_rows {
Some(x) => {
let i = cx.number(x as f64);
output.set(&mut cx, "numUnindexedRows", i)?;
}
None => {
let null = cx.null();
output.set(&mut cx, "numUnindexedRows", null)?;
}
};
Ok(output)
})
});
Ok(promise)
}
} }

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.3.3" version = "0.3.9"
edition = "2021" edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
@@ -21,6 +21,7 @@ object_store = { workspace = true }
snafu = { workspace = true } snafu = { workspace = true }
half = { workspace = true } half = { workspace = true }
lance = { workspace = true } lance = { workspace = true }
lance-index = { workspace = true }
lance-linalg = { workspace = true } lance-linalg = { workspace = true }
lance-testing = { workspace = true } lance-testing = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }

View File

@@ -161,7 +161,7 @@ impl Database {
/// ///
/// * A [Vec<String>] with all table names. /// * A [Vec<String>] with all table names.
pub async fn table_names(&self) -> Result<Vec<String>> { pub async fn table_names(&self) -> Result<Vec<String>> {
let f = self let mut f = self
.object_store .object_store
.read_dir(self.base_path.clone()) .read_dir(self.base_path.clone())
.await? .await?
@@ -175,7 +175,8 @@ impl Database {
is_lance.unwrap_or(false) is_lance.unwrap_or(false)
}) })
.filter_map(|p| p.file_stem().and_then(|s| s.to_str().map(String::from))) .filter_map(|p| p.file_stem().and_then(|s| s.to_str().map(String::from)))
.collect(); .collect::<Vec<String>>();
f.sort();
Ok(f) Ok(f)
} }
@@ -312,8 +313,8 @@ mod tests {
let db = Database::connect(uri).await.unwrap(); let db = Database::connect(uri).await.unwrap();
let tables = db.table_names().await.unwrap(); let tables = db.table_names().await.unwrap();
assert_eq!(tables.len(), 2); assert_eq!(tables.len(), 2);
assert!(tables.contains(&String::from("table1"))); assert!(tables[0].eq(&String::from("table1")));
assert!(tables.contains(&String::from("table2"))); assert!(tables[1].eq(&String::from("table2")));
} }
#[tokio::test] #[tokio::test]

View File

@@ -12,9 +12,10 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use lance::index::vector::ivf::IvfBuildParams; use lance::format::{Index, Manifest};
use lance::index::vector::pq::PQBuildParams; use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::VectorIndexParams; use lance::index::vector::VectorIndexParams;
use lance_index::vector::ivf::IvfBuildParams;
use lance_linalg::distance::MetricType; use lance_linalg::distance::MetricType;
pub trait VectorIndexBuilder { pub trait VectorIndexBuilder {
@@ -98,7 +99,11 @@ impl VectorIndexBuilder for IvfPQIndexBuilder {
let ivf_params = self.ivf_params.clone().unwrap_or_default(); let ivf_params = self.ivf_params.clone().unwrap_or_default();
let pq_params = self.pq_params.clone().unwrap_or_default(); let pq_params = self.pq_params.clone().unwrap_or_default();
VectorIndexParams::with_ivf_pq_params(pq_params.metric_type, ivf_params, pq_params) VectorIndexParams::with_ivf_pq_params(
self.metric_type.unwrap_or(MetricType::L2),
ivf_params,
pq_params,
)
} }
fn get_replace(&self) -> bool { fn get_replace(&self) -> bool {
@@ -106,13 +111,34 @@ impl VectorIndexBuilder for IvfPQIndexBuilder {
} }
} }
pub struct VectorIndex {
pub columns: Vec<String>,
pub index_name: String,
pub index_uuid: String,
}
impl VectorIndex {
pub fn new_from_format(manifest: &Manifest, index: &Index) -> VectorIndex {
let fields = index
.fields
.iter()
.map(|i| manifest.schema.fields[*i as usize].name.clone())
.collect();
VectorIndex {
columns: fields,
index_name: index.name.clone(),
index_uuid: index.uuid.to_string(),
}
}
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::StageParams; use lance::index::vector::StageParams;
use lance_index::vector::ivf::IvfBuildParams;
use lance_index::vector::pq::PQBuildParams;
use crate::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder}; use crate::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
@@ -158,7 +184,6 @@ mod tests {
pq_params.max_iters = 1; pq_params.max_iters = 1;
pq_params.num_bits = 8; pq_params.num_bits = 8;
pq_params.num_sub_vectors = 50; pq_params.num_sub_vectors = 50;
pq_params.metric_type = MetricType::Cosine;
pq_params.max_opq_iters = 2; pq_params.max_opq_iters = 2;
index_builder.ivf_params(ivf_params); index_builder.ivf_params(ivf_params);
index_builder.pq_params(pq_params); index_builder.pq_params(pq_params);
@@ -176,7 +201,6 @@ mod tests {
assert_eq!(pq_params.max_iters, 1); assert_eq!(pq_params.max_iters, 1);
assert_eq!(pq_params.num_bits, 8); assert_eq!(pq_params.num_bits, 8);
assert_eq!(pq_params.num_sub_vectors, 50); assert_eq!(pq_params.num_sub_vectors, 50);
assert_eq!(pq_params.metric_type, MetricType::Cosine);
assert_eq!(pq_params.max_opq_iters, 2); assert_eq!(pq_params.max_opq_iters, 2);
} else { } else {
assert!(false, "Expected second stage to be pq") assert!(false, "Expected second stage to be pq")

View File

@@ -25,7 +25,8 @@ use bytes::Bytes;
use futures::{stream::BoxStream, FutureExt, StreamExt}; use futures::{stream::BoxStream, FutureExt, StreamExt};
use lance::io::object_store::WrappingObjectStore; use lance::io::object_store::WrappingObjectStore;
use object_store::{ use object_store::{
path::Path, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore, Result, path::Path, Error, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore,
Result,
}; };
use async_trait::async_trait; use async_trait::async_trait;
@@ -120,7 +121,10 @@ impl ObjectStore for MirroringObjectStore {
async fn delete(&self, location: &Path) -> Result<()> { async fn delete(&self, location: &Path) -> Result<()> {
if !location.primary_only() { if !location.primary_only() {
self.secondary.delete(location).await?; match self.secondary.delete(location).await {
Err(Error::NotFound { .. }) | Ok(_) => {}
Err(e) => return Err(e),
}
} }
self.primary.delete(location).await self.primary.delete(location).await
} }

View File

@@ -32,6 +32,7 @@ pub struct Query {
pub refine_factor: Option<u32>, pub refine_factor: Option<u32>,
pub metric_type: Option<MetricType>, pub metric_type: Option<MetricType>,
pub use_index: bool, pub use_index: bool,
pub prefilter: bool,
} }
impl Query { impl Query {
@@ -56,6 +57,7 @@ impl Query {
use_index: true, use_index: true,
filter: None, filter: None,
select: None, select: None,
prefilter: false,
} }
} }
@@ -74,6 +76,8 @@ impl Query {
)?; )?;
scanner.nprobs(self.nprobes); scanner.nprobs(self.nprobes);
scanner.use_index(self.use_index); scanner.use_index(self.use_index);
scanner.prefilter(self.prefilter);
self.select.as_ref().map(|p| scanner.project(p.as_slice())); self.select.as_ref().map(|p| scanner.project(p.as_slice()));
self.filter.as_ref().map(|f| scanner.filter(f)); self.filter.as_ref().map(|f| scanner.filter(f));
self.refine_factor.map(|rf| scanner.refine(rf)); self.refine_factor.map(|rf| scanner.refine(rf));
@@ -158,6 +162,11 @@ impl Query {
self.select = columns; self.select = columns;
self self
} }
pub fn prefilter(mut self, prefilter: bool) -> Query {
self.prefilter = prefilter;
self
}
} }
#[cfg(test)] #[cfg(test)]
@@ -167,7 +176,9 @@ mod tests {
use super::*; use super::*;
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader}; use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader};
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema}; use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
use futures::StreamExt;
use lance::dataset::Dataset; use lance::dataset::Dataset;
use lance_testing::datagen::{BatchGenerator, IncrementingInt32, RandomVector};
use crate::query::Query; use crate::query::Query;
@@ -200,13 +211,43 @@ mod tests {
#[tokio::test] #[tokio::test]
async fn test_execute() { async fn test_execute() {
let batches = make_test_batches(); let batches = make_non_empty_batches();
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap(); let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
let vector = Float32Array::from_iter_values([0.1; 128]); let vector = Float32Array::from_iter_values([0.1; 4]);
let query = Query::new(Arc::new(ds), vector.clone());
let result = query.execute().await; let query = Query::new(ds.clone(), vector.clone());
assert_eq!(result.is_ok(), true); let result = query
.limit(10)
.filter(Some("id % 2 == 0".to_string()))
.execute()
.await;
let mut stream = result.expect("should have result");
// should only have one batch
while let Some(batch) = stream.next().await {
// post filter should have removed some rows
assert!(batch.expect("should be Ok").num_rows() < 10);
}
let query = Query::new(ds, vector.clone());
let result = query
.limit(10)
.filter(Some("id % 2 == 0".to_string()))
.prefilter(true)
.execute()
.await;
let mut stream = result.expect("should have result");
// should only have one batch
while let Some(batch) = stream.next().await {
// pre filter should return 10 rows
assert!(batch.expect("should be Ok").num_rows() == 10);
}
}
fn make_non_empty_batches() -> impl RecordBatchReader + Send + 'static {
let vec = Box::new(RandomVector::new().named("vector".to_string()));
let id = Box::new(IncrementingInt32::new().named("id".to_string()));
BatchGenerator::new().col(vec).col(id).batch(512)
} }
fn make_test_batches() -> impl RecordBatchReader + Send + 'static { fn make_test_batches() -> impl RecordBatchReader + Send + 'static {

View File

@@ -13,19 +13,23 @@
// limitations under the License. // limitations under the License.
use chrono::Duration; use chrono::Duration;
use lance::dataset::builder::DatasetBuilder;
use lance_index::IndexType;
use std::sync::Arc; use std::sync::Arc;
use arrow_array::{Float32Array, RecordBatchReader}; use arrow_array::{Float32Array, RecordBatchReader};
use arrow_schema::SchemaRef; use arrow_schema::SchemaRef;
use lance::dataset::cleanup::RemovalStats; use lance::dataset::cleanup::RemovalStats;
use lance::dataset::optimize::{compact_files, CompactionMetrics, CompactionOptions}; use lance::dataset::optimize::{
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
};
use lance::dataset::{Dataset, WriteParams}; use lance::dataset::{Dataset, WriteParams};
use lance::index::IndexType; use lance::index::DatasetIndexExt;
use lance::io::object_store::WrappingObjectStore; use lance::io::object_store::WrappingObjectStore;
use std::path::Path; use std::path::Path;
use crate::error::{Error, Result}; use crate::error::{Error, Result};
use crate::index::vector::VectorIndexBuilder; use crate::index::vector::{VectorIndex, VectorIndexBuilder};
use crate::query::Query; use crate::query::Query;
use crate::utils::{PatchReadParam, PatchWriteParam}; use crate::utils::{PatchReadParam, PatchWriteParam};
use crate::WriteMode; use crate::WriteMode;
@@ -94,7 +98,10 @@ impl Table {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?, Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params, None => params,
}; };
let dataset = Dataset::open_with_params(uri, &params)
let dataset = DatasetBuilder::from_uri(uri)
.with_read_params(params)
.load()
.await .await
.map_err(|e| match e { .map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound { lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
@@ -238,8 +245,6 @@ impl Table {
/// Create index on the table. /// Create index on the table.
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> { pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt;
let mut dataset = self.dataset.as_ref().clone(); let mut dataset = self.dataset.as_ref().clone();
dataset dataset
.create_index( .create_index(
@@ -257,6 +262,14 @@ impl Table {
Ok(()) Ok(())
} }
pub async fn optimize_indices(&mut self) -> Result<()> {
let mut dataset = self.dataset.as_ref().clone();
dataset.optimize_indices().await?;
Ok(())
}
/// Insert records into this Table /// Insert records into this Table
/// ///
/// # Arguments /// # Arguments
@@ -353,12 +366,45 @@ impl Table {
/// for faster reads. /// for faster reads.
/// ///
/// This calls into [lance::dataset::optimize::compact_files]. /// This calls into [lance::dataset::optimize::compact_files].
pub async fn compact_files(&mut self, options: CompactionOptions) -> Result<CompactionMetrics> { pub async fn compact_files(
&mut self,
options: CompactionOptions,
remap_options: Option<Arc<dyn IndexRemapperOptions>>,
) -> Result<CompactionMetrics> {
let mut dataset = self.dataset.as_ref().clone(); let mut dataset = self.dataset.as_ref().clone();
let metrics = compact_files(&mut dataset, options, None).await?; let metrics = compact_files(&mut dataset, options, remap_options).await?;
self.dataset = Arc::new(dataset); self.dataset = Arc::new(dataset);
Ok(metrics) Ok(metrics)
} }
pub fn count_fragments(&self) -> usize {
self.dataset.count_fragments()
}
pub async fn count_deleted_rows(&self) -> Result<usize> {
Ok(self.dataset.count_deleted_rows().await?)
}
pub async fn num_small_files(&self, max_rows_per_group: usize) -> usize {
self.dataset.num_small_files(max_rows_per_group).await
}
pub async fn count_indexed_rows(&self, index_uuid: &str) -> Result<Option<usize>> {
Ok(self.dataset.count_indexed_rows(index_uuid).await?)
}
pub async fn count_unindexed_rows(&self, index_uuid: &str) -> Result<Option<usize>> {
Ok(self.dataset.count_unindexed_rows(index_uuid).await?)
}
pub async fn load_indices(&self) -> Result<Vec<VectorIndex>> {
let (indices, mf) =
futures::try_join!(self.dataset.load_indices(), self.dataset.latest_manifest())?;
Ok(indices
.iter()
.map(|i| VectorIndex::new_from_format(&mf, i))
.collect())
}
} }
#[cfg(test)] #[cfg(test)]
@@ -373,9 +419,9 @@ mod tests {
use arrow_data::ArrayDataBuilder; use arrow_data::ArrayDataBuilder;
use arrow_schema::{DataType, Field, Schema}; use arrow_schema::{DataType, Field, Schema};
use lance::dataset::{Dataset, WriteMode}; use lance::dataset::{Dataset, WriteMode};
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams; use lance::index::vector::pq::PQBuildParams;
use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore}; use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore};
use lance_index::vector::ivf::IvfBuildParams;
use rand::Rng; use rand::Rng;
use tempfile::tempdir; use tempfile::tempdir;