Compare commits

...

14 Commits

Author SHA1 Message Date
qzhu
8e25e0c7f0 reformatted 2023-12-07 12:08:05 -08:00
qzhu
5f989e86d2 SaaS python SDK doc 2023-12-07 12:01:03 -08:00
Chang She
1336cce0dc chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2023-12-06 14:20:46 -08:00
Lance Release
6c83b6a513 Updating package-lock.json 2023-12-04 18:34:43 +00:00
Lance Release
6bec4bec51 Updating package-lock.json 2023-12-04 17:02:48 +00:00
Lance Release
23d30dfc78 Bump version: 0.3.8 → 0.3.9 2023-12-04 17:02:35 +00:00
Rob Meng
94c8c50f96 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2023-12-04 12:01:16 -05:00
Rob Meng
72765d8e1a feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2023-12-01 16:49:10 -05:00
Rob Meng
a2a8f9615e chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2023-12-01 00:44:14 -05:00
James
b085d9aaa1 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2023-11-27 20:39:01 +05:30
Bert
6eb662de9b fix: python remote correct open_table error message (#659) 2023-11-24 19:28:33 -05:00
Lance Release
2bb2bb581a Updating package-lock.json 2023-11-19 00:45:51 +00:00
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
21 changed files with 557 additions and 116 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.8
current_version = 0.3.9
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

View File

@@ -1,6 +1,7 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.

View File

@@ -80,6 +80,7 @@ nav:
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- 🔍 Python full-text search: fts.md
@@ -145,7 +146,8 @@ nav:
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API references:
- Python API: python/python.md
- OSS Python API: python/python.md
- SaaS Python API: python/saas-python.md
- Javascript API: javascript/modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms

View File

@@ -0,0 +1,165 @@
# How to Load Image Embeddings into LanceDB
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, lets get started!
## Step #1: Install Roboflow Inference
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
Inference provides a HTTP API through which you can run vision models.
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
To get started, first install the Inference CLI:
```
pip install inference-cli
```
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
```
inference server start
```
An Inference server will start running at http://localhost:9001.
## Step #2: Set Up a LanceDB Vector Database
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
Once you have a dataset ready, install LanceDB with the following command:
```
pip install lancedb
```
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
```
Create a new Python file and add the following code:
```python
import cv2
import supervision as sv
import requests
import lancedb
db = lancedb.connect("./embeddings")
IMAGE_DIR = "images/"
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
SERVER_URL = "http://localhost:9001"
results = []
for i, image in enumerate(os.listdir(IMAGE_DIR)):
infer_clip_payload = {
#Images can be provided as urls or as base64 encoded strings
"image": {
"type": "base64",
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
},
}
res = requests.post(
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
print("Calculated embedding for image: ", image)
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
results.append(image)
tbl = db.create_table("images", data=results)
tbl.create_fts_index("name")
```
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
```
export ROBOFLOW_API_KEY=""
```
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "name": "image1.png"},
{"vector": [5.9, 26.5], "name": "image2.png"}
]
tbl = db.open_table("images")
tbl.add(make_batches())
```
Replacing the `make_batches()` function with code to load embeddings for images.
## Step #3: Run a Search Query
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
Lets calculate a text embedding for the query “cat”, then run a search query:
```python
infer_clip_payload = {
"text": "cat",
}
res = requests.post(
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
df = tbl.search(embeddings[0]).limit(3).to_list()
print("Results:")
for i in df:
print(i["name"])
```
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
```
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
```
Lets open the top image:
![Cat](https://media.roboflow.com/cat_lancedb.jpg)
The top image was a cat. Our search was successful.
## Conclusion
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
To learn more about Inference and its capabilities, refer to the Inference documentation.

View File

@@ -0,0 +1,18 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.remote.db.RemoteDBConnection
## Table
::: lancedb.remote.table.RemoteTable

80
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.3.7",
"version": "0.3.9",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.3.7",
"version": "0.3.9",
"cpu": [
"x64",
"arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.7",
"@lancedb/vectordb-darwin-x64": "0.3.7",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.7",
"@lancedb/vectordb-linux-x64-gnu": "0.3.7",
"@lancedb/vectordb-win32-x64-msvc": "0.3.7"
"@lancedb/vectordb-darwin-arm64": "0.3.9",
"@lancedb/vectordb-darwin-x64": "0.3.9",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
"@lancedb/vectordb-linux-x64-gnu": "0.3.9",
"@lancedb/vectordb-win32-x64-msvc": "0.3.9"
}
},
"node_modules/@apache-arrow/ts": {
@@ -316,22 +316,10 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.7.tgz",
"integrity": "sha512-QsDxcbhrumJg+Cyflpnj8EY+bZojbco5K7VSeKvguqeXUGb62ksyOZuUTCn2sqJaCgy1KZ1qC5U8jBqfgZHc2w==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.7.tgz",
"integrity": "sha512-fgv10kI04UycgpmhJLUcCswgvSdgsGuj65o+W5usmVdxYZiWpoXBBXRkWYMjUX5RNe3mY1Ff6QPBbToR0WkSUA==",
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
"cpu": [
"x64"
],
@@ -341,9 +329,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.7.tgz",
"integrity": "sha512-pvw+31+VKEH3YmS/GLKzEGt/Y2+c/IaE6JL6tIjXi2KY+ZcWuyyXpYnYiHHDw2EP7ubKj6+fKIG1P9tlxMcGMQ==",
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
"cpu": [
"arm64"
],
@@ -353,9 +341,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.7.tgz",
"integrity": "sha512-kHFURhfhJRqw4k1auseqQgOzAHB4oYpyzLCX3TCR3uTxqRQ7gFxxlO0TnIcwNRqLcGb9GmWxWWoR8k1CdCXrMw==",
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
"cpu": [
"x64"
],
@@ -365,9 +353,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.7.tgz",
"integrity": "sha512-zWfZ557v2Y+93dVrmqqnbiLeTOb0ptunAG0zGjyE+3oyi8j/4+bL56Fdv94k+dfNF4KrcqcULEcZhKik3/FQ9w==",
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
"cpu": [
"x64"
],
@@ -4868,34 +4856,28 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.7.tgz",
"integrity": "sha512-QsDxcbhrumJg+Cyflpnj8EY+bZojbco5K7VSeKvguqeXUGb62ksyOZuUTCn2sqJaCgy1KZ1qC5U8jBqfgZHc2w==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.7.tgz",
"integrity": "sha512-fgv10kI04UycgpmhJLUcCswgvSdgsGuj65o+W5usmVdxYZiWpoXBBXRkWYMjUX5RNe3mY1Ff6QPBbToR0WkSUA==",
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.7.tgz",
"integrity": "sha512-pvw+31+VKEH3YmS/GLKzEGt/Y2+c/IaE6JL6tIjXi2KY+ZcWuyyXpYnYiHHDw2EP7ubKj6+fKIG1P9tlxMcGMQ==",
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.7.tgz",
"integrity": "sha512-kHFURhfhJRqw4k1auseqQgOzAHB4oYpyzLCX3TCR3uTxqRQ7gFxxlO0TnIcwNRqLcGb9GmWxWWoR8k1CdCXrMw==",
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.7.tgz",
"integrity": "sha512-zWfZ557v2Y+93dVrmqqnbiLeTOb0ptunAG0zGjyE+3oyi8j/4+bL56Fdv94k+dfNF4KrcqcULEcZhKik3/FQ9w==",
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
"optional": true
},
"@neon-rs/cli": {

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.3.8",
"version": "0.3.9",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.8",
"@lancedb/vectordb-darwin-x64": "0.3.8",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.8",
"@lancedb/vectordb-linux-x64-gnu": "0.3.8",
"@lancedb/vectordb-win32-x64-msvc": "0.3.8"
"@lancedb/vectordb-darwin-arm64": "0.3.9",
"@lancedb/vectordb-darwin-x64": "0.3.9",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
"@lancedb/vectordb-linux-x64-gnu": "0.3.9",
"@lancedb/vectordb-win32-x64-msvc": "0.3.9"
}
}

View File

@@ -32,6 +32,7 @@ export class Query<T = number[]> {
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
private _prefilter: boolean
protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
@@ -44,6 +45,7 @@ export class Query<T = number[]> {
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
this._prefilter = false
}
/***
@@ -102,6 +104,11 @@ export class Query<T = number[]> {
return this
}
prefilter (value: boolean): Query<T> {
this._prefilter = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/

View File

@@ -38,6 +38,7 @@ export class HttpLancedbClient {
vector: number[],
k: number,
nprobes: number,
prefilter: boolean,
refineFactor?: number,
columns?: string[],
filter?: string
@@ -50,7 +51,8 @@ export class HttpLancedbClient {
nprobes,
refineFactor,
columns,
filter
filter,
prefilter
},
{
headers: {

View File

@@ -154,6 +154,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
queryVector,
(this as any)._limit,
(this as any)._nprobes,
(this as any)._prefilter,
(this as any)._refineFactor,
(this as any)._select,
(this as any)._filter

View File

@@ -102,6 +102,20 @@ describe('LanceDB client', function () {
assertResults(results)
})
it('should correctly process prefilter/postfilter', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
// post filter should return less than the limit
let results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(false).execute()
assert.isTrue(results.length < 10)
// pre filter should return exactly the limit
results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('select only a subset of columns', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.3
current_version = 0.3.4
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -27,7 +27,7 @@ def connect(
uri: URI,
*,
api_key: Optional[str] = None,
region: str = "us-west-2",
region: str = "us-east-1",
host_override: Optional[str] = None,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -39,7 +39,7 @@ def connect(
api_key: str, optional
If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage.
region: str, default "us-west-2"
region: str, default "us-east-1"
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.

View File

@@ -28,6 +28,7 @@ from ..pydantic import LanceModel
from ..table import Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
from .errors import LanceDBClientError
class RemoteDBConnection(DBConnection):
@@ -58,13 +59,17 @@ class RemoteDBConnection(DBConnection):
return f"RemoveConnect(name={self.db_name})"
@override
def table_names(self, page_token: Optional[str] = None, limit=10) -> Iterable[str]:
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List the names of all tables in the database.
Parameters
----------
page_token: str
The last token to start the new page.
limit: int, default 10
The maximum number of tables to return for each page.
Returns
-------
@@ -101,11 +106,12 @@ class RemoteDBConnection(DBConnection):
self._loop.run_until_complete(
self._client.post(f"/v1/table/{name}/describe/")
)
except Exception:
logging.error(
"Table {name} does not exist."
"Please first call db.create_table({name}, data)"
)
except LanceDBClientError as err:
if str(err).startswith("Not found"):
logging.error(
f"Table {name} does not exist. "
f"Please first call db.create_table({name}, data)"
)
return RemoteTable(self, name)
@override
@@ -118,6 +124,97 @@ class RemoteDBConnection(DBConnection):
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
Parameters
----------
name: str
The name of the table.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
LanceTable
A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("db://test-project-8f45eb")
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(my_table)
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(table2)
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
"""
if data is None and schema is None:
raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None:

View File

@@ -37,7 +37,10 @@ class RemoteTable(Table):
@cached_property
def schema(self) -> pa.Schema:
"""Return the schema of the table."""
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
of this Table
"""
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/")
)
@@ -53,24 +56,17 @@ class RemoteTable(Table):
return resp["version"]
def to_arrow(self) -> pa.Table:
"""Return the table as an Arrow table."""
"""to_arrow() is not supported on the LanceDB cloud"""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self):
"""Return the table as a Pandas DataFrame.
Intercept `to_arrow()` for better error message.
"""
"""to_pandas() is not supported on the LanceDB cloud"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
def create_index(
self,
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
):
"""Create an index on the table.
@@ -81,39 +77,28 @@ class RemoteTable(Table):
----------
metric : str
The metric to use for the index. Default is "L2".
num_partitions : int
The number of partitions to use for the index. Default is 256.
num_sub_vectors : int
The number of sub-vectors to use for the index. Default is 96.
vector_column_name : str
The name of the vector column. Default is "vector".
replace : bool
Whether to replace the existing index. Default is True.
accelerator : str, optional
If set, use the given accelerator to create the index.
Default is None. Currently not supported.
index_cache_size : int, optional
The size of the index cache in number of entries. Default value is 256.
Examples
--------
import lancedb
import uuid
from lancedb.schema import vector
conn = lancedb.connect("db://...", api_key="...", region="...")
table_name = uuid.uuid4().hex
schema = pa.schema(
[
pa.field("id", pa.uint32(), False),
pa.field("vector", vector(128), False),
pa.field("s", pa.string(), False),
]
)
table = conn.create_table(
table_name,
schema=schema,
)
table.create_index()
>>> import lancedb
>>> import uuid
>>> from lancedb.schema import vector
>>> conn = lancedb.connect("db://...", api_key="...", region="...")
>>> table_name = uuid.uuid4().hex
>>> schema = pa.schema(
... [
... pa.field("id", pa.uint32(), False),
... pa.field("vector", vector(128), False),
... pa.field("s", pa.string(), False),
... ]
... )
>>> table = conn.create_table(
>>> table_name,
>>> schema=schema,
>>> )
>>> table.create_index("L2", "vector")
"""
index_type = "vector"
@@ -135,6 +120,28 @@ class RemoteTable(Table):
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> int:
"""Add more data to the [Table](Table). It has the same API signature as the OSS version.
Parameters
----------
data: DATA
The data to insert into the table. Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
mode: str
The mode to use when writing the data. Valid values are
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
data = _sanitize_data(
data,
self.schema,
@@ -158,6 +165,58 @@ class RemoteTable(Table):
def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
All query options are defined in [Query][lancedb.query.Query].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...")
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
... .to_pandas())
caption original_width vector _distance
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
1 test 3000 [0.3, 6.2, 2.6] 23.089996
Parameters
----------
query: list/np.ndarray/str/PIL.Image.Image, default None
The targetted vector to search for.
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
The name of the vector column to search.
*default "vector"*
Returns
-------
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns
- selected columns
- the vector
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table:
@@ -165,7 +224,53 @@ class RemoteTable(Table):
return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str):
"""Delete rows from the table."""
"""Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
Parameters
----------
predicate: str
The SQL where clause to use when deleting rows.
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
The filter must not be empty, or it will error.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...")
>>> table = db.create_table("my_table", data)
>>> table.search([10,10]).to_pandas()
x vector _distance
0 3 [5.0, 6.0] 41.0
1 2 [3.0, 4.0] 85.0
2 1 [1.0, 2.0] 145.0
>>> table.delete("x = 2")
>>> table.search([10,10]).to_pandas()
x vector _distance
0 3 [5.0, 6.0] 41.0
1 1 [1.0, 2.0] 145.0
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
>>> to_remove = [1, 3]
>>> to_remove = ", ".join([str(v) for v in to_remove])
>>> to_remove
'1, 3'
>>> table.delete(f"x IN ({to_remove})")
>>> table.search([10,10]).to_pandas()
x vector _distance
0 2 [3.0, 4.0] 85.0
"""
payload = {"predicate": predicate}
self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)

View File

@@ -1,6 +1,6 @@
[project]
name = "lancedb"
version = "0.3.3"
version = "0.3.4"
dependencies = [
"deprecation",
"pylance==0.8.17",

View File

@@ -26,6 +26,9 @@ class FakeLanceDBClient:
t = pa.schema([]).empty_table()
return VectorQueryResult(t)
async def post(self, path: str):
pass
def test_remote_db():
conn = lancedb.connect("db://client-will-be-injected", api_key="fake")

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.3.8"
version = "0.3.9"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"

View File

@@ -48,6 +48,8 @@ impl JsQuery {
.map(|s| s.value(&mut cx))
.map(|s| MetricType::try_from(s.as_str()).unwrap());
let prefilter = query_obj.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?.value(&mut cx);
let is_electron = cx
.argument::<JsBoolean>(1)
.or_throw(&mut cx)?
@@ -69,7 +71,8 @@ impl JsQuery {
.nprobes(nprobes)
.filter(filter)
.metric_type(metric_type)
.select(select);
.select(select)
.prefilter(prefilter);
let record_batch_stream = builder.execute();
let results = record_batch_stream
.and_then(|stream| {

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb"
version = "0.3.8"
version = "0.3.9"
edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0"

View File

@@ -32,6 +32,7 @@ pub struct Query {
pub refine_factor: Option<u32>,
pub metric_type: Option<MetricType>,
pub use_index: bool,
pub prefilter: bool,
}
impl Query {
@@ -56,6 +57,7 @@ impl Query {
use_index: true,
filter: None,
select: None,
prefilter: false,
}
}
@@ -74,6 +76,8 @@ impl Query {
)?;
scanner.nprobs(self.nprobes);
scanner.use_index(self.use_index);
scanner.prefilter(self.prefilter);
self.select.as_ref().map(|p| scanner.project(p.as_slice()));
self.filter.as_ref().map(|f| scanner.filter(f));
self.refine_factor.map(|rf| scanner.refine(rf));
@@ -158,6 +162,11 @@ impl Query {
self.select = columns;
self
}
pub fn prefilter(mut self, prefilter: bool) -> Query {
self.prefilter = prefilter;
self
}
}
#[cfg(test)]
@@ -167,7 +176,9 @@ mod tests {
use super::*;
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader};
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
use futures::StreamExt;
use lance::dataset::Dataset;
use lance_testing::datagen::{BatchGenerator, IncrementingInt32, RandomVector};
use crate::query::Query;
@@ -200,13 +211,43 @@ mod tests {
#[tokio::test]
async fn test_execute() {
let batches = make_test_batches();
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
let batches = make_non_empty_batches();
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
let vector = Float32Array::from_iter_values([0.1; 128]);
let query = Query::new(Arc::new(ds), vector.clone());
let result = query.execute().await;
assert_eq!(result.is_ok(), true);
let vector = Float32Array::from_iter_values([0.1; 4]);
let query = Query::new(ds.clone(), vector.clone());
let result = query
.limit(10)
.filter(Some("id % 2 == 0".to_string()))
.execute()
.await;
let mut stream = result.expect("should have result");
// should only have one batch
while let Some(batch) = stream.next().await {
// post filter should have removed some rows
assert!(batch.expect("should be Ok").num_rows() < 10);
}
let query = Query::new(ds, vector.clone());
let result = query
.limit(10)
.filter(Some("id % 2 == 0".to_string()))
.prefilter(true)
.execute()
.await;
let mut stream = result.expect("should have result");
// should only have one batch
while let Some(batch) = stream.next().await {
// pre filter should return 10 rows
assert!(batch.expect("should be Ok").num_rows() == 10);
}
}
fn make_non_empty_batches() -> impl RecordBatchReader + Send + 'static {
let vec = Box::new(RandomVector::new().named("vector".to_string()));
let id = Box::new(IncrementingInt32::new().named("id".to_string()));
BatchGenerator::new().col(vec).col(id).batch(512)
}
fn make_test_batches() -> impl RecordBatchReader + Send + 'static {