mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
6 Commits
python-v0.
...
docs_enhan
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8debf26b81 | ||
|
|
d2af9fd81d | ||
|
|
54693e6bec | ||
|
|
73b2977bff | ||
|
|
aec85f7875 | ||
|
|
51f92ecb3d |
17
.github/workflows/npm-publish.yml
vendored
17
.github/workflows/npm-publish.yml
vendored
@@ -80,10 +80,25 @@ jobs:
|
||||
- arch: x86_64
|
||||
runner: ubuntu-latest
|
||||
- arch: aarch64
|
||||
runner: buildjet-8vcpu-ubuntu-2204-arm
|
||||
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
|
||||
runner: buildjet-16vcpu-ubuntu-2204-arm
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
|
||||
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
free -h
|
||||
sudo fallocate -l 16G /swapfile
|
||||
sudo chmod 600 /swapfile
|
||||
sudo mkswap /swapfile
|
||||
sudo swapon /swapfile
|
||||
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
|
||||
# print info
|
||||
swapon --show
|
||||
free -h
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
||||
|
||||
@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.9.15", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.15" }
|
||||
lance-linalg = { "version" = "=0.9.15" }
|
||||
lance-testing = { "version" = "=0.9.15" }
|
||||
lance = { "version" = "=0.9.16", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.16" }
|
||||
lance-linalg = { "version" = "=0.9.16" }
|
||||
lance-testing = { "version" = "=0.9.16" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "50.0", optional = false }
|
||||
arrow-array = "50.0"
|
||||
|
||||
@@ -13,7 +13,9 @@ docker build \
|
||||
.
|
||||
popd
|
||||
|
||||
# We turn on memory swap to avoid OOM killer
|
||||
docker run \
|
||||
-v $(pwd):/io -w /io \
|
||||
--memory-swap=-1 \
|
||||
lancedb-node-manylinux \
|
||||
bash ci/manylinux_node/build.sh $ARCH
|
||||
|
||||
@@ -92,6 +92,7 @@ nav:
|
||||
- Full-text search: fts.md
|
||||
- Hybrid search:
|
||||
- Overview: hybrid_search/hybrid_search.md
|
||||
- Comparing Rerankers: hybrid_search/eval.md
|
||||
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||
- Filtering: sql.md
|
||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||
@@ -156,6 +157,7 @@ nav:
|
||||
- Full-text search: fts.md
|
||||
- Hybrid search:
|
||||
- Overview: hybrid_search/hybrid_search.md
|
||||
- Comparing Rerankers: hybrid_search/eval.md
|
||||
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||
- Filtering: sql.md
|
||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||
|
||||
49
docs/src/hybrid_search/eval.md
Normal file
49
docs/src/hybrid_search/eval.md
Normal file
@@ -0,0 +1,49 @@
|
||||
# Hybrid Search
|
||||
|
||||
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
|
||||
|
||||
## The challenge of (re)ranking search results
|
||||
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step - reranking.
|
||||
There are two approaches for reranking search results from multiple sources.
|
||||
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example - Weighted linear combination of semantic search & keyword-based search results.
|
||||
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result - query pair. Example - Cross Encoder models
|
||||
|
||||
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
|
||||
|
||||
### Example evaluation of hybrid search with Reranking
|
||||
|
||||
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
|
||||
|
||||
<b> With OpenAI ada2 embedding </b>
|
||||
|
||||
Vector Search baseline - `0.64`
|
||||
|
||||
| Reranker | Top-3 | Top-5 | Top-10 |
|
||||
| --- | --- | --- | --- |
|
||||
| Linear Combination | `0.73` | `0.74` | `0.85` |
|
||||
| Cross Encoder | `0.71` | `0.70` | `0.77` |
|
||||
| Cohere | `0.81` | `0.81` | `0.85` |
|
||||
| ColBERT | `0.68` | `0.68` | `0.73` |
|
||||
|
||||
<p>
|
||||
<img src="https://github.com/AyushExel/assets/assets/15766192/d57b1780-ef27-414c-a5c3-73bee7808a45">
|
||||
</p>
|
||||
|
||||
<b> With OpenAI embedding-v3-small </b>
|
||||
|
||||
Vector Search baseline - `0.59`
|
||||
|
||||
| Reranker | Top-3 | Top-5 | Top-10 |
|
||||
| --- | --- | --- | --- |
|
||||
| Linear Combination | `0.68` | `0.70` | `0.84` |
|
||||
| Cross Encoder | `0.72` | `0.72` | `0.79` |
|
||||
| Cohere | `0.79` | `0.79` | `0.84` |
|
||||
| ColBERT | `0.70` | `0.70` | `0.76` |
|
||||
|
||||
<p>
|
||||
<img src="https://github.com/AyushExel/assets/assets/15766192/259adfd2-6ec6-4df6-a77d-1456598970dd">
|
||||
</p>
|
||||
|
||||
### Conclusion
|
||||
|
||||
The results show that the reranking methods are able to improve the search results. However, the improvement is not consistent across all rerankers. The choice of reranker depends on the dataset and the application. It is also important to note that the reranking methods are not a replacement for the search methods. They are complementary and should be used together to get the best results. The speed to recall tradeoff is also an important factor to consider when choosing the reranker.
|
||||
60
node/package-lock.json
generated
60
node/package-lock.json
generated
@@ -328,6 +328,66 @@
|
||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.4.10",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.10.tgz",
|
||||
"integrity": "sha512-y/uHOGb0g15pvqv5tdTyZ6oN+0QVpBmZDzKFWW6pPbuSZjB2uPqcs+ti0RB+AUdmS21kavVQqaNsw/HLKEGrHA==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.4.10",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.10.tgz",
|
||||
"integrity": "sha512-XbfR58OkQpAe0xMSTrwJh9ZjGSzG9EZ7zwO6HfYem8PxcLYAcC6eWRWoSG/T0uObyrPTcYYyvHsp0eNQWYBFAQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.4.10",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.10.tgz",
|
||||
"integrity": "sha512-x40WKH9b+KxorRmKr9G7fv8p5mMj8QJQvRMA0v6v+nbZHr2FLlAZV+9mvhHOnm4AGIkPP5335cUgv6Qz6hgwkQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.4.10",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.10.tgz",
|
||||
"integrity": "sha512-CTGPpuzlqq2nVjUxI9gAJOT1oBANIovtIaFsOmBSnEAHgX7oeAxKy2b6L/kJzsgqSzvR5vfLwYcWFrr6ZmBxSA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.4.10",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.10.tgz",
|
||||
"integrity": "sha512-Fd7r74coZyrKzkfXg4WthqOL+uKyJyPTia6imcrMNqKOlTGdKmHf02Qi2QxWZrFaabkRYo4Tpn5FeRJ3yYX8CA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
]
|
||||
},
|
||||
"node_modules/@neon-rs/cli": {
|
||||
"version": "0.0.160",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||
|
||||
2
nodejs/vectordb/native.d.ts
vendored
2
nodejs/vectordb/native.d.ts
vendored
@@ -73,7 +73,7 @@ export class Table {
|
||||
/** Return Schema as empty Arrow IPC file. */
|
||||
schema(): Buffer
|
||||
add(buf: Buffer): Promise<void>
|
||||
countRows(filter?: string): Promise<bigint>
|
||||
countRows(filter?: string | undefined | null): Promise<bigint>
|
||||
delete(predicate: string): Promise<void>
|
||||
createIndex(): IndexBuilder
|
||||
query(): Query
|
||||
|
||||
@@ -3,7 +3,7 @@ name = "lancedb"
|
||||
version = "0.5.5"
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.9.15",
|
||||
"pylance==0.9.16",
|
||||
"ratelimiter~=1.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.27.0",
|
||||
|
||||
Reference in New Issue
Block a user