mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
17 Commits
python-v0.
...
600
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
86c9bc0d2d | ||
|
|
c1dfad675a | ||
|
|
2e1838a62a | ||
|
|
4d39f63cf6 | ||
|
|
3c4f2a7020 | ||
|
|
48a4202748 | ||
|
|
2084fbcff4 | ||
|
|
408988abce | ||
|
|
e68fbf65cc | ||
|
|
63399dc0ee | ||
|
|
0b0f4e9d1c | ||
|
|
2ec0e79303 | ||
|
|
d86dd2c60d | ||
|
|
67b38d6115 | ||
|
|
c112dea28b | ||
|
|
d662b9744e | ||
|
|
ac955a5a7e |
@@ -57,6 +57,7 @@ tests = [
|
||||
"duckdb",
|
||||
"pytz",
|
||||
"polars>=0.19",
|
||||
"pillow",
|
||||
]
|
||||
dev = ["ruff", "pre-commit"]
|
||||
docs = [
|
||||
|
||||
@@ -126,6 +126,10 @@ class OpenClipEmbeddings(EmbeddingFunction):
|
||||
"""
|
||||
Issue concurrent requests to retrieve the image data
|
||||
"""
|
||||
return [
|
||||
self.generate_image_embedding(image) for image in tqdm(images)
|
||||
]
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = [
|
||||
executor.submit(self.generate_image_embedding, image)
|
||||
|
||||
@@ -16,6 +16,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import inspect
|
||||
import io
|
||||
import sys
|
||||
import types
|
||||
from abc import ABC, abstractmethod
|
||||
@@ -26,7 +27,9 @@ from typing import (
|
||||
Callable,
|
||||
Dict,
|
||||
Generator,
|
||||
Iterable,
|
||||
List,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
_GenericAlias,
|
||||
@@ -36,19 +39,30 @@ import numpy as np
|
||||
import pyarrow as pa
|
||||
import pydantic
|
||||
import semver
|
||||
from lance.arrow import (
|
||||
EncodedImageType,
|
||||
)
|
||||
from lance.util import _check_huggingface
|
||||
from pydantic.fields import FieldInfo
|
||||
from pydantic_core import core_schema
|
||||
|
||||
from .util import attempt_import_or_raise
|
||||
|
||||
PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__)
|
||||
try:
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
except ImportError:
|
||||
if PYDANTIC_VERSION >= (2,):
|
||||
raise
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pydantic.fields import FieldInfo
|
||||
|
||||
from .embeddings import EmbeddingFunctionConfig
|
||||
|
||||
try:
|
||||
from pydantic import GetJsonSchemaHandler
|
||||
from pydantic.json_schema import JsonSchemaValue
|
||||
from pydantic_core import CoreSchema
|
||||
except ImportError:
|
||||
if PYDANTIC_VERSION >= (2,):
|
||||
raise
|
||||
|
||||
|
||||
class FixedSizeListMixin(ABC):
|
||||
@staticmethod
|
||||
@@ -123,7 +137,7 @@ def Vector(
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
|
||||
) -> CoreSchema:
|
||||
) -> "CoreSchema":
|
||||
return core_schema.no_info_after_validator_function(
|
||||
cls,
|
||||
core_schema.list_schema(
|
||||
@@ -181,25 +195,118 @@ def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType:
|
||||
elif getattr(py_type, "__origin__", None) in (list, tuple):
|
||||
child = py_type.__args__[0]
|
||||
return pa.list_(_py_type_to_arrow_type(child, field))
|
||||
elif _safe_is_huggingface_image():
|
||||
import datasets
|
||||
|
||||
raise TypeError(
|
||||
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}."
|
||||
)
|
||||
|
||||
|
||||
class ImageMixin(ABC):
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def value_arrow_type() -> pa.DataType:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def EncodedImage():
|
||||
attempt_import_or_raise("PIL", "pillow or pip install lancedb[embeddings]")
|
||||
import PIL.Image
|
||||
|
||||
class EncodedImage(bytes, ImageMixin):
|
||||
"""Pydantic type for inlined images.
|
||||
|
||||
!!! warning
|
||||
Experimental feature.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> import pydantic
|
||||
>>> from lancedb.pydantic import EncodedImage
|
||||
...
|
||||
>>> class MyModel(pydantic.BaseModel):
|
||||
... image: EncodedImage()
|
||||
>>> schema = pydantic_to_schema(MyModel)
|
||||
>>> assert schema == pa.schema([
|
||||
... pa.field("image", pa.binary(), False)
|
||||
... ])
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
return "EncodedImage()"
|
||||
|
||||
@staticmethod
|
||||
def value_arrow_type() -> pa.DataType:
|
||||
return EncodedImageType()
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(
|
||||
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
|
||||
) -> "CoreSchema":
|
||||
from_bytes_schema = core_schema.bytes_schema()
|
||||
|
||||
return core_schema.json_or_python_schema(
|
||||
json_schema=from_bytes_schema,
|
||||
python_schema=core_schema.union_schema(
|
||||
[
|
||||
core_schema.is_instance_schema(PIL.Image.Image),
|
||||
from_bytes_schema,
|
||||
]
|
||||
),
|
||||
serialization=core_schema.plain_serializer_function_ser_schema(
|
||||
lambda instance: cls.validate(instance)
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(
|
||||
cls, _core_schema: "CoreSchema", handler: "GetJsonSchemaHandler"
|
||||
) -> "JsonSchemaValue":
|
||||
return handler(core_schema.bytes_schema())
|
||||
|
||||
@classmethod
|
||||
def __get_validators__(cls) -> Generator[Callable, None, None]:
|
||||
yield cls.validate
|
||||
|
||||
# For pydantic v2
|
||||
@classmethod
|
||||
def validate(cls, v):
|
||||
if isinstance(v, bytes):
|
||||
return v
|
||||
if isinstance(v, PIL.Image.Image):
|
||||
with io.BytesIO() as output:
|
||||
v.save(output, format=v.format)
|
||||
return output.getvalue()
|
||||
raise TypeError(
|
||||
"EncodedImage can take bytes or PIL.Image.Image "
|
||||
f"as input but got {type(v)}"
|
||||
)
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0):
|
||||
|
||||
@classmethod
|
||||
def __modify_schema__(cls, field_schema: Dict[str, Any]):
|
||||
field_schema["type"] = "string"
|
||||
field_schema["format"] = "binary"
|
||||
|
||||
return EncodedImage
|
||||
|
||||
|
||||
if PYDANTIC_VERSION.major < 2:
|
||||
|
||||
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
|
||||
return [
|
||||
_pydantic_to_field(name, field) for name, field in model.__fields__.items()
|
||||
]
|
||||
|
||||
def _safe_get_fields(model: pydantic.BaseModel):
|
||||
return model.__fields__
|
||||
else:
|
||||
def _safe_get_fields(model: pydantic.BaseModel):
|
||||
return model.model_fields
|
||||
|
||||
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
|
||||
return [
|
||||
_pydantic_to_field(name, field)
|
||||
for name, field in model.model_fields.items()
|
||||
]
|
||||
|
||||
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
|
||||
return [
|
||||
_pydantic_to_field(name, field)
|
||||
for name, field in _safe_get_fields(model).items()
|
||||
]
|
||||
|
||||
|
||||
def _pydantic_to_arrow_type(field: FieldInfo) -> pa.DataType:
|
||||
@@ -230,6 +337,9 @@ def _pydantic_to_arrow_type(field: FieldInfo) -> pa.DataType:
|
||||
return pa.struct(fields)
|
||||
elif issubclass(field.annotation, FixedSizeListMixin):
|
||||
return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim())
|
||||
elif issubclass(field.annotation, ImageMixin):
|
||||
return field.annotation.value_arrow_type()
|
||||
|
||||
return _py_type_to_arrow_type(field.annotation, field)
|
||||
|
||||
|
||||
@@ -335,13 +445,7 @@ class LanceModel(pydantic.BaseModel):
|
||||
"""
|
||||
Get the field names of this model.
|
||||
"""
|
||||
return list(cls.safe_get_fields().keys())
|
||||
|
||||
@classmethod
|
||||
def safe_get_fields(cls):
|
||||
if PYDANTIC_VERSION.major < 2:
|
||||
return cls.__fields__
|
||||
return cls.model_fields
|
||||
return list(_safe_get_fields(cls).keys())
|
||||
|
||||
@classmethod
|
||||
def parse_embedding_functions(cls) -> List["EmbeddingFunctionConfig"]:
|
||||
@@ -351,14 +455,16 @@ class LanceModel(pydantic.BaseModel):
|
||||
from .embeddings import EmbeddingFunctionConfig
|
||||
|
||||
vec_and_function = []
|
||||
for name, field_info in cls.safe_get_fields().items():
|
||||
func = get_extras(field_info, "vector_column_for")
|
||||
def get_vector_column(name, field_info):
|
||||
fun = get_extras(field_info, "vector_column_for")
|
||||
if func is not None:
|
||||
vec_and_function.append([name, func])
|
||||
visit_fields(_safe_get_fields(cls).items(), get_vector_column)
|
||||
|
||||
configs = []
|
||||
# find the source columns for each one
|
||||
for vec, func in vec_and_function:
|
||||
for source, field_info in cls.safe_get_fields().items():
|
||||
def get_source_column(source, field_info):
|
||||
src_func = get_extras(field_info, "source_column_for")
|
||||
if src_func is func:
|
||||
# note we can't use == here since the function is a pydantic
|
||||
@@ -371,20 +477,48 @@ class LanceModel(pydantic.BaseModel):
|
||||
source_column=source, vector_column=vec, function=func
|
||||
)
|
||||
)
|
||||
visit_fields(_safe_get_fields(cls).items(), get_source_column)
|
||||
return configs
|
||||
|
||||
|
||||
def visit_fields(fields: Iterable[Tuple[str, FieldInfo]],
|
||||
visitor: Callable[[str, FieldInfo], Any]):
|
||||
"""
|
||||
Visit all the leaf fields in a Pydantic model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fields : Iterable[Tuple(str, FieldInfo)]
|
||||
The fields to visit.
|
||||
visitor : Callable[[str, FieldInfo], Any]
|
||||
The visitor function.
|
||||
"""
|
||||
for name, field_info in fields:
|
||||
# if the field is a pydantic model then
|
||||
# visit all subfields
|
||||
if (isinstance(getattr(field_info, "annotation"), type)
|
||||
and issubclass(field_info.annotation, pydantic.BaseModel)):
|
||||
visit_fields(_safe_get_fields(field_info.annotation).items(),
|
||||
_add_prefix(visitor, name))
|
||||
else:
|
||||
visitor(name, field_info)
|
||||
|
||||
|
||||
def get_extras(field_info: FieldInfo, key: str) -> Any:
|
||||
"""
|
||||
Get the extra metadata from a Pydantic FieldInfo.
|
||||
"""
|
||||
if PYDANTIC_VERSION.major >= 2:
|
||||
return (field_info.json_schema_extra or {}).get(key)
|
||||
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
||||
def _add_prefix(visitor: Callable[[str, FieldInfo], Any], prefix: str) -> Callable[[str, FieldInfo], Any]:
|
||||
def prefixed_visitor(name: str, field: FieldInfo):
|
||||
return visitor(f"{prefix}.{name}", field)
|
||||
return prefixed_visitor
|
||||
|
||||
|
||||
if PYDANTIC_VERSION.major < 2:
|
||||
|
||||
def get_extras(field_info: FieldInfo, key: str) -> Any:
|
||||
"""
|
||||
Get the extra metadata from a Pydantic FieldInfo.
|
||||
"""
|
||||
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
||||
|
||||
|
||||
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||
"""
|
||||
Convert a Pydantic model to a dictionary.
|
||||
@@ -393,6 +527,13 @@ if PYDANTIC_VERSION.major < 2:
|
||||
|
||||
else:
|
||||
|
||||
def get_extras(field_info: FieldInfo, key: str) -> Any:
|
||||
"""
|
||||
Get the extra metadata from a Pydantic FieldInfo.
|
||||
"""
|
||||
return (field_info.json_schema_extra or {}).get(key)
|
||||
|
||||
|
||||
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||
"""
|
||||
Convert a Pydantic model to a dictionary.
|
||||
|
||||
@@ -37,6 +37,7 @@ import pyarrow as pa
|
||||
import pyarrow.compute as pc
|
||||
import pyarrow.fs as pa_fs
|
||||
from lance import LanceDataset
|
||||
from lance.dependencies import _check_for_hugging_face
|
||||
from lance.vector import vec_to_table
|
||||
|
||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
@@ -74,7 +75,16 @@ def _sanitize_data(
|
||||
on_bad_vectors: str,
|
||||
fill_value: Any,
|
||||
):
|
||||
if isinstance(data, list):
|
||||
import pdb; pdb.set_trace()
|
||||
if _check_for_hugging_face(data):
|
||||
# Huggingface datasets
|
||||
import datasets
|
||||
|
||||
if isinstance(data, datasets.Dataset):
|
||||
if schema is None:
|
||||
schema = data.features.arrow_schema
|
||||
data = data.data.to_batches()
|
||||
elif isinstance(data, list):
|
||||
# convert to list of dict if data is a bunch of LanceModels
|
||||
if isinstance(data[0], LanceModel):
|
||||
schema = data[0].__class__.to_arrow_schema()
|
||||
@@ -136,11 +146,10 @@ def _to_record_batch_generator(
|
||||
data: Iterable, schema, metadata, on_bad_vectors, fill_value
|
||||
):
|
||||
for batch in data:
|
||||
if not isinstance(batch, pa.RecordBatch):
|
||||
table = _sanitize_data(batch, schema, metadata, on_bad_vectors, fill_value)
|
||||
for batch in table.to_batches():
|
||||
yield batch
|
||||
else:
|
||||
if isinstance(batch, pa.RecordBatch):
|
||||
batch = pa.Table.from_batches([batch])
|
||||
table = _sanitize_data(batch, schema, metadata, on_bad_vectors, fill_value)
|
||||
for batch in table.to_batches():
|
||||
yield batch
|
||||
|
||||
|
||||
|
||||
BIN
python/python/tests/images/1.png
Normal file
BIN
python/python/tests/images/1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 83 B |
@@ -12,17 +12,27 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import date, datetime
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import pyarrow as pa
|
||||
import pydantic
|
||||
import pytest
|
||||
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, Vector, pydantic_to_schema
|
||||
from pydantic import Field
|
||||
|
||||
from lancedb.pydantic import (
|
||||
PYDANTIC_VERSION,
|
||||
EncodedImage,
|
||||
LanceModel,
|
||||
Vector,
|
||||
pydantic_to_schema,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
sys.version_info < (3, 9),
|
||||
@@ -243,3 +253,23 @@ def test_lance_model():
|
||||
|
||||
t = TestModel()
|
||||
assert t == TestModel(vec=[0.0] * 16, li=[1, 2, 3])
|
||||
|
||||
|
||||
def test_schema_with_images():
|
||||
pytest.importorskip("PIL")
|
||||
import PIL.Image
|
||||
|
||||
class TestModel(LanceModel):
|
||||
img: EncodedImage()
|
||||
|
||||
img_path = Path(os.path.dirname(__file__)) / "images/1.png"
|
||||
with open(img_path, "rb") as f:
|
||||
img_bytes = f.read()
|
||||
|
||||
m1 = TestModel(img=PIL.Image.open(img_path))
|
||||
m2 = TestModel(img=img_bytes)
|
||||
|
||||
def tobytes(m):
|
||||
return PIL.Image.open(io.BytesIO(m.model_dump()["img"])).tobytes()
|
||||
|
||||
assert tobytes(m1) == tobytes(m2)
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
# limitations under the License.
|
||||
|
||||
import functools
|
||||
import io
|
||||
import os
|
||||
from copy import copy
|
||||
from datetime import date, datetime, timedelta
|
||||
from pathlib import Path
|
||||
@@ -20,19 +22,21 @@ from typing import List
|
||||
from unittest.mock import PropertyMock, patch
|
||||
|
||||
import lance
|
||||
import lancedb
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import polars as pl
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from lance.arrow import EncodedImageType
|
||||
from pydantic import BaseModel
|
||||
|
||||
import lancedb
|
||||
from lancedb.conftest import MockTextEmbeddingFunction
|
||||
from lancedb.db import AsyncConnection, LanceDBConnection
|
||||
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.pydantic import EncodedImage, LanceModel, Vector
|
||||
from lancedb.table import LanceTable
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class MockDB:
|
||||
@@ -108,6 +112,7 @@ def test_create_table(db):
|
||||
pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||
pa.field("item", pa.string()),
|
||||
pa.field("price", pa.float32()),
|
||||
pa.field("encoded_image", EncodedImageType()),
|
||||
]
|
||||
)
|
||||
expected = pa.Table.from_arrays(
|
||||
@@ -115,13 +120,26 @@ def test_create_table(db):
|
||||
pa.FixedSizeListArray.from_arrays(pa.array([3.1, 4.1, 5.9, 26.5]), 2),
|
||||
pa.array(["foo", "bar"]),
|
||||
pa.array([10.0, 20.0]),
|
||||
pa.ExtensionArray.from_storage(
|
||||
EncodedImageType(), pa.array([b"foo", b"bar"], pa.binary())
|
||||
),
|
||||
],
|
||||
schema=schema,
|
||||
)
|
||||
data = [
|
||||
[
|
||||
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
{
|
||||
"vector": [3.1, 4.1],
|
||||
"item": "foo",
|
||||
"price": 10.0,
|
||||
"encoded_image": b"foo",
|
||||
},
|
||||
{
|
||||
"vector": [5.9, 26.5],
|
||||
"item": "bar",
|
||||
"price": 20.0,
|
||||
"encoded_image": b"bar",
|
||||
},
|
||||
]
|
||||
]
|
||||
df = pd.DataFrame(data[0])
|
||||
@@ -1025,3 +1043,22 @@ async def test_time_travel(db_async: AsyncConnection):
|
||||
# Can't use restore if not checked out
|
||||
with pytest.raises(ValueError, match="checkout before running restore"):
|
||||
await table.restore()
|
||||
|
||||
|
||||
def test_add_image(tmp_path):
|
||||
pytest.importorskip("PIL")
|
||||
import PIL.Image
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
|
||||
class TestModel(LanceModel):
|
||||
img: EncodedImage()
|
||||
|
||||
img_path = Path(os.path.dirname(__file__)) / "images/1.png"
|
||||
m1 = TestModel(img=PIL.Image.open(img_path))
|
||||
|
||||
def tobytes(m):
|
||||
return PIL.Image.open(io.BytesIO(m.model_dump()["img"])).tobytes()
|
||||
|
||||
table = LanceTable.create(db, "my_table", schema=TestModel)
|
||||
table.add([m1])
|
||||
|
||||
Reference in New Issue
Block a user