Compare commits

...

55 Commits

Author SHA1 Message Date
Lance Release
fb26f31beb [python] Bump version: 0.6.6 → 0.6.7 2024-04-04 23:43:04 +00:00
Lance Release
7c138c54c4 Updating package-lock.json 2024-04-04 21:40:08 +00:00
Lance Release
e9011b71b1 Bump version: 0.4.15 → 0.4.16 2024-04-04 21:39:58 +00:00
Will Jones
1b605ecc3b chore: upgrade to lance-0.10.9 (#1192) 2024-04-04 14:39:24 -07:00
QianZhu
bcc879b74a add a default value for search.limit to be consistent with python sdk (#1191)
Changed the default value for search.limit to be 10
2024-04-04 12:22:10 -07:00
Bert
fad0b76159 ensure table names are uri encoded for tables (#1189)
This prevents an issue where users can do something like:
```js
db.createTable('my-table#123123')
```
The server has logic to determine that '#' character is not allowed in
the table name, but currently this is being returned as 404 error
because it routes to `/v1/my-table#123123/create` and `#123123/create`
will not be parsed as part of path
2024-04-04 10:48:07 -07:00
Will Jones
8364d589ab feat: ship fp16kernels in Python wheels (#1148)
Same deal as https://github.com/lancedb/lance/pull/2098
2024-04-04 09:33:34 -07:00
Lei Xu
8687735bea chore: bump to 0.10.8 (#1187) 2024-04-03 16:52:32 -07:00
QianZhu
f0cd43da69 bug: fix the return value of countRows (#1186) 2024-04-03 16:31:49 -07:00
Lei Xu
7b954c7e3e chore: bump lance version (#1185)
Bump lance version to `0.10.7`
2024-04-03 14:46:05 -07:00
Bert
2579f29a92 fix error decoding in nodejs client (#1184)
fixes: #1183
2024-04-03 10:24:51 -04:00
QianZhu
7562b0fad1 remote count_rows need to return the number (#1181) 2024-04-02 13:12:22 -07:00
eduardjbotha
83b6b0d28a SQL Documentation includes DataFusion functions (#1179)
Show that it is possible to use the DataFusion functions in the `WHERE`
clause.

Co-authored-by: Eduard Botha <eduard.botha@inovex.de>
2024-04-02 07:49:48 -07:00
Lei Xu
46e95f2c4c chore: add social link footer (#1177) 2024-04-01 22:09:27 -07:00
Lei Xu
73810b4410 chore: pass str instead of String to build table names (#1178) 2024-04-01 21:31:07 -07:00
Lance Release
09280bc54a Updating package-lock.json 2024-04-02 03:03:07 +00:00
Lance Release
5603f1e57f Updating package-lock.json 2024-04-02 02:28:04 +00:00
QianZhu
1d67615cff feat: add filterable countRows to remote API (#1169) 2024-04-01 14:31:15 -07:00
Lance Release
05f484b716 [python] Bump version: 0.6.5 → 0.6.6 2024-04-01 19:09:01 +00:00
Lance Release
7e92aa657a Updating package-lock.json 2024-04-01 18:36:25 +00:00
Lance Release
e5f40a4b09 Bump version: 0.4.14 → 0.4.15 2024-04-01 18:36:13 +00:00
Weston Pace
6779c1c192 chore: bump lance version to 0.10.6 (#1175) 2024-04-01 11:35:47 -07:00
Bert
e0bf6d9bd0 Update LanceDB Logo in README (#1167)
<img width="1034" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/5b8aa53c-4d93-4c0e-bed4-80c238b319ba">
2024-03-29 10:10:43 -04:00
Weston Pace
67f041be91 docs: add a reference to @lancedb/lance in the docs (#1166)
We aren't yet ready to switch over the examples since almost all JS
examples rely on embeddings and we haven't yet ported those over.
However, this makes it possible for those that are interested to start
using `@lancedb/lancedb`
2024-03-29 04:55:03 -07:00
Will Jones
d388ef2f55 ci: fix name collision in npm artifacts for vectordb (#1164)
Fixes #1163
2024-03-28 14:07:27 -05:00
Weston Pace
e52dc877e3 chore: add nodejs to bumpversion (#1161)
The previous release failed to release nodejs because the nodejs version
wasn't bumped. This should fix that.
2024-03-28 08:54:32 -07:00
Weston Pace
ca4fdf5499 chore: fix clippy (#1162) 2024-03-28 08:54:17 -07:00
Bert
0e9ad764b0 added new logo to vercel example gif (#1158) 2024-03-26 16:25:36 -04:00
Bert
cae0348c51 New logo on docs site (#1157) 2024-03-26 20:50:13 +05:30
Ayush Chaurasia
e9e0a37ca8 docs: Add all available HF/sentence transformers embedding models list (#1134)
Solves -  https://github.com/lancedb/lancedb/issues/968
2024-03-26 19:04:09 +05:30
Weston Pace
c37a28abbd docs: add the async python API to the docs (#1156) 2024-03-26 07:54:16 -05:00
Lance Release
98c1e635b3 Updating package-lock.json 2024-03-25 20:38:37 +00:00
Lance Release
9992b927fd Updating package-lock.json 2024-03-25 15:43:00 +00:00
Lance Release
80d501011c Bump version: 0.4.13 → 0.4.14 2024-03-25 15:42:49 +00:00
Weston Pace
6e3a9d08e0 feat: add publish step for nodejs (#1155)
This will start publishing `@lancedb/lancedb` with the new nodejs
package on our releases.
2024-03-25 11:23:30 -04:00
Pranav Maddi
268d8e057b Adds a Ask LanceDB button to docs. (#1150)
This links out to the new [asklancedb.com](https://asklancedb.com) page.

Screenshots of the change:

![Quick start - LanceDB · 10 20am ·
03-22](https://github.com/lancedb/lancedb/assets/2371511/c45ba893-fc74-4957-bdd3-3712b351aff3)
![Quick start -
LanceDB](https://github.com/lancedb/lancedb/assets/2371511/d4762eb6-52af-4fd5-857e-3ed280716999)
2024-03-23 01:09:44 +05:30
Bert
dfc518b8fb Node SDK Client middleware for HTTP Requests (#1130)
Adds client-side middleware to LanceDB Node SDK to instrument HTTP
Requests

Example - adding `x-request-id` request header:
```js
class HttpMiddleware {
    constructor({ requestId }) {
        this.requestId = requestId
    }

    onRemoteRequest(req, next) {
        req.headers['x-request-id'] = this.requestId
        return next(req)
    }
}

const db = await lancedb.connect({
  uri: 'db://remote-123',
  apiKey: 'sk_...',
})

let tables = await db.withMiddleware(new HttpMiddleware({ requestId: '123' })).tableNames();

```

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-03-22 11:58:05 -04:00
QianZhu
98acf34ae8 remove warnings (#1147) 2024-03-21 14:49:01 -07:00
Lei Xu
25988d23cd chore: validate table name (#1146)
Closes #1129
2024-03-21 14:46:13 -07:00
Lance Release
c0dd98c798 [python] Bump version: 0.6.4 → 0.6.5 2024-03-21 19:53:38 +00:00
Lei Xu
ee73a3bcb8 chore: bump lance to 0.10.5 (#1145) 2024-03-21 12:53:02 -07:00
QianZhu
c07989ac29 fix nodejs test (#1141)
changed the error msg for query with wrong vector dim thus need this
change to pass the nodejs tests.
2024-03-21 07:21:39 -07:00
QianZhu
8f7ef26f5f better error msg for query vector with wrong dim (#1140) 2024-03-20 21:01:05 -07:00
Ishani Ghose
e14f079fe2 feat: add to_batches API #805 (#1048)
SDK
Python

Description
Exposes pyarrow batch api during query execution - relevant when there
is no vector search query, dataset is large and the filtered result is
larger than memory.

---------

Co-authored-by: Ishani Ghose <isghose@amazon.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-03-20 13:38:06 -07:00
Weston Pace
7d790bd9e7 feat: introduce ArrowNative wrapper struct for adding data that is already a RecordBatchReader (#1139)
In
2de226220b
I added a new `IntoArrow` trait for adding data into a table.
Unfortunately, it seems my approach for implementing the trait for
"things that are already record batch readers" was flawed. This PR
corrects that flaw and, conveniently, removes the need to box readers at
all (though it is ok if you do).
2024-03-20 13:28:17 -07:00
natcharacter
dbdd0a7b4b Order by field support FTS (#1132)
This PR adds support for passing through a set of ordering fields at
index time (unsigned ints that tantivity can use as fast_fields) that at
query time you can sort your results on. This is useful for cases where
you want to get related hits, i.e by keyword, but order those hits by
some other score, such as popularity.

I.e search for songs descriptions that match on "sad AND jazz AND 1920"
and then order those by number of times played. Example usage can be
seen in the fts tests.

---------

Co-authored-by: Nat Roth <natroth@Nats-MacBook-Pro.local>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-03-20 01:27:37 -07:00
Chang She
befb79c5f9 feat(python): support writing huggingface dataset and dataset dict (#1110)
HuggingFace Dataset is written as arrow batches.
For DatasetDict, all splits are written with a "split" column appended.

- [x] what if the dataset schema already has a `split` column
- [x] add unit tests
2024-03-20 00:22:03 -07:00
Ayush Chaurasia
0a387a5429 feat(python): Support reranking for vector and fts (#1103)
solves https://github.com/lancedb/lancedb/issues/1086

Usage Reranking with FTS:
```
retriever = db.create_table("fine-tuning", schema=Schema, mode="overwrite")
pylist = [{"text": "Carson City is the capital city of the American state of Nevada. At the  2010 United States Census, Carson City had a population of 55,274."},
          {"text": "The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that are a political division controlled by the United States. Its capital is Saipan."},
        {"text": "Charlotte Amalie is the capital and largest city of the United States Virgin Islands. It has about 20,000 people. The city is on the island of Saint Thomas."},
        {"text": "Washington, D.C. (also known as simply Washington or D.C., and officially as the District of Columbia) is the capital of the United States. It is a federal district. "},
        {"text": "Capital punishment (the death penalty) has existed in the United States since before the United States was a country. As of 2017, capital punishment is legal in 30 of the 50 states."},
        {"text": "North Dakota is a state in the United States. 672,591 people lived in North Dakota in the year 2010. The capital and seat of government is Bismarck."},
        ]
retriever.add(pylist)
retriever.create_fts_index("text", replace=True)

query = "What is the capital of the United States?"
reranker = CohereReranker(return_score="all")
print(retriever.search(query, query_type="fts").limit(10).to_pandas())
print(retriever.search(query, query_type="fts").rerank(reranker=reranker).limit(10).to_pandas())
```
Result
```
                                                text                                             vector     score
0  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  0.729602
1  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  0.678046
2  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  0.671521
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  0.667898
4  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  0.653422
5  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  0.639346
                                                text                                             vector     score  _relevance_score
0  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  0.653422          0.979977
1  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  0.671521          0.299105
2  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  0.729602          0.284874
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  0.667898          0.089614
4  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  0.639346          0.063832
5  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  0.678046          0.041462
```

## Vector Search usage:
```
query = "What is the capital of the United States?"
reranker = CohereReranker(return_score="all")
print(retriever.search(query).limit(10).to_pandas())
print(retriever.search(query).rerank(reranker=reranker, query=query).limit(10).to_pandas()) # <-- Note: passing extra string query here
```

Results
```
                                                text                                             vector  _distance
0  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  39.728973
1  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  41.384884
2  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  55.220200
3  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  58.345654
4  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  60.060867
5  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  64.260544
                                                text                                             vector  _distance  _relevance_score
0  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  41.384884          0.979977
1  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  60.060867          0.299105
2  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  39.728973          0.284874
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  55.220200          0.089614
4  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  64.260544          0.063832
5  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  58.345654          0.041462
```
2024-03-19 22:20:31 +05:30
Weston Pace
5a173e1d54 fix: fix compile error in example caused by merge conflict (#1135) 2024-03-19 08:55:15 -07:00
Weston Pace
51bdbcad98 feat: change DistanceType to be independent thing instead of resuing lance_linalg (#1133)
This PR originated from a request to add `Serialize` / `Deserialize` to
`lance_linalg::distance::DistanceType`. However, that is a strange
request for `lance_linalg` which shouldn't really have to worry about
`Serialize` / `Deserialize`. The problem is that `lancedb` is re-using
`DistanceType` and things in `lancedb` do need to worry about
`Serialize`/`Deserialize` (because `lancedb` needs to support remote
client).

On the bright side, separating the two types allows us to independently
document distance type and allows `lance_linalg` to make changes to
`DistanceType` in the future without having to worry about backwards
compatibility concerns.
2024-03-19 07:27:51 -07:00
Weston Pace
0c7809c7a0 docs: add links to rust SDK docs, remove references to rust SDK being unstable / experimental (#1131) 2024-03-19 07:16:48 -07:00
Weston Pace
2de226220b feat(rust): add trait for incoming data (#1128)
This will make it easier for 3rd party integrations. They simply need to
implement `IntoArrow` for their types in order for those types to be
used in ingestion.
2024-03-19 07:15:49 -07:00
vincent d warmerdam
bd5b6f21e2 Unhide Pydantic guides in Docs (#1122)
@wjones127 after fixing https://github.com/lancedb/lancedb/issues/1112 I
noticed something else on the docs. There's an odd chunk of the docs
missing
[here](https://lancedb.github.io/lancedb/guides/tables/#from-a-polars-dataframe).
I can see the heading, but after clicking it the contents don't show.

![CleanShot 2024-03-15 at 23 40
17@2x](https://github.com/lancedb/lancedb/assets/1019791/04784b19-0200-4c3f-ae17-7a8f871ef9bd)

Apon inspection it was a markdown issue, one tab too many on a whole
segment.

This PR fixes it. It looks like this now and the sections appear again:

![CleanShot 2024-03-15 at 23 42
32@2x](https://github.com/lancedb/lancedb/assets/1019791/c5aaec4c-1c37-474d-9fb0-641f4cf52626)
2024-03-18 23:47:51 -07:00
Weston Pace
6331807b95 feat: refactor the query API and add query support to the python async API (#1113)
In addition, there are also a number of changes in nodejs to the
docstrings of existing methods because this PR adds a jsdoc linter.
2024-03-18 12:36:49 -07:00
Lance Release
83cb3f01a4 Updating package-lock.json 2024-03-18 18:05:55 +00:00
161 changed files with 9483 additions and 2124 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.13
current_version = 0.4.16
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
@@ -7,6 +7,16 @@ tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:nodejs/package.json]
[bumpversion:file:nodejs/npm/darwin-x64/package.json]
[bumpversion:file:nodejs/npm/darwin-arm64/package.json]
[bumpversion:file:nodejs/npm/linux-x64-gnu/package.json]
[bumpversion:file:nodejs/npm/linux-arm64-gnu/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/lancedb/Cargo.toml]

View File

@@ -14,6 +14,10 @@ inputs:
# Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false
default: "false"
manylinux:
description: "The manylinux version to build for"
required: false
default: "2_17"
runs:
using: "composite"
steps:
@@ -28,7 +32,7 @@ runs:
command: build
working-directory: python
target: x86_64-unknown-linux-gnu
manylinux: "2_17"
manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }}
before-script-linux: |
set -e
@@ -43,7 +47,7 @@ runs:
command: build
working-directory: python
target: aarch64-unknown-linux-gnu
manylinux: "2_24"
manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }}
before-script-linux: |
set -e

View File

@@ -18,7 +18,7 @@ on:
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
@@ -28,6 +28,8 @@ jobs:
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
@@ -64,6 +66,8 @@ jobs:
with:
fetch-depth: 0
lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node
uses: actions/setup-node@v4
with:

View File

@@ -20,7 +20,8 @@ env:
# "1" means line tables only, which is useful for panic tracebacks.
#
# Use native CPU to accelerate tests if possible, especially for f16
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
# target-cpu=haswell fixes failing ci build
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:

View File

@@ -2,7 +2,7 @@ name: NPM Publish
on:
release:
types: [ published ]
types: [published]
jobs:
node:
@@ -19,7 +19,7 @@ jobs:
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache: "npm"
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
@@ -31,7 +31,7 @@ jobs:
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: node-package
path: |
@@ -61,12 +61,41 @@ jobs:
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: native-darwin
name: node-native-darwin-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build MacOS native nodejs modules
run: bash ci/build_macos_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-darwin-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
@@ -103,12 +132,63 @@ jobs:
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: native-linux
name: node-native-linux-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Upload Generic Artifacts
if: ${{ matrix.config.arch == 'x86_64' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
node-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
@@ -136,25 +216,60 @@ jobs:
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: native-windows
name: node-native-windows
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows
path: |
nodejs/dist/*.node
release:
needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@v4
with:
pattern: node-*
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: 'https://registry.npmjs.org'
registry-url: "https://registry.npmjs.org"
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
@@ -164,6 +279,45 @@ jobs:
npm publish $filename
done
release-nodejs:
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: nodejs-*
path: nodejs/nodejs-artifacts
merge-multiple: true
- name: Display structure of downloaded files
run: find .
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Install napi-rs
run: npm install -g @napi-rs/cli
- name: Prepare artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: Display structure of staged files
run: find npm
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: npm publish --access public
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
@@ -178,3 +332,18 @@ jobs:
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
update-package-lock-nodejs:
needs: [release-nodejs]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -6,13 +6,23 @@ on:
jobs:
linux:
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
timeout-minutes: 60
strategy:
matrix:
python-minor-version: ["8"]
platform:
- x86_64
- aarch64
config:
- platform: x86_64
manylinux: "2_17"
extra_args: ""
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
- platform: aarch64
manylinux: "2_24"
extra_args: ""
# We don't build fp16 kernels for aarch64, because it uses
# cross compilation image, which doesn't have a new enough compiler.
runs-on: "ubuntu-22.04"
steps:
- uses: actions/checkout@v4
@@ -26,8 +36,9 @@ jobs:
- uses: ./.github/workflows/build_linux_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip"
arm-build: ${{ matrix.platform == 'aarch64' }}
args: "--release --strip ${{ matrix.config.extra_args }}"
arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel
with:
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
@@ -58,7 +69,7 @@ jobs:
- uses: ./.github/workflows/build_mac_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip --target ${{ matrix.config.target }}"
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}

View File

@@ -31,6 +31,10 @@ jobs:
run:
shell: bash
working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps:
- uses: actions/checkout@v4
with:
@@ -54,6 +58,10 @@ jobs:
run:
shell: bash
working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps:
- uses: actions/checkout@v4
with:

View File

@@ -0,0 +1,33 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -0,0 +1,19 @@
name: Update NodeJs package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

1
.gitignore vendored
View File

@@ -34,6 +34,7 @@ python/dist
node/dist
node/examples/**/package-lock.json
node/examples/**/dist
nodejs/lancedb/native*
dist
## Rust

View File

@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.10.4", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.4" }
lance-linalg = { "version" = "=0.10.4" }
lance-testing = { "version" = "=0.10.4" }
lance = { "version" = "=0.10.9", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.9" }
lance-linalg = { "version" = "=0.10.9" }
lance-testing = { "version" = "=0.10.9" }
# Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"
@@ -39,3 +39,5 @@ pin-project = "1.0.7"
snafu = "0.7.4"
url = "2"
num-traits = "0.2"
regex = "1.10"
lazy_static = "1"

View File

@@ -1,13 +1,13 @@
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
**Developer-friendly, serverless vector database for AI applications**
**Developer-friendly, database for multimodal AI**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs
docker build \
-t lancedb-nodejs-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH

View File

@@ -0,0 +1,34 @@
# Builds the macOS artifacts (nodejs binaries).
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/lancedb
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd nodejs
echo "Building nodejs library for $1"
export RUST_TARGET=$1
npm run build-release
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -0,0 +1,41 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -0,0 +1,31 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

18
ci/manylinux_nodejs/build.sh Executable file
View File

@@ -0,0 +1,18 @@
#!/bin/bash
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd nodejs
npm ci
npm run build-release

View File

@@ -0,0 +1,26 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -27,7 +27,6 @@ theme:
- content.tabs.link
- content.action.edit
- toc.follow
# - toc.integrate
- navigation.top
- navigation.tabs
- navigation.tabs.sticky
@@ -39,176 +38,182 @@ theme:
custom_dir: overrides
plugins:
- search
- autorefs
- mkdocstrings:
handlers:
python:
paths: [../python]
options:
docstring_style: numpy
heading_level: 4
show_source: true
show_symbol_type_in_heading: true
show_signature_annotations: true
members_order: source
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
- ultralytics:
verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
- search
- autorefs
- mkdocstrings:
handlers:
python:
paths: [../python]
options:
docstring_style: numpy
heading_level: 3
show_source: true
show_symbol_type_in_heading: true
show_signature_annotations: true
show_root_heading: true
members_order: source
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
- ultralytics:
verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
markdown_extensions:
- admonition
- footnotes
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
- md_in_html
- attr_list
- admonition
- footnotes
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
- md_in_html
- attr_list
nav:
- Home:
- LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
- Tools and data formats: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Home:
- LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
- Tools and data formats: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- 🔧 CLI & Config: cli_config.md
- 💭 FAQs: faq.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): javascript/modules.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🔧 CLI & Config: cli_config.md
- 💭 FAQs: faq.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript: javascript/modules.md
- 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB : python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples:
- Overview: examples/examples_js.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API reference:
- Python: python/python.md
- Javascript: javascript/modules.md
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- API reference:
- Overview: api_reference.md
- Python: python/python.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/modules.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
extra_css:
- styles/global.css
@@ -221,3 +226,10 @@ extra:
analytics:
provider: google
property: G-B7NFM40W74
social:
- icon: fontawesome/brands/github
link: https://github.com/lancedb/lancedb
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb

View File

@@ -19,39 +19,61 @@ Lance supports `IVF_PQ` index type by default.
=== "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Typescript"
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
```
--8<-- "docs/src/ann_indexes.ts:ingest"
```
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:create_index"
```
IVF_PQ index parameters are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/index/vector/struct.IvfPqIndexBuilder.html).
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
- **num_partitions**: The number of partitions in the index. The default is the square root
of the number of rows.
!!! note
In the synchronous python SDK and node's `vectordb` the default is 256. This default has
changed in the asynchronous python SDK and node's `lancedb`.
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
!!! note
In the synchronous python SDK and node's `vectordb` the default is currently 96. This default has
changed in the asynchronous python SDK and node's `lancedb`.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
@@ -114,25 +136,33 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "Python"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
```text
```text
vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:search1"
```
Vector search options are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/query/struct.Query.html#method.nearest_to).
The search will return the data requested in addition to the distance of each item.
@@ -181,7 +211,7 @@ You can select the columns returned by the query using a select clause.
### Why do I need to manually create an index?
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
datasets of the order of ~100K vectors don't require index creation. If you can live with up to
100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.

View File

@@ -0,0 +1,8 @@
# API Reference
The API reference for the LanceDB client SDKs are available at the following locations:
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

After

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

After

Width:  |  Height:  |  Size: 204 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 97 KiB

After

Width:  |  Height:  |  Size: 256 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.7 KiB

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 205 KiB

After

Width:  |  Height:  |  Size: 54 KiB

View File

@@ -3,7 +3,7 @@
!!! info "LanceDB can be run in a number of ways:"
* Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application)
* Connected to directly from a client application like a Jupyter notebook for analytical workloads
* Directly from a client application like a Jupyter notebook for analytical workloads
* Deployed as a remote serverless database
![](assets/lancedb_embedded_explanation.png)
@@ -24,13 +24,11 @@
=== "Rust"
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
```shell
cargo add vectordb
cargo add lancedb
```
!!! info "To use the vectordb create, you first need to install protobuf."
!!! info "To use the lancedb create, you first need to install protobuf."
=== "macOS"
@@ -44,17 +42,26 @@
sudo apt install -y protobuf-compiler libssl-dev
```
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
## Connect to a database
=== "Python"
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
!!! note "Asynchronous Python API"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript"
@@ -64,6 +71,16 @@
--8<-- "docs/src/basic_legacy.ts:open_db"
```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust"
```rust
@@ -81,17 +98,17 @@ If you need a reminder of the uri, you can call `db.uri()`.
## Create a table
### Directly insert data to a new table
### Create a table from initial data
If you have data to insert into the table at creation time, you can simultaneously create a
table and insert the data to it.
table and insert the data into it. The schema of the data will be used as the schema of the
table.
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
--8<-- "python/python/tests/docs/test_basic.py:create_table"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
If the table already exists, LanceDB will raise an error by default.
@@ -101,10 +118,8 @@ table and insert the data to it.
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript"
@@ -120,28 +135,33 @@ table and insert the data to it.
=== "Rust"
```rust
use arrow_schema::{DataType, Schema, Field};
use arrow_array::{RecordBatch, RecordBatchIterator};
--8<-- "rust/lancedb/examples/simple.rs:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If the table already exists, LanceDB will raise an error by default. See
[the mode option](https://docs.rs/lancedb/latest/lancedb/connection/struct.CreateTableBuilder.html#method.mode)
for details on how to overwrite (or open) existing tables instead.
!!! info "Under the hood, LanceDB converts the input data into an Apache Arrow table and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
!!! Providing table records in Rust
The Rust SDK currently expects data to be provided as an Arrow
[RecordBatchReader](https://docs.rs/arrow-array/latest/arrow_array/trait.RecordBatchReader.html)
Support for additional formats (such as serde or polars) is on the roadmap.
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
### Create an empty table
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema, so that you can add
data to the table at a later time (such that it conforms to the schema).
data to the table at a later time (as long as it conforms to the schema). This is
similar to a `CREATE TABLE` statement in SQL.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
=== "Typescript"
@@ -163,7 +183,8 @@ Once created, you can open a table as follows:
=== "Python"
```python
tbl = db.open_table("my_table")
--8<-- "python/python/tests/docs/test_basic.py:open_table"
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript"
@@ -175,7 +196,7 @@ Once created, you can open a table as follows:
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:open_with_existing_file"
--8<-- "rust/lancedb/examples/simple.rs:open_existing_tbl"
```
If you forget the name of your table, you can always get a listing of all table names:
@@ -183,7 +204,8 @@ If you forget the name of your table, you can always get a listing of all table
=== "Python"
```python
print(db.table_names())
--8<-- "python/python/tests/docs/test_basic.py:table_names"
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Javascript"
@@ -205,15 +227,8 @@ After a table has been created, you can always add more data to it as follows:
=== "Python"
```python
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
--8<-- "python/python/tests/docs/test_basic.py:add_data"
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript"
@@ -235,7 +250,8 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_pandas()
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
This returns a pandas DataFrame with the results.
@@ -254,6 +270,14 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
--8<-- "rust/lancedb/examples/simple.rs:search"
```
!!! Query vectors in Rust
Rust does not yet support automatic execution of embedding functions. You will need to
calculate embeddings yourself. Support for this is on the roadmap and can be tracked at
https://github.com/lancedb/lancedb/issues/994
Query vectors can be provided as Arrow arrays or a Vec/slice of Rust floats.
Support for additional formats (e.g. `polars::series::Series`) is on the roadmap.
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
LanceDB allows you to create an ANN index on a table as follows:
@@ -261,7 +285,8 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Python"
```py
tbl.create_index()
--8<-- "python/python/tests/docs/test_basic.py:create_index"
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript"
@@ -273,15 +298,15 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:create_index"
--8<-- "rust/lancedb/examples/simple.rs:create_index"
```
!!! note "Why do I need to create an index manually?"
LanceDB does not automatically create the ANN index, for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
## Delete rows from a table
@@ -292,7 +317,8 @@ This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript"
@@ -308,8 +334,9 @@ This can delete any number of rows that match the filter.
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
as the `where()` clause (`only_if()` in Rust) on a search. They can be as
simple or complex as needed. To see what expressions are supported, see the
[SQL filters](sql.md) section.
=== "Python"
@@ -319,6 +346,10 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
=== "Rust"
Read more: [lancedb::Table::delete](https://docs.rs/lancedb/latest/lancedb/table/struct.Table.html#method.delete)
## Drop a table
Use the `drop_table()` method on the database to remove a table.
@@ -326,7 +357,8 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.

View File

@@ -19,27 +19,163 @@ Allows you to set parameters when registering a `sentence-transformers` object.
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("sentence-transformers").create(device="cpu")
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:

View File

@@ -0,0 +1,3 @@
# Examples: Rust
Our Rust SDK is now stable. Examples are coming soon.

View File

@@ -2,10 +2,11 @@
## Recipes and example code
LanceDB provides language APIs, allowing you to embed a database in your language of choice. We currently provide Python and Javascript APIs, with the Rust API and examples actively being worked on and will be available soon.
LanceDB provides language APIs, allowing you to embed a database in your language of choice.
* 🐍 [Python](examples_python.md) examples
* 👾 [JavaScript](exampled_js.md) examples
* 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon)
## Applications powered by LanceDB

View File

@@ -1,11 +1,79 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
script.setAttribute("data-project-name", "LanceDB");
script.setAttribute("data-project-color", "#000000");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
script.async = true;
document.head.appendChild(script);
});
// Creates an SVG robot icon (from Lucide)
function robotSVG() {
var svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");
svg.setAttribute("width", "24");
svg.setAttribute("height", "24");
svg.setAttribute("viewBox", "0 0 24 24");
svg.setAttribute("fill", "none");
svg.setAttribute("stroke", "currentColor");
svg.setAttribute("stroke-width", "2");
svg.setAttribute("stroke-linecap", "round");
svg.setAttribute("stroke-linejoin", "round");
svg.setAttribute("class", "lucide lucide-bot-message-square");
var path1 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path1.setAttribute("d", "M12 6V2H8");
svg.appendChild(path1);
var path2 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path2.setAttribute("d", "m8 18-4 4V8a2 2 0 0 1 2-2h12a2 2 0 0 1 2 2v8a2 2 0 0 1-2 2Z");
svg.appendChild(path2);
var path3 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path3.setAttribute("d", "M2 12h2");
svg.appendChild(path3);
var path4 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path4.setAttribute("d", "M9 11v2");
svg.appendChild(path4);
var path5 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path5.setAttribute("d", "M15 11v2");
svg.appendChild(path5);
var path6 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path6.setAttribute("d", "M20 12h2");
svg.appendChild(path6);
return svg
}
// Creates the Fluidic Chatbot buttom
function fluidicButton() {
var btn = document.createElement("a");
btn.href = "https://asklancedb.com";
btn.target = "_blank";
btn.style.position = "fixed";
btn.style.fontWeight = "bold";
btn.style.fontSize = ".8rem";
btn.style.right = "10px";
btn.style.bottom = "10px";
btn.style.width = "80px";
btn.style.height = "80px";
btn.style.background = "linear-gradient(135deg, #7C5EFF 0%, #625eff 100%)";
btn.style.color = "white";
btn.style.borderRadius = "5px";
btn.style.display = "flex";
btn.style.flexDirection = "column";
btn.style.justifyContent = "center";
btn.style.alignItems = "center";
btn.style.zIndex = "1000";
btn.style.opacity = "0";
btn.style.boxShadow = "0 0 0 rgba(0, 0, 0, 0)";
btn.style.transition = "opacity 0.2s ease-in, box-shadow 0.2s ease-in";
setTimeout(function() {
btn.style.opacity = "1";
btn.style.boxShadow = "0 0 .2rem #0000001a,0 .2rem .4rem #0003"
}, 0);
return btn
}
document.addEventListener("DOMContentLoaded", function() {
var btn = fluidicButton()
btn.appendChild(robotSVG());
var text = document.createTextNode("Ask AI");
btn.appendChild(text);
document.body.appendChild(btn);
});

View File

@@ -16,7 +16,7 @@ As we mention in our talk titled “[Lance, a modern columnar data format](https
### Why build in Rust? 🦀
We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python and JavaScript client libraries to interact with the database. Our Rust API is a little rough around the edges right now, but is fast becoming on par with the Python and JS APIs.
We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python, JavaScript, and Rust client libraries to interact with the database.
### What is the difference between LanceDB OSS and LanceDB Cloud?
@@ -44,7 +44,7 @@ For large-scale (>1M) or higher dimension vectors, it is beneficial to create an
### Does LanceDB support full-text search?
Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients.
Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients. Follow along in the [Github issue](https://github.com/lancedb/lance/issues/1195)
### How can I speed up data inserts?

View File

@@ -1,6 +1,6 @@
# Full-text search
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for JavaScript users as well.
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
A hybrid search solution combining vector and full-text search is also on the way.
@@ -75,6 +75,36 @@ applied on top of the full text search results. This can be invoked via the fami
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Sorting
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
```
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
(table.search("terms", ordering_field_name="sort_by_field")
.limit(20)
.to_list())
```
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
@@ -131,4 +161,3 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.

View File

@@ -168,151 +168,151 @@ This guide will show how to create tables, insert data into them, and update the
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
### From Pydantic Models
### From Pydantic Models
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`.
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns:
`movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized Pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
For example, the following Content model specifies a table with 5 columns:
`movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized Pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python
from lancedb.pydantic import Vector, LanceModel
```python
from lancedb.pydantic import Vector, LanceModel
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
#### Nested schemas
#### Nested schemas
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
```python
class Document(BaseModel):
content: str
source: str
```
```python
class Document(BaseModel):
content: str
source: str
```
This can be used as the type of a LanceDB table column:
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
This creates a struct column called "document" that has two subfields
called "content" and "source":
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
#### Validators
#### Validators
Note that neither Pydantic nor PyArrow automatically validates that input data
is of the correct timezone, but this is easy to add as a custom field validator:
Note that neither Pydantic nor PyArrow automatically validates that input data
is of the correct timezone, but this is easy to add as a custom field validator:
```python
from datetime import datetime
from zoneinfo import ZoneInfo
```python
from datetime import datetime
from zoneinfo import ZoneInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
tzname = "America/New_York"
tz = ZoneInfo(tzname)
tzname = "America/New_York"
tz = ZoneInfo(tzname)
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
@field_validator('dt_with_tz')
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
@field_validator('dt_with_tz')
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
ok = TestModel(dt_with_tz=datetime.now(tz))
ok = TestModel(dt_with_tz=datetime.now(tz))
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
print("A ValidationError was raised.")
pass
```
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
print("A ValidationError was raised.")
pass
```
When you run this code it should print "A ValidationError was raised."
When you run this code it should print "A ValidationError was raised."
#### Pydantic custom types
#### Pydantic custom types
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
### Using Iterators / Writing Large Datasets
### Using Iterators / Writing Large Datasets
It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types.
LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types.
Here's an example using using `RecordBatch` iterator for creating tables.
Here's an example using using `RecordBatch` iterator for creating tables.
```python
import pyarrow as pa
```python
import pyarrow as pa
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("batched_tale", make_batches(), schema=schema)
```
db.create_table("batched_tale", make_batches(), schema=schema)
```
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
## Open existing tables

View File

@@ -28,7 +28,7 @@ LanceDB **Cloud** is a SaaS (software-as-a-service) solution that runs serverles
* Fast production-scale vector similarity, full-text & hybrid search and a SQL query interface (via [DataFusion](https://github.com/apache/arrow-datafusion))
* Native Python and Javascript/Typescript support
* Python, Javascript/Typescript, and Rust support
* Store, query & manage multi-modal data (text, images, videos, point clouds, etc.), not just the embeddings and metadata
@@ -54,3 +54,4 @@ The following pages go deeper into the internal of LanceDB and how to use it.
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
* [Python API Reference](python/python.md): Python OSS and Cloud API references
* [JavaScript API Reference](javascript/modules.md): JavaScript OSS and Cloud API references
* [Rust API Reference](https://docs.rs/lancedb/latest/lancedb/index.html): Rust API reference

1
docs/src/js/.nojekyll Normal file
View File

@@ -0,0 +1 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

83
docs/src/js/README.md Normal file
View File

@@ -0,0 +1,83 @@
@lancedb/lancedb / [Exports](modules.md)
# LanceDB JavaScript SDK
A JavaScript library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install @lancedb/lancedb
```
This will download the appropriate native library for your platform. We currently
support:
- Linux (x86_64 and aarch64)
- MacOS (Intel and ARM/M1/M2)
- Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage
### Basic Example
```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("my_table", [
{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 },
]);
const results = await table.vectorSearch([0.1, 0.3]).limit(20).toArray();
console.log(results);
```
The [quickstart](../basic.md) contains a more complete example.
## Development
```sh
npm run build
npm run test
```
### Running lint / format
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
set to true. Also, if your vscode root folder is the repo root then you will need to set
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
```sh
npm run lint
```
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
for typescript and you should enable format on save. To manually check your code's format you
can run:
```sh
npm run chkformat
```
If you need to manually format your code you can run:
```sh
npx prettier --write .
```
### Generating docs
```sh
npm run docs
cd ../docs
# Asssume the virtual environment was created
# python3 -m venv venv
# pip install -r requirements.txt
. ./venv/bin/activate
mkdocs build
```

View File

@@ -0,0 +1,239 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection
# Class: Connection
A LanceDB Connection that allows you to open tables and create new ones.
Connection could be local against filesystem or remote against a server.
A Connection is intended to be a long lived object and may hold open
resources such as HTTP connection pools. This is generally fine and
a single connection should be shared if it is going to be used many
times. However, if you are finished with a connection, you may call
close to eagerly free these resources. Any call to a Connection
method after it has been closed will result in an error.
Closing a connection is optional. Connections will automatically
be closed when they are garbage collected.
Any created tables are independent and will continue to work even if
the underlying connection has been closed.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [inner](Connection.md#inner)
### Methods
- [close](Connection.md#close)
- [createEmptyTable](Connection.md#createemptytable)
- [createTable](Connection.md#createtable)
- [display](Connection.md#display)
- [dropTable](Connection.md#droptable)
- [isOpen](Connection.md#isopen)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### constructor
**new Connection**(`inner`): [`Connection`](Connection.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Connection` |
#### Returns
[`Connection`](Connection.md)
#### Defined in
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
## Properties
### inner
`Readonly` **inner**: `Connection`
#### Defined in
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
## Methods
### close
**close**(): `void`
Close the connection, releasing any underlying resources.
It is safe to call this method multiple times.
Any attempt to use the connection after it is closed will result in an error.
#### Returns
`void`
#### Defined in
[connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88)
___
### createEmptyTable
**createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new empty Table
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `schema` | `Schema`\<`any`\> | The schema of the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151)
___
### createTable
**createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123)
___
### display
**display**(): `string`
Return a brief description of the connection
#### Returns
`string`
#### Defined in
[connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93)
___
### dropTable
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173)
___
### isOpen
**isOpen**(): `boolean`
Return true if the connection has not been closed
#### Returns
`boolean`
#### Defined in
[connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77)
___
### openTable
**openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112)
___
### tableNames
**tableNames**(`options?`): `Promise`\<`string`[]\>
List all the table names in this database.
Tables will be returned in lexicographical order.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point |
#### Returns
`Promise`\<`string`[]\>
#### Defined in
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)

View File

@@ -0,0 +1,121 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index
# Class: Index
## Table of contents
### Constructors
- [constructor](Index.md#constructor)
### Properties
- [inner](Index.md#inner)
### Methods
- [btree](Index.md#btree)
- [ivfPq](Index.md#ivfpq)
## Constructors
### constructor
**new Index**(`inner`): [`Index`](Index.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Index` |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
## Properties
### inner
`Private` `Readonly` **inner**: `Index`
#### Defined in
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
## Methods
### btree
**btree**(): [`Index`](Index.md)
Create a btree index
A btree index is an index on a scalar columns. The index stores a copy of the column
in sorted order. A header entry is created for each block of rows (currently the
block size is fixed at 4096). These header entries are stored in a separate
cacheable structure (a btree). To search for data the header is used to determine
which blocks need to be read from disk.
For example, a btree index in a table with 1Bi rows requires sizeof(Scalar) * 256Ki
bytes of memory and will generally need to read sizeof(Scalar) * 4096 bytes to find
the correct row ids.
This index is good for scalar columns with mostly distinct values and does best when
the query is highly selective.
The btree index does not currently have any parameters though parameters such as the
block size may be added in the future.
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175)
___
### ivfPq
**ivfPq**(`options?`): [`Index`](Index.md)
Create an IvfPq index
This index stores a compressed (quantized) copy of every vector. These vectors
are grouped into partitions of similar vectors. Each partition keeps track of
a centroid which is the average value of all vectors in the group.
During a query the centroids are compared with the query vector to find the closest
partitions. The compressed vectors in these partitions are then searched to find
the closest vectors.
The compression scheme is called product quantization. Each vector is divided into
subvectors and then each subvector is quantized into a small number of bits. the
parameters `num_bits` and `num_subvectors` control this process, providing a tradeoff
between index size (and thus search speed) and index accuracy.
The partitioning process is called IVF and the `num_partitions` parameter controls how
many groups to create.
Note that training an IVF PQ index on a large dataset is a slow operation and
currently is also a memory intensive operation.
#### Parameters
| Name | Type |
| :------ | :------ |
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)

View File

@@ -0,0 +1,75 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions
Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors
### constructor
**new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Returns
[`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Defined in
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
## Properties
### dictionaryEncodeStrings
**dictionaryEncodeStrings**: `boolean` = `false`
If true then string columns will be encoded with dictionary encoding
Set this to true if your string columns tend to repeat the same values
often. For more precise control use the `schema` property to specify the
data type for individual columns.
If `schema` is provided then this property is ignored.
#### Defined in
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67)
___
### vectorColumns
**vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\>
#### Defined in
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)

View File

@@ -0,0 +1,368 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query
# Class: Query
A builder for LanceDB queries.
## Hierarchy
- [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\>
**`Query`**
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [inner](Query.md#inner)
### Methods
- [[asyncIterator]](Query.md#[asynciterator])
- [execute](Query.md#execute)
- [limit](Query.md#limit)
- [nativeExecute](Query.md#nativeexecute)
- [nearestTo](Query.md#nearestto)
- [select](Query.md#select)
- [toArray](Query.md#toarray)
- [toArrow](Query.md#toarrow)
- [where](Query.md#where)
## Constructors
### constructor
**new Query**(`tbl`): [`Query`](Query.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `Table` |
#### Returns
[`Query`](Query.md)
#### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
## Properties
### inner
`Protected` **inner**: `Query`
#### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): [`Query`](Query.md)
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
[`Query`](Query.md)
#### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### nearestTo
**nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
Find the nearest vectors to the given query vector.
This converts the query from a plain query to a vector query.
This method will attempt to convert the input to the query vector
expected by the embedding model. If the input cannot be converted
then an error will be thrown.
By default, there is no embedding model, and the input should be
an array-like object of numbers (something that can be used as input
to Float32Array.from)
If there is only one vector column (a column whose data type is a
fixed size list of floats) then the column does not need to be specified.
If there is more than one vector column you must use
#### Parameters
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
to compare with.
If no index has been created on the vector column then a vector query
will perform a distance comparison between the query vector and every
vector in the database and then sort the results. This is sometimes
called a "flat search"
For small databases, with a few hundred thousand vectors or less, this can
be reasonably fast. In larger databases you should create a vector index
on the column. If there is a vector index then an "approximate" nearest
neighbor search (frequently called an ANN search) will be performed. This
search is much faster, but the results will be approximate.
The query can be further parameterized using the returned builder. There
are various ANN search parameters that will let you fine tune your recall
accuracy vs search latency.
Vector searches always have a `limit`. If `limit` has not been called then
a default `limit` of 10 will be used.
- [Query#limit](Query.md#limit)
#### Defined in
[query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370)
___
### select
**select**(`columns`): [`Query`](Query.md)
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
[`Query`](Query.md)
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): [`Query`](Query.md)
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
[`Query`](Query.md)
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,291 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase
# Class: QueryBase\<NativeQueryType, QueryType\>
Common methods supported by all query types
## Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
| `QueryType` | `QueryType` |
## Hierarchy
- **`QueryBase`**
↳ [`Query`](Query.md)
↳ [`VectorQuery`](VectorQuery.md)
## Implements
- `AsyncIterable`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](QueryBase.md#constructor)
### Properties
- [inner](QueryBase.md#inner)
### Methods
- [[asyncIterator]](QueryBase.md#[asynciterator])
- [execute](QueryBase.md#execute)
- [limit](QueryBase.md#limit)
- [nativeExecute](QueryBase.md#nativeexecute)
- [select](QueryBase.md#select)
- [toArray](QueryBase.md#toarray)
- [toArrow](QueryBase.md#toarrow)
- [where](QueryBase.md#where)
## Constructors
### constructor
**new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
| `QueryType` | `QueryType` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `NativeQueryType` |
#### Returns
[`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Properties
### inner
`Protected` **inner**: `NativeQueryType`
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Implementation of
AsyncIterable.[asyncIterator]
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): `QueryType`
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
`QueryType`
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### select
**select**(`columns`): `QueryType`
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
`QueryType`
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): `QueryType`
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`QueryType`
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,80 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator
# Class: RecordBatchIterator
## Implements
- `AsyncIterator`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](RecordBatchIterator.md#constructor)
### Properties
- [inner](RecordBatchIterator.md#inner)
- [promisedInner](RecordBatchIterator.md#promisedinner)
### Methods
- [next](RecordBatchIterator.md#next)
## Constructors
### constructor
**new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
## Properties
### inner
`Private` `Optional` **inner**: `RecordBatchIterator`
#### Defined in
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
___
### promisedInner
`Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
## Methods
### next
**next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Returns
`Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Implementation of
AsyncIterator.next
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)

View File

@@ -0,0 +1,594 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table
# Class: Table
A Table is a collection of Records in a LanceDB Database.
A Table object is expected to be long lived and reused for multiple operations.
Table objects will cache a certain amount of index data in memory. This cache
will be freed when the Table is garbage collected. To eagerly free the cache you
can call the `close` method. Once the Table is closed, it cannot be used for any
further operations.
Closing a table is optional. It not closed, it will be closed when it is garbage
collected.
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [inner](Table.md#inner)
### Methods
- [add](Table.md#add)
- [addColumns](Table.md#addcolumns)
- [alterColumns](Table.md#altercolumns)
- [checkout](Table.md#checkout)
- [checkoutLatest](Table.md#checkoutlatest)
- [close](Table.md#close)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [display](Table.md#display)
- [dropColumns](Table.md#dropcolumns)
- [isOpen](Table.md#isopen)
- [listIndices](Table.md#listindices)
- [query](Table.md#query)
- [restore](Table.md#restore)
- [schema](Table.md#schema)
- [update](Table.md#update)
- [vectorSearch](Table.md#vectorsearch)
- [version](Table.md#version)
## Constructors
### constructor
**new Table**(`inner`): [`Table`](Table.md)
Construct a Table. Internal use only.
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Table` |
#### Returns
[`Table`](Table.md)
#### Defined in
[table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69)
## Properties
### inner
`Private` `Readonly` **inner**: `Table`
#### Defined in
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
## Methods
### add
**add**(`data`, `options?`): `Promise`\<`void`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table |
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105)
___
### addColumns
**addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261)
___
### alterColumns
**alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270)
___
### checkout
**checkout**(`version`): `Promise`\<`void`\>
Checks out a specific version of the Table
Any read operation on the table will now access the data at the checked out version.
As a consequence, calling this method will disable any read consistency interval
that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the change
permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
#### Parameters
| Name | Type |
| :------ | :------ |
| `version` | `number` |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317)
___
### checkoutLatest
**checkoutLatest**(): `Promise`\<`void`\>
Ensures the table is pointing at the latest version
This can be used to manually update a table when the read_consistency_interval is None
It can also be used to undo a `[Self::checkout]` operation
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327)
___
### close
**close**(): `void`
Close the table, releasing any underlying resources.
It is safe to call this method multiple times.
Any attempt to use the table after it is closed will result in an error.
#### Returns
`void`
#### Defined in
[table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85)
___
### countRows
**countRows**(`filter?`): `Promise`\<`number`\>
Count the total number of rows in the dataset.
#### Parameters
| Name | Type |
| :------ | :------ |
| `filter?` | `string` |
#### Returns
`Promise`\<`number`\>
#### Defined in
[table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152)
___
### createIndex
**createIndex**(`column`, `options?`): `Promise`\<`void`\>
Create an index to speed up queries.
Indices can be created on vector columns or scalar columns.
Indices on vector columns will speed up vector searches.
Indices on scalar columns will speed up filtering (in both
vector and non-vector searches)
#### Parameters
| Name | Type |
| :------ | :------ |
| `column` | `string` |
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
#### Returns
`Promise`\<`void`\>
**`Example`**
```ts
// If the column has a vector (fixed size list) data type then
// an IvfPq vector index will be created.
const table = await conn.openTable("my_table");
await table.createIndex(["vector"]);
```
**`Example`**
```ts
// For advanced control over vector index creation you can specify
// the index type and options.
const table = await conn.openTable("my_table");
await table.createIndex(["vector"], I)
.ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
.build();
```
**`Example`**
```ts
// Or create a Scalar index
await table.createIndex("my_float_col").build();
```
#### Defined in
[table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184)
___
### delete
**delete**(`predicate`): `Promise`\<`void`\>
Delete the rows that satisfy the predicate.
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157)
___
### display
**display**(): `string`
Return a brief description of the table
#### Returns
`string`
#### Defined in
[table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90)
___
### dropColumns
**dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset
This is a metadata-only operation and does not remove the data from the
underlying storage. In order to remove the data, you must subsequently
call ``compact_files`` to rewrite the data without the removed columns and
then call ``cleanup_files`` to remove the old files.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285)
___
### isOpen
▸ **isOpen**(): `boolean`
Return true if the table has not been closed
#### Returns
`boolean`
#### Defined in
[table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74)
___
### listIndices
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
List all indices that have been created with Self::create_index
#### Returns
`Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
#### Defined in
[table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350)
___
### query
▸ **query**(): [`Query`](Query.md)
Create a [Query](Query.md) Builder.
Queries allow you to search your existing data. By default the query will
return all the data in the table in no particular order. The builder
returned by this method can be used to control the query using filtering,
vector similarity, sorting, and more.
Note: By default, all columns are returned. For best performance, you should
only fetch the columns you need. See [`Query::select_with_projection`] for
more details.
When appropriate, various indices and statistics based pruning will be used to
accelerate the query.
#### Returns
[`Query`](Query.md)
A builder that can be used to parameterize the query
**`Example`**
```ts
// SQL-style filtering
//
// This query will return up to 1000 rows whose value in the `id` column
// is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table.query()
.filter("id > 1").select(["id"]).limit(20)) {
console.log(batch);
}
```
**`Example`**
```ts
// Vector Similarity Search
//
// This example will find the 10 rows whose value in the "vector" column are
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
// on the "vector" column then this will perform an ANN search.
//
// The `refine_factor` and `nprobes` methods are used to control the recall /
// latency tradeoff of the search.
for await (const batch of table.query()
.nearestTo([1, 2, 3])
.refineFactor(5).nprobe(10)
.limit(10)) {
console.log(batch);
}
```
**`Example`**
```ts
// Scan the full dataset
//
// This query will return everything in the table in no particular order.
for await (const batch of table.query()) {
console.log(batch);
}
```
#### Defined in
[table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238)
___
### restore
▸ **restore**(): `Promise`\<`void`\>
Restore the table to the currently checked out version
This operation will fail if checkout has not been called previously
This operation will overwrite the latest version of the table with a
previous version. Any changes made since the checked out version will
no longer be visible.
Once the operation concludes the table will no longer be in a checked
out state and the read_consistency_interval, if any, will apply.
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343)
___
### schema
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
Get the schema of the table.
#### Returns
`Promise`\<`Schema`\<`any`\>\>
#### Defined in
[table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95)
___
### update
▸ **update**(`updates`, `options?`): `Promise`\<`void`\>
Update existing records in the Table
An update operation can be used to adjust existing values. Use the
returned builder to specify which columns to update. The new value
can be a literal value (e.g. replacing nulls with some default value)
or an expression applied to the old value (e.g. incrementing a value)
An optional condition can be specified (e.g. "only update if the old
value is 0")
Note: if your condition is something like "some_id_column == 7" and
you are updating many rows (with different ids) then you will get
better performance with a single [`merge_insert`] call instead of
repeatedly calilng this method.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137)
___
### vectorSearch
▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
Search the table with a given query vector.
This is a convenience method for preparing a vector query and
is the same thing as calling `nearestTo` on the builder returned
by `query`.
#### Parameters
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[Query#nearestTo](Query.md#nearestto) for more details.
#### Defined in
[table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249)
___
### version
▸ **version**(): `Promise`\<`number`\>
Retrieve the version of the table
LanceDb supports versioning. Every operation that modifies the table increases
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
version to view the data at that point. In addition, you can `[Self::restore]` the
version to replace the current table with a previous version.
#### Returns
`Promise`\<`number`\>
#### Defined in
[table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297)

View File

@@ -0,0 +1,45 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions
# Class: VectorColumnOptions
## Table of contents
### Constructors
- [constructor](VectorColumnOptions.md#constructor)
### Properties
- [type](VectorColumnOptions.md#type)
## Constructors
### constructor
**new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
#### Returns
[`VectorColumnOptions`](VectorColumnOptions.md)
#### Defined in
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
## Properties
### type
**type**: `Float`\<`Floats`\>
Vector column type.
#### Defined in
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)

View File

@@ -0,0 +1,531 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery
# Class: VectorQuery
A builder used to construct a vector search
This builder can be reused to execute the query many times.
## Hierarchy
- [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\>
**`VectorQuery`**
## Table of contents
### Constructors
- [constructor](VectorQuery.md#constructor)
### Properties
- [inner](VectorQuery.md#inner)
### Methods
- [[asyncIterator]](VectorQuery.md#[asynciterator])
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
- [column](VectorQuery.md#column)
- [distanceType](VectorQuery.md#distancetype)
- [execute](VectorQuery.md#execute)
- [limit](VectorQuery.md#limit)
- [nativeExecute](VectorQuery.md#nativeexecute)
- [nprobes](VectorQuery.md#nprobes)
- [postfilter](VectorQuery.md#postfilter)
- [refineFactor](VectorQuery.md#refinefactor)
- [select](VectorQuery.md#select)
- [toArray](VectorQuery.md#toarray)
- [toArrow](VectorQuery.md#toarrow)
- [where](VectorQuery.md#where)
## Constructors
### constructor
**new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `VectorQuery` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
## Properties
### inner
`Protected` **inner**: `VectorQuery`
#### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### bypassVectorIndex
**bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
If this is called then any vector index is skipped
An exhaustive (flat) search will be performed. The query vector will
be compared to every vector in the table. At high scales this can be
expensive. However, this is often still useful. For example, skipping
the vector index can give you ground truth results which you can use to
calculate your recall to select an appropriate value for nprobes.
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321)
___
### column
**column**(`column`): [`VectorQuery`](VectorQuery.md)
Set the vector column to query
This controls which column is compared to the query vector supplied in
the call to
#### Parameters
| Name | Type |
| :------ | :------ |
| `column` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[Query#nearestTo](Query.md#nearestto)
This parameter must be specified if the table has more than one column
whose data type is a fixed-size-list of floats.
#### Defined in
[query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229)
___
### distanceType
**distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
Set the distance metric to use
When performing a vector search we try and find the "nearest" vectors according
to some kind of distance metric. This parameter controls which distance metric to
use. See
#### Parameters
| Name | Type |
| :------ | :------ |
| `distanceType` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
distance metrics available.
Note: if there is a vector index then the distance type used MUST match the distance
type used to train the vector index. If this is not done then the results will be
invalid.
By default "l2" is used.
#### Defined in
[query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): [`VectorQuery`](VectorQuery.md)
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### nprobes
**nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
Set the number of partitions to search (probe)
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
The IVF stage of IVF PQ divides the input into partitions (clusters) of
related values.
The partition whose centroids are closest to the query vector will be
exhaustiely searched to find matches. This parameter controls how many
partitions should be searched.
Increasing this value will increase the recall of your query but will
also increase the latency of your query. The default value is 20. This
default is good for many cases but the best value to use will depend on
your data and the recall that you need to achieve.
For best results we recommend tuning this parameter with a benchmark against
your actual data to find the smallest possible value that will still give
you the desired recall.
#### Parameters
| Name | Type |
| :------ | :------ |
| `nprobes` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215)
___
### postfilter
**postfilter**(): [`VectorQuery`](VectorQuery.md)
If this is called then filtering will happen after the vector search instead of
before.
By default filtering will be performed before the vector search. This is how
filtering is typically understood to work. This prefilter step does add some
additional latency. Creating a scalar index on the filter column(s) can
often improve this latency. However, sometimes a filter is too complex or scalar
indices cannot be applied to the column. In these cases postfiltering can be
used instead of prefiltering to improve latency.
Post filtering applies the filter to the results of the vector search. This means
we only run the filter on a much smaller set of data. However, it can cause the
query to return fewer than `limit` results (or even no results) if none of the nearest
results match the filter.
Post filtering happens during the "refine stage" (described in more detail in
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering.
#### Defined in
[query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307)
___
### refineFactor
**refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
A multiplier to control how many additional rows are taken during the refine step
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
An IVF PQ index stores compressed (quantized) values. They query vector is compared
against these values and, since they are compressed, the comparison is inaccurate.
This parameter can be used to refine the results. It can improve both improve recall
and correct the ordering of the nearest results.
To refine results LanceDb will first perform an ANN search to find the nearest
`limit` * `refine_factor` results. In other words, if `refine_factor` is 3 and
`limit` is the default (10) then the first 30 results will be selected. LanceDb
then fetches the full, uncompressed, values for these 30 results. The results are
then reordered by the true distance and only the nearest 10 are kept.
Note: there is a difference between calling this method with a value of 1 and never
calling this method at all. Calling this method with any value will have an impact
on your search latency. When you call this method with a `refine_factor` of 1 then
LanceDb still needs to fetch the full, uncompressed, values so that it can potentially
reorder the results.
Note: if this method is NOT called then the distances returned in the _distance column
will be approximate distances based on the comparison of the quantized query vector
and the quantized result vectors. This can be considerably different than the true
distance between the query vector and the actual uncompressed vector.
#### Parameters
| Name | Type |
| :------ | :------ |
| `refineFactor` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282)
___
### select
**select**(`columns`): [`VectorQuery`](VectorQuery.md)
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): [`VectorQuery`](VectorQuery.md)
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,111 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
## Table of contents
### Constructors
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `"text-embedding-ada-002"` |
#### Returns
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Defined in
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
## Methods
### embed
**embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`\<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)

View File

@@ -0,0 +1,43 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"Append"``
#### Defined in
native.d.ts:69
___
### Create
• **Create** = ``"Create"``
#### Defined in
native.d.ts:68
___
### Overwrite
• **Overwrite** = ``"Overwrite"``
#### Defined in
native.d.ts:70

View File

@@ -0,0 +1,37 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql
# Interface: AddColumnsSql
A definition of a new column to add to a table.
## Table of contents
### Properties
- [name](AddColumnsSql.md#name)
- [valueSql](AddColumnsSql.md#valuesql)
## Properties
### name
**name**: `string`
The name of the new column.
#### Defined in
native.d.ts:43
___
### valueSql
**valueSql**: `string`
The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table.
#### Defined in
native.d.ts:48

View File

@@ -0,0 +1,25 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions
# Interface: AddDataOptions
Options for adding data to a table.
## Table of contents
### Properties
- [mode](AddDataOptions.md#mode)
## Properties
### mode
**mode**: ``"append"`` \| ``"overwrite"``
If "append" (the default) then the new data will be added to the table
If "overwrite" then the new data will replace the existing data in the table.
#### Defined in
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)

View File

@@ -0,0 +1,56 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration
# Interface: ColumnAlteration
A definition of a column alteration. The alteration changes the column at
`path` to have the new name `name`, to be nullable if `nullable` is true,
and to have the data type `data_type`. At least one of `rename` or `nullable`
must be provided.
## Table of contents
### Properties
- [nullable](ColumnAlteration.md#nullable)
- [path](ColumnAlteration.md#path)
- [rename](ColumnAlteration.md#rename)
## Properties
### nullable
`Optional` **nullable**: `boolean`
Set the new nullability. Note that a nullable column cannot be made non-nullable.
#### Defined in
native.d.ts:38
___
### path
**path**: `string`
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
a nested column then it is the path to the column, e.g. "a.b.c" for a column
`c` nested inside a column `b` nested inside a column `a`.
#### Defined in
native.d.ts:31
___
### rename
`Optional` **rename**: `string`
The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table.
#### Defined in
native.d.ts:36

View File

@@ -0,0 +1,51 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
## Properties
### apiKey
`Optional` **apiKey**: `string`
#### Defined in
native.d.ts:51
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
native.d.ts:52
___
### readConsistencyInterval
`Optional` **readConsistencyInterval**: `number`
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
checked. For performance reasons, this is the default. For strong
consistency, set this to zero seconds. Then every read will check for
updates from other processes. As a compromise, you can set this to a
non-zero value for eventual consistency. If more than that interval
has passed since the last check, then the table will be checked for updates.
Note: this consistency only applies to read operations. Write operations are
always consistent.
#### Defined in
native.d.ts:64

View File

@@ -0,0 +1,41 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions
## Table of contents
### Properties
- [existOk](CreateTableOptions.md#existok)
- [mode](CreateTableOptions.md#mode)
## Properties
### existOk
**existOk**: `boolean`
If this is true and the table already exists and the mode is "create"
then no error will be raised.
#### Defined in
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
___
### mode
**mode**: ``"overwrite"`` \| ``"create"``
The mode to use when creating the table.
If this is set to "create" and the table already exists then either
an error will be thrown or, if existOk is true, then nothing will
happen. Any provided data will be ignored.
If this is set to "overwrite" then any existing table will be replaced.
#### Defined in
[connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30)

View File

@@ -0,0 +1,7 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ExecutableQuery
# Interface: ExecutableQuery
An interface for a query that can be executed
Supported by all query types

View File

@@ -0,0 +1,39 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexConfig
# Interface: IndexConfig
A description of an index currently configured on a column
## Table of contents
### Properties
- [columns](IndexConfig.md#columns)
- [indexType](IndexConfig.md#indextype)
## Properties
### columns
**columns**: `string`[]
The columns in the index
Currently this is always an array of size 1. In the future there may
be more columns to represent composite indices.
#### Defined in
native.d.ts:16
___
### indexType
**indexType**: `string`
The type of the index
#### Defined in
native.d.ts:9

View File

@@ -0,0 +1,48 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexOptions
# Interface: IndexOptions
## Table of contents
### Properties
- [config](IndexOptions.md#config)
- [replace](IndexOptions.md#replace)
## Properties
### config
`Optional` **config**: [`Index`](../classes/Index.md)
Advanced index configuration
This option allows you to specify a specfic index to create and also
allows you to pass in configuration for training the index.
See the static methods on Index for details on the various index types.
If this is not supplied then column data type(s) and column statistics
will be used to determine the most useful kind of index to create.
#### Defined in
[indices.ts:192](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L192)
___
### replace
`Optional` **replace**: `boolean`
Whether to replace the existing index
If this is false, and another index already exists on the same columns
and the same name, then an error will be returned. This is true even if
that index is out of date.
The default is true
#### Defined in
[indices.ts:202](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L202)

View File

@@ -0,0 +1,144 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IvfPqOptions
# Interface: IvfPqOptions
Options to create an `IVF_PQ` index
## Table of contents
### Properties
- [distanceType](IvfPqOptions.md#distancetype)
- [maxIterations](IvfPqOptions.md#maxiterations)
- [numPartitions](IvfPqOptions.md#numpartitions)
- [numSubVectors](IvfPqOptions.md#numsubvectors)
- [sampleRate](IvfPqOptions.md#samplerate)
## Properties
### distanceType
`Optional` **distanceType**: ``"l2"`` \| ``"cosine"`` \| ``"dot"``
Distance type to use to build the index.
Default value is "l2".
This is used when training the index to calculate the IVF partitions
(vectors are grouped in partitions with similar vectors according to this
distance type) and to calculate a subvector's code during quantization.
The distance type used to train an index MUST match the distance type used
to search the index. Failure to do so will yield inaccurate results.
The following distance types are available:
"l2" - Euclidean distance. This is a very common distance metric that
accounts for both magnitude and direction when determining the distance
between vectors. L2 distance has a range of [0, ∞).
"cosine" - Cosine distance. Cosine distance is a distance metric
calculated from the cosine similarity between two vectors. Cosine
similarity is a measure of similarity between two non-zero vectors of an
inner product space. It is defined to equal the cosine of the angle
between them. Unlike L2, the cosine distance is not affected by the
magnitude of the vectors. Cosine distance has a range of [0, 2].
Note: the cosine distance is undefined when one (or both) of the vectors
are all zeros (there is no direction). These vectors are invalid and may
never be returned from a vector search.
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance.
#### Defined in
[indices.ts:83](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L83)
___
### maxIterations
• `Optional` **maxIterations**: `number`
Max iteration to train IVF kmeans.
When training an IVF PQ index we use kmeans to calculate the partitions. This parameter
controls how many iterations of kmeans to run.
Increasing this might improve the quality of the index but in most cases these extra
iterations have diminishing returns.
The default value is 50.
#### Defined in
[indices.ts:96](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L96)
___
### numPartitions
• `Optional` **numPartitions**: `number`
The number of IVF partitions to create.
This value should generally scale with the number of rows in the dataset.
By default the number of partitions is the square root of the number of
rows.
If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
#### Defined in
[indices.ts:32](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L32)
___
### numSubVectors
• `Optional` **numSubVectors**: `number`
Number of sub-vectors of PQ.
This value controls how much the vector is compressed during the quantization step.
The more sub vectors there are the less the vector is compressed. The default is
the dimension of the vector divided by 16. If the dimension is not evenly divisible
by 16 we use the dimension divded by 8.
The above two cases are highly preferred. Having 8 or 16 values per subvector allows
us to use efficient SIMD instructions.
If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
will likely result in poor performance.
#### Defined in
[indices.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L48)
___
### sampleRate
• `Optional` **sampleRate**: `number`
The number of vectors, per partition, to sample when training IVF kmeans.
When an IVF PQ index is trained, we need to calculate partitions. These are groups
of vectors that are similar to each other. To do this we use an algorithm called kmeans.
Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
random sample of the data. This parameter controls the size of the sample. The total
number of vectors used to train the index is `sample_rate * num_partitions`.
Increasing this value might improve the quality of the index but in most cases the
default should be sufficient.
The default value is 256.
#### Defined in
[indices.ts:113](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L113)

View File

@@ -0,0 +1,38 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / TableNamesOptions
# Interface: TableNamesOptions
## Table of contents
### Properties
- [limit](TableNamesOptions.md#limit)
- [startAfter](TableNamesOptions.md#startafter)
## Properties
### limit
`Optional` **limit**: `number`
An optional limit to the number of results to return.
#### Defined in
[connection.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L48)
___
### startAfter
`Optional` **startAfter**: `string`
If present, only return names that come lexicographically after the
supplied value.
This can be combined with limit to implement pagination by setting this to
the last table name from the previous page.
#### Defined in
[connection.ts:46](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L46)

View File

@@ -0,0 +1,28 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / UpdateOptions
# Interface: UpdateOptions
## Table of contents
### Properties
- [where](UpdateOptions.md#where)
## Properties
### where
**where**: `string`
A filter that limits the scope of the update.
This should be an SQL filter expression.
Only rows that satisfy the expression will be updated.
For example, this could be 'my_col == 0' to replace all instances
of 0 in a column with some other default value.
#### Defined in
[table.ts:50](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L50)

View File

@@ -0,0 +1,21 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteOptions
# Interface: WriteOptions
Write options when creating a Table.
## Table of contents
### Properties
- [mode](WriteOptions.md#mode)
## Properties
### mode
`Optional` **mode**: [`WriteMode`](../enums/WriteMode.md)
#### Defined in
native.d.ts:74

View File

@@ -0,0 +1,129 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / EmbeddingFunction
# Interface: EmbeddingFunction\<T\>
[embedding](../modules/embedding.md).EmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/embedding.OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [destColumn](embedding.EmbeddingFunction.md#destcolumn)
- [embed](embedding.EmbeddingFunction.md#embed)
- [embeddingDataType](embedding.EmbeddingFunction.md#embeddingdatatype)
- [embeddingDimension](embedding.EmbeddingFunction.md#embeddingdimension)
- [excludeSource](embedding.EmbeddingFunction.md#excludesource)
- [sourceColumn](embedding.EmbeddingFunction.md#sourcecolumn)
## Properties
### destColumn
`Optional` **destColumn**: `string`
The name of the column that will contain the embedding
By default this is "vector"
#### Defined in
[embedding/embedding_function.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L49)
___
### embed
**embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Type declaration
▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`\<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L62)
___
### embeddingDataType
`Optional` **embeddingDataType**: `Float`\<`Floats`\>
The data type of the embedding
The embedding function should return `number`. This will be converted into
an Arrow float array. By default this will be Float32 but this property can
be used to control the conversion.
#### Defined in
[embedding/embedding_function.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L33)
___
### embeddingDimension
`Optional` **embeddingDimension**: `number`
The dimension of the embedding
This is optional, normally this can be determined by looking at the results of
`embed`. If this is not specified, and there is an attempt to apply the embedding
to an empty table, then that process will fail.
#### Defined in
[embedding/embedding_function.ts:42](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L42)
___
### excludeSource
`Optional` **excludeSource**: `boolean`
Should the source column be excluded from the resulting table
By default the source column is included. Set this to true and
only the embedding will be stored.
#### Defined in
[embedding/embedding_function.ts:57](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L57)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L24)

208
docs/src/js/modules.md Normal file
View File

@@ -0,0 +1,208 @@
[@lancedb/lancedb](README.md) / Exports
# @lancedb/lancedb
## Table of contents
### Namespaces
- [embedding](modules/embedding.md)
### Enumerations
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
### Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases
- [Data](modules.md#data)
### Functions
- [connect](modules.md#connect)
- [makeArrowTable](modules.md#makearrowtable)
## Type Aliases
### Data
Ƭ **Data**: `Record`\<`string`, `unknown`\>[] \| `ArrowTable`
Data type accepted by NodeJS SDK
#### Defined in
[arrow.ts:40](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L40)
## Functions
### connect
**connect**(`uri`, `opts?`): `Promise`\<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI.
Accpeted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. If the database uri starts with `db://` then it connects to a remote database. |
| `opts?` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | - |
#### Returns
`Promise`\<[`Connection`](classes/Connection.md)\>
**`See`**
[ConnectionOptions](interfaces/ConnectionOptions.md) for more details on the URI format.
#### Defined in
[index.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/index.ts#L62)
___
### makeArrowTable
**makeArrowTable**(`data`, `options?`): `ArrowTable`
An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns.
(typically you do not need to call this function. It will be called automatically
when creating a table or adding data to it)
This function converts an array of Record<String, any> (row-major JS objects)
to an Arrow Table (a columnar structure)
Note that it currently does not support nulls.
If a schema is provided then it will be used to determine the resulting array
types. Fields will also be reordered to fit the order defined by the schema.
If a schema is not provided then the types will be inferred and the field order
will be controlled by the order of properties in the first record. If a type
is inferred it will always be nullable.
If the input is empty then a schema must be provided to create an empty table.
When a schema is not specified then data types will be inferred. The inference
rules are as follows:
- boolean => Bool
- number => Float64
- String => Utf8
- Buffer => Binary
- Record<String, any> => Struct
- Array<any> => List
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] |
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
#### Returns
`ArrowTable`
**`Example`**
import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
const schema = new Schema([
new Field("a", new Int32()),
new Field("b", new Float32()),
new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
]);
const table = makeArrowTable([
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] },
], { schema });
```
By default it assumes that the column named `vector` is a vector column
and it will be converted into a fixed size list array of type float32.
The `vectorColumns` option can be used to support other vector column
names and data types.
```ts
const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
```
You can specify the vector column types and names using the options as well
```typescript
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
const table = makeArrowTable([
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
assert.deepEqual(table.schema, schema)
```
#### Defined in
[arrow.ts:197](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L197)

View File

@@ -0,0 +1,45 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / embedding
# Namespace: embedding
## Table of contents
### Classes
- [OpenAIEmbeddingFunction](../classes/embedding.OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md)
### Functions
- [isEmbeddingFunction](embedding.md#isembeddingfunction)
## Functions
### isEmbeddingFunction
**isEmbeddingFunction**\<`T`\>(`value`): value is EmbeddingFunction\<T\>
Test if the input seems to be an embedding function
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `unknown` |
#### Returns
value is EmbeddingFunction\<T\>
#### Defined in
[embedding/embedding_function.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L66)

76
docs/src/migration.md Normal file
View File

@@ -0,0 +1,76 @@
# Rust-backed Client Migration Guide
In an effort to ensure all clients have the same set of capabilities we have begun migrating the
python and node clients onto a common Rust base library. In python, this new client is part of
the same lancedb package, exposed as an asynchronous client. Once the asynchronous client has
reached full functionality we will begin migrating the synchronous library to be a thin wrapper
around the asynchronous client.
This guide describes the differences between the two APIs and will hopefully assist users
that would like to migrate to the new API.
## Closeable Connections
The Connection now has a `close` method. You can call this when
you are done with the connection to eagerly free resources. Currently
this is limited to freeing/closing the HTTP connection for remote
connections. In the future we may add caching or other resources to
native connections so this is probably a good practice even if you
aren't using remote connections.
In addition, the connection can be used as a context manager which may
be a more convenient way to ensure the connection is closed.
```python
import lancedb
async def my_async_fn():
with await lancedb.connect_async("my_uri") as db:
print(await db.table_names())
```
It is not mandatory to call the `close` method. If you do not call it
then the connection will be closed when the object is garbage collected.
## Closeable Table
The Table now also has a `close` method, similar to the connection. This
can be used to eagerly free the cache used by a Table object. Similar to
the connection, it can be used as a context manager and it is not mandatory
to call the `close` method.
### Changes to Table APIs
- Previously `Table.schema` was a property. Now it is an async method.
- The method `Table.__len__` was removed and `len(table)` will no longer
work. Use `Table.count_rows` instead.
### Creating Indices
The `Table.create_index` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
column to index). Vector index defaults are now smarter and scale better with
the size of the data.
To specify index configuration details you will need to specify which kind of
index you are using.
### Querying
The `Table.search` method has been renamed to `AsyncTable.vector_search` for
clarity.
## Features not yet supported
The following features are not yet supported by the asynchronous API. However,
we plan to support them soon.
- You cannot specify an embedding function when creating or opening a table.
You must calculate embeddings yourself if using the asynchronous API
- The merge insert operation is not supported in the asynchronous API
- Cleanup / compact / optimize indices are not supported in the asynchronous API
- add / alter columns is not supported in the asynchronous API
- The asynchronous API does not yet support any full text search or reranking
search
- Remote connections to LanceDb Cloud are not yet supported.
- The method Table.head is not yet supported.

View File

@@ -8,17 +8,20 @@ This section contains the API reference for the OSS Python API.
pip install lancedb
```
## Connection
The following methods describe the synchronous API client. There
is also an [asynchronous API client](#connections-asynchronous).
## Connections (Synchronous)
::: lancedb.connect
::: lancedb.db.DBConnection
## Table
## Tables (Synchronous)
::: lancedb.table.Table
## Querying
## Querying (Synchronous)
::: lancedb.query.Query
@@ -87,3 +90,41 @@ pip install lancedb
::: lancedb.rerankers.cross_encoder.CrossEncoderReranker
::: lancedb.rerankers.openai.OpenaiReranker
## Connections (Asynchronous)
Connections represent a connection to a LanceDb database and
can be used to create, list, or open tables.
::: lancedb.connect_async
::: lancedb.db.AsyncConnection
## Tables (Asynchronous)
Table hold your actual data as a collection of records / rows.
::: lancedb.table.AsyncTable
## Indices (Asynchronous)
Indices can be created on a table to speed up queries. This section
lists the indices that LanceDb supports.
::: lancedb.index.BTree
::: lancedb.index.IvfPq
## Querying (Asynchronous)
Queries allow you to return data from your database. Basic queries can be
created with the [AsyncTable.query][lancedb.table.AsyncTable.query] method
to return the entire (typically filtered) table. Vector searches return the
rows nearest to a query vector and can be created with the
[AsyncTable.vector_search][lancedb.table.AsyncTable.vector_search] method.
::: lancedb.query.AsyncQueryBase
::: lancedb.query.AsyncQuery
::: lancedb.query.AsyncVectorQuery

View File

@@ -22,7 +22,7 @@ Currently, LanceDB supports the following metrics:
## Exhaustive search (kNN)
If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space
and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
and computes the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
<!-- Setup Code
```python
@@ -85,7 +85,7 @@ To perform scalable vector retrieval with acceptable latencies, it's common to b
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
an ANN search means that using an index often involves a trade-off between recall and latency.
See the [IVF_PQ index](./concepts/index_ivfpq.md.md) for a deeper description of how `IVF_PQ`
See the [IVF_PQ index](./concepts/index_ivfpq.md) for a deeper description of how `IVF_PQ`
indexes work in LanceDB.
## Output search results
@@ -184,4 +184,3 @@ Let's create a LanceDB table with a nested schema:
Note that in this case the extra `_distance` field is discarded since
it's not part of the LanceSchema.

View File

@@ -66,6 +66,7 @@ Currently, Lance supports a growing list of SQL expressions.
- `LIKE`, `NOT LIKE`
- `CAST`
- `regexp_match(column, pattern)`
- [DataFusion Functions](https://arrow.apache.org/datafusion/user-guide/sql/scalar_functions.html)
For example, the following filter string is acceptable:

14
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.4.13",
"version": "0.4.16",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.4.13",
"version": "0.4.16",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.13",
"@lancedb/vectordb-darwin-x64": "0.4.13",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.13",
"@lancedb/vectordb-linux-x64-gnu": "0.4.13",
"@lancedb/vectordb-win32-x64-msvc": "0.4.13"
"@lancedb/vectordb-darwin-arm64": "0.4.16",
"@lancedb/vectordb-darwin-x64": "0.4.16",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.16",
"@lancedb/vectordb-linux-x64-gnu": "0.4.16",
"@lancedb/vectordb-win32-x64-msvc": "0.4.16"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.4.13",
"version": "0.4.16",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -88,10 +88,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.13",
"@lancedb/vectordb-darwin-x64": "0.4.13",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.13",
"@lancedb/vectordb-linux-x64-gnu": "0.4.13",
"@lancedb/vectordb-win32-x64-msvc": "0.4.13"
"@lancedb/vectordb-darwin-arm64": "0.4.16",
"@lancedb/vectordb-darwin-x64": "0.4.16",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.16",
"@lancedb/vectordb-linux-x64-gnu": "0.4.16",
"@lancedb/vectordb-win32-x64-msvc": "0.4.16"
}
}

View File

@@ -24,6 +24,7 @@ import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util'
import { type HttpMiddleware } from './middleware'
const {
databaseNew,
@@ -302,6 +303,18 @@ export interface Connection {
* @param name The name of the table to drop.
*/
dropTable(name: string): Promise<void>
/**
* Instrument the behavior of this Connection with middleware.
*
* The middleware will be called in the order they are added.
*
* Currently this functionality is only supported for remote Connections.
*
* @param {HttpMiddleware} - Middleware which will instrument the Connection.
* @returns - this Connection instrumented by the passed middleware
*/
withMiddleware(middleware: HttpMiddleware): Connection
}
/**
@@ -541,6 +554,18 @@ export interface Table<T = number[]> {
* names (e.g. "a").
*/
dropColumns(columnNames: string[]): Promise<void>
/**
* Instrument the behavior of this Table with middleware.
*
* The middleware will be called in the order they are added.
*
* Currently this functionality is only supported for remote tables.
*
* @param {HttpMiddleware} - Middleware which will instrument the Table.
* @returns - this Table instrumented by the passed middleware
*/
withMiddleware(middleware: HttpMiddleware): Table<T>
}
/**
@@ -795,6 +820,10 @@ export class LocalConnection implements Connection {
async dropTable (name: string): Promise<void> {
await databaseDropTable.call(this._db, name)
}
withMiddleware (middleware: HttpMiddleware): Connection {
return this
}
}
export class LocalTable<T = number[]> implements Table<T> {
@@ -1105,6 +1134,10 @@ export class LocalTable<T = number[]> implements Table<T> {
async dropColumns (columnNames: string[]): Promise<void> {
return tableDropColumns.call(this._tbl, columnNames)
}
withMiddleware (middleware: HttpMiddleware): Table<T> {
return this
}
}
export interface CleanupStats {

58
node/src/middleware.ts Normal file
View File

@@ -0,0 +1,58 @@
// Copyright 2024 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* Middleware for Remote LanceDB Connection or Table
*/
export interface HttpMiddleware {
/**
* A callback that can be used to instrument the behavior of http requests to remote
* tables. It can be used to add headers, modify the request, or even short-circuit
* the request and return a response without making the request to the remote endpoint.
* It can also be used to modify the response from the remote endpoint.
*
* @param {RemoteResponse} res - Request to the remote endpoint
* @param {onRemoteRequestNext} next - Callback to advance the middleware chain
*/
onRemoteRequest(
req: RemoteRequest,
next: (req: RemoteRequest) => Promise<RemoteResponse>,
): Promise<RemoteResponse>
};
export enum Method {
GET,
POST
}
/**
* A LanceDB Remote HTTP Request
*/
export interface RemoteRequest {
uri: string
method: Method
headers: Map<string, string>
params?: Map<string, string>
body?: any
}
/**
* A LanceDB Remote HTTP Response
*/
export interface RemoteResponse {
status: number
statusText: string
headers: Map<string, string>
body: () => Promise<any>
}

View File

@@ -38,7 +38,7 @@ export class Query<T = number[]> {
constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = undefined
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
@@ -50,6 +50,7 @@ export class Query<T = number[]> {
/***
* Sets the number of results that will be returned
* default value is 10
* @param value number of results
*/
limit (value: number): Query<T> {

View File

@@ -12,13 +12,113 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import axios, { type AxiosResponse } from 'axios'
import axios, { type AxiosResponse, type ResponseType } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
import { type RemoteResponse, type RemoteRequest, Method } from '../middleware'
interface HttpLancedbClientMiddleware {
onRemoteRequest(
req: RemoteRequest,
next: (req: RemoteRequest) => Promise<RemoteResponse>,
): Promise<RemoteResponse>
}
/**
* Invoke the middleware chain and at the end call the remote endpoint
*/
async function callWithMiddlewares (
req: RemoteRequest,
middlewares: HttpLancedbClientMiddleware[],
opts?: MiddlewareInvocationOptions
): Promise<RemoteResponse> {
async function call (
i: number,
req: RemoteRequest
): Promise<RemoteResponse> {
// if we have reached the end of the middleware chain, make the request
if (i > middlewares.length) {
const headers = Object.fromEntries(req.headers.entries())
const params = Object.fromEntries(req.params?.entries() ?? [])
const timeout = 10000
let res
if (req.method === Method.POST) {
res = await axios.post(
req.uri,
req.body,
{
headers,
params,
timeout,
responseType: opts?.responseType
}
)
} else {
res = await axios.get(
req.uri,
{
headers,
params,
timeout
}
)
}
return toLanceRes(res)
}
// call next middleware in chain
return await middlewares[i - 1].onRemoteRequest(
req,
async (req) => {
return await call(i + 1, req)
}
)
}
return await call(1, req)
}
interface MiddlewareInvocationOptions {
responseType?: ResponseType
}
/**
* Marshall the library response into a LanceDB response
*/
function toLanceRes (res: AxiosResponse): RemoteResponse {
const headers = new Map()
for (const h in res.headers) {
headers.set(h, res.headers[h])
}
return {
status: res.status,
statusText: res.statusText,
headers,
body: async () => {
return res.data
}
}
}
async function decodeErrorData(
res: RemoteResponse,
responseType?: ResponseType
): Promise<string> {
const errorData = await res.body()
if (responseType === 'arraybuffer') {
return new TextDecoder().decode(errorData)
} else {
return errorData
}
}
export class HttpLancedbClient {
private readonly _url: string
private readonly _apiKey: () => string
private readonly _middlewares: HttpLancedbClientMiddleware[]
public constructor (
url: string,
@@ -27,6 +127,7 @@ export class HttpLancedbClient {
) {
this._url = url
this._apiKey = () => apiKey
this._middlewares = []
}
get uri (): string {
@@ -43,74 +144,61 @@ export class HttpLancedbClient {
columns?: string[],
filter?: string
): Promise<ArrowTable<any>> {
const response = await axios.post(
`${this._url}/v1/table/${tableName}/query/`,
{
vector,
k,
nprobes,
refineFactor,
columns,
filter,
prefilter
},
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
responseType: 'arraybuffer',
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
const table = tableFromIPC(response.data)
const result = await this.post(
`/v1/table/${tableName}/query/`,
{
vector,
k,
nprobes,
refineFactor,
columns,
filter,
prefilter
},
undefined,
undefined,
'arraybuffer'
)
const table = tableFromIPC(await result.body())
return table
}
/**
* Sent GET request.
*/
public async get (path: string, params?: Record<string, string | number>): Promise<AxiosResponse> {
const response = await axios.get(
`${this._url}${path}`,
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 10000
}
).catch((err) => {
public async get (path: string, params?: Record<string, string>): Promise<RemoteResponse> {
const req = {
uri: `${this._url}${path}`,
method: Method.GET,
headers: new Map(Object.entries({
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
})),
params: new Map(Object.entries(params ?? {}))
}
let response
try {
response = await callWithMiddlewares(req, this._middlewares)
return response
} catch (err: any) {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
response = toLanceRes(err.response)
}
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
const errorData = await decodeErrorData(response)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
`Server Error, status: ${response.status}, ` +
`message: ${response.statusText}: ${errorData}`
)
}
return response
}
@@ -120,35 +208,65 @@ export class HttpLancedbClient {
public async post (
path: string,
data?: any,
params?: Record<string, string | number>,
content?: string | undefined
): Promise<AxiosResponse> {
const response = await axios.post(
`${this._url}${path}`,
data,
{
headers: {
'Content-Type': content ?? 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 30000
}
).catch((err) => {
params?: Record<string, string>,
content?: string | undefined,
responseType?: ResponseType | undefined
): Promise<RemoteResponse> {
const req = {
uri: `${this._url}${path}`,
method: Method.POST,
headers: new Map(Object.entries({
'Content-Type': content ?? 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
})),
params: new Map(Object.entries(params ?? {})),
body: data
}
let response
try {
response = await callWithMiddlewares(req, this._middlewares, { responseType })
// return response
} catch (err: any) {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
response = toLanceRes(err.response)
}
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
const errorData = await decodeErrorData(response, responseType)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
`Server Error, status: ${response.status}, ` +
`message: ${response.statusText}: ${errorData}`
)
}
return response
}
/**
* Instrument this client with middleware
* @param mw - The middleware that instruments the client
* @returns - an instance of this client instrumented with the middleware
*/
public withMiddleware (mw: HttpLancedbClientMiddleware): HttpLancedbClient {
const wrapped = this.clone()
wrapped._middlewares.push(mw)
return wrapped
}
/**
* Make a clone of this client
*/
private clone (): HttpLancedbClient {
const clone = new HttpLancedbClient(this._url, this._apiKey(), this._dbName)
for (const mw of this._middlewares) {
clone._middlewares.push(mw)
}
return clone
}
}

View File

@@ -39,12 +39,13 @@ import {
fromTableToStreamBuffer
} from '../arrow'
import { toSQL } from '../util'
import { type HttpMiddleware } from '../middleware'
/**
* Remote connection.
*/
export class RemoteConnection implements Connection {
private readonly _client: HttpLancedbClient
private _client: HttpLancedbClient
private readonly _dbName: string
constructor (opts: ConnectionOptions) {
@@ -84,10 +85,11 @@ export class RemoteConnection implements Connection {
limit: number = 10
): Promise<string[]> {
const response = await this._client.get('/v1/table/', {
limit,
limit: `${limit}`,
page_token: pageToken
})
return response.data.tables
const body = await response.body()
return body.tables
}
async openTable (name: string): Promise<Table>
@@ -154,7 +156,7 @@ export class RemoteConnection implements Connection {
}
const res = await this._client.post(
`/v1/table/${tableName}/create/`,
`/v1/table/${encodeURIComponent(tableName)}/create/`,
buffer,
undefined,
'application/vnd.apache.arrow.stream'
@@ -163,7 +165,7 @@ export class RemoteConnection implements Connection {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
`message: ${res.statusText}: ${await res.body()}`
)
}
@@ -175,7 +177,18 @@ export class RemoteConnection implements Connection {
}
async dropTable (name: string): Promise<void> {
await this._client.post(`/v1/table/${name}/drop/`)
await this._client.post(`/v1/table/${encodeURIComponent(name)}/drop/`)
}
withMiddleware (middleware: HttpMiddleware): Connection {
const wrapped = this.clone()
wrapped._client = wrapped._client.withMiddleware(middleware)
return wrapped
}
private clone (): RemoteConnection {
const clone: RemoteConnection = Object.create(RemoteConnection.prototype)
return Object.assign(clone, this)
}
}
@@ -229,7 +242,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
// we are using extend until we have next next version release
// Table and Connection has both been refactored to interfaces
export class RemoteTable<T = number[]> implements Table<T> {
private readonly _client: HttpLancedbClient
private _client: HttpLancedbClient
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _name: string
@@ -255,21 +268,21 @@ export class RemoteTable<T = number[]> implements Table<T> {
get schema (): Promise<any> {
return this._client
.post(`/v1/table/${this._name}/describe/`)
.then((res) => {
.post(`/v1/table/${encodeURIComponent(this._name)}/describe/`)
.then(async (res) => {
if (res.status !== 200) {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
`message: ${res.statusText}: ${await res.body()}`
)
}
return res.data?.schema
return (await res.body())?.schema
})
}
search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new)
return new RemoteQuery(query, this._client, encodeURIComponent(this._name)) //, this._embeddings_new)
}
filter (where: string): Query<T> {
@@ -311,7 +324,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/merge_insert/`,
`/v1/table/${encodeURIComponent(this._name)}/merge_insert/`,
buffer,
queryParams,
'application/vnd.apache.arrow.stream'
@@ -320,7 +333,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
`message: ${res.statusText}: ${await res.body()}`
)
}
}
@@ -335,7 +348,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/insert/`,
`/v1/table/${encodeURIComponent(this._name)}/insert/`,
buffer,
{
mode: 'append'
@@ -346,7 +359,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
`message: ${res.statusText}: ${await res.body()}`
)
}
return tbl.numRows
@@ -361,7 +374,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
}
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/insert/`,
`/v1/table/${encodeURIComponent(this._name)}/insert/`,
buffer,
{
mode: 'overwrite'
@@ -372,7 +385,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
`message: ${res.statusText}: ${await res.body()}`
)
}
return tbl.numRows
@@ -408,14 +421,14 @@ export class RemoteTable<T = number[]> implements Table<T> {
index_cache_size: indexCacheSize
}
const res = await this._client.post(
`/v1/table/${this._name}/create_index/`,
`/v1/table/${encodeURIComponent(this._name)}/create_index/`,
data
)
if (res.status !== 200) {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
`message: ${res.statusText}: ${await res.body()}`
)
}
}
@@ -429,25 +442,27 @@ export class RemoteTable<T = number[]> implements Table<T> {
replace: true
}
const res = await this._client.post(
`/v1/table/${this._name}/create_scalar_index/`,
`/v1/table/${encodeURIComponent(this._name)}/create_scalar_index/`,
data
)
if (res.status !== 200) {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
`message: ${res.statusText}: ${await res.body()}`
)
}
}
async countRows (): Promise<number> {
const result = await this._client.post(`/v1/table/${this._name}/describe/`)
return result.data?.stats?.num_rows
async countRows (filter?: string): Promise<number> {
const result = await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/count_rows/`, {
predicate: filter
})
return (await result.body())
}
async delete (filter: string): Promise<void> {
await this._client.post(`/v1/table/${this._name}/delete/`, {
await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/delete/`, {
predicate: filter
})
}
@@ -466,7 +481,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
updates[key] = toSQL(value)
}
}
await this._client.post(`/v1/table/${this._name}/update/`, {
await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/update/`, {
predicate: filter,
updates: Object.entries(updates).map(([key, value]) => [key, value])
})
@@ -474,9 +489,9 @@ export class RemoteTable<T = number[]> implements Table<T> {
async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(
`/v1/table/${this._name}/index/list/`
`/v1/table/${encodeURIComponent(this._name)}/index/list/`
)
return results.data.indexes?.map((index: any) => ({
return (await results.body()).indexes?.map((index: any) => ({
columns: index.columns,
name: index.index_name,
uuid: index.index_uuid
@@ -485,11 +500,12 @@ export class RemoteTable<T = number[]> implements Table<T> {
async indexStats (indexUuid: string): Promise<IndexStats> {
const results = await this._client.post(
`/v1/table/${this._name}/index/${indexUuid}/stats/`
`/v1/table/${encodeURIComponent(this._name)}/index/${indexUuid}/stats/`
)
const body = await results.body()
return {
numIndexedRows: results.data.num_indexed_rows,
numUnindexedRows: results.data.num_unindexed_rows
numIndexedRows: body?.num_indexed_rows,
numUnindexedRows: body?.num_unindexed_rows
}
}
@@ -504,4 +520,15 @@ export class RemoteTable<T = number[]> implements Table<T> {
async dropColumns (columnNames: string[]): Promise<void> {
throw new Error('Drop columns is not yet supported in LanceDB Cloud.')
}
withMiddleware(middleware: HttpMiddleware): Table<T> {
const wrapped = this.clone()
wrapped._client = wrapped._client.withMiddleware(middleware)
return wrapped
}
private clone (): RemoteTable<T> {
const clone: RemoteTable<T> = Object.create(RemoteTable.prototype)
return Object.assign(clone, this)
}
}

View File

@@ -79,7 +79,7 @@ import {
import type { IntBitWidth, TimeBitWidth } from "apache-arrow/type";
function sanitizeMetadata(
metadataLike?: unknown
metadataLike?: unknown,
): Map<string, string> | undefined {
if (metadataLike === undefined || metadataLike === null) {
return undefined;
@@ -90,7 +90,7 @@ function sanitizeMetadata(
for (const item of metadataLike) {
if (!(typeof item[0] === "string" || !(typeof item[1] === "string"))) {
throw Error(
"Expected metadata, if present, to be a Map<string, string> but it had non-string keys or values"
"Expected metadata, if present, to be a Map<string, string> but it had non-string keys or values",
);
}
}
@@ -105,7 +105,7 @@ function sanitizeInt(typeLike: object) {
typeof typeLike.isSigned !== "boolean"
) {
throw Error(
"Expected an Int Type to have a `bitWidth` and `isSigned` property"
"Expected an Int Type to have a `bitWidth` and `isSigned` property",
);
}
return new Int(typeLike.isSigned, typeLike.bitWidth as IntBitWidth);
@@ -128,7 +128,7 @@ function sanitizeDecimal(typeLike: object) {
typeof typeLike.bitWidth !== "number"
) {
throw Error(
"Expected a Decimal Type to have `scale`, `precision`, and `bitWidth` properties"
"Expected a Decimal Type to have `scale`, `precision`, and `bitWidth` properties",
);
}
return new Decimal(typeLike.scale, typeLike.precision, typeLike.bitWidth);
@@ -149,7 +149,7 @@ function sanitizeTime(typeLike: object) {
typeof typeLike.bitWidth !== "number"
) {
throw Error(
"Expected a Time type to have `unit` and `bitWidth` properties"
"Expected a Time type to have `unit` and `bitWidth` properties",
);
}
return new Time(typeLike.unit, typeLike.bitWidth as TimeBitWidth);
@@ -172,7 +172,7 @@ function sanitizeTypedTimestamp(
| typeof TimestampNanosecond
| typeof TimestampMicrosecond
| typeof TimestampMillisecond
| typeof TimestampSecond
| typeof TimestampSecond,
) {
let timezone = null;
if ("timezone" in typeLike && typeof typeLike.timezone === "string") {
@@ -191,7 +191,7 @@ function sanitizeInterval(typeLike: object) {
function sanitizeList(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a List type to have an array-like `children` property"
"Expected a List type to have an array-like `children` property",
);
}
if (typeLike.children.length !== 1) {
@@ -203,7 +203,7 @@ function sanitizeList(typeLike: object) {
function sanitizeStruct(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Struct type to have an array-like `children` property"
"Expected a Struct type to have an array-like `children` property",
);
}
return new Struct(typeLike.children.map((child) => sanitizeField(child)));
@@ -216,47 +216,47 @@ function sanitizeUnion(typeLike: object) {
typeof typeLike.mode !== "number"
) {
throw Error(
"Expected a Union type to have `typeIds` and `mode` properties"
"Expected a Union type to have `typeIds` and `mode` properties",
);
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Union type to have an array-like `children` property"
"Expected a Union type to have an array-like `children` property",
);
}
return new Union(
typeLike.mode,
typeLike.typeIds as any,
typeLike.children.map((child) => sanitizeField(child))
typeLike.children.map((child) => sanitizeField(child)),
);
}
function sanitizeTypedUnion(
typeLike: object,
UnionType: typeof DenseUnion | typeof SparseUnion
UnionType: typeof DenseUnion | typeof SparseUnion,
) {
if (!("typeIds" in typeLike)) {
throw Error(
"Expected a DenseUnion/SparseUnion type to have a `typeIds` property"
"Expected a DenseUnion/SparseUnion type to have a `typeIds` property",
);
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a DenseUnion/SparseUnion type to have an array-like `children` property"
"Expected a DenseUnion/SparseUnion type to have an array-like `children` property",
);
}
return new UnionType(
typeLike.typeIds as any,
typeLike.children.map((child) => sanitizeField(child))
typeLike.children.map((child) => sanitizeField(child)),
);
}
function sanitizeFixedSizeBinary(typeLike: object) {
if (!("byteWidth" in typeLike) || typeof typeLike.byteWidth !== "number") {
throw Error(
"Expected a FixedSizeBinary type to have a `byteWidth` property"
"Expected a FixedSizeBinary type to have a `byteWidth` property",
);
}
return new FixedSizeBinary(typeLike.byteWidth);
@@ -268,7 +268,7 @@ function sanitizeFixedSizeList(typeLike: object) {
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a FixedSizeList type to have an array-like `children` property"
"Expected a FixedSizeList type to have an array-like `children` property",
);
}
if (typeLike.children.length !== 1) {
@@ -276,14 +276,14 @@ function sanitizeFixedSizeList(typeLike: object) {
}
return new FixedSizeList(
typeLike.listSize,
sanitizeField(typeLike.children[0])
sanitizeField(typeLike.children[0]),
);
}
function sanitizeMap(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Map type to have an array-like `children` property"
"Expected a Map type to have an array-like `children` property",
);
}
if (!("keysSorted" in typeLike) || typeof typeLike.keysSorted !== "boolean") {
@@ -291,7 +291,7 @@ function sanitizeMap(typeLike: object) {
}
return new Map_(
typeLike.children.map((field) => sanitizeField(field)) as any,
typeLike.keysSorted
typeLike.keysSorted,
);
}
@@ -319,7 +319,7 @@ function sanitizeDictionary(typeLike: object) {
sanitizeType(typeLike.dictionary),
sanitizeType(typeLike.indices) as any,
typeLike.id,
typeLike.isOrdered
typeLike.isOrdered,
);
}
@@ -454,7 +454,7 @@ function sanitizeField(fieldLike: unknown): Field {
!("nullable" in fieldLike)
) {
throw Error(
"The field passed in is missing a `type`/`name`/`nullable` property"
"The field passed in is missing a `type`/`name`/`nullable` property",
);
}
const type = sanitizeType(fieldLike.type);
@@ -473,6 +473,13 @@ function sanitizeField(fieldLike: unknown): Field {
return new Field(name, type, nullable, metadata);
}
/**
* Convert something schemaLike into a Schema instance
*
* This method is often needed even when the caller is using a Schema
* instance because they might be using a different instance of apache-arrow
* than lancedb is using.
*/
export function sanitizeSchema(schemaLike: unknown): Schema {
if (schemaLike instanceof Schema) {
return schemaLike;
@@ -482,7 +489,7 @@ export function sanitizeSchema(schemaLike: unknown): Schema {
}
if (!("fields" in schemaLike)) {
throw Error(
"The schema passed in does not appear to be a schema (no 'fields' property)"
"The schema passed in does not appear to be a schema (no 'fields' property)",
);
}
let metadata;
@@ -491,11 +498,11 @@ export function sanitizeSchema(schemaLike: unknown): Schema {
}
if (!Array.isArray(schemaLike.fields)) {
throw Error(
"The schema passed in had a 'fields' property but it was not an array"
"The schema passed in had a 'fields' property but it was not an array",
);
}
const sanitizedFields = schemaLike.fields.map((field) =>
sanitizeField(field)
sanitizeField(field),
);
return new Schema(sanitizedFields, metadata);
}

View File

@@ -124,9 +124,9 @@ describe('LanceDB client', function () {
const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri)
const table = (await con.openTable('vectors')) as LocalTable
let results = await table.filter('id % 2 = 0').execute()
let results = await table.filter('id % 2 = 0').limit(100).execute()
assertResults(results)
results = await table.where('id % 2 = 0').execute()
results = await table.where('id % 2 = 0').limit(100).execute()
assertResults(results)
// Should reject a bad filter

View File

@@ -1,12 +1,44 @@
# (New) LanceDB NodeJS SDK
# LanceDB JavaScript SDK
It will replace the NodeJS SDK when it is ready.
A JavaScript library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install @lancedb/lancedb
```
This will download the appropriate native library for your platform. We currently
support:
- Linux (x86_64 and aarch64)
- MacOS (Intel and ARM/M1/M2)
- Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage
### Basic Example
```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("my_table", [
{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 },
]);
const results = await table.vectorSearch([0.1, 0.3]).limit(20).toArray();
console.log(results);
```
The [quickstart](../basic.md) contains a more complete example.
## Development
```sh
npm run build
npm t
npm run test
```
### Running lint / format

View File

@@ -129,11 +129,25 @@ describe("When creating an index", () => {
});
// Search without specifying the column
const rst = await tbl.query().nearestTo(queryVec).limit(2).toArrow();
let rst = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.distanceType("DoT")
.toArrow();
expect(rst.numRows).toBe(2);
// Search using `vectorSearch`
rst = await tbl.vectorSearch(queryVec).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
const rst2 = await tbl.search(queryVec, "vec").limit(2).toArrow();
const rst2 = await tbl
.query()
.limit(2)
.nearestTo(queryVec)
.column("vec")
.toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
});
@@ -163,7 +177,7 @@ describe("When creating an index", () => {
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
for await (const r of tbl.query().where("id > 1").select(["id"])) {
expect(r.numRows).toBe(298);
}
});
@@ -205,33 +219,39 @@ describe("When creating an index", () => {
const rst = await tbl
.query()
.limit(2)
.nearestTo(
Array(32)
.fill(1)
.map(() => Math.random()),
)
.limit(2)
.toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
await expect(
tbl
.search(
.query()
.limit(2)
.nearestTo(
Array(64)
.fill(1)
.map(() => Math.random()),
"vec",
)
.limit(2)
.column("vec")
.toArrow(),
).rejects.toThrow(/.*does not match the dimension.*/);
).rejects.toThrow(/.* query dim=64, expected vector dim=32.*/);
const query64 = Array(64)
.fill(1)
.map(() => Math.random());
const rst64Query = await tbl.query().nearestTo(query64).limit(2).toArrow();
const rst64Search = await tbl.search(query64, "vec2").limit(2).toArrow();
const rst64Query = await tbl.query().limit(2).nearestTo(query64).toArrow();
const rst64Search = await tbl
.query()
.limit(2)
.nearestTo(query64)
.column("vec2")
.toArrow();
expect(rst64Query.toString()).toEqual(rst64Search.toString());
expect(rst64Query.numRows).toBe(2);
});

View File

@@ -4,14 +4,25 @@
const eslint = require("@eslint/js");
const tseslint = require("typescript-eslint");
const eslintConfigPrettier = require("eslint-config-prettier");
const jsdoc = require("eslint-plugin-jsdoc");
module.exports = tseslint.config(
eslint.configs.recommended,
jsdoc.configs["flat/recommended"],
eslintConfigPrettier,
...tseslint.configs.recommended,
{
rules: {
"@typescript-eslint/naming-convention": "error",
"jsdoc/require-returns": "off",
"jsdoc/require-param": "off",
"jsdoc/require-jsdoc": [
"error",
{
publicOnly: true,
},
],
},
plugins: jsdoc,
},
);

View File

@@ -31,6 +31,7 @@ import {
DataType,
Binary,
Float32,
type makeTable,
} from "apache-arrow";
import { type EmbeddingFunction } from "./embedding/embedding_function";
import { sanitizeSchema } from "./sanitize";
@@ -105,6 +106,9 @@ export class MakeArrowTableOptions {
* An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns.
*
* (typically you do not need to call this function. It will be called automatically
* when creating a table or adding data to it)
*
* This function converts an array of Record<String, any> (row-major JS objects)
* to an Arrow Table (a columnar structure)
*
@@ -128,14 +132,7 @@ export class MakeArrowTableOptions {
* - Buffer => Binary
* - Record<String, any> => Struct
* - Array<any> => List
*
* @param data input data
* @param options options to control the makeArrowTable call.
*
* @example
*
* ```ts
*
* import { fromTableToBuffer, makeArrowTable } from "../arrow";
* import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
*
@@ -307,7 +304,9 @@ export function makeEmptyTable(schema: Schema): ArrowTable {
return makeArrowTable([], { schema });
}
// Helper function to convert Array<Array<any>> to a variable sized list array
/**
* Helper function to convert Array<Array<any>> to a variable sized list array
*/
// @ts-expect-error (Vector<unknown> is not assignable to Vector<any>)
function makeListVector(lists: unknown[][]): Vector<unknown> {
if (lists.length === 0 || lists[0].length === 0) {
@@ -333,7 +332,7 @@ function makeListVector(lists: unknown[][]): Vector<unknown> {
return listBuilder.finish().toVector();
}
// Helper function to convert an Array of JS values to an Arrow Vector
/** Helper function to convert an Array of JS values to an Arrow Vector */
function makeVector(
values: unknown[],
type?: DataType,
@@ -374,6 +373,7 @@ function makeVector(
}
}
/** Helper function to apply embeddings to an input table */
async function applyEmbeddings<T>(
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
@@ -466,7 +466,7 @@ async function applyEmbeddings<T>(
return newTable;
}
/*
/**
* Convert an Array of records into an Arrow Table, optionally applying an
* embeddings function to it.
*
@@ -493,7 +493,7 @@ export async function convertToTable<T>(
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema);
}
// Creates the Arrow Type for a Vector column with dimension `dim`
/** Creates the Arrow Type for a Vector column with dimension `dim` */
function newVectorType<T extends Float>(
dim: number,
innerType: T,
@@ -565,6 +565,14 @@ export async function fromTableToBuffer<T>(
return Buffer.from(await writer.toUint8Array());
}
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromDataToBuffer<T>(
data: Data,
embeddings?: EmbeddingFunction<T>,
@@ -599,6 +607,9 @@ export async function fromTableToStreamBuffer<T>(
return Buffer.from(await writer.toUint8Array());
}
/**
* Reorder the columns in `batch` so that they agree with the field order in `schema`
*/
function alignBatch(batch: RecordBatch, schema: Schema): RecordBatch {
const alignedChildren = [];
for (const field of schema.fields) {
@@ -621,6 +632,9 @@ function alignBatch(batch: RecordBatch, schema: Schema): RecordBatch {
return new RecordBatch(schema, newData);
}
/**
* Reorder the columns in `table` so that they agree with the field order in `schema`
*/
function alignTable(table: ArrowTable, schema: Schema): ArrowTable {
const alignedBatches = table.batches.map((batch) =>
alignBatch(batch, schema),
@@ -628,7 +642,9 @@ function alignTable(table: ArrowTable, schema: Schema): ArrowTable {
return new ArrowTable(schema, alignedBatches);
}
// Creates an empty Arrow Table
/**
* Create an empty table with the given schema
*/
export function createEmptyTable(schema: Schema): ArrowTable {
return new ArrowTable(sanitizeSchema(schema));
}

View File

@@ -78,7 +78,8 @@ export class Connection {
return this.inner.isOpen();
}
/** Close the connection, releasing any underlying resources.
/**
* Close the connection, releasing any underlying resources.
*
* It is safe to call this method multiple times.
*
@@ -93,11 +94,12 @@ export class Connection {
return this.inner.display();
}
/** List all the table names in this database.
/**
* List all the table names in this database.
*
* Tables will be returned in lexicographical order.
*
* @param options Optional parameters to control the listing.
* @param {Partial<TableNamesOptions>} options - options to control the
* paging / start point
*/
async tableNames(options?: Partial<TableNamesOptions>): Promise<string[]> {
return this.inner.tableNames(options?.startAfter, options?.limit);
@@ -105,9 +107,7 @@ export class Connection {
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this table
* @param {string} name - The name of the table
*/
async openTable(name: string): Promise<Table> {
const innerTable = await this.inner.openTable(name);
@@ -116,9 +116,9 @@ export class Connection {
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {Record<string, unknown>[] | ArrowTable} data - Non-empty Array of Records
* to be inserted into the table
*/
async createTable(
name: string,
@@ -145,9 +145,8 @@ export class Connection {
/**
* Creates a new empty Table
*
* @param {string} name - The name of the table.
* @param schema - The schema of the table
* @param {Schema} schema - The schema of the table
*/
async createEmptyTable(
name: string,
@@ -169,7 +168,7 @@ export class Connection {
/**
* Drop an existing table.
* @param name The name of the table to drop.
* @param {string} name The name of the table to drop.
*/
async dropTable(name: string): Promise<void> {
return this.inner.dropTable(name);

View File

@@ -62,6 +62,7 @@ export interface EmbeddingFunction<T> {
embed: (data: T[]) => Promise<number[][]>;
}
/** Test if the input seems to be an embedding function */
export function isEmbeddingFunction<T>(
value: unknown,
): value is EmbeddingFunction<T> {

View File

@@ -0,0 +1,2 @@
export { EmbeddingFunction, isEmbeddingFunction } from "./embedding_function";
export { OpenAIEmbeddingFunction } from "./openai";

View File

@@ -18,9 +18,34 @@ import {
ConnectionOptions,
} from "./native.js";
export { ConnectionOptions, WriteOptions, Query } from "./native.js";
export { Connection, CreateTableOptions } from "./connection";
export { Table, AddDataOptions } from "./table";
export {
WriteOptions,
WriteMode,
AddColumnsSql,
ColumnAlteration,
ConnectionOptions,
} from "./native.js";
export {
makeArrowTable,
MakeArrowTableOptions,
Data,
VectorColumnOptions,
} from "./arrow";
export {
Connection,
CreateTableOptions,
TableNamesOptions,
} from "./connection";
export {
ExecutableQuery,
Query,
QueryBase,
VectorQuery,
RecordBatchIterator,
} from "./query";
export { Index, IndexOptions, IvfPqOptions } from "./indices";
export { Table, AddDataOptions, IndexConfig, UpdateOptions } from "./table";
export * as embedding from "./embedding";
/**
* Connect to a LanceDB instance at the given URI.
@@ -30,9 +55,8 @@ export { Table, AddDataOptions } from "./table";
* - `/path/to/database` - local database
* - `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
* - `db://host:port` - remote database (LanceDB cloud)
*
* @param uri The uri of the database. If the database uri starts with `db://` then it connects to a remote database.
*
* @param {string} uri - The uri of the database. If the database uri starts
* with `db://` then it connects to a remote database.
* @see {@link ConnectionOptions} for more details on the URI format.
*/
export async function connect(

View File

@@ -18,7 +18,8 @@ import { Index as LanceDbIndex } from "./native";
* Options to create an `IVF_PQ` index
*/
export interface IvfPqOptions {
/** The number of IVF partitions to create.
/**
* The number of IVF partitions to create.
*
* This value should generally scale with the number of rows in the dataset.
* By default the number of partitions is the square root of the number of
@@ -30,7 +31,8 @@ export interface IvfPqOptions {
*/
numPartitions?: number;
/** Number of sub-vectors of PQ.
/**
* Number of sub-vectors of PQ.
*
* This value controls how much the vector is compressed during the quantization step.
* The more sub vectors there are the less the vector is compressed. The default is
@@ -45,9 +47,10 @@ export interface IvfPqOptions {
*/
numSubVectors?: number;
/** [DistanceType] to use to build the index.
/**
* Distance type to use to build the index.
*
* Default value is [DistanceType::L2].
* Default value is "l2".
*
* This is used when training the index to calculate the IVF partitions
* (vectors are grouped in partitions with similar vectors according to this
@@ -79,7 +82,8 @@ export interface IvfPqOptions {
*/
distanceType?: "l2" | "cosine" | "dot";
/** Max iteration to train IVF kmeans.
/**
* Max iteration to train IVF kmeans.
*
* When training an IVF PQ index we use kmeans to calculate the partitions. This parameter
* controls how many iterations of kmeans to run.
@@ -91,7 +95,8 @@ export interface IvfPqOptions {
*/
maxIterations?: number;
/** The number of vectors, per partition, to sample when training IVF kmeans.
/**
* The number of vectors, per partition, to sample when training IVF kmeans.
*
* When an IVF PQ index is trained, we need to calculate partitions. These are groups
* of vectors that are similar to each other. To do this we use an algorithm called kmeans.
@@ -148,7 +153,8 @@ export class Index {
);
}
/** Create a btree index
/**
* Create a btree index
*
* A btree index is an index on a scalar columns. The index stores a copy of the column
* in sorted order. A header entry is created for each block of rows (currently the
@@ -172,7 +178,8 @@ export class Index {
}
export interface IndexOptions {
/** Advanced index configuration
/**
* Advanced index configuration
*
* This option allows you to specify a specfic index to create and also
* allows you to pass in configuration for training the index.
@@ -183,7 +190,8 @@ export interface IndexOptions {
* will be used to determine the most useful kind of index to create.
*/
config?: Index;
/** Whether to replace the existing index
/**
* Whether to replace the existing index
*
* If this is false, and another index already exists on the same columns
* and the same name, then an error will be returned. This is true even if

View File

@@ -1,138 +0,0 @@
/* tslint:disable */
/* eslint-disable */
/* auto-generated by NAPI-RS */
/** A description of an index currently configured on a column */
export interface IndexConfig {
/** The type of the index */
indexType: string
/**
* The columns in the index
*
* Currently this is always an array of size 1. In the future there may
* be more columns to represent composite indices.
*/
columns: Array<string>
}
/**
* A definition of a column alteration. The alteration changes the column at
* `path` to have the new name `name`, to be nullable if `nullable` is true,
* and to have the data type `data_type`. At least one of `rename` or `nullable`
* must be provided.
*/
export interface ColumnAlteration {
/**
* The path to the column to alter. This is a dot-separated path to the column.
* If it is a top-level column then it is just the name of the column. If it is
* a nested column then it is the path to the column, e.g. "a.b.c" for a column
* `c` nested inside a column `b` nested inside a column `a`.
*/
path: string
/**
* The new name of the column. If not provided then the name will not be changed.
* This must be distinct from the names of all other columns in the table.
*/
rename?: string
/** Set the new nullability. Note that a nullable column cannot be made non-nullable. */
nullable?: boolean
}
/** A definition of a new column to add to a table. */
export interface AddColumnsSql {
/** The name of the new column. */
name: string
/**
* The values to populate the new column with, as a SQL expression.
* The expression can reference other columns in the table.
*/
valueSql: string
}
export interface ConnectionOptions {
apiKey?: string
hostOverride?: string
/**
* (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not
* checked. For performance reasons, this is the default. For strong
* consistency, set this to zero seconds. Then every read will check for
* updates from other processes. As a compromise, you can set this to a
* non-zero value for eventual consistency. If more than that interval
* has passed since the last check, then the table will be checked for updates.
* Note: this consistency only applies to read operations. Write operations are
* always consistent.
*/
readConsistencyInterval?: number
}
/** Write mode for writing a table. */
export const enum WriteMode {
Create = 'Create',
Append = 'Append',
Overwrite = 'Overwrite'
}
/** Write options when creating a Table. */
export interface WriteOptions {
mode?: WriteMode
}
export function connect(uri: string, options: ConnectionOptions): Promise<Connection>
export class Connection {
/** Create a new Connection instance from the given URI. */
static new(uri: string, options: ConnectionOptions): Promise<Connection>
display(): string
isOpen(): boolean
close(): void
/** List all tables in the dataset. */
tableNames(startAfter?: string | undefined | null, limit?: number | undefined | null): Promise<Array<string>>
/**
* Create table from a Apache Arrow IPC (file) buffer.
*
* Parameters:
* - name: The name of the table.
* - buf: The buffer containing the IPC file.
*
*/
createTable(name: string, buf: Buffer, mode: string): Promise<Table>
createEmptyTable(name: string, schemaBuf: Buffer, mode: string): Promise<Table>
openTable(name: string): Promise<Table>
/** Drop table with the name. Or raise an error if the table does not exist. */
dropTable(name: string): Promise<void>
}
export class Index {
static ivfPq(distanceType?: string | undefined | null, numPartitions?: number | undefined | null, numSubVectors?: number | undefined | null, maxIterations?: number | undefined | null, sampleRate?: number | undefined | null): Index
static btree(): Index
}
/** Typescript-style Async Iterator over RecordBatches */
export class RecordBatchIterator {
next(): Promise<Buffer | null>
}
export class Query {
column(column: string): void
filter(filter: string): void
select(columns: Array<string>): void
limit(limit: number): void
prefilter(prefilter: boolean): void
nearestTo(vector: Float32Array): void
refineFactor(refineFactor: number): void
nprobes(nprobe: number): void
executeStream(): Promise<RecordBatchIterator>
}
export class Table {
display(): string
isOpen(): boolean
close(): void
/** Return Schema as empty Arrow IPC file. */
schema(): Promise<Buffer>
add(buf: Buffer, mode: string): Promise<void>
countRows(filter?: string | undefined | null): Promise<number>
delete(predicate: string): Promise<void>
createIndex(index: Index | undefined | null, column: string, replace?: boolean | undefined | null): Promise<void>
update(onlyIf: string | undefined | null, columns: Array<[string, string]>): Promise<void>
query(): Query
addColumns(transforms: Array<AddColumnsSql>): Promise<void>
alterColumns(alterations: Array<ColumnAlteration>): Promise<void>
dropColumns(columns: Array<string>): Promise<void>
version(): Promise<number>
checkout(version: number): Promise<void>
checkoutLatest(): Promise<void>
restore(): Promise<void>
listIndices(): Promise<Array<IndexConfig>>
}

View File

@@ -1,306 +0,0 @@
/* tslint:disable */
/* eslint-disable */
/* prettier-ignore */
/* auto-generated by NAPI-RS */
const { existsSync, readFileSync } = require('fs')
const { join } = require('path')
const { platform, arch } = process
let nativeBinding = null
let localFileExisted = false
let loadError = null
function isMusl() {
// For Node 10
if (!process.report || typeof process.report.getReport !== 'function') {
try {
const lddPath = require('child_process').execSync('which ldd').toString().trim()
return readFileSync(lddPath, 'utf8').includes('musl')
} catch (e) {
return true
}
} else {
const { glibcVersionRuntime } = process.report.getReport().header
return !glibcVersionRuntime
}
}
switch (platform) {
case 'android':
switch (arch) {
case 'arm64':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.android-arm64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.android-arm64.node')
} else {
nativeBinding = require('lancedb-android-arm64')
}
} catch (e) {
loadError = e
}
break
case 'arm':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.android-arm-eabi.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.android-arm-eabi.node')
} else {
nativeBinding = require('lancedb-android-arm-eabi')
}
} catch (e) {
loadError = e
}
break
default:
throw new Error(`Unsupported architecture on Android ${arch}`)
}
break
case 'win32':
switch (arch) {
case 'x64':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-x64-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-x64-msvc.node')
} else {
nativeBinding = require('lancedb-win32-x64-msvc')
}
} catch (e) {
loadError = e
}
break
case 'ia32':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-ia32-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-ia32-msvc.node')
} else {
nativeBinding = require('lancedb-win32-ia32-msvc')
}
} catch (e) {
loadError = e
}
break
case 'arm64':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-arm64-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-arm64-msvc.node')
} else {
nativeBinding = require('lancedb-win32-arm64-msvc')
}
} catch (e) {
loadError = e
}
break
default:
throw new Error(`Unsupported architecture on Windows: ${arch}`)
}
break
case 'darwin':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.darwin-universal.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-universal.node')
} else {
nativeBinding = require('lancedb-darwin-universal')
}
break
} catch {}
switch (arch) {
case 'x64':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.darwin-x64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-x64.node')
} else {
nativeBinding = require('lancedb-darwin-x64')
}
} catch (e) {
loadError = e
}
break
case 'arm64':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.darwin-arm64.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-arm64.node')
} else {
nativeBinding = require('lancedb-darwin-arm64')
}
} catch (e) {
loadError = e
}
break
default:
throw new Error(`Unsupported architecture on macOS: ${arch}`)
}
break
case 'freebsd':
if (arch !== 'x64') {
throw new Error(`Unsupported architecture on FreeBSD: ${arch}`)
}
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.freebsd-x64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.freebsd-x64.node')
} else {
nativeBinding = require('lancedb-freebsd-x64')
}
} catch (e) {
loadError = e
}
break
case 'linux':
switch (arch) {
case 'x64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-x64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-x64-musl.node')
} else {
nativeBinding = require('lancedb-linux-x64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-x64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-x64-gnu.node')
} else {
nativeBinding = require('lancedb-linux-x64-gnu')
}
} catch (e) {
loadError = e
}
}
break
case 'arm64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm64-musl.node')
} else {
nativeBinding = require('lancedb-linux-arm64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm64-gnu.node')
} else {
nativeBinding = require('lancedb-linux-arm64-gnu')
}
} catch (e) {
loadError = e
}
}
break
case 'arm':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm-gnueabihf.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm-gnueabihf.node')
} else {
nativeBinding = require('lancedb-linux-arm-gnueabihf')
}
} catch (e) {
loadError = e
}
break
case 'riscv64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-riscv64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-riscv64-musl.node')
} else {
nativeBinding = require('lancedb-linux-riscv64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-riscv64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-riscv64-gnu.node')
} else {
nativeBinding = require('lancedb-linux-riscv64-gnu')
}
} catch (e) {
loadError = e
}
}
break
case 's390x':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-s390x-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-s390x-gnu.node')
} else {
nativeBinding = require('lancedb-linux-s390x-gnu')
}
} catch (e) {
loadError = e
}
break
default:
throw new Error(`Unsupported architecture on Linux: ${arch}`)
}
break
default:
throw new Error(`Unsupported OS: ${platform}, architecture: ${arch}`)
}
if (!nativeBinding) {
if (loadError) {
throw loadError
}
throw new Error(`Failed to load native binding`)
}
const { Connection, Index, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
module.exports.Connection = Connection
module.exports.Index = Index
module.exports.RecordBatchIterator = RecordBatchIterator
module.exports.Query = Query
module.exports.Table = Table
module.exports.WriteMode = WriteMode
module.exports.connect = connect

View File

@@ -17,18 +17,15 @@ import {
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
VectorQuery as NativeVectorQuery,
} from "./native";
class RecordBatchIterator implements AsyncIterator<RecordBatch> {
import { type IvfPqOptions } from "./indices";
export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
private promisedInner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator;
constructor(
inner?: NativeBatchIterator,
promise?: Promise<NativeBatchIterator>,
) {
constructor(promise?: Promise<NativeBatchIterator>) {
// TODO: check promise reliably so we dont need to pass two arguments.
this.inner = inner;
this.promisedInner = promise;
}
@@ -53,82 +50,113 @@ class RecordBatchIterator implements AsyncIterator<RecordBatch> {
}
/* eslint-enable */
/** Query executor */
export class Query implements AsyncIterable<RecordBatch> {
private readonly inner: NativeQuery;
/** Common methods supported by all query types */
export class QueryBase<
NativeQueryType extends NativeQuery | NativeVectorQuery,
QueryType,
> implements AsyncIterable<RecordBatch>
{
protected constructor(protected inner: NativeQueryType) {}
constructor(tbl: NativeTable) {
this.inner = tbl.query();
/**
* A filter statement to be applied to this query.
*
* The filter should be supplied as an SQL query string. For example:
* @example
* x > 10
* y > 0 AND y < 100
* x > 5 OR y = 'test'
*
* Filtering performance can often be improved by creating a scalar index
* on the filter column(s).
*/
where(predicate: string): QueryType {
this.inner.onlyIf(predicate);
return this as unknown as QueryType;
}
/** Set the column to run query. */
column(column: string): Query {
this.inner.column(column);
return this;
/**
* Return only the specified columns.
*
* By default a query will return all columns from the table. However, this can have
* a very significant impact on latency. LanceDb stores data in a columnar fashion. This
* means we can finely tune our I/O to select exactly the columns we need.
*
* As a best practice you should always limit queries to the columns that you need. If you
* pass in an array of column names then only those columns will be returned.
*
* You can also use this method to create new "dynamic" columns based on your existing columns.
* For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
* seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
*
* To create dynamic columns you can pass in a Map<string, string>. A column will be returned
* for each entry in the map. The key provides the name of the column. The value is
* an SQL string used to specify how the column is calculated.
*
* For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
* input to this method would be:
* @example
* new Map([["combined", "a + b"], ["c", "c"]])
*
* Columns will always be returned in the order given, even if that order is different than
* the order used when adding the data.
*
* Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
* uses `Object.entries` which should preserve the insertion order of the object. However,
* object insertion order is easy to get wrong and `Map` is more foolproof.
*/
select(
columns: string[] | Map<string, string> | Record<string, string>,
): QueryType {
let columnTuples: [string, string][];
if (Array.isArray(columns)) {
columnTuples = columns.map((c) => [c, c]);
} else if (columns instanceof Map) {
columnTuples = Array.from(columns.entries());
} else {
columnTuples = Object.entries(columns);
}
this.inner.select(columnTuples);
return this as unknown as QueryType;
}
/** Set the filter predicate, only returns the results that satisfy the filter.
/**
* Set the maximum number of results to return.
*
* By default, a plain search has no limit. If this method is not
* called then every valid row from the table will be returned.
*/
limit(limit: number): QueryType {
this.inner.limit(limit);
return this as unknown as QueryType;
}
protected nativeExecute(): Promise<NativeBatchIterator> {
return this.inner.execute();
}
/**
* Execute the query and return the results as an @see {@link AsyncIterator}
* of @see {@link RecordBatch}.
*
* By default, LanceDb will use many threads to calculate results and, when
* the result set is large, multiple batches will be processed at one time.
* This readahead is limited however and backpressure will be applied if this
* stream is consumed slowly (this constrains the maximum memory used by a
* single query)
*
*/
filter(predicate: string): Query {
this.inner.filter(predicate);
return this;
protected execute(): RecordBatchIterator {
return new RecordBatchIterator(this.nativeExecute());
}
/**
* Select the columns to return. If not set, all columns are returned.
*/
select(columns: string[]): Query {
this.inner.select(columns);
return this;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
const promise = this.nativeExecute();
return new RecordBatchIterator(promise);
}
/**
* Set the limit of rows to return.
*/
limit(limit: number): Query {
this.inner.limit(limit);
return this;
}
prefilter(prefilter: boolean): Query {
this.inner.prefilter(prefilter);
return this;
}
/**
* Set the query vector.
*/
nearestTo(vector: number[]): Query {
this.inner.nearestTo(Float32Array.from(vector));
return this;
}
/**
* Set the number of IVF partitions to use for the query.
*/
nprobes(nprobes: number): Query {
this.inner.nprobes(nprobes);
return this;
}
/**
* Set the refine factor for the query.
*/
refineFactor(refineFactor: number): Query {
this.inner.refineFactor(refineFactor);
return this;
}
/**
* Execute the query and return the results as an AsyncIterator.
*/
async executeStream(): Promise<RecordBatchIterator> {
const inner = await this.inner.executeStream();
return new RecordBatchIterator(inner);
}
/** Collect the results as an Arrow Table. */
/** Collect the results as an Arrow @see {@link ArrowTable}. */
async toArrow(): Promise<ArrowTable> {
const batches = [];
for await (const batch of this) {
@@ -137,18 +165,211 @@ export class Query implements AsyncIterable<RecordBatch> {
return new ArrowTable(batches);
}
/** Returns a JSON Array of All results.
*
*/
/** Collect the results as an array of objects. */
async toArray(): Promise<unknown[]> {
const tbl = await this.toArrow();
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
return tbl.toArray();
}
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
const promise = this.inner.executeStream();
return new RecordBatchIterator(undefined, promise);
/**
* An interface for a query that can be executed
*
* Supported by all query types
*/
export interface ExecutableQuery {}
/**
* A builder used to construct a vector search
*
* This builder can be reused to execute the query many times.
*/
export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
constructor(inner: NativeVectorQuery) {
super(inner);
}
/**
* Set the number of partitions to search (probe)
*
* This argument is only used when the vector column has an IVF PQ index.
* If there is no index then this value is ignored.
*
* The IVF stage of IVF PQ divides the input into partitions (clusters) of
* related values.
*
* The partition whose centroids are closest to the query vector will be
* exhaustiely searched to find matches. This parameter controls how many
* partitions should be searched.
*
* Increasing this value will increase the recall of your query but will
* also increase the latency of your query. The default value is 20. This
* default is good for many cases but the best value to use will depend on
* your data and the recall that you need to achieve.
*
* For best results we recommend tuning this parameter with a benchmark against
* your actual data to find the smallest possible value that will still give
* you the desired recall.
*/
nprobes(nprobes: number): VectorQuery {
this.inner.nprobes(nprobes);
return this;
}
/**
* Set the vector column to query
*
* This controls which column is compared to the query vector supplied in
* the call to @see {@link Query#nearestTo}
*
* This parameter must be specified if the table has more than one column
* whose data type is a fixed-size-list of floats.
*/
column(column: string): VectorQuery {
this.inner.column(column);
return this;
}
/**
* Set the distance metric to use
*
* When performing a vector search we try and find the "nearest" vectors according
* to some kind of distance metric. This parameter controls which distance metric to
* use. See @see {@link IvfPqOptions.distanceType} for more details on the different
* distance metrics available.
*
* Note: if there is a vector index then the distance type used MUST match the distance
* type used to train the vector index. If this is not done then the results will be
* invalid.
*
* By default "l2" is used.
*/
distanceType(distanceType: string): VectorQuery {
this.inner.distanceType(distanceType);
return this;
}
/**
* A multiplier to control how many additional rows are taken during the refine step
*
* This argument is only used when the vector column has an IVF PQ index.
* If there is no index then this value is ignored.
*
* An IVF PQ index stores compressed (quantized) values. They query vector is compared
* against these values and, since they are compressed, the comparison is inaccurate.
*
* This parameter can be used to refine the results. It can improve both improve recall
* and correct the ordering of the nearest results.
*
* To refine results LanceDb will first perform an ANN search to find the nearest
* `limit` * `refine_factor` results. In other words, if `refine_factor` is 3 and
* `limit` is the default (10) then the first 30 results will be selected. LanceDb
* then fetches the full, uncompressed, values for these 30 results. The results are
* then reordered by the true distance and only the nearest 10 are kept.
*
* Note: there is a difference between calling this method with a value of 1 and never
* calling this method at all. Calling this method with any value will have an impact
* on your search latency. When you call this method with a `refine_factor` of 1 then
* LanceDb still needs to fetch the full, uncompressed, values so that it can potentially
* reorder the results.
*
* Note: if this method is NOT called then the distances returned in the _distance column
* will be approximate distances based on the comparison of the quantized query vector
* and the quantized result vectors. This can be considerably different than the true
* distance between the query vector and the actual uncompressed vector.
*/
refineFactor(refineFactor: number): VectorQuery {
this.inner.refineFactor(refineFactor);
return this;
}
/**
* If this is called then filtering will happen after the vector search instead of
* before.
*
* By default filtering will be performed before the vector search. This is how
* filtering is typically understood to work. This prefilter step does add some
* additional latency. Creating a scalar index on the filter column(s) can
* often improve this latency. However, sometimes a filter is too complex or scalar
* indices cannot be applied to the column. In these cases postfiltering can be
* used instead of prefiltering to improve latency.
*
* Post filtering applies the filter to the results of the vector search. This means
* we only run the filter on a much smaller set of data. However, it can cause the
* query to return fewer than `limit` results (or even no results) if none of the nearest
* results match the filter.
*
* Post filtering happens during the "refine stage" (described in more detail in
* @see {@link VectorQuery#refineFactor}). This means that setting a higher refine
* factor can often help restore some of the results lost by post filtering.
*/
postfilter(): VectorQuery {
this.inner.postfilter();
return this;
}
/**
* If this is called then any vector index is skipped
*
* An exhaustive (flat) search will be performed. The query vector will
* be compared to every vector in the table. At high scales this can be
* expensive. However, this is often still useful. For example, skipping
* the vector index can give you ground truth results which you can use to
* calculate your recall to select an appropriate value for nprobes.
*/
bypassVectorIndex(): VectorQuery {
this.inner.bypassVectorIndex();
return this;
}
}
/** A builder for LanceDB queries. */
export class Query extends QueryBase<NativeQuery, Query> {
constructor(tbl: NativeTable) {
super(tbl.query());
}
/**
* Find the nearest vectors to the given query vector.
*
* This converts the query from a plain query to a vector query.
*
* This method will attempt to convert the input to the query vector
* expected by the embedding model. If the input cannot be converted
* then an error will be thrown.
*
* By default, there is no embedding model, and the input should be
* an array-like object of numbers (something that can be used as input
* to Float32Array.from)
*
* If there is only one vector column (a column whose data type is a
* fixed size list of floats) then the column does not need to be specified.
* If there is more than one vector column you must use
* @see {@link VectorQuery#column} to specify which column you would like
* to compare with.
*
* If no index has been created on the vector column then a vector query
* will perform a distance comparison between the query vector and every
* vector in the database and then sort the results. This is sometimes
* called a "flat search"
*
* For small databases, with a few hundred thousand vectors or less, this can
* be reasonably fast. In larger databases you should create a vector index
* on the column. If there is a vector index then an "approximate" nearest
* neighbor search (frequently called an ANN search) will be performed. This
* search is much faster, but the results will be approximate.
*
* The query can be further parameterized using the returned builder. There
* are various ANN search parameters that will let you fine tune your recall
* accuracy vs search latency.
*
* Vector searches always have a `limit`. If `limit` has not been called then
* a default `limit` of 10 will be used. @see {@link Query#limit}
*/
nearestTo(vector: unknown): VectorQuery {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const vectorQuery = this.inner.nearestTo(Float32Array.from(vector as any));
return new VectorQuery(vectorQuery);
}
}

View File

@@ -481,6 +481,13 @@ function sanitizeField(fieldLike: unknown): Field {
return new Field(name, type, nullable, metadata);
}
/**
* Convert something schemaLike into a Schema instance
*
* This method is often needed even when the caller is using a Schema
* instance because they might be using a different instance of apache-arrow
* than lancedb is using.
*/
export function sanitizeSchema(schemaLike: unknown): Schema {
if (schemaLike instanceof Schema) {
return schemaLike;

View File

@@ -19,7 +19,7 @@ import {
IndexConfig,
Table as _NativeTable,
} from "./native";
import { Query } from "./query";
import { Query, VectorQuery } from "./query";
import { IndexOptions } from "./indices";
import { Data, fromDataToBuffer } from "./arrow";
@@ -28,7 +28,8 @@ export { IndexConfig } from "./native";
* Options for adding data to a table.
*/
export interface AddDataOptions {
/** If "append" (the default) then the new data will be added to the table
/**
* If "append" (the default) then the new data will be added to the table
*
* If "overwrite" then the new data will replace the existing data in the table.
*/
@@ -74,7 +75,8 @@ export class Table {
return this.inner.isOpen();
}
/** Close the table, releasing any underlying resources.
/**
* Close the table, releasing any underlying resources.
*
* It is safe to call this method multiple times.
*
@@ -98,9 +100,7 @@ export class Table {
/**
* Insert records into this Table.
*
* @param {Data} data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async add(data: Data, options?: Partial<AddDataOptions>): Promise<void> {
const mode = options?.mode ?? "append";
@@ -124,15 +124,15 @@ export class Table {
* you are updating many rows (with different ids) then you will get
* better performance with a single [`merge_insert`] call instead of
* repeatedly calilng this method.
*
* @param updates the columns to update
* @param {Map<string, string> | Record<string, string>} updates - the
* columns to update
*
* Keys in the map should specify the name of the column to update.
* Values in the map provide the new value of the column. These can
* be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
* based on the row being updated (e.g. "my_col + 1")
*
* @param options additional options to control the update behavior
* @param {Partial<UpdateOptions>} options - additional options to control
* the update behavior
*/
async update(
updates: Map<string, string> | Record<string, string>,
@@ -158,37 +158,28 @@ export class Table {
await this.inner.delete(predicate);
}
/** Create an index to speed up queries.
/**
* Create an index to speed up queries.
*
* Indices can be created on vector columns or scalar columns.
* Indices on vector columns will speed up vector searches.
* Indices on scalar columns will speed up filtering (in both
* vector and non-vector searches)
*
* @example
*
* If the column has a vector (fixed size list) data type then
* an IvfPq vector index will be created.
*
* ```typescript
* // If the column has a vector (fixed size list) data type then
* // an IvfPq vector index will be created.
* const table = await conn.openTable("my_table");
* await table.createIndex(["vector"]);
* ```
*
* For advanced control over vector index creation you can specify
* the index type and options.
* ```typescript
* @example
* // For advanced control over vector index creation you can specify
* // the index type and options.
* const table = await conn.openTable("my_table");
* await table.createIndex(["vector"], I)
* .ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
* .build();
* ```
*
* Or create a Scalar index
*
* ```typescript
* @example
* // Or create a Scalar index
* await table.createIndex("my_float_col").build();
* ```
*/
async createIndex(column: string, options?: Partial<IndexOptions>) {
// Bit of a hack to get around the fact that TS has no package-scope.
@@ -198,69 +189,74 @@ export class Table {
}
/**
* Create a generic {@link Query} Builder.
* Create a {@link Query} Builder.
*
* Queries allow you to search your existing data. By default the query will
* return all the data in the table in no particular order. The builder
* returned by this method can be used to control the query using filtering,
* vector similarity, sorting, and more.
*
* Note: By default, all columns are returned. For best performance, you should
* only fetch the columns you need. See [`Query::select_with_projection`] for
* more details.
*
* When appropriate, various indices and statistics based pruning will be used to
* accelerate the query.
*
* @example
*
* ### Run a SQL-style query
* ```typescript
* // SQL-style filtering
* //
* // This query will return up to 1000 rows whose value in the `id` column
* // is greater than 5. LanceDb supports a broad set of filtering functions.
* for await (const batch of table.query()
* .filter("id > 1").select(["id"]).limit(20)) {
* console.log(batch);
* }
* ```
*
* ### Run Top-10 vector similarity search
* ```typescript
* @example
* // Vector Similarity Search
* //
* // This example will find the 10 rows whose value in the "vector" column are
* // closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
* // on the "vector" column then this will perform an ANN search.
* //
* // The `refine_factor` and `nprobes` methods are used to control the recall /
* // latency tradeoff of the search.
* for await (const batch of table.query()
* .nearestTo([1, 2, 3])
* .refineFactor(5).nprobe(10)
* .limit(10)) {
* console.log(batch);
* }
*```
*
* ### Scan the full dataset
* ```typescript
* @example
* // Scan the full dataset
* //
* // This query will return everything in the table in no particular order.
* for await (const batch of table.query()) {
* console.log(batch);
* }
*
* ### Return the full dataset as Arrow Table
* ```typescript
* let arrowTbl = await table.query().nearestTo([1.0, 2.0, 0.5, 6.7]).toArrow();
* ```
*
* @returns {@link Query}
* @returns {Query} A builder that can be used to parameterize the query
*/
query(): Query {
return new Query(this.inner);
}
/** Search the table with a given query vector.
/**
* Search the table with a given query vector.
*
* This is a convenience method for preparing an ANN {@link Query}.
* This is a convenience method for preparing a vector query and
* is the same thing as calling `nearestTo` on the builder returned
* by `query`. @see {@link Query#nearestTo} for more details.
*/
search(vector: number[], column?: string): Query {
const q = this.query();
q.nearestTo(vector);
if (column !== undefined) {
q.column(column);
}
return q;
vectorSearch(vector: unknown): VectorQuery {
return this.query().nearestTo(vector);
}
// TODO: Support BatchUDF
/**
* Add new columns with defined values.
*
* @param newColumnTransforms pairs of column names and the SQL expression to use
* to calculate the value of the new column. These
* expressions will be evaluated for each row in the
* table, and can reference existing columns in the table.
* @param {AddColumnsSql[]} newColumnTransforms pairs of column names and
* the SQL expression to use to calculate the value of the new column. These
* expressions will be evaluated for each row in the table, and can
* reference existing columns in the table.
*/
async addColumns(newColumnTransforms: AddColumnsSql[]): Promise<void> {
await this.inner.addColumns(newColumnTransforms);
@@ -268,8 +264,8 @@ export class Table {
/**
* Alter the name or nullability of columns.
*
* @param columnAlterations One or more alterations to apply to columns.
* @param {ColumnAlteration[]} columnAlterations One or more alterations to
* apply to columns.
*/
async alterColumns(columnAlterations: ColumnAlteration[]): Promise<void> {
await this.inner.alterColumns(columnAlterations);
@@ -282,16 +278,16 @@ export class Table {
* underlying storage. In order to remove the data, you must subsequently
* call ``compact_files`` to rewrite the data without the removed columns and
* then call ``cleanup_files`` to remove the old files.
*
* @param columnNames The names of the columns to drop. These can be nested
* column references (e.g. "a.b.c") or top-level column
* names (e.g. "a").
* @param {string[]} columnNames The names of the columns to drop. These can
* be nested column references (e.g. "a.b.c") or top-level column names
* (e.g. "a").
*/
async dropColumns(columnNames: string[]): Promise<void> {
await this.inner.dropColumns(columnNames);
}
/** Retrieve the version of the table
/**
* Retrieve the version of the table
*
* LanceDb supports versioning. Every operation that modifies the table increases
* version. As long as a version hasn't been deleted you can `[Self::checkout]` that
@@ -302,7 +298,8 @@ export class Table {
return await this.inner.version();
}
/** Checks out a specific version of the Table
/**
* Checks out a specific version of the Table
*
* Any read operation on the table will now access the data at the checked out version.
* As a consequence, calling this method will disable any read consistency interval
@@ -321,7 +318,8 @@ export class Table {
await this.inner.checkout(version);
}
/** Ensures the table is pointing at the latest version
/**
* Ensures the table is pointing at the latest version
*
* This can be used to manually update a table when the read_consistency_interval is None
* It can also be used to undo a `[Self::checkout]` operation
@@ -330,7 +328,8 @@ export class Table {
await this.inner.checkoutLatest();
}
/** Restore the table to the currently checked out version
/**
* Restore the table to the currently checked out version
*
* This operation will fail if checkout has not been called previously
*

View File

@@ -1,3 +1,3 @@
# `lancedb-darwin-arm64`
# `@lancedb/lancedb-darwin-arm64`
This is the **aarch64-apple-darwin** binary for `lancedb`
This is the **aarch64-apple-darwin** binary for `@lancedb/lancedb`

View File

@@ -1,6 +1,6 @@
{
"name": "lancedb-darwin-arm64",
"version": "0.4.3",
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.4.16",
"os": [
"darwin"
],
@@ -11,7 +11,7 @@
"files": [
"lancedb.darwin-arm64.node"
],
"license": "MIT",
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}

View File

@@ -1,3 +1,3 @@
# `lancedb-darwin-x64`
# `@lancedb/lancedb-darwin-x64`
This is the **x86_64-apple-darwin** binary for `lancedb`
This is the **x86_64-apple-darwin** binary for `@lancedb/lancedb`

View File

@@ -1,6 +1,6 @@
{
"name": "lancedb-darwin-x64",
"version": "0.4.3",
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.4.16",
"os": [
"darwin"
],
@@ -11,7 +11,7 @@
"files": [
"lancedb.darwin-x64.node"
],
"license": "MIT",
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}

View File

@@ -1,3 +1,3 @@
# `lancedb-linux-arm64-gnu`
# `@lancedb/lancedb-linux-arm64-gnu`
This is the **aarch64-unknown-linux-gnu** binary for `lancedb`
This is the **aarch64-unknown-linux-gnu** binary for `@lancedb/lancedb`

Some files were not shown because too many files have changed in this diff Show More