Compare commits

..

373 Commits

Author SHA1 Message Date
Lance Release
085066d2a8 [python] Bump version: 0.6.0 → 0.6.1 2024-02-29 19:48:16 +00:00
Rob Meng
adf1a38f4d fix: fix columns type for pydantic 2.x (#1045) 2024-02-29 14:47:56 -05:00
Weston Pace
294c33a42e feat: Initial remote table implementation for rust (#1024)
This will eventually replace the remote table implementations in python
and node.
2024-02-29 10:55:49 -08:00
Lance Release
245786fed7 [python] Bump version: 0.5.7 → 0.6.0 2024-02-29 16:03:01 +00:00
BubbleCal
edd9a043f8 chore: enable test for dropping table (#1038)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-02-29 15:00:24 +08:00
natcharacter
38c09fc294 A simple base usage that install the dependencies necessary to use FT… (#1036)
A simple base usage that install the dependencies necessary to use FTS
and Hybrid search

---------

Co-authored-by: Nat Roth <natroth@Nats-MacBook-Pro.local>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-28 09:38:05 -08:00
Rob Meng
ebaa2dede5 chore: upgrade to lance 0.10.1 (#1034)
upgrade to lance 0.10.1 and update doc string to reflect dynamic
projection options
2024-02-28 11:06:46 -05:00
BubbleCal
ba7618a026 chore(rust): report the TableNotFound error while dropping non-exist table (#1022)
this will work after upgrading lance with
https://github.com/lancedb/lance/pull/1995 merged
see #884 for details

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-02-28 04:46:39 -08:00
Weston Pace
a6bcbd007b feat: add a basic async python client starting point (#1014)
This changes `lancedb` from a "pure python" setuptools project to a
maturin project and adds a rust lancedb dependency.

The async python client is extremely minimal (only `connect` and
`Connection.table_names` are supported). The purpose of this PR is to
get the infrastructure in place for building out the rest of the async
client.

Although this is not technically a breaking change (no APIs are
changing) it is still a considerable change in the way the wheels are
built because they now include the native shared library.
2024-02-27 04:52:02 -08:00
Will Jones
5af74b5aca feat: {add|alter|drop}_columns APIs (#1015)
Initial work for #959. This exposes the basic functionality for each in
all of the APIs. Will add user guide documentation in a later PR.
2024-02-26 11:04:53 -08:00
Weston Pace
8a52619bc0 refactor: change arrow from a direct dependency to a peer dependency (#984)
BREAKING CHANGE: users will now need to npm install `apache-arrow` and
`@apache-arrow/ts` themselves.
2024-02-23 14:08:39 -08:00
Lance Release
314d4c93e5 Updating package-lock.json 2024-02-23 05:11:22 +00:00
Lance Release
c5471ee694 Updating package-lock.json 2024-02-23 03:57:39 +00:00
Lance Release
4605359d3b Bump version: 0.4.10 → 0.4.11 2024-02-23 03:57:28 +00:00
Weston Pace
f1596122e6 refactor: rename the rust crate from vectordb to lancedb (#1012)
This also renames the new experimental node package to lancedb. The
classic node package remains named vectordb.

The goal here is to avoid introducing piecemeal breaking changes to the
vectordb crate. Instead, once the new API is stabilized, we will
officially release the lancedb crate and deprecate the vectordb crate.
The same pattern will eventually happen with the npm package vectordb.
2024-02-22 19:56:39 -08:00
Will Jones
3aa0c40168 feat(node): add read_consistency_interval to Node and Rust (#1002)
This PR adds the same consistency semantics as was added in #828. It
*does not* add the same lazy-loading of tables, since that breaks some
existing tests.

This closes #998.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-22 15:04:30 -08:00
Lance Release
677b7c1fcc [python] Bump version: 0.5.6 → 0.5.7 2024-02-22 20:07:12 +00:00
Lei Xu
8303a7197b chore: bump pylance to 0.9.18 (#1011) 2024-02-22 11:47:36 -08:00
Raghav Dixit
5fa9bfc4a8 python(feat): Imagebind embedding fn support (#1003)
Added imagebind fn support , steps to install mentioned in docstring. 
pytest slow checks done locally

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-02-22 11:47:08 +05:30
Ayush Chaurasia
bf2e9d0088 Docs: add meta tags (#1006) 2024-02-21 23:22:47 +05:30
Weston Pace
f04590ddad refactor: rust vectordb API stabilization of the Connection trait (#993)
This is the start of a more comprehensive refactor and stabilization of
the Rust API. The `Connection` trait is cleaned up to not require
`lance` and to match the `Connection` trait in other APIs. In addition,
the concrete implementation `Database` is hidden.

BREAKING CHANGE: The struct `crate::connection::Database` is now gone.
Several examples opened a connection using `Database::connect` or
`Database::connect_with_params`. Users should now use
`vectordb::connect`.

BREAKING CHANGE: The `connect`, `create_table`, and `open_table` methods
now all return a builder object. This means that a call like
`conn.open_table(..., opt1, opt2)` will now become
`conn.open_table(...).opt1(opt1).opt2(opt2).execute()` In addition, the
structure of options has changed slightly. However, no options
capability has been removed.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-02-20 18:35:52 -08:00
Lance Release
62c5117def [python] Bump version: 0.5.5 → 0.5.6 2024-02-20 20:45:02 +00:00
Bert
22c196b3e3 lance 0.9.18 (#1000) 2024-02-19 15:20:34 -05:00
Johannes Kolbe
1f4ac71fa3 apply fixes for notebook (#989) 2024-02-19 15:36:52 +05:30
Ayush Chaurasia
b5aad2d856 docs: Add meta tag for image preview (#988)
I think this should work. Need to deploy it to be sure as it can be
tested locally. Can be tested here.

2 things about this solution:
* All pages have a same meta tag, i.e, lancedb banner
* If needed, we can automatically use the first image of each page and
generate meta tags using the ultralytics mkdocs plugin that we did for
this purpose - https://github.com/ultralytics/mkdocs
2024-02-19 14:07:31 +05:30
Chang She
ca6f55b160 doc: update navigation links for embedding functions (#986) 2024-02-17 12:12:11 -08:00
Chang She
6f8cf1e068 doc: improve embedding functions documentation (#983)
Got some user feedback that the `implicit` / `explicit` distinction is
confusing.
Instead I was thinking we would just deprecate the `with_embeddings` API
and then organize working with embeddings into 3 buckets:

1. manually generate embeddings
2. use a provided embedding function
3. define your own custom embedding function
2024-02-17 10:39:28 -08:00
Chang She
e0277383a5 feat(python): add optional threadpool for batch requests (#981)
Currently if a batch request is given to the remote API, each query is
sent sequentially. We should allow the user to specify a threadpool.
2024-02-16 20:22:22 -08:00
Will Jones
d6b408e26f fix: use static C runtime on Windows (#979)
We depend on C static runtime, but not all Windows machines have that.
So might be worth statically linking it.

https://github.com/reorproject/reor/issues/36#issuecomment-1948876463
2024-02-16 15:54:12 -08:00
Will Jones
2447372c1f docs: show DuckDB with dataset, not table (#974)
Using datasets is preferred way to allow filter and projection pushdown,
as well as aggregated larger-than-memory tables.
2024-02-16 09:18:18 -08:00
Ayush Chaurasia
f0298d8372 docs: Minimal reranking evaluation benchmarks (#977) 2024-02-15 22:16:53 +05:30
Lance Release
54693e6bec Updating package-lock.json 2024-02-14 23:20:59 +00:00
Will Jones
73b2977bff chore: upgrade lance to 0.9.16 (#975) 2024-02-14 14:20:03 -08:00
Will Jones
aec85f7875 ci: fix Node ARM release build (#971)
When we turned on fat LTO builds, we made the release build job **much**
more compute and memory intensive. The ARM runners have particularly low
memory per core, which makes them susceptible to OOM errors. To avoid
issues, I have enabled memory swap on ARM and bumped the side of the
runner.
2024-02-14 13:02:09 -08:00
Will Jones
51f92ecb3d ci: reduce number of build jobs on aarch64 to avoid OOM (#970) 2024-02-13 17:33:09 -08:00
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
Lance Release
82936c77ef [python] Bump version: 0.5.3 → 0.5.4 2024-02-09 22:56:45 +00:00
Weston Pace
dddcddcaf9 chore: bump lance version to 0.9.15 (#949) 2024-02-09 14:55:44 -08:00
Weston Pace
a9727eb318 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-02-09 10:26:14 -08:00
QianZhu
48d55bf952 added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-09 10:07:47 -08:00
Weston Pace
d2e71c8b08 feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-02-08 09:40:29 -08:00
Nitish Sharma
f53aace89c Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-02-07 20:49:25 -08:00
Ayush Chaurasia
d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30
Will Jones
57605a2d86 feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

## Table reference state

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-02-05 08:12:19 -08:00
Ayush Chaurasia
738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00
Lei Xu
0b0f42537e chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-02-04 14:21:27 -08:00
QianZhu
e412194008 fix hybrid search example (#922) 2024-02-03 09:26:32 +05:30
Lance Release
a9088224c5 [python] Bump version: 0.5.2 → 0.5.3 2024-02-03 03:04:04 +00:00
Ayush Chaurasia
688c57a0d8 fix: revert safe_import_pandas usage (#921) 2024-02-02 18:57:13 -08:00
Lance Release
12a98deded Updating package-lock.json 2024-02-02 22:37:23 +00:00
Lance Release
e4bb042918 Updating package-lock.json 2024-02-02 21:57:07 +00:00
Lance Release
04e1662681 Bump version: 0.4.7 → 0.4.8 2024-02-02 21:56:57 +00:00
Lance Release
ce2242e06d [python] Bump version: 0.5.1 → 0.5.2 2024-02-02 21:33:02 +00:00
Weston Pace
778339388a chore: bump pylance version to latest in pyproject.toml (#918) 2024-02-02 13:32:12 -08:00
Weston Pace
7f8637a0b4 feat: add merge_insert to the node and rust APIs (#915) 2024-02-02 13:16:51 -08:00
QianZhu
09cd08222d make it explicit about the vector column data type (#916)
<img width="837" alt="Screenshot 2024-02-01 at 4 23 34 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/4f0f5c5a-2a24-4b00-aad1-ef80a593d964">
[
<img width="838" alt="Screenshot 2024-02-01 at 4 26 03 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/ca073bc8-b518-4be3-811d-8a7184416f07">
](url)

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-02 09:02:02 -08:00
Bert
a248d7feec fix: add request retry to python client (#917)
Adds capability to the remote python SDK to retry requests (fixes #911)

This can be configured through environment:
- `LANCE_CLIENT_MAX_RETRIES`= total number of retries. Set to 0 to
disable retries. default = 3
- `LANCE_CLIENT_CONNECT_RETRIES` = number of times to retry request in
case of TCP connect failure. default = 3
- `LANCE_CLIENT_READ_RETRIES` = number of times to retry request in case
of HTTP request failure. default = 3
- `LANCE_CLIENT_RETRY_STATUSES` = http statuses for which the request
will be retried. passed as comma separated list of ints. default `500,
502, 503`
- `LANCE_CLIENT_RETRY_BACKOFF_FACTOR` = controls time between retry
requests. see
[here](23f2287eb5/src/urllib3/util/retry.py (L141-L146)).
default = 0.25

Only read requests will be retried:
- list table names
- query
- describe table
- list table indices

This does not add retry capabilities for writes as it could possibly
cause issues in the case where the retried write isn't idempotent. For
example, in the case where the LB times-out the request but the server
completes the request anyway, we might not want to blindly retry an
insert request.
2024-02-02 11:27:29 -05:00
Weston Pace
cc9473a94a docs: add cleanup_old_versions and compact_files to Table for documentation purposes (#900)
Closes #819
2024-02-01 15:06:00 -08:00
Weston Pace
d77e95a4f4 feat: upgrade to lance 0.9.11 and expose merge_insert (#906)
This adds the python bindings requested in #870 The javascript/rust
bindings will be added in a future PR.
2024-02-01 11:36:29 -08:00
Lei Xu
62f053ac92 ci: bump to new version of python action to use node 20 gIthub action runtime (#909)
Github action is deprecating old node-16 runtime.
2024-02-01 11:36:03 -08:00
JacobLinCool
34e10caad2 fix the repo link on npm, add links for homepage and bug report (#910)
- fix the repo link on npm
- add links for homepage and bug report
2024-01-31 21:07:11 -08:00
QianZhu
f5726e2d0c arrow table/f16 example (#907) 2024-01-31 14:41:28 -08:00
Lance Release
12b4fb42fc Updating package-lock.json 2024-01-31 21:18:24 +00:00
Lance Release
1328cd46f1 Updating package-lock.json 2024-01-31 20:29:38 +00:00
Lance Release
0c940ed9f8 Bump version: 0.4.6 → 0.4.7 2024-01-31 20:29:28 +00:00
Lei Xu
5f59e51583 fix(node): pass AWS credentials to db level operations (#908)
Passed the following tests

```ts
const keyId = process.env.AWS_ACCESS_KEY_ID;
const secretKey = process.env.AWS_SECRET_ACCESS_KEY;
const sessionToken = process.env.AWS_SESSION_TOKEN;
const region = process.env.AWS_REGION;

const db = await lancedb.connect({
  uri: "s3://bucket/path",
  awsCredentials: {
    accessKeyId: keyId,
    secretKey: secretKey,
    sessionToken: sessionToken,
  },
  awsRegion: region,
} as lancedb.ConnectionOptions);

  console.log(await db.createTable("test", [{ vector: [1, 2, 3] }]));
  console.log(await db.tableNames());
  console.log(await db.dropTable("test"))
```
2024-01-31 12:05:01 -08:00
Will Jones
8d0ea29f89 docs: provide AWS S3 cleanup and permissions advice (#903)
Adding some more quick advice for how to setup AWS S3 with LanceDB.

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-31 09:24:54 -08:00
Abraham Lopez
b9468bb980 chore: update JS/TS example in README (#898)
- The JS/TS library actually expects named parameters via an object in
`.createTable()` rather than individual arguments
- Added example on how to search rows by criteria without a vector
search. TS type of `.search()` currently has the `query` parameter as
non-optional so we have to pass undefined for now.
2024-01-30 11:09:45 -08:00
Lei Xu
a42df158a3 ci: change apple silicon runner to free OSS macos-14 target (#901) 2024-01-30 11:05:42 -08:00
Raghav Dixit
9df6905d86 chore(python): GTE embedding function model name update (#902)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 23:56:29 +05:30
Ayush Chaurasia
3ffed89793 feat(python): Hybrid search & Reranker API (#824)
based on https://github.com/lancedb/lancedb/pull/713
- The Reranker api can be plugged into vector only or fts only search
but this PR doesn't do that (see example -
https://txt.cohere.com/rerank/)


### Default reranker -- `LinearCombinationReranker(weight=0.7,
fill=1.0)`

```
table.search("hello", query_type="hybrid").rerank(normalize="score").to_pandas()
```
### Available rerankers
LinearCombinationReranker
```
from lancedb.rerankers import LinearCombinationReranker

# Same as default 
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=LinearCombinationReranker()
                                     ).to_pandas()

# with custom params
reranker = LinearCombinationReranker(weight=0.3, fill=1.0)
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=reranker
                                     ).to_pandas()
```

Cohere Reranker
```
from lancedb.rerankers import CohereReranker

# default model.. English and multi-lingual supported. See docstring for available custom params
table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank",  # score or rank
                                      reranker=CohereReranker()
                                     ).to_pandas()

```

CrossEncoderReranker

```
from lancedb.rerankers import CrossEncoderReranker

table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank", 
                                      reranker=CrossEncoderReranker()
                                     ).to_pandas()

```

## Using custom Reranker
```
from lancedb.reranker import Reranker

class CustomReranker(Reranker):
    def rerank_hybrid(self, vector_result, fts_result):
           combined_res = self.merge_results(vector_results, fts_results) # or use custom combination logic
           # Custom rerank logic here
           
           return combined_res
```

- [x] Expand testing
- [x] Make sure usage makes sense
- [x] Run simple benchmarks for correctness (Seeing weird result from
cohere reranker in the toy example)
- Support diverse rerankers by default:
- [x] Cross encoding
- [x] Cohere
- [x] Reciprocal Rank Fusion

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-30 19:10:33 +05:30
Prashanth Rao
f150768739 Fix image bgcolor (#891)
Minor fix to change the background color for an image in the docs. It's
now readable in both light and dark modes (earlier version made it
impossible to read in dark mode).
2024-01-30 16:50:29 +05:30
Ayush Chaurasia
b432ecf2f6 doc: Add documentation chatbot for LanceDB (#890)
<img width="1258" alt="Screenshot 2024-01-29 at 10 05 52 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/7c108fde-e993-415c-ad01-72010fd5fe31">
2024-01-30 11:24:57 +05:30
Raghav Dixit
d1a7257810 feat(python): Embedding fn support for gte-mlx/gte-large (#873)
have added testing and an example in the docstring, will be pushing a
separate PR in recipe repo for rag example

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 11:21:57 +05:30
Ayush Chaurasia
5c5e23bbb9 chore(python): Temporarily extend remote connection timeout (#888)
Context - https://etoai.slack.com/archives/C05NC5YSW5V/p1706371205883149
2024-01-29 17:34:33 +05:30
Lei Xu
e5796a4836 doc: fix js example of create index (#886) 2024-01-28 17:02:36 -08:00
Lei Xu
b9c5323265 doc: use snippet for rust code example and make sure rust examples run through CI (#885) 2024-01-28 14:30:30 -08:00
Lei Xu
e41a52863a fix: fix doc build to include the source snippet correctly (#883) 2024-01-28 11:55:58 -08:00
Chang She
13acc8a480 doc(rust): minor fixes for Rust quick start. (#878) 2024-01-28 11:40:52 -08:00
Lei Xu
22b9eceb12 chore: convert all js doc test to use snippet. (#881) 2024-01-28 11:39:25 -08:00
Lei Xu
5f62302614 doc: use code snippet for typescript examples (#880)
The typescript code is in a fully function file, that will be run via the CI.
2024-01-27 22:52:37 -08:00
Ayush Chaurasia
d84e0d1db8 feat(python): Aws Bedrock embeddings integration (#822)
Supports amazon titan, cohere english & cohere multi-lingual base
models.
2024-01-28 02:04:15 +05:30
Lei Xu
ac94b2a420 chore: upgrade lance, pylance and datafusion (#879) 2024-01-27 12:31:38 -08:00
Lei Xu
b49bc113c4 chore: add one rust SDK e2e example (#876)
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-26 22:41:20 -08:00
Lei Xu
77b5b1cf0e doc: update quick start for full rust example (#872) 2024-01-26 16:19:43 -08:00
Lei Xu
e910809de0 chore: bump github actions to v4 due to GHA warnings of node version deprecation (#874) 2024-01-26 15:52:47 -08:00
Lance Release
90b5b55126 Updating package-lock.json 2024-01-26 23:35:58 +00:00
Lance Release
488e4f8452 Updating package-lock.json 2024-01-26 22:40:46 +00:00
Lance Release
ba6f949515 Bump version: 0.4.5 → 0.4.6 2024-01-26 22:40:36 +00:00
Lei Xu
3dd8522bc9 feat(rust): provide connect and connect_with_options in Rust SDK (#871)
* Bring the feature parity of Rust connect methods.
* A global connect method that can connect to local and remote / cloud
table, as the same as in js/python today.
2024-01-26 11:40:11 -08:00
Lei Xu
e01ef63488 chore(rust): simplified version of optimize (#869)
Consolidate various optimize() into one method, similar to postgres
VACCUM in the process of preparing Rust API for public use
2024-01-26 11:36:04 -08:00
Lei Xu
a6cf24b359 feat(napi): Issue queries as node SDK (#868)
* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
2024-01-25 22:14:14 -08:00
Lance Release
9a07c9aad8 Updating package-lock.json 2024-01-25 21:49:36 +00:00
Lance Release
d405798952 Updating package-lock.json 2024-01-25 20:54:55 +00:00
Lance Release
e8a8b92b2a Bump version: 0.4.4 → 0.4.5 2024-01-25 20:54:44 +00:00
Lei Xu
66362c6506 fix: release build for node sdk (#861) 2024-01-25 12:51:32 -08:00
Lance Release
5228ca4b6b Updating package-lock.json 2024-01-25 19:53:05 +00:00
Lance Release
dcc216a244 Bump version: 0.4.3 → 0.4.4 2024-01-25 19:52:54 +00:00
Lei Xu
a7aa168c7f feat: improve the rust table query API and documents (#860)
* Easy to type
* Handle `String, &str, [String] and [&str]` well without manual
conversion
* Fix function name to be verb
* Improve docstring of Rust.
* Promote `query` and `search()` to public `Table` trait
2024-01-25 10:44:31 -08:00
Lei Xu
7a89b5ec68 doc: update rust readme to include crate and docs.rs links (#859) 2024-01-24 20:26:30 -08:00
Lei Xu
ee862abd29 feat(napi): Provide a new createIndex API in the napi SDK. (#857) 2024-01-24 17:27:46 -08:00
Will Jones
4e1ed2b139 docs: document basics of configuring object storage (#832)
Created based on upstream PR https://github.com/lancedb/lance/pull/1849

Closes #681

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-24 15:27:22 -08:00
Lei Xu
008e0b1a93 feat(rust): create index API improvement (#853)
* Extract a minimal Table interface in Rust SDK
* Make create_index composable in Rust.
* Fix compiling issues from ffi
2024-01-24 10:05:12 -08:00
Bert
82cbcf6d07 Bump lance 0.9.9 (#851) 2024-01-24 08:41:28 -05:00
Lei Xu
1cd5426aea feat: rework NodeJS SDK using napi (#847)
Use Napi to write a Node.js SDK that follows Polars for better
maintainability, while keeping most of the logic in Rust.
2024-01-23 15:14:45 -08:00
Lance Release
41f0e32a06 [python] Bump version: 0.5.0 → 0.5.1 2024-01-23 22:01:14 +00:00
Lei Xu
ccfd043939 feat: change create table to accept Arrow table (#845) 2024-01-23 13:25:15 -08:00
QianZhu
b4d451ed21 extend timeout for requests.get and requests.post (#848) 2024-01-22 20:31:39 -08:00
Lei Xu
4c303ba293 chore(rust): provide a Connection trait to match python and nodejs SDK (#846)
In NodeJS and Python, LanceDB establishes a connection to a db. In Rust
core, it is called Database.
We should be consistent with the naming.
2024-01-22 17:35:02 -08:00
Bert
66eaa2a00e allow passing api key as env var (#841)
Allow passing API key as env var:
```shell
export LANCEDB_API_KEY=sh_123...
```

with this set, apiKey argument can omitted from `connect`
```js
    const db = await vectordb.connect({
        uri: "db://test-proj-01-ae8343",
        region: "us-east-1",
  })
```
```py
    db = lancedb.connect(
        uri="db://test-proj-01-ae8343",
        region="us-east-1",
    )
```
2024-01-22 16:18:28 -05:00
Lei Xu
5f14a411af feat(js): add helper function to create Arrow Table with schema (#838)
Support to make Apache Arrow Table from an array of javascript Records,
with optionally provided Schema.
2024-01-22 11:49:44 -08:00
Chang She
bea3cef627 chore(js): remove errant console.log (#834) 2024-01-22 11:44:38 -08:00
Lei Xu
0e92a7277c doc: add index page for rust crate (#839)
Rust API doc for the braves
2024-01-22 09:15:55 -08:00
Lei Xu
83ed8d1e49 bug: add a test for fp16 (#837)
Add test to ingest fp16 to a database
2024-01-20 16:23:28 -08:00
Chang She
a1ab549457 Merge branch 'tecmie-tecmie/embeddings-openai' 2024-01-19 16:46:16 -08:00
Chang She
3ba1618be9 Merge branch 'tecmie/embeddings-openai' of github.com:tecmie/lancedb into tecmie-tecmie/embeddings-openai 2024-01-19 16:45:41 -08:00
Lei Xu
9a9fc77a95 doc: improve docs for nodejs connect functions (#833)
* improve the docstring for NodeJS connect functions and
`ConnectOptions` parameters.
* Simplify `npm run build` steps.
2024-01-19 16:07:53 -08:00
Bert
c89d5e6e6d fix: remote python client closes idle connections (#831) 2024-01-19 17:28:36 -05:00
Will Jones
d012db24c2 ci: lint and enforce linting (#829)
@eddyxu added instructions for linting here:


7af213801a/python/README.md (L45-L50)

However, we had a lot of failures and weren't checking this in CI. This
PR fixes all lints and adds a check to CI to keep us in compliance with
the lints.
2024-01-19 13:09:14 -08:00
Bert
7af213801a bump lance to 0.9.7 (#826) 2024-01-18 20:44:22 -08:00
Prashanth Rao
8f54cfcde9 Docs updates incl. Polars (#827)
This PR makes the following aesthetic and content updates to the docs.

- [x] Fix max width issue on mobile: Content should now render more
cleanly and be more readable on smaller devices
- [x] Improve image quality of flowchart in data management page
- [x] Fix syntax highlighting in text at the bottom of the IVF-PQ
concepts page
- [x] Add example of Polars LazyFrames to docs (Integrations)
- [x] Add example of adding data to tables using Polars (guides)
2024-01-18 20:43:59 -08:00
Prashanth Rao
119b928a52 docs: Updates and refactor (#683)
This PR makes incremental changes to the documentation.

* Closes #697 
* Closes #698

## Chores
- [x] Add dark mode
- [x] Fix headers in navbar
- [x] Add `extra.css` to customize navbar styles
- [x] Customize fonts for prose/code blocks, navbar and admonitions
- [x] Inspect all admonition boxes (remove redundant dropdowns) and
improve clarity and readability
- [x] Ensure that all images in the docs have white background (not
transparent) to be viewable in dark mode
- [x] Improve code formatting in code blocks to make them consistent
with autoformatters (eslint/ruff)
- [x] Add bolder weight to h1 headers
- [x] Add diagram showing the difference between embedded (OSS) and
serverless (Cloud)
- [x] Fix [Creating an empty
table](https://lancedb.github.io/lancedb/guides/tables/#creating-empty-table)
section: right now, the subheaders are not clickable.
- [x] In critical data ingestion methods like `table.add` (among
others), the type signature often does not match the actual code
- [x] Proof-read each documentation section and rewrite as necessary to
provide more context, use cases, and explanations so it reads less like
reference documentation. This is especially important for CRUD and
search sections since those are so central to the user experience.

## Restructure/new content 
- [x] The section for [Adding
data](https://lancedb.github.io/lancedb/guides/tables/#adding-to-a-table)
only shows examples for pandas and iterables. We should include pydantic
models, arrow tables, etc.
- [x] Add conceptual tutorial for IVF-PQ index
- [x] Clearly separate vector search, FTS and filtering sections so that
these are easier to find
- [x] Add docs on refine factor to explain its importance for recall.
Closes #716
- [x] Add an FAQ page showing answers to commonly asked questions about
LanceDB. Closes #746
- [x] Add simple polars example to the integrations section. Closes #756
and closes #153
- [ ] Add basic docs for the Rust API (more detailed API docs can come
later). Closes #781
- [x] Add a section on the various storage options on local vs. cloud
(S3, EBS, EFS, local disk, etc.) and the tradeoffs involved. Closes #782
- [x] Revamp filtering docs: add pre-filtering examples and redo headers
and update content for SQL filters. Closes #783 and closes #784.
- [x] Add docs for data management: compaction, cleaning up old versions
and incremental indexing. Closes #785
- [ ] Add a benchmark section that also discusses some best practices.
Closes #787

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-01-19 00:18:37 +05:30
Lance Release
8bcdc81fd3 [python] Bump version: 0.4.4 → 0.5.0 2024-01-18 01:53:15 +00:00
Chang She
39e14c70c5 chore(python): turn off lazy frame ingestion (#821) 2024-01-16 19:11:16 -08:00
Chang She
af8263af94 feat(python): allow the entire table to be converted a polars dataframe (#814) 2024-01-15 15:49:16 -08:00
Chang She
be4ab9eef3 feat(python): add exist_ok option to create table (#813)
This mimics CREATE TABLE IF NOT EXISTS behavior.
We add `db.create_table(..., exist_ok=True)` parameter.
By default it is set to False, so trying to create
a table with the same name will raise an exception.
If set to True, then it only opens the table if it
already exists. If you pass in a schema, it will
be checked against the existing table to make sure
you get what you want. If you pass in data, it will
NOT be added to the existing table.
2024-01-15 11:09:18 -08:00
Ayush Chaurasia
184d2bc969 chore(python): get rid of Pydantic deprication warning in embedding fcn (#816)
```
UserWarning: Valid config keys have changed in V2:
* 'keep_untouched' has been renamed to 'ignored_types' warnings.warn(message, UserWarning)
```
2024-01-15 12:19:51 +05:30
Anton Shevtsov
ff6f005336 Add openai api key not found help (#815)
This pull request adds check for the presence of an environment variable
`OPENAI_API_KEY` and removes an unused parameter in
`retry_with_exponential_backoff` function.
2024-01-15 02:44:09 +05:30
Chang She
49333e522c feat(python): basic polars integration (#811)
We should now be able to directly ingest polars dataframes and return
results as polars dataframes


![image](https://github.com/lancedb/lancedb/assets/759245/828b1260-c791-45f1-a047-aa649575e798)
2024-01-13 16:38:16 -08:00
Andrew Miracle
44eba363b5 eslint fix 2024-01-13 09:15:01 +01:00
Ayush Chaurasia
4568df422d feat(python): Add gemini text embedding function (#806)
Named it Gemini-text for now. Not sure how complicated it will be to
support both text and multimodal embeddings under the same class
"gemini"..But its not something to worry about for now I guess.
2024-01-12 22:38:55 -08:00
Andrew Miracle
a90358a1e3 Merge branch 'main' into tecmie/embeddings-openai 2024-01-12 10:18:54 +01:00
Andrew Miracle
f7f9beaf31 rebase from lancedb/main 2024-01-12 10:17:30 +01:00
Lance Release
cfdbddc5cf Updating package-lock.json 2024-01-12 09:45:45 +01:00
Lance Release
88affc1428 Bump version: 0.4.2 → 0.4.3 2024-01-12 09:45:40 +01:00
Lance Release
a7be064f00 [python] Bump version: 0.4.3 → 0.4.4 2024-01-12 09:45:40 +01:00
Will Jones
707df47c3f upgrade lance (#809) 2024-01-12 09:45:40 +01:00
Lei Xu
6e97fada13 chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-12 09:45:40 +01:00
Chang She
3f66be666d feat(node): align incoming data to table schema (#802) 2024-01-12 09:45:40 +01:00
Sebastian Law
eda4c587fc use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-12 09:45:36 +01:00
Chang She
91d64d86e0 chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-12 09:45:36 +01:00
Chang She
ff81c0d698 feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-12 09:45:36 +01:00
Chang She
fcfb4587bb feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-12 09:45:36 +01:00
Chang She
f43c06d9ce fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-12 09:45:36 +01:00
Chang She
ba01d274eb feat(python): support new style optional syntax (#793) 2024-01-12 09:45:36 +01:00
Chang She
615c469af2 chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-12 09:45:36 +01:00
Chang She
a649b3b1e4 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-12 09:45:36 +01:00
Lei Xu
be76242884 chore: bump lance to 0.9.5 (#790) 2024-01-12 09:45:36 +01:00
Chang She
f4994cb0ec feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-12 09:45:36 +01:00
lucasiscovici
00b0c75710 raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-12 09:45:36 +01:00
sudhir
47299385fa Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-12 09:45:36 +01:00
Chris
9dea884a7f Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-12 09:45:36 +01:00
Vladimir Varankin
85f8cf20aa Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-12 09:45:36 +01:00
QianZhu
5e720b2776 small bug fix for example code in SaaS JS doc (#770) 2024-01-12 09:45:36 +01:00
Chang She
30a8223944 chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-12 09:45:36 +01:00
Bengsoon Chuah
5b1587d84a Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-12 09:45:36 +01:00
QianZhu
78bafb3007 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-12 09:45:36 +01:00
Chang She
4417f7c5a7 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-12 09:45:36 +01:00
Lance Release
577d6ea16e Updating package-lock.json 2024-01-12 09:45:33 +01:00
Lance Release
53d2ef5e81 Bump version: 0.4.1 → 0.4.2 2024-01-12 09:45:29 +01:00
Lance Release
e48ceb2ebd [python] Bump version: 0.4.2 → 0.4.3 2024-01-12 09:45:29 +01:00
Lei Xu
327692ccb1 chore: bump pylance to 0.9.2 (#754) 2024-01-12 09:45:29 +01:00
Xin Hao
bc224a6a0b docs: fix link (#752) 2024-01-12 09:45:29 +01:00
Chang She
2dcb39f556 feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2024-01-12 09:45:29 +01:00
Lance Release
6bda6f2f2a [python] Bump version: 0.4.1 → 0.4.2 2024-01-12 09:45:29 +01:00
Chang She
a3fafd6b54 chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2024-01-12 09:45:29 +01:00
Chang She
dc8d6835c0 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2024-01-12 09:45:29 +01:00
Chang She
f55d99cec5 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-01-12 09:45:29 +01:00
Aidan
3d8b2f5531 fix: createIndex index cache size (#741) 2024-01-12 09:45:29 +01:00
Chang She
b71aa4117f feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2024-01-12 09:45:29 +01:00
Lance Release
55db26f59a Updating package-lock.json 2024-01-12 09:45:29 +01:00
Lance Release
7e42f58dec [python] Bump version: 0.4.0 → 0.4.1 2024-01-12 09:45:23 +01:00
Lance Release
2790b19279 Bump version: 0.4.0 → 0.4.1 2024-01-12 09:45:23 +01:00
elliottRobinson
4ba655d05e Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2024-01-12 09:45:23 +01:00
Lance Release
986891db98 Updating package-lock.json 2024-01-11 22:21:42 +00:00
Lance Release
036bf02901 Updating package-lock.json 2024-01-11 21:34:04 +00:00
Lance Release
4e31f0cc7a Bump version: 0.4.2 → 0.4.3 2024-01-11 21:33:55 +00:00
Lance Release
0a16e29b93 [python] Bump version: 0.4.3 → 0.4.4 2024-01-11 21:29:00 +00:00
Will Jones
cf7d7a19f5 upgrade lance (#809) 2024-01-11 13:28:10 -08:00
Lei Xu
fe2fb91a8b chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-11 10:58:49 -08:00
Chang She
81af350d85 feat(node): align incoming data to table schema (#802) 2024-01-10 16:44:00 -08:00
Sebastian Law
99adfe065a use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-10 00:07:50 -05:00
Chang She
277406509e chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-09 20:20:13 -08:00
Chang She
63411b4d8b feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-09 19:41:31 -08:00
Chang She
d998f80b04 feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-09 19:33:03 -08:00
Chang She
629379a532 fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-09 19:27:38 -08:00
Andrew Miracle
821cf0e434 eslint fix 2024-01-09 16:27:22 +01:00
Chang She
99ba5331f0 feat(python): support new style optional syntax (#793) 2024-01-09 07:03:29 -08:00
Chang She
121687231c chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-08 21:49:31 -08:00
Chang She
ac40d4b235 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-08 21:12:48 -08:00
Lei Xu
c5a52565ac chore: bump lance to 0.9.5 (#790) 2024-01-07 19:27:47 -08:00
Chang She
b0a88a7286 feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-07 15:15:13 -08:00
lucasiscovici
d41d849e0e raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-07 14:34:04 -08:00
sudhir
bf5202f196 Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-07 14:27:56 -08:00
Chris
8be2861061 Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-07 14:27:40 -08:00
Vladimir Varankin
0560e3a0e5 Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-07 14:26:35 -08:00
QianZhu
b83fbfc344 small bug fix for example code in SaaS JS doc (#770) 2024-01-04 14:30:34 -08:00
Chang She
60b22d84bf chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-04 11:45:12 -08:00
Bengsoon Chuah
7d55a94efd Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-04 11:15:42 -08:00
QianZhu
4d8e401d34 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-03 16:24:21 -08:00
Chang She
684eb8b087 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-02 20:55:33 -08:00
Lance Release
4e3b82feaa Updating package-lock.json 2023-12-30 03:16:41 +00:00
Lance Release
8e248a9d67 Updating package-lock.json 2023-12-30 00:53:51 +00:00
Lance Release
065ffde443 Bump version: 0.4.1 → 0.4.2 2023-12-30 00:53:30 +00:00
Lance Release
c3059dc689 [python] Bump version: 0.4.2 → 0.4.3 2023-12-30 00:52:54 +00:00
Lei Xu
a9caa5f2d4 chore: bump pylance to 0.9.2 (#754) 2023-12-29 16:39:45 -08:00
Xin Hao
8411c36b96 docs: fix link (#752) 2023-12-29 15:33:24 -08:00
Chang She
7773bda7ee feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2023-12-29 15:33:03 -08:00
Lance Release
392777952f [python] Bump version: 0.4.1 → 0.4.2 2023-12-29 00:19:21 +00:00
Chang She
7e75e50d3a chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2023-12-28 15:05:57 -08:00
Chang She
4b8af261a3 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2023-12-28 11:02:56 -08:00
Chang She
c8728d4ca1 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-27 09:31:04 -08:00
Aidan
446f837335 fix: createIndex index cache size (#741) 2023-12-27 09:25:13 -08:00
Chang She
8f9ad978f5 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2023-12-27 09:10:09 -08:00
Lance Release
0df38341d5 Updating package-lock.json 2023-12-26 17:21:51 +00:00
Lance Release
60260018cf [python] Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:16 +00:00
Lance Release
bb100c5c19 Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:09 +00:00
elliottRobinson
eab9072bb5 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2023-12-26 19:24:22 +05:30
Andrew Miracle
ee1d0b596f remove console logs 2023-12-25 21:51:02 +00:00
Andrew Miracle
38a4524893 add support for openai SDK version ^4.24.1 2023-12-25 20:29:54 +00:00
Will Jones
ee0f0611d9 docs: update node API reference (#734)
This command hasn't been run for a while...
2023-12-22 10:14:31 -08:00
Will Jones
34966312cb docs: enhance Update user guide (#735)
Closes #705
2023-12-22 10:14:21 -08:00
Bert
756188358c docs: fix JS api docs for update method (#738) 2023-12-21 13:48:00 -05:00
Weston Pace
dc5126d8d1 feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2023-12-21 09:50:10 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
Chang She
7856a94d2c feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 12:28:53 -08:00
Chang She
371d2f979e feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-12-20 12:23:07 -08:00
Aidan
fff8e399a3 feat: Node create index API (#720) 2023-12-20 15:22:35 -05:00
Aidan
73e4015797 feat: Node Schema API (#717) 2023-12-20 12:16:40 -05:00
Lance Release
5142a27482 Updating package-lock.json 2023-12-18 18:15:50 +00:00
Lance Release
81df2a524e Updating package-lock.json 2023-12-18 17:29:58 +00:00
Lance Release
40638e5515 Bump version: 0.3.11 → 0.4.0 2023-12-18 17:29:47 +00:00
Lance Release
018314a5c1 [python] Bump version: 0.3.6 → 0.4.0 2023-12-18 17:27:26 +00:00
Lei Xu
409eb30ea5 chore: bump lance version to 0.9 (#715) 2023-12-17 22:11:42 -05:00
Lance Release
ff9872fd44 Updating package-lock.json 2023-12-15 18:25:06 +00:00
Lance Release
a0608044a1 [python] Bump version: 0.3.5 → 0.3.6 2023-12-15 18:20:55 +00:00
Lance Release
2e4ea7d2bc Updating package-lock.json 2023-12-15 18:01:45 +00:00
Lance Release
57e5695a54 Bump version: 0.3.10 → 0.3.11 2023-12-15 18:01:34 +00:00
Bert
ce58ea7c38 chore: fix package lock (#711) 2023-12-15 11:49:16 -05:00
Bert
57207eff4a implement update for remote clients (#706) 2023-12-15 09:06:40 -05:00
Rob Meng
2d78bff120 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2023-12-15 00:19:08 -05:00
Rob Meng
7c09b9b9a9 feat: allow custom column name in query (#709) 2023-12-14 23:29:26 -05:00
Chang She
bd0034a157 feat: support nested pydantic schema (#707) 2023-12-14 18:20:45 -08:00
Will Jones
144b3b5d83 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2023-12-14 12:09:28 -08:00
Lance Release
b6f0a31686 Updating package-lock.json 2023-12-14 19:31:56 +00:00
Lance Release
9ec526f73f Bump version: 0.3.9 → 0.3.10 2023-12-14 19:31:41 +00:00
Lance Release
600bfd7237 [python] Bump version: 0.3.4 → 0.3.5 2023-12-14 19:31:22 +00:00
Will Jones
d087e7891d feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2023-12-14 11:28:32 -08:00
Chang She
098e397cf0 feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2023-12-13 22:59:01 -08:00
Bert
63ee8fa6a1 Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-13 14:53:06 -05:00
Ayush Chaurasia
693091db29 chore(python): Reduce posthog event count (#661)
- Register open_table as event 
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2023-12-08 11:00:51 -08:00
Ayush Chaurasia
dca4533dbe docs: Update roboflow tutorial position (#666) 2023-12-08 11:00:11 -08:00
QianZhu
f6bbe199dc Qian/minor fix doc (#695) 2023-12-08 09:58:53 -08:00
Kaushal Kumar Choudhary
366e522c2b docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2023-12-08 20:55:04 +05:30
Chang She
244b6919cc chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2023-12-07 15:49:52 -08:00
QianZhu
aca785ff98 saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2023-12-07 14:47:56 -08:00
Chang She
bbdebf2c38 chore: update package lock (#689) 2023-12-06 17:14:56 -08:00
Chang She
1336cce0dc chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2023-12-06 14:20:46 -08:00
Lance Release
6c83b6a513 Updating package-lock.json 2023-12-04 18:34:43 +00:00
Lance Release
6bec4bec51 Updating package-lock.json 2023-12-04 17:02:48 +00:00
Lance Release
23d30dfc78 Bump version: 0.3.8 → 0.3.9 2023-12-04 17:02:35 +00:00
Rob Meng
94c8c50f96 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2023-12-04 12:01:16 -05:00
Rob Meng
72765d8e1a feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2023-12-01 16:49:10 -05:00
Rob Meng
a2a8f9615e chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2023-12-01 00:44:14 -05:00
James
b085d9aaa1 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2023-11-27 20:39:01 +05:30
Bert
6eb662de9b fix: python remote correct open_table error message (#659) 2023-11-24 19:28:33 -05:00
Lance Release
2bb2bb581a Updating package-lock.json 2023-11-19 00:45:51 +00:00
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
Lance Release
123a49df77 Bump version: 0.3.7 → 0.3.8 2023-11-19 00:03:58 +00:00
Will Jones
a57aa4b142 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2023-11-18 15:57:23 -08:00
Rok Mihevc
d8e3e54226 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2023-11-18 14:17:40 -08:00
Ayush Chaurasia
ccfdf4853a [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2023-11-18 06:08:26 +05:30
Ayush Chaurasia
87e5d86e90 [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2023-11-18 06:08:13 +05:30
Aidan
1cf8a3e4e0 SaaS create_index API (#649) 2023-11-15 19:12:52 -05:00
Lance Release
5372843281 Updating package-lock.json 2023-11-15 03:15:10 +00:00
Lance Release
54677b8f0b Updating package-lock.json 2023-11-15 02:42:38 +00:00
Lance Release
ebcf9bf6ae Bump version: 0.3.6 → 0.3.7 2023-11-15 02:42:25 +00:00
Bert
797514bcbf fix: node remote implement table.countRows (#648) 2023-11-13 17:43:20 -05:00
Rok Mihevc
1c872ce501 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2023-11-13 21:43:48 +01:00
Bert
479f471c14 fix: node send db header for GET requests (#646) 2023-11-11 16:33:25 -05:00
Ayush Chaurasia
ae0d2f2599 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2023-11-10 15:02:38 +05:30
Ayush Chaurasia
1e8678f11a Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2023-11-09 12:34:18 +05:30
QianZhu
662968559d fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2023-11-07 17:34:38 -08:00
Rob Meng
9d895801f2 upgrade lance to 0.8.14 (#636)
upgrade lance
2023-11-07 19:01:29 -05:00
Rob Meng
80613a40fd skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2023-11-07 12:33:32 -05:00
Lei Xu
d43ef7f11e chore: apple silicon runner (#633)
Close #632
2023-11-06 21:04:32 -08:00
Lei Xu
554e068917 chore: improve create_table API consistency between local and remote SDK (#627) 2023-11-03 13:15:11 -07:00
Bert
567734dd6e fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2023-11-03 10:24:56 -04:00
Ayush Chaurasia
1589499f89 Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2023-11-02 19:20:10 +05:30
Lance Release
682e95fa83 Updating package-lock.json 2023-11-01 22:20:49 +00:00
Lance Release
1ad5e7f2f0 Updating package-lock.json 2023-11-01 21:16:20 +00:00
Lance Release
ddb3ef4ce5 Bump version: 0.3.5 → 0.3.6 2023-11-01 21:16:06 +00:00
Lance Release
ef20b2a138 [python] Bump version: 0.3.2 → 0.3.3 2023-11-01 21:15:55 +00:00
Lei Xu
2e0f251bfd chore: bump lance to 8.10 (#622) 2023-11-01 14:14:38 -07:00
Ayush Chaurasia
2cb91e818d Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2023-11-02 01:13:16 +05:30
Chang She
2835c76336 doc: node sdk now supports windows (#616) 2023-11-01 10:04:18 -07:00
Bert
8068a2bbc3 ci: cancel in progress runs on new push (#620) 2023-11-01 11:33:48 -04:00
Bert
24111d543a fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2023-11-01 10:50:09 -04:00
QianZhu
7eec2b8f9a Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2023-10-31 19:50:05 -07:00
Will Jones
b2b70ea399 increment pylance (#618) 2023-10-31 18:07:03 -07:00
Bert
e50a3c1783 added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-10-31 16:39:32 -04:00
Weston Pace
b517134309 feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2023-10-31 13:11:03 -07:00
Lei Xu
6fb539b5bf doc: add doc to use GPU for indexing (#611) 2023-10-30 15:25:00 -07:00
Lance Release
f37fe120fd Updating package-lock.json 2023-10-26 22:30:16 +00:00
Lance Release
2e115acb9a Updating package-lock.json 2023-10-26 21:48:01 +00:00
Lance Release
27a638362d Bump version: 0.3.4 → 0.3.5 2023-10-26 21:47:44 +00:00
Bert
22a6695d7a fix conv version (#605) 2023-10-26 17:44:11 -04:00
Lance Release
57eff82ee7 Updating package-lock.json 2023-10-26 21:03:07 +00:00
Lance Release
7732f7d41c Bump version: 0.3.3 → 0.3.4 2023-10-26 21:02:52 +00:00
Bert
5ca98c326f feat: added dataset stats api to node (#604) 2023-10-26 17:00:48 -04:00
Bert
b55db397eb feat: added data stats apis (#596) 2023-10-26 13:10:17 -04:00
Rob Meng
c04d72ac8a expose remap index api (#603)
expose index remap options in `compact_files`
2023-10-25 22:10:37 -04:00
Rob Meng
28b02fb72a feat: expose optimize index api (#602)
expose `optimize_index` api.
2023-10-25 19:40:23 -04:00
Lance Release
f3cf986777 [python] Bump version: 0.3.1 → 0.3.2 2023-10-24 19:06:38 +00:00
Bert
c73fcc8898 update lance to 0.8.7 (#598) 2023-10-24 14:49:36 -04:00
Chang She
cd9debc3b7 fix(python): fix multiple embedding functions bug (#597)
Closes #594

The embedding functions are pydantic models so multiple instances with
the same parameters are considered ==, which means that if you have
multiple embedding columns it's possible for the embeddings to get
overwritten. Instead we use `is` instead of == to avoid this problem.

testing: modified unit test to include this case
2023-10-24 13:05:05 -04:00
Rob Meng
26a97ba997 feat: add checkout method to table to reuse existing store and connections (#593)
Prior to this PR, to get a new version of a table, we need to re-open
the table. This has a few downsides w.r.t. performance:
* Object store is recreated, which takes time and throws away existing
warm connections
* Commit handler is thrown aways as well, which also may contain warm
connections
2023-10-23 12:06:13 -04:00
Rob Meng
ce19fedb08 feat: include manifest files in mirrow store (#589) 2023-10-21 12:21:41 -04:00
Will Jones
14e8e48de2 Revert "[python] Bump version: 0.3.2 → 0.3.3"
This reverts commit c30faf6083.
2023-10-20 17:52:49 -07:00
Will Jones
c30faf6083 [python] Bump version: 0.3.2 → 0.3.3 2023-10-20 17:30:00 -07:00
Ayush Chaurasia
64a4f025bb [Docs]: Minor Fixes (#587)
* Filename typo
* Remove rick_morty csv as users won't really be able to use it.. We can
create a an executable colab and download it from a bucket or smth.
2023-10-20 16:14:35 +02:00
Ayush Chaurasia
6dc968e7d3 [Docs] Embeddings API: Add multi-lingual semantic search example (#582) 2023-10-20 18:40:49 +05:30
Ayush Chaurasia
06b5b69f1e [Docs]Versioning docs (#586)
closes #564

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-20 18:40:16 +05:30
Lance Release
6bd3a838fc Updating package-lock.json 2023-10-19 20:45:39 +00:00
Lance Release
f36fea8f20 Updating package-lock.json 2023-10-19 20:06:10 +00:00
Lance Release
0a30591729 Bump version: 0.3.2 → 0.3.3 2023-10-19 20:05:57 +00:00
Chang She
0ed39b6146 chore: bump lance version in python/rust lancedb (#584)
To include latest v0.8.6

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-19 13:05:12 -07:00
Ayush Chaurasia
a8c7f80073 [Docs] Update embedding function docs (#581) 2023-10-18 13:04:42 +05:30
Ayush Chaurasia
0293bbe142 [Python]Embeddings API refactor (#580)
Sets things up for this -> https://github.com/lancedb/lancedb/issues/579
- Just separates out the registry/ingestion code from the function
implementation code
- adds a `get_registry` util
- package name "open-clip" -> "open-clip-torch"
2023-10-17 22:32:19 -07:00
Ayush Chaurasia
7372656369 [Docs] Add posthog telemetry to docs (#577)
Allows creation of funnels and user journeys
2023-10-17 21:11:59 -07:00
QianZhu
d46bc5dd6e list table pagination draft (#574) 2023-10-16 21:09:20 -07:00
Prashanth Rao
86efb11572 Add pyarrow date and timestamp type conversion from pydantic (#576) 2023-10-16 19:42:24 -07:00
Chang She
bb01ad5290 doc: fix broken link and add README (#573)
Fix broken link to embedding functions

testing: broken link was verified after local docs build to have been
repaired

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-16 16:13:07 -07:00
Lance Release
1b8cda0941 Updating package-lock.json 2023-10-16 16:10:07 +00:00
Lance Release
bc85a749a3 Updating package-lock.json 2023-10-16 15:12:15 +00:00
Lance Release
02c35d3457 Bump version: 0.3.1 → 0.3.2 2023-10-16 15:11:57 +00:00
Rob Meng
345c136cfb implement remote api calls for table mutation (#567)
Add more APIs to remote table for Node SDK
* `add` rows
* `overwrite` table with rows
* `create` table

This has been tested against dev stack
2023-10-16 11:07:58 -04:00
Rok Mihevc
043e388254 docs: show source of documented functions (#569) 2023-10-15 09:05:36 -07:00
Lei Xu
fe64fc4671 feat(python,js): deletion operation on remote tables (#568) 2023-10-14 15:47:19 -07:00
Rok Mihevc
6d66404506 docs: switch python examples to be row based (#554) 2023-10-14 14:07:43 -07:00
Lei Xu
eff94ecea8 chore: bump lance to 0.8.5 (#561)
Bump lance to 0.5.8
2023-10-14 12:38:43 -07:00
Ayush Chaurasia
7dfb555fea [DOCS][PYTHON] Update embeddings API docs & Example (#516)
This PR adds an overview of embeddings docs:
- 2 ways to vectorize your data using lancedb - explicit & implicit
- explicit - manually vectorize your data using `wit_embedding` function
- Implicit - automatically vectorize your data as it comes by ingesting
your embedding function details as table metadata
- Multi-modal example w/ disappearing embedding function
2023-10-14 07:56:07 +05:30
Lance Release
f762a669e7 Updating package-lock.json 2023-10-13 22:27:48 +00:00
Lance Release
0bdc7140dd Updating package-lock.json 2023-10-13 21:24:05 +00:00
Lance Release
8f6e955b24 Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:54 +00:00
Lance Release
1096da09da [python] Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:47 +00:00
Ayush Chaurasia
683824f1e9 Add cohere embedding function (#550) 2023-10-13 16:27:34 +05:30
Will Jones
db7bdefe77 feat: cleanup and compaction (#518)
#488
2023-10-11 12:49:12 -07:00
Ayush Chaurasia
e41894b071 [Docs] Improve visibility of table ops (#553)
A little verbose, but better than being non-discoverable 
![Screenshot from 2023-10-11
16-26-02](https://github.com/lancedb/lancedb/assets/15766192/9ba539a7-0cf8-4d9e-94e7-ce5d37c35df0)
2023-10-11 12:20:46 -07:00
Chang She
e1ae2bcbd8 feat: add to_list and to_pandas api's (#556)
Add `to_list` to return query results as list of python dict (so we're
not too pandas-centric). Closes #555

Add `to_pandas` API and add deprecation warning on `to_df`. Closes #545

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-11 12:18:55 -07:00
Ankur Goyal
ababc3f8ec Use query.limit(..) in README (#543)
If you run the README javascript example in typescript, it complains
that the type of limit is a function and cannot be set to a number.
2023-10-11 11:54:14 -07:00
Ayush Chaurasia
a1377afcaa feat: telemetry, error tracking, CLI & config manager (#538)
Co-authored-by: Lance Release <lance-dev@lancedb.com>
Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: rmeng <rob@lancedb.com>
Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Rok Mihevc <rok@mihevc.org>
2023-10-08 23:11:39 +05:30
236 changed files with 5030 additions and 21418 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.4.17 current_version = 0.4.11
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True
@@ -7,16 +7,6 @@ tag_name = v{new_version}
[bumpversion:file:node/package.json] [bumpversion:file:node/package.json]
[bumpversion:file:nodejs/package.json]
[bumpversion:file:nodejs/npm/darwin-x64/package.json]
[bumpversion:file:nodejs/npm/darwin-arm64/package.json]
[bumpversion:file:nodejs/npm/linux-x64-gnu/package.json]
[bumpversion:file:nodejs/npm/linux-arm64-gnu/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml] [bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/lancedb/Cargo.toml] [bumpversion:file:rust/lancedb/Cargo.toml]

View File

@@ -14,10 +14,6 @@ inputs:
# Note: this does *not* mean the host is arm64, since we might be cross-compiling. # Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false required: false
default: "false" default: "false"
manylinux:
description: "The manylinux version to build for"
required: false
default: "2_17"
runs: runs:
using: "composite" using: "composite"
steps: steps:
@@ -32,7 +28,7 @@ runs:
command: build command: build
working-directory: python working-directory: python
target: x86_64-unknown-linux-gnu target: x86_64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }} manylinux: "2_17"
args: ${{ inputs.args }} args: ${{ inputs.args }}
before-script-linux: | before-script-linux: |
set -e set -e
@@ -47,7 +43,7 @@ runs:
command: build command: build
working-directory: python working-directory: python
target: aarch64-unknown-linux-gnu target: aarch64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }} manylinux: "2_24"
args: ${{ inputs.args }} args: ${{ inputs.args }}
before-script-linux: | before-script-linux: |
set -e set -e

View File

@@ -24,14 +24,10 @@ jobs:
environment: environment:
name: github-pages name: github-pages
url: ${{ steps.deployment.outputs.page_url }} url: ${{ steps.deployment.outputs.page_url }}
runs-on: buildjet-8vcpu-ubuntu-2204 runs-on: ubuntu-22.04
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:

View File

@@ -18,30 +18,22 @@ on:
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma" RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
test-python: test-python:
name: Test doc python code name: Test doc python code
runs-on: "buildjet-8vcpu-ubuntu-2204" runs-on: "ubuntu-latest"
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: 3.11 python-version: 3.11
cache: "pip" cache: "pip"
cache-dependency-path: "docs/test/requirements.txt" cache-dependency-path: "docs/test/requirements.txt"
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Build Python - name: Build Python
working-directory: docs/test working-directory: docs/test
run: run:
@@ -56,8 +48,8 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node: test-node:
name: Test doc nodejs code name: Test doc nodejs code
runs-on: "buildjet-8vcpu-ubuntu-2204" runs-on: "ubuntu-latest"
timeout-minutes: 60 timeout-minutes: 45
strategy: strategy:
fail-fast: false fail-fast: false
steps: steps:
@@ -66,8 +58,6 @@ jobs:
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node - name: Set up Node
uses: actions/setup-node@v4 uses: actions/setup-node@v4
with: with:
@@ -75,7 +65,6 @@ jobs:
- name: Install dependecies needed for ubuntu - name: Install dependecies needed for ubuntu
run: | run: |
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Rust cache - name: Rust cache
uses: swatinem/rust-cache@v2 uses: swatinem/rust-cache@v2
- name: Install node dependencies - name: Install node dependencies

View File

@@ -20,11 +20,31 @@ env:
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
# #
# Use native CPU to accelerate tests if possible, especially for f16 # Use native CPU to accelerate tests if possible, especially for f16
# target-cpu=haswell fixes failing ci build RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
lint:
name: Lint
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Lint
run: |
npm ci
npm run lint
linux: linux:
name: Linux (Node ${{ matrix.node-version }}) name: Linux (Node ${{ matrix.node-version }})
timeout-minutes: 30 timeout-minutes: 30
@@ -107,7 +127,6 @@ jobs:
AWS_ENDPOINT: http://localhost:4566 AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb # this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566 DYNAMODB_ENDPOINT: http://localhost:4566
ALLOW_HTTP: true
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:

View File

@@ -28,10 +28,6 @@ jobs:
run: run:
shell: bash shell: bash
working-directory: nodejs working-directory: nodejs
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
@@ -53,7 +49,6 @@ jobs:
cargo clippy --all --all-features -- -D warnings cargo clippy --all --all-features -- -D warnings
npm ci npm ci
npm run lint npm run lint
npm run chkformat
linux: linux:
name: Linux (NodeJS ${{ matrix.node-version }}) name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30 timeout-minutes: 30
@@ -85,12 +80,7 @@ jobs:
run: | run: |
npm ci npm ci
npm run build npm run build
- name: Setup localstack
working-directory: .
run: docker compose up --detach --wait
- name: Test - name: Test
env:
S3_TEST: "1"
run: npm run test run: npm run test
macos: macos:
timeout-minutes: 30 timeout-minutes: 30
@@ -121,3 +111,4 @@ jobs:
- name: Test - name: Test
run: | run: |
npm run test npm run test

View File

@@ -2,7 +2,7 @@ name: NPM Publish
on: on:
release: release:
types: [published] types: [ published ]
jobs: jobs:
node: node:
@@ -19,7 +19,7 @@ jobs:
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
cache: "npm" cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- name: Install dependencies - name: Install dependencies
run: | run: |
@@ -31,7 +31,7 @@ jobs:
npm run tsc npm run tsc
npm pack npm pack
- name: Upload Linux Artifacts - name: Upload Linux Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v3
with: with:
name: node-package name: node-package
path: | path: |
@@ -61,41 +61,12 @@ jobs:
- name: Build MacOS native node modules - name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }} run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts - name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v3
with: with:
name: node-native-darwin-${{ matrix.config.arch }} name: native-darwin
path: | path: |
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build MacOS native nodejs modules
run: bash ci/build_macos_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-darwin-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
node-linux: node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
@@ -132,63 +103,12 @@ jobs:
run: | run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts - name: Upload Linux Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v3
with: with:
name: node-native-linux-${{ matrix.config.arch }} name: native-linux
path: | path: |
node/dist/lancedb-vectordb-linux*.tgz node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Upload Generic Artifacts
if: ${{ matrix.config.arch == 'x86_64' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
node-windows: node-windows:
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
@@ -216,60 +136,25 @@ jobs:
- name: Build Windows native node modules - name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }} run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts - name: Upload Windows Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v3
with: with:
name: node-native-windows name: native-windows
path: | path: |
node/dist/lancedb-vectordb-win32*.tgz node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows
path: |
nodejs/dist/*.node
release: release:
needs: [node, node-macos, node-linux, node-windows] needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
- uses: actions/download-artifact@v4 - uses: actions/download-artifact@v3
with:
pattern: node-*
- name: Display structure of downloaded files - name: Display structure of downloaded files
run: ls -R run: ls -R
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
registry-url: "https://registry.npmjs.org" registry-url: 'https://registry.npmjs.org'
- name: Publish to NPM - name: Publish to NPM
env: env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }} NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
@@ -279,45 +164,6 @@ jobs:
npm publish $filename npm publish $filename
done done
release-nodejs:
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: nodejs-*
path: nodejs/nodejs-artifacts
merge-multiple: true
- name: Display structure of downloaded files
run: find .
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Install napi-rs
run: npm install -g @napi-rs/cli
- name: Prepare artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: Display structure of staged files
run: find npm
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: npm publish --access public
update-package-lock: update-package-lock:
needs: [release] needs: [release]
runs-on: ubuntu-latest runs-on: ubuntu-latest
@@ -332,18 +178,3 @@ jobs:
- uses: ./.github/workflows/update_package_lock - uses: ./.github/workflows/update_package_lock
with: with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
update-package-lock-nodejs:
needs: [release-nodejs]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -6,23 +6,13 @@ on:
jobs: jobs:
linux: linux:
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
timeout-minutes: 60 timeout-minutes: 60
strategy: strategy:
matrix: matrix:
python-minor-version: ["8"] python-minor-version: ["8"]
config: platform:
- platform: x86_64 - x86_64
manylinux: "2_17" - aarch64
extra_args: ""
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
- platform: aarch64
manylinux: "2_24"
extra_args: ""
# We don't build fp16 kernels for aarch64, because it uses
# cross compilation image, which doesn't have a new enough compiler.
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
@@ -36,9 +26,8 @@ jobs:
- uses: ./.github/workflows/build_linux_wheel - uses: ./.github/workflows/build_linux_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip ${{ matrix.config.extra_args }}" args: "--release --strip"
arm-build: ${{ matrix.config.platform == 'aarch64' }} arm-build: ${{ matrix.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel - uses: ./.github/workflows/upload_wheel
with: with:
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }} token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
@@ -69,7 +58,7 @@ jobs:
- uses: ./.github/workflows/build_mac_wheel - uses: ./.github/workflows/build_mac_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels" args: "--release --strip --target ${{ matrix.config.target }}"
- uses: ./.github/workflows/upload_wheel - uses: ./.github/workflows/upload_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: ${{ matrix.python-minor-version }}

View File

@@ -66,7 +66,7 @@ jobs:
- name: Install - name: Install
run: | run: |
pip install -e .[tests,dev,embeddings] pip install -e .[tests,dev,embeddings]
pip install tantivy pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install mlx pip install mlx
- name: Doctest - name: Doctest
run: pytest --doctest-modules python/lancedb run: pytest --doctest-modules python/lancedb
@@ -99,8 +99,6 @@ jobs:
workspaces: python workspaces: python
- uses: ./.github/workflows/build_linux_wheel - uses: ./.github/workflows/build_linux_wheel
- uses: ./.github/workflows/run_tests - uses: ./.github/workflows/run_tests
with:
integration: true
# Make sure wheels are not included in the Rust cache # Make sure wheels are not included in the Rust cache
- name: Delete wheels - name: Delete wheels
run: rm -rf target/wheels run: rm -rf target/wheels
@@ -190,6 +188,6 @@ jobs:
run: | run: |
pip install "pydantic<2" pip install "pydantic<2"
pip install -e .[tests] pip install -e .[tests]
pip install tantivy pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
- name: Run tests - name: Run tests
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/tests run: pytest -m "not slow" -x -v --durations=30 python/tests

View File

@@ -0,0 +1,37 @@
name: LanceDb Cloud Integration Test
on:
workflow_run:
workflows: [Rust]
types:
- completed
env:
LANCEDB_PROJECT: ${{ secrets.LANCEDB_PROJECT }}
LANCEDB_API_KEY: ${{ secrets.LANCEDB_API_KEY }}
LANCEDB_REGION: ${{ secrets.LANCEDB_REGION }}
jobs:
test:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: cargo build --all-features
- name: Run Integration test
run: cargo test --tests -- --ignored

View File

@@ -5,10 +5,6 @@ inputs:
python-minor-version: python-minor-version:
required: true required: true
description: "8 9 10 11 12" description: "8 9 10 11 12"
integration:
required: false
description: "Run integration tests"
default: "false"
runs: runs:
using: "composite" using: "composite"
steps: steps:
@@ -16,16 +12,6 @@ runs:
shell: bash shell: bash
run: | run: |
pip3 install $(ls target/wheels/lancedb-*.whl)[tests,dev] pip3 install $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: Setup localstack for integration tests - name: pytest
if: ${{ inputs.integration == 'true' }}
shell: bash shell: bash
working-directory: .
run: docker compose up --detach --wait
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -x -v --durations=30 python/python/tests run: pytest -m "not slow" -x -v --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests

View File

@@ -31,10 +31,6 @@ jobs:
run: run:
shell: bash shell: bash
working-directory: rust working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
@@ -58,10 +54,6 @@ jobs:
run: run:
shell: bash shell: bash
working-directory: rust working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
@@ -76,9 +68,6 @@ jobs:
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- name: Build - name: Build
run: cargo build --all-features run: cargo build --all-features
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Run tests - name: Run tests
run: cargo test --all-features run: cargo test --all-features
- name: Run examples - name: Run examples
@@ -108,8 +97,7 @@ jobs:
- name: Build - name: Build
run: cargo build --all-features run: cargo build --all-features
- name: Run tests - name: Run tests
# Run with everything except the integration tests. run: cargo test --all-features
run: cargo test --features remote,fp16kernels
windows: windows:
runs-on: windows-2022 runs-on: windows-2022
steps: steps:

View File

@@ -1,33 +0,0 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,19 +0,0 @@
name: Update NodeJs package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

1
.gitignore vendored
View File

@@ -34,7 +34,6 @@ python/dist
node/dist node/dist
node/examples/**/package-lock.json node/examples/**/package-lock.json
node/examples/**/dist node/examples/**/dist
nodejs/lancedb/native*
dist dist
## Rust ## Rust

View File

@@ -10,9 +10,3 @@ repos:
rev: v0.2.2 rev: v0.2.2
hooks: hooks:
- id: ruff - id: ruff
- repo: https://github.com/pre-commit/mirrors-prettier
rev: v3.1.0
hooks:
- id: prettier
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*

View File

@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.10.10", "features" = ["dynamodb"] } lance = { "version" = "=0.10.1", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.10" } lance-index = { "version" = "=0.10.1" }
lance-linalg = { "version" = "=0.10.10" } lance-linalg = { "version" = "=0.10.1" }
lance-testing = { "version" = "=0.10.10" } lance-testing = { "version" = "=0.10.1" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false } arrow = { version = "50.0", optional = false }
arrow-array = "50.0" arrow-array = "50.0"
@@ -28,16 +28,13 @@ arrow-schema = "50.0"
arrow-arith = "50.0" arrow-arith = "50.0"
arrow-cast = "50.0" arrow-cast = "50.0"
async-trait = "0" async-trait = "0"
chrono = "0.4.35" chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [ half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
futures = "0" futures = "0"
log = "0.4" log = "0.4"
object_store = "0.9.0" object_store = "0.9.0"
pin-project = "1.0.7"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"
num-traits = "0.2" num-traits = "0.2"
regex = "1.10"
lazy_static = "1"

View File

@@ -1,13 +1,13 @@
<div align="center"> <div align="center">
<p align="center"> <p align="center">
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a"> <img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
**Developer-friendly, database for multimodal AI** **Developer-friendly, serverless vector database for AI applications**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a> <a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a> <a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/) [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd) [![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb) [![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs
docker build \
-t lancedb-nodejs-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH

View File

@@ -1,34 +0,0 @@
# Builds the macOS artifacts (nodejs binaries).
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/lancedb
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd nodejs
echo "Building nodejs library for $1"
export RUST_TARGET=$1
npm run build-release
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -1,41 +0,0 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,18 +0,0 @@
#!/bin/bash
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd nodejs
npm ci
npm run build-release

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,18 +1,18 @@
version: "3.9" version: "3.9"
services: services:
localstack: localstack:
image: localstack/localstack:3.3 image: localstack/localstack:0.14
ports: ports:
- 4566:4566 - 4566:4566
environment: environment:
- SERVICES=s3,dynamodb,kms - SERVICES=s3,dynamodb
- DEBUG=1 - DEBUG=1
- LS_LOG=trace - LS_LOG=trace
- DOCKER_HOST=unix:///var/run/docker.sock - DOCKER_HOST=unix:///var/run/docker.sock
- AWS_ACCESS_KEY_ID=ACCESSKEY - AWS_ACCESS_KEY_ID=ACCESSKEY
- AWS_SECRET_ACCESS_KEY=SECRETKEY - AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck: healthcheck:
test: [ "CMD", "curl", "-s", "http://localhost:4566/_localstack/health" ] test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
interval: 5s interval: 5s
retries: 3 retries: 3
start_period: 10s start_period: 10s

View File

@@ -27,6 +27,7 @@ theme:
- content.tabs.link - content.tabs.link
- content.action.edit - content.action.edit
- toc.follow - toc.follow
# - toc.integrate
- navigation.top - navigation.top
- navigation.tabs - navigation.tabs
- navigation.tabs.sticky - navigation.tabs.sticky
@@ -38,26 +39,25 @@ theme:
custom_dir: overrides custom_dir: overrides
plugins: plugins:
- search - search
- autorefs - autorefs
- mkdocstrings: - mkdocstrings:
handlers: handlers:
python: python:
paths: [../python] paths: [../python]
options: options:
docstring_style: numpy docstring_style: numpy
heading_level: 3 heading_level: 4
show_source: true show_source: true
show_symbol_type_in_heading: true show_symbol_type_in_heading: true
show_signature_annotations: true show_signature_annotations: true
show_root_heading: true
members_order: source members_order: source
import: import:
# for cross references # for cross references
- https://arrow.apache.org/docs/objects.inv - https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv - https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter - mkdocs-jupyter
- ultralytics: - ultralytics:
verbose: True verbose: True
enabled: True enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages default_image: "assets/lancedb_and_lance.png" # Default image for all pages
@@ -69,25 +69,25 @@ plugins:
add_dates: False add_dates: False
markdown_extensions: markdown_extensions:
- admonition - admonition
- footnotes - footnotes
- pymdownx.details - pymdownx.details
- pymdownx.highlight: - pymdownx.highlight:
anchor_linenums: true anchor_linenums: true
line_spans: __span line_spans: __span
pygments_lang_class: true pygments_lang_class: true
- pymdownx.inlinehilite - pymdownx.inlinehilite
- pymdownx.snippets: - pymdownx.snippets:
base_path: .. base_path: ..
dedent_subsections: true dedent_subsections: true
- pymdownx.superfences - pymdownx.superfences
- pymdownx.tabbed: - pymdownx.tabbed:
alternate_style: true alternate_style: true
- md_in_html - md_in_html
- attr_list - attr_list
nav: nav:
- Home: - Home:
- LanceDB: index.md - LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md - 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts: - 📚 Concepts:
@@ -107,7 +107,6 @@ nav:
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md
- 🧬 Managing embeddings: - 🧬 Managing embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
@@ -141,27 +140,26 @@ nav:
- Serverless Website Chatbot: examples/serverless_website_chatbot.md - Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust: - 🔧 CLI & Config: cli_config.md
- Overview: examples/examples_rust.md
- 💭 FAQs: faq.md - 💭 FAQs: faq.md
- ⚙️ API reference: - ⚙️ API reference:
- 🐍 Python: python/python.md - 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md - 👾 JavaScript: javascript/modules.md
- 👾 JavaScript (lancedb): javascript/modules.md - 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud: - ☁️ LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md
- API reference: - API reference:
- 🐍 Python: python/saas-python.md - 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md - 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md
- Concepts: - Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md - Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md - Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md - Storage: concepts/storage.md
- Data management: concepts/data_management.md - Data management: concepts/data_management.md
- Guides: - Guides:
- Working with tables: guides/tables.md - Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
@@ -173,42 +171,40 @@ nav:
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md - Managing Embeddings:
- Managing Embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md - Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations: - Integrations:
- Overview: integrations/index.md - Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md - Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md - DuckDB : python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html - LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb - LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html - LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- Examples: - Python examples:
- examples/index.md - examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md - Javascript examples:
- Overview: examples/examples_js.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md - Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API reference: - API reference:
- Overview: api_reference.md
- Python: python/python.md - Python: python/python.md
- Javascript (vectordb): javascript/modules.md - Javascript: javascript/modules.md
- Javascript (lancedb): js/modules.md - LanceDB Cloud:
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md
- API reference: - API reference:
- 🐍 Python: python/saas-python.md - 🐍 Python: python/saas-python.md
@@ -225,10 +221,3 @@ extra:
analytics: analytics:
provider: google provider: google
property: G-B7NFM40W74 property: G-B7NFM40W74
social:
- icon: fontawesome/brands/github
link: https://github.com/lancedb/lancedb
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb

View File

@@ -7,11 +7,20 @@ for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search). A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results. LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
## Disk-based Index Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
Lance provides an `IVF_PQ` disk-based index. It uses **Inverted File Index (IVF)** to first divide In the future we will look to automatically create and configure the ANN index as data comes in.
the dataset into `N` partitions, and then applies **Product Quantization** to compress vectors in each partition.
See the [indexing](concepts/index_ivfpq.md) concepts guide for more information on how this works. ## Types of Index
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
- `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
- `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index ## Creating an IVF_PQ Index
@@ -46,34 +55,12 @@ Lance supports `IVF_PQ` index type by default.
--8<-- "docs/src/ann_indexes.ts:ingest" --8<-- "docs/src/ann_indexes.ts:ingest"
``` ```
=== "Rust" - **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:create_index"
```
IVF_PQ index parameters are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/index/vector/struct.IvfPqIndexBuilder.html).
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well. We also support "cosine" and "dot" distance as well.
- **num_partitions**: The number of partitions in the index. The default is the square root - **num_partitions** (default: 256): The number of partitions of the index.
of the number of rows. - **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
!!! note a single PQ code.
In the synchronous python SDK and node's `vectordb` the default is 256. This default has
changed in the asynchronous python SDK and node's `lancedb`.
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
!!! note
In the synchronous python SDK and node's `vectordb` the default is currently 96. This default has
changed in the asynchronous python SDK and node's `lancedb`.
<figure markdown> <figure markdown>
![IVF PQ](./assets/ivf_pq.png) ![IVF PQ](./assets/ivf_pq.png)
@@ -101,7 +88,7 @@ You can specify the GPU device to train IVF partitions via
) )
``` ```
=== "MacOS" === "Macos"
<!-- skip-test --> <!-- skip-test -->
```python ```python
@@ -113,7 +100,7 @@ You can specify the GPU device to train IVF partitions via
) )
``` ```
Troubleshooting: Trouble shootings:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/). PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
@@ -156,14 +143,6 @@ There are a couple of parameters that can be used to fine-tune the search:
--8<-- "docs/src/ann_indexes.ts:search1" --8<-- "docs/src/ann_indexes.ts:search1"
``` ```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:search1"
```
Vector search options are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/query/struct.Query.html#method.nearest_to).
The search will return the data requested in addition to the distance of each item. The search will return the data requested in addition to the distance of each item.
### Filtering (where clause) ### Filtering (where clause)
@@ -208,21 +187,13 @@ You can select the columns returned by the query using a select clause.
## FAQ ## FAQ
### Why do I need to manually create an index?
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
datasets of the order of ~100K vectors don't require index creation. If you can live with up to
100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
### When is it necessary to create an ANN vector index? ### When is it necessary to create an ANN vector index?
`LanceDB` comes out-of-the-box with highly optimized SIMD code for computing vector similarity. `LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing distances for 100K pairs of 1K dimension vectors takes **less than 20ms**. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
We observe that for small datasets (~100K rows) or for applications that can accept 100ms latency, For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
vector indices are usually not necessary.
For large-scale or higher dimension vectors, it can beneficial to create vector index for performance. For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take? ### How big is my index, and how many memory will it take?

View File

@@ -1,8 +0,0 @@
# API Reference
The API reference for the LanceDB client SDKs are available at the following locations:
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

After

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 204 KiB

After

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 217 KiB

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 256 KiB

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

After

Width:  |  Height:  |  Size: 205 KiB

View File

@@ -3,7 +3,7 @@
!!! info "LanceDB can be run in a number of ways:" !!! info "LanceDB can be run in a number of ways:"
* Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application) * Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application)
* Directly from a client application like a Jupyter notebook for analytical workloads * Connected to directly from a client application like a Jupyter notebook for analytical workloads
* Deployed as a remote serverless database * Deployed as a remote serverless database
![](assets/lancedb_embedded_explanation.png) ![](assets/lancedb_embedded_explanation.png)
@@ -24,11 +24,13 @@
=== "Rust" === "Rust"
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
```shell ```shell
cargo add lancedb cargo add vectordb
``` ```
!!! info "To use the lancedb create, you first need to install protobuf." !!! info "To use the vectordb create, you first need to install protobuf."
=== "macOS" === "macOS"
@@ -42,27 +44,18 @@
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
``` ```
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)" !!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
## Connect to a database ## How to connect to a database
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:imports" import lancedb
--8<-- "python/python/tests/docs/test_basic.py:connect" uri = "data/sample-lancedb"
db = lancedb.connect(uri)
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
``` ```
!!! note "Asynchronous Python API"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript" === "Typescript"
```typescript ```typescript
@@ -71,44 +64,29 @@
--8<-- "docs/src/basic_legacy.ts:open_db" --8<-- "docs/src/basic_legacy.ts:open_db"
``` ```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust" === "Rust"
```rust ```rust
#[tokio::main] #[tokio::main]
async fn main() -> Result<()> { async fn main() -> Result<()> {
--8<-- "rust/lancedb/examples/simple.rs:connect" --8<-- "rust/vectordb/examples/simple.rs:connect"
} }
``` ```
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/lancedb/examples/simple.rs) for a full working example." !!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories). LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`. If you need a reminder of the uri, you can call `db.uri()`.
## Create a table ## How to create a table
### Create a table from initial data
If you have data to insert into the table at creation time, you can simultaneously create a
table and insert the data into it. The schema of the data will be used as the schema of the
table.
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:create_table" tbl = db.create_table("my_table",
--8<-- "python/python/tests/docs/test_basic.py:create_table_async" data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
@@ -118,8 +96,10 @@ table.
You can also pass in a pandas DataFrame directly: You can also pass in a pandas DataFrame directly:
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas" import pandas as pd
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas" df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
``` ```
=== "Typescript" === "Typescript"
@@ -135,33 +115,27 @@ table.
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:create_table" use arrow_schema::{DataType, Schema, Field};
use arrow_array::{RecordBatch, RecordBatchIterator};
--8<-- "rust/vectordb/examples/simple.rs:create_table"
``` ```
If the table already exists, LanceDB will raise an error by default. See If the table already exists, LanceDB will raise an error by default.
[the mode option](https://docs.rs/lancedb/latest/lancedb/connection/struct.CreateTableBuilder.html#method.mode)
for details on how to overwrite (or open) existing tables instead.
!!! Providing table records in Rust !!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
The Rust SDK currently expects data to be provided as an Arrow ### Creating an empty table
[RecordBatchReader](https://docs.rs/arrow-array/latest/arrow_array/trait.RecordBatchReader.html)
Support for additional formats (such as serde or polars) is on the roadmap.
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
### Create an empty table
Sometimes you may not have the data to insert into the table at creation time. Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema, so that you can add In this case, you can create an empty table and specify the schema.
data to the table at a later time (as long as it conforms to the schema). This is
similar to a `CREATE TABLE` statement in SQL.
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table" import pyarrow as pa
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async" schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
``` ```
=== "Typescript" === "Typescript"
@@ -173,18 +147,17 @@ similar to a `CREATE TABLE` statement in SQL.
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:create_empty_table" --8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
``` ```
## Open an existing table ## How to open an existing table
Once created, you can open a table as follows: Once created, you can open a table using the following code:
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:open_table" tbl = db.open_table("my_table")
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
``` ```
=== "Typescript" === "Typescript"
@@ -196,7 +169,7 @@ Once created, you can open a table as follows:
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:open_existing_tbl" --8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
``` ```
If you forget the name of your table, you can always get a listing of all table names: If you forget the name of your table, you can always get a listing of all table names:
@@ -204,8 +177,7 @@ If you forget the name of your table, you can always get a listing of all table
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:table_names" print(db.table_names())
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
``` ```
=== "Javascript" === "Javascript"
@@ -217,18 +189,25 @@ If you forget the name of your table, you can always get a listing of all table
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:list_names" --8<-- "rust/vectordb/examples/simple.rs:list_names"
``` ```
## Add data to a table ## How to add data to a table
After a table has been created, you can always add more data to it as follows: After a table has been created, you can always add more data to it using
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
--8<-- "python/python/tests/docs/test_basic.py:add_data_async" # Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
``` ```
=== "Typescript" === "Typescript"
@@ -240,18 +219,17 @@ After a table has been created, you can always add more data to it as follows:
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:add" --8<-- "rust/vectordb/examples/simple.rs:add"
``` ```
## Search for nearest neighbors ## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors as follows: Once you've embedded the query, you can find its nearest neighbors using the following code:
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search" tbl.search([100, 100]).limit(2).to_pandas()
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
``` ```
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.
@@ -267,26 +245,16 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
```rust ```rust
use futures::TryStreamExt; use futures::TryStreamExt;
--8<-- "rust/lancedb/examples/simple.rs:search" --8<-- "rust/vectordb/examples/simple.rs:search"
``` ```
!!! Query vectors in Rust
Rust does not yet support automatic execution of embedding functions. You will need to
calculate embeddings yourself. Support for this is on the roadmap and can be tracked at
https://github.com/lancedb/lancedb/issues/994
Query vectors can be provided as Arrow arrays or a Vec/slice of Rust floats.
Support for additional formats (e.g. `polars::series::Series`) is on the roadmap.
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN). By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance. For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
LanceDB allows you to create an ANN index on a table as follows:
=== "Python" === "Python"
```py ```py
--8<-- "python/python/tests/docs/test_basic.py:create_index" tbl.create_index()
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
``` ```
=== "Typescript" === "Typescript"
@@ -298,17 +266,12 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:create_index" --8<-- "rust/vectordb/examples/simple.rs:create_index"
``` ```
!!! note "Why do I need to create an index manually?" Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
## Delete rows from a table ## How to delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns. which rows to delete, provide a filter that matches on the metadata columns.
@@ -317,8 +280,7 @@ This can delete any number of rows that match the filter.
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows" tbl.delete('item = "fizz"')
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
``` ```
=== "Typescript" === "Typescript"
@@ -330,13 +292,12 @@ This can delete any number of rows that match the filter.
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:delete" --8<-- "rust/vectordb/examples/simple.rs:delete"
``` ```
The deletion predicate is a SQL expression that supports the same expressions The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause (`only_if()` in Rust) on a search. They can be as as the `where()` clause on a search. They can be as simple or complex as needed.
simple or complex as needed. To see what expressions are supported, see the To see what expressions are supported, see the [SQL filters](sql.md) section.
[SQL filters](sql.md) section.
=== "Python" === "Python"
@@ -346,19 +307,14 @@ simple or complex as needed. To see what expressions are supported, see the
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete) Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
=== "Rust" ## How to remove a table
Read more: [lancedb::Table::delete](https://docs.rs/lancedb/latest/lancedb/table/struct.Table.html#method.delete)
## Drop a table
Use the `drop_table()` method on the database to remove a table. Use the `drop_table()` method on the database to remove a table.
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table" db.drop_table("my_table")
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.
@@ -377,7 +333,7 @@ Use the `drop_table()` method on the database to remove a table.
=== "Rust" === "Rust"
```rust ```rust
--8<-- "rust/lancedb/examples/simple.rs:drop_table" --8<-- "rust/vectordb/examples/simple.rs:drop_table"
``` ```
!!! note "Bundling `vectordb` apps with Webpack" !!! note "Bundling `vectordb` apps with Webpack"

51
docs/src/cli_config.md Normal file
View File

@@ -0,0 +1,51 @@
# CLI & Config
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console.
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command.
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
### Get usage help
```
lancedb diagnostics --help
```
### Disable diagnostics
```
lancedb diagnostics --disabled
```
### Enable diagnostics
```
lancedb diagnostics --enabled
```

View File

@@ -31,7 +31,7 @@ As an example, consider starting with 128-dimensional vector consisting of 32-bi
While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space. While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space.
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are initialized by running K-means over the stored vectors. The centroids of K-means turn into the seed points which then each define a region. These regions are then are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index. In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
![](../assets/ivfpq_ivf_desc.webp) ![](../assets/ivfpq_ivf_desc.webp)
@@ -81,4 +81,24 @@ The above query will perform a search on the table `tbl` using the given query v
* `to_pandas()`: Convert the results to a pandas DataFrame * `to_pandas()`: Convert the results to a pandas DataFrame
And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB. And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB.
To see how to create an IVF-PQ index in LanceDB, take a look at the [ANN indexes](../ann_indexes.md) section.
## FAQ
### When is it necessary to create a vector index?
LanceDB has manually-tuned SIMD code for computing vector distances. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **<20ms**. For small datasets (<100K rows) or applications that can accept up to 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how much memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with 1024-dimension vectors, if we choose `num_sub_vectors = 64`, each sub-vector has `1024 / 64 = 16` float32 numbers. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for IVF_PQ index?
`num_partitions` is used to decide how many partitions the first level IVF index uses. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. On SIFT-1M dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency/recall.
`num_sub_vectors` specifies how many PQ short codes to generate on each vector. Because PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

View File

@@ -19,197 +19,34 @@ Allows you to set parameters when registering a `sentence-transformers` object.
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model | | `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
??? "Check out available sentence-transformer models here!" ```python
```markdown db = lancedb.connect("/tmp/db")
- sentence-transformers/all-MiniLM-L12-v2 registry = EmbeddingFunctionRegistry.get_instance()
- sentence-transformers/paraphrase-mpnet-base-v2 func = registry.get("sentence-transformers").create(device="cpu")
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info class Words(LanceModel):
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc. text: str = func.SourceField()
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers). vector: Vector(func.ndims()) = func.VectorField()
!!! note "BAAI Embeddings example" table = db.create_table("words", schema=Words)
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers) table.add(
```python
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
model = registry.get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[ [
{"text": "hello world"} {"text": "hello world"}
{"text": "goodbye world"} {"text": "goodbye world"}
] ]
) )
query = "greetings" query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
### Huggingface embedding models
We offer support for all huggingface models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`
Example usage -
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add()
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0] actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
### OpenAI embeddings ### OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances: LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
|---|---|---|---| |---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. | | `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
```python ```python
@@ -338,8 +175,7 @@ Supported Embedding modelIDs are:
* `cohere.embed-english-v3` * `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3` * `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are: Supported paramters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
|---|---|---|---| |---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 | | **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
@@ -386,6 +222,7 @@ This embedding function supports ingesting images as both bytes and urls. You ca
!!! info !!! info
LanceDB supports ingesting images directly from accessible links. LanceDB supports ingesting images directly from accessible links.
```python ```python
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
@@ -451,67 +288,4 @@ print(actual.label)
``` ```
### Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues). If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -1,3 +0,0 @@
# Examples: Rust
Our Rust SDK is now stable. Examples are coming soon.

View File

@@ -43,7 +43,7 @@ pip install lancedb
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide: We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
``` ```
pip install tantivy pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
``` ```
Create a new Python file and add the following code: Create a new Python file and add the following code:

View File

@@ -2,11 +2,10 @@
## Recipes and example code ## Recipes and example code
LanceDB provides language APIs, allowing you to embed a database in your language of choice. LanceDB provides language APIs, allowing you to embed a database in your language of choice. We currently provide Python and Javascript APIs, with the Rust API and examples actively being worked on and will be available soon.
* 🐍 [Python](examples_python.md) examples * 🐍 [Python](examples_python.md) examples
* 👾 [JavaScript](examples_js.md) examples * 👾 [JavaScript](exampled_js.md) examples
* 🦀 Rust examples (coming soon)
## Applications powered by LanceDB ## Applications powered by LanceDB

View File

@@ -1,79 +1,11 @@
// Creates an SVG robot icon (from Lucide) document.addEventListener("DOMContentLoaded", function () {
function robotSVG() { var script = document.createElement("script");
var svg = document.createElementNS("http://www.w3.org/2000/svg", "svg"); script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
svg.setAttribute("width", "24"); script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
svg.setAttribute("height", "24"); script.setAttribute("data-project-name", "LanceDB");
svg.setAttribute("viewBox", "0 0 24 24"); script.setAttribute("data-project-color", "#000000");
svg.setAttribute("fill", "none"); script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
svg.setAttribute("stroke", "currentColor"); script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
svg.setAttribute("stroke-width", "2"); script.async = true;
svg.setAttribute("stroke-linecap", "round"); document.head.appendChild(script);
svg.setAttribute("stroke-linejoin", "round"); });
svg.setAttribute("class", "lucide lucide-bot-message-square");
var path1 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path1.setAttribute("d", "M12 6V2H8");
svg.appendChild(path1);
var path2 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path2.setAttribute("d", "m8 18-4 4V8a2 2 0 0 1 2-2h12a2 2 0 0 1 2 2v8a2 2 0 0 1-2 2Z");
svg.appendChild(path2);
var path3 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path3.setAttribute("d", "M2 12h2");
svg.appendChild(path3);
var path4 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path4.setAttribute("d", "M9 11v2");
svg.appendChild(path4);
var path5 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path5.setAttribute("d", "M15 11v2");
svg.appendChild(path5);
var path6 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path6.setAttribute("d", "M20 12h2");
svg.appendChild(path6);
return svg
}
// Creates the Fluidic Chatbot buttom
function fluidicButton() {
var btn = document.createElement("a");
btn.href = "https://asklancedb.com";
btn.target = "_blank";
btn.style.position = "fixed";
btn.style.fontWeight = "bold";
btn.style.fontSize = ".8rem";
btn.style.right = "10px";
btn.style.bottom = "10px";
btn.style.width = "80px";
btn.style.height = "80px";
btn.style.background = "linear-gradient(135deg, #7C5EFF 0%, #625eff 100%)";
btn.style.color = "white";
btn.style.borderRadius = "5px";
btn.style.display = "flex";
btn.style.flexDirection = "column";
btn.style.justifyContent = "center";
btn.style.alignItems = "center";
btn.style.zIndex = "1000";
btn.style.opacity = "0";
btn.style.boxShadow = "0 0 0 rgba(0, 0, 0, 0)";
btn.style.transition = "opacity 0.2s ease-in, box-shadow 0.2s ease-in";
setTimeout(function() {
btn.style.opacity = "1";
btn.style.boxShadow = "0 0 .2rem #0000001a,0 .2rem .4rem #0003"
}, 0);
return btn
}
document.addEventListener("DOMContentLoaded", function() {
var btn = fluidicButton()
btn.appendChild(robotSVG());
var text = document.createTextNode("Ask AI");
btn.appendChild(text);
document.body.appendChild(btn);
});

View File

@@ -16,7 +16,7 @@ As we mention in our talk titled “[Lance, a modern columnar data format](https
### Why build in Rust? 🦀 ### Why build in Rust? 🦀
We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python, JavaScript, and Rust client libraries to interact with the database. We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python and JavaScript client libraries to interact with the database. Our Rust API is a little rough around the edges right now, but is fast becoming on par with the Python and JS APIs.
### What is the difference between LanceDB OSS and LanceDB Cloud? ### What is the difference between LanceDB OSS and LanceDB Cloud?
@@ -40,11 +40,11 @@ LanceDB and its underlying data format, Lance, are built to scale to really larg
No. LanceDB is blazing fast (due to its disk-based index) for even brute force kNN search, within reason. In our benchmarks, computing 100K pairs of 1000-dimension vectors takes less than 20ms. For small datasets of ~100K records or applications that can accept ~100ms latency, an ANN index is usually not necessary. No. LanceDB is blazing fast (due to its disk-based index) for even brute force kNN search, within reason. In our benchmarks, computing 100K pairs of 1000-dimension vectors takes less than 20ms. For small datasets of ~100K records or applications that can accept ~100ms latency, an ANN index is usually not necessary.
For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index. See the [ANN indexes](ann_indexes.md) section for more details. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
### Does LanceDB support full-text search? ### Does LanceDB support full-text search?
Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients. Follow along in the [Github issue](https://github.com/lancedb/lance/issues/1195) Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients.
### How can I speed up data inserts? ### How can I speed up data inserts?

View File

@@ -1,6 +1,6 @@
# Full-text search # Full-text search
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195) LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for JavaScript users as well.
A hybrid search solution combining vector and full-text search is also on the way. A hybrid search solution combining vector and full-text search is also on the way.
@@ -75,70 +75,21 @@ applied on top of the full text search results. This can be invoked via the fami
table.search("puppy").limit(10).where("meta='foo'").to_list() table.search("puppy").limit(10).where("meta='foo'").to_list()
``` ```
## Sorting ## Syntax
You can pre-sort the documents by specifying `ordering_field_names` when For full-text search you can perform either a phrase query like "the old man and the sea",
creating the full-text search index. Once pre-sorted, you can then specify or a structured search query like "(Old AND Man) AND Sea".
`ordering_field_name` while searching to return results sorted by the given Double quotes are used to disambiguate.
field. For example,
``` For example:
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
(table.search("terms", ordering_field_name="sort_by_field") If you intended "they could have been dogs OR cats" as a phrase query, this actually
.limit(20) raises a syntax error since `OR` is a recognized operator. If you make `or` lower case,
.to_list()) this avoids the syntax error. However, it is cumbersome to have to remember what will
``` conflict with the query syntax. Instead, if you search using
`table.search('"they could have been dogs OR cats"')`, then the syntax checker avoids
checking inside the quotes.
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note"
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations ## Configurations
@@ -161,3 +112,4 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
2. We currently only support local filesystem paths for the FTS index. 2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it. but there's no way in tantivy-py to specify to use it.

View File

@@ -55,139 +55,18 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
const db = await lancedb.connect("az://bucket/path"); const db = await lancedb.connect("az://bucket/path");
``` ```
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`: In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided using environment variables. In general, these environment variables are the same as those used by the respective cloud SDKs. The sections below describe the environment variables that can be used to configure each object store.
```bash LanceDB OSS uses the [object-store](https://docs.rs/object_store/latest/object_store/) Rust crate for object store access. There are general environment variables that can be used to configure the object store, such as the request timeout and proxy configuration. See the [object_store ClientConfigKey](https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html) doc for available configuration options. The environment variables that can be set are the snake-cased versions of these variable names. For example, to set `ProxyUrl` use the environment variable `PROXY_URL`. (Don't let the Rust docs intimidate you! We link to them so you can see an up-to-date list of the available options.)
export TIMEOUT=60s
```
!!! note "`storage_options` availability"
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
It is not yet supported in the Python synchronous API.
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path",
{storageOptions: {timeout: "60s"}});
```
Getting even more specific, you can set the `timeout` for only a particular table:
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async("s3://bucket/path")
table = await db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
=== "JavaScript"
<!-- skip-test -->
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
!!! info "Storage option casing"
The storage option keys are case-insensitive. So `connect_timeout` and `CONNECT_TIMEOUT` are the same setting. Usually lowercase is used in the `storage_options` argument and uppercase is used for environment variables. In the `lancedb` Node package, the keys can also be provided in `camelCase` capitalization. For example, `connectTimeout` is equivalent to `connect_timeout`.
### General configuration
There are several options that can be set for all object stores, mostly related to network client configuration.
<!-- from here: https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html -->
| Key | Description |
|----------------------------|--------------------------------------------------------------------------------------------------|
| `allow_http` | Allow non-TLS, i.e. non-HTTPS connections. Default: `False`. |
| `allow_invalid_certificates`| Skip certificate validation on HTTPS connections. Default: `False`. |
| `connect_timeout` | Timeout for only the connect phase of a Client. Default: `5s`. |
| `timeout` | Timeout for the entire request, from connection until the response body has finished. Default: `30s`. |
| `user_agent` | User agent string to use in requests. |
| `proxy_url` | URL of a proxy server to use for requests. Default: `None`. |
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
### AWS S3 ### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS. To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` environment variables.
These can be set as environment variables or passed in the `storage_options` parameter:
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables. Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
The following keys can be used as both environment variables or keys in the `storage_options` parameter: You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
| Key | Description |
|------------------------------------|------------------------------------------------------------------------------------------------------|
| `aws_region` / `region` | The AWS region the bucket is in. This can be automatically detected when using AWS S3, but must be specified for S3-compatible stores. |
| `aws_access_key_id` / `access_key_id` | The AWS access key ID to use. |
| `aws_secret_access_key` / `secret_access_key` | The AWS secret access key to use. |
| `aws_session_token` / `session_token` | The AWS session token to use. |
| `aws_endpoint` / `endpoint` | The endpoint to use for S3-compatible stores. |
| `aws_virtual_hosted_style_request` / `virtual_hosted_style_request` | Whether to use virtual hosted-style requests, where the bucket name is part of the endpoint. Meant to be used with `aws_endpoint`. Default: `False`. |
| `aws_s3_express` / `s3_express` | Whether to use S3 Express One Zone endpoints. Default: `False`. See more details below. |
| `aws_server_side_encryption` | The server-side encryption algorithm to use. Must be one of `"AES256"`, `"aws:kms"`, or `"aws:kms:dsse"`. Default: `None`. |
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
!!! tip "Automatic cleanup for failed writes" !!! tip "Automatic cleanup for failed writes"
@@ -267,174 +146,22 @@ For **read-only access**, LanceDB will need a policy such as:
#### S3-compatible stores #### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint: LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables.
#### S3 Express
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional configuration. Also, S3 Express endpoints only support connecting from an EC2 instance within the same region.
To configure LanceDB to use an S3 Express endpoint, you must set the storage option `s3_express`. The bucket name in your table URI should **include the suffix**.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
<!-- TODO: we should also document the use of S3 Express once we fully support it -->
### Google Cloud Storage ### Google Cloud Storage
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. Alternatively, you can pass the path to the JSON file in the `storage_options`: GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. There are several aliases for this environment variable, documented [here](https://docs.rs/object_store/latest/object_store/gcp/struct.GoogleCloudStorageBuilder.html#method.from_env).
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
!!! info "HTTP/2 support" !!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`. By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
The following keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
| Key | Description |
|---------------------------------------|----------------------------------------------|
| ``google_service_account`` / `service_account` | Path to the service account JSON file. |
| ``google_service_account_key`` | The serialized service account key. |
| ``google_application_credentials`` | Path to the application credentials. |
### Azure Blob Storage ### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter: Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME` and ``AZURE_STORAGE_ACCOUNT_KEY`` environment variables. The full list of environment variables that can be set are documented [here](https://docs.rs/object_store/latest/object_store/azure/struct.MicrosoftAzureBuilder.html#method.from_env).
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
These keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html -->
| Key | Description |
|---------------------------------------|--------------------------------------------------------------------------------------------------|
| ``azure_storage_account_name`` | The name of the azure storage account. |
| ``azure_storage_account_key`` | The serialized service account key. |
| ``azure_client_id`` | Service principal client id for authorizing requests. |
| ``azure_client_secret`` | Service principal client secret for authorizing requests. |
| ``azure_tenant_id`` | Tenant id used in oauth flows. |
| ``azure_storage_sas_key`` | Shared access signature. The signature is expected to be percent-encoded, much like they are provided in the azure storage explorer or azure portal. |
| ``azure_storage_token`` | Bearer token. |
| ``azure_storage_use_emulator`` | Use object store with azurite storage emulator. |
| ``azure_endpoint`` | Override the endpoint used to communicate with blob storage. |
| ``azure_use_fabric_endpoint`` | Use object store with url scheme account.dfs.fabric.microsoft.com. |
| ``azure_msi_endpoint`` | Endpoint to request a imds managed identity token. |
| ``azure_object_id`` | Object id for use with managed identity authentication. |
| ``azure_msi_resource_id`` | Msi resource id for use with managed identity authentication. |
| ``azure_federated_token_file`` | File containing token for Azure AD workload identity federation. |
| ``azure_use_azure_cli`` | Use azure cli for acquiring access token. |
| ``azure_disable_tagging`` | Disables tagging objects. This can be desirable if not supported by the backing store. |
<!-- TODO: demonstrate how to configure networked file systems for optimal performance --> <!-- TODO: demonstrate how to configure networked file systems for optimal performance -->

View File

@@ -168,24 +168,24 @@ This guide will show how to create tables, insert data into them, and update the
--8<-- "docs/src/basic_legacy.ts:create_f16_table" --8<-- "docs/src/basic_legacy.ts:create_f16_table"
``` ```
### From Pydantic Models ### From Pydantic Models
When you create an empty table without data, you must specify the table schema. When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`. Pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns: For example, the following Content model specifies a table with 5 columns:
`movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can `movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`. pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized Pydantic type that The `vector` column is a `Vector` type, which is a specialized Pydantic type that
can be configured with the vector dimensions. It is also important to note that can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel` LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`). (which itself derives from `pydantic.BaseModel`).
```python ```python
from lancedb.pydantic import Vector, LanceModel from lancedb.pydantic import Vector, LanceModel
class Content(LanceModel): class Content(LanceModel):
movie_id: int movie_id: int
vector: Vector(128) vector: Vector(128)
genres: str genres: str
@@ -196,65 +196,65 @@ class Content(LanceModel):
def imdb_url(self) -> str: def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}" return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa import pyarrow as pa
db = lancedb.connect("~/.lancedb") db = lancedb.connect("~/.lancedb")
table_name = "movielens_small" table_name = "movielens_small"
table = db.create_table(table_name, schema=Content) table = db.create_table(table_name, schema=Content)
``` ```
#### Nested schemas #### Nested schemas
Sometimes your data model may contain nested objects. Sometimes your data model may contain nested objects.
For example, you may want to store the document string For example, you may want to store the document string
and the document soure name as a nested Document object: and the document soure name as a nested Document object:
```python ```python
class Document(BaseModel): class Document(BaseModel):
content: str content: str
source: str source: str
``` ```
This can be used as the type of a LanceDB table column: This can be used as the type of a LanceDB table column:
```python ```python
class NestedSchema(LanceModel): class NestedSchema(LanceModel):
id: str id: str
vector: Vector(1536) vector: Vector(1536)
document: Document document: Document
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite") tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
``` ```
This creates a struct column called "document" that has two subfields This creates a struct column called "document" that has two subfields
called "content" and "source": called "content" and "source":
``` ```
In [28]: tbl.schema In [28]: tbl.schema
Out[28]: Out[28]:
id: string not null id: string not null
vector: fixed_size_list<item: float>[1536] not null vector: fixed_size_list<item: float>[1536] not null
child 0, item: float child 0, item: float
document: struct<content: string not null, source: string not null> not null document: struct<content: string not null, source: string not null> not null
child 0, content: string not null child 0, content: string not null
child 1, source: string not null child 1, source: string not null
``` ```
#### Validators #### Validators
Note that neither Pydantic nor PyArrow automatically validates that input data Note that neither Pydantic nor PyArrow automatically validates that input data
is of the correct timezone, but this is easy to add as a custom field validator: is of the correct timezone, but this is easy to add as a custom field validator:
```python ```python
from datetime import datetime from datetime import datetime
from zoneinfo import ZoneInfo from zoneinfo import ZoneInfo
from lancedb.pydantic import LanceModel from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo from pydantic import Field, field_validator, ValidationError, ValidationInfo
tzname = "America/New_York" tzname = "America/New_York"
tz = ZoneInfo(tzname) tz = ZoneInfo(tzname)
class TestModel(LanceModel): class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname}) dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
@field_validator('dt_with_tz') @field_validator('dt_with_tz')
@@ -263,35 +263,35 @@ class TestModel(LanceModel):
assert dt.tzinfo == tz assert dt.tzinfo == tz
return dt return dt
ok = TestModel(dt_with_tz=datetime.now(tz)) ok = TestModel(dt_with_tz=datetime.now(tz))
try: try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai"))) TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError" assert 0 == 1, "this should raise ValidationError"
except ValidationError: except ValidationError:
print("A ValidationError was raised.") print("A ValidationError was raised.")
pass pass
``` ```
When you run this code it should print "A ValidationError was raised." When you run this code it should print "A ValidationError was raised."
#### Pydantic custom types #### Pydantic custom types
LanceDB does NOT yet support converting pydantic custom types. If this is something you need, LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new). please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
### Using Iterators / Writing Large Datasets ### Using Iterators / Writing Large Datasets
It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()` It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types. LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types.
Here's an example using using `RecordBatch` iterator for creating tables. Here's an example using using `RecordBatch` iterator for creating tables.
```python ```python
import pyarrow as pa import pyarrow as pa
def make_batches(): def make_batches():
for i in range(5): for i in range(5):
yield pa.RecordBatch.from_arrays( yield pa.RecordBatch.from_arrays(
[ [
@@ -303,16 +303,16 @@ def make_batches():
["vector", "item", "price"], ["vector", "item", "price"],
) )
schema = pa.schema([ schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()), pa.field("item", pa.utf8()),
pa.field("price", pa.float32()), pa.field("price", pa.float32()),
]) ])
db.create_table("batched_tale", make_batches(), schema=schema) db.create_table("batched_tale", make_batches(), schema=schema)
``` ```
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example. You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
## Open existing tables ## Open existing tables

View File

@@ -28,7 +28,7 @@ LanceDB **Cloud** is a SaaS (software-as-a-service) solution that runs serverles
* Fast production-scale vector similarity, full-text & hybrid search and a SQL query interface (via [DataFusion](https://github.com/apache/arrow-datafusion)) * Fast production-scale vector similarity, full-text & hybrid search and a SQL query interface (via [DataFusion](https://github.com/apache/arrow-datafusion))
* Python, Javascript/Typescript, and Rust support * Native Python and Javascript/Typescript support
* Store, query & manage multi-modal data (text, images, videos, point clouds, etc.), not just the embeddings and metadata * Store, query & manage multi-modal data (text, images, videos, point clouds, etc.), not just the embeddings and metadata
@@ -54,4 +54,3 @@ The following pages go deeper into the internal of LanceDB and how to use it.
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem * [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
* [Python API Reference](python/python.md): Python OSS and Cloud API references * [Python API Reference](python/python.md): Python OSS and Cloud API references
* [JavaScript API Reference](javascript/modules.md): JavaScript OSS and Cloud API references * [JavaScript API Reference](javascript/modules.md): JavaScript OSS and Cloud API references
* [Rust API Reference](https://docs.rs/lancedb/latest/lancedb/index.html): Rust API reference

View File

@@ -13,7 +13,7 @@ Get started using these examples and quick links.
| Integrations | | | Integrations | |
|---|---:| |---|---:|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">| | <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/docs/integrations/vectorstores/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">| | <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">| | <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">| | <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">| | <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|

View File

@@ -1 +0,0 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

View File

@@ -1,83 +0,0 @@
@lancedb/lancedb / [Exports](modules.md)
# LanceDB JavaScript SDK
A JavaScript library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install @lancedb/lancedb
```
This will download the appropriate native library for your platform. We currently
support:
- Linux (x86_64 and aarch64)
- MacOS (Intel and ARM/M1/M2)
- Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage
### Basic Example
```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("my_table", [
{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 },
]);
const results = await table.vectorSearch([0.1, 0.3]).limit(20).toArray();
console.log(results);
```
The [quickstart](../basic.md) contains a more complete example.
## Development
```sh
npm run build
npm run test
```
### Running lint / format
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
set to true. Also, if your vscode root folder is the repo root then you will need to set
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
```sh
npm run lint
```
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
for typescript and you should enable format on save. To manually check your code's format you
can run:
```sh
npm run chkformat
```
If you need to manually format your code you can run:
```sh
npx prettier --write .
```
### Generating docs
```sh
npm run docs
cd ../docs
# Asssume the virtual environment was created
# python3 -m venv venv
# pip install -r requirements.txt
. ./venv/bin/activate
mkdocs build
```

View File

@@ -1,239 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection
# Class: Connection
A LanceDB Connection that allows you to open tables and create new ones.
Connection could be local against filesystem or remote against a server.
A Connection is intended to be a long lived object and may hold open
resources such as HTTP connection pools. This is generally fine and
a single connection should be shared if it is going to be used many
times. However, if you are finished with a connection, you may call
close to eagerly free these resources. Any call to a Connection
method after it has been closed will result in an error.
Closing a connection is optional. Connections will automatically
be closed when they are garbage collected.
Any created tables are independent and will continue to work even if
the underlying connection has been closed.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [inner](Connection.md#inner)
### Methods
- [close](Connection.md#close)
- [createEmptyTable](Connection.md#createemptytable)
- [createTable](Connection.md#createtable)
- [display](Connection.md#display)
- [dropTable](Connection.md#droptable)
- [isOpen](Connection.md#isopen)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### constructor
**new Connection**(`inner`): [`Connection`](Connection.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Connection` |
#### Returns
[`Connection`](Connection.md)
#### Defined in
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
## Properties
### inner
`Readonly` **inner**: `Connection`
#### Defined in
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
## Methods
### close
**close**(): `void`
Close the connection, releasing any underlying resources.
It is safe to call this method multiple times.
Any attempt to use the connection after it is closed will result in an error.
#### Returns
`void`
#### Defined in
[connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88)
___
### createEmptyTable
**createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new empty Table
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `schema` | `Schema`\<`any`\> | The schema of the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151)
___
### createTable
**createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123)
___
### display
**display**(): `string`
Return a brief description of the connection
#### Returns
`string`
#### Defined in
[connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93)
___
### dropTable
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173)
___
### isOpen
**isOpen**(): `boolean`
Return true if the connection has not been closed
#### Returns
`boolean`
#### Defined in
[connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77)
___
### openTable
**openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112)
___
### tableNames
**tableNames**(`options?`): `Promise`\<`string`[]\>
List all the table names in this database.
Tables will be returned in lexicographical order.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point |
#### Returns
`Promise`\<`string`[]\>
#### Defined in
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)

View File

@@ -1,121 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index
# Class: Index
## Table of contents
### Constructors
- [constructor](Index.md#constructor)
### Properties
- [inner](Index.md#inner)
### Methods
- [btree](Index.md#btree)
- [ivfPq](Index.md#ivfpq)
## Constructors
### constructor
**new Index**(`inner`): [`Index`](Index.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Index` |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
## Properties
### inner
`Private` `Readonly` **inner**: `Index`
#### Defined in
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
## Methods
### btree
**btree**(): [`Index`](Index.md)
Create a btree index
A btree index is an index on a scalar columns. The index stores a copy of the column
in sorted order. A header entry is created for each block of rows (currently the
block size is fixed at 4096). These header entries are stored in a separate
cacheable structure (a btree). To search for data the header is used to determine
which blocks need to be read from disk.
For example, a btree index in a table with 1Bi rows requires sizeof(Scalar) * 256Ki
bytes of memory and will generally need to read sizeof(Scalar) * 4096 bytes to find
the correct row ids.
This index is good for scalar columns with mostly distinct values and does best when
the query is highly selective.
The btree index does not currently have any parameters though parameters such as the
block size may be added in the future.
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175)
___
### ivfPq
**ivfPq**(`options?`): [`Index`](Index.md)
Create an IvfPq index
This index stores a compressed (quantized) copy of every vector. These vectors
are grouped into partitions of similar vectors. Each partition keeps track of
a centroid which is the average value of all vectors in the group.
During a query the centroids are compared with the query vector to find the closest
partitions. The compressed vectors in these partitions are then searched to find
the closest vectors.
The compression scheme is called product quantization. Each vector is divided into
subvectors and then each subvector is quantized into a small number of bits. the
parameters `num_bits` and `num_subvectors` control this process, providing a tradeoff
between index size (and thus search speed) and index accuracy.
The partitioning process is called IVF and the `num_partitions` parameter controls how
many groups to create.
Note that training an IVF PQ index on a large dataset is a slow operation and
currently is also a memory intensive operation.
#### Parameters
| Name | Type |
| :------ | :------ |
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)

View File

@@ -1,75 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions
Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors
### constructor
**new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Returns
[`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Defined in
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
## Properties
### dictionaryEncodeStrings
**dictionaryEncodeStrings**: `boolean` = `false`
If true then string columns will be encoded with dictionary encoding
Set this to true if your string columns tend to repeat the same values
often. For more precise control use the `schema` property to specify the
data type for individual columns.
If `schema` is provided then this property is ignored.
#### Defined in
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67)
___
### vectorColumns
**vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\>
#### Defined in
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)

View File

@@ -1,368 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query
# Class: Query
A builder for LanceDB queries.
## Hierarchy
- [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\>
**`Query`**
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [inner](Query.md#inner)
### Methods
- [[asyncIterator]](Query.md#[asynciterator])
- [execute](Query.md#execute)
- [limit](Query.md#limit)
- [nativeExecute](Query.md#nativeexecute)
- [nearestTo](Query.md#nearestto)
- [select](Query.md#select)
- [toArray](Query.md#toarray)
- [toArrow](Query.md#toarrow)
- [where](Query.md#where)
## Constructors
### constructor
**new Query**(`tbl`): [`Query`](Query.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `Table` |
#### Returns
[`Query`](Query.md)
#### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
## Properties
### inner
`Protected` **inner**: `Query`
#### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): [`Query`](Query.md)
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
[`Query`](Query.md)
#### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### nearestTo
**nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
Find the nearest vectors to the given query vector.
This converts the query from a plain query to a vector query.
This method will attempt to convert the input to the query vector
expected by the embedding model. If the input cannot be converted
then an error will be thrown.
By default, there is no embedding model, and the input should be
an array-like object of numbers (something that can be used as input
to Float32Array.from)
If there is only one vector column (a column whose data type is a
fixed size list of floats) then the column does not need to be specified.
If there is more than one vector column you must use
#### Parameters
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
to compare with.
If no index has been created on the vector column then a vector query
will perform a distance comparison between the query vector and every
vector in the database and then sort the results. This is sometimes
called a "flat search"
For small databases, with a few hundred thousand vectors or less, this can
be reasonably fast. In larger databases you should create a vector index
on the column. If there is a vector index then an "approximate" nearest
neighbor search (frequently called an ANN search) will be performed. This
search is much faster, but the results will be approximate.
The query can be further parameterized using the returned builder. There
are various ANN search parameters that will let you fine tune your recall
accuracy vs search latency.
Vector searches always have a `limit`. If `limit` has not been called then
a default `limit` of 10 will be used.
- [Query#limit](Query.md#limit)
#### Defined in
[query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370)
___
### select
**select**(`columns`): [`Query`](Query.md)
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
[`Query`](Query.md)
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): [`Query`](Query.md)
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
[`Query`](Query.md)
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,291 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase
# Class: QueryBase\<NativeQueryType, QueryType\>
Common methods supported by all query types
## Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
| `QueryType` | `QueryType` |
## Hierarchy
- **`QueryBase`**
↳ [`Query`](Query.md)
↳ [`VectorQuery`](VectorQuery.md)
## Implements
- `AsyncIterable`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](QueryBase.md#constructor)
### Properties
- [inner](QueryBase.md#inner)
### Methods
- [[asyncIterator]](QueryBase.md#[asynciterator])
- [execute](QueryBase.md#execute)
- [limit](QueryBase.md#limit)
- [nativeExecute](QueryBase.md#nativeexecute)
- [select](QueryBase.md#select)
- [toArray](QueryBase.md#toarray)
- [toArrow](QueryBase.md#toarrow)
- [where](QueryBase.md#where)
## Constructors
### constructor
**new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
| `QueryType` | `QueryType` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `NativeQueryType` |
#### Returns
[`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Properties
### inner
`Protected` **inner**: `NativeQueryType`
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Implementation of
AsyncIterable.[asyncIterator]
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): `QueryType`
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
`QueryType`
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### select
**select**(`columns`): `QueryType`
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
`QueryType`
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): `QueryType`
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`QueryType`
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,80 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator
# Class: RecordBatchIterator
## Implements
- `AsyncIterator`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](RecordBatchIterator.md#constructor)
### Properties
- [inner](RecordBatchIterator.md#inner)
- [promisedInner](RecordBatchIterator.md#promisedinner)
### Methods
- [next](RecordBatchIterator.md#next)
## Constructors
### constructor
**new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
## Properties
### inner
`Private` `Optional` **inner**: `RecordBatchIterator`
#### Defined in
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
___
### promisedInner
`Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
## Methods
### next
**next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Returns
`Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Implementation of
AsyncIterator.next
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)

View File

@@ -1,594 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table
# Class: Table
A Table is a collection of Records in a LanceDB Database.
A Table object is expected to be long lived and reused for multiple operations.
Table objects will cache a certain amount of index data in memory. This cache
will be freed when the Table is garbage collected. To eagerly free the cache you
can call the `close` method. Once the Table is closed, it cannot be used for any
further operations.
Closing a table is optional. It not closed, it will be closed when it is garbage
collected.
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [inner](Table.md#inner)
### Methods
- [add](Table.md#add)
- [addColumns](Table.md#addcolumns)
- [alterColumns](Table.md#altercolumns)
- [checkout](Table.md#checkout)
- [checkoutLatest](Table.md#checkoutlatest)
- [close](Table.md#close)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [display](Table.md#display)
- [dropColumns](Table.md#dropcolumns)
- [isOpen](Table.md#isopen)
- [listIndices](Table.md#listindices)
- [query](Table.md#query)
- [restore](Table.md#restore)
- [schema](Table.md#schema)
- [update](Table.md#update)
- [vectorSearch](Table.md#vectorsearch)
- [version](Table.md#version)
## Constructors
### constructor
**new Table**(`inner`): [`Table`](Table.md)
Construct a Table. Internal use only.
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Table` |
#### Returns
[`Table`](Table.md)
#### Defined in
[table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69)
## Properties
### inner
`Private` `Readonly` **inner**: `Table`
#### Defined in
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
## Methods
### add
**add**(`data`, `options?`): `Promise`\<`void`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table |
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105)
___
### addColumns
**addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261)
___
### alterColumns
**alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270)
___
### checkout
**checkout**(`version`): `Promise`\<`void`\>
Checks out a specific version of the Table
Any read operation on the table will now access the data at the checked out version.
As a consequence, calling this method will disable any read consistency interval
that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the change
permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
#### Parameters
| Name | Type |
| :------ | :------ |
| `version` | `number` |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317)
___
### checkoutLatest
**checkoutLatest**(): `Promise`\<`void`\>
Ensures the table is pointing at the latest version
This can be used to manually update a table when the read_consistency_interval is None
It can also be used to undo a `[Self::checkout]` operation
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327)
___
### close
**close**(): `void`
Close the table, releasing any underlying resources.
It is safe to call this method multiple times.
Any attempt to use the table after it is closed will result in an error.
#### Returns
`void`
#### Defined in
[table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85)
___
### countRows
**countRows**(`filter?`): `Promise`\<`number`\>
Count the total number of rows in the dataset.
#### Parameters
| Name | Type |
| :------ | :------ |
| `filter?` | `string` |
#### Returns
`Promise`\<`number`\>
#### Defined in
[table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152)
___
### createIndex
**createIndex**(`column`, `options?`): `Promise`\<`void`\>
Create an index to speed up queries.
Indices can be created on vector columns or scalar columns.
Indices on vector columns will speed up vector searches.
Indices on scalar columns will speed up filtering (in both
vector and non-vector searches)
#### Parameters
| Name | Type |
| :------ | :------ |
| `column` | `string` |
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
#### Returns
`Promise`\<`void`\>
**`Example`**
```ts
// If the column has a vector (fixed size list) data type then
// an IvfPq vector index will be created.
const table = await conn.openTable("my_table");
await table.createIndex(["vector"]);
```
**`Example`**
```ts
// For advanced control over vector index creation you can specify
// the index type and options.
const table = await conn.openTable("my_table");
await table.createIndex(["vector"], I)
.ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
.build();
```
**`Example`**
```ts
// Or create a Scalar index
await table.createIndex("my_float_col").build();
```
#### Defined in
[table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184)
___
### delete
**delete**(`predicate`): `Promise`\<`void`\>
Delete the rows that satisfy the predicate.
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157)
___
### display
**display**(): `string`
Return a brief description of the table
#### Returns
`string`
#### Defined in
[table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90)
___
### dropColumns
**dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset
This is a metadata-only operation and does not remove the data from the
underlying storage. In order to remove the data, you must subsequently
call ``compact_files`` to rewrite the data without the removed columns and
then call ``cleanup_files`` to remove the old files.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285)
___
### isOpen
▸ **isOpen**(): `boolean`
Return true if the table has not been closed
#### Returns
`boolean`
#### Defined in
[table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74)
___
### listIndices
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
List all indices that have been created with Self::create_index
#### Returns
`Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
#### Defined in
[table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350)
___
### query
▸ **query**(): [`Query`](Query.md)
Create a [Query](Query.md) Builder.
Queries allow you to search your existing data. By default the query will
return all the data in the table in no particular order. The builder
returned by this method can be used to control the query using filtering,
vector similarity, sorting, and more.
Note: By default, all columns are returned. For best performance, you should
only fetch the columns you need. See [`Query::select_with_projection`] for
more details.
When appropriate, various indices and statistics based pruning will be used to
accelerate the query.
#### Returns
[`Query`](Query.md)
A builder that can be used to parameterize the query
**`Example`**
```ts
// SQL-style filtering
//
// This query will return up to 1000 rows whose value in the `id` column
// is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table.query()
.filter("id > 1").select(["id"]).limit(20)) {
console.log(batch);
}
```
**`Example`**
```ts
// Vector Similarity Search
//
// This example will find the 10 rows whose value in the "vector" column are
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
// on the "vector" column then this will perform an ANN search.
//
// The `refine_factor` and `nprobes` methods are used to control the recall /
// latency tradeoff of the search.
for await (const batch of table.query()
.nearestTo([1, 2, 3])
.refineFactor(5).nprobe(10)
.limit(10)) {
console.log(batch);
}
```
**`Example`**
```ts
// Scan the full dataset
//
// This query will return everything in the table in no particular order.
for await (const batch of table.query()) {
console.log(batch);
}
```
#### Defined in
[table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238)
___
### restore
▸ **restore**(): `Promise`\<`void`\>
Restore the table to the currently checked out version
This operation will fail if checkout has not been called previously
This operation will overwrite the latest version of the table with a
previous version. Any changes made since the checked out version will
no longer be visible.
Once the operation concludes the table will no longer be in a checked
out state and the read_consistency_interval, if any, will apply.
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343)
___
### schema
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
Get the schema of the table.
#### Returns
`Promise`\<`Schema`\<`any`\>\>
#### Defined in
[table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95)
___
### update
▸ **update**(`updates`, `options?`): `Promise`\<`void`\>
Update existing records in the Table
An update operation can be used to adjust existing values. Use the
returned builder to specify which columns to update. The new value
can be a literal value (e.g. replacing nulls with some default value)
or an expression applied to the old value (e.g. incrementing a value)
An optional condition can be specified (e.g. "only update if the old
value is 0")
Note: if your condition is something like "some_id_column == 7" and
you are updating many rows (with different ids) then you will get
better performance with a single [`merge_insert`] call instead of
repeatedly calilng this method.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137)
___
### vectorSearch
▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
Search the table with a given query vector.
This is a convenience method for preparing a vector query and
is the same thing as calling `nearestTo` on the builder returned
by `query`.
#### Parameters
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[Query#nearestTo](Query.md#nearestto) for more details.
#### Defined in
[table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249)
___
### version
▸ **version**(): `Promise`\<`number`\>
Retrieve the version of the table
LanceDb supports versioning. Every operation that modifies the table increases
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
version to view the data at that point. In addition, you can `[Self::restore]` the
version to replace the current table with a previous version.
#### Returns
`Promise`\<`number`\>
#### Defined in
[table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297)

View File

@@ -1,45 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions
# Class: VectorColumnOptions
## Table of contents
### Constructors
- [constructor](VectorColumnOptions.md#constructor)
### Properties
- [type](VectorColumnOptions.md#type)
## Constructors
### constructor
**new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
#### Returns
[`VectorColumnOptions`](VectorColumnOptions.md)
#### Defined in
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
## Properties
### type
**type**: `Float`\<`Floats`\>
Vector column type.
#### Defined in
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)

View File

@@ -1,531 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery
# Class: VectorQuery
A builder used to construct a vector search
This builder can be reused to execute the query many times.
## Hierarchy
- [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\>
**`VectorQuery`**
## Table of contents
### Constructors
- [constructor](VectorQuery.md#constructor)
### Properties
- [inner](VectorQuery.md#inner)
### Methods
- [[asyncIterator]](VectorQuery.md#[asynciterator])
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
- [column](VectorQuery.md#column)
- [distanceType](VectorQuery.md#distancetype)
- [execute](VectorQuery.md#execute)
- [limit](VectorQuery.md#limit)
- [nativeExecute](VectorQuery.md#nativeexecute)
- [nprobes](VectorQuery.md#nprobes)
- [postfilter](VectorQuery.md#postfilter)
- [refineFactor](VectorQuery.md#refinefactor)
- [select](VectorQuery.md#select)
- [toArray](VectorQuery.md#toarray)
- [toArrow](VectorQuery.md#toarrow)
- [where](VectorQuery.md#where)
## Constructors
### constructor
**new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `VectorQuery` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
## Properties
### inner
`Protected` **inner**: `VectorQuery`
#### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### bypassVectorIndex
**bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
If this is called then any vector index is skipped
An exhaustive (flat) search will be performed. The query vector will
be compared to every vector in the table. At high scales this can be
expensive. However, this is often still useful. For example, skipping
the vector index can give you ground truth results which you can use to
calculate your recall to select an appropriate value for nprobes.
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321)
___
### column
**column**(`column`): [`VectorQuery`](VectorQuery.md)
Set the vector column to query
This controls which column is compared to the query vector supplied in
the call to
#### Parameters
| Name | Type |
| :------ | :------ |
| `column` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[Query#nearestTo](Query.md#nearestto)
This parameter must be specified if the table has more than one column
whose data type is a fixed-size-list of floats.
#### Defined in
[query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229)
___
### distanceType
**distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
Set the distance metric to use
When performing a vector search we try and find the "nearest" vectors according
to some kind of distance metric. This parameter controls which distance metric to
use. See
#### Parameters
| Name | Type |
| :------ | :------ |
| `distanceType` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
distance metrics available.
Note: if there is a vector index then the distance type used MUST match the distance
type used to train the vector index. If this is not done then the results will be
invalid.
By default "l2" is used.
#### Defined in
[query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): [`VectorQuery`](VectorQuery.md)
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### nprobes
**nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
Set the number of partitions to search (probe)
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
The IVF stage of IVF PQ divides the input into partitions (clusters) of
related values.
The partition whose centroids are closest to the query vector will be
exhaustiely searched to find matches. This parameter controls how many
partitions should be searched.
Increasing this value will increase the recall of your query but will
also increase the latency of your query. The default value is 20. This
default is good for many cases but the best value to use will depend on
your data and the recall that you need to achieve.
For best results we recommend tuning this parameter with a benchmark against
your actual data to find the smallest possible value that will still give
you the desired recall.
#### Parameters
| Name | Type |
| :------ | :------ |
| `nprobes` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215)
___
### postfilter
**postfilter**(): [`VectorQuery`](VectorQuery.md)
If this is called then filtering will happen after the vector search instead of
before.
By default filtering will be performed before the vector search. This is how
filtering is typically understood to work. This prefilter step does add some
additional latency. Creating a scalar index on the filter column(s) can
often improve this latency. However, sometimes a filter is too complex or scalar
indices cannot be applied to the column. In these cases postfiltering can be
used instead of prefiltering to improve latency.
Post filtering applies the filter to the results of the vector search. This means
we only run the filter on a much smaller set of data. However, it can cause the
query to return fewer than `limit` results (or even no results) if none of the nearest
results match the filter.
Post filtering happens during the "refine stage" (described in more detail in
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering.
#### Defined in
[query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307)
___
### refineFactor
**refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
A multiplier to control how many additional rows are taken during the refine step
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
An IVF PQ index stores compressed (quantized) values. They query vector is compared
against these values and, since they are compressed, the comparison is inaccurate.
This parameter can be used to refine the results. It can improve both improve recall
and correct the ordering of the nearest results.
To refine results LanceDb will first perform an ANN search to find the nearest
`limit` * `refine_factor` results. In other words, if `refine_factor` is 3 and
`limit` is the default (10) then the first 30 results will be selected. LanceDb
then fetches the full, uncompressed, values for these 30 results. The results are
then reordered by the true distance and only the nearest 10 are kept.
Note: there is a difference between calling this method with a value of 1 and never
calling this method at all. Calling this method with any value will have an impact
on your search latency. When you call this method with a `refine_factor` of 1 then
LanceDb still needs to fetch the full, uncompressed, values so that it can potentially
reorder the results.
Note: if this method is NOT called then the distances returned in the _distance column
will be approximate distances based on the comparison of the quantized query vector
and the quantized result vectors. This can be considerably different than the true
distance between the query vector and the actual uncompressed vector.
#### Parameters
| Name | Type |
| :------ | :------ |
| `refineFactor` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282)
___
### select
**select**(`columns`): [`VectorQuery`](VectorQuery.md)
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): [`VectorQuery`](VectorQuery.md)
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -1,111 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
## Table of contents
### Constructors
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `"text-embedding-ada-002"` |
#### Returns
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Defined in
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
## Methods
### embed
**embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`\<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)

View File

@@ -1,43 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"Append"``
#### Defined in
native.d.ts:69
___
### Create
• **Create** = ``"Create"``
#### Defined in
native.d.ts:68
___
### Overwrite
• **Overwrite** = ``"Overwrite"``
#### Defined in
native.d.ts:70

View File

@@ -1,37 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql
# Interface: AddColumnsSql
A definition of a new column to add to a table.
## Table of contents
### Properties
- [name](AddColumnsSql.md#name)
- [valueSql](AddColumnsSql.md#valuesql)
## Properties
### name
**name**: `string`
The name of the new column.
#### Defined in
native.d.ts:43
___
### valueSql
**valueSql**: `string`
The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table.
#### Defined in
native.d.ts:48

View File

@@ -1,25 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions
# Interface: AddDataOptions
Options for adding data to a table.
## Table of contents
### Properties
- [mode](AddDataOptions.md#mode)
## Properties
### mode
**mode**: ``"append"`` \| ``"overwrite"``
If "append" (the default) then the new data will be added to the table
If "overwrite" then the new data will replace the existing data in the table.
#### Defined in
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)

View File

@@ -1,56 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration
# Interface: ColumnAlteration
A definition of a column alteration. The alteration changes the column at
`path` to have the new name `name`, to be nullable if `nullable` is true,
and to have the data type `data_type`. At least one of `rename` or `nullable`
must be provided.
## Table of contents
### Properties
- [nullable](ColumnAlteration.md#nullable)
- [path](ColumnAlteration.md#path)
- [rename](ColumnAlteration.md#rename)
## Properties
### nullable
`Optional` **nullable**: `boolean`
Set the new nullability. Note that a nullable column cannot be made non-nullable.
#### Defined in
native.d.ts:38
___
### path
**path**: `string`
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
a nested column then it is the path to the column, e.g. "a.b.c" for a column
`c` nested inside a column `b` nested inside a column `a`.
#### Defined in
native.d.ts:31
___
### rename
`Optional` **rename**: `string`
The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table.
#### Defined in
native.d.ts:36

View File

@@ -1,51 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
## Properties
### apiKey
`Optional` **apiKey**: `string`
#### Defined in
native.d.ts:51
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
native.d.ts:52
___
### readConsistencyInterval
`Optional` **readConsistencyInterval**: `number`
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
checked. For performance reasons, this is the default. For strong
consistency, set this to zero seconds. Then every read will check for
updates from other processes. As a compromise, you can set this to a
non-zero value for eventual consistency. If more than that interval
has passed since the last check, then the table will be checked for updates.
Note: this consistency only applies to read operations. Write operations are
always consistent.
#### Defined in
native.d.ts:64

View File

@@ -1,41 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions
## Table of contents
### Properties
- [existOk](CreateTableOptions.md#existok)
- [mode](CreateTableOptions.md#mode)
## Properties
### existOk
**existOk**: `boolean`
If this is true and the table already exists and the mode is "create"
then no error will be raised.
#### Defined in
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
___
### mode
**mode**: ``"overwrite"`` \| ``"create"``
The mode to use when creating the table.
If this is set to "create" and the table already exists then either
an error will be thrown or, if existOk is true, then nothing will
happen. Any provided data will be ignored.
If this is set to "overwrite" then any existing table will be replaced.
#### Defined in
[connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30)

View File

@@ -1,7 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ExecutableQuery
# Interface: ExecutableQuery
An interface for a query that can be executed
Supported by all query types

View File

@@ -1,39 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexConfig
# Interface: IndexConfig
A description of an index currently configured on a column
## Table of contents
### Properties
- [columns](IndexConfig.md#columns)
- [indexType](IndexConfig.md#indextype)
## Properties
### columns
**columns**: `string`[]
The columns in the index
Currently this is always an array of size 1. In the future there may
be more columns to represent composite indices.
#### Defined in
native.d.ts:16
___
### indexType
**indexType**: `string`
The type of the index
#### Defined in
native.d.ts:9

View File

@@ -1,48 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexOptions
# Interface: IndexOptions
## Table of contents
### Properties
- [config](IndexOptions.md#config)
- [replace](IndexOptions.md#replace)
## Properties
### config
`Optional` **config**: [`Index`](../classes/Index.md)
Advanced index configuration
This option allows you to specify a specfic index to create and also
allows you to pass in configuration for training the index.
See the static methods on Index for details on the various index types.
If this is not supplied then column data type(s) and column statistics
will be used to determine the most useful kind of index to create.
#### Defined in
[indices.ts:192](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L192)
___
### replace
`Optional` **replace**: `boolean`
Whether to replace the existing index
If this is false, and another index already exists on the same columns
and the same name, then an error will be returned. This is true even if
that index is out of date.
The default is true
#### Defined in
[indices.ts:202](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L202)

View File

@@ -1,144 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IvfPqOptions
# Interface: IvfPqOptions
Options to create an `IVF_PQ` index
## Table of contents
### Properties
- [distanceType](IvfPqOptions.md#distancetype)
- [maxIterations](IvfPqOptions.md#maxiterations)
- [numPartitions](IvfPqOptions.md#numpartitions)
- [numSubVectors](IvfPqOptions.md#numsubvectors)
- [sampleRate](IvfPqOptions.md#samplerate)
## Properties
### distanceType
`Optional` **distanceType**: ``"l2"`` \| ``"cosine"`` \| ``"dot"``
Distance type to use to build the index.
Default value is "l2".
This is used when training the index to calculate the IVF partitions
(vectors are grouped in partitions with similar vectors according to this
distance type) and to calculate a subvector's code during quantization.
The distance type used to train an index MUST match the distance type used
to search the index. Failure to do so will yield inaccurate results.
The following distance types are available:
"l2" - Euclidean distance. This is a very common distance metric that
accounts for both magnitude and direction when determining the distance
between vectors. L2 distance has a range of [0, ∞).
"cosine" - Cosine distance. Cosine distance is a distance metric
calculated from the cosine similarity between two vectors. Cosine
similarity is a measure of similarity between two non-zero vectors of an
inner product space. It is defined to equal the cosine of the angle
between them. Unlike L2, the cosine distance is not affected by the
magnitude of the vectors. Cosine distance has a range of [0, 2].
Note: the cosine distance is undefined when one (or both) of the vectors
are all zeros (there is no direction). These vectors are invalid and may
never be returned from a vector search.
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance.
#### Defined in
[indices.ts:83](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L83)
___
### maxIterations
• `Optional` **maxIterations**: `number`
Max iteration to train IVF kmeans.
When training an IVF PQ index we use kmeans to calculate the partitions. This parameter
controls how many iterations of kmeans to run.
Increasing this might improve the quality of the index but in most cases these extra
iterations have diminishing returns.
The default value is 50.
#### Defined in
[indices.ts:96](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L96)
___
### numPartitions
• `Optional` **numPartitions**: `number`
The number of IVF partitions to create.
This value should generally scale with the number of rows in the dataset.
By default the number of partitions is the square root of the number of
rows.
If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
#### Defined in
[indices.ts:32](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L32)
___
### numSubVectors
• `Optional` **numSubVectors**: `number`
Number of sub-vectors of PQ.
This value controls how much the vector is compressed during the quantization step.
The more sub vectors there are the less the vector is compressed. The default is
the dimension of the vector divided by 16. If the dimension is not evenly divisible
by 16 we use the dimension divded by 8.
The above two cases are highly preferred. Having 8 or 16 values per subvector allows
us to use efficient SIMD instructions.
If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
will likely result in poor performance.
#### Defined in
[indices.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L48)
___
### sampleRate
• `Optional` **sampleRate**: `number`
The number of vectors, per partition, to sample when training IVF kmeans.
When an IVF PQ index is trained, we need to calculate partitions. These are groups
of vectors that are similar to each other. To do this we use an algorithm called kmeans.
Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
random sample of the data. This parameter controls the size of the sample. The total
number of vectors used to train the index is `sample_rate * num_partitions`.
Increasing this value might improve the quality of the index but in most cases the
default should be sufficient.
The default value is 256.
#### Defined in
[indices.ts:113](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L113)

View File

@@ -1,38 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / TableNamesOptions
# Interface: TableNamesOptions
## Table of contents
### Properties
- [limit](TableNamesOptions.md#limit)
- [startAfter](TableNamesOptions.md#startafter)
## Properties
### limit
`Optional` **limit**: `number`
An optional limit to the number of results to return.
#### Defined in
[connection.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L48)
___
### startAfter
`Optional` **startAfter**: `string`
If present, only return names that come lexicographically after the
supplied value.
This can be combined with limit to implement pagination by setting this to
the last table name from the previous page.
#### Defined in
[connection.ts:46](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L46)

View File

@@ -1,28 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / UpdateOptions
# Interface: UpdateOptions
## Table of contents
### Properties
- [where](UpdateOptions.md#where)
## Properties
### where
**where**: `string`
A filter that limits the scope of the update.
This should be an SQL filter expression.
Only rows that satisfy the expression will be updated.
For example, this could be 'my_col == 0' to replace all instances
of 0 in a column with some other default value.
#### Defined in
[table.ts:50](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L50)

View File

@@ -1,21 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteOptions
# Interface: WriteOptions
Write options when creating a Table.
## Table of contents
### Properties
- [mode](WriteOptions.md#mode)
## Properties
### mode
`Optional` **mode**: [`WriteMode`](../enums/WriteMode.md)
#### Defined in
native.d.ts:74

View File

@@ -1,129 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / EmbeddingFunction
# Interface: EmbeddingFunction\<T\>
[embedding](../modules/embedding.md).EmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/embedding.OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [destColumn](embedding.EmbeddingFunction.md#destcolumn)
- [embed](embedding.EmbeddingFunction.md#embed)
- [embeddingDataType](embedding.EmbeddingFunction.md#embeddingdatatype)
- [embeddingDimension](embedding.EmbeddingFunction.md#embeddingdimension)
- [excludeSource](embedding.EmbeddingFunction.md#excludesource)
- [sourceColumn](embedding.EmbeddingFunction.md#sourcecolumn)
## Properties
### destColumn
`Optional` **destColumn**: `string`
The name of the column that will contain the embedding
By default this is "vector"
#### Defined in
[embedding/embedding_function.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L49)
___
### embed
**embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Type declaration
▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`\<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L62)
___
### embeddingDataType
`Optional` **embeddingDataType**: `Float`\<`Floats`\>
The data type of the embedding
The embedding function should return `number`. This will be converted into
an Arrow float array. By default this will be Float32 but this property can
be used to control the conversion.
#### Defined in
[embedding/embedding_function.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L33)
___
### embeddingDimension
`Optional` **embeddingDimension**: `number`
The dimension of the embedding
This is optional, normally this can be determined by looking at the results of
`embed`. If this is not specified, and there is an attempt to apply the embedding
to an empty table, then that process will fail.
#### Defined in
[embedding/embedding_function.ts:42](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L42)
___
### excludeSource
`Optional` **excludeSource**: `boolean`
Should the source column be excluded from the resulting table
By default the source column is included. Set this to true and
only the embedding will be stored.
#### Defined in
[embedding/embedding_function.ts:57](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L57)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L24)

View File

@@ -1,209 +0,0 @@
[@lancedb/lancedb](README.md) / Exports
# @lancedb/lancedb
## Table of contents
### Namespaces
- [embedding](modules/embedding.md)
### Enumerations
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
- [RecordBatchIterator](classes/RecordBatchIterator.md)
- [Table](classes/Table.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)
### Interfaces
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases
- [Data](modules.md#data)
### Functions
- [connect](modules.md#connect)
- [makeArrowTable](modules.md#makearrowtable)
## Type Aliases
### Data
Ƭ **Data**: `Record`\<`string`, `unknown`\>[] \| `ArrowTable`
Data type accepted by NodeJS SDK
#### Defined in
[arrow.ts:40](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L40)
## Functions
### connect
**connect**(`uri`, `opts?`): `Promise`\<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI.
Accpeted formats:
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (LanceDB cloud)
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. If the database uri starts with `db://` then it connects to a remote database. |
| `opts?` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | - |
#### Returns
`Promise`\<[`Connection`](classes/Connection.md)\>
**`See`**
[ConnectionOptions](interfaces/ConnectionOptions.md) for more details on the URI format.
#### Defined in
[index.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/index.ts#L62)
___
### makeArrowTable
**makeArrowTable**(`data`, `options?`): `ArrowTable`
An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns.
(typically you do not need to call this function. It will be called automatically
when creating a table or adding data to it)
This function converts an array of Record<String, any> (row-major JS objects)
to an Arrow Table (a columnar structure)
Note that it currently does not support nulls.
If a schema is provided then it will be used to determine the resulting array
types. Fields will also be reordered to fit the order defined by the schema.
If a schema is not provided then the types will be inferred and the field order
will be controlled by the order of properties in the first record. If a type
is inferred it will always be nullable.
If the input is empty then a schema must be provided to create an empty table.
When a schema is not specified then data types will be inferred. The inference
rules are as follows:
- boolean => Bool
- number => Float64
- String => Utf8
- Buffer => Binary
- Record<String, any> => Struct
- Array<any> => List
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `Record`\<`string`, `unknown`\>[] |
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
#### Returns
`ArrowTable`
**`Example`**
```ts
import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
const schema = new Schema([
new Field("a", new Int32()),
new Field("b", new Float32()),
new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
]);
const table = makeArrowTable([
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] },
], { schema });
```
By default it assumes that the column named `vector` is a vector column
and it will be converted into a fixed size list array of type float32.
The `vectorColumns` option can be used to support other vector column
names and data types.
```ts
const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
```
You can specify the vector column types and names using the options as well
```typescript
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
const table = makeArrowTable([
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
assert.deepEqual(table.schema, schema)
```
#### Defined in
[arrow.ts:197](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L197)

View File

@@ -1,45 +0,0 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / embedding
# Namespace: embedding
## Table of contents
### Classes
- [OpenAIEmbeddingFunction](../classes/embedding.OpenAIEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md)
### Functions
- [isEmbeddingFunction](embedding.md#isembeddingfunction)
## Functions
### isEmbeddingFunction
**isEmbeddingFunction**\<`T`\>(`value`): value is EmbeddingFunction\<T\>
Test if the input seems to be an embedding function
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `unknown` |
#### Returns
value is EmbeddingFunction\<T\>
#### Defined in
[embedding/embedding_function.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L66)

View File

@@ -1,76 +0,0 @@
# Rust-backed Client Migration Guide
In an effort to ensure all clients have the same set of capabilities we have begun migrating the
python and node clients onto a common Rust base library. In python, this new client is part of
the same lancedb package, exposed as an asynchronous client. Once the asynchronous client has
reached full functionality we will begin migrating the synchronous library to be a thin wrapper
around the asynchronous client.
This guide describes the differences between the two APIs and will hopefully assist users
that would like to migrate to the new API.
## Closeable Connections
The Connection now has a `close` method. You can call this when
you are done with the connection to eagerly free resources. Currently
this is limited to freeing/closing the HTTP connection for remote
connections. In the future we may add caching or other resources to
native connections so this is probably a good practice even if you
aren't using remote connections.
In addition, the connection can be used as a context manager which may
be a more convenient way to ensure the connection is closed.
```python
import lancedb
async def my_async_fn():
with await lancedb.connect_async("my_uri") as db:
print(await db.table_names())
```
It is not mandatory to call the `close` method. If you do not call it
then the connection will be closed when the object is garbage collected.
## Closeable Table
The Table now also has a `close` method, similar to the connection. This
can be used to eagerly free the cache used by a Table object. Similar to
the connection, it can be used as a context manager and it is not mandatory
to call the `close` method.
### Changes to Table APIs
- Previously `Table.schema` was a property. Now it is an async method.
- The method `Table.__len__` was removed and `len(table)` will no longer
work. Use `Table.count_rows` instead.
### Creating Indices
The `Table.create_index` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
column to index). Vector index defaults are now smarter and scale better with
the size of the data.
To specify index configuration details you will need to specify which kind of
index you are using.
### Querying
The `Table.search` method has been renamed to `AsyncTable.vector_search` for
clarity.
## Features not yet supported
The following features are not yet supported by the asynchronous API. However,
we plan to support them soon.
- You cannot specify an embedding function when creating or opening a table.
You must calculate embeddings yourself if using the asynchronous API
- The merge insert operation is not supported in the asynchronous API
- Cleanup / compact / optimize indices are not supported in the asynchronous API
- add / alter columns is not supported in the asynchronous API
- The asynchronous API does not yet support any full text search or reranking
search
- Remote connections to LanceDb Cloud are not yet supported.
- The method Table.head is not yet supported.

File diff suppressed because one or more lines are too long

View File

@@ -8,31 +8,22 @@ This section contains the API reference for the OSS Python API.
pip install lancedb pip install lancedb
``` ```
The following methods describe the synchronous API client. There ## Connection
is also an [asynchronous API client](#connections-asynchronous).
## Connections (Synchronous)
::: lancedb.connect ::: lancedb.connect
::: lancedb.db.DBConnection ::: lancedb.db.DBConnection
## Tables (Synchronous) ## Table
::: lancedb.table.Table ::: lancedb.table.Table
## Querying (Synchronous) ## Querying
::: lancedb.query.Query ::: lancedb.query.Query
::: lancedb.query.LanceQueryBuilder ::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceVectorQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder
::: lancedb.query.LanceHybridQueryBuilder
## Embeddings ## Embeddings
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry ::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
@@ -71,60 +62,10 @@ is also an [asynchronous API client](#connections-asynchronous).
## Integrations ## Integrations
## Pydantic ### Pydantic
::: lancedb.pydantic.pydantic_to_schema ::: lancedb.pydantic.pydantic_to_schema
::: lancedb.pydantic.vector ::: lancedb.pydantic.vector
::: lancedb.pydantic.LanceModel ::: lancedb.pydantic.LanceModel
## Reranking
::: lancedb.rerankers.linear_combination.LinearCombinationReranker
::: lancedb.rerankers.cohere.CohereReranker
::: lancedb.rerankers.colbert.ColbertReranker
::: lancedb.rerankers.cross_encoder.CrossEncoderReranker
::: lancedb.rerankers.openai.OpenaiReranker
## Connections (Asynchronous)
Connections represent a connection to a LanceDb database and
can be used to create, list, or open tables.
::: lancedb.connect_async
::: lancedb.db.AsyncConnection
## Tables (Asynchronous)
Table hold your actual data as a collection of records / rows.
::: lancedb.table.AsyncTable
## Indices (Asynchronous)
Indices can be created on a table to speed up queries. This section
lists the indices that LanceDb supports.
::: lancedb.index.BTree
::: lancedb.index.IvfPq
## Querying (Asynchronous)
Queries allow you to return data from your database. Basic queries can be
created with the [AsyncTable.query][lancedb.table.AsyncTable.query] method
to return the entire (typically filtered) table. Vector searches return the
rows nearest to a query vector and can be created with the
[AsyncTable.vector_search][lancedb.table.AsyncTable.vector_search] method.
::: lancedb.query.AsyncQueryBase
::: lancedb.query.AsyncQuery
::: lancedb.query.AsyncVectorQuery

View File

@@ -22,7 +22,7 @@ Currently, LanceDB supports the following metrics:
## Exhaustive search (kNN) ## Exhaustive search (kNN)
If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space
and computes the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search. and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
<!-- Setup Code <!-- Setup Code
```python ```python
@@ -85,7 +85,7 @@ To perform scalable vector retrieval with acceptable latencies, it's common to b
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
an ANN search means that using an index often involves a trade-off between recall and latency. an ANN search means that using an index often involves a trade-off between recall and latency.
See the [IVF_PQ index](./concepts/index_ivfpq.md) for a deeper description of how `IVF_PQ` See the [IVF_PQ index](./concepts/index_ivfpq.md.md) for a deeper description of how `IVF_PQ`
indexes work in LanceDB. indexes work in LanceDB.
## Output search results ## Output search results
@@ -184,3 +184,4 @@ Let's create a LanceDB table with a nested schema:
Note that in this case the extra `_distance` field is discarded since Note that in this case the extra `_distance` field is discarded since
it's not part of the LanceSchema. it's not part of the LanceSchema.

View File

@@ -66,7 +66,6 @@ Currently, Lance supports a growing list of SQL expressions.
- `LIKE`, `NOT LIKE` - `LIKE`, `NOT LIKE`
- `CAST` - `CAST`
- `regexp_match(column, pattern)` - `regexp_match(column, pattern)`
- [DataFusion Functions](https://arrow.apache.org/datafusion/user-guide/sql/scalar_functions.html)
For example, the following filter string is acceptable: For example, the following filter string is acceptable:

View File

@@ -1,5 +1,5 @@
import glob import glob
from typing import Iterator, List from typing import Iterator
from pathlib import Path from pathlib import Path
glob_string = "../src/**/*.md" glob_string = "../src/**/*.md"
@@ -50,24 +50,11 @@ def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
yield line[strip_length:] yield line[strip_length:]
def wrap_async(lines: List[str]) -> List[str]:
# Indent all the lines
lines = [" " + line for line in lines]
# Put all lines in `async def main():`
lines = ["async def main():\n"] + lines
# Put `import asyncio\n asyncio.run(main())` at the end
lines = lines + ["\n", "import asyncio\n", "asyncio.run(main())\n"]
return lines
for file in filter(lambda file: file not in excluded_files, files): for file in filter(lambda file: file not in excluded_files, files):
with open(file, "r") as f: with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```")) lines = list(yield_lines(iter(f), "```", "```"))
if len(lines) > 0: if len(lines) > 0:
if any("await" in line for line in lines):
lines = wrap_async(lines)
print(lines) print(lines)
out_path = ( out_path = (
Path(python_folder) Path(python_folder)

View File

@@ -13,10 +13,5 @@ module.exports = {
}, },
rules: { rules: {
"@typescript-eslint/method-signature-style": "off", "@typescript-eslint/method-signature-style": "off",
"@typescript-eslint/quotes": "off",
"@typescript-eslint/semi": "off",
"@typescript-eslint/explicit-function-return-type": "off",
"@typescript-eslint/space-before-function-paren": "off",
"@typescript-eslint/indent": "off",
} }
} }

117
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.17", "version": "0.4.11",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.4.17", "version": "0.4.11",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -18,7 +18,9 @@
"win32" "win32"
], ],
"dependencies": { "dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74", "@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0" "axios": "^1.4.0"
}, },
"devDependencies": { "devDependencies": {
@@ -31,7 +33,6 @@
"@types/temp": "^0.9.1", "@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3", "@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1", "@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1", "cargo-cp-artifact": "^0.1",
"chai": "^4.3.7", "chai": "^4.3.7",
"chai-as-promised": "^7.1.1", "chai-as-promised": "^7.1.1",
@@ -52,15 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.17", "@lancedb/vectordb-darwin-arm64": "0.4.11",
"@lancedb/vectordb-darwin-x64": "0.4.17", "@lancedb/vectordb-darwin-x64": "0.4.11",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.17", "@lancedb/vectordb-linux-arm64-gnu": "0.4.11",
"@lancedb/vectordb-linux-x64-gnu": "0.4.17", "@lancedb/vectordb-linux-x64-gnu": "0.4.11",
"@lancedb/vectordb-win32-x64-msvc": "0.4.17" "@lancedb/vectordb-win32-x64-msvc": "0.4.11"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2"
} }
}, },
"node_modules/@75lb/deep-merge": { "node_modules/@75lb/deep-merge": {
@@ -96,7 +93,6 @@
"version": "14.0.2", "version": "14.0.2",
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz", "resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz",
"integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==", "integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==",
"peer": true,
"dependencies": { "dependencies": {
"@types/command-line-args": "5.2.0", "@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2", "@types/command-line-usage": "5.0.2",
@@ -113,8 +109,7 @@
"node_modules/@apache-arrow/ts/node_modules/@types/node": { "node_modules/@apache-arrow/ts/node_modules/@types/node": {
"version": "20.3.0", "version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz", "resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==", "integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
"peer": true
}, },
"node_modules/@cargo-messages/android-arm-eabi": { "node_modules/@cargo-messages/android-arm-eabi": {
"version": "0.0.160", "version": "0.0.160",
@@ -333,6 +328,66 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.11",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.11.tgz",
"integrity": "sha512-JDOKmFnuJPFkA7ZmrzBJolROwSjWr7yMvAbi40uLBc25YbbVezodd30u2EFtIwWwtk1GqNYRZ49FZOElKYeC/Q==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.11",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.11.tgz",
"integrity": "sha512-iy6r+8tp2v1EFgJV52jusXtxgO6NY6SkpOdX41xPqN2mQWMkfUAR9Xtks1mgknjPOIKH4MRc8ZS0jcW/UWmilQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.11",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.11.tgz",
"integrity": "sha512-5K6IVcTMuH0SZBjlqB5Gg39WC889FpTwIWKufxzQMMXrzxo5J3lKUHVoR28RRlNhDF2d9kZXBEyCpIfDFsV9iQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.11",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.11.tgz",
"integrity": "sha512-hF9ZChsdqKqqnivOzd9mE7lC3PmhZadXtwThi2RrsPiOLoEaGDfmr6Ni3amVQnB3bR8YEJtTxdQxe0NC4uW/8g==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.11",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.11.tgz",
"integrity": "sha512-0+9ut1ccKoqIyGxsVixwx3771Z+DXpl5WfSmOeA8kf3v3jlOg2H+0YUahiXLDid2ju+yeLPrAUYm7A1gKHVhew==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": { "node_modules/@neon-rs/cli": {
"version": "0.0.160", "version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz", "resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
@@ -893,7 +948,6 @@
"version": "14.0.2", "version": "14.0.2",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz", "resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz",
"integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==", "integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==",
"peer": true,
"dependencies": { "dependencies": {
"@types/command-line-args": "5.2.0", "@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2", "@types/command-line-usage": "5.0.2",
@@ -910,39 +964,10 @@
"arrow2csv": "bin/arrow2csv.js" "arrow2csv": "bin/arrow2csv.js"
} }
}, },
"node_modules/apache-arrow-old": {
"name": "apache-arrow",
"version": "13.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-13.0.0.tgz",
"integrity": "sha512-3gvCX0GDawWz6KFNC28p65U+zGh/LZ6ZNKWNu74N6CQlKzxeoWHpi4CgEQsgRSEMuyrIIXi1Ea2syja7dwcHvw==",
"dev": true,
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/apache-arrow-old/node_modules/@types/node": {
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==",
"dev": true
},
"node_modules/apache-arrow/node_modules/@types/node": { "node_modules/apache-arrow/node_modules/@types/node": {
"version": "20.3.0", "version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz", "resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==", "integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
"peer": true
}, },
"node_modules/arg": { "node_modules/arg": {
"version": "4.1.3", "version": "4.1.3",

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.17", "version": "0.4.11",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -41,7 +41,6 @@
"@types/temp": "^0.9.1", "@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3", "@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1", "@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1", "cargo-cp-artifact": "^0.1",
"chai": "^4.3.7", "chai": "^4.3.7",
"chai-as-promised": "^7.1.1", "chai-as-promised": "^7.1.1",
@@ -88,10 +87,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.17", "@lancedb/vectordb-darwin-arm64": "0.4.11",
"@lancedb/vectordb-darwin-x64": "0.4.17", "@lancedb/vectordb-darwin-x64": "0.4.11",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.17", "@lancedb/vectordb-linux-arm64-gnu": "0.4.11",
"@lancedb/vectordb-linux-x64-gnu": "0.4.17", "@lancedb/vectordb-linux-x64-gnu": "0.4.11",
"@lancedb/vectordb-win32-x64-msvc": "0.4.17" "@lancedb/vectordb-win32-x64-msvc": "0.4.11"
} }
} }

View File

@@ -20,20 +20,19 @@ import {
type Vector, type Vector,
FixedSizeList, FixedSizeList,
vectorFromArray, vectorFromArray,
Schema, type Schema,
Table as ArrowTable, Table as ArrowTable,
RecordBatchStreamWriter, RecordBatchStreamWriter,
List, List,
RecordBatch, RecordBatch,
makeData, makeData,
Struct, Struct,
Float, type Float,
DataType, DataType,
Binary, Binary,
Float32 Float32
} from 'apache-arrow' } from 'apache-arrow'
import { type EmbeddingFunction } from './index' import { type EmbeddingFunction } from './index'
import { sanitizeSchema } from './sanitize'
/* /*
* Options to control how a column should be converted to a vector array * Options to control how a column should be converted to a vector array
@@ -202,13 +201,10 @@ export function makeArrowTable (
} }
const opt = new MakeArrowTableOptions(options !== undefined ? options : {}) const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
if (opt.schema !== undefined && opt.schema !== null) {
opt.schema = sanitizeSchema(opt.schema)
}
const columns: Record<string, Vector> = {} const columns: Record<string, Vector> = {}
// TODO: sample dataset to find missing columns // TODO: sample dataset to find missing columns
// Prefer the field ordering of the schema, if present // Prefer the field ordering of the schema, if present
const columnNames = ((opt.schema) != null) ? (opt.schema.names as string[]) : Object.keys(data[0]) const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
for (const colName of columnNames) { for (const colName of columnNames) {
if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) { if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
// The field is present in the schema, but not in the data, skip it // The field is present in the schema, but not in the data, skip it
@@ -333,9 +329,6 @@ async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunc
if (embeddings == null) { if (embeddings == null) {
return table return table
} }
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema)
}
// Convert from ArrowTable to Record<String, Vector> // Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => { const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
@@ -446,9 +439,6 @@ export async function fromRecordsToBuffer<T> (
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema)
}
const table = await convertToTable(data, embeddings, { schema }) const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchFileWriter.writeAll(table) const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
@@ -466,9 +456,6 @@ export async function fromRecordsToStreamBuffer<T> (
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
if (schema !== null && schema !== undefined) {
schema = sanitizeSchema(schema)
}
const table = await convertToTable(data, embeddings, { schema }) const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchStreamWriter.writeAll(table) const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
@@ -487,9 +474,6 @@ export async function fromTableToBuffer<T> (
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
if (schema !== null && schema !== undefined) {
schema = sanitizeSchema(schema)
}
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema) const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings) const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
@@ -508,9 +492,6 @@ export async function fromTableToStreamBuffer<T> (
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
if (schema !== null && schema !== undefined) {
schema = sanitizeSchema(schema)
}
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema) const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings) const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
@@ -547,5 +528,5 @@ function alignTable (table: ArrowTable, schema: Schema): ArrowTable {
// Creates an empty Arrow Table // Creates an empty Arrow Table
export function createEmptyTable (schema: Schema): ArrowTable { export function createEmptyTable (schema: Schema): ArrowTable {
return new ArrowTable(sanitizeSchema(schema)) return new ArrowTable(schema)
} }

View File

@@ -24,7 +24,6 @@ import { RemoteConnection } from './remote'
import { Query } from './query' import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function' import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util' import { type Literal, toSQL } from './util'
import { type HttpMiddleware } from './middleware'
const { const {
databaseNew, databaseNew,
@@ -78,25 +77,12 @@ export interface ConnectionOptions {
/** User provided AWS crednetials. /** User provided AWS crednetials.
* *
* If not provided, LanceDB will use the default credentials provider chain. * If not provided, LanceDB will use the default credentials provider chain.
*
* @deprecated Pass `aws_access_key_id`, `aws_secret_access_key`, and `aws_session_token`
* through `storageOptions` instead.
*/ */
awsCredentials?: AwsCredentials awsCredentials?: AwsCredentials
/** AWS region to connect to. Default is {@link defaultAwsRegion} /** AWS region to connect to. Default is {@link defaultAwsRegion}. */
*
* @deprecated Pass `region` through `storageOptions` instead.
*/
awsRegion?: string awsRegion?: string
/**
* User provided options for object storage. For example, S3 credentials or request timeouts.
*
* The various options are described at https://lancedb.github.io/lancedb/guides/storage/
*/
storageOptions?: Record<string, string>
/** /**
* API key for the remote connections * API key for the remote connections
* *
@@ -189,10 +175,7 @@ export async function connect (
if (typeof arg === 'string') { if (typeof arg === 'string') {
opts = { uri: arg } opts = { uri: arg }
} else { } else {
const keys = Object.keys(arg) // opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
if (keys.length === 1 && keys[0] === 'uri' && typeof arg.uri === 'string') {
opts = { uri: arg.uri }
} else {
opts = Object.assign( opts = Object.assign(
{ {
uri: '', uri: '',
@@ -204,32 +187,17 @@ export async function connect (
arg arg
) )
} }
}
if (opts.uri.startsWith('db://')) { if (opts.uri.startsWith('db://')) {
// Remote connection // Remote connection
return new RemoteConnection(opts) return new RemoteConnection(opts)
} }
const storageOptions = opts.storageOptions ?? {};
if (opts.awsCredentials?.accessKeyId !== undefined) {
storageOptions.aws_access_key_id = opts.awsCredentials.accessKeyId
}
if (opts.awsCredentials?.secretKey !== undefined) {
storageOptions.aws_secret_access_key = opts.awsCredentials.secretKey
}
if (opts.awsCredentials?.sessionToken !== undefined) {
storageOptions.aws_session_token = opts.awsCredentials.sessionToken
}
if (opts.awsRegion !== undefined) {
storageOptions.region = opts.awsRegion
}
// It's a pain to pass a record to Rust, so we convert it to an array of key-value pairs
const storageOptionsArr = Object.entries(storageOptions);
const db = await databaseNew( const db = await databaseNew(
opts.uri, opts.uri,
storageOptionsArr, opts.awsCredentials?.accessKeyId,
opts.awsCredentials?.secretKey,
opts.awsCredentials?.sessionToken,
opts.awsRegion,
opts.readConsistencyInterval opts.readConsistencyInterval
) )
return new LocalConnection(db, opts) return new LocalConnection(db, opts)
@@ -329,18 +297,6 @@ export interface Connection {
* @param name The name of the table to drop. * @param name The name of the table to drop.
*/ */
dropTable(name: string): Promise<void> dropTable(name: string): Promise<void>
/**
* Instrument the behavior of this Connection with middleware.
*
* The middleware will be called in the order they are added.
*
* Currently this functionality is only supported for remote Connections.
*
* @param {HttpMiddleware} - Middleware which will instrument the Connection.
* @returns - this Connection instrumented by the passed middleware
*/
withMiddleware(middleware: HttpMiddleware): Connection
} }
/** /**
@@ -385,7 +341,6 @@ export interface Table<T = number[]> {
* *
* @param column The column to index * @param column The column to index
* @param replace If false, fail if an index already exists on the column * @param replace If false, fail if an index already exists on the column
* it is always set to true for remote connections
* *
* Scalar indices, like vector indices, can be used to speed up scans. A scalar * Scalar indices, like vector indices, can be used to speed up scans. A scalar
* index can speed up scans that contain filter expressions on the indexed column. * index can speed up scans that contain filter expressions on the indexed column.
@@ -429,7 +384,7 @@ export interface Table<T = number[]> {
* await table.createScalarIndex('my_col') * await table.createScalarIndex('my_col')
* ``` * ```
*/ */
createScalarIndex: (column: string, replace?: boolean) => Promise<void> createScalarIndex: (column: string, replace: boolean) => Promise<void>
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
@@ -580,18 +535,6 @@ export interface Table<T = number[]> {
* names (e.g. "a"). * names (e.g. "a").
*/ */
dropColumns(columnNames: string[]): Promise<void> dropColumns(columnNames: string[]): Promise<void>
/**
* Instrument the behavior of this Table with middleware.
*
* The middleware will be called in the order they are added.
*
* Currently this functionality is only supported for remote tables.
*
* @param {HttpMiddleware} - Middleware which will instrument the Table.
* @returns - this Table instrumented by the passed middleware
*/
withMiddleware(middleware: HttpMiddleware): Table<T>
} }
/** /**
@@ -746,6 +689,7 @@ export class LocalConnection implements Connection {
const tbl = await databaseOpenTable.call( const tbl = await databaseOpenTable.call(
this._db, this._db,
name, name,
...getAwsArgs(this._options())
) )
if (embeddings !== undefined) { if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddings) return new LocalTable(tbl, name, this._options(), embeddings)
@@ -845,10 +789,6 @@ export class LocalConnection implements Connection {
async dropTable (name: string): Promise<void> { async dropTable (name: string): Promise<void> {
await databaseDropTable.call(this._db, name) await databaseDropTable.call(this._db, name)
} }
withMiddleware (middleware: HttpMiddleware): Connection {
return this
}
} }
export class LocalTable<T = number[]> implements Table<T> { export class LocalTable<T = number[]> implements Table<T> {
@@ -974,10 +914,7 @@ export class LocalTable<T = number[]> implements Table<T> {
}) })
} }
async createScalarIndex (column: string, replace?: boolean): Promise<void> { async createScalarIndex (column: string, replace: boolean): Promise<void> {
if (replace === undefined) {
replace = true
}
return tableCreateScalarIndex.call(this._tbl, column, replace) return tableCreateScalarIndex.call(this._tbl, column, replace)
} }
@@ -1159,10 +1096,6 @@ export class LocalTable<T = number[]> implements Table<T> {
async dropColumns (columnNames: string[]): Promise<void> { async dropColumns (columnNames: string[]): Promise<void> {
return tableDropColumns.call(this._tbl, columnNames) return tableDropColumns.call(this._tbl, columnNames)
} }
withMiddleware (middleware: HttpMiddleware): Table<T> {
return this
}
} }
export interface CleanupStats { export interface CleanupStats {

View File

@@ -1,58 +0,0 @@
// Copyright 2024 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* Middleware for Remote LanceDB Connection or Table
*/
export interface HttpMiddleware {
/**
* A callback that can be used to instrument the behavior of http requests to remote
* tables. It can be used to add headers, modify the request, or even short-circuit
* the request and return a response without making the request to the remote endpoint.
* It can also be used to modify the response from the remote endpoint.
*
* @param {RemoteResponse} res - Request to the remote endpoint
* @param {onRemoteRequestNext} next - Callback to advance the middleware chain
*/
onRemoteRequest(
req: RemoteRequest,
next: (req: RemoteRequest) => Promise<RemoteResponse>,
): Promise<RemoteResponse>
};
export enum Method {
GET,
POST
}
/**
* A LanceDB Remote HTTP Request
*/
export interface RemoteRequest {
uri: string
method: Method
headers: Map<string, string>
params?: Map<string, string>
body?: any
}
/**
* A LanceDB Remote HTTP Response
*/
export interface RemoteResponse {
status: number
statusText: string
headers: Map<string, string>
body: () => Promise<any>
}

View File

@@ -38,7 +38,7 @@ export class Query<T = number[]> {
constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) { constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl this._tbl = tbl
this._query = query this._query = query
this._limit = 10 this._limit = undefined
this._nprobes = 20 this._nprobes = 20
this._refineFactor = undefined this._refineFactor = undefined
this._select = undefined this._select = undefined
@@ -50,7 +50,6 @@ export class Query<T = number[]> {
/*** /***
* Sets the number of results that will be returned * Sets the number of results that will be returned
* default value is 10
* @param value number of results * @param value number of results
*/ */
limit (value: number): Query<T> { limit (value: number): Query<T> {

View File

@@ -12,117 +12,13 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import axios, { type AxiosResponse, type ResponseType } from 'axios' import axios, { type AxiosResponse } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow' import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
import { type RemoteResponse, type RemoteRequest, Method } from '../middleware'
interface HttpLancedbClientMiddleware {
onRemoteRequest(
req: RemoteRequest,
next: (req: RemoteRequest) => Promise<RemoteResponse>,
): Promise<RemoteResponse>
}
/**
* Invoke the middleware chain and at the end call the remote endpoint
*/
async function callWithMiddlewares (
req: RemoteRequest,
middlewares: HttpLancedbClientMiddleware[],
opts?: MiddlewareInvocationOptions
): Promise<RemoteResponse> {
async function call (
i: number,
req: RemoteRequest
): Promise<RemoteResponse> {
// if we have reached the end of the middleware chain, make the request
if (i > middlewares.length) {
const headers = Object.fromEntries(req.headers.entries())
const params = Object.fromEntries(req.params?.entries() ?? [])
const timeout = 10000
let res
if (req.method === Method.POST) {
res = await axios.post(
req.uri,
req.body,
{
headers,
params,
timeout,
responseType: opts?.responseType
}
)
} else {
res = await axios.get(
req.uri,
{
headers,
params,
timeout
}
)
}
return toLanceRes(res)
}
// call next middleware in chain
return await middlewares[i - 1].onRemoteRequest(
req,
async (req) => {
return await call(i + 1, req)
}
)
}
return await call(1, req)
}
interface MiddlewareInvocationOptions {
responseType?: ResponseType
}
/**
* Marshall the library response into a LanceDB response
*/
function toLanceRes (res: AxiosResponse): RemoteResponse {
const headers = new Map()
for (const h in res.headers) {
headers.set(h, res.headers[h])
}
return {
status: res.status,
statusText: res.statusText,
headers,
body: async () => {
return res.data
}
}
}
async function decodeErrorData(
res: RemoteResponse,
responseType?: ResponseType
): Promise<string> {
const errorData = await res.body()
if (responseType === 'arraybuffer') {
return new TextDecoder().decode(errorData)
} else {
if (typeof errorData === 'object') {
return JSON.stringify(errorData)
}
return errorData
}
}
export class HttpLancedbClient { export class HttpLancedbClient {
private readonly _url: string private readonly _url: string
private readonly _apiKey: () => string private readonly _apiKey: () => string
private readonly _middlewares: HttpLancedbClientMiddleware[]
public constructor ( public constructor (
url: string, url: string,
@@ -131,7 +27,6 @@ export class HttpLancedbClient {
) { ) {
this._url = url this._url = url
this._apiKey = () => apiKey this._apiKey = () => apiKey
this._middlewares = []
} }
get uri (): string { get uri (): string {
@@ -148,8 +43,8 @@ export class HttpLancedbClient {
columns?: string[], columns?: string[],
filter?: string filter?: string
): Promise<ArrowTable<any>> { ): Promise<ArrowTable<any>> {
const result = await this.post( const response = await axios.post(
`/v1/table/${tableName}/query/`, `${this._url}/v1/table/${tableName}/query/`,
{ {
vector, vector,
k, k,
@@ -159,50 +54,63 @@ export class HttpLancedbClient {
filter, filter,
prefilter prefilter
}, },
undefined, {
undefined, headers: {
'arraybuffer' 'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
responseType: 'arraybuffer',
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`)
}
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
) )
const table = tableFromIPC(await result.body()) }
const table = tableFromIPC(response.data)
return table return table
} }
/** /**
* Sent GET request. * Sent GET request.
*/ */
public async get (path: string, params?: Record<string, string>): Promise<RemoteResponse> { public async get (path: string, params?: Record<string, string | number>): Promise<AxiosResponse> {
const req = { const response = await axios.get(
uri: `${this._url}${path}`, `${this._url}${path}`,
method: Method.GET, {
headers: new Map(Object.entries({ headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
'x-api-key': this._apiKey(), 'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {}) ...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
})), },
params: new Map(Object.entries(params ?? {})) params,
timeout: 10000
} }
).catch((err) => {
let response
try {
response = await callWithMiddlewares(req, this._middlewares)
return response
} catch (err: any) {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) { if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`) throw new Error(`Network Error: ${err.message as string}`)
} }
return err.response
response = toLanceRes(err.response) })
}
if (response.status !== 200) { if (response.status !== 200) {
const errorData = await decodeErrorData(response) const errorData = new TextDecoder().decode(response.data)
throw new Error( throw new Error(
`Server Error, status: ${response.status}, ` + `Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText}: ${errorData}` `message: ${response.statusText as string}: ${errorData}`
) )
} }
return response return response
} }
@@ -212,65 +120,35 @@ export class HttpLancedbClient {
public async post ( public async post (
path: string, path: string,
data?: any, data?: any,
params?: Record<string, string>, params?: Record<string, string | number>,
content?: string | undefined, content?: string | undefined
responseType?: ResponseType | undefined ): Promise<AxiosResponse> {
): Promise<RemoteResponse> { const response = await axios.post(
const req = { `${this._url}${path}`,
uri: `${this._url}${path}`, data,
method: Method.POST, {
headers: new Map(Object.entries({ headers: {
'Content-Type': content ?? 'application/json', 'Content-Type': content ?? 'application/json',
'x-api-key': this._apiKey(), 'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {}) ...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
})), },
params: new Map(Object.entries(params ?? {})), params,
body: data timeout: 30000
} }
).catch((err) => {
let response
try {
response = await callWithMiddlewares(req, this._middlewares, { responseType })
// return response
} catch (err: any) {
console.error('error: ', err) console.error('error: ', err)
if (err.response === undefined) { if (err.response === undefined) {
throw new Error(`Network Error: ${err.message as string}`) throw new Error(`Network Error: ${err.message as string}`)
} }
response = toLanceRes(err.response) return err.response
} })
if (response.status !== 200) { if (response.status !== 200) {
const errorData = await decodeErrorData(response, responseType) const errorData = new TextDecoder().decode(response.data)
throw new Error( throw new Error(
`Server Error, status: ${response.status}, ` + `Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText}: ${errorData}` `message: ${response.statusText as string}: ${errorData}`
) )
} }
return response return response
} }
/**
* Instrument this client with middleware
* @param mw - The middleware that instruments the client
* @returns - an instance of this client instrumented with the middleware
*/
public withMiddleware (mw: HttpLancedbClientMiddleware): HttpLancedbClient {
const wrapped = this.clone()
wrapped._middlewares.push(mw)
return wrapped
}
/**
* Make a clone of this client
*/
private clone (): HttpLancedbClient {
const clone = new HttpLancedbClient(this._url, this._apiKey(), this._dbName)
for (const mw of this._middlewares) {
clone._middlewares.push(mw)
}
return clone
}
} }

View File

@@ -38,16 +38,14 @@ import {
fromRecordsToStreamBuffer, fromRecordsToStreamBuffer,
fromTableToStreamBuffer fromTableToStreamBuffer
} from '../arrow' } from '../arrow'
import { toSQL, TTLCache } from '../util' import { toSQL } from '../util'
import { type HttpMiddleware } from '../middleware'
/** /**
* Remote connection. * Remote connection.
*/ */
export class RemoteConnection implements Connection { export class RemoteConnection implements Connection {
private _client: HttpLancedbClient private readonly _client: HttpLancedbClient
private readonly _dbName: string private readonly _dbName: string
private readonly _tableCache = new TTLCache(300_000)
constructor (opts: ConnectionOptions) { constructor (opts: ConnectionOptions) {
if (!opts.uri.startsWith('db://')) { if (!opts.uri.startsWith('db://')) {
@@ -86,14 +84,10 @@ export class RemoteConnection implements Connection {
limit: number = 10 limit: number = 10
): Promise<string[]> { ): Promise<string[]> {
const response = await this._client.get('/v1/table/', { const response = await this._client.get('/v1/table/', {
limit: `${limit}`, limit,
page_token: pageToken page_token: pageToken
}) })
const body = await response.body() return response.data.tables
for (const table of body.tables) {
this._tableCache.set(table, true)
}
return body.tables
} }
async openTable (name: string): Promise<Table> async openTable (name: string): Promise<Table>
@@ -105,12 +99,6 @@ export class RemoteConnection implements Connection {
name: string, name: string,
embeddings?: EmbeddingFunction<T> embeddings?: EmbeddingFunction<T>
): Promise<Table<T>> { ): Promise<Table<T>> {
// check if the table exists
if (this._tableCache.get(name) === undefined) {
await this._client.post(`/v1/table/${encodeURIComponent(name)}/describe/`)
this._tableCache.set(name, true)
}
if (embeddings !== undefined) { if (embeddings !== undefined) {
return new RemoteTable(this._client, name, embeddings) return new RemoteTable(this._client, name, embeddings)
} else { } else {
@@ -166,7 +154,7 @@ export class RemoteConnection implements Connection {
} }
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${encodeURIComponent(tableName)}/create/`, `/v1/table/${tableName}/create/`,
buffer, buffer,
undefined, undefined,
'application/vnd.apache.arrow.stream' 'application/vnd.apache.arrow.stream'
@@ -175,11 +163,10 @@ export class RemoteConnection implements Connection {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${await res.body()}` `message: ${res.statusText}: ${res.data}`
) )
} }
this._tableCache.set(tableName, true)
if (embeddings === undefined) { if (embeddings === undefined) {
return new RemoteTable(this._client, tableName) return new RemoteTable(this._client, tableName)
} else { } else {
@@ -188,19 +175,7 @@ export class RemoteConnection implements Connection {
} }
async dropTable (name: string): Promise<void> { async dropTable (name: string): Promise<void> {
await this._client.post(`/v1/table/${encodeURIComponent(name)}/drop/`) await this._client.post(`/v1/table/${name}/drop/`)
this._tableCache.delete(name)
}
withMiddleware (middleware: HttpMiddleware): Connection {
const wrapped = this.clone()
wrapped._client = wrapped._client.withMiddleware(middleware)
return wrapped
}
private clone (): RemoteConnection {
const clone: RemoteConnection = Object.create(RemoteConnection.prototype)
return Object.assign(clone, this)
} }
} }
@@ -254,7 +229,7 @@ export class RemoteQuery<T = number[]> extends Query<T> {
// we are using extend until we have next next version release // we are using extend until we have next next version release
// Table and Connection has both been refactored to interfaces // Table and Connection has both been refactored to interfaces
export class RemoteTable<T = number[]> implements Table<T> { export class RemoteTable<T = number[]> implements Table<T> {
private _client: HttpLancedbClient private readonly _client: HttpLancedbClient
private readonly _embeddings?: EmbeddingFunction<T> private readonly _embeddings?: EmbeddingFunction<T>
private readonly _name: string private readonly _name: string
@@ -280,21 +255,21 @@ export class RemoteTable<T = number[]> implements Table<T> {
get schema (): Promise<any> { get schema (): Promise<any> {
return this._client return this._client
.post(`/v1/table/${encodeURIComponent(this._name)}/describe/`) .post(`/v1/table/${this._name}/describe/`)
.then(async (res) => { .then((res) => {
if (res.status !== 200) { if (res.status !== 200) {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${await res.body()}` `message: ${res.statusText}: ${res.data}`
) )
} }
return (await res.body())?.schema return res.data?.schema
}) })
} }
search (query: T): Query<T> { search (query: T): Query<T> {
return new RemoteQuery(query, this._client, encodeURIComponent(this._name)) //, this._embeddings_new) return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new)
} }
filter (where: string): Query<T> { filter (where: string): Query<T> {
@@ -336,7 +311,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings) const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${encodeURIComponent(this._name)}/merge_insert/`, `/v1/table/${this._name}/merge_insert/`,
buffer, buffer,
queryParams, queryParams,
'application/vnd.apache.arrow.stream' 'application/vnd.apache.arrow.stream'
@@ -345,7 +320,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${await res.body()}` `message: ${res.statusText}: ${res.data}`
) )
} }
} }
@@ -360,7 +335,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings) const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${encodeURIComponent(this._name)}/insert/`, `/v1/table/${this._name}/insert/`,
buffer, buffer,
{ {
mode: 'append' mode: 'append'
@@ -371,7 +346,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${await res.body()}` `message: ${res.statusText}: ${res.data}`
) )
} }
return tbl.numRows return tbl.numRows
@@ -386,7 +361,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
} }
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings) const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${encodeURIComponent(this._name)}/insert/`, `/v1/table/${this._name}/insert/`,
buffer, buffer,
{ {
mode: 'overwrite' mode: 'overwrite'
@@ -397,7 +372,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${await res.body()}` `message: ${res.statusText}: ${res.data}`
) )
} }
return tbl.numRows return tbl.numRows
@@ -422,7 +397,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
} }
const column = indexParams.column ?? 'vector' const column = indexParams.column ?? 'vector'
const indexType = 'vector' const indexType = 'vector' // only vector index is supported for remote connections
const metricType = indexParams.metric_type ?? 'L2' const metricType = indexParams.metric_type ?? 'L2'
const indexCacheSize = indexParams.index_cache_size ?? null const indexCacheSize = indexParams.index_cache_size ?? null
@@ -433,48 +408,29 @@ export class RemoteTable<T = number[]> implements Table<T> {
index_cache_size: indexCacheSize index_cache_size: indexCacheSize
} }
const res = await this._client.post( const res = await this._client.post(
`/v1/table/${encodeURIComponent(this._name)}/create_index/`, `/v1/table/${this._name}/create_index/`,
data data
) )
if (res.status !== 200) { if (res.status !== 200) {
throw new Error( throw new Error(
`Server Error, status: ${res.status}, ` + `Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${await res.body()}` `message: ${res.statusText}: ${res.data}`
) )
} }
} }
async createScalarIndex (column: string): Promise<void> { async createScalarIndex (column: string, replace: boolean): Promise<void> {
const indexType = 'scalar' throw new Error('Not implemented')
const data = {
column,
index_type: indexType,
replace: true
}
const res = await this._client.post(
`/v1/table/${encodeURIComponent(this._name)}/create_scalar_index/`,
data
)
if (res.status !== 200) {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${await res.body()}`
)
}
} }
async countRows (filter?: string): Promise<number> { async countRows (): Promise<number> {
const result = await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/count_rows/`, { const result = await this._client.post(`/v1/table/${this._name}/describe/`)
predicate: filter return result.data?.stats?.num_rows
})
return (await result.body())
} }
async delete (filter: string): Promise<void> { async delete (filter: string): Promise<void> {
await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/delete/`, { await this._client.post(`/v1/table/${this._name}/delete/`, {
predicate: filter predicate: filter
}) })
} }
@@ -493,7 +449,7 @@ export class RemoteTable<T = number[]> implements Table<T> {
updates[key] = toSQL(value) updates[key] = toSQL(value)
} }
} }
await this._client.post(`/v1/table/${encodeURIComponent(this._name)}/update/`, { await this._client.post(`/v1/table/${this._name}/update/`, {
predicate: filter, predicate: filter,
updates: Object.entries(updates).map(([key, value]) => [key, value]) updates: Object.entries(updates).map(([key, value]) => [key, value])
}) })
@@ -501,9 +457,9 @@ export class RemoteTable<T = number[]> implements Table<T> {
async listIndices (): Promise<VectorIndex[]> { async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post( const results = await this._client.post(
`/v1/table/${encodeURIComponent(this._name)}/index/list/` `/v1/table/${this._name}/index/list/`
) )
return (await results.body()).indexes?.map((index: any) => ({ return results.data.indexes?.map((index: any) => ({
columns: index.columns, columns: index.columns,
name: index.index_name, name: index.index_name,
uuid: index.index_uuid uuid: index.index_uuid
@@ -512,12 +468,11 @@ export class RemoteTable<T = number[]> implements Table<T> {
async indexStats (indexUuid: string): Promise<IndexStats> { async indexStats (indexUuid: string): Promise<IndexStats> {
const results = await this._client.post( const results = await this._client.post(
`/v1/table/${encodeURIComponent(this._name)}/index/${indexUuid}/stats/` `/v1/table/${this._name}/index/${indexUuid}/stats/`
) )
const body = await results.body()
return { return {
numIndexedRows: body?.num_indexed_rows, numIndexedRows: results.data.num_indexed_rows,
numUnindexedRows: body?.num_unindexed_rows numUnindexedRows: results.data.num_unindexed_rows
} }
} }
@@ -532,15 +487,4 @@ export class RemoteTable<T = number[]> implements Table<T> {
async dropColumns (columnNames: string[]): Promise<void> { async dropColumns (columnNames: string[]): Promise<void> {
throw new Error('Drop columns is not yet supported in LanceDB Cloud.') throw new Error('Drop columns is not yet supported in LanceDB Cloud.')
} }
withMiddleware(middleware: HttpMiddleware): Table<T> {
const wrapped = this.clone()
wrapped._client = wrapped._client.withMiddleware(middleware)
return wrapped
}
private clone (): RemoteTable<T> {
const clone: RemoteTable<T> = Object.create(RemoteTable.prototype)
return Object.assign(clone, this)
}
} }

View File

@@ -1,508 +0,0 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The utilities in this file help sanitize data from the user's arrow
// library into the types expected by vectordb's arrow library. Node
// generally allows for mulitple versions of the same library (and sometimes
// even multiple copies of the same version) to be installed at the same
// time. However, arrow-js uses instanceof which expected that the input
// comes from the exact same library instance. This is not always the case
// and so we must sanitize the input to ensure that it is compatible.
import {
Field,
Utf8,
FixedSizeBinary,
FixedSizeList,
Schema,
List,
Struct,
Float,
Bool,
Date_,
Decimal,
DataType,
Dictionary,
Binary,
Float32,
Interval,
Map_,
Duration,
Union,
Time,
Timestamp,
Type,
Null,
Int,
type Precision,
type DateUnit,
Int8,
Int16,
Int32,
Int64,
Uint8,
Uint16,
Uint32,
Uint64,
Float16,
Float64,
DateDay,
DateMillisecond,
DenseUnion,
SparseUnion,
TimeNanosecond,
TimeMicrosecond,
TimeMillisecond,
TimeSecond,
TimestampNanosecond,
TimestampMicrosecond,
TimestampMillisecond,
TimestampSecond,
IntervalDayTime,
IntervalYearMonth,
DurationNanosecond,
DurationMicrosecond,
DurationMillisecond,
DurationSecond,
} from "apache-arrow";
import type { IntBitWidth, TimeBitWidth } from "apache-arrow/type";
function sanitizeMetadata(
metadataLike?: unknown,
): Map<string, string> | undefined {
if (metadataLike === undefined || metadataLike === null) {
return undefined;
}
if (!(metadataLike instanceof Map)) {
throw Error("Expected metadata, if present, to be a Map<string, string>");
}
for (const item of metadataLike) {
if (!(typeof item[0] === "string" || !(typeof item[1] === "string"))) {
throw Error(
"Expected metadata, if present, to be a Map<string, string> but it had non-string keys or values",
);
}
}
return metadataLike as Map<string, string>;
}
function sanitizeInt(typeLike: object) {
if (
!("bitWidth" in typeLike) ||
typeof typeLike.bitWidth !== "number" ||
!("isSigned" in typeLike) ||
typeof typeLike.isSigned !== "boolean"
) {
throw Error(
"Expected an Int Type to have a `bitWidth` and `isSigned` property",
);
}
return new Int(typeLike.isSigned, typeLike.bitWidth as IntBitWidth);
}
function sanitizeFloat(typeLike: object) {
if (!("precision" in typeLike) || typeof typeLike.precision !== "number") {
throw Error("Expected a Float Type to have a `precision` property");
}
return new Float(typeLike.precision as Precision);
}
function sanitizeDecimal(typeLike: object) {
if (
!("scale" in typeLike) ||
typeof typeLike.scale !== "number" ||
!("precision" in typeLike) ||
typeof typeLike.precision !== "number" ||
!("bitWidth" in typeLike) ||
typeof typeLike.bitWidth !== "number"
) {
throw Error(
"Expected a Decimal Type to have `scale`, `precision`, and `bitWidth` properties",
);
}
return new Decimal(typeLike.scale, typeLike.precision, typeLike.bitWidth);
}
function sanitizeDate(typeLike: object) {
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
throw Error("Expected a Date type to have a `unit` property");
}
return new Date_(typeLike.unit as DateUnit);
}
function sanitizeTime(typeLike: object) {
if (
!("unit" in typeLike) ||
typeof typeLike.unit !== "number" ||
!("bitWidth" in typeLike) ||
typeof typeLike.bitWidth !== "number"
) {
throw Error(
"Expected a Time type to have `unit` and `bitWidth` properties",
);
}
return new Time(typeLike.unit, typeLike.bitWidth as TimeBitWidth);
}
function sanitizeTimestamp(typeLike: object) {
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
throw Error("Expected a Timestamp type to have a `unit` property");
}
let timezone = null;
if ("timezone" in typeLike && typeof typeLike.timezone === "string") {
timezone = typeLike.timezone;
}
return new Timestamp(typeLike.unit, timezone);
}
function sanitizeTypedTimestamp(
typeLike: object,
Datatype:
| typeof TimestampNanosecond
| typeof TimestampMicrosecond
| typeof TimestampMillisecond
| typeof TimestampSecond,
) {
let timezone = null;
if ("timezone" in typeLike && typeof typeLike.timezone === "string") {
timezone = typeLike.timezone;
}
return new Datatype(timezone);
}
function sanitizeInterval(typeLike: object) {
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
throw Error("Expected an Interval type to have a `unit` property");
}
return new Interval(typeLike.unit);
}
function sanitizeList(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a List type to have an array-like `children` property",
);
}
if (typeLike.children.length !== 1) {
throw Error("Expected a List type to have exactly one child");
}
return new List(sanitizeField(typeLike.children[0]));
}
function sanitizeStruct(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Struct type to have an array-like `children` property",
);
}
return new Struct(typeLike.children.map((child) => sanitizeField(child)));
}
function sanitizeUnion(typeLike: object) {
if (
!("typeIds" in typeLike) ||
!("mode" in typeLike) ||
typeof typeLike.mode !== "number"
) {
throw Error(
"Expected a Union type to have `typeIds` and `mode` properties",
);
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Union type to have an array-like `children` property",
);
}
return new Union(
typeLike.mode,
typeLike.typeIds as any,
typeLike.children.map((child) => sanitizeField(child)),
);
}
function sanitizeTypedUnion(
typeLike: object,
UnionType: typeof DenseUnion | typeof SparseUnion,
) {
if (!("typeIds" in typeLike)) {
throw Error(
"Expected a DenseUnion/SparseUnion type to have a `typeIds` property",
);
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a DenseUnion/SparseUnion type to have an array-like `children` property",
);
}
return new UnionType(
typeLike.typeIds as any,
typeLike.children.map((child) => sanitizeField(child)),
);
}
function sanitizeFixedSizeBinary(typeLike: object) {
if (!("byteWidth" in typeLike) || typeof typeLike.byteWidth !== "number") {
throw Error(
"Expected a FixedSizeBinary type to have a `byteWidth` property",
);
}
return new FixedSizeBinary(typeLike.byteWidth);
}
function sanitizeFixedSizeList(typeLike: object) {
if (!("listSize" in typeLike) || typeof typeLike.listSize !== "number") {
throw Error("Expected a FixedSizeList type to have a `listSize` property");
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a FixedSizeList type to have an array-like `children` property",
);
}
if (typeLike.children.length !== 1) {
throw Error("Expected a FixedSizeList type to have exactly one child");
}
return new FixedSizeList(
typeLike.listSize,
sanitizeField(typeLike.children[0]),
);
}
function sanitizeMap(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Map type to have an array-like `children` property",
);
}
if (!("keysSorted" in typeLike) || typeof typeLike.keysSorted !== "boolean") {
throw Error("Expected a Map type to have a `keysSorted` property");
}
return new Map_(
typeLike.children.map((field) => sanitizeField(field)) as any,
typeLike.keysSorted,
);
}
function sanitizeDuration(typeLike: object) {
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
throw Error("Expected a Duration type to have a `unit` property");
}
return new Duration(typeLike.unit);
}
function sanitizeDictionary(typeLike: object) {
if (!("id" in typeLike) || typeof typeLike.id !== "number") {
throw Error("Expected a Dictionary type to have an `id` property");
}
if (!("indices" in typeLike) || typeof typeLike.indices !== "object") {
throw Error("Expected a Dictionary type to have an `indices` property");
}
if (!("dictionary" in typeLike) || typeof typeLike.dictionary !== "object") {
throw Error("Expected a Dictionary type to have an `dictionary` property");
}
if (!("isOrdered" in typeLike) || typeof typeLike.isOrdered !== "boolean") {
throw Error("Expected a Dictionary type to have an `isOrdered` property");
}
return new Dictionary(
sanitizeType(typeLike.dictionary),
sanitizeType(typeLike.indices) as any,
typeLike.id,
typeLike.isOrdered,
);
}
function sanitizeType(typeLike: unknown): DataType<any> {
if (typeof typeLike !== "object" || typeLike === null) {
throw Error("Expected a Type but object was null/undefined");
}
if (!("typeId" in typeLike) || !(typeof typeLike.typeId !== "function")) {
throw Error("Expected a Type to have a typeId function");
}
let typeId: Type;
if (typeof typeLike.typeId === "function") {
typeId = (typeLike.typeId as () => unknown)() as Type;
} else if (typeof typeLike.typeId === "number") {
typeId = typeLike.typeId as Type;
} else {
throw Error("Type's typeId property was not a function or number");
}
switch (typeId) {
case Type.NONE:
throw Error("Received a Type with a typeId of NONE");
case Type.Null:
return new Null();
case Type.Int:
return sanitizeInt(typeLike);
case Type.Float:
return sanitizeFloat(typeLike);
case Type.Binary:
return new Binary();
case Type.Utf8:
return new Utf8();
case Type.Bool:
return new Bool();
case Type.Decimal:
return sanitizeDecimal(typeLike);
case Type.Date:
return sanitizeDate(typeLike);
case Type.Time:
return sanitizeTime(typeLike);
case Type.Timestamp:
return sanitizeTimestamp(typeLike);
case Type.Interval:
return sanitizeInterval(typeLike);
case Type.List:
return sanitizeList(typeLike);
case Type.Struct:
return sanitizeStruct(typeLike);
case Type.Union:
return sanitizeUnion(typeLike);
case Type.FixedSizeBinary:
return sanitizeFixedSizeBinary(typeLike);
case Type.FixedSizeList:
return sanitizeFixedSizeList(typeLike);
case Type.Map:
return sanitizeMap(typeLike);
case Type.Duration:
return sanitizeDuration(typeLike);
case Type.Dictionary:
return sanitizeDictionary(typeLike);
case Type.Int8:
return new Int8();
case Type.Int16:
return new Int16();
case Type.Int32:
return new Int32();
case Type.Int64:
return new Int64();
case Type.Uint8:
return new Uint8();
case Type.Uint16:
return new Uint16();
case Type.Uint32:
return new Uint32();
case Type.Uint64:
return new Uint64();
case Type.Float16:
return new Float16();
case Type.Float32:
return new Float32();
case Type.Float64:
return new Float64();
case Type.DateMillisecond:
return new DateMillisecond();
case Type.DateDay:
return new DateDay();
case Type.TimeNanosecond:
return new TimeNanosecond();
case Type.TimeMicrosecond:
return new TimeMicrosecond();
case Type.TimeMillisecond:
return new TimeMillisecond();
case Type.TimeSecond:
return new TimeSecond();
case Type.TimestampNanosecond:
return sanitizeTypedTimestamp(typeLike, TimestampNanosecond);
case Type.TimestampMicrosecond:
return sanitizeTypedTimestamp(typeLike, TimestampMicrosecond);
case Type.TimestampMillisecond:
return sanitizeTypedTimestamp(typeLike, TimestampMillisecond);
case Type.TimestampSecond:
return sanitizeTypedTimestamp(typeLike, TimestampSecond);
case Type.DenseUnion:
return sanitizeTypedUnion(typeLike, DenseUnion);
case Type.SparseUnion:
return sanitizeTypedUnion(typeLike, SparseUnion);
case Type.IntervalDayTime:
return new IntervalDayTime();
case Type.IntervalYearMonth:
return new IntervalYearMonth();
case Type.DurationNanosecond:
return new DurationNanosecond();
case Type.DurationMicrosecond:
return new DurationMicrosecond();
case Type.DurationMillisecond:
return new DurationMillisecond();
case Type.DurationSecond:
return new DurationSecond();
}
}
function sanitizeField(fieldLike: unknown): Field {
if (fieldLike instanceof Field) {
return fieldLike;
}
if (typeof fieldLike !== "object" || fieldLike === null) {
throw Error("Expected a Field but object was null/undefined");
}
if (
!("type" in fieldLike) ||
!("name" in fieldLike) ||
!("nullable" in fieldLike)
) {
throw Error(
"The field passed in is missing a `type`/`name`/`nullable` property",
);
}
const type = sanitizeType(fieldLike.type);
const name = fieldLike.name;
if (!(typeof name === "string")) {
throw Error("The field passed in had a non-string `name` property");
}
const nullable = fieldLike.nullable;
if (!(typeof nullable === "boolean")) {
throw Error("The field passed in had a non-boolean `nullable` property");
}
let metadata;
if ("metadata" in fieldLike) {
metadata = sanitizeMetadata(fieldLike.metadata);
}
return new Field(name, type, nullable, metadata);
}
/**
* Convert something schemaLike into a Schema instance
*
* This method is often needed even when the caller is using a Schema
* instance because they might be using a different instance of apache-arrow
* than lancedb is using.
*/
export function sanitizeSchema(schemaLike: unknown): Schema {
if (schemaLike instanceof Schema) {
return schemaLike;
}
if (typeof schemaLike !== "object" || schemaLike === null) {
throw Error("Expected a Schema but object was null/undefined");
}
if (!("fields" in schemaLike)) {
throw Error(
"The schema passed in does not appear to be a schema (no 'fields' property)",
);
}
let metadata;
if ("metadata" in schemaLike) {
metadata = sanitizeMetadata(schemaLike.metadata);
}
if (!Array.isArray(schemaLike.fields)) {
throw Error(
"The schema passed in had a 'fields' property but it was not an array",
);
}
const sanitizedFields = schemaLike.fields.map((field) =>
sanitizeField(field),
);
return new Schema(sanitizedFields, metadata);
}

View File

@@ -34,20 +34,8 @@ import {
List, List,
DataType, DataType,
Dictionary, Dictionary,
Int64, Int64
MetadataVersion
} from 'apache-arrow' } from 'apache-arrow'
import {
Dictionary as OldDictionary,
Field as OldField,
FixedSizeList as OldFixedSizeList,
Float32 as OldFloat32,
Int32 as OldInt32,
Struct as OldStruct,
Schema as OldSchema,
TimestampNanosecond as OldTimestampNanosecond,
Utf8 as OldUtf8
} from 'apache-arrow-old'
import { type EmbeddingFunction } from '../embedding/embedding_function' import { type EmbeddingFunction } from '../embedding/embedding_function'
chaiUse(chaiAsPromised) chaiUse(chaiAsPromised)
@@ -330,31 +318,3 @@ describe('makeEmptyTable', function () {
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema)) await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
}) })
}) })
describe('when using two versions of arrow', function () {
it('can still import data', async function() {
const schema = new OldSchema([
new OldField('id', new OldInt32()),
new OldField('vector', new OldFixedSizeList(1024, new OldField("item", new OldFloat32(), true))),
new OldField('struct', new OldStruct([
new OldField('nested', new OldDictionary(new OldUtf8(), new OldInt32(), 1, true)),
new OldField('ts_with_tz', new OldTimestampNanosecond("some_tz")),
new OldField('ts_no_tz', new OldTimestampNanosecond(null))
]))
]) as any
// We use arrow version 13 to emulate a "foreign arrow" and this version doesn't have metadataVersion
// In theory, this wouldn't matter. We don't rely on that property. However, it causes deepEqual to
// fail so we patch it back in
schema.metadataVersion = MetadataVersion.V5
const table = makeArrowTable(
[],
{ schema }
)
const buf = await fromTableToBuffer(table)
assert.isAbove(buf.byteLength, 0)
const actual = tableFromIPC(buf)
const actualSchema = actual.schema
assert.deepEqual(actualSchema, schema)
})
})

View File

@@ -42,7 +42,6 @@ import {
Float16, Float16,
Int64 Int64
} from 'apache-arrow' } from 'apache-arrow'
import type { RemoteRequest, RemoteResponse } from '../middleware'
const expect = chai.expect const expect = chai.expect
const assert = chai.assert const assert = chai.assert
@@ -75,19 +74,6 @@ describe('LanceDB client', function () {
assert.equal(con.uri, uri) assert.equal(con.uri, uri)
}) })
it('should accept custom storage options', async function () {
const uri = await createTestDB()
const storageOptions = {
region: 'us-west-2',
timeout: '30s'
};
const con = await lancedb.connect({
uri,
storageOptions
})
assert.equal(con.uri, uri)
})
it('should return the existing table names', async function () { it('should return the existing table names', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
@@ -138,15 +124,10 @@ describe('LanceDB client', function () {
const uri = await createTestDB(2, 100) const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = (await con.openTable('vectors')) as LocalTable const table = (await con.openTable('vectors')) as LocalTable
let results = await table.filter('id % 2 = 0').limit(100).execute() let results = await table.filter('id % 2 = 0').execute()
assertResults(results) assertResults(results)
results = await table.where('id % 2 = 0').limit(100).execute() results = await table.where('id % 2 = 0').execute()
assertResults(results) assertResults(results)
// Should reject a bad filter
await expect(table.filter('id % 2 = 0 AND').execute()).to.be.rejectedWith(
/.*sql parser error: Expected an expression:, found: EOF.*/
)
}) })
it('uses a filter / where clause', async function () { it('uses a filter / where clause', async function () {
@@ -302,8 +283,7 @@ describe('LanceDB client', function () {
it('create a table from an Arrow Table', async function () { it('create a table from an Arrow Table', async function () {
const dir = await track().mkdir('lancejs') const dir = await track().mkdir('lancejs')
// Also test the connect function with an object const con = await lancedb.connect(dir)
const con = await lancedb.connect({ uri: dir })
const i32s = new Int32Array(new Array<number>(10)) const i32s = new Int32Array(new Array<number>(10))
const i32 = makeVector(i32s) const i32 = makeVector(i32s)
@@ -765,11 +745,11 @@ describe('LanceDB client', function () {
num_sub_vectors: 2 num_sub_vectors: 2
}) })
await expect(createIndex).to.be.rejectedWith( await expect(createIndex).to.be.rejectedWith(
"index cannot be created on the column `name` which has data type Utf8" /VectorIndex requires the column data type to be fixed size list of float32s/
) )
}) })
it('it should fail when num_partitions is invalid', async function () { it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300) const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
@@ -927,22 +907,7 @@ describe('Remote LanceDB client', function () {
} }
// Search // Search
const table = await con.withMiddleware(new (class { const table = await con.openTable('vectors')
async onRemoteRequest(req: RemoteRequest, next: (req: RemoteRequest) => Promise<RemoteResponse>) {
// intercept call to check if the table exists and make the call succeed
if (req.uri.endsWith('/describe/')) {
return {
status: 200,
statusText: 'OK',
headers: new Map(),
body: async () => ({})
}
}
return await next(req)
}
})()).openTable('vectors')
try { try {
await table.search([0.1, 0.3]).execute() await table.search([0.1, 0.3]).execute()
} catch (err) { } catch (err) {

View File

@@ -42,36 +42,3 @@ export function toSQL (value: Literal): string {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions // eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw new Error(`Unsupported value type: ${typeof value} value: (${value})`) throw new Error(`Unsupported value type: ${typeof value} value: (${value})`)
} }
export class TTLCache {
private readonly cache: Map<string, { value: any, expires: number }>
/**
* @param ttl Time to live in milliseconds
*/
constructor (private readonly ttl: number) {
this.cache = new Map()
}
get (key: string): any | undefined {
const entry = this.cache.get(key)
if (entry === undefined) {
return undefined
}
if (entry.expires < Date.now()) {
this.cache.delete(key)
return undefined
}
return entry.value
}
set (key: string, value: any): void {
this.cache.set(key, { value, expires: Date.now() + this.ttl })
}
delete (key: string): void {
this.cache.delete(key)
}
}

View File

@@ -1,3 +0,0 @@
**/dist/**/*
**/native.js
**/native.d.ts

Some files were not shown because too many files have changed in this diff Show More