Compare commits

...

53 Commits

Author SHA1 Message Date
Lance Release
392777952f [python] Bump version: 0.4.1 → 0.4.2 2023-12-29 00:19:21 +00:00
Chang She
7e75e50d3a chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2023-12-28 15:05:57 -08:00
Chang She
4b8af261a3 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2023-12-28 11:02:56 -08:00
Chang She
c8728d4ca1 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-27 09:31:04 -08:00
Aidan
446f837335 fix: createIndex index cache size (#741) 2023-12-27 09:25:13 -08:00
Chang She
8f9ad978f5 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2023-12-27 09:10:09 -08:00
Lance Release
0df38341d5 Updating package-lock.json 2023-12-26 17:21:51 +00:00
Lance Release
60260018cf [python] Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:16 +00:00
Lance Release
bb100c5c19 Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:09 +00:00
elliottRobinson
eab9072bb5 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2023-12-26 19:24:22 +05:30
Will Jones
ee0f0611d9 docs: update node API reference (#734)
This command hasn't been run for a while...
2023-12-22 10:14:31 -08:00
Will Jones
34966312cb docs: enhance Update user guide (#735)
Closes #705
2023-12-22 10:14:21 -08:00
Bert
756188358c docs: fix JS api docs for update method (#738) 2023-12-21 13:48:00 -05:00
Weston Pace
dc5126d8d1 feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2023-12-21 09:50:10 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
Chang She
7856a94d2c feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 12:28:53 -08:00
Chang She
371d2f979e feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-12-20 12:23:07 -08:00
Aidan
fff8e399a3 feat: Node create index API (#720) 2023-12-20 15:22:35 -05:00
Aidan
73e4015797 feat: Node Schema API (#717) 2023-12-20 12:16:40 -05:00
Lance Release
5142a27482 Updating package-lock.json 2023-12-18 18:15:50 +00:00
Lance Release
81df2a524e Updating package-lock.json 2023-12-18 17:29:58 +00:00
Lance Release
40638e5515 Bump version: 0.3.11 → 0.4.0 2023-12-18 17:29:47 +00:00
Lance Release
018314a5c1 [python] Bump version: 0.3.6 → 0.4.0 2023-12-18 17:27:26 +00:00
Lei Xu
409eb30ea5 chore: bump lance version to 0.9 (#715) 2023-12-17 22:11:42 -05:00
Lance Release
ff9872fd44 Updating package-lock.json 2023-12-15 18:25:06 +00:00
Lance Release
a0608044a1 [python] Bump version: 0.3.5 → 0.3.6 2023-12-15 18:20:55 +00:00
Lance Release
2e4ea7d2bc Updating package-lock.json 2023-12-15 18:01:45 +00:00
Lance Release
57e5695a54 Bump version: 0.3.10 → 0.3.11 2023-12-15 18:01:34 +00:00
Bert
ce58ea7c38 chore: fix package lock (#711) 2023-12-15 11:49:16 -05:00
Bert
57207eff4a implement update for remote clients (#706) 2023-12-15 09:06:40 -05:00
Rob Meng
2d78bff120 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2023-12-15 00:19:08 -05:00
Rob Meng
7c09b9b9a9 feat: allow custom column name in query (#709) 2023-12-14 23:29:26 -05:00
Chang She
bd0034a157 feat: support nested pydantic schema (#707) 2023-12-14 18:20:45 -08:00
Will Jones
144b3b5d83 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2023-12-14 12:09:28 -08:00
Lance Release
b6f0a31686 Updating package-lock.json 2023-12-14 19:31:56 +00:00
Lance Release
9ec526f73f Bump version: 0.3.9 → 0.3.10 2023-12-14 19:31:41 +00:00
Lance Release
600bfd7237 [python] Bump version: 0.3.4 → 0.3.5 2023-12-14 19:31:22 +00:00
Will Jones
d087e7891d feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2023-12-14 11:28:32 -08:00
Chang She
098e397cf0 feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2023-12-13 22:59:01 -08:00
Bert
63ee8fa6a1 Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-13 14:53:06 -05:00
Ayush Chaurasia
693091db29 chore(python): Reduce posthog event count (#661)
- Register open_table as event 
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2023-12-08 11:00:51 -08:00
Ayush Chaurasia
dca4533dbe docs: Update roboflow tutorial position (#666) 2023-12-08 11:00:11 -08:00
QianZhu
f6bbe199dc Qian/minor fix doc (#695) 2023-12-08 09:58:53 -08:00
Kaushal Kumar Choudhary
366e522c2b docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2023-12-08 20:55:04 +05:30
Chang She
244b6919cc chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2023-12-07 15:49:52 -08:00
QianZhu
aca785ff98 saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2023-12-07 14:47:56 -08:00
Chang She
bbdebf2c38 chore: update package lock (#689) 2023-12-06 17:14:56 -08:00
86 changed files with 3782 additions and 664 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.3.9 current_version = 0.4.1
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

33
.github/ISSUE_TEMPLATE/bug-node.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Node / Typescript
description: File a bug report
title: "bug(node): "
labels: [bug, typescript]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `npm list | grep vectordb`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

33
.github/ISSUE_TEMPLATE/bug-python.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Python
description: File a bug report
title: "bug(python): "
labels: [bug, python]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,5 @@
blank_issues_enabled: true
contact_links:
- name: Discord Community Support
url: https://discord.com/invite/zMM32dvNtd
about: Please ask and answer questions here.

View File

@@ -0,0 +1,23 @@
name: 'Documentation improvement'
description: Report an issue with the documentation.
labels: [documentation]
body:
- type: textarea
id: description
attributes:
label: Description
description: >
Describe the issue with the documentation and how it can be fixed or improved.
validations:
required: true
- type: input
id: link
attributes:
label: Link
description: >
Provide a link to the existing documentation, if applicable.
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
validations:
required: false

31
.github/ISSUE_TEMPLATE/feature.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Feature suggestion
description: Suggestion a new feature for LanceDB
title: "Feature: "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Share a new idea for a feature or improvement. Be sure to search existing
issues first to avoid duplicates.
- type: dropdown
id: sdk
attributes:
label: SDK
description: Which SDK are you using? This helps us prioritize.
options:
- Python
- Node
- Rust
default: 0
validations:
required: false
- type: textarea
id: description
attributes:
label: Description
description: |
Describe the feature and why it would be useful. If applicable, consider
providing a code example of what it might be like to use the feature.
validations:
required: true

View File

@@ -38,13 +38,17 @@ jobs:
node/vectordb-*.tgz node/vectordb-*.tgz
node-macos: node-macos:
runs-on: macos-13 strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-13-xlarge
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v3
@@ -54,17 +58,15 @@ jobs:
run: | run: |
cd node cd node
npm ci npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules - name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }} run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts - name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
name: native-darwin name: native-darwin
path: | path: |
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
node-linux: node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu

View File

@@ -44,12 +44,19 @@ jobs:
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest
run: pytest --doctest-modules lancedb run: pytest --doctest-modules lancedb
mac: platform:
name: "Platform: ${{ matrix.config.name }}"
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ] config:
runs-on: "${{ matrix.mac-runner }}" - name: x86 Mac
runner: macos-13
- name: Arm Mac
runner: macos-13-xlarge
- name: x86 Windows
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
defaults: defaults:
run: run:
shell: bash shell: bash
@@ -91,11 +98,7 @@ jobs:
pip install "pydantic<2" pip install "pydantic<2"
pip install -e .[tests] pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort pip install pytest pytest-mock
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests - name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest

View File

@@ -24,6 +24,29 @@ env:
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
lint:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --all --all-features -- -D warnings
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04

View File

@@ -5,24 +5,24 @@ exclude = ["python"]
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.8.17", "features" = ["dynamodb"] } lance = { "version" = "=0.9.1", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.8.17" } lance-index = { "version" = "=0.9.1" }
lance-linalg = { "version" = "=0.8.17" } lance-linalg = { "version" = "=0.9.1" }
lance-testing = { "version" = "=0.8.17" } lance-testing = { "version" = "=0.9.1" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false } arrow = { version = "49.0.0", optional = false }
arrow-array = "47.0" arrow-array = "49.0"
arrow-data = "47.0" arrow-data = "49.0"
arrow-ipc = "47.0" arrow-ipc = "49.0"
arrow-ord = "47.0" arrow-ord = "49.0"
arrow-schema = "47.0" arrow-schema = "49.0"
arrow-arith = "47.0" arrow-arith = "49.0"
arrow-cast = "47.0" arrow-cast = "49.0"
chrono = "0.4.23" chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [ half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
log = "0.4" log = "0.4"
object_store = "0.7.1" object_store = "0.8.0"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"

View File

@@ -5,10 +5,11 @@
**Developer-friendly, serverless vector database for AI applications** **Developer-friendly, serverless vector database for AI applications**
<a href="https://lancedb.github.io/lancedb/">Documentation</a> <a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href="https://blog.lancedb.com/">Blog</a> <a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href="https://discord.gg/zMM32dvNtd">Discord</a> [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
<a href="https://twitter.com/lancedb">Twitter</a> [![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
</p> </p>

View File

@@ -80,7 +80,6 @@ nav:
- Ingest Embedding Functions: embeddings/embedding_functions.md - Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md - Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md - Create Custom Embedding Functions: embeddings/api.md
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb - Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb - Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- 🔍 Python full-text search: fts.md - 🔍 Python full-text search: fts.md
@@ -99,6 +98,7 @@ nav:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 🌐 Javascript examples: - 🌐 Javascript examples:
@@ -146,7 +146,8 @@ nav:
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md - Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API references: - API references:
- Python API: python/python.md - OSS Python API: python/python.md
- SaaS Python API: python/saas-python.md
- Javascript API: javascript/modules.md - Javascript API: javascript/modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms - LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms

View File

@@ -2,3 +2,4 @@ mkdocs==1.4.2
mkdocs-jupyter==0.24.1 mkdocs-jupyter==0.24.1
mkdocs-material==9.1.3 mkdocs-material==9.1.3
mkdocstrings[python]==0.20.0 mkdocstrings[python]==0.20.0
pydantic

View File

@@ -64,18 +64,26 @@ We'll cover the basics of using LanceDB on your local machine in this section.
tbl = db.create_table("table_from_df", data=df) tbl = db.create_table("table_from_df", data=df)
``` ```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Javascript" === "Javascript"
```javascript ```javascript
const tb = await db.createTable("my_table", const tb = await db.createTable(
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, "myTable",
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) [{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```
!!! warning
If the table already exists, LanceDB will raise an error by default. !!! warning
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function. If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `"overwrite"`
to the `createTable` function like this: `await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })`
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)." ??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
@@ -108,7 +116,7 @@ Once created, you can open a table using the following code:
=== "Javascript" === "Javascript"
```javascript ```javascript
const tbl = await db.openTable("my_table"); const tbl = await db.openTable("myTable");
``` ```
If you forget the name of your table, you can always get a listing of all table names: If you forget the name of your table, you can always get a listing of all table names:
@@ -194,10 +202,17 @@ Use the `drop_table()` method on the database to remove a table.
db.drop_table("my_table") db.drop_table("my_table")
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "JavaScript"
```javascript
await db.dropTable('myTable')
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## What's next ## What's next

View File

@@ -1,9 +1,9 @@
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs. There are various Embedding functions available out of the box with LanceDB. We're working on supporting other popular embedding APIs.
## Text Embedding Functions ## Text Embedding Functions
Here are the text embedding functions registered by default. Here are the text embedding functions registered by default.
Embedding functions have inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff. Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential standoff.
Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the deafult value of 7. Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
### Sentence Transformers ### Sentence Transformers
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values: Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values:
@@ -69,15 +69,15 @@ print(actual.text)
``` ```
### Instructor Embeddings ### Instructor Embeddings
Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) by simply providing the task instruction, without any finetuning Instructor is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
Represent the `domain` `text_type` for `task_objective`: Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. * `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. * `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. * `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding More information about the model can be found here - https://github.com/xlang-ai/instructor-embedding
@@ -119,10 +119,10 @@ tbl.add(texts)
``` ```
## Multi-modal embedding functions ## Multi-modal embedding functions
Multi-modal embedding functions allow you query your table using both images and text. Multi-modal embedding functions allow you to query your table using both images and text.
### OpenClipEmbeddings ### OpenClipEmbeddings
We support CLIP model embeddings using the open souce alternbative, open-clip which support various customizations. It is registered as `open-clip` and supports following customizations. We support CLIP model embeddings using the open source alternative, open-clip which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
@@ -205,4 +205,4 @@ print(actual.label)
``` ```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue. If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue.

View File

@@ -29,8 +29,9 @@ uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
table = db.create_table("my_table", table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}, data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy", "meta": "foo"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}]) {"vector": [5.9, 26.5], "text": "Sam was a loyal puppy", "meta": "bar"},
{"vector": [15.9, 6.5], "text": "There are several kittens playing"}])
``` ```
@@ -64,10 +65,23 @@ table.create_fts_index(["text1", "text2"])
Note that the search API call does not change - you can search over all indexed columns at once. Note that the search API call does not change - you can search over all indexed columns at once.
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Current limitations ## Current limitations
1. Currently we do not yet support incremental writes. 1. Currently we do not yet support incremental writes.
If you add data after fts index creation, it won't be reflected If you add data after fts index creation, it won't be reflected
in search results until you do a full reindex. in search results until you do a full reindex.
2. We currently only support local filesystem paths for the fts index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.
2. We currently only support local filesystem paths for the fts index.

View File

@@ -1,5 +1,7 @@
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/> <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
A Table is a collection of Records in a LanceDB Database. You can follow along on colab! A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time.
This guide will show how to create tables, insert data into them, and update the data. You can follow along on colab!
## Creating a LanceDB Table ## Creating a LanceDB Table
@@ -116,6 +118,84 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
table = db.create_table(table_name, schema=Content) table = db.create_table(table_name, schema=Content)
``` ```
#### Nested schemas
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
```python
class Document(BaseModel):
content: str
source: str
```
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
#### Validators
Note that neither pydantic nor pyarrow automatically validates that input data
is of the *correct* timezone, but this is easy to add as a custom field validator:
```python
from datetime import datetime
from zoneinfo import ZoneInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
tzname = "America/New_York"
tz = ZoneInfo(tzname)
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
@field_validator('dt_with_tz')
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
ok = TestModel(dt_with_tz=datetime.now(tz))
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
print("A ValidationError was raised.")
pass
```
When you run this code it should print "A ValidationError was raised."
#### Pydantic custom types
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
### Using Iterators / Writing Large Datasets ### Using Iterators / Writing Large Datasets
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()` It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
@@ -151,7 +231,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example. You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
## Creating Empty Table ## Creating Empty Table
You can also create empty tables in python. Initialize it with schema and later ingest data into it. You can create empty tables in python. Initialize it with schema and later ingest data into it.
```python ```python
import lancedb import lancedb
@@ -201,8 +281,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```javascript ```javascript
data data
const tb = await db.createTable("my_table", const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, [{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
``` ```
!!! info "Note" !!! info "Note"
@@ -361,19 +441,28 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
``` ```
### Updating a Table [Experimental] ## Updating a Table
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many rows match the where clause. This can be used to update zero to all rows depending on how many rows match the where clause. The update queries follow the form of a SQL UPDATE statement. The `where` parameter is a SQL filter that matches on the metadata columns. The `values` or `values_sql` parameters are used to provide the new values for the columns.
| Parameter | Type | Description | | Parameter | Type | Description |
|---|---|---| |---|---|---|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. | | `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. | | `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
| `values_sql` | `dict` | The values to update. The keys are the column names and the values are the SQL expressions to set. For example, `{'x': 'x + 1'}` will increment the value of the `x` column by 1. |
!!! info "SQL syntax"
See [SQL filters](sql.md) for more information on the supported SQL syntax.
!!! warning "Warning"
Updating nested columns is not yet supported.
=== "Python" === "Python"
API Reference: [lancedb.table.Table.update][]
```python ```python
import lancedb import lancedb
import pandas as pd import pandas as pd
@@ -403,6 +492,55 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0] 2 2 [10.0, 10.0]
``` ```
=== "Javascript/Typescript"
API Reference: [vectordb.Table.update](../../javascript/interfaces/Table/#update)
```javascript
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
```python
# Update the table where x = 2
table.update(valuesSql={"x": "x + 1"})
print(table.to_pandas())
```
Output
```shell
x vector
0 2 [1.0, 2.0]
1 4 [5.0, 6.0]
2 3 [10.0, 10.0]
```
=== "Javascript/Typescript"
```javascript
await tbl.update({ valuesSql: { x: "x + 1" } })
```
!!! info "Note"
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## What's Next? ## What's Next?
Learn how to Query your tables and create indices Learn how to Query your tables and create indices

View File

@@ -11,8 +11,13 @@ npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not support:
yet support Windows or musl-based Linux (such as Alpine Linux).
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage ## Usage

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / DefaultWriteOptions
# Class: DefaultWriteOptions
Write options when creating a Table.
## Implements
- [`WriteOptions`](../interfaces/WriteOptions.md)
## Table of contents
### Constructors
- [constructor](DefaultWriteOptions.md#constructor)
### Properties
- [writeMode](DefaultWriteOptions.md#writemode)
## Constructors
### constructor
**new DefaultWriteOptions**()
## Properties
### writeMode
**writeMode**: [`WriteMode`](../enums/WriteMode.md) = `WriteMode.Create`
A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Implementation of
[WriteOptions](../interfaces/WriteOptions.md).[writeMode](../interfaces/WriteOptions.md#writemode)
#### Defined in
[index.ts:778](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L778)

View File

@@ -26,7 +26,7 @@ A connection to a LanceDB database.
### Methods ### Methods
- [createTable](LocalConnection.md#createtable) - [createTable](LocalConnection.md#createtable)
- [createTableArrow](LocalConnection.md#createtablearrow) - [createTableImpl](LocalConnection.md#createtableimpl)
- [dropTable](LocalConnection.md#droptable) - [dropTable](LocalConnection.md#droptable)
- [openTable](LocalConnection.md#opentable) - [openTable](LocalConnection.md#opentable)
- [tableNames](LocalConnection.md#tablenames) - [tableNames](LocalConnection.md#tablenames)
@@ -46,7 +46,7 @@ A connection to a LanceDB database.
#### Defined in #### Defined in
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184) [index.ts:355](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L355)
## Properties ## Properties
@@ -56,17 +56,25 @@ A connection to a LanceDB database.
#### Defined in #### Defined in
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182) [index.ts:353](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L353)
___ ___
### \_options ### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md) `Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Type declaration
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
##### Returns
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in #### Defined in
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181) [index.ts:352](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L352)
## Accessors ## Accessors
@@ -84,27 +92,34 @@ ___
#### Defined in #### Defined in
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189) [index.ts:360](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L360)
## Methods ## Methods
### createTable ### createTable
**createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> **createTable**\<`T`\>(`name`, `data?`, `optsOrEmbedding?`, `opt?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Creates a new Table and initialize it with new data. Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type |
| :------ | :------ | :------ | | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table | | `data?` | `Record`\<`string`, `unknown`\>[] |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. | | `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -112,120 +127,44 @@ Creates a new Table and initialize it with new data.
#### Defined in #### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230) [index.ts:395](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L395)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
___ ___
### createTableArrow ### createTableImpl
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Private` **createTableImpl**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `name` | `string` | | `«destructured»` | `Object` |
| `table` | `Table`<`any`\> | |  `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
|  `embeddingFunction?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|  `name` | `string` |
|  `schema?` | `Schema`\<`any`\> |
|  `writeOptions?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
#### Defined in #### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266) [index.ts:413](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L413)
___ ___
### dropTable ### dropTable
**dropTable**(`name`): `Promise`<`void`\> **dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table. Drop an existing table.
@@ -237,7 +176,7 @@ Drop an existing table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Implementation of #### Implementation of
@@ -245,13 +184,13 @@ Drop an existing table.
#### Defined in #### Defined in
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276) [index.ts:453](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L453)
___ ___
### openTable ### openTable
**openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> **openTable**(`name`): `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
Open a table in the database. Open a table in the database.
@@ -263,7 +202,7 @@ Open a table in the database.
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
#### Implementation of #### Implementation of
@@ -271,9 +210,9 @@ Open a table in the database.
#### Defined in #### Defined in
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205) [index.ts:376](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L376)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Open a table in the database. Open a table in the database.
@@ -288,11 +227,11 @@ Open a table in the database.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table | | `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use on this Table |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -300,9 +239,9 @@ Connection.openTable
#### Defined in #### Defined in
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212) [index.ts:384](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L384)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters #### Type parameters
@@ -315,11 +254,11 @@ Connection.openTable
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `name` | `string` | | `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | | `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -327,19 +266,19 @@ Connection.openTable
#### Defined in #### Defined in
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213) [index.ts:385](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L385)
___ ___
### tableNames ### tableNames
**tableNames**(): `Promise`<`string`[]\> **tableNames**(): `Promise`\<`string`[]\>
Get the names of all tables in the database. Get the names of all tables in the database.
#### Returns #### Returns
`Promise`<`string`[]\> `Promise`\<`string`[]\>
#### Implementation of #### Implementation of
@@ -347,4 +286,4 @@ Get the names of all tables in the database.
#### Defined in #### Defined in
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196) [index.ts:367](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L367)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable [vectordb](../README.md) / [Exports](../modules.md) / LocalTable
# Class: LocalTable<T\> # Class: LocalTable\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields. A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
@@ -12,7 +12,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
## Implements ## Implements
- [`Table`](../interfaces/Table.md)<`T`\> - [`Table`](../interfaces/Table.md)\<`T`\>
## Table of contents ## Table of contents
@@ -26,6 +26,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [\_name](LocalTable.md#_name) - [\_name](LocalTable.md#_name)
- [\_options](LocalTable.md#_options) - [\_options](LocalTable.md#_options)
- [\_tbl](LocalTable.md#_tbl) - [\_tbl](LocalTable.md#_tbl)
- [where](LocalTable.md#where)
### Accessors ### Accessors
@@ -34,17 +35,23 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### Methods ### Methods
- [add](LocalTable.md#add) - [add](LocalTable.md#add)
- [cleanupOldVersions](LocalTable.md#cleanupoldversions)
- [compactFiles](LocalTable.md#compactfiles)
- [countRows](LocalTable.md#countrows) - [countRows](LocalTable.md#countrows)
- [createIndex](LocalTable.md#createindex) - [createIndex](LocalTable.md#createindex)
- [delete](LocalTable.md#delete) - [delete](LocalTable.md#delete)
- [filter](LocalTable.md#filter)
- [indexStats](LocalTable.md#indexstats)
- [listIndices](LocalTable.md#listindices)
- [overwrite](LocalTable.md#overwrite) - [overwrite](LocalTable.md#overwrite)
- [search](LocalTable.md#search) - [search](LocalTable.md#search)
- [update](LocalTable.md#update)
## Constructors ## Constructors
### constructor ### constructor
**new LocalTable**<`T`\>(`tbl`, `name`, `options`) **new LocalTable**\<`T`\>(`tbl`, `name`, `options`)
#### Type parameters #### Type parameters
@@ -62,9 +69,9 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in #### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287) [index.ts:464](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L464)
**new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`) **new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
#### Type parameters #### Type parameters
@@ -79,21 +86,21 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| `tbl` | `any` | | | `tbl` | `any` | |
| `name` | `string` | | | `name` | `string` | |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | | | `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table | | `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use when interacting with this table |
#### Defined in #### Defined in
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294) [index.ts:471](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L471)
## Properties ## Properties
### \_embeddings ### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284) [index.ts:461](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L461)
___ ___
@@ -103,27 +110,61 @@ ___
#### Defined in #### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283) [index.ts:460](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L460)
___ ___
### \_options ### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md) `Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Type declaration
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
##### Returns
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in #### Defined in
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285) [index.ts:462](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L462)
___ ___
### \_tbl ### \_tbl
`Private` `Readonly` **\_tbl**: `any` `Private` **\_tbl**: `any`
#### Defined in #### Defined in
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282) [index.ts:459](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L459)
___
### where
**where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
#### Type declaration
▸ (`value`): [`Query`](Query.md)\<`T`\>
Creates a filter query to find all rows matching the specified criteria
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
##### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:499](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L499)
## Accessors ## Accessors
@@ -141,13 +182,13 @@ ___
#### Defined in #### Defined in
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302) [index.ts:479](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L479)
## Methods ## Methods
### add ### add
**add**(`data`): `Promise`<`number`\> **add**(`data`): `Promise`\<`number`\>
Insert records into this Table. Insert records into this Table.
@@ -155,11 +196,11 @@ Insert records into this Table.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
@@ -169,19 +210,69 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320) [index.ts:507](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L507)
___
### cleanupOldVersions
**cleanupOldVersions**(`olderThan?`, `deleteUnverified?`): `Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
Clean up old versions of the table, freeing disk space.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `olderThan?` | `number` | The minimum age in minutes of the versions to delete. If not provided, defaults to two weeks. |
| `deleteUnverified?` | `boolean` | Because they may be part of an in-progress transaction, uncommitted files newer than 7 days old are not deleted by default. This means that failed transactions can leave around data that takes up disk space for up to 7 days. You can override this safety mechanism by setting this option to `true`, only if you promise there are no in progress writes while you run this operation. Failure to uphold this promise can lead to corrupted tables. |
#### Returns
`Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
#### Defined in
[index.ts:596](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L596)
___
### compactFiles
**compactFiles**(`options?`): `Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
Run the compaction process on the table.
This can be run after making several small appends to optimize the table
for faster reads.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | [`CompactionOptions`](../interfaces/CompactionOptions.md) | Advanced options configuring compaction. In most cases, you can omit this arguments, as the default options are sensible for most tables. |
#### Returns
`Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
Metrics about the compaction operation.
#### Defined in
[index.ts:615](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L615)
___ ___
### countRows ### countRows
**countRows**(): `Promise`<`number`\> **countRows**(): `Promise`\<`number`\>
Returns the number of rows in this table. Returns the number of rows in this table.
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
#### Implementation of #### Implementation of
@@ -189,20 +280,16 @@ Returns the number of rows in this table.
#### Defined in #### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362) [index.ts:543](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L543)
___ ___
### createIndex ### createIndex
**createIndex**(`indexParams`): `Promise`<`any`\> **createIndex**(`indexParams`): `Promise`\<`any`\>
Create an ANN index on this Table vector index. Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -211,7 +298,11 @@ VectorIndexParams.
#### Returns #### Returns
`Promise`<`any`\> `Promise`\<`any`\>
**`See`**
VectorIndexParams.
#### Implementation of #### Implementation of
@@ -219,13 +310,13 @@ VectorIndexParams.
#### Defined in #### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355) [index.ts:536](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L536)
___ ___
### delete ### delete
**delete**(`filter`): `Promise`<`void`\> **delete**(`filter`): `Promise`\<`void`\>
Delete rows from this table. Delete rows from this table.
@@ -237,7 +328,7 @@ Delete rows from this table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Implementation of #### Implementation of
@@ -245,13 +336,81 @@ Delete rows from this table.
#### Defined in #### Defined in
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371) [index.ts:552](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L552)
___
### filter
**filter**(`value`): [`Query`](Query.md)\<`T`\>
Creates a filter query to find all rows matching the specified criteria
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:495](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L495)
___
### indexStats
**indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
Get statistics about an index.
#### Parameters
| Name | Type |
| :------ | :------ |
| `indexUuid` | `string` |
#### Returns
`Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
#### Implementation of
[Table](../interfaces/Table.md).[indexStats](../interfaces/Table.md#indexstats)
#### Defined in
[index.ts:628](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L628)
___
### listIndices
**listIndices**(): `Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
List the indicies on this table.
#### Returns
`Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
#### Implementation of
[Table](../interfaces/Table.md).[listIndices](../interfaces/Table.md#listindices)
#### Defined in
[index.ts:624](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L624)
___ ___
### overwrite ### overwrite
**overwrite**(`data`): `Promise`<`number`\> **overwrite**(`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents. Insert records into this Table, replacing its contents.
@@ -259,11 +418,11 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
@@ -273,13 +432,13 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338) [index.ts:522](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L522)
___ ___
### search ### search
**search**(`query`): [`Query`](Query.md)<`T`\> **search**(`query`): [`Query`](Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term Creates a search query to find the nearest neighbors of the given search term
@@ -291,7 +450,7 @@ Creates a search query to find the nearest neighbors of the given search term
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Implementation of #### Implementation of
@@ -299,4 +458,30 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in #### Defined in
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310) [index.ts:487](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L487)
___
### update
**update**(`args`): `Promise`\<`void`\>
Update rows in this table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](../interfaces/UpdateArgs.md) \| [`UpdateSqlArgs`](../interfaces/UpdateSqlArgs.md) | see [UpdateArgs](../interfaces/UpdateArgs.md) and [UpdateSqlArgs](../interfaces/UpdateSqlArgs.md) for more details |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[update](../interfaces/Table.md#update)
#### Defined in
[index.ts:563](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L563)

View File

@@ -6,7 +6,7 @@ An embedding function that automatically creates vector representation for a giv
## Implements ## Implements
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\> - [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`string`\>
## Table of contents ## Table of contents
@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21) [embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L21)
## Properties ## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19) [embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L19)
___ ___
@@ -60,7 +60,7 @@ ___
#### Defined in #### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18) [embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L18)
___ ___
@@ -76,13 +76,13 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50) [embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L50)
## Methods ## Methods
### embed ### embed
**embed**(`data`): `Promise`<`number`[][]\> **embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values. Creates a vector representation for the given values.
@@ -94,7 +94,7 @@ Creates a vector representation for the given values.
#### Returns #### Returns
`Promise`<`number`[][]\> `Promise`\<`number`[][]\>
#### Implementation of #### Implementation of
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in #### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38) [embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/openai.ts#L38)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / Query [vectordb](../README.md) / [Exports](../modules.md) / Query
# Class: Query<T\> # Class: Query\<T\>
A builder for nearest neighbor queries for LanceDB. A builder for nearest neighbor queries for LanceDB.
@@ -23,6 +23,7 @@ A builder for nearest neighbor queries for LanceDB.
- [\_limit](Query.md#_limit) - [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype) - [\_metricType](Query.md#_metrictype)
- [\_nprobes](Query.md#_nprobes) - [\_nprobes](Query.md#_nprobes)
- [\_prefilter](Query.md#_prefilter)
- [\_query](Query.md#_query) - [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector) - [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor) - [\_refineFactor](Query.md#_refinefactor)
@@ -34,9 +35,11 @@ A builder for nearest neighbor queries for LanceDB.
- [execute](Query.md#execute) - [execute](Query.md#execute)
- [filter](Query.md#filter) - [filter](Query.md#filter)
- [isElectron](Query.md#iselectron)
- [limit](Query.md#limit) - [limit](Query.md#limit)
- [metricType](Query.md#metrictype) - [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes) - [nprobes](Query.md#nprobes)
- [prefilter](Query.md#prefilter)
- [refineFactor](Query.md#refinefactor) - [refineFactor](Query.md#refinefactor)
- [select](Query.md#select) - [select](Query.md#select)
@@ -44,7 +47,7 @@ A builder for nearest neighbor queries for LanceDB.
### constructor ### constructor
**new Query**<`T`\>(`tbl`, `query`, `embeddings?`) **new Query**\<`T`\>(`query?`, `tbl?`, `embeddings?`)
#### Type parameters #### Type parameters
@@ -56,23 +59,23 @@ A builder for nearest neighbor queries for LanceDB.
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `tbl` | `any` | | `query?` | `T` |
| `query` | `T` | | `tbl?` | `any` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | | `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Defined in #### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448) [query.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L38)
## Properties ## Properties
### \_embeddings ### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> `Protected` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446) [query.ts:36](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L36)
___ ___
@@ -82,17 +85,17 @@ ___
#### Defined in #### Defined in
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444) [query.ts:33](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L33)
___ ___
### \_limit ### \_limit
`Private` **\_limit**: `number` `Private` `Optional` **\_limit**: `number`
#### Defined in #### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440) [query.ts:29](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L29)
___ ___
@@ -102,7 +105,7 @@ ___
#### Defined in #### Defined in
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445) [query.ts:34](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L34)
___ ___
@@ -112,17 +115,27 @@ ___
#### Defined in #### Defined in
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442) [query.ts:31](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L31)
___
### \_prefilter
`Private` **\_prefilter**: `boolean`
#### Defined in
[query.ts:35](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L35)
___ ___
### \_query ### \_query
`Private` `Readonly` **\_query**: `T` `Private` `Optional` `Readonly` **\_query**: `T`
#### Defined in #### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438) [query.ts:26](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L26)
___ ___
@@ -132,7 +145,7 @@ ___
#### Defined in #### Defined in
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439) [query.ts:28](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L28)
___ ___
@@ -142,7 +155,7 @@ ___
#### Defined in #### Defined in
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441) [query.ts:30](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L30)
___ ___
@@ -152,27 +165,27 @@ ___
#### Defined in #### Defined in
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443) [query.ts:32](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L32)
___ ___
### \_tbl ### \_tbl
`Private` `Readonly` **\_tbl**: `any` `Private` `Optional` `Readonly` **\_tbl**: `any`
#### Defined in #### Defined in
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437) [query.ts:27](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L27)
___ ___
### where ### where
**where**: (`value`: `string`) => [`Query`](Query.md)<`T`\> **where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
#### Type declaration #### Type declaration
▸ (`value`): [`Query`](Query.md)<`T`\> ▸ (`value`): [`Query`](Query.md)\<`T`\>
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -184,17 +197,17 @@ A filter statement to be applied to this query.
##### Returns ##### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496) [query.ts:87](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L87)
## Methods ## Methods
### execute ### execute
**execute**<`T`\>(): `Promise`<`T`[]\> **execute**\<`T`\>(): `Promise`\<`T`[]\>
Execute the query and return the results as an Array of Objects Execute the query and return the results as an Array of Objects
@@ -202,21 +215,21 @@ Execute the query and return the results as an Array of Objects
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> | | `T` | `Record`\<`string`, `unknown`\> |
#### Returns #### Returns
`Promise`<`T`[]\> `Promise`\<`T`[]\>
#### Defined in #### Defined in
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519) [query.ts:115](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L115)
___ ___
### filter ### filter
**filter**(`value`): [`Query`](Query.md)<`T`\> **filter**(`value`): [`Query`](Query.md)\<`T`\>
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -228,17 +241,31 @@ A filter statement to be applied to this query.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491) [query.ts:82](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L82)
___
### isElectron
`Private` **isElectron**(): `boolean`
#### Returns
`boolean`
#### Defined in
[query.ts:142](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L142)
___ ___
### limit ### limit
**limit**(`value`): [`Query`](Query.md)<`T`\> **limit**(`value`): [`Query`](Query.md)\<`T`\>
Sets the number of results that will be returned Sets the number of results that will be returned
@@ -250,24 +277,20 @@ Sets the number of results that will be returned
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464) [query.ts:55](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L55)
___ ___
### metricType ### metricType
**metricType**(`value`): [`Query`](Query.md)<`T`\> **metricType**(`value`): [`Query`](Query.md)\<`T`\>
The MetricType used for this Query. The MetricType used for this Query.
**`See`**
MetricType for the different options
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -276,17 +299,21 @@ MetricType for the different options
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
**`See`**
MetricType for the different options
#### Defined in #### Defined in
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511) [query.ts:102](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L102)
___ ___
### nprobes ### nprobes
**nprobes**(`value`): [`Query`](Query.md)<`T`\> **nprobes**(`value`): [`Query`](Query.md)\<`T`\>
The number of probes used. A higher number makes search more accurate but also slower. The number of probes used. A higher number makes search more accurate but also slower.
@@ -298,17 +325,37 @@ The number of probes used. A higher number makes search more accurate but also s
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482) [query.ts:73](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L73)
___
### prefilter
**prefilter**(`value`): [`Query`](Query.md)\<`T`\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `boolean` |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[query.ts:107](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L107)
___ ___
### refineFactor ### refineFactor
**refineFactor**(`value`): [`Query`](Query.md)<`T`\> **refineFactor**(`value`): [`Query`](Query.md)\<`T`\>
Refine the results by reading extra elements and re-ranking them in memory. Refine the results by reading extra elements and re-ranking them in memory.
@@ -320,17 +367,17 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473) [query.ts:64](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L64)
___ ___
### select ### select
**select**(`value`): [`Query`](Query.md)<`T`\> **select**(`value`): [`Query`](Query.md)\<`T`\>
Return only the specified columns. Return only the specified columns.
@@ -342,8 +389,8 @@ Return only the specified columns.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502) [query.ts:93](https://github.com/lancedb/lancedb/blob/7856a94/node/src/query.ts#L93)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in #### Defined in
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567) [index.ts:798](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L798)
___ ___
@@ -34,7 +34,7 @@ Dot product
#### Defined in #### Defined in
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572) [index.ts:803](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L803)
___ ___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in #### Defined in
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562) [index.ts:793](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L793)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in #### Defined in
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552) [index.ts:766](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L766)
___ ___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in #### Defined in
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548) [index.ts:762](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L762)
___ ___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in #### Defined in
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550) [index.ts:764](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L764)

View File

@@ -18,7 +18,7 @@
#### Defined in #### Defined in
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31) [index.ts:34](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L34)
___ ___
@@ -28,7 +28,7 @@ ___
#### Defined in #### Defined in
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33) [index.ts:36](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L36)
___ ___
@@ -38,4 +38,4 @@ ___
#### Defined in #### Defined in
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35) [index.ts:38](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L38)

View File

@@ -0,0 +1,34 @@
[vectordb](../README.md) / [Exports](../modules.md) / CleanupStats
# Interface: CleanupStats
## Table of contents
### Properties
- [bytesRemoved](CleanupStats.md#bytesremoved)
- [oldVersions](CleanupStats.md#oldversions)
## Properties
### bytesRemoved
**bytesRemoved**: `number`
The number of bytes removed from disk.
#### Defined in
[index.ts:637](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L637)
___
### oldVersions
**oldVersions**: `number`
The number of old table versions removed.
#### Defined in
[index.ts:641](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L641)

View File

@@ -0,0 +1,62 @@
[vectordb](../README.md) / [Exports](../modules.md) / CompactionMetrics
# Interface: CompactionMetrics
## Table of contents
### Properties
- [filesAdded](CompactionMetrics.md#filesadded)
- [filesRemoved](CompactionMetrics.md#filesremoved)
- [fragmentsAdded](CompactionMetrics.md#fragmentsadded)
- [fragmentsRemoved](CompactionMetrics.md#fragmentsremoved)
## Properties
### filesAdded
**filesAdded**: `number`
The number of files added. This is typically equal to the number of
fragments added.
#### Defined in
[index.ts:692](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L692)
___
### filesRemoved
**filesRemoved**: `number`
The number of files that were removed. Each fragment may have more than one
file.
#### Defined in
[index.ts:687](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L687)
___
### fragmentsAdded
**fragmentsAdded**: `number`
The number of new fragments that were created.
#### Defined in
[index.ts:682](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L682)
___
### fragmentsRemoved
**fragmentsRemoved**: `number`
The number of fragments that were removed.
#### Defined in
[index.ts:678](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L678)

View File

@@ -0,0 +1,80 @@
[vectordb](../README.md) / [Exports](../modules.md) / CompactionOptions
# Interface: CompactionOptions
## Table of contents
### Properties
- [materializeDeletions](CompactionOptions.md#materializedeletions)
- [materializeDeletionsThreshold](CompactionOptions.md#materializedeletionsthreshold)
- [maxRowsPerGroup](CompactionOptions.md#maxrowspergroup)
- [numThreads](CompactionOptions.md#numthreads)
- [targetRowsPerFragment](CompactionOptions.md#targetrowsperfragment)
## Properties
### materializeDeletions
`Optional` **materializeDeletions**: `boolean`
If true, fragments that have rows that are deleted may be compacted to
remove the deleted rows. This can improve the performance of queries.
Default is true.
#### Defined in
[index.ts:660](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L660)
___
### materializeDeletionsThreshold
`Optional` **materializeDeletionsThreshold**: `number`
A number between 0 and 1, representing the proportion of rows that must be
marked deleted before a fragment is a candidate for compaction to remove
the deleted rows. Default is 10%.
#### Defined in
[index.ts:666](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L666)
___
### maxRowsPerGroup
`Optional` **maxRowsPerGroup**: `number`
The maximum number of rows per group. Defaults to 1024.
#### Defined in
[index.ts:654](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L654)
___
### numThreads
`Optional` **numThreads**: `number`
The number of threads to use for compaction. If not provided, defaults to
the number of cores on the machine.
#### Defined in
[index.ts:671](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L671)
___
### targetRowsPerFragment
`Optional` **targetRowsPerFragment**: `number`
The number of rows per fragment to target. Fragments that have fewer rows
will be compacted into adjacent fragments to produce larger fragments.
Defaults to 1024 * 1024.
#### Defined in
[index.ts:650](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L650)

View File

@@ -19,7 +19,6 @@ Connection could be local against filesystem or remote against a server.
### Methods ### Methods
- [createTable](Connection.md#createtable) - [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [dropTable](Connection.md#droptable) - [dropTable](Connection.md#droptable)
- [openTable](Connection.md#opentable) - [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames) - [tableNames](Connection.md#tablenames)
@@ -32,13 +31,76 @@ Connection could be local against filesystem or remote against a server.
#### Defined in #### Defined in
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70) [index.ts:125](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L125)
## Methods ## Methods
### createTable ### createTable
**createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\> **createTable**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `«destructured»` | [`CreateTableOptions`](CreateTableOptions.md)\<`T`\> |
#### Returns
`Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in
[index.ts:146](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L146)
**createTable**(`name`, `data`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
#### Returns
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
#### Defined in
[index.ts:154](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L154)
**createTable**(`name`, `data`, `options`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
#### Defined in
[index.ts:163](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L163)
**createTable**\<`T`\>(`name`, `data`, `embeddings`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Creates a new Table and initialize it with new data. Creates a new Table and initialize it with new data.
@@ -53,44 +115,49 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table | | `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. | | `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`T`\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90) [index.ts:172](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L172)
___ **createTable**\<`T`\>(`name`, `data`, `embeddings`, `options`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
### createTableArrow Creates a new Table and initialize it with new data.
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\> #### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | | Name | Type | Description |
| :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | | `name` | `string` | The name of the table. |
| `table` | `Table`<`any`\> | | `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92) [index.ts:181](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L181)
___ ___
### dropTable ### dropTable
**dropTable**(`name`): `Promise`<`void`\> **dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table. Drop an existing table.
@@ -102,17 +169,17 @@ Drop an existing table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Defined in #### Defined in
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98) [index.ts:187](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L187)
___ ___
### openTable ### openTable
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Open a table in the database. Open a table in the database.
@@ -127,26 +194,26 @@ Open a table in the database.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table | | `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`T`\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80) [index.ts:135](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L135)
___ ___
### tableNames ### tableNames
**tableNames**(): `Promise`<`string`[]\> **tableNames**(): `Promise`\<`string`[]\>
#### Returns #### Returns
`Promise`<`string`[]\> `Promise`\<`string`[]\>
#### Defined in #### Defined in
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72) [index.ts:127](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L127)

View File

@@ -6,18 +6,62 @@
### Properties ### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [awsCredentials](ConnectionOptions.md#awscredentials) - [awsCredentials](ConnectionOptions.md#awscredentials)
- [awsRegion](ConnectionOptions.md#awsregion)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [region](ConnectionOptions.md#region)
- [uri](ConnectionOptions.md#uri) - [uri](ConnectionOptions.md#uri)
## Properties ## Properties
### apiKey
`Optional` **apiKey**: `string`
#### Defined in
[index.ts:49](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L49)
___
### awsCredentials ### awsCredentials
`Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md) `Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
#### Defined in #### Defined in
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40) [index.ts:44](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L44)
___
### awsRegion
`Optional` **awsRegion**: `string`
#### Defined in
[index.ts:46](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L46)
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
[index.ts:54](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L54)
___
### region
`Optional` **region**: `string`
#### Defined in
[index.ts:51](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L51)
___ ___
@@ -27,4 +71,4 @@ ___
#### Defined in #### Defined in
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39) [index.ts:42](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L42)

View File

@@ -0,0 +1,69 @@
[vectordb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions\<T\>
## Type parameters
| Name |
| :------ |
| `T` |
## Table of contents
### Properties
- [data](CreateTableOptions.md#data)
- [embeddingFunction](CreateTableOptions.md#embeddingfunction)
- [name](CreateTableOptions.md#name)
- [schema](CreateTableOptions.md#schema)
- [writeOptions](CreateTableOptions.md#writeoptions)
## Properties
### data
`Optional` **data**: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]
#### Defined in
[index.ts:79](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L79)
___
### embeddingFunction
`Optional` **embeddingFunction**: [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\>
#### Defined in
[index.ts:85](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L85)
___
### name
**name**: `string`
#### Defined in
[index.ts:76](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L76)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[index.ts:82](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L82)
___
### writeOptions
`Optional` **writeOptions**: [`WriteOptions`](WriteOptions.md)
#### Defined in
[index.ts:88](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L88)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction [vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
# Interface: EmbeddingFunction<T\> # Interface: EmbeddingFunction\<T\>
An embedding function that automatically creates vector representation for a given column. An embedding function that automatically creates vector representation for a given column.
@@ -25,11 +25,11 @@ An embedding function that automatically creates vector representation for a giv
### embed ### embed
**embed**: (`data`: `T`[]) => `Promise`<`number`[][]\> **embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`[][]\> ▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values. Creates a vector representation for the given values.
@@ -41,11 +41,11 @@ Creates a vector representation for the given values.
##### Returns ##### Returns
`Promise`<`number`[][]\> `Promise`\<`number`[][]\>
#### Defined in #### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27) [embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/embedding_function.ts#L27)
___ ___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22) [embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7856a94/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,30 @@
[vectordb](../README.md) / [Exports](../modules.md) / IndexStats
# Interface: IndexStats
## Table of contents
### Properties
- [numIndexedRows](IndexStats.md#numindexedrows)
- [numUnindexedRows](IndexStats.md#numunindexedrows)
## Properties
### numIndexedRows
**numIndexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:344](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L344)
___
### numUnindexedRows
• **numUnindexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:345](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L345)

View File

@@ -7,6 +7,7 @@
### Properties ### Properties
- [column](IvfPQIndexConfig.md#column) - [column](IvfPQIndexConfig.md#column)
- [index\_cache\_size](IvfPQIndexConfig.md#index_cache_size)
- [index\_name](IvfPQIndexConfig.md#index_name) - [index\_name](IvfPQIndexConfig.md#index_name)
- [max\_iters](IvfPQIndexConfig.md#max_iters) - [max\_iters](IvfPQIndexConfig.md#max_iters)
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters) - [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
@@ -28,7 +29,19 @@ The column to be indexed
#### Defined in #### Defined in
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382) [index.ts:701](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L701)
___
### index\_cache\_size
`Optional` **index\_cache\_size**: `number`
Cache size of the index
#### Defined in
[index.ts:750](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L750)
___ ___
@@ -40,7 +53,7 @@ A unique name for the index
#### Defined in #### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387) [index.ts:706](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L706)
___ ___
@@ -52,7 +65,7 @@ The max number of iterations for kmeans training.
#### Defined in #### Defined in
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402) [index.ts:721](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L721)
___ ___
@@ -64,7 +77,7 @@ Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in #### Defined in
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421) [index.ts:740](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L740)
___ ___
@@ -76,7 +89,7 @@ Metric type, L2 or Cosine
#### Defined in #### Defined in
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392) [index.ts:711](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L711)
___ ___
@@ -88,7 +101,7 @@ The number of bits to present one PQ centroid.
#### Defined in #### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416) [index.ts:735](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L735)
___ ___
@@ -100,7 +113,7 @@ The number of partitions this index
#### Defined in #### Defined in
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397) [index.ts:716](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L716)
___ ___
@@ -112,7 +125,7 @@ Number of subvectors to build PQ code
#### Defined in #### Defined in
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412) [index.ts:731](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L731)
___ ___
@@ -124,7 +137,7 @@ Replace an existing index with the same name if it exists.
#### Defined in #### Defined in
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426) [index.ts:745](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L745)
___ ___
@@ -134,7 +147,7 @@ ___
#### Defined in #### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428) [index.ts:752](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L752)
___ ___
@@ -146,4 +159,4 @@ Train as optimized product quantization.
#### Defined in #### Defined in
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407) [index.ts:726](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L726)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table [vectordb](../README.md) / [Exports](../modules.md) / Table
# Interface: Table<T\> # Interface: Table\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields. A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
@@ -22,19 +22,22 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [countRows](Table.md#countrows) - [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex) - [createIndex](Table.md#createindex)
- [delete](Table.md#delete) - [delete](Table.md#delete)
- [indexStats](Table.md#indexstats)
- [listIndices](Table.md#listindices)
- [name](Table.md#name) - [name](Table.md#name)
- [overwrite](Table.md#overwrite) - [overwrite](Table.md#overwrite)
- [search](Table.md#search) - [search](Table.md#search)
- [update](Table.md#update)
## Properties ## Properties
### add ### add
**add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\> **add**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`\> ▸ (`data`): `Promise`\<`number`\>
Insert records into this Table. Insert records into this Table.
@@ -42,54 +45,50 @@ Insert records into this Table.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
#### Defined in #### Defined in
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120) [index.ts:209](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L209)
___ ___
### countRows ### countRows
**countRows**: () => `Promise`<`number`\> **countRows**: () => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (): `Promise`<`number`\> ▸ (): `Promise`\<`number`\>
Returns the number of rows in this table. Returns the number of rows in this table.
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
#### Defined in #### Defined in
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140) [index.ts:229](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L229)
___ ___
### createIndex ### createIndex
**createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\> **createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`\<`any`\>
#### Type declaration #### Type declaration
▸ (`indexParams`): `Promise`<`any`\> ▸ (`indexParams`): `Promise`\<`any`\>
Create an ANN index on this Table vector index. Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
##### Parameters ##### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -98,27 +97,41 @@ VectorIndexParams.
##### Returns ##### Returns
`Promise`<`any`\> `Promise`\<`any`\>
**`See`**
VectorIndexParams.
#### Defined in #### Defined in
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135) [index.ts:224](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L224)
___ ___
### delete ### delete
**delete**: (`filter`: `string`) => `Promise`<`void`\> **delete**: (`filter`: `string`) => `Promise`\<`void`\>
#### Type declaration #### Type declaration
▸ (`filter`): `Promise`<`void`\> ▸ (`filter`): `Promise`\<`void`\>
Delete rows from this table. Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing). sometimes no rows (if your predicate matches nothing).
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
##### Returns
`Promise`\<`void`\>
**`Examples`** **`Examples`**
```ts ```ts
@@ -142,19 +155,55 @@ await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
``` ```
#### Defined in
[index.ts:263](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L263)
___
### indexStats
**indexStats**: (`indexUuid`: `string`) => `Promise`\<[`IndexStats`](IndexStats.md)\>
#### Type declaration
▸ (`indexUuid`): `Promise`\<[`IndexStats`](IndexStats.md)\>
Get statistics about an index.
##### Parameters ##### Parameters
| Name | Type | Description | | Name | Type |
| :------ | :------ | :------ | | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. | | `indexUuid` | `string` |
##### Returns ##### Returns
`Promise`<`void`\> `Promise`\<[`IndexStats`](IndexStats.md)\>
#### Defined in #### Defined in
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174) [index.ts:306](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L306)
___
### listIndices
**listIndices**: () => `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
#### Type declaration
▸ (): `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
List the indicies on this table.
##### Returns
`Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
#### Defined in
[index.ts:301](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L301)
___ ___
@@ -164,17 +213,17 @@ ___
#### Defined in #### Defined in
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106) [index.ts:195](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L195)
___ ___
### overwrite ### overwrite
**overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\> **overwrite**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`\> ▸ (`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents. Insert records into this Table, replacing its contents.
@@ -182,27 +231,27 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
#### Defined in #### Defined in
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128) [index.ts:217](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L217)
___ ___
### search ### search
**search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\> **search**: (`query`: `T`) => [`Query`](../classes/Query.md)\<`T`\>
#### Type declaration #### Type declaration
▸ (`query`): [`Query`](../classes/Query.md)<`T`\> ▸ (`query`): [`Query`](../classes/Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term Creates a search query to find the nearest neighbors of the given search term
@@ -214,8 +263,59 @@ Creates a search query to find the nearest neighbors of the given search term
##### Returns ##### Returns
[`Query`](../classes/Query.md)<`T`\> [`Query`](../classes/Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112) [index.ts:201](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L201)
___
### update
**update**: (`args`: [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md)) => `Promise`\<`void`\>
#### Type declaration
▸ (`args`): `Promise`\<`void`\>
Update rows in this table.
This can be used to update a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md) | see [UpdateArgs](UpdateArgs.md) and [UpdateSqlArgs](UpdateSqlArgs.md) for more details |
##### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [3, 3], name: 'Ye'},
{id: 2, vector: [4, 4], name: 'Mike'},
];
const tbl = await con.createTable("my_table", data)
await tbl.update({
filter: "id = 2",
updates: { vector: [2, 2], name: "Michael" },
})
let results = await tbl.search([1, 1]).execute();
// Returns [
// {id: 2, vector: [2, 2], name: 'Michael'}
// {id: 1, vector: [3, 3], name: 'Ye'}
// ]
```
#### Defined in
[index.ts:296](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L296)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / UpdateArgs
# Interface: UpdateArgs
## Table of contents
### Properties
- [values](UpdateArgs.md#values)
- [where](UpdateArgs.md#where)
## Properties
### values
**values**: `Record`\<`string`, `Literal`\>
A key-value map of updates. The keys are the column names, and the values are the
new values to set
#### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L320)
___
### where
`Optional` **where**: `string`
A filter in the same format used by a sql WHERE clause. The filter may be empty,
in which case all rows will be updated.
#### Defined in
[index.ts:314](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L314)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / UpdateSqlArgs
# Interface: UpdateSqlArgs
## Table of contents
### Properties
- [valuesSql](UpdateSqlArgs.md#valuessql)
- [where](UpdateSqlArgs.md#where)
## Properties
### valuesSql
**valuesSql**: `Record`\<`string`, `string`\>
A key-value map of updates. The keys are the column names, and the values are the
new values to set as SQL expressions.
#### Defined in
[index.ts:334](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L334)
___
### where
`Optional` **where**: `string`
A filter in the same format used by a sql WHERE clause. The filter may be empty,
in which case all rows will be updated.
#### Defined in
[index.ts:328](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L328)

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / VectorIndex
# Interface: VectorIndex
## Table of contents
### Properties
- [columns](VectorIndex.md#columns)
- [name](VectorIndex.md#name)
- [uuid](VectorIndex.md#uuid)
## Properties
### columns
**columns**: `string`[]
#### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L338)
___
### name
**name**: `string`
#### Defined in
[index.ts:339](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L339)
___
### uuid
**uuid**: `string`
#### Defined in
[index.ts:340](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L340)

View File

@@ -0,0 +1,27 @@
[vectordb](../README.md) / [Exports](../modules.md) / WriteOptions
# Interface: WriteOptions
Write options when creating a Table.
## Implemented by
- [`DefaultWriteOptions`](../classes/DefaultWriteOptions.md)
## Table of contents
### Properties
- [writeMode](WriteOptions.md#writemode)
## Properties
### writeMode
`Optional` **writeMode**: [`WriteMode`](../enums/WriteMode.md)
A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Defined in
[index.ts:774](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L774)

View File

@@ -11,6 +11,7 @@
### Classes ### Classes
- [DefaultWriteOptions](classes/DefaultWriteOptions.md)
- [LocalConnection](classes/LocalConnection.md) - [LocalConnection](classes/LocalConnection.md)
- [LocalTable](classes/LocalTable.md) - [LocalTable](classes/LocalTable.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md) - [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
@@ -19,11 +20,20 @@
### Interfaces ### Interfaces
- [AwsCredentials](interfaces/AwsCredentials.md) - [AwsCredentials](interfaces/AwsCredentials.md)
- [CleanupStats](interfaces/CleanupStats.md)
- [CompactionMetrics](interfaces/CompactionMetrics.md)
- [CompactionOptions](interfaces/CompactionOptions.md)
- [Connection](interfaces/Connection.md) - [Connection](interfaces/Connection.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md) - [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md) - [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [IndexStats](interfaces/IndexStats.md)
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md) - [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
- [Table](interfaces/Table.md) - [Table](interfaces/Table.md)
- [UpdateArgs](interfaces/UpdateArgs.md)
- [UpdateSqlArgs](interfaces/UpdateSqlArgs.md)
- [VectorIndex](interfaces/VectorIndex.md)
- [WriteOptions](interfaces/WriteOptions.md)
### Type Aliases ### Type Aliases
@@ -32,6 +42,7 @@
### Functions ### Functions
- [connect](modules.md#connect) - [connect](modules.md#connect)
- [isWriteOptions](modules.md#iswriteoptions)
## Type Aliases ## Type Aliases
@@ -41,13 +52,13 @@
#### Defined in #### Defined in
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431) [index.ts:755](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L755)
## Functions ## Functions
### connect ### connect
**connect**(`uri`): `Promise`<[`Connection`](interfaces/Connection.md)\> **connect**(`uri`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
Connect to a LanceDB instance at the given URI Connect to a LanceDB instance at the given URI
@@ -59,24 +70,44 @@ Connect to a LanceDB instance at the given URI
#### Returns #### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\> `Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Defined in #### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47) [index.ts:95](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L95)
**connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\> **connect**(`opts`): `Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Parameters #### Parameters
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | | `opts` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
#### Returns #### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\> `Promise`\<[`Connection`](interfaces/Connection.md)\>
#### Defined in #### Defined in
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48) [index.ts:96](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L96)
___
### isWriteOptions
**isWriteOptions**(`value`): value is WriteOptions
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `any` |
#### Returns
value is WriteOptions
#### Defined in
[index.ts:781](https://github.com/lancedb/lancedb/blob/7856a94/node/src/index.ts#L781)

View File

@@ -0,0 +1,18 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.remote.db.RemoteDBConnection
## Table
::: lancedb.remote.table.RemoteTable

View File

@@ -118,4 +118,101 @@ However, fast vector search using indices often entails making a trade-off with
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN) This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
always returns 100% recall. always returns 100% recall.
See [ANN Index](ann_indexes.md) for more details. See [ANN Index](ann_indexes.md) for more details.
### Output formats
LanceDB returns results in many different formats commonly used in python.
Let's create a LanceDB table with a nested schema:
```python
from datetime import datetime
import lancedb
from lancedb.pydantic import LanceModel, Vector
import numpy as np
from pydantic import BaseModel
uri = "data/sample-lancedb-nested"
class Metadata(BaseModel):
source: str
timestamp: datetime
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(1536)
payload: Document
# Let's add 100 sample rows to our dataset
data = [LanceSchema(
id=f"id{i}",
vector=np.random.randn(1536),
payload=Document(
content=f"document{i}", meta=Metadata(source=f"source{i%10}", timestamp=datetime.now())
),
) for i in range(100)]
tbl = db.create_table("documents", data=data)
```
#### As a pyarrow table
Using `to_arrow()` we can get the results back as a pyarrow Table.
This result table has the same columns as the LanceDB table, with
the addition of an `_distance` column for vector search or a `score`
column for full text search.
```python
tbl.search(np.random.randn(1536)).to_arrow()
```
#### As a pandas dataframe
You can also get the results as a pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas()
```
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
python dict column, which makes it difficult to support nested references.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)
```
If your table has a deeply nested struct, you can control how many levels
of nesting to flatten by passing in a positive integer.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=1)
```
#### As a list of python dicts
You can of course return results as a list of python dicts.
```python
tbl.search(np.random.randn(1536)).to_list()
```
#### As a list of pydantic models
We can add data using pydantic models, and we can certainly
retrieve results as pydantic models
```python
tbl.search(np.random.randn(1536)).to_pydantic(LanceSchema)
```
Note that in this case the extra `_distance` field is discarded since
it's not part of the LanceSchema.

View File

@@ -1,7 +1,7 @@
# SQL filters # SQL filters
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
filters. It can be used during hybrid vector search and deletion operations. filters. It can be used during hybrid vector search, update, and deletion operations.
Currently, Lance supports a growing list of expressions. Currently, Lance supports a growing list of expressions.
@@ -22,7 +22,7 @@ import numpy as np
uri = "data/sample-lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"} data = [{"vector": row, "item": f"item {i}", "id": i}
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))] for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
tbl = db.create_table("my_vectors", data=data) tbl = db.create_table("my_vectors", data=data)
@@ -35,33 +35,25 @@ const db = await vectordb.connect('data/sample-lancedb')
let data = [] let data = []
for (let i = 0; i < 10_000; i++) { for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},) data.push({vector: Array(1536).fill(i), id: i, item: `item ${i}`, strId: `${i}`})
} }
const tbl = await db.createTable('my_vectors', data) const tbl = await db.createTable('myVectors', data)
``` ```
--> -->
=== "Python" === "Python"
```python ```python
tbl.search([100, 102]) \ tbl.search([100, 102]) \
.where("""( .where("(item IN ('item 0', 'item 2')) AND (id > 10)") \
(label IN [10, 20]) .to_arrow()
AND
(note.email IS NOT NULL)
) OR NOT note.created
""")
``` ```
=== "Javascript" === "Javascript"
```javascript ```javascript
tbl.search([100, 102]) await tbl.search(Array(1536).fill(0))
.where(`( .where("(item IN ('item 0', 'item 2')) AND (id > 10)")
(label IN [10, 20]) .execute()
AND
(note.email IS NOT NULL)
) OR NOT note.created
`)
``` ```
@@ -118,3 +110,22 @@ The mapping from SQL types to Arrow types is:
[^1]: See precision mapping in previous table. [^1]: See precision mapping in previous table.
## Filtering without Vector Search
You can also filter your data without search.
=== "Python"
```python
tbl.search().where("id=10").limit(10).to_arrow()
```
=== "JavaScript"
```javascript
await tbl.where('id=10').limit(10).execute()
```
!!! warning
If your table is large, this could potentially return a very large
amount of data. Please be sure to use a `limit` clause unless
you're sure you want to return the whole result set.

View File

@@ -9,8 +9,13 @@ npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not support:
yet support musl-based Linux (such as Alpine Linux).
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage ## Usage

80
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.3.9", "version": "0.4.1",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.3.9", "version": "0.4.1",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.9", "@lancedb/vectordb-darwin-arm64": "0.4.1",
"@lancedb/vectordb-darwin-x64": "0.3.9", "@lancedb/vectordb-darwin-x64": "0.4.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9", "@lancedb/vectordb-linux-arm64-gnu": "0.4.1",
"@lancedb/vectordb-linux-x64-gnu": "0.3.9", "@lancedb/vectordb-linux-x64-gnu": "0.4.1",
"@lancedb/vectordb-win32-x64-msvc": "0.3.9" "@lancedb/vectordb-win32-x64-msvc": "0.4.1"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -316,10 +316,22 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.1.tgz",
"integrity": "sha512-ul/Hvv5RX2RThpKSuiUjJRVrmXuBPvpU+HrLjcBmu4dzpuWN4+IeHIUM6xe79gLxOKlwkscVweTOuZnmMfsZeg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.3.9", "version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.1.tgz",
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==", "integrity": "sha512-sJtF2Cv6T9RhUpdeHNkryiJwPuW9QPQ3aMs5fID1hMCJA2U3BX27t/WlkiPT2+kTLeUcwF1JvAOgsfvZkfvI8w==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -329,9 +341,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.9", "version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.1.tgz",
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==", "integrity": "sha512-tNnziT0BRjPsznKI4GgWROFdCOsCGx0inFu0z+WV1UomwXKcMWGslpWBqKE8IUiCq14duPVx/ie7Wwcf51IeJQ==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -341,9 +353,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.9", "version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.1.tgz",
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==", "integrity": "sha512-PAcF2p1FUsC0AD+qkLfgE5+ZlQwlHe9eTP9dSsX43V/NGPDQ9+gBzaBTEDbvyHj1wl2Wft2NwOqB1HAFhilSDg==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -353,9 +365,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.9", "version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.1.tgz",
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==", "integrity": "sha512-8mvThCppI/AfSPby6Y3t6xpCfbo8IY6JH5exO8fDGTwBFHOqgwR4Izb2K7FgXxkwUYcN4EfGSsk/6B1GpwMudg==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -4856,28 +4868,34 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"@lancedb/vectordb-darwin-arm64": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.1.tgz",
"integrity": "sha512-ul/Hvv5RX2RThpKSuiUjJRVrmXuBPvpU+HrLjcBmu4dzpuWN4+IeHIUM6xe79gLxOKlwkscVweTOuZnmMfsZeg==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": { "@lancedb/vectordb-darwin-x64": {
"version": "0.3.9", "version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.1.tgz",
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==", "integrity": "sha512-sJtF2Cv6T9RhUpdeHNkryiJwPuW9QPQ3aMs5fID1hMCJA2U3BX27t/WlkiPT2+kTLeUcwF1JvAOgsfvZkfvI8w==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-arm64-gnu": { "@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.9", "version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.1.tgz",
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==", "integrity": "sha512-tNnziT0BRjPsznKI4GgWROFdCOsCGx0inFu0z+WV1UomwXKcMWGslpWBqKE8IUiCq14duPVx/ie7Wwcf51IeJQ==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-x64-gnu": { "@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.9", "version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.1.tgz",
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==", "integrity": "sha512-PAcF2p1FUsC0AD+qkLfgE5+ZlQwlHe9eTP9dSsX43V/NGPDQ9+gBzaBTEDbvyHj1wl2Wft2NwOqB1HAFhilSDg==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-win32-x64-msvc": { "@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.9", "version": "0.4.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.1.tgz",
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==", "integrity": "sha512-8mvThCppI/AfSPby6Y3t6xpCfbo8IY6JH5exO8fDGTwBFHOqgwR4Izb2K7FgXxkwUYcN4EfGSsk/6B1GpwMudg==",
"optional": true "optional": true
}, },
"@neon-rs/cli": { "@neon-rs/cli": {

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.3.9", "version": "0.4.1",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.9", "@lancedb/vectordb-darwin-arm64": "0.4.1",
"@lancedb/vectordb-darwin-x64": "0.3.9", "@lancedb/vectordb-darwin-x64": "0.4.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9", "@lancedb/vectordb-linux-arm64-gnu": "0.4.1",
"@lancedb/vectordb-linux-x64-gnu": "0.3.9", "@lancedb/vectordb-linux-x64-gnu": "0.4.1",
"@lancedb/vectordb-win32-x64-msvc": "0.3.9" "@lancedb/vectordb-win32-x64-msvc": "0.4.1"
} }
} }

View File

@@ -21,9 +21,10 @@ import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote' import { RemoteConnection } from './remote'
import { Query } from './query' import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function' import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateScalarIndex, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
export { Query } export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
@@ -222,6 +223,56 @@ export interface Table<T = number[]> {
*/ */
createIndex: (indexParams: VectorIndexParams) => Promise<any> createIndex: (indexParams: VectorIndexParams) => Promise<any>
/**
* Create a scalar index on this Table for the given column
*
* @param column The column to index
* @param replace If false, fail if an index already exists on the column
*
* Scalar indices, like vector indices, can be used to speed up scans. A scalar
* index can speed up scans that contain filter expressions on the indexed column.
* For example, the following scan will be faster if the column `my_col` has
* a scalar index:
*
* ```ts
* const con = await lancedb.connect('./.lancedb');
* const table = await con.openTable('images');
* const results = await table.where('my_col = 7').execute();
* ```
*
* Scalar indices can also speed up scans containing a vector search and a
* prefilter:
*
* ```ts
* const con = await lancedb.connect('././lancedb');
* const table = await con.openTable('images');
* const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true);
* ```
*
* Scalar indices can only speed up scans for basic filters using
* equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set
* membership (e.g. `my_col IN (0, 1, 2)`)
*
* Scalar indices can be used if the filter contains multiple indexed columns and
* the filter criteria are AND'd or OR'd together
* (e.g. `my_col < 0 AND other_col> 100`)
*
* Scalar indices may be used if the filter contains non-indexed columns but,
* depending on the structure of the filter, they may not be usable. For example,
* if the column `not_indexed` does not have a scalar index then the filter
* `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on
* `my_col`.
*
* @examples
*
* ```ts
* const con = await lancedb.connect('././lancedb')
* const table = await con.openTable('images')
* await table.createScalarIndex('my_col')
* ```
*/
createScalarIndex: (column: string, replace: boolean) => Promise<void>
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
*/ */
@@ -261,6 +312,39 @@ export interface Table<T = number[]> {
*/ */
delete: (filter: string) => Promise<void> delete: (filter: string) => Promise<void>
/**
* Update rows in this table.
*
* This can be used to update a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [3, 3], name: 'Ye'},
* {id: 2, vector: [4, 4], name: 'Mike'},
* ];
* const tbl = await con.createTable("my_table", data)
*
* await tbl.update({
* where: "id = 2",
* values: { vector: [2, 2], name: "Michael" },
* })
*
* let results = await tbl.search([1, 1]).execute();
* // Returns [
* // {id: 2, vector: [2, 2], name: 'Michael'}
* // {id: 1, vector: [3, 3], name: 'Ye'}
* // ]
* ```
*
*/
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/** /**
* List the indicies on this table. * List the indicies on this table.
*/ */
@@ -272,6 +356,34 @@ export interface Table<T = number[]> {
indexStats: (indexUuid: string) => Promise<IndexStats> indexStats: (indexUuid: string) => Promise<IndexStats>
} }
export interface UpdateArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set
*/
values: Record<string, Literal>
}
export interface UpdateSqlArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set as SQL expressions.
*/
valuesSql: Record<string, string>
}
export interface VectorIndex { export interface VectorIndex {
columns: string[] columns: string[]
name: string name: string
@@ -426,6 +538,16 @@ export class LocalTable<T = number[]> implements Table<T> {
return new Query(query, this._tbl, this._embeddings) return new Query(query, this._tbl, this._embeddings)
} }
/**
* Creates a filter query to find all rows matching the specified criteria
* @param value The filter criteria (like SQL where clause syntax)
*/
filter (value: string): Query<T> {
return new Query(undefined, this._tbl, this._embeddings).filter(value)
}
where = this.filter
/** /**
* Insert records into this Table. * Insert records into this Table.
* *
@@ -465,6 +587,10 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable }) return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
} }
async createScalarIndex (column: string, replace: boolean): Promise<void> {
return tableCreateScalarIndex.call(this._tbl, column, replace)
}
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
*/ */
@@ -481,6 +607,31 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable }) return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
} }
/**
* Update rows in this table.
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @returns
*/
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
return tableUpdate.call(this._tbl, filter, updates).then((newTable: any) => { this._tbl = newTable })
}
/** /**
* Clean up old versions of the table, freeing disk space. * Clean up old versions of the table, freeing disk space.
* *
@@ -647,6 +798,11 @@ export interface IvfPQIndexConfig {
*/ */
replace?: boolean replace?: boolean
/**
* Cache size of the index
*/
index_cache_size?: number
type: 'ivf_pq' type: 'ivf_pq'
} }

View File

@@ -23,10 +23,10 @@ const { tableSearch } = require('../native.js')
* A builder for nearest neighbor queries for LanceDB. * A builder for nearest neighbor queries for LanceDB.
*/ */
export class Query<T = number[]> { export class Query<T = number[]> {
private readonly _query: T private readonly _query?: T
private readonly _tbl?: any private readonly _tbl?: any
private _queryVector?: number[] private _queryVector?: number[]
private _limit: number private _limit?: number
private _refineFactor?: number private _refineFactor?: number
private _nprobes: number private _nprobes: number
private _select?: string[] private _select?: string[]
@@ -35,10 +35,10 @@ export class Query<T = number[]> {
private _prefilter: boolean private _prefilter: boolean
protected readonly _embeddings?: EmbeddingFunction<T> protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) { constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl this._tbl = tbl
this._query = query this._query = query
this._limit = 10 this._limit = undefined
this._nprobes = 20 this._nprobes = 20
this._refineFactor = undefined this._refineFactor = undefined
this._select = undefined this._select = undefined
@@ -113,10 +113,12 @@ export class Query<T = number[]> {
* Execute the query and return the results as an Array of Objects * Execute the query and return the results as an Array of Objects
*/ */
async execute<T = Record<string, unknown>> (): Promise<T[]> { async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) { if (this._query !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0] if (this._embeddings !== undefined) {
} else { this._queryVector = (await this._embeddings.embed([this._query]))[0]
this._queryVector = this._query as number[] } else {
this._queryVector = this._query as number[]
}
} }
const isElectron = this.isElectron() const isElectron = this.isElectron()

View File

@@ -16,7 +16,8 @@ import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection, type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type VectorIndex, type ConnectionOptions, type CreateTableOptions, type VectorIndex,
type WriteOptions, type WriteOptions,
type IndexStats type IndexStats,
type UpdateArgs, type UpdateSqlArgs
} from '../index' } from '../index'
import { Query } from '../query' import { Query } from '../query'
@@ -24,6 +25,7 @@ import { Vector, Table as ArrowTable } from 'apache-arrow'
import { HttpLancedbClient } from './client' import { HttpLancedbClient } from './client'
import { isEmbeddingFunction } from '../embedding/embedding_function' import { isEmbeddingFunction } from '../embedding/embedding_function'
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow' import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
import { toSQL } from '../util'
/** /**
* Remote connection. * Remote connection.
@@ -55,8 +57,8 @@ export class RemoteConnection implements Connection {
return 'db://' + this._client.uri return 'db://' + this._client.uri
} }
async tableNames (): Promise<string[]> { async tableNames (pageToken: string = '', limit: number = 10): Promise<string[]> {
const response = await this._client.get('/v1/table/') const response = await this._client.get('/v1/table/', { limit, page_token: pageToken })
return response.data.tables return response.data.tables
} }
@@ -193,6 +195,17 @@ export class RemoteTable<T = number[]> implements Table<T> {
return this._name return this._name
} }
get schema (): Promise<any> {
return this._client.post(`/v1/table/${this._name}/describe/`).then(res => {
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return res.data?.schema
})
}
search (query: T): Query<T> { search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new) return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
} }
@@ -233,7 +246,44 @@ export class RemoteTable<T = number[]> implements Table<T> {
return data.length return data.length
} }
async createIndex (indexParams: VectorIndexParams): Promise<any> { async createIndex (indexParams: VectorIndexParams): Promise<void> {
const unsupportedParams = [
'index_name',
'num_partitions',
'max_iters',
'use_opq',
'num_sub_vectors',
'num_bits',
'max_opq_iters',
'replace'
]
for (const param of unsupportedParams) {
// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
if (indexParams[param as keyof VectorIndexParams]) {
throw new Error(`${param} is not supported for remote connections`)
}
}
const column = indexParams.column ?? 'vector'
const indexType = 'vector' // only vector index is supported for remote connections
const metricType = indexParams.metric_type ?? 'L2'
const indexCacheSize = indexParams.index_cache_size ?? null
const data = {
column,
index_type: indexType,
metric_type: metricType,
index_cache_size: indexCacheSize
}
const res = await this._client.post(`/v1/table/${this._name}/create_index/`, data)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
}
async createScalarIndex (column: string, replace: boolean): Promise<void> {
throw new Error('Not implemented') throw new Error('Not implemented')
} }
@@ -246,6 +296,26 @@ export class RemoteTable<T = number[]> implements Table<T> {
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter }) await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
} }
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
await this._client.post(`/v1/table/${this._name}/update/`, {
predicate: filter,
updates: Object.entries(updates).map(([key, value]) => [key, value])
})
}
async listIndices (): Promise<VectorIndex[]> { async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(`/v1/table/${this._name}/index/list/`) const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
return results.data.indexes?.map((index: any) => ({ return results.data.indexes?.map((index: any) => ({

View File

@@ -78,12 +78,31 @@ describe('LanceDB client', function () {
}) })
it('limits # of results', async function () { it('limits # of results', async function () {
const uri = await createTestDB() const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).limit(1).execute() let results = await table.search([0.1, 0.3]).limit(1).execute()
assert.equal(results.length, 1) assert.equal(results.length, 1)
assert.equal(results[0].id, 1) assert.equal(results[0].id, 1)
// there is a default limit if unspecified
results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 10)
})
it('uses a filter / where clause without vector search', async function () {
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
const assertResults = (results: Array<Record<string, unknown>>) => {
assert.equal(results.length, 50)
}
const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri)
const table = (await con.openTable('vectors')) as LocalTable
let results = await table.filter('id % 2 = 0').execute()
assertResults(results)
results = await table.where('id % 2 = 0').execute()
assertResults(results)
}) })
it('uses a filter / where clause', async function () { it('uses a filter / where clause', async function () {
@@ -116,6 +135,17 @@ describe('LanceDB client', function () {
assert.isTrue(results.length === 10) assert.isTrue(results.length === 10)
}) })
it('should allow creation and use of scalar indices', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createScalarIndex('id', true)
// Prefiltering should still work the same
const results = await table.search(new Array(16).fill(0.1)).limit(10).filter('id >= 10').prefilter(true).execute()
assert.isTrue(results.length === 10)
})
it('select only a subset of columns', async function () { it('select only a subset of columns', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
@@ -260,6 +290,46 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2) assert.equal(await table.countRows(), 2)
}) })
it('can update records in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update the records using a literal value', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', values: { price: 100 } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update every record in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 100)
})
it('can delete records from a table', async function () { it('can delete records from a table', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
@@ -542,7 +612,7 @@ describe('Compact and cleanup', function () {
// should have no effect, but this validates the arguments are parsed. // should have no effect, but this validates the arguments are parsed.
await table.compactFiles({ await table.compactFiles({
targetRowsPerFragment: 1024 * 10, targetRowsPerFragment: 102410,
maxRowsPerGroup: 1024, maxRowsPerGroup: 1024,
materializeDeletions: true, materializeDeletions: true,
materializeDeletionsThreshold: 0.5, materializeDeletionsThreshold: 0.5,

45
node/src/test/util.ts Normal file
View File

@@ -0,0 +1,45 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { toSQL } from '../util'
import * as chai from 'chai'
const expect = chai.expect
describe('toSQL', function () {
it('should turn string to SQL expression', function () {
expect(toSQL('foo')).to.equal("'foo'")
})
it('should turn number to SQL expression', function () {
expect(toSQL(123)).to.equal('123')
})
it('should turn boolean to SQL expression', function () {
expect(toSQL(true)).to.equal('TRUE')
})
it('should turn null to SQL expression', function () {
expect(toSQL(null)).to.equal('NULL')
})
it('should turn Date to SQL expression', function () {
const date = new Date('05 October 2011 14:48 UTC')
expect(toSQL(date)).to.equal("'2011-10-05T14:48:00.000Z'")
})
it('should turn array to SQL expression', function () {
expect(toSQL(['foo', 'bar', true, 1])).to.equal("['foo', 'bar', TRUE, 1]")
})
})

44
node/src/util.ts Normal file
View File

@@ -0,0 +1,44 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
export type Literal = string | number | boolean | null | Date | Literal[]
export function toSQL (value: Literal): string {
if (typeof value === 'string') {
return `'${value}'`
}
if (typeof value === 'number') {
return value.toString()
}
if (typeof value === 'boolean') {
return value ? 'TRUE' : 'FALSE'
}
if (value === null) {
return 'NULL'
}
if (value instanceof Date) {
return `'${value.toISOString()}'`
}
if (Array.isArray(value)) {
return `[${value.map(toSQL).join(', ')}]`
}
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw new Error(`Unsupported value type: ${typeof value} value: (${value})`)
}

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.3.4 current_version = 0.4.2
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -27,7 +27,7 @@ def connect(
uri: URI, uri: URI,
*, *,
api_key: Optional[str] = None, api_key: Optional[str] = None,
region: str = "us-west-2", region: str = "us-east-1",
host_override: Optional[str] = None, host_override: Optional[str] = None,
) -> DBConnection: ) -> DBConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -39,7 +39,7 @@ def connect(
api_key: str, optional api_key: str, optional
If presented, connect to LanceDB cloud. If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage. Otherwise, connect to a database on file system or cloud storage.
region: str, default "us-west-2" region: str, default "us-east-1"
The region to use for LanceDB Cloud. The region to use for LanceDB Cloud.
host_override: str, optional host_override: str, optional
The override url for LanceDB Cloud. The override url for LanceDB Cloud.

View File

@@ -23,7 +23,7 @@ from overrides import EnforceOverrides, override
from pyarrow import fs from pyarrow import fs
from .table import LanceTable, Table from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING: if TYPE_CHECKING:
from .common import DATA, URI from .common import DATA, URI
@@ -288,14 +288,13 @@ class LanceDBConnection(DBConnection):
A list of table names. A list of table names.
""" """
try: try:
filesystem, path = fs_from_uri(self.uri) filesystem = fs_from_uri(self.uri)[0]
except pa.ArrowInvalid: except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri) raise NotImplementedError("Unsupported scheme: " + self.uri)
try: try:
paths = filesystem.get_file_info( loc = get_uri_location(self.uri)
fs.FileSelector(get_uri_location(self.uri)) paths = filesystem.get_file_info(fs.FileSelector(loc))
)
except FileNotFoundError: except FileNotFoundError:
# It is ok if the file does not exist since it will be created # It is ok if the file does not exist since it will be created
paths = [] paths = []
@@ -373,7 +372,7 @@ class LanceDBConnection(DBConnection):
""" """
try: try:
filesystem, path = fs_from_uri(self.uri) filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance") table_path = join_uri(path, name + ".lance")
filesystem.delete_dir(table_path) filesystem.delete_dir(table_path)
except FileNotFoundError: except FileNotFoundError:
if not ignore_missing: if not ignore_missing:

View File

@@ -10,6 +10,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from functools import cached_property
from typing import List, Union from typing import List, Union
import numpy as np import numpy as np
@@ -44,6 +45,10 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
The texts to embed The texts to embed
""" """
# TODO retry, rate limit, token limit # TODO retry, rate limit, token limit
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
return [v.embedding for v in rs.data]
@cached_property
def _openai_client(self):
openai = self.safe_import("openai") openai = self.safe_import("openai")
rs = openai.Embedding.create(input=texts, model=self.name)["data"] return openai.OpenAI()
return [v["embedding"] for v in rs]

View File

@@ -249,7 +249,7 @@ def retry_with_exponential_backoff(
if num_retries > max_retries: if num_retries > max_retries:
raise Exception( raise Exception(
f"Maximum number of retries ({max_retries}) exceeded." f"Maximum number of retries ({max_retries}) exceeded.", e
) )
delay *= exponential_base * (1 + jitter * random.random()) delay *= exponential_base * (1 + jitter * random.random())

View File

@@ -75,8 +75,14 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
The number of rows indexed The number of rows indexed
""" """
# first check the fields exist and are string or large string type # first check the fields exist and are string or large string type
nested = []
for name in fields: for name in fields:
f = table.schema.field(name) # raises KeyError if not found try:
f = table.schema.field(name) # raises KeyError if not found
except KeyError:
f = resolve_path(table.schema, name)
nested.append(name)
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type): if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
raise TypeError(f"Field {name} is not a string type") raise TypeError(f"Field {name} is not a string type")
@@ -85,7 +91,16 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
# write data into index # write data into index
dataset = table.to_lance() dataset = table.to_lance()
row_id = 0 row_id = 0
max_nested_level = 0
if len(nested) > 0:
max_nested_level = max([len(name.split(".")) for name in nested])
for b in dataset.to_batches(columns=fields): for b in dataset.to_batches(columns=fields):
if max_nested_level > 0:
b = pa.Table.from_batches([b])
for _ in range(max_nested_level - 1):
b = b.flatten()
for i in range(b.num_rows): for i in range(b.num_rows):
doc = tantivy.Document() doc = tantivy.Document()
doc.add_integer("doc_id", row_id) doc.add_integer("doc_id", row_id)
@@ -98,6 +113,30 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
return row_id return row_id
def resolve_path(schema, field_name: str) -> pa.Field:
"""
Resolve a nested field path to a list of field names
Parameters
----------
field_name : str
The field name to resolve
Returns
-------
List[str]
The resolved path
"""
path = field_name.split(".")
field = schema.field(path.pop(0))
for segment in path:
if pa.types.is_struct(field.type):
field = field.type.field(segment)
else:
raise KeyError(f"field {field_name} not found in schema {schema}")
return field
def search_index( def search_index(
index: tantivy.Index, query: str, limit: int = 10 index: tantivy.Index, query: str, limit: int = 10
) -> Tuple[Tuple[int], Tuple[float]]: ) -> Tuple[Tuple[int], Tuple[float]]:

View File

@@ -26,6 +26,7 @@ import numpy as np
import pyarrow as pa import pyarrow as pa
import pydantic import pydantic
import semver import semver
from pydantic.fields import FieldInfo
from .embeddings import EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionRegistry
@@ -142,8 +143,8 @@ def Vector(
return FixedSizeList return FixedSizeList
def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType: def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType:
"""Convert Python Type to Arrow DataType. """Convert a field with native Python type to Arrow data type.
Raises Raises
------ ------
@@ -163,9 +164,13 @@ def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
elif py_type == date: elif py_type == date:
return pa.date32() return pa.date32()
elif py_type == datetime: elif py_type == datetime:
return pa.timestamp("us") tz = get_extras(field, "tz")
return pa.timestamp("us", tz=tz)
elif getattr(py_type, "__origin__", None) in (list, tuple):
child = py_type.__args__[0]
return pa.list_(_py_type_to_arrow_type(child, field))
raise TypeError( raise TypeError(
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}" f"Converting Pydantic type to Arrow Type: unsupported type {py_type}."
) )
@@ -194,10 +199,10 @@ def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
args = field.annotation.__args__ args = field.annotation.__args__
if origin == list: if origin == list:
child = args[0] child = args[0]
return pa.list_(_py_type_to_arrow_type(child)) return pa.list_(_py_type_to_arrow_type(child, field))
elif origin == Union: elif origin == Union:
if len(args) == 2 and args[1] == type(None): if len(args) == 2 and args[1] == type(None):
return _py_type_to_arrow_type(args[0]) return _py_type_to_arrow_type(args[0], field)
elif inspect.isclass(field.annotation): elif inspect.isclass(field.annotation):
if issubclass(field.annotation, pydantic.BaseModel): if issubclass(field.annotation, pydantic.BaseModel):
# Struct # Struct
@@ -205,7 +210,7 @@ def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
return pa.struct(fields) return pa.struct(fields)
elif issubclass(field.annotation, FixedSizeListMixin): elif issubclass(field.annotation, FixedSizeListMixin):
return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim()) return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim())
return _py_type_to_arrow_type(field.annotation) return _py_type_to_arrow_type(field.annotation, field)
def is_nullable(field: pydantic.fields.FieldInfo) -> bool: def is_nullable(field: pydantic.fields.FieldInfo) -> bool:
@@ -348,3 +353,20 @@ def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
if PYDANTIC_VERSION.major >= 2: if PYDANTIC_VERSION.major >= 2:
return (field_info.json_schema_extra or {}).get(key) return (field_info.json_schema_extra or {}).get(key)
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key) return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
if PYDANTIC_VERSION.major < 2:
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
"""
Convert a Pydantic model to a dictionary.
"""
return model.dict()
else:
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
"""
Convert a Pydantic model to a dictionary.
"""
return model.model_dump()

View File

@@ -185,14 +185,40 @@ class LanceQueryBuilder(ABC):
""" """
return self.to_pandas() return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame": def to_pandas(self, flatten: Optional[Union[int, bool]] = None) -> "pd.DataFrame":
""" """
Execute the query and return the results as a pandas DataFrame. Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
Parameters
----------
flatten: Optional[Union[int, bool]]
If flatten is True, flatten all nested columns.
If flatten is an integer, flatten the nested columns up to the
specified depth.
If unspecified, do not flatten the nested columns.
""" """
return self.to_arrow().to_pandas() tbl = self.to_arrow()
if flatten is True:
while True:
tbl = tbl.flatten()
has_struct = False
# loop through all columns to check if there is any struct column
if any(pa.types.is_struct(col.type) for col in tbl.schema):
continue
else:
break
elif isinstance(flatten, int):
if flatten <= 0:
raise ValueError(
"Please specify a positive integer for flatten or the boolean value `True`"
)
while flatten > 0:
tbl = tbl.flatten()
flatten -= 1
return tbl.to_pandas()
@abstractmethod @abstractmethod
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pa.Table:
@@ -462,6 +488,27 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
scores = pa.array(scores) scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns) output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores) output_tbl = output_tbl.append_column("score", scores)
if self._where is not None:
try:
# TODO would be great to have Substrait generate pyarrow compute expressions
# or conversely have pyarrow support SQL expressions using Substrait
import duckdb
output_tbl = (
duckdb.sql(f"SELECT * FROM output_tbl")
.filter(self._where)
.to_arrow_table()
)
except ImportError:
import lance
import tempfile
# TODO Use "memory://" instead once that's supported
with tempfile.TemporaryDirectory() as tmp:
ds = lance.write_dataset(output_tbl, tmp)
output_tbl = ds.to_table(filter=self._where)
return output_tbl return output_tbl

View File

@@ -18,6 +18,8 @@ import attrs
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel from pydantic import BaseModel
from lancedb.common import VECTOR_COLUMN_NAME
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"] __all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
@@ -43,6 +45,8 @@ class VectorQuery(BaseModel):
refine_factor: Optional[int] = None refine_factor: Optional[int] = None
vector_column: str = VECTOR_COLUMN_NAME
@attrs.define @attrs.define
class VectorQueryResult: class VectorQueryResult:

View File

@@ -56,16 +56,20 @@ class RemoteDBConnection(DBConnection):
self._loop = asyncio.get_event_loop() self._loop = asyncio.get_event_loop()
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoveConnect(name={self.db_name})" return f"RemoteConnect(name={self.db_name})"
@override @override
def table_names(self, page_token: Optional[str] = None, limit=10) -> Iterable[str]: def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List the names of all tables in the database. """List the names of all tables in the database.
Parameters Parameters
---------- ----------
page_token: str page_token: str
The last token to start the new page. The last token to start the new page.
limit: int, default 10
The maximum number of tables to return for each page.
Returns Returns
------- -------
@@ -120,6 +124,97 @@ class RemoteDBConnection(DBConnection):
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None, embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table: ) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
Parameters
----------
name: str
The name of the table.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
LanceTable
A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data) # doctest: +SKIP
LanceTable(my_table)
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data) # doctest: +SKIP
LanceTable(table2)
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema) # doctest: +SKIP
LanceTable(table3)
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema) # doctest: +SKIP
LanceTable(table4)
"""
if data is None and schema is None: if data is None and schema is None:
raise ValueError("Either data or schema must be provided.") raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None: if embedding_functions is not None:

View File

@@ -13,7 +13,7 @@
import uuid import uuid
from functools import cached_property from functools import cached_property
from typing import Optional, Union from typing import Dict, Optional, Union
import pyarrow as pa import pyarrow as pa
from lance import json_to_schema from lance import json_to_schema
@@ -22,6 +22,7 @@ from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceVectorQueryBuilder from ..query import LanceVectorQueryBuilder
from ..table import Query, Table, _sanitize_data from ..table import Query, Table, _sanitize_data
from ..util import value_to_sql
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection from .db import RemoteDBConnection
@@ -37,7 +38,10 @@ class RemoteTable(Table):
@cached_property @cached_property
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""Return the schema of the table.""" """The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
of this Table
"""
resp = self._conn._loop.run_until_complete( resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/") self._conn._client.post(f"/v1/table/{self._name}/describe/")
) )
@@ -53,24 +57,23 @@ class RemoteTable(Table):
return resp["version"] return resp["version"]
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pa.Table:
"""Return the table as an Arrow table.""" """to_arrow() is not supported on the LanceDB cloud"""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud") raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self): def to_pandas(self):
"""Return the table as a Pandas DataFrame. """to_pandas() is not supported on the LanceDB cloud"""
Intercept `to_arrow()` for better error message.
"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud") return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
def create_scalar_index(self, *args, **kwargs):
"""Creates a scalar index"""
return NotImplementedError(
"create_scalar_index() is not supported on the LanceDB cloud"
)
def create_index( def create_index(
self, self,
metric="L2", metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None, index_cache_size: Optional[int] = None,
): ):
"""Create an index on the table. """Create an index on the table.
@@ -81,39 +84,28 @@ class RemoteTable(Table):
---------- ----------
metric : str metric : str
The metric to use for the index. Default is "L2". The metric to use for the index. Default is "L2".
num_partitions : int
The number of partitions to use for the index. Default is 256.
num_sub_vectors : int
The number of sub-vectors to use for the index. Default is 96.
vector_column_name : str vector_column_name : str
The name of the vector column. Default is "vector". The name of the vector column. Default is "vector".
replace : bool
Whether to replace the existing index. Default is True.
accelerator : str, optional
If set, use the given accelerator to create the index.
Default is None. Currently not supported.
index_cache_size : int, optional
The size of the index cache in number of entries. Default value is 256.
Examples Examples
-------- --------
import lancedb >>> import lancedb
import uuid >>> import uuid
from lancedb.schema import vector >>> from lancedb.schema import vector
conn = lancedb.connect("db://...", api_key="...", region="...") >>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
table_name = uuid.uuid4().hex >>> table_name = uuid.uuid4().hex
schema = pa.schema( >>> schema = pa.schema(
[ ... [
pa.field("id", pa.uint32(), False), ... pa.field("id", pa.uint32(), False),
pa.field("vector", vector(128), False), ... pa.field("vector", vector(128), False),
pa.field("s", pa.string(), False), ... pa.field("s", pa.string(), False),
] ... ]
) ... )
table = conn.create_table( >>> table = db.create_table( # doctest: +SKIP
table_name, ... table_name, # doctest: +SKIP
schema=schema, ... schema=schema, # doctest: +SKIP
) ... )
table.create_index() >>> table.create_index("L2", "vector") # doctest: +SKIP
""" """
index_type = "vector" index_type = "vector"
@@ -135,6 +127,28 @@ class RemoteTable(Table):
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> int: ) -> int:
"""Add more data to the [Table](Table). It has the same API signature as the OSS version.
Parameters
----------
data: DATA
The data to insert into the table. Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
mode: str
The mode to use when writing the data. Valid values are
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
data = _sanitize_data( data = _sanitize_data(
data, data,
self.schema, self.schema,
@@ -158,6 +172,58 @@ class RemoteTable(Table):
def search( def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
) -> LanceVectorQueryBuilder: ) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
All query options are defined in [Query][lancedb.query.Query].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
... .select(["caption", "original_width"]) # doctest: +SKIP
... .limit(2) # doctest: +SKIP
... .to_pandas()) # doctest: +SKIP
caption original_width vector _distance # doctest: +SKIP
0 foo 2000 [0.5, 3.4, 1.3] 5.220000 # doctest: +SKIP
1 test 3000 [0.3, 6.2, 2.6] 23.089996 # doctest: +SKIP
Parameters
----------
query: list/np.ndarray/str/PIL.Image.Image, default None
The targetted vector to search for.
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
The name of the vector column to search.
*default "vector"*
Returns
-------
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns
- selected columns
- the vector
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return LanceVectorQueryBuilder(self, query, vector_column_name) return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
@@ -165,8 +231,114 @@ class RemoteTable(Table):
return self._conn._loop.run_until_complete(result).to_arrow() return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str): def delete(self, predicate: str):
"""Delete rows from the table.""" """Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
Parameters
----------
predicate: str
The SQL where clause to use when deleting rows.
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
The filter must not be empty, or it will error.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
1 2 [3.0, 4.0] 85.0 # doctest: +SKIP
2 1 [1.0, 2.0] 145.0 # doctest: +SKIP
>>> table.delete("x = 2") # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
1 1 [1.0, 2.0] 145.0 # doctest: +SKIP
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
>>> to_remove = [1, 3] # doctest: +SKIP
>>> to_remove = ", ".join([str(v) for v in to_remove]) # doctest: +SKIP
>>> table.delete(f"x IN ({to_remove})") # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
"""
payload = {"predicate": predicate} payload = {"predicate": predicate}
self._conn._loop.run_until_complete( self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload) self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
) )
def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
"""
This can be used to update zero to all rows depending on how many
rows match the where clause.
Parameters
----------
where: str, optional
The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict, optional
The values to update. The keys are the column names and the values
are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> table.to_pandas() # doctest: +SKIP
x vector # doctest: +SKIP
0 1 [1.0, 2.0] # doctest: +SKIP
1 2 [3.0, 4.0] # doctest: +SKIP
2 3 [5.0, 6.0] # doctest: +SKIP
>>> table.update(where="x = 2", values={"vector": [10, 10]}) # doctest: +SKIP
>>> table.to_pandas() # doctest: +SKIP
x vector # doctest: +SKIP
0 1 [1.0, 2.0] # doctest: +SKIP
1 3 [5.0, 6.0] # doctest: +SKIP
2 2 [10.0, 10.0] # doctest: +SKIP
"""
if values is not None and values_sql is not None:
raise ValueError("Only one of values or values_sql can be provided")
if values is None and values_sql is None:
raise ValueError("Either values or values_sql must be provided")
if values is not None:
updates = [[k, value_to_sql(v)] for k, v in values.items()]
else:
updates = [[k, v] for k, v in values_sql.items()]
payload = {"predicate": where, "updates": updates}
self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
)

View File

@@ -17,20 +17,21 @@ import inspect
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from functools import cached_property from functools import cached_property
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Union from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
import lance import lance
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
import pyarrow.fs as pa_fs
from lance import LanceDataset from lance import LanceDataset
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from .pydantic import LanceModel from .pydantic import LanceModel, model_to_dict
from .query import LanceQueryBuilder, Query from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas from .util import fs_from_uri, safe_import_pandas, value_to_sql, join_uri
from .utils.events import register_event from .utils.events import register_event
if TYPE_CHECKING: if TYPE_CHECKING:
@@ -53,8 +54,10 @@ def _sanitize_data(
# convert to list of dict if data is a bunch of LanceModels # convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel): if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema() schema = data[0].__class__.to_arrow_schema()
data = [dict(d) for d in data] data = [model_to_dict(d) for d in data]
data = pa.Table.from_pylist(data) data = pa.Table.from_pylist(data, schema=schema)
else:
data = pa.Table.from_pylist(data)
elif isinstance(data, dict): elif isinstance(data, dict):
data = vec_to_table(data) data = vec_to_table(data)
elif pd is not None and isinstance(data, pd.DataFrame): elif pd is not None and isinstance(data, pd.DataFrame):
@@ -218,6 +221,77 @@ class Table(ABC):
""" """
raise NotImplementedError raise NotImplementedError
@abstractmethod
def create_scalar_index(
self,
column: str,
*,
replace: bool = True,
):
"""Create a scalar index on a column.
Scalar indices, like vector indices, can be used to speed up scans. A scalar
index can speed up scans that contain filter expressions on the indexed column.
For example, the following scan will be faster if the column ``my_col`` has
a scalar index:
.. code-block:: python
import lancedb
db = lancedb.connect("/data/lance")
img_table = db.open_table("images")
my_df = img_table.search().where("my_col = 7", prefilter=True).to_pandas()
Scalar indices can also speed up scans containing a vector search and a
prefilter:
.. code-block::python
import lancedb
db = lancedb.connect("/data/lance")
img_table = db.open_table("images")
img_table.search([1, 2, 3, 4], vector_column_name="vector")
.where("my_col != 7", prefilter=True)
.to_pandas()
Scalar indices can only speed up scans for basic filters using
equality, comparison, range (e.g. ``my_col BETWEEN 0 AND 100``), and set
membership (e.g. `my_col IN (0, 1, 2)`)
Scalar indices can be used if the filter contains multiple indexed columns and
the filter criteria are AND'd or OR'd together
(e.g. ``my_col < 0 AND other_col> 100``)
Scalar indices may be used if the filter contains non-indexed columns but,
depending on the structure of the filter, they may not be usable. For example,
if the column ``not_indexed`` does not have a scalar index then the filter
``my_col = 0 OR not_indexed = 1`` will not be able to use any scalar index on
``my_col``.
**Experimental API**
Parameters
----------
column : str
The column to be indexed. Must be a boolean, integer, float,
or string column.
replace : bool, default True
Replace the existing index if it exists.
Examples
--------
.. code-block:: python
import lance
dataset = lance.dataset("/tmp/images.lance")
dataset.create_scalar_index("category")
"""
raise NotImplementedError
@abstractmethod @abstractmethod
def add( def add(
self, self,
@@ -381,6 +455,62 @@ class Table(ABC):
""" """
raise NotImplementedError raise NotImplementedError
@abstractmethod
def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
"""
This can be used to update zero to all rows depending on how many
rows match the where clause. If no where clause is provided, then
all rows will be updated.
Either `values` or `values_sql` must be provided. You cannot provide
both.
Parameters
----------
where: str, optional
The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict, optional
The values to update. The keys are the column names and the values
are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.update(where="x = 2", values={"vector": [10, 10]})
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
>>> table.update(values_sql={"x": "x + 1"})
>>> table.to_pandas()
x vector
0 2 [1.0, 2.0]
1 4 [5.0, 6.0]
2 3 [10.0, 10.0]
"""
raise NotImplementedError
class LanceTable(Table): class LanceTable(Table):
""" """
@@ -549,7 +679,7 @@ class LanceTable(Table):
@property @property
def _dataset_uri(self) -> str: def _dataset_uri(self) -> str:
return os.path.join(self._conn.uri, f"{self.name}.lance") return join_uri(self._conn.uri, f"{self.name}.lance")
def create_index( def create_index(
self, self,
@@ -575,7 +705,12 @@ class LanceTable(Table):
self._reset_dataset() self._reset_dataset()
register_event("create_index") register_event("create_index")
def create_fts_index(self, field_names: Union[str, List[str]]): def create_scalar_index(self, column: str, *, replace: bool = True):
self._dataset.create_scalar_index(column, index_type="BTREE", replace=replace)
def create_fts_index(
self, field_names: Union[str, List[str]], *, replace: bool = False
):
"""Create a full-text search index on the table. """Create a full-text search index on the table.
Warning - this API is highly experimental and is highly likely to change Warning - this API is highly experimental and is highly likely to change
@@ -585,17 +720,31 @@ class LanceTable(Table):
---------- ----------
field_names: str or list of str field_names: str or list of str
The name(s) of the field to index. The name(s) of the field to index.
replace: bool, default False
If True, replace the existing index if it exists. Note that this is
not yet an atomic operation; the index will be temporarily
unavailable while the new index is being created.
""" """
from .fts import create_index, populate_index from .fts import create_index, populate_index
if isinstance(field_names, str): if isinstance(field_names, str):
field_names = [field_names] field_names = [field_names]
fs, path = fs_from_uri(self._get_fts_index_path())
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
if index_exists:
if not replace:
raise ValueError(
f"Index already exists. Use replace=True to overwrite."
)
fs.delete_dir(path)
index = create_index(self._get_fts_index_path(), field_names) index = create_index(self._get_fts_index_path(), field_names)
populate_index(index, self, field_names) populate_index(index, self, field_names)
register_event("create_fts_index") register_event("create_fts_index")
def _get_fts_index_path(self): def _get_fts_index_path(self):
return os.path.join(self._dataset_uri, "_indices", "tantivy") return join_uri(self._dataset_uri, "_indices", "tantivy")
@cached_property @cached_property
def _dataset(self) -> LanceDataset: def _dataset(self) -> LanceDataset:
@@ -785,7 +934,7 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
register_event("search") register_event("search_table")
return LanceQueryBuilder.create( return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name self, query, query_type, vector_column_name=vector_column_name
) )
@@ -906,35 +1055,42 @@ class LanceTable(Table):
f"Table {name} does not exist." f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)" f"Please first call db.create_table({name}, data)"
) )
register_event("open_table")
return tbl return tbl
def delete(self, where: str): def delete(self, where: str):
self._dataset.delete(where) self._dataset.delete(where)
def update(self, where: str, values: dict): def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
""" """
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many This can be used to update zero to all rows depending on how many
rows match the where clause. rows match the where clause.
Parameters Parameters
---------- ----------
where: str where: str, optional
The SQL where clause to use when updating rows. For example, 'x = 2' The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error. or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict values: dict, optional
The values to update. The keys are the column names and the values The values to update. The keys are the column names and the values
are the values to set. are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples Examples
-------- --------
>>> import lancedb >>> import lancedb
>>> data = [ >>> import pandas as pd
... {"x": 1, "vector": [1, 2]}, >>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data) >>> table = db.create_table("my_table", data)
>>> table.to_pandas() >>> table.to_pandas()
@@ -950,18 +1106,15 @@ class LanceTable(Table):
2 2 [10.0, 10.0] 2 2 [10.0, 10.0]
""" """
orig_data = self._dataset.to_table(filter=where).combine_chunks() if values is not None and values_sql is not None:
if len(orig_data) == 0: raise ValueError("Only one of values or values_sql can be provided")
return if values is None and values_sql is None:
for col, val in values.items(): raise ValueError("Either values or values_sql must be provided")
i = orig_data.column_names.index(col)
if i < 0: if values is not None:
raise ValueError(f"Column {col} does not exist") values_sql = {k: value_to_sql(v) for k, v in values.items()}
orig_data = orig_data.set_column(
i, col, pa.array([val] * len(orig_data), type=orig_data[col].type) self.to_lance().update(values_sql, where)
)
self.delete(where)
self.add(orig_data, mode="append")
self._reset_dataset() self._reset_dataset()
register_event("update") register_event("update")

View File

@@ -12,9 +12,13 @@
# limitations under the License. # limitations under the License.
import os import os
from typing import Tuple from datetime import date, datetime
from functools import singledispatch
import pathlib
from typing import Tuple, Union
from urllib.parse import urlparse from urllib.parse import urlparse
import numpy as np
import pyarrow.fs as pa_fs import pyarrow.fs as pa_fs
@@ -59,6 +63,12 @@ def get_uri_location(uri: str) -> str:
str: Location part of the URL, without scheme str: Location part of the URL, without scheme
""" """
parsed = urlparse(uri) parsed = urlparse(uri)
if len(parsed.scheme) == 1:
# Windows drive names are parsed as the scheme
# e.g. "c:\path" -> ParseResult(scheme="c", netloc="", path="/path", ...)
# So we add special handling here for schemes that are a single character
return uri
if not parsed.netloc: if not parsed.netloc:
return parsed.path return parsed.path
else: else:
@@ -81,6 +91,29 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
return pa_fs.FileSystem.from_uri(uri) return pa_fs.FileSystem.from_uri(uri)
def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
"""
Join a URI with multiple parts, handles both local and remote paths
Parameters
----------
base : str
The base URI
parts : str
The parts to join to the base URI, each separated by the
appropriate path separator for the URI scheme and OS
"""
if isinstance(base, pathlib.Path):
return base.joinpath(*parts)
base = str(base)
if get_uri_scheme(base) == "file":
# using pathlib for local paths make this windows compatible
# `get_uri_scheme` returns `file` for windows drive names (e.g. `c:\path`)
return str(pathlib.Path(base, *parts))
# for remote paths, just use os.path.join
return "/".join([p.rstrip("/") for p in [base, *parts]])
def safe_import_pandas(): def safe_import_pandas():
try: try:
import pandas as pd import pandas as pd
@@ -88,3 +121,53 @@ def safe_import_pandas():
return pd return pd
except ImportError: except ImportError:
return None return None
@singledispatch
def value_to_sql(value):
raise NotImplementedError("SQL conversion is not implemented for this type")
@value_to_sql.register(str)
def _(value: str):
return f"'{value}'"
@value_to_sql.register(int)
def _(value: int):
return str(value)
@value_to_sql.register(float)
def _(value: float):
return str(value)
@value_to_sql.register(bool)
def _(value: bool):
return str(value).upper()
@value_to_sql.register(type(None))
def _(value: type(None)):
return "NULL"
@value_to_sql.register(datetime)
def _(value: datetime):
return f"'{value.isoformat()}'"
@value_to_sql.register(date)
def _(value: date):
return f"'{value.isoformat()}'"
@value_to_sql.register(list)
def _(value: list):
return "[" + ", ".join(map(value_to_sql, value)) + "]"
@value_to_sql.register(np.ndarray)
def _(value: np.ndarray):
return value_to_sql(value.tolist())

View File

@@ -64,8 +64,10 @@ class _Events:
Initializes the Events object with default values for events, rate_limit, and metadata. Initializes the Events object with default values for events, rate_limit, and metadata.
""" """
self.events = [] # events list self.events = [] # events list
self.max_events = 25 # max events to store in memory self.throttled_event_names = ["search_table"]
self.rate_limit = 60.0 # rate limit (seconds) self.throttled_events = set()
self.max_events = 5 # max events to store in memory
self.rate_limit = 60.0 * 5 # rate limit (seconds)
self.time = 0.0 self.time = 0.0
if is_git_dir(): if is_git_dir():
@@ -112,18 +114,21 @@ class _Events:
return return
if ( if (
len(self.events) < self.max_events len(self.events) < self.max_events
): # Events list limited to 25 events (drop any events past this) ): # Events list limited to self.max_events (drop any events past this)
params.update(self.metadata) params.update(self.metadata)
self.events.append( event = {
{ "event": event_name,
"event": event_name, "properties": params,
"properties": params, "timestamp": datetime.datetime.now(
"timestamp": datetime.datetime.now( tz=datetime.timezone.utc
tz=datetime.timezone.utc ).isoformat(),
).isoformat(), "distinct_id": CONFIG["uuid"],
"distinct_id": CONFIG["uuid"], }
} if event_name not in self.throttled_event_names:
) self.events.append(event)
elif event_name not in self.throttled_events:
self.throttled_events.add(event_name)
self.events.append(event)
# Check rate limit # Check rate limit
t = time.time() t = time.time()
@@ -135,7 +140,6 @@ class _Events:
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event "distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
"batch": self.events, "batch": self.events,
} }
# POST equivalent to requests.post(self.url, json=data). # POST equivalent to requests.post(self.url, json=data).
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled # threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
# to avoid any possible disruption in the console. # to avoid any possible disruption in the console.
@@ -150,6 +154,7 @@ class _Events:
# Flush & Reset # Flush & Reset
self.events = [] self.events = []
self.throttled_events = set()
self.time = t self.time = t

View File

@@ -1,12 +1,12 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.3.4" version = "0.4.2"
dependencies = [ dependencies = [
"deprecation", "deprecation",
"pylance==0.8.17", "pylance==0.9.1",
"ratelimiter~=1.0", "ratelimiter~=1.0",
"retry>=0.9.2", "retry>=0.9.2",
"tqdm>=4.1.0", "tqdm>=4.27.0",
"aiohttp", "aiohttp",
"pydantic>=1.10", "pydantic>=1.10",
"attrs>=21.3.0", "attrs>=21.3.0",
@@ -49,11 +49,11 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb" repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"] tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests", "duckdb", "pytz"]
dev = ["ruff", "pre-commit", "black"] dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"] clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "InstructorEmbedding"] embeddings = ["openai>=1.6.1", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "InstructorEmbedding"]
[project.scripts] [project.scripts]
lancedb = "lancedb.cli.cli:cli" lancedb = "lancedb.cli.cli:cli"

View File

@@ -29,7 +29,7 @@ from lancedb.pydantic import LanceModel, Vector
@pytest.mark.slow @pytest.mark.slow
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"]) @pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
def test_sentence_transformer(alias, tmp_path): def test_basic_text_embeddings(alias, tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
registry = get_registry() registry = get_registry()
func = registry.get(alias).create(max_retries=0) func = registry.get(alias).create(max_retries=0)

View File

@@ -12,6 +12,7 @@
# limitations under the License. # limitations under the License.
import os import os
import random import random
from unittest import mock
import numpy as np import numpy as np
import pandas as pd import pandas as pd
@@ -43,7 +44,16 @@ def table(tmp_path) -> ldb.table.LanceTable:
for _ in range(100) for _ in range(100)
] ]
table = db.create_table( table = db.create_table(
"test", data=pd.DataFrame({"vector": vectors, "text": text, "text2": text}) "test",
data=pd.DataFrame(
{
"vector": vectors,
"id": [i % 2 for i in range(100)],
"text": text,
"text2": text,
"nested": [{"text": t} for t in text],
}
),
) )
return table return table
@@ -75,6 +85,25 @@ def test_create_index_from_table(tmp_path, table):
assert len(df) == 10 assert len(df) == 10
assert "text" in df.columns assert "text" in df.columns
# Check whether it can be updated
table.add(
[
{
"vector": np.random.randn(128),
"id": 101,
"text": "gorilla",
"text2": "gorilla",
"nested": {"text": "gorilla"},
}
]
)
with pytest.raises(ValueError, match="already exists"):
table.create_fts_index("text")
table.create_fts_index("text", replace=True)
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
def test_create_index_multiple_columns(tmp_path, table): def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"]) table.create_fts_index(["text", "text2"])
@@ -89,3 +118,32 @@ def test_empty_rs(tmp_path, table, mocker):
mocker.patch("lancedb.fts.search_index", return_value=([], [])) mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_pandas() df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 0 assert len(df) == 0
def test_nested_schema(tmp_path, table):
table.create_fts_index("nested.text")
rs = table.search("puppy").limit(10).to_list()
assert len(rs) == 10
def test_search_index_with_filter(table):
table.create_fts_index("text")
orig_import = __import__
def import_mock(name, *args):
if name == "duckdb":
raise ImportError
return orig_import(name, *args)
# no duckdb
with mock.patch("builtins.__import__", side_effect=import_mock):
rs = table.search("puppy").where("id=1").limit(10).to_list()
for r in rs:
assert r["id"] == 1
# yes duckdb
rs2 = table.search("puppy").where("id=1").limit(10).to_list()
for r in rs2:
assert r["id"] == 1
assert rs == rs2

View File

@@ -13,9 +13,10 @@
import json import json
import pytz
import sys import sys
from datetime import date, datetime from datetime import date, datetime
from typing import List, Optional from typing import List, Optional, Tuple
import pyarrow as pa import pyarrow as pa
import pydantic import pydantic
@@ -38,11 +39,14 @@ def test_pydantic_to_arrow():
id: int id: int
s: str s: str
vec: list[float] vec: list[float]
li: List[int] li: list[int]
lili: list[list[float]]
litu: list[tuple[float, float]]
opt: Optional[str] = None opt: Optional[str] = None
st: StructModel st: StructModel
dt: date dt: date
dtt: datetime dtt: datetime
dt_with_tz: datetime = Field(json_schema_extra={"tz": "Asia/Shanghai"})
# d: dict # d: dict
m = TestModel( m = TestModel(
@@ -50,9 +54,12 @@ def test_pydantic_to_arrow():
s="hello", s="hello",
vec=[1.0, 2.0, 3.0], vec=[1.0, 2.0, 3.0],
li=[2, 3, 4], li=[2, 3, 4],
lili=[[2.5, 1.5], [3.5, 4.5], [5.5, 6.5]],
litu=[(2.5, 1.5), (3.5, 4.5), (5.5, 6.5)],
st=StructModel(a="a", b=1.0), st=StructModel(a="a", b=1.0),
dt=date.today(), dt=date.today(),
dtt=datetime.now(), dtt=datetime.now(),
dt_with_tz=datetime.now(pytz.timezone("Asia/Shanghai")),
) )
schema = pydantic_to_schema(TestModel) schema = pydantic_to_schema(TestModel)
@@ -63,6 +70,8 @@ def test_pydantic_to_arrow():
pa.field("s", pa.utf8(), False), pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False), pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False), pa.field("li", pa.list_(pa.int64()), False),
pa.field("lili", pa.list_(pa.list_(pa.float64())), False),
pa.field("litu", pa.list_(pa.list_(pa.float64())), False),
pa.field("opt", pa.utf8(), True), pa.field("opt", pa.utf8(), True),
pa.field( pa.field(
"st", "st",
@@ -73,11 +82,16 @@ def test_pydantic_to_arrow():
), ),
pa.field("dt", pa.date32(), False), pa.field("dt", pa.date32(), False),
pa.field("dtt", pa.timestamp("us"), False), pa.field("dtt", pa.timestamp("us"), False),
pa.field("dt_with_tz", pa.timestamp("us", tz="Asia/Shanghai"), False),
] ]
) )
assert schema == expect_schema assert schema == expect_schema
@pytest.mark.skipif(
sys.version_info > (3, 8),
reason="using native type alias requires python3.9 or higher",
)
def test_pydantic_to_arrow_py38(): def test_pydantic_to_arrow_py38():
class StructModel(pydantic.BaseModel): class StructModel(pydantic.BaseModel):
a: str a: str
@@ -88,10 +102,13 @@ def test_pydantic_to_arrow_py38():
s: str s: str
vec: List[float] vec: List[float]
li: List[int] li: List[int]
lili: List[List[float]]
litu: List[Tuple[float, float]]
opt: Optional[str] = None opt: Optional[str] = None
st: StructModel st: StructModel
dt: date dt: date
dtt: datetime dtt: datetime
dt_with_tz: datetime = Field(json_schema_extra={"tz": "Asia/Shanghai"})
# d: dict # d: dict
m = TestModel( m = TestModel(
@@ -99,9 +116,12 @@ def test_pydantic_to_arrow_py38():
s="hello", s="hello",
vec=[1.0, 2.0, 3.0], vec=[1.0, 2.0, 3.0],
li=[2, 3, 4], li=[2, 3, 4],
lili=[[2.5, 1.5], [3.5, 4.5], [5.5, 6.5]],
litu=[(2.5, 1.5), (3.5, 4.5), (5.5, 6.5)],
st=StructModel(a="a", b=1.0), st=StructModel(a="a", b=1.0),
dt=date.today(), dt=date.today(),
dtt=datetime.now(), dtt=datetime.now(),
dt_with_tz=datetime.now(pytz.timezone("Asia/Shanghai")),
) )
schema = pydantic_to_schema(TestModel) schema = pydantic_to_schema(TestModel)
@@ -112,6 +132,8 @@ def test_pydantic_to_arrow_py38():
pa.field("s", pa.utf8(), False), pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False), pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False), pa.field("li", pa.list_(pa.int64()), False),
pa.field("lili", pa.list_(pa.list_(pa.float64())), False),
pa.field("litu", pa.list_(pa.list_(pa.float64())), False),
pa.field("opt", pa.utf8(), True), pa.field("opt", pa.utf8(), True),
pa.field( pa.field(
"st", "st",
@@ -122,6 +144,7 @@ def test_pydantic_to_arrow_py38():
), ),
pa.field("dt", pa.date32(), False), pa.field("dt", pa.date32(), False),
pa.field("dtt", pa.timestamp("us"), False), pa.field("dtt", pa.timestamp("us"), False),
pa.field("dt_with_tz", pa.timestamp("us", tz="Asia/Shanghai"), False),
] ]
) )
assert schema == expect_schema assert schema == expect_schema

View File

@@ -12,7 +12,7 @@
# limitations under the License. # limitations under the License.
import functools import functools
from datetime import timedelta from datetime import date, datetime, timedelta
from pathlib import Path from pathlib import Path
from typing import List from typing import List
from unittest.mock import PropertyMock, patch from unittest.mock import PropertyMock, patch
@@ -22,6 +22,7 @@ import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from pydantic import BaseModel
from lancedb.conftest import MockTextEmbeddingFunction from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
@@ -141,14 +142,44 @@ def test_add(db):
def test_add_pydantic_model(db): def test_add_pydantic_model(db):
class TestModel(LanceModel): # https://github.com/lancedb/lancedb/issues/562
vector: Vector(16)
li: List[int]
data = TestModel(vector=list(range(16)), li=[1, 2, 3]) class Metadata(BaseModel):
table = LanceTable.create(db, "test", data=[data]) source: str
assert len(table) == 1 timestamp: datetime
assert table.schema == TestModel.to_arrow_schema()
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(2)
li: List[int]
payload: Document
tbl = LanceTable.create(db, "mytable", schema=LanceSchema, mode="overwrite")
assert tbl.schema == LanceSchema.to_arrow_schema()
# add works
expected = LanceSchema(
id="id",
vector=[0.0, 0.0],
li=[1, 2, 3],
payload=Document(
content="foo", meta=Metadata(source="bar", timestamp=datetime.now())
),
)
tbl.add([expected])
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
assert result == expected
flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=1)
assert len(flattened.columns) == 6 # _distance is automatically added
really_flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=True)
assert len(really_flattened.columns) == 7
def _add(table, schema): def _add(table, schema):
@@ -348,14 +379,79 @@ def test_update(db):
assert len(table) == 2 assert len(table) == 2
assert len(table.list_versions()) == 2 assert len(table.list_versions()) == 2
table.update(where="id=0", values={"vector": [1.1, 1.1]}) table.update(where="id=0", values={"vector": [1.1, 1.1]})
assert len(table.list_versions()) == 4 assert len(table.list_versions()) == 3
assert table.version == 4 assert table.version == 3
assert len(table) == 2 assert len(table) == 2
v = table.to_arrow()["vector"].combine_chunks() v = table.to_arrow()["vector"].combine_chunks()
v = v.values.to_numpy().reshape(2, 2) v = v.values.to_numpy().reshape(2, 2)
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]])) assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
def test_update_types(db):
table = LanceTable.create(
db,
"my_table",
data=[
{
"id": 0,
"str": "foo",
"float": 1.1,
"timestamp": datetime(2021, 1, 1),
"date": date(2021, 1, 1),
"vector1": [1.0, 0.0],
"vector2": [1.0, 1.0],
}
],
)
# Update with SQL
table.update(
values_sql=dict(
id="1",
str="'bar'",
float="2.2",
timestamp="TIMESTAMP '2021-01-02 00:00:00'",
date="DATE '2021-01-02'",
vector1="[2.0, 2.0]",
vector2="[3.0, 3.0]",
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=1,
str="bar",
float=2.2,
timestamp=datetime(2021, 1, 2),
date=date(2021, 1, 2),
vector1=[2.0, 2.0],
vector2=[3.0, 3.0],
)
assert actual == expected
# Update with values
table.update(
values=dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=np.array([4.0, 4.0]),
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=[4.0, 4.0],
)
assert actual == expected
def test_create_with_embedding_function(db): def test_create_with_embedding_function(db):
class MyTable(LanceModel): class MyTable(LanceModel):
text: str text: str
@@ -436,6 +532,33 @@ def test_multiple_vector_columns(db):
assert result1["text"].iloc[0] != result2["text"].iloc[0] assert result1["text"].iloc[0] != result2["text"].iloc[0]
def test_create_scalar_index(db):
vec_array = pa.array(
[[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], pa.list_(pa.float32(), 2)
)
test_data = pa.Table.from_pydict(
{"x": ["c", "b", "a", "e", "b"], "y": [1, 2, 3, 4, 5], "vector": vec_array}
)
table = LanceTable.create(
db,
"my_table",
data=test_data,
)
table.create_scalar_index("x")
indices = table.to_lance().list_indices()
assert len(indices) == 1
scalar_index = indices[0]
assert scalar_index["type"] == "Scalar"
# Confirm that prefiltering still works with the scalar index column
results = table.search().where("x = 'c'").to_arrow()
assert results == test_data.slice(0, 1)
results = table.search([5, 5]).to_arrow()
assert results["_distance"][0].as_py() == 0
results = table.search([5, 5]).where("x != 'b'").to_arrow()
assert results["_distance"][0].as_py() > 0
def test_empty_query(db): def test_empty_query(db):
table = LanceTable.create( table = LanceTable.create(
db, db,

View File

@@ -11,7 +11,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from lancedb.util import get_uri_scheme import os
import pathlib
import pytest
from lancedb.util import get_uri_scheme, join_uri
def test_normalize_uri(): def test_normalize_uri():
@@ -28,3 +33,55 @@ def test_normalize_uri():
for uri, expected_scheme in zip(uris, schemes): for uri, expected_scheme in zip(uris, schemes):
parsed_scheme = get_uri_scheme(uri) parsed_scheme = get_uri_scheme(uri)
assert parsed_scheme == expected_scheme assert parsed_scheme == expected_scheme
def test_join_uri_remote():
schemes = ["s3", "az", "gs"]
for scheme in schemes:
expected = f"{scheme}://bucket/path/to/table.lance"
base_uri = f"{scheme}://bucket/path/to/"
parts = ["table.lance"]
assert join_uri(base_uri, *parts) == expected
base_uri = f"{scheme}://bucket"
parts = ["path", "to", "table.lance"]
assert join_uri(base_uri, *parts) == expected
# skip this test if on windows
@pytest.mark.skipif(os.name == "nt", reason="Windows paths are not POSIX")
def test_join_uri_posix():
for base in [
# relative path
"relative/path",
"relative/path/",
# an absolute path
"/absolute/path",
"/absolute/path/",
# a file URI
"file:///absolute/path",
"file:///absolute/path/",
]:
joined = join_uri(base, "table.lance")
assert joined == str(pathlib.Path(base) / "table.lance")
joined = join_uri(pathlib.Path(base), "table.lance")
assert joined == pathlib.Path(base) / "table.lance"
# skip this test if not on windows
@pytest.mark.skipif(os.name != "nt", reason="Windows paths are not POSIX")
def test_local_join_uri_windows():
# https://learn.microsoft.com/en-us/dotnet/standard/io/file-path-formats
for base in [
# windows relative path
"relative\\path",
"relative\\path\\",
# windows absolute path from current drive
"c:\\absolute\\path",
# relative path from root of current drive
"\\relative\\path",
]:
joined = join_uri(base, "table.lance")
assert joined == str(pathlib.Path(base) / "table.lance")
joined = join_uri(pathlib.Path(base), "table.lance")
assert joined == pathlib.Path(base) / "table.lance"

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.3.9" version = "0.4.1"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"

View File

@@ -23,7 +23,7 @@ pub enum Error {
#[snafu(display("column '{name}' is missing"))] #[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String }, MissingColumn { name: String },
#[snafu(display("{name}: {message}"))] #[snafu(display("{name}: {message}"))]
RangeError { name: String, message: String }, OutOfRange { name: String, message: String },
#[snafu(display("{index_type} is not a valid index type"))] #[snafu(display("{index_type} is not a valid index type"))]
InvalidIndexType { index_type: String }, InvalidIndexType { index_type: String },

View File

@@ -12,4 +12,5 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
pub mod scalar;
pub mod vector; pub mod vector;

View File

@@ -0,0 +1,43 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use neon::{
context::{Context, FunctionContext},
result::JsResult,
types::{JsBoolean, JsBox, JsPromise, JsString},
};
use crate::{error::ResultExt, runtime, table::JsTable};
pub(crate) fn table_create_scalar_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let column = cx.argument::<JsString>(0)?.value(&mut cx);
let replace = cx.argument::<JsBoolean>(1)?.value(&mut cx);
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let mut table = js_table.table.clone();
rt.spawn(async move {
let idx_result = table.create_scalar_index(&column, replace).await;
deferred.settle_with(&channel, move |mut cx| {
idx_result.or_throw(&mut cx)?;
Ok(cx.undefined())
});
});
Ok(promise)
}

View File

@@ -65,12 +65,10 @@ fn get_index_params_builder(
obj.get_opt::<JsString, _, _>(cx, "index_name")? obj.get_opt::<JsString, _, _>(cx, "index_name")?
.map(|s| index_builder.index_name(s.value(cx))); .map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type")? if let Some(metric_type) = obj.get_opt::<JsString, _, _>(cx, "metric_type")? {
.map(|s| MetricType::try_from(s.value(cx).as_str())) let metric_type = MetricType::try_from(metric_type.value(cx).as_str()).unwrap();
.map(|mt| { index_builder.metric_type(metric_type);
let metric_type = mt.unwrap(); }
index_builder.metric_type(metric_type);
});
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?; let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
let max_iters = obj.get_opt_usize(cx, "max_iters")?; let max_iters = obj.get_opt_usize(cx, "max_iters")?;
@@ -85,23 +83,29 @@ fn get_index_params_builder(
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? if let Some(use_opq) = obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? {
.map(|s| pq_params.use_opq = s.value(cx)); pq_params.use_opq = use_opq.value(cx);
}
obj.get_opt_usize(cx, "num_sub_vectors")? if let Some(num_sub_vectors) = obj.get_opt_usize(cx, "num_sub_vectors")? {
.map(|s| pq_params.num_sub_vectors = s); pq_params.num_sub_vectors = num_sub_vectors;
}
obj.get_opt_usize(cx, "num_bits")? if let Some(num_bits) = obj.get_opt_usize(cx, "num_bits")? {
.map(|s| pq_params.num_bits = s); pq_params.num_bits = num_bits;
}
obj.get_opt_usize(cx, "max_iters")? if let Some(max_iters) = obj.get_opt_usize(cx, "max_iters")? {
.map(|s| pq_params.max_iters = s); pq_params.max_iters = max_iters;
}
obj.get_opt_usize(cx, "max_opq_iters")? if let Some(max_opq_iters) = obj.get_opt_usize(cx, "max_opq_iters")? {
.map(|s| pq_params.max_opq_iters = s); pq_params.max_opq_iters = max_opq_iters;
}
obj.get_opt::<JsBoolean, _, _>(cx, "replace")? if let Some(replace) = obj.get_opt::<JsBoolean, _, _>(cx, "replace")? {
.map(|s| index_builder.replace(s.value(cx))); index_builder.replace(replace.value(cx));
}
Ok(index_builder) Ok(index_builder)
} }

View File

@@ -237,10 +237,15 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableAdd", JsTable::js_add)?; cx.export_function("tableAdd", JsTable::js_add)?;
cx.export_function("tableCountRows", JsTable::js_count_rows)?; cx.export_function("tableCountRows", JsTable::js_count_rows)?;
cx.export_function("tableDelete", JsTable::js_delete)?; cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function("tableUpdate", JsTable::js_update)?;
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?; cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
cx.export_function("tableCompactFiles", JsTable::js_compact)?; cx.export_function("tableCompactFiles", JsTable::js_compact)?;
cx.export_function("tableListIndices", JsTable::js_list_indices)?; cx.export_function("tableListIndices", JsTable::js_list_indices)?;
cx.export_function("tableIndexStats", JsTable::js_index_stats)?; cx.export_function("tableIndexStats", JsTable::js_index_stats)?;
cx.export_function(
"tableCreateScalarIndex",
index::scalar::table_create_scalar_index,
)?;
cx.export_function( cx.export_function(
"tableCreateVectorIndex", "tableCreateVectorIndex",
index::vector::table_create_vector_index, index::vector::table_create_vector_index,

View File

@@ -47,15 +47,15 @@ fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
use conv::*; use conv::*;
n.approx_as::<u32>().map_err(|e| match e { n.approx_as::<u32>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError { FloatError::NegOverflow(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: "must be > 0".to_string(), message: "must be > 0".to_string(),
}, },
FloatError::PosOverflow(_) => Error::RangeError { FloatError::PosOverflow(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: format!("must be < {}", u32::MAX), message: format!("must be < {}", u32::MAX),
}, },
FloatError::NotANumber(_) => Error::RangeError { FloatError::NotANumber(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: "not a valid number".to_string(), message: "not a valid number".to_string(),
}, },
@@ -66,15 +66,15 @@ fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
use conv::*; use conv::*;
n.approx_as::<usize>().map_err(|e| match e { n.approx_as::<usize>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError { FloatError::NegOverflow(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: "must be > 0".to_string(), message: "must be > 0".to_string(),
}, },
FloatError::PosOverflow(_) => Error::RangeError { FloatError::PosOverflow(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: format!("must be < {}", usize::MAX), message: format!("must be < {}", usize::MAX),
}, },
FloatError::NotANumber(_) => Error::RangeError { FloatError::NotANumber(_) => Error::OutOfRange {
name: key.into(), name: key.into(),
message: "not a valid number".to_string(), message: "not a valid number".to_string(),
}, },

View File

@@ -23,8 +23,14 @@ impl JsQuery {
let query_obj = cx.argument::<JsObject>(0)?; let query_obj = cx.argument::<JsObject>(0)?;
let limit = query_obj let limit = query_obj
.get::<JsNumber, _, _>(&mut cx, "_limit")? .get_opt::<JsNumber, _, _>(&mut cx, "_limit")?
.value(&mut cx); .map(|value| {
let limit = value.value(&mut cx);
if limit <= 0.0 {
panic!("Limit must be a positive integer");
}
limit as u64
});
let select = query_obj let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")? .get_opt::<JsArray, _, _>(&mut cx, "_select")?
.map(|arr| { .map(|arr| {
@@ -48,7 +54,9 @@ impl JsQuery {
.map(|s| s.value(&mut cx)) .map(|s| s.value(&mut cx))
.map(|s| MetricType::try_from(s.as_str()).unwrap()); .map(|s| MetricType::try_from(s.as_str()).unwrap());
let prefilter = query_obj.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?.value(&mut cx); let prefilter = query_obj
.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?
.value(&mut cx);
let is_electron = cx let is_electron = cx
.argument::<JsBoolean>(1) .argument::<JsBoolean>(1)
@@ -59,20 +67,23 @@ impl JsQuery {
let (deferred, promise) = cx.promise(); let (deferred, promise) = cx.promise();
let channel = cx.channel(); let channel = cx.channel();
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?; let query_vector = query_obj.get_opt::<JsArray, _, _>(&mut cx, "_queryVector")?;
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
let table = js_table.table.clone(); let table = js_table.table.clone();
let query = query_vector.map(|q| convert::js_array_to_vec(q.deref(), &mut cx));
rt.spawn(async move { rt.spawn(async move {
let builder = table let mut builder = table
.search(Float32Array::from(query)) .search(query.map(Float32Array::from))
.limit(limit as usize)
.refine_factor(refine_factor) .refine_factor(refine_factor)
.nprobes(nprobes) .nprobes(nprobes)
.filter(filter) .filter(filter)
.metric_type(metric_type) .metric_type(metric_type)
.select(select) .select(select)
.prefilter(prefilter); .prefilter(prefilter);
if let Some(limit) = limit {
builder = builder.limit(limit as usize);
};
let record_batch_stream = builder.execute(); let record_batch_stream = builder.execute();
let results = record_batch_stream let results = record_batch_stream
.and_then(|stream| { .and_then(|stream| {

View File

@@ -45,7 +45,7 @@ impl JsTable {
let table_name = cx.argument::<JsString>(0)?.value(&mut cx); let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?; let buffer = cx.argument::<JsBuffer>(1)?;
let (batches, schema) = let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?; arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
// Write mode // Write mode
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() { let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
@@ -93,7 +93,7 @@ impl JsTable {
let buffer = cx.argument::<JsBuffer>(0)?; let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx); let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let (batches, schema) = let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?; arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
let channel = cx.channel(); let channel = cx.channel();
let mut table = js_table.table.clone(); let mut table = js_table.table.clone();
@@ -165,6 +165,69 @@ impl JsTable {
Ok(promise) Ok(promise)
} }
pub(crate) fn js_update(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let mut table = js_table.table.clone();
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
// create a vector of updates from the passed map
let updates_arg = cx.argument::<JsObject>(1)?;
let properties = updates_arg.get_own_property_names(&mut cx)?;
let mut updates: Vec<(String, String)> =
Vec::with_capacity(properties.len(&mut cx) as usize);
let len_properties = properties.len(&mut cx);
for i in 0..len_properties {
let property = properties
.get_value(&mut cx, i)?
.downcast_or_throw::<JsString, _>(&mut cx)?;
let value = updates_arg
.get_value(&mut cx, property)?
.downcast_or_throw::<JsString, _>(&mut cx)?;
let property = property.value(&mut cx);
let value = value.value(&mut cx);
updates.push((property, value));
}
// get the filter/predicate if the user passed one
let predicate = cx.argument_opt(0);
let predicate = predicate.unwrap().downcast::<JsString, _>(&mut cx);
let predicate = match predicate {
Ok(_) => {
let val = predicate.map(|s| s.value(&mut cx)).unwrap();
Some(val)
}
Err(_) => {
// if the predicate is not string, check it's null otherwise an invalid
// type was passed
cx.argument::<JsNull>(0)?;
None
}
};
rt.spawn(async move {
let updates_arg = updates
.iter()
.map(|(k, v)| (k.as_str(), v.as_str()))
.collect::<Vec<_>>();
let predicate = predicate.as_deref();
let update_result = table.update(predicate, updates_arg).await;
deferred.settle_with(&channel, move |mut cx| {
update_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
})
});
Ok(promise)
}
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> { pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?; let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.3.9" version = "0.4.1"
edition = "2021" edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"

View File

@@ -26,7 +26,7 @@ use futures::{stream::BoxStream, FutureExt, StreamExt};
use lance::io::object_store::WrappingObjectStore; use lance::io::object_store::WrappingObjectStore;
use object_store::{ use object_store::{
path::Path, Error, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore, path::Path, Error, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore,
Result, PutOptions, PutResult, Result,
}; };
use async_trait::async_trait; use async_trait::async_trait;
@@ -72,13 +72,28 @@ impl PrimaryOnly for Path {
/// Note: this object store does not mirror writes to *.manifest files /// Note: this object store does not mirror writes to *.manifest files
#[async_trait] #[async_trait]
impl ObjectStore for MirroringObjectStore { impl ObjectStore for MirroringObjectStore {
async fn put(&self, location: &Path, bytes: Bytes) -> Result<()> { async fn put(&self, location: &Path, bytes: Bytes) -> Result<PutResult> {
if location.primary_only() { if location.primary_only() {
self.primary.put(location, bytes).await self.primary.put(location, bytes).await
} else { } else {
self.secondary.put(location, bytes.clone()).await?; self.secondary.put(location, bytes.clone()).await?;
self.primary.put(location, bytes).await?; self.primary.put(location, bytes).await
Ok(()) }
}
async fn put_opts(
&self,
location: &Path,
bytes: Bytes,
options: PutOptions,
) -> Result<PutResult> {
if location.primary_only() {
self.primary.put_opts(location, bytes, options).await
} else {
self.secondary
.put_opts(location, bytes.clone(), options.clone())
.await?;
self.primary.put_opts(location, bytes, options).await
} }
} }
@@ -129,8 +144,8 @@ impl ObjectStore for MirroringObjectStore {
self.primary.delete(location).await self.primary.delete(location).await
} }
async fn list(&self, prefix: Option<&Path>) -> Result<BoxStream<'_, Result<ObjectMeta>>> { fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, Result<ObjectMeta>> {
self.primary.list(prefix).await self.primary.list(prefix)
} }
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> { async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> {
@@ -359,7 +374,9 @@ mod test {
assert_eq!(t.count_rows().await.unwrap(), 100); assert_eq!(t.count_rows().await.unwrap(), 100);
let q = t let q = t
.search(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1])) .search(Some(PrimitiveArray::from_iter_values(vec![
0.1, 0.1, 0.1, 0.1,
])))
.limit(10) .limit(10)
.execute() .execute()
.await .await

View File

@@ -24,8 +24,9 @@ use crate::error::Result;
/// A builder for nearest neighbor queries for LanceDB. /// A builder for nearest neighbor queries for LanceDB.
pub struct Query { pub struct Query {
pub dataset: Arc<Dataset>, pub dataset: Arc<Dataset>,
pub query_vector: Float32Array, pub query_vector: Option<Float32Array>,
pub limit: usize, pub column: String,
pub limit: Option<usize>,
pub filter: Option<String>, pub filter: Option<String>,
pub select: Option<Vec<String>>, pub select: Option<Vec<String>>,
pub nprobes: usize, pub nprobes: usize,
@@ -46,11 +47,12 @@ impl Query {
/// # Returns /// # Returns
/// ///
/// * A [Query] object. /// * A [Query] object.
pub(crate) fn new(dataset: Arc<Dataset>, vector: Float32Array) -> Self { pub(crate) fn new(dataset: Arc<Dataset>, vector: Option<Float32Array>) -> Self {
Query { Query {
dataset, dataset,
query_vector: vector, query_vector: vector,
limit: 10, column: crate::table::VECTOR_COLUMN_NAME.to_string(),
limit: None,
nprobes: 20, nprobes: 20,
refine_factor: None, refine_factor: None,
metric_type: None, metric_type: None,
@@ -69,11 +71,13 @@ impl Query {
pub async fn execute(&self) -> Result<DatasetRecordBatchStream> { pub async fn execute(&self) -> Result<DatasetRecordBatchStream> {
let mut scanner: Scanner = self.dataset.scan(); let mut scanner: Scanner = self.dataset.scan();
scanner.nearest( if let Some(query) = self.query_vector.as_ref() {
crate::table::VECTOR_COLUMN_NAME, // If there is a vector query, default to limit=10 if unspecified
&self.query_vector, scanner.nearest(&self.column, query, self.limit.unwrap_or(10))?;
self.limit, } else {
)?; // If there is no vector query, it's ok to not have a limit
scanner.limit(self.limit.map(|limit| limit as i64), None)?;
}
scanner.nprobs(self.nprobes); scanner.nprobs(self.nprobes);
scanner.use_index(self.use_index); scanner.use_index(self.use_index);
scanner.prefilter(self.prefilter); scanner.prefilter(self.prefilter);
@@ -85,13 +89,23 @@ impl Query {
Ok(scanner.try_into_stream().await?) Ok(scanner.try_into_stream().await?)
} }
/// Set the column to query
///
/// # Arguments
///
/// * `column` - The column name
pub fn column(mut self, column: &str) -> Query {
self.column = column.into();
self
}
/// Set the maximum number of results to return. /// Set the maximum number of results to return.
/// ///
/// # Arguments /// # Arguments
/// ///
/// * `limit` - The maximum number of results to return. /// * `limit` - The maximum number of results to return.
pub fn limit(mut self, limit: usize) -> Query { pub fn limit(mut self, limit: usize) -> Query {
self.limit = limit; self.limit = Some(limit);
self self
} }
@@ -101,7 +115,7 @@ impl Query {
/// ///
/// * `vector` - The vector that will be used for search. /// * `vector` - The vector that will be used for search.
pub fn query_vector(mut self, query_vector: Float32Array) -> Query { pub fn query_vector(mut self, query_vector: Float32Array) -> Query {
self.query_vector = query_vector; self.query_vector = Some(query_vector);
self self
} }
@@ -174,7 +188,10 @@ mod tests {
use std::sync::Arc; use std::sync::Arc;
use super::*; use super::*;
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader}; use arrow_array::{
cast::AsArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
RecordBatchReader,
};
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema}; use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
use futures::StreamExt; use futures::StreamExt;
use lance::dataset::Dataset; use lance::dataset::Dataset;
@@ -187,7 +204,7 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap(); let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
let vector = Float32Array::from_iter_values([0.1, 0.2]); let vector = Some(Float32Array::from_iter_values([0.1, 0.2]));
let query = Query::new(Arc::new(ds), vector.clone()); let query = Query::new(Arc::new(ds), vector.clone());
assert_eq!(query.query_vector, vector); assert_eq!(query.query_vector, vector);
@@ -201,8 +218,8 @@ mod tests {
.metric_type(Some(MetricType::Cosine)) .metric_type(Some(MetricType::Cosine))
.refine_factor(Some(999)); .refine_factor(Some(999));
assert_eq!(query.query_vector, new_vector); assert_eq!(query.query_vector.unwrap(), new_vector);
assert_eq!(query.limit, 100); assert_eq!(query.limit.unwrap(), 100);
assert_eq!(query.nprobes, 1000); assert_eq!(query.nprobes, 1000);
assert_eq!(query.use_index, true); assert_eq!(query.use_index, true);
assert_eq!(query.metric_type, Some(MetricType::Cosine)); assert_eq!(query.metric_type, Some(MetricType::Cosine));
@@ -214,7 +231,7 @@ mod tests {
let batches = make_non_empty_batches(); let batches = make_non_empty_batches();
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap()); let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
let vector = Float32Array::from_iter_values([0.1; 4]); let vector = Some(Float32Array::from_iter_values([0.1; 4]));
let query = Query::new(ds.clone(), vector.clone()); let query = Query::new(ds.clone(), vector.clone());
let result = query let result = query
@@ -244,6 +261,27 @@ mod tests {
} }
} }
#[tokio::test]
async fn test_execute_no_vector() {
// test that it's ok to not specify a query vector (just filter / limit)
let batches = make_non_empty_batches();
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
let query = Query::new(ds.clone(), None);
let result = query
.filter(Some("id % 2 == 0".to_string()))
.execute()
.await;
let mut stream = result.expect("should have result");
// should only have one batch
while let Some(batch) = stream.next().await {
let b = batch.expect("should be Ok");
// cast arr into Int32Array
let arr: &Int32Array = b["id"].as_primitive();
assert!(arr.iter().all(|x| x.unwrap() % 2 == 0));
}
}
fn make_non_empty_batches() -> impl RecordBatchReader + Send + 'static { fn make_non_empty_batches() -> impl RecordBatchReader + Send + 'static {
let vec = Box::new(RandomVector::new().named("vector".to_string())); let vec = Box::new(RandomVector::new().named("vector".to_string()));
let id = Box::new(IncrementingInt32::new().named("id".to_string())); let id = Box::new(IncrementingInt32::new().named("id".to_string()));

View File

@@ -14,6 +14,7 @@
use chrono::Duration; use chrono::Duration;
use lance::dataset::builder::DatasetBuilder; use lance::dataset::builder::DatasetBuilder;
use lance::index::scalar::ScalarIndexParams;
use lance_index::IndexType; use lance_index::IndexType;
use std::sync::Arc; use std::sync::Arc;
@@ -23,7 +24,7 @@ use lance::dataset::cleanup::RemovalStats;
use lance::dataset::optimize::{ use lance::dataset::optimize::{
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions, compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
}; };
use lance::dataset::{Dataset, WriteParams}; use lance::dataset::{Dataset, UpdateBuilder, WriteParams};
use lance::index::DatasetIndexExt; use lance::index::DatasetIndexExt;
use lance::io::object_store::WrappingObjectStore; use lance::io::object_store::WrappingObjectStore;
use std::path::Path; use std::path::Path;
@@ -262,6 +263,16 @@ impl Table {
Ok(()) Ok(())
} }
/// Create a scalar index on the table
pub async fn create_scalar_index(&mut self, column: &str, replace: bool) -> Result<()> {
let mut dataset = self.dataset.as_ref().clone();
let params = ScalarIndexParams::default();
dataset
.create_index(&[column], IndexType::Scalar, None, &params, replace)
.await?;
Ok(())
}
pub async fn optimize_indices(&mut self) -> Result<()> { pub async fn optimize_indices(&mut self) -> Result<()> {
let mut dataset = self.dataset.as_ref().clone(); let mut dataset = self.dataset.as_ref().clone();
@@ -308,10 +319,14 @@ impl Table {
/// # Returns /// # Returns
/// ///
/// * A [Query] object. /// * A [Query] object.
pub fn search(&self, query_vector: Float32Array) -> Query { pub fn search(&self, query_vector: Option<Float32Array>) -> Query {
Query::new(self.dataset.clone(), query_vector) Query::new(self.dataset.clone(), query_vector)
} }
pub fn filter(&self, expr: String) -> Query {
Query::new(self.dataset.clone(), None).filter(Some(expr))
}
/// Returns the number of rows in this Table /// Returns the number of rows in this Table
pub async fn count_rows(&self) -> Result<usize> { pub async fn count_rows(&self) -> Result<usize> {
Ok(self.dataset.count_rows().await?) Ok(self.dataset.count_rows().await?)
@@ -338,6 +353,27 @@ impl Table {
Ok(()) Ok(())
} }
pub async fn update(
&mut self,
predicate: Option<&str>,
updates: Vec<(&str, &str)>,
) -> Result<()> {
let mut builder = UpdateBuilder::new(self.dataset.clone());
if let Some(predicate) = predicate {
builder = builder.update_where(predicate)?;
}
for (column, value) in updates {
builder = builder.set(column, value)?;
}
let operation = builder.build()?;
let new_ds = operation.execute().await?;
self.dataset = new_ds;
Ok(())
}
/// Remove old versions of the dataset from disk. /// Remove old versions of the dataset from disk.
/// ///
/// # Arguments /// # Arguments
@@ -413,11 +449,14 @@ mod tests {
use std::sync::Arc; use std::sync::Arc;
use arrow_array::{ use arrow_array::{
Array, FixedSizeListArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator, Array, BooleanArray, Date32Array, FixedSizeListArray, Float32Array, Float64Array,
RecordBatchReader, Int32Array, Int64Array, LargeStringArray, RecordBatch, RecordBatchIterator,
RecordBatchReader, StringArray, TimestampMillisecondArray, TimestampNanosecondArray,
UInt32Array,
}; };
use arrow_data::ArrayDataBuilder; use arrow_data::ArrayDataBuilder;
use arrow_schema::{DataType, Field, Schema}; use arrow_schema::{DataType, Field, Schema, TimeUnit};
use futures::TryStreamExt;
use lance::dataset::{Dataset, WriteMode}; use lance::dataset::{Dataset, WriteMode};
use lance::index::vector::pq::PQBuildParams; use lance::index::vector::pq::PQBuildParams;
use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore}; use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore};
@@ -540,6 +579,272 @@ mod tests {
assert_eq!(table.name, "test"); assert_eq!(table.name, "test");
} }
#[tokio::test]
async fn test_update_with_predicate() {
let tmp_dir = tempdir().unwrap();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let schema = Arc::new(Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("name", DataType::Utf8, false),
]));
let record_batch_iter = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..10)),
Arc::new(StringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Dataset::write(record_batch_iter, uri, None).await.unwrap();
let mut table = Table::open(uri).await.unwrap();
table
.update(Some("id > 5"), vec![("name", "'foo'")])
.await
.unwrap();
let ds_after = Dataset::open(uri).await.unwrap();
let mut batches = ds_after
.scan()
.project(&["id", "name"])
.unwrap()
.try_into_stream()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
while let Some(batch) = batches.pop() {
let ids = batch
.column(0)
.as_any()
.downcast_ref::<Int32Array>()
.unwrap()
.iter()
.collect::<Vec<_>>();
let names = batch
.column(1)
.as_any()
.downcast_ref::<StringArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for (i, name) in names.iter().enumerate() {
let id = ids[i].unwrap();
let name = name.unwrap();
if id > 5 {
assert_eq!(name, "foo");
} else {
assert_eq!(name, &format!("{}", (b'a' + id as u8) as char));
}
}
}
}
#[tokio::test]
async fn test_update_all_types() {
let tmp_dir = tempdir().unwrap();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let schema = Arc::new(Schema::new(vec![
Field::new("int32", DataType::Int32, false),
Field::new("int64", DataType::Int64, false),
Field::new("uint32", DataType::UInt32, false),
Field::new("string", DataType::Utf8, false),
Field::new("large_string", DataType::LargeUtf8, false),
Field::new("float32", DataType::Float32, false),
Field::new("float64", DataType::Float64, false),
Field::new("bool", DataType::Boolean, false),
Field::new("date32", DataType::Date32, false),
Field::new(
"timestamp_ns",
DataType::Timestamp(TimeUnit::Nanosecond, None),
false,
),
Field::new(
"timestamp_ms",
DataType::Timestamp(TimeUnit::Millisecond, None),
false,
),
Field::new(
"vec_f32",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 2),
false,
),
Field::new(
"vec_f64",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float64, true)), 2),
false,
),
]));
let record_batch_iter = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..10)),
Arc::new(Int64Array::from_iter_values(0..10)),
Arc::new(UInt32Array::from_iter_values(0..10)),
Arc::new(StringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
Arc::new(LargeStringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
Arc::new(Float32Array::from_iter_values(
(0..10).into_iter().map(|i| i as f32),
)),
Arc::new(Float64Array::from_iter_values(
(0..10).into_iter().map(|i| i as f64),
)),
Arc::new(Into::<BooleanArray>::into(vec![
true, false, true, false, true, false, true, false, true, false,
])),
Arc::new(Date32Array::from_iter_values(0..10)),
Arc::new(TimestampNanosecondArray::from_iter_values(0..10)),
Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
Arc::new(
create_fixed_size_list(
Float32Array::from_iter_values((0..20).into_iter().map(|i| i as f32)),
2,
)
.unwrap(),
),
Arc::new(
create_fixed_size_list(
Float64Array::from_iter_values((0..20).into_iter().map(|i| i as f64)),
2,
)
.unwrap(),
),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Dataset::write(record_batch_iter, uri, None).await.unwrap();
let mut table = Table::open(uri).await.unwrap();
// check it can do update for each type
let updates: Vec<(&str, &str)> = vec![
("string", "'foo'"),
("large_string", "'large_foo'"),
("int32", "1"),
("int64", "1"),
("uint32", "1"),
("float32", "1.0"),
("float64", "1.0"),
("bool", "true"),
("date32", "1"),
("timestamp_ns", "1"),
("timestamp_ms", "1"),
("vec_f32", "[1.0, 1.0]"),
("vec_f64", "[1.0, 1.0]"),
];
// for (column, value) in test_cases {
table.update(None, updates).await.unwrap();
let ds_after = Dataset::open(uri).await.unwrap();
let mut batches = ds_after
.scan()
.project(&[
"string",
"large_string",
"int32",
"int64",
"uint32",
"float32",
"float64",
"bool",
"date32",
"timestamp_ns",
"timestamp_ms",
"vec_f32",
"vec_f64",
])
.unwrap()
.try_into_stream()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
let batch = batches.pop().unwrap();
macro_rules! assert_column {
($column:expr, $array_type:ty, $expected:expr) => {
let array = $column
.as_any()
.downcast_ref::<$array_type>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
assert_eq!(v, Some($expected));
}
};
}
assert_column!(batch.column(0), StringArray, "foo");
assert_column!(batch.column(1), LargeStringArray, "large_foo");
assert_column!(batch.column(2), Int32Array, 1);
assert_column!(batch.column(3), Int64Array, 1);
assert_column!(batch.column(4), UInt32Array, 1);
assert_column!(batch.column(5), Float32Array, 1.0);
assert_column!(batch.column(6), Float64Array, 1.0);
assert_column!(batch.column(7), BooleanArray, true);
assert_column!(batch.column(8), Date32Array, 1);
assert_column!(batch.column(9), TimestampNanosecondArray, 1);
assert_column!(batch.column(10), TimestampMillisecondArray, 1);
let array = batch
.column(11)
.as_any()
.downcast_ref::<FixedSizeListArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
let v = v.unwrap();
let f32array = v.as_any().downcast_ref::<Float32Array>().unwrap();
for v in f32array {
assert_eq!(v, Some(1.0));
}
}
let array = batch
.column(12)
.as_any()
.downcast_ref::<FixedSizeListArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
let v = v.unwrap();
let f64array = v.as_any().downcast_ref::<Float64Array>().unwrap();
for v in f64array {
assert_eq!(v, Some(1.0));
}
}
}
#[tokio::test] #[tokio::test]
async fn test_search() { async fn test_search() {
let tmp_dir = tempdir().unwrap(); let tmp_dir = tempdir().unwrap();
@@ -554,8 +859,8 @@ mod tests {
let table = Table::open(uri).await.unwrap(); let table = Table::open(uri).await.unwrap();
let vector = Float32Array::from_iter_values([0.1, 0.2]); let vector = Float32Array::from_iter_values([0.1, 0.2]);
let query = table.search(vector.clone()); let query = table.search(Some(vector.clone()));
assert_eq!(vector, query.query_vector); assert_eq!(vector, query.query_vector.unwrap());
} }
#[derive(Default, Debug)] #[derive(Default, Debug)]