Compare commits

...

42 Commits

Author SHA1 Message Date
Chang She
9eca8e7cd1 tests pass; still need catalog 2023-12-21 20:13:08 -08:00
Chang She
587fe6ffc1 almost 2023-12-21 19:45:10 -08:00
Chang She
89c8e5839b initial changes to enable an in-memory dataset 2023-12-21 08:52:11 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
Chang She
7856a94d2c feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 12:28:53 -08:00
Chang She
371d2f979e feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-12-20 12:23:07 -08:00
Aidan
fff8e399a3 feat: Node create index API (#720) 2023-12-20 15:22:35 -05:00
Aidan
73e4015797 feat: Node Schema API (#717) 2023-12-20 12:16:40 -05:00
Lance Release
5142a27482 Updating package-lock.json 2023-12-18 18:15:50 +00:00
Lance Release
81df2a524e Updating package-lock.json 2023-12-18 17:29:58 +00:00
Lance Release
40638e5515 Bump version: 0.3.11 → 0.4.0 2023-12-18 17:29:47 +00:00
Lance Release
018314a5c1 [python] Bump version: 0.3.6 → 0.4.0 2023-12-18 17:27:26 +00:00
Lei Xu
409eb30ea5 chore: bump lance version to 0.9 (#715) 2023-12-17 22:11:42 -05:00
Lance Release
ff9872fd44 Updating package-lock.json 2023-12-15 18:25:06 +00:00
Lance Release
a0608044a1 [python] Bump version: 0.3.5 → 0.3.6 2023-12-15 18:20:55 +00:00
Lance Release
2e4ea7d2bc Updating package-lock.json 2023-12-15 18:01:45 +00:00
Lance Release
57e5695a54 Bump version: 0.3.10 → 0.3.11 2023-12-15 18:01:34 +00:00
Bert
ce58ea7c38 chore: fix package lock (#711) 2023-12-15 11:49:16 -05:00
Bert
57207eff4a implement update for remote clients (#706) 2023-12-15 09:06:40 -05:00
Rob Meng
2d78bff120 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2023-12-15 00:19:08 -05:00
Rob Meng
7c09b9b9a9 feat: allow custom column name in query (#709) 2023-12-14 23:29:26 -05:00
Chang She
bd0034a157 feat: support nested pydantic schema (#707) 2023-12-14 18:20:45 -08:00
Will Jones
144b3b5d83 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2023-12-14 12:09:28 -08:00
Lance Release
b6f0a31686 Updating package-lock.json 2023-12-14 19:31:56 +00:00
Lance Release
9ec526f73f Bump version: 0.3.9 → 0.3.10 2023-12-14 19:31:41 +00:00
Lance Release
600bfd7237 [python] Bump version: 0.3.4 → 0.3.5 2023-12-14 19:31:22 +00:00
Will Jones
d087e7891d feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2023-12-14 11:28:32 -08:00
Chang She
098e397cf0 feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2023-12-13 22:59:01 -08:00
Bert
63ee8fa6a1 Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-13 14:53:06 -05:00
Ayush Chaurasia
693091db29 chore(python): Reduce posthog event count (#661)
- Register open_table as event 
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2023-12-08 11:00:51 -08:00
Ayush Chaurasia
dca4533dbe docs: Update roboflow tutorial position (#666) 2023-12-08 11:00:11 -08:00
QianZhu
f6bbe199dc Qian/minor fix doc (#695) 2023-12-08 09:58:53 -08:00
Kaushal Kumar Choudhary
366e522c2b docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2023-12-08 20:55:04 +05:30
Chang She
244b6919cc chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2023-12-07 15:49:52 -08:00
QianZhu
aca785ff98 saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2023-12-07 14:47:56 -08:00
Chang She
bbdebf2c38 chore: update package lock (#689) 2023-12-06 17:14:56 -08:00
53 changed files with 2054 additions and 363 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.9
current_version = 0.4.0
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

33
.github/ISSUE_TEMPLATE/bug-node.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Node / Typescript
description: File a bug report
title: "bug(node): "
labels: [bug, typescript]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `npm list | grep vectordb`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

33
.github/ISSUE_TEMPLATE/bug-python.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Python
description: File a bug report
title: "bug(python): "
labels: [bug, python]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,5 @@
blank_issues_enabled: true
contact_links:
- name: Discord Community Support
url: https://discord.com/invite/zMM32dvNtd
about: Please ask and answer questions here.

View File

@@ -0,0 +1,23 @@
name: 'Documentation improvement'
description: Report an issue with the documentation.
labels: [documentation]
body:
- type: textarea
id: description
attributes:
label: Description
description: >
Describe the issue with the documentation and how it can be fixed or improved.
validations:
required: true
- type: input
id: link
attributes:
label: Link
description: >
Provide a link to the existing documentation, if applicable.
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
validations:
required: false

31
.github/ISSUE_TEMPLATE/feature.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Feature suggestion
description: Suggestion a new feature for LanceDB
title: "Feature: "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Share a new idea for a feature or improvement. Be sure to search existing
issues first to avoid duplicates.
- type: dropdown
id: sdk
attributes:
label: SDK
description: Which SDK are you using? This helps us prioritize.
options:
- Python
- Node
- Rust
default: 0
validations:
required: false
- type: textarea
id: description
attributes:
label: Description
description: |
Describe the feature and why it would be useful. If applicable, consider
providing a code example of what it might be like to use the feature.
validations:
required: true

View File

@@ -38,13 +38,17 @@ jobs:
node/vectordb-*.tgz
node-macos:
runs-on: macos-13
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-13-xlarge
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
@@ -54,17 +58,15 @@ jobs:
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu

View File

@@ -44,12 +44,19 @@ jobs:
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac:
platform:
name: "Platform: ${{ matrix.config.name }}"
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
runs-on: "${{ matrix.mac-runner }}"
config:
- name: x86 Mac
runner: macos-13
- name: Arm Mac
runner: macos-13-xlarge
- name: x86 Windows
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
defaults:
run:
shell: bash
@@ -91,11 +98,7 @@ jobs:
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
pip install pytest pytest-mock
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest

View File

@@ -24,6 +24,29 @@ env:
RUST_BACKTRACE: "1"
jobs:
lint:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --all --all-features -- -D warnings
linux:
timeout-minutes: 30
runs-on: ubuntu-22.04

View File

@@ -5,24 +5,24 @@ exclude = ["python"]
resolver = "2"
[workspace.dependencies]
lance = { "version" = "=0.8.17", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.8.17" }
lance-linalg = { "version" = "=0.8.17" }
lance-testing = { "version" = "=0.8.17" }
lance = { "version" = "=0.9.1", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.1" }
lance-linalg = { "version" = "=0.9.1" }
lance-testing = { "version" = "=0.9.1" }
# Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false }
arrow-array = "47.0"
arrow-data = "47.0"
arrow-ipc = "47.0"
arrow-ord = "47.0"
arrow-schema = "47.0"
arrow-arith = "47.0"
arrow-cast = "47.0"
arrow = { version = "49.0.0", optional = false }
arrow-array = "49.0"
arrow-data = "49.0"
arrow-ipc = "49.0"
arrow-ord = "49.0"
arrow-schema = "49.0"
arrow-arith = "49.0"
arrow-cast = "49.0"
chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits",
] }
log = "0.4"
object_store = "0.7.1"
object_store = "0.8.0"
snafu = "0.7.4"
url = "2"

View File

@@ -5,10 +5,11 @@
**Developer-friendly, serverless vector database for AI applications**
<a href="https://lancedb.github.io/lancedb/">Documentation</a>
<a href="https://blog.lancedb.com/">Blog</a>
<a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a>
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
</p>

View File

@@ -80,7 +80,6 @@ nav:
- Ingest Embedding Functions: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb
- 🔍 Python full-text search: fts.md
@@ -99,6 +98,7 @@ nav:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 🌐 Javascript examples:
@@ -146,7 +146,8 @@ nav:
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API references:
- Python API: python/python.md
- OSS Python API: python/python.md
- SaaS Python API: python/saas-python.md
- Javascript API: javascript/modules.md
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms

View File

@@ -2,3 +2,4 @@ mkdocs==1.4.2
mkdocs-jupyter==0.24.1
mkdocs-material==9.1.3
mkdocstrings[python]==0.20.0
pydantic

View File

@@ -64,18 +64,26 @@ We'll cover the basics of using LanceDB on your local machine in this section.
tbl = db.create_table("table_from_df", data=df)
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Javascript"
```javascript
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
const tb = await db.createTable(
"myTable",
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `"overwrite"`
to the `createTable` function like this: `await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })`
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
@@ -108,7 +116,7 @@ Once created, you can open a table using the following code:
=== "Javascript"
```javascript
const tbl = await db.openTable("my_table");
const tbl = await db.openTable("myTable");
```
If you forget the name of your table, you can always get a listing of all table names:
@@ -194,10 +202,17 @@ Use the `drop_table()` method on the database to remove a table.
db.drop_table("my_table")
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "JavaScript"
```javascript
await db.dropTable('myTable')
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## What's next

View File

@@ -201,8 +201,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```javascript
data
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! info "Note"

View File

@@ -0,0 +1,18 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.remote.db.RemoteDBConnection
## Table
::: lancedb.remote.table.RemoteTable

View File

@@ -118,4 +118,101 @@ However, fast vector search using indices often entails making a trade-off with
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
always returns 100% recall.
See [ANN Index](ann_indexes.md) for more details.
See [ANN Index](ann_indexes.md) for more details.
### Output formats
LanceDB returns results in many different formats commonly used in python.
Let's create a LanceDB table with a nested schema:
```python
from datetime import datetime
import lancedb
from lancedb.pydantic import LanceModel, Vector
import numpy as np
from pydantic import BaseModel
uri = "data/sample-lancedb-nested"
class Metadata(BaseModel):
source: str
timestamp: datetime
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(1536)
payload: Document
# Let's add 100 sample rows to our dataset
data = [LanceSchema(
id=f"id{i}",
vector=np.random.randn(1536),
payload=Document(
content=f"document{i}", meta=Metadata(source=f"source{i%10}", timestamp=datetime.now())
),
) for i in range(100)]
tbl = db.create_table("documents", data=data)
```
#### As a pyarrow table
Using `to_arrow()` we can get the results back as a pyarrow Table.
This result table has the same columns as the LanceDB table, with
the addition of an `_distance` column for vector search or a `score`
column for full text search.
```python
tbl.search(np.random.randn(1536)).to_arrow()
```
#### As a pandas dataframe
You can also get the results as a pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas()
```
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
python dict column, which makes it difficult to support nested references.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)
```
If your table has a deeply nested struct, you can control how many levels
of nesting to flatten by passing in a positive integer.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=1)
```
#### As a list of python dicts
You can of course return results as a list of python dicts.
```python
tbl.search(np.random.randn(1536)).to_list()
```
#### As a list of pydantic models
We can add data using pydantic models, and we can certainly
retrieve results as pydantic models
```python
tbl.search(np.random.randn(1536)).to_pydantic(LanceSchema)
```
Note that in this case the extra `_distance` field is discarded since
it's not part of the LanceSchema.

View File

@@ -22,7 +22,7 @@ import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"}
data = [{"vector": row, "item": f"item {i}", "id": i}
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
tbl = db.create_table("my_vectors", data=data)
@@ -35,33 +35,25 @@ const db = await vectordb.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
data.push({vector: Array(1536).fill(i), id: i, item: `item ${i}`, strId: `${i}`})
}
const tbl = await db.createTable('my_vectors', data)
const tbl = await db.createTable('myVectors', data)
```
-->
=== "Python"
```python
tbl.search([100, 102]) \
.where("""(
(label IN [10, 20])
AND
(note.email IS NOT NULL)
) OR NOT note.created
""")
.where("(item IN ('item 0', 'item 2')) AND (id > 10)") \
.to_arrow()
```
=== "Javascript"
```javascript
tbl.search([100, 102])
.where(`(
(label IN [10, 20])
AND
(note.email IS NOT NULL)
) OR NOT note.created
`)
await tbl.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.execute()
```
@@ -118,3 +110,22 @@ The mapping from SQL types to Arrow types is:
[^1]: See precision mapping in previous table.
## Filtering without Vector Search
You can also filter your data without search.
=== "Python"
```python
tbl.search().where("id=10").limit(10).to_arrow()
```
=== "JavaScript"
```javascript
await tbl.where('id=10').limit(10).execute()
```
!!! warning
If your table is large, this could potentially return a very large
amount of data. Please be sure to use a `limit` clause unless
you're sure you want to return the whole result set.

80
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.3.9",
"version": "0.4.0",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.3.9",
"version": "0.4.0",
"cpu": [
"x64",
"arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.9",
"@lancedb/vectordb-darwin-x64": "0.3.9",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
"@lancedb/vectordb-linux-x64-gnu": "0.3.9",
"@lancedb/vectordb-win32-x64-msvc": "0.3.9"
"@lancedb/vectordb-darwin-arm64": "0.4.0",
"@lancedb/vectordb-darwin-x64": "0.4.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.0",
"@lancedb/vectordb-linux-x64-gnu": "0.4.0",
"@lancedb/vectordb-win32-x64-msvc": "0.4.0"
}
},
"node_modules/@apache-arrow/ts": {
@@ -316,10 +316,22 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.0.tgz",
"integrity": "sha512-cP6zGtBWXEcJHCI4uLNIP5ILtRvexvwmL8Uri1dnHG8dT8g12Ykug3BHO6Wt6wp/xASd2jJRIF/VAJsN9IeP1A==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.0.tgz",
"integrity": "sha512-ig0gV5ol1sFe2lb1HOatK0rizyj9I91WbnH79i7OdUl3nAQIcWm70CnxrPLtx0DS2NTGh2kFJbYCWcaUlu6YfA==",
"cpu": [
"x64"
],
@@ -329,9 +341,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.0.tgz",
"integrity": "sha512-gMXIDT2kriAPDwWIRKXdaTCNdOeFGEok1S9Y30AOruHXddW1vCIo4JNJIYbBqHnwAeI4wI3ae6GRCFaf1UxO3g==",
"cpu": [
"arm64"
],
@@ -341,9 +353,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.0.tgz",
"integrity": "sha512-ZQ3lDrDSz1IKdx/mS9Lz08agFO+OD5oSFrrcFNCoT1+H93eS1mCLdmCoEARu3jKbx0tMs38l5J9yXZ2QmJye3w==",
"cpu": [
"x64"
],
@@ -353,9 +365,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.0.tgz",
"integrity": "sha512-toNcNwBRE1sdsSf5hr7W8QiqZ33csc/knVEek4CyvYkZHJGh4Z6WI+DJUIASo5wzUez4TX7qUPpRPL9HuaPMCg==",
"cpu": [
"x64"
],
@@ -4856,28 +4868,34 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.0.tgz",
"integrity": "sha512-cP6zGtBWXEcJHCI4uLNIP5ILtRvexvwmL8Uri1dnHG8dT8g12Ykug3BHO6Wt6wp/xASd2jJRIF/VAJsN9IeP1A==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.9.tgz",
"integrity": "sha512-4xXQoPheyIl1P5kRoKmZtaAHFrYdL9pw5yq+r6ewIx0TCemN4LSvzSUTqM5nZl3QPU8FeL0CGD8Gt2gMU0HQ2A==",
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.0.tgz",
"integrity": "sha512-ig0gV5ol1sFe2lb1HOatK0rizyj9I91WbnH79i7OdUl3nAQIcWm70CnxrPLtx0DS2NTGh2kFJbYCWcaUlu6YfA==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.9.tgz",
"integrity": "sha512-WIxCZKnLeSlz0PGURtKSX6hJ4CYE2o5P+IFmmuWOWB1uNapQu6zOpea6rNxcRFHUA0IJdO02lVxVfn2hDX4SMg==",
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.0.tgz",
"integrity": "sha512-gMXIDT2kriAPDwWIRKXdaTCNdOeFGEok1S9Y30AOruHXddW1vCIo4JNJIYbBqHnwAeI4wI3ae6GRCFaf1UxO3g==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.9.tgz",
"integrity": "sha512-bQbcV9adKzYbJLNzDjk9OYsMnT2IjmieLfb4IQ1hj5IUoWfbg80Bd0+gZUnrmrhG6fe56TIriFZYQR9i7TSE9Q==",
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.0.tgz",
"integrity": "sha512-ZQ3lDrDSz1IKdx/mS9Lz08agFO+OD5oSFrrcFNCoT1+H93eS1mCLdmCoEARu3jKbx0tMs38l5J9yXZ2QmJye3w==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.3.9",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.9.tgz",
"integrity": "sha512-7EXI7P1QvAfgJNPWWBMDOkoJ696gSBAClcyEJNYg0JV21jVFZRwJVI3bZXflesWduFi/mTuzPkFFA68us1u19A==",
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.0.tgz",
"integrity": "sha512-toNcNwBRE1sdsSf5hr7W8QiqZ33csc/knVEek4CyvYkZHJGh4Z6WI+DJUIASo5wzUez4TX7qUPpRPL9HuaPMCg==",
"optional": true
},
"@neon-rs/cli": {

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.3.9",
"version": "0.4.0",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.3.9",
"@lancedb/vectordb-darwin-x64": "0.3.9",
"@lancedb/vectordb-linux-arm64-gnu": "0.3.9",
"@lancedb/vectordb-linux-x64-gnu": "0.3.9",
"@lancedb/vectordb-win32-x64-msvc": "0.3.9"
"@lancedb/vectordb-darwin-arm64": "0.4.0",
"@lancedb/vectordb-darwin-x64": "0.4.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.0",
"@lancedb/vectordb-linux-x64-gnu": "0.4.0",
"@lancedb/vectordb-win32-x64-msvc": "0.4.0"
}
}

View File

@@ -21,9 +21,10 @@ import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableUpdate, tableCleanupOldVersions, tableCompactFiles, tableListIndices, tableIndexStats } = require('../native.js')
export { Query }
export type { EmbeddingFunction }
@@ -261,6 +262,39 @@ export interface Table<T = number[]> {
*/
delete: (filter: string) => Promise<void>
/**
* Update rows in this table.
*
* This can be used to update a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [3, 3], name: 'Ye'},
* {id: 2, vector: [4, 4], name: 'Mike'},
* ];
* const tbl = await con.createTable("my_table", data)
*
* await tbl.update({
* filter: "id = 2",
* updates: { vector: [2, 2], name: "Michael" },
* })
*
* let results = await tbl.search([1, 1]).execute();
* // Returns [
* // {id: 2, vector: [2, 2], name: 'Michael'}
* // {id: 1, vector: [3, 3], name: 'Ye'}
* // ]
* ```
*
*/
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/**
* List the indicies on this table.
*/
@@ -272,6 +306,34 @@ export interface Table<T = number[]> {
indexStats: (indexUuid: string) => Promise<IndexStats>
}
export interface UpdateArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set
*/
values: Record<string, Literal>
}
export interface UpdateSqlArgs {
/**
* A filter in the same format used by a sql WHERE clause. The filter may be empty,
* in which case all rows will be updated.
*/
where?: string
/**
* A key-value map of updates. The keys are the column names, and the values are the
* new values to set as SQL expressions.
*/
valuesSql: Record<string, string>
}
export interface VectorIndex {
columns: string[]
name: string
@@ -426,6 +488,16 @@ export class LocalTable<T = number[]> implements Table<T> {
return new Query(query, this._tbl, this._embeddings)
}
/**
* Creates a filter query to find all rows matching the specified criteria
* @param value The filter criteria (like SQL where clause syntax)
*/
filter (value: string): Query<T> {
return new Query(undefined, this._tbl, this._embeddings).filter(value)
}
where = this.filter
/**
* Insert records into this Table.
*
@@ -481,6 +553,31 @@ export class LocalTable<T = number[]> implements Table<T> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
}
/**
* Update rows in this table.
*
* @param args see {@link UpdateArgs} and {@link UpdateSqlArgs} for more details
*
* @returns
*/
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
return tableUpdate.call(this._tbl, filter, updates).then((newTable: any) => { this._tbl = newTable })
}
/**
* Clean up old versions of the table, freeing disk space.
*
@@ -647,6 +744,11 @@ export interface IvfPQIndexConfig {
*/
replace?: boolean
/**
* Cache size of the index
*/
index_cache_size?: number
type: 'ivf_pq'
}

View File

@@ -23,10 +23,10 @@ const { tableSearch } = require('../native.js')
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _query: T
private readonly _query?: T
private readonly _tbl?: any
private _queryVector?: number[]
private _limit: number
private _limit?: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
@@ -35,10 +35,10 @@ export class Query<T = number[]> {
private _prefilter: boolean
protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
constructor (query?: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._limit = undefined
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
@@ -113,10 +113,12 @@ export class Query<T = number[]> {
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
if (this._query !== undefined) {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
}
const isElectron = this.isElectron()

View File

@@ -16,7 +16,8 @@ import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions, type CreateTableOptions, type VectorIndex,
type WriteOptions,
type IndexStats
type IndexStats,
type UpdateArgs, type UpdateSqlArgs
} from '../index'
import { Query } from '../query'
@@ -24,6 +25,7 @@ import { Vector, Table as ArrowTable } from 'apache-arrow'
import { HttpLancedbClient } from './client'
import { isEmbeddingFunction } from '../embedding/embedding_function'
import { createEmptyTable, fromRecordsToStreamBuffer, fromTableToStreamBuffer } from '../arrow'
import { toSQL } from '../util'
/**
* Remote connection.
@@ -55,8 +57,8 @@ export class RemoteConnection implements Connection {
return 'db://' + this._client.uri
}
async tableNames (): Promise<string[]> {
const response = await this._client.get('/v1/table/')
async tableNames (pageToken: string = '', limit: number = 10): Promise<string[]> {
const response = await this._client.get('/v1/table/', { limit, page_token: pageToken })
return response.data.tables
}
@@ -193,6 +195,17 @@ export class RemoteTable<T = number[]> implements Table<T> {
return this._name
}
get schema (): Promise<any> {
return this._client.post(`/v1/table/${this._name}/describe/`).then(res => {
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
return res.data?.schema
})
}
search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
}
@@ -233,8 +246,41 @@ export class RemoteTable<T = number[]> implements Table<T> {
return data.length
}
async createIndex (indexParams: VectorIndexParams): Promise<any> {
throw new Error('Not implemented')
async createIndex (indexParams: VectorIndexParams): Promise<void> {
const unsupportedParams = [
'index_name',
'num_partitions',
'max_iters',
'use_opq',
'num_sub_vectors',
'num_bits',
'max_opq_iters',
'replace'
]
for (const param of unsupportedParams) {
// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
if (indexParams[param as keyof VectorIndexParams]) {
throw new Error(`${param} is not supported for remote connections`)
}
}
const column = indexParams.column ?? 'vector'
const indexType = 'vector' // only vector index is supported for remote connections
const metricType = indexParams.metric_type ?? 'L2'
const indexCacheSize = indexParams ?? null
const data = {
column,
index_type: indexType,
metric_type: metricType,
index_cache_size: indexCacheSize
}
const res = await this._client.post(`/v1/table/${this._name}/create_index/`, data)
if (res.status !== 200) {
throw new Error(`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`)
}
}
async countRows (): Promise<number> {
@@ -246,6 +292,26 @@ export class RemoteTable<T = number[]> implements Table<T> {
await this._client.post(`/v1/table/${this._name}/delete/`, { predicate: filter })
}
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
} else {
filter = args.where ?? null
updates = {}
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
}
}
await this._client.post(`/v1/table/${this._name}/update/`, {
predicate: filter,
updates: Object.entries(updates).map(([key, value]) => [key, value])
})
}
async listIndices (): Promise<VectorIndex[]> {
const results = await this._client.post(`/v1/table/${this._name}/index/list/`)
return results.data.indexes?.map((index: any) => ({

View File

@@ -78,12 +78,31 @@ describe('LanceDB client', function () {
})
it('limits # of results', async function () {
const uri = await createTestDB()
const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).limit(1).execute()
let results = await table.search([0.1, 0.3]).limit(1).execute()
assert.equal(results.length, 1)
assert.equal(results[0].id, 1)
// there is a default limit if unspecified
results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 10)
})
it('uses a filter / where clause without vector search', async function () {
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
const assertResults = (results: Array<Record<string, unknown>>) => {
assert.equal(results.length, 50)
}
const uri = await createTestDB(2, 100)
const con = await lancedb.connect(uri)
const table = (await con.openTable('vectors')) as LocalTable
let results = await table.filter('id % 2 = 0').execute()
assertResults(results)
results = await table.where('id % 2 = 0').execute()
assertResults(results)
})
it('uses a filter / where clause', async function () {
@@ -260,6 +279,46 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('can update records in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update the records using a literal value', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ where: 'price = 10', values: { price: 100 } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 11)
})
it('can update every record in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.update({ valuesSql: { price: '100' } })
const results = await table.search([0.1, 0.2]).execute()
assert.equal(results[0].price, 100)
assert.equal(results[1].price, 100)
})
it('can delete records from a table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
@@ -542,7 +601,7 @@ describe('Compact and cleanup', function () {
// should have no effect, but this validates the arguments are parsed.
await table.compactFiles({
targetRowsPerFragment: 1024 * 10,
targetRowsPerFragment: 102410,
maxRowsPerGroup: 1024,
materializeDeletions: true,
materializeDeletionsThreshold: 0.5,

45
node/src/test/util.ts Normal file
View File

@@ -0,0 +1,45 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { toSQL } from '../util'
import * as chai from 'chai'
const expect = chai.expect
describe('toSQL', function () {
it('should turn string to SQL expression', function () {
expect(toSQL('foo')).to.equal("'foo'")
})
it('should turn number to SQL expression', function () {
expect(toSQL(123)).to.equal('123')
})
it('should turn boolean to SQL expression', function () {
expect(toSQL(true)).to.equal('TRUE')
})
it('should turn null to SQL expression', function () {
expect(toSQL(null)).to.equal('NULL')
})
it('should turn Date to SQL expression', function () {
const date = new Date('05 October 2011 14:48 UTC')
expect(toSQL(date)).to.equal("'2011-10-05T14:48:00.000Z'")
})
it('should turn array to SQL expression', function () {
expect(toSQL(['foo', 'bar', true, 1])).to.equal("['foo', 'bar', TRUE, 1]")
})
})

44
node/src/util.ts Normal file
View File

@@ -0,0 +1,44 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
export type Literal = string | number | boolean | null | Date | Literal[]
export function toSQL (value: Literal): string {
if (typeof value === 'string') {
return `'${value}'`
}
if (typeof value === 'number') {
return value.toString()
}
if (typeof value === 'boolean') {
return value ? 'TRUE' : 'FALSE'
}
if (value === null) {
return 'NULL'
}
if (value instanceof Date) {
return `'${value.toISOString()}'`
}
if (Array.isArray(value)) {
return `[${value.map(toSQL).join(', ')}]`
}
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw new Error(`Unsupported value type: ${typeof value} value: (${value})`)
}

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.3.4
current_version = 0.4.0
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -27,7 +27,7 @@ def connect(
uri: URI,
*,
api_key: Optional[str] = None,
region: str = "us-west-2",
region: str = "us-east-1",
host_override: Optional[str] = None,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -39,7 +39,7 @@ def connect(
api_key: str, optional
If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage.
region: str, default "us-west-2"
region: str, default "us-east-1"
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.

View File

@@ -23,7 +23,7 @@ from overrides import EnforceOverrides, override
from pyarrow import fs
from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING:
from .common import DATA, URI
@@ -288,14 +288,13 @@ class LanceDBConnection(DBConnection):
A list of table names.
"""
try:
filesystem, path = fs_from_uri(self.uri)
filesystem = fs_from_uri(self.uri)[0]
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
try:
paths = filesystem.get_file_info(
fs.FileSelector(get_uri_location(self.uri))
)
loc = get_uri_location(self.uri)
paths = filesystem.get_file_info(fs.FileSelector(loc))
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
@@ -373,7 +372,7 @@ class LanceDBConnection(DBConnection):
"""
try:
filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
table_path = join_uri(path, name + ".lance")
filesystem.delete_dir(table_path)
except FileNotFoundError:
if not ignore_missing:

View File

@@ -75,8 +75,14 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
The number of rows indexed
"""
# first check the fields exist and are string or large string type
nested = []
for name in fields:
f = table.schema.field(name) # raises KeyError if not found
try:
f = table.schema.field(name) # raises KeyError if not found
except KeyError:
f = resolve_path(table.schema, name)
nested.append(name)
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
raise TypeError(f"Field {name} is not a string type")
@@ -85,7 +91,16 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
# write data into index
dataset = table.to_lance()
row_id = 0
max_nested_level = 0
if len(nested) > 0:
max_nested_level = max([len(name.split(".")) for name in nested])
for b in dataset.to_batches(columns=fields):
if max_nested_level > 0:
b = pa.Table.from_batches([b])
for _ in range(max_nested_level - 1):
b = b.flatten()
for i in range(b.num_rows):
doc = tantivy.Document()
doc.add_integer("doc_id", row_id)
@@ -98,6 +113,30 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
return row_id
def resolve_path(schema, field_name: str) -> pa.Field:
"""
Resolve a nested field path to a list of field names
Parameters
----------
field_name : str
The field name to resolve
Returns
-------
List[str]
The resolved path
"""
path = field_name.split(".")
field = schema.field(path.pop(0))
for segment in path:
if pa.types.is_struct(field.type):
field = field.type.field(segment)
else:
raise KeyError(f"field {field_name} not found in schema {schema}")
return field
def search_index(
index: tantivy.Index, query: str, limit: int = 10
) -> Tuple[Tuple[int], Tuple[float]]:

View File

@@ -348,3 +348,20 @@ def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
if PYDANTIC_VERSION.major >= 2:
return (field_info.json_schema_extra or {}).get(key)
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
if PYDANTIC_VERSION.major < 2:
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
"""
Convert a Pydantic model to a dictionary.
"""
return model.dict()
else:
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
"""
Convert a Pydantic model to a dictionary.
"""
return model.model_dump()

View File

@@ -185,14 +185,40 @@ class LanceQueryBuilder(ABC):
"""
return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame":
def to_pandas(self, flatten: Optional[Union[int, bool]] = None) -> "pd.DataFrame":
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
Parameters
----------
flatten: Optional[Union[int, bool]]
If flatten is True, flatten all nested columns.
If flatten is an integer, flatten the nested columns up to the
specified depth.
If unspecified, do not flatten the nested columns.
"""
return self.to_arrow().to_pandas()
tbl = self.to_arrow()
if flatten is True:
while True:
tbl = tbl.flatten()
has_struct = False
# loop through all columns to check if there is any struct column
if any(pa.types.is_struct(col.type) for col in tbl.schema):
continue
else:
break
elif isinstance(flatten, int):
if flatten <= 0:
raise ValueError(
"Please specify a positive integer for flatten or the boolean value `True`"
)
while flatten > 0:
tbl = tbl.flatten()
flatten -= 1
return tbl.to_pandas()
@abstractmethod
def to_arrow(self) -> pa.Table:

View File

@@ -18,6 +18,8 @@ import attrs
import pyarrow as pa
from pydantic import BaseModel
from lancedb.common import VECTOR_COLUMN_NAME
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
@@ -43,6 +45,8 @@ class VectorQuery(BaseModel):
refine_factor: Optional[int] = None
vector_column: str = VECTOR_COLUMN_NAME
@attrs.define
class VectorQueryResult:

View File

@@ -56,16 +56,20 @@ class RemoteDBConnection(DBConnection):
self._loop = asyncio.get_event_loop()
def __repr__(self) -> str:
return f"RemoveConnect(name={self.db_name})"
return f"RemoteConnect(name={self.db_name})"
@override
def table_names(self, page_token: Optional[str] = None, limit=10) -> Iterable[str]:
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
) -> Iterable[str]:
"""List the names of all tables in the database.
Parameters
----------
page_token: str
The last token to start the new page.
limit: int, default 10
The maximum number of tables to return for each page.
Returns
-------
@@ -120,6 +124,97 @@ class RemoteDBConnection(DBConnection):
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
Parameters
----------
name: str
The name of the table.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
schema: The schema of the table, *optional*
Acceptable types are:
- pyarrow.Schema
- [LanceModel][lancedb.pydantic.LanceModel]
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
LanceTable
A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data) # doctest: +SKIP
LanceTable(my_table)
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data) # doctest: +SKIP
LanceTable(table2)
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema) # doctest: +SKIP
LanceTable(table3)
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]],
... pa.list_(pa.float32(), 2)),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema) # doctest: +SKIP
LanceTable(table4)
"""
if data is None and schema is None:
raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None:

View File

@@ -13,7 +13,7 @@
import uuid
from functools import cached_property
from typing import Optional, Union
from typing import Dict, Optional, Union
import pyarrow as pa
from lance import json_to_schema
@@ -22,6 +22,7 @@ from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceVectorQueryBuilder
from ..table import Query, Table, _sanitize_data
from ..util import value_to_sql
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection
@@ -37,7 +38,10 @@ class RemoteTable(Table):
@cached_property
def schema(self) -> pa.Schema:
"""Return the schema of the table."""
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
of this Table
"""
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/")
)
@@ -53,24 +57,17 @@ class RemoteTable(Table):
return resp["version"]
def to_arrow(self) -> pa.Table:
"""Return the table as an Arrow table."""
"""to_arrow() is not supported on the LanceDB cloud"""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self):
"""Return the table as a Pandas DataFrame.
Intercept `to_arrow()` for better error message.
"""
"""to_pandas() is not supported on the LanceDB cloud"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
def create_index(
self,
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
):
"""Create an index on the table.
@@ -81,39 +78,28 @@ class RemoteTable(Table):
----------
metric : str
The metric to use for the index. Default is "L2".
num_partitions : int
The number of partitions to use for the index. Default is 256.
num_sub_vectors : int
The number of sub-vectors to use for the index. Default is 96.
vector_column_name : str
The name of the vector column. Default is "vector".
replace : bool
Whether to replace the existing index. Default is True.
accelerator : str, optional
If set, use the given accelerator to create the index.
Default is None. Currently not supported.
index_cache_size : int, optional
The size of the index cache in number of entries. Default value is 256.
Examples
--------
import lancedb
import uuid
from lancedb.schema import vector
conn = lancedb.connect("db://...", api_key="...", region="...")
table_name = uuid.uuid4().hex
schema = pa.schema(
[
pa.field("id", pa.uint32(), False),
pa.field("vector", vector(128), False),
pa.field("s", pa.string(), False),
]
)
table = conn.create_table(
table_name,
schema=schema,
)
table.create_index()
>>> import lancedb
>>> import uuid
>>> from lancedb.schema import vector
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table_name = uuid.uuid4().hex
>>> schema = pa.schema(
... [
... pa.field("id", pa.uint32(), False),
... pa.field("vector", vector(128), False),
... pa.field("s", pa.string(), False),
... ]
... )
>>> table = db.create_table( # doctest: +SKIP
... table_name, # doctest: +SKIP
... schema=schema, # doctest: +SKIP
... )
>>> table.create_index("L2", "vector") # doctest: +SKIP
"""
index_type = "vector"
@@ -135,6 +121,28 @@ class RemoteTable(Table):
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> int:
"""Add more data to the [Table](Table). It has the same API signature as the OSS version.
Parameters
----------
data: DATA
The data to insert into the table. Acceptable types are:
- dict or list-of-dict
- pandas.DataFrame
- pyarrow.Table or pyarrow.RecordBatch
mode: str
The mode to use when writing the data. Valid values are
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
data = _sanitize_data(
data,
self.schema,
@@ -158,6 +166,58 @@ class RemoteTable(Table):
def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
All query options are defined in [Query][lancedb.query.Query].
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> data = [
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
... ]
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
... .select(["caption", "original_width"]) # doctest: +SKIP
... .limit(2) # doctest: +SKIP
... .to_pandas()) # doctest: +SKIP
caption original_width vector _distance # doctest: +SKIP
0 foo 2000 [0.5, 3.4, 1.3] 5.220000 # doctest: +SKIP
1 test 3000 [0.3, 6.2, 2.6] 23.089996 # doctest: +SKIP
Parameters
----------
query: list/np.ndarray/str/PIL.Image.Image, default None
The targetted vector to search for.
- *default None*.
Acceptable types are: list, np.ndarray, PIL.Image.Image
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
The name of the vector column to search.
*default "vector"*
Returns
-------
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns
- selected columns
- the vector
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table:
@@ -165,8 +225,114 @@ class RemoteTable(Table):
return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str):
"""Delete rows from the table."""
"""Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
Parameters
----------
predicate: str
The SQL where clause to use when deleting rows.
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
The filter must not be empty, or it will error.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
1 2 [3.0, 4.0] 85.0 # doctest: +SKIP
2 1 [1.0, 2.0] 145.0 # doctest: +SKIP
>>> table.delete("x = 2") # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 3 [5.0, 6.0] 41.0 # doctest: +SKIP
1 1 [1.0, 2.0] 145.0 # doctest: +SKIP
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
>>> to_remove = [1, 3] # doctest: +SKIP
>>> to_remove = ", ".join([str(v) for v in to_remove]) # doctest: +SKIP
>>> table.delete(f"x IN ({to_remove})") # doctest: +SKIP
>>> table.search([10,10]).to_pandas() # doctest: +SKIP
x vector _distance # doctest: +SKIP
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
"""
payload = {"predicate": predicate}
self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/delete/", data=payload)
)
def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
"""
This can be used to update zero to all rows depending on how many
rows match the where clause.
Parameters
----------
where: str, optional
The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict, optional
The values to update. The keys are the column names and the values
are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> db = lancedb.connect("db://...", api_key="...", region="...") # doctest: +SKIP
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> table.to_pandas() # doctest: +SKIP
x vector # doctest: +SKIP
0 1 [1.0, 2.0] # doctest: +SKIP
1 2 [3.0, 4.0] # doctest: +SKIP
2 3 [5.0, 6.0] # doctest: +SKIP
>>> table.update(where="x = 2", values={"vector": [10, 10]}) # doctest: +SKIP
>>> table.to_pandas() # doctest: +SKIP
x vector # doctest: +SKIP
0 1 [1.0, 2.0] # doctest: +SKIP
1 3 [5.0, 6.0] # doctest: +SKIP
2 2 [10.0, 10.0] # doctest: +SKIP
"""
if values is not None and values_sql is not None:
raise ValueError("Only one of values or values_sql can be provided")
if values is None and values_sql is None:
raise ValueError("Either values or values_sql must be provided")
if values is not None:
updates = [[k, value_to_sql(v)] for k, v in values.items()]
else:
updates = [[k, v] for k, v in values_sql.items()]
payload = {"predicate": where, "updates": updates}
self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
)

View File

@@ -17,20 +17,21 @@ import inspect
import os
from abc import ABC, abstractmethod
from functools import cached_property
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Union
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
import lance
import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.fs as pa_fs
from lance import LanceDataset
from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from .pydantic import LanceModel
from .pydantic import LanceModel, model_to_dict
from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas
from .util import fs_from_uri, safe_import_pandas, value_to_sql, join_uri
from .utils.events import register_event
if TYPE_CHECKING:
@@ -53,8 +54,10 @@ def _sanitize_data(
# convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema()
data = [dict(d) for d in data]
data = pa.Table.from_pylist(data)
data = [model_to_dict(d) for d in data]
data = pa.Table.from_pylist(data, schema=schema)
else:
data = pa.Table.from_pylist(data)
elif isinstance(data, dict):
data = vec_to_table(data)
elif pd is not None and isinstance(data, pd.DataFrame):
@@ -394,14 +397,6 @@ class LanceTable(Table):
self.name = name
self._version = version
def _reset_dataset(self, version=None):
try:
if "_dataset" in self.__dict__:
del self.__dict__["_dataset"]
self._version = version
except AttributeError:
pass
@property
def schema(self) -> pa.Schema:
"""Return the schema of the table.
@@ -410,16 +405,16 @@ class LanceTable(Table):
-------
pa.Schema
A PyArrow schema object."""
return self._dataset.schema
return self.to_lance().schema
def list_versions(self):
"""List all versions of the table"""
return self._dataset.versions()
return self.to_lance().versions()
@property
def version(self) -> int:
"""Get the current version of the table"""
return self._dataset.version
return self.to_lance().version
def checkout(self, version: int):
"""Checkout a version of the table. This is an in-place operation.
@@ -452,14 +447,12 @@ class LanceTable(Table):
vector type
0 [1.1, 0.9] vector
"""
max_ver = max([v["version"] for v in self._dataset.versions()])
max_ver = max([v["version"] for v in self.to_lance().versions()])
if version < 1 or version > max_ver:
raise ValueError(f"Invalid version {version}")
self._reset_dataset(version=version)
try:
# Accessing the property updates the cached value
_ = self._dataset
self.to_lance().checkout(version)
except Exception as e:
if "not found" in str(e):
raise ValueError(
@@ -502,7 +495,7 @@ class LanceTable(Table):
>>> len(table.list_versions())
4
"""
max_ver = max([v["version"] for v in self._dataset.versions()])
max_ver = max([v["version"] for v in self.to_lance().versions()])
if version is None:
version = self.version
elif version < 1 or version > max_ver:
@@ -514,11 +507,10 @@ class LanceTable(Table):
# no-op if restoring the latest version
return
self._dataset.restore()
self._reset_dataset()
self.to_lance().restore()
def __len__(self):
return self._dataset.count_rows()
return self.to_lance().count_rows()
def __repr__(self) -> str:
return f"LanceTable({self.name})"
@@ -528,7 +520,7 @@ class LanceTable(Table):
def head(self, n=5) -> pa.Table:
"""Return the first n rows of the table."""
return self._dataset.head(n)
return self.to_lance().head(n)
def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame.
@@ -545,11 +537,11 @@ class LanceTable(Table):
Returns
-------
pa.Table"""
return self._dataset.to_table()
return self.to_lance().to_table()
@property
def _dataset_uri(self) -> str:
return os.path.join(self._conn.uri, f"{self.name}.lance")
return join_uri(self._conn.uri, f"{self.name}.lance")
def create_index(
self,
@@ -572,10 +564,11 @@ class LanceTable(Table):
accelerator=accelerator,
index_cache_size=index_cache_size,
)
self._reset_dataset()
register_event("create_index")
def create_fts_index(self, field_names: Union[str, List[str]]):
def create_fts_index(
self, field_names: Union[str, List[str]], *, replace: bool = False
):
"""Create a full-text search index on the table.
Warning - this API is highly experimental and is highly likely to change
@@ -585,17 +578,35 @@ class LanceTable(Table):
----------
field_names: str or list of str
The name(s) of the field to index.
replace: bool, default False
If True, replace the existing index if it exists. Note that this is
not yet an atomic operation; the index will be temporarily
unavailable while the new index is being created.
"""
from .fts import create_index, populate_index
if isinstance(field_names, str):
field_names = [field_names]
fs, path = fs_from_uri(self._get_fts_index_path())
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
if index_exists:
if not replace:
raise ValueError(
f"Index already exists. Use replace=True to overwrite."
)
try:
fs.delete_dir(path)
except FileNotFoundError as e:
if "Cannot get information for path" in str(e):
pass
index = create_index(self._get_fts_index_path(), field_names)
populate_index(index, self, field_names)
register_event("create_fts_index")
def _get_fts_index_path(self):
return os.path.join(self._dataset_uri, "_indices", "tantivy")
return join_uri(self._dataset_uri, "_indices", "tantivy")
@cached_property
def _dataset(self) -> LanceDataset:
@@ -643,8 +654,7 @@ class LanceTable(Table):
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
self._reset_dataset()
self.to_lance().write(data, mode=mode)
register_event("add")
def merge(
@@ -705,10 +715,9 @@ class LanceTable(Table):
other_table = other_table.to_lance()
if isinstance(other_table, LanceDataset):
other_table = other_table.to_table()
self._dataset.merge(
self.to_lance().merge(
other_table, left_on=left_on, right_on=right_on, schema=schema
)
self._reset_dataset()
register_event("merge")
@cached_property
@@ -785,7 +794,7 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
register_event("search")
register_event("search_table")
return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name
)
@@ -906,35 +915,42 @@ class LanceTable(Table):
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
register_event("open_table")
return tbl
def delete(self, where: str):
self._dataset.delete(where)
self.to_lance().delete(where)
def update(self, where: str, values: dict):
def update(
self,
where: Optional[str] = None,
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
"""
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many
rows match the where clause.
Parameters
----------
where: str
where: str, optional
The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict
values: dict, optional
The values to update. The keys are the column names and the values
are the values to set.
values_sql: dict, optional
The values to update, expressed as SQL expression strings. These can
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Examples
--------
>>> import lancedb
>>> data = [
... {"x": 1, "vector": [1, 2]},
... {"x": 2, "vector": [3, 4]},
... {"x": 3, "vector": [5, 6]}
... ]
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
@@ -950,19 +966,15 @@ class LanceTable(Table):
2 2 [10.0, 10.0]
"""
orig_data = self._dataset.to_table(filter=where).combine_chunks()
if len(orig_data) == 0:
return
for col, val in values.items():
i = orig_data.column_names.index(col)
if i < 0:
raise ValueError(f"Column {col} does not exist")
orig_data = orig_data.set_column(
i, col, pa.array([val] * len(orig_data), type=orig_data[col].type)
)
self.delete(where)
self.add(orig_data, mode="append")
self._reset_dataset()
if values is not None and values_sql is not None:
raise ValueError("Only one of values or values_sql can be provided")
if values is None and values_sql is None:
raise ValueError("Either values or values_sql must be provided")
if values is not None:
values_sql = {k: value_to_sql(v) for k, v in values.items()}
self.to_lance().update(values_sql, where)
register_event("update")
def _execute_query(self, query: Query) -> pa.Table:

View File

@@ -12,9 +12,13 @@
# limitations under the License.
import os
from typing import Tuple
from datetime import date, datetime
from functools import singledispatch
import pathlib
from typing import Tuple, Union
from urllib.parse import urlparse
import numpy as np
import pyarrow.fs as pa_fs
@@ -59,6 +63,12 @@ def get_uri_location(uri: str) -> str:
str: Location part of the URL, without scheme
"""
parsed = urlparse(uri)
if len(parsed.scheme) == 1:
# Windows drive names are parsed as the scheme
# e.g. "c:\path" -> ParseResult(scheme="c", netloc="", path="/path", ...)
# So we add special handling here for schemes that are a single character
return uri
if not parsed.netloc:
return parsed.path
else:
@@ -81,6 +91,29 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
return pa_fs.FileSystem.from_uri(uri)
def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
"""
Join a URI with multiple parts, handles both local and remote paths
Parameters
----------
base : str
The base URI
parts : str
The parts to join to the base URI, each separated by the
appropriate path separator for the URI scheme and OS
"""
if isinstance(base, pathlib.Path):
return base.joinpath(*parts)
base = str(base)
if get_uri_scheme(base) == "file":
# using pathlib for local paths make this windows compatible
# `get_uri_scheme` returns `file` for windows drive names (e.g. `c:\path`)
return str(pathlib.Path(base, *parts))
# for remote paths, just use os.path.join
return "/".join([p.rstrip("/") for p in [base, *parts]])
def safe_import_pandas():
try:
import pandas as pd
@@ -88,3 +121,53 @@ def safe_import_pandas():
return pd
except ImportError:
return None
@singledispatch
def value_to_sql(value):
raise NotImplementedError("SQL conversion is not implemented for this type")
@value_to_sql.register(str)
def _(value: str):
return f"'{value}'"
@value_to_sql.register(int)
def _(value: int):
return str(value)
@value_to_sql.register(float)
def _(value: float):
return str(value)
@value_to_sql.register(bool)
def _(value: bool):
return str(value).upper()
@value_to_sql.register(type(None))
def _(value: type(None)):
return "NULL"
@value_to_sql.register(datetime)
def _(value: datetime):
return f"'{value.isoformat()}'"
@value_to_sql.register(date)
def _(value: date):
return f"'{value.isoformat()}'"
@value_to_sql.register(list)
def _(value: list):
return "[" + ", ".join(map(value_to_sql, value)) + "]"
@value_to_sql.register(np.ndarray)
def _(value: np.ndarray):
return value_to_sql(value.tolist())

View File

@@ -64,8 +64,10 @@ class _Events:
Initializes the Events object with default values for events, rate_limit, and metadata.
"""
self.events = [] # events list
self.max_events = 25 # max events to store in memory
self.rate_limit = 60.0 # rate limit (seconds)
self.throttled_event_names = ["search_table"]
self.throttled_events = set()
self.max_events = 5 # max events to store in memory
self.rate_limit = 60.0 * 5 # rate limit (seconds)
self.time = 0.0
if is_git_dir():
@@ -112,18 +114,21 @@ class _Events:
return
if (
len(self.events) < self.max_events
): # Events list limited to 25 events (drop any events past this)
): # Events list limited to self.max_events (drop any events past this)
params.update(self.metadata)
self.events.append(
{
"event": event_name,
"properties": params,
"timestamp": datetime.datetime.now(
tz=datetime.timezone.utc
).isoformat(),
"distinct_id": CONFIG["uuid"],
}
)
event = {
"event": event_name,
"properties": params,
"timestamp": datetime.datetime.now(
tz=datetime.timezone.utc
).isoformat(),
"distinct_id": CONFIG["uuid"],
}
if event_name not in self.throttled_event_names:
self.events.append(event)
elif event_name not in self.throttled_events:
self.throttled_events.add(event_name)
self.events.append(event)
# Check rate limit
t = time.time()
@@ -135,7 +140,6 @@ class _Events:
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
"batch": self.events,
}
# POST equivalent to requests.post(self.url, json=data).
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
# to avoid any possible disruption in the console.
@@ -150,6 +154,7 @@ class _Events:
# Flush & Reset
self.events = []
self.throttled_events = set()
self.time = t

View File

@@ -1,12 +1,12 @@
[project]
name = "lancedb"
version = "0.3.4"
version = "0.4.0"
dependencies = [
"deprecation",
"pylance==0.8.17",
"pylance==0.9.1",
"ratelimiter~=1.0",
"retry>=0.9.2",
"tqdm>=4.1.0",
"tqdm>=4.27.0",
"aiohttp",
"pydantic>=1.10",
"attrs>=21.3.0",

View File

@@ -43,7 +43,15 @@ def table(tmp_path) -> ldb.table.LanceTable:
for _ in range(100)
]
table = db.create_table(
"test", data=pd.DataFrame({"vector": vectors, "text": text, "text2": text})
"test",
data=pd.DataFrame(
{
"vector": vectors,
"text": text,
"text2": text,
"nested": [{"text": t} for t in text],
}
),
)
return table
@@ -75,6 +83,24 @@ def test_create_index_from_table(tmp_path, table):
assert len(df) == 10
assert "text" in df.columns
# Check whether it can be updated
table.add(
[
{
"vector": np.random.randn(128),
"text": "gorilla",
"text2": "gorilla",
"nested": {"text": "gorilla"},
}
]
)
table.create_fts_index("text", replace=True)
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
with pytest.raises(ValueError, match="already exists"):
table.create_fts_index("text")
def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"])
@@ -89,3 +115,9 @@ def test_empty_rs(tmp_path, table, mocker):
mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 0
def test_nested_schema(tmp_path, table):
table.create_fts_index("nested.text")
rs = table.search("puppy").limit(10).to_list()
assert len(rs) == 10

View File

@@ -12,7 +12,7 @@
# limitations under the License.
import functools
from datetime import timedelta
from datetime import date, datetime, timedelta
from pathlib import Path
from typing import List
from unittest.mock import PropertyMock, patch
@@ -22,6 +22,7 @@ import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from pydantic import BaseModel
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection
@@ -141,14 +142,44 @@ def test_add(db):
def test_add_pydantic_model(db):
class TestModel(LanceModel):
vector: Vector(16)
li: List[int]
# https://github.com/lancedb/lancedb/issues/562
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
table = LanceTable.create(db, "test", data=[data])
assert len(table) == 1
assert table.schema == TestModel.to_arrow_schema()
class Metadata(BaseModel):
source: str
timestamp: datetime
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(2)
li: List[int]
payload: Document
tbl = LanceTable.create(db, "mytable", schema=LanceSchema, mode="overwrite")
assert tbl.schema == LanceSchema.to_arrow_schema()
# add works
expected = LanceSchema(
id="id",
vector=[0.0, 0.0],
li=[1, 2, 3],
payload=Document(
content="foo", meta=Metadata(source="bar", timestamp=datetime.now())
),
)
tbl.add([expected])
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
assert result == expected
flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=1)
assert len(flattened.columns) == 6 # _distance is automatically added
really_flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=True)
assert len(really_flattened.columns) == 7
def _add(table, schema):
@@ -195,39 +226,38 @@ def test_versioning(db):
def test_create_index_method():
with patch.object(LanceTable, "_reset_dataset", return_value=None):
with patch.object(
LanceTable, "_dataset", new_callable=PropertyMock
) as mock_dataset:
# Setup mock responses
mock_dataset.return_value.create_index.return_value = None
with patch.object(
LanceTable, "_dataset", new_callable=PropertyMock
) as mock_dataset:
# Setup mock responses
mock_dataset.return_value.create_index.return_value = None
# Create a LanceTable object
connection = LanceDBConnection(uri="mock.uri")
table = LanceTable(connection, "test_table")
# Create a LanceTable object
connection = LanceDBConnection(uri="mock.uri")
table = LanceTable(connection, "test_table")
# Call the create_index method
table.create_index(
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name="vector",
replace=True,
index_cache_size=256,
)
# Call the create_index method
table.create_index(
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name="vector",
replace=True,
index_cache_size=256,
)
# Check that the _dataset.create_index method was called
# with the right parameters
mock_dataset.return_value.create_index.assert_called_once_with(
column="vector",
index_type="IVF_PQ",
metric="L2",
num_partitions=256,
num_sub_vectors=96,
replace=True,
accelerator=None,
index_cache_size=256,
)
# Check that the _dataset.create_index method was called
# with the right parameters
mock_dataset.return_value.create_index.assert_called_once_with(
column="vector",
index_type="IVF_PQ",
metric="L2",
num_partitions=256,
num_sub_vectors=96,
replace=True,
accelerator=None,
index_cache_size=256,
)
def test_add_with_nans(db):
@@ -348,14 +378,79 @@ def test_update(db):
assert len(table) == 2
assert len(table.list_versions()) == 2
table.update(where="id=0", values={"vector": [1.1, 1.1]})
assert len(table.list_versions()) == 4
assert table.version == 4
assert len(table.list_versions()) == 3
assert table.version == 3
assert len(table) == 2
v = table.to_arrow()["vector"].combine_chunks()
v = v.values.to_numpy().reshape(2, 2)
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
def test_update_types(db):
table = LanceTable.create(
db,
"my_table",
data=[
{
"id": 0,
"str": "foo",
"float": 1.1,
"timestamp": datetime(2021, 1, 1),
"date": date(2021, 1, 1),
"vector1": [1.0, 0.0],
"vector2": [1.0, 1.0],
}
],
)
# Update with SQL
table.update(
values_sql=dict(
id="1",
str="'bar'",
float="2.2",
timestamp="TIMESTAMP '2021-01-02 00:00:00'",
date="DATE '2021-01-02'",
vector1="[2.0, 2.0]",
vector2="[3.0, 3.0]",
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=1,
str="bar",
float=2.2,
timestamp=datetime(2021, 1, 2),
date=date(2021, 1, 2),
vector1=[2.0, 2.0],
vector2=[3.0, 3.0],
)
assert actual == expected
# Update with values
table.update(
values=dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=np.array([4.0, 4.0]),
)
)
actual = table.to_arrow().to_pylist()[0]
expected = dict(
id=2,
str="baz",
float=3.3,
timestamp=datetime(2021, 1, 3),
date=date(2021, 1, 3),
vector1=[3.0, 3.0],
vector2=[4.0, 4.0],
)
assert actual == expected
def test_create_with_embedding_function(db):
class MyTable(LanceModel):
text: str

View File

@@ -11,7 +11,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from lancedb.util import get_uri_scheme
import os
import pathlib
import pytest
from lancedb.util import get_uri_scheme, join_uri
def test_normalize_uri():
@@ -28,3 +33,55 @@ def test_normalize_uri():
for uri, expected_scheme in zip(uris, schemes):
parsed_scheme = get_uri_scheme(uri)
assert parsed_scheme == expected_scheme
def test_join_uri_remote():
schemes = ["s3", "az", "gs"]
for scheme in schemes:
expected = f"{scheme}://bucket/path/to/table.lance"
base_uri = f"{scheme}://bucket/path/to/"
parts = ["table.lance"]
assert join_uri(base_uri, *parts) == expected
base_uri = f"{scheme}://bucket"
parts = ["path", "to", "table.lance"]
assert join_uri(base_uri, *parts) == expected
# skip this test if on windows
@pytest.mark.skipif(os.name == "nt", reason="Windows paths are not POSIX")
def test_join_uri_posix():
for base in [
# relative path
"relative/path",
"relative/path/",
# an absolute path
"/absolute/path",
"/absolute/path/",
# a file URI
"file:///absolute/path",
"file:///absolute/path/",
]:
joined = join_uri(base, "table.lance")
assert joined == str(pathlib.Path(base) / "table.lance")
joined = join_uri(pathlib.Path(base), "table.lance")
assert joined == pathlib.Path(base) / "table.lance"
# skip this test if not on windows
@pytest.mark.skipif(os.name != "nt", reason="Windows paths are not POSIX")
def test_local_join_uri_windows():
# https://learn.microsoft.com/en-us/dotnet/standard/io/file-path-formats
for base in [
# windows relative path
"relative\\path",
"relative\\path\\",
# windows absolute path from current drive
"c:\\absolute\\path",
# relative path from root of current drive
"\\relative\\path",
]:
joined = join_uri(base, "table.lance")
assert joined == str(pathlib.Path(base) / "table.lance")
joined = join_uri(pathlib.Path(base), "table.lance")
assert joined == pathlib.Path(base) / "table.lance"

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.3.9"
version = "0.4.0"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"

View File

@@ -23,7 +23,7 @@ pub enum Error {
#[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String },
#[snafu(display("{name}: {message}"))]
RangeError { name: String, message: String },
OutOfRange { name: String, message: String },
#[snafu(display("{index_type} is not a valid index type"))]
InvalidIndexType { index_type: String },

View File

@@ -65,12 +65,10 @@ fn get_index_params_builder(
obj.get_opt::<JsString, _, _>(cx, "index_name")?
.map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type")?
.map(|s| MetricType::try_from(s.value(cx).as_str()))
.map(|mt| {
let metric_type = mt.unwrap();
index_builder.metric_type(metric_type);
});
if let Some(metric_type) = obj.get_opt::<JsString, _, _>(cx, "metric_type")? {
let metric_type = MetricType::try_from(metric_type.value(cx).as_str()).unwrap();
index_builder.metric_type(metric_type);
}
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
let max_iters = obj.get_opt_usize(cx, "max_iters")?;
@@ -85,23 +83,29 @@ fn get_index_params_builder(
index_builder.ivf_params(ivf_params)
});
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")?
.map(|s| pq_params.use_opq = s.value(cx));
if let Some(use_opq) = obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? {
pq_params.use_opq = use_opq.value(cx);
}
obj.get_opt_usize(cx, "num_sub_vectors")?
.map(|s| pq_params.num_sub_vectors = s);
if let Some(num_sub_vectors) = obj.get_opt_usize(cx, "num_sub_vectors")? {
pq_params.num_sub_vectors = num_sub_vectors;
}
obj.get_opt_usize(cx, "num_bits")?
.map(|s| pq_params.num_bits = s);
if let Some(num_bits) = obj.get_opt_usize(cx, "num_bits")? {
pq_params.num_bits = num_bits;
}
obj.get_opt_usize(cx, "max_iters")?
.map(|s| pq_params.max_iters = s);
if let Some(max_iters) = obj.get_opt_usize(cx, "max_iters")? {
pq_params.max_iters = max_iters;
}
obj.get_opt_usize(cx, "max_opq_iters")?
.map(|s| pq_params.max_opq_iters = s);
if let Some(max_opq_iters) = obj.get_opt_usize(cx, "max_opq_iters")? {
pq_params.max_opq_iters = max_opq_iters;
}
obj.get_opt::<JsBoolean, _, _>(cx, "replace")?
.map(|s| index_builder.replace(s.value(cx)));
if let Some(replace) = obj.get_opt::<JsBoolean, _, _>(cx, "replace")? {
index_builder.replace(replace.value(cx));
}
Ok(index_builder)
}

View File

@@ -237,6 +237,7 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableAdd", JsTable::js_add)?;
cx.export_function("tableCountRows", JsTable::js_count_rows)?;
cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function("tableUpdate", JsTable::js_update)?;
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
cx.export_function("tableCompactFiles", JsTable::js_compact)?;
cx.export_function("tableListIndices", JsTable::js_list_indices)?;

View File

@@ -47,15 +47,15 @@ fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
use conv::*;
n.approx_as::<u32>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
FloatError::NegOverflow(_) => Error::OutOfRange {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
FloatError::PosOverflow(_) => Error::OutOfRange {
name: key.into(),
message: format!("must be < {}", u32::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
FloatError::NotANumber(_) => Error::OutOfRange {
name: key.into(),
message: "not a valid number".to_string(),
},
@@ -66,15 +66,15 @@ fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
use conv::*;
n.approx_as::<usize>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
FloatError::NegOverflow(_) => Error::OutOfRange {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
FloatError::PosOverflow(_) => Error::OutOfRange {
name: key.into(),
message: format!("must be < {}", usize::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
FloatError::NotANumber(_) => Error::OutOfRange {
name: key.into(),
message: "not a valid number".to_string(),
},

View File

@@ -23,8 +23,14 @@ impl JsQuery {
let query_obj = cx.argument::<JsObject>(0)?;
let limit = query_obj
.get::<JsNumber, _, _>(&mut cx, "_limit")?
.value(&mut cx);
.get_opt::<JsNumber, _, _>(&mut cx, "_limit")?
.map(|value| {
let limit = value.value(&mut cx);
if limit <= 0.0 {
panic!("Limit must be a positive integer");
}
limit as u64
});
let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
.map(|arr| {
@@ -48,7 +54,9 @@ impl JsQuery {
.map(|s| s.value(&mut cx))
.map(|s| MetricType::try_from(s.as_str()).unwrap());
let prefilter = query_obj.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?.value(&mut cx);
let prefilter = query_obj
.get::<JsBoolean, _, _>(&mut cx, "_prefilter")?
.value(&mut cx);
let is_electron = cx
.argument::<JsBoolean>(1)
@@ -59,20 +67,23 @@ impl JsQuery {
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?;
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
let query_vector = query_obj.get_opt::<JsArray, _, _>(&mut cx, "_queryVector")?;
let table = js_table.table.clone();
let query = query_vector.map(|q| convert::js_array_to_vec(q.deref(), &mut cx));
rt.spawn(async move {
let builder = table
.search(Float32Array::from(query))
.limit(limit as usize)
let mut builder = table
.search(query.map(Float32Array::from))
.refine_factor(refine_factor)
.nprobes(nprobes)
.filter(filter)
.metric_type(metric_type)
.select(select)
.prefilter(prefilter);
if let Some(limit) = limit {
builder = builder.limit(limit as usize);
};
let record_batch_stream = builder.execute();
let results = record_batch_stream
.and_then(|stream| {

View File

@@ -45,7 +45,7 @@ impl JsTable {
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?;
let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
// Write mode
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
@@ -93,7 +93,7 @@ impl JsTable {
let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let mut table = js_table.table.clone();
@@ -165,6 +165,69 @@ impl JsTable {
Ok(promise)
}
pub(crate) fn js_update(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let mut table = js_table.table.clone();
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
// create a vector of updates from the passed map
let updates_arg = cx.argument::<JsObject>(1)?;
let properties = updates_arg.get_own_property_names(&mut cx)?;
let mut updates: Vec<(String, String)> =
Vec::with_capacity(properties.len(&mut cx) as usize);
let len_properties = properties.len(&mut cx);
for i in 0..len_properties {
let property = properties
.get_value(&mut cx, i)?
.downcast_or_throw::<JsString, _>(&mut cx)?;
let value = updates_arg
.get_value(&mut cx, property)?
.downcast_or_throw::<JsString, _>(&mut cx)?;
let property = property.value(&mut cx);
let value = value.value(&mut cx);
updates.push((property, value));
}
// get the filter/predicate if the user passed one
let predicate = cx.argument_opt(0);
let predicate = predicate.unwrap().downcast::<JsString, _>(&mut cx);
let predicate = match predicate {
Ok(_) => {
let val = predicate.map(|s| s.value(&mut cx)).unwrap();
Some(val)
}
Err(_) => {
// if the predicate is not string, check it's null otherwise an invalid
// type was passed
cx.argument::<JsNull>(0)?;
None
}
};
rt.spawn(async move {
let updates_arg = updates
.iter()
.map(|(k, v)| (k.as_str(), v.as_str()))
.collect::<Vec<_>>();
let predicate = predicate.as_deref();
let update_result = table.update(predicate, updates_arg).await;
deferred.settle_with(&channel, move |mut cx| {
update_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
})
});
Ok(promise)
}
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb"
version = "0.3.9"
version = "0.4.0"
edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0"

View File

@@ -26,7 +26,7 @@ use futures::{stream::BoxStream, FutureExt, StreamExt};
use lance::io::object_store::WrappingObjectStore;
use object_store::{
path::Path, Error, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore,
Result,
PutOptions, PutResult, Result,
};
use async_trait::async_trait;
@@ -72,13 +72,28 @@ impl PrimaryOnly for Path {
/// Note: this object store does not mirror writes to *.manifest files
#[async_trait]
impl ObjectStore for MirroringObjectStore {
async fn put(&self, location: &Path, bytes: Bytes) -> Result<()> {
async fn put(&self, location: &Path, bytes: Bytes) -> Result<PutResult> {
if location.primary_only() {
self.primary.put(location, bytes).await
} else {
self.secondary.put(location, bytes.clone()).await?;
self.primary.put(location, bytes).await?;
Ok(())
self.primary.put(location, bytes).await
}
}
async fn put_opts(
&self,
location: &Path,
bytes: Bytes,
options: PutOptions,
) -> Result<PutResult> {
if location.primary_only() {
self.primary.put_opts(location, bytes, options).await
} else {
self.secondary
.put_opts(location, bytes.clone(), options.clone())
.await?;
self.primary.put_opts(location, bytes, options).await
}
}
@@ -129,8 +144,8 @@ impl ObjectStore for MirroringObjectStore {
self.primary.delete(location).await
}
async fn list(&self, prefix: Option<&Path>) -> Result<BoxStream<'_, Result<ObjectMeta>>> {
self.primary.list(prefix).await
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, Result<ObjectMeta>> {
self.primary.list(prefix)
}
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> {
@@ -359,7 +374,9 @@ mod test {
assert_eq!(t.count_rows().await.unwrap(), 100);
let q = t
.search(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1]))
.search(Some(PrimitiveArray::from_iter_values(vec![
0.1, 0.1, 0.1, 0.1,
])))
.limit(10)
.execute()
.await

View File

@@ -24,8 +24,9 @@ use crate::error::Result;
/// A builder for nearest neighbor queries for LanceDB.
pub struct Query {
pub dataset: Arc<Dataset>,
pub query_vector: Float32Array,
pub limit: usize,
pub query_vector: Option<Float32Array>,
pub column: String,
pub limit: Option<usize>,
pub filter: Option<String>,
pub select: Option<Vec<String>>,
pub nprobes: usize,
@@ -46,11 +47,12 @@ impl Query {
/// # Returns
///
/// * A [Query] object.
pub(crate) fn new(dataset: Arc<Dataset>, vector: Float32Array) -> Self {
pub(crate) fn new(dataset: Arc<Dataset>, vector: Option<Float32Array>) -> Self {
Query {
dataset,
query_vector: vector,
limit: 10,
column: crate::table::VECTOR_COLUMN_NAME.to_string(),
limit: None,
nprobes: 20,
refine_factor: None,
metric_type: None,
@@ -69,11 +71,13 @@ impl Query {
pub async fn execute(&self) -> Result<DatasetRecordBatchStream> {
let mut scanner: Scanner = self.dataset.scan();
scanner.nearest(
crate::table::VECTOR_COLUMN_NAME,
&self.query_vector,
self.limit,
)?;
if let Some(query) = self.query_vector.as_ref() {
// If there is a vector query, default to limit=10 if unspecified
scanner.nearest(&self.column, query, self.limit.unwrap_or(10))?;
} else {
// If there is no vector query, it's ok to not have a limit
scanner.limit(self.limit.map(|limit| limit as i64), None)?;
}
scanner.nprobs(self.nprobes);
scanner.use_index(self.use_index);
scanner.prefilter(self.prefilter);
@@ -85,13 +89,23 @@ impl Query {
Ok(scanner.try_into_stream().await?)
}
/// Set the column to query
///
/// # Arguments
///
/// * `column` - The column name
pub fn column(mut self, column: &str) -> Query {
self.column = column.into();
self
}
/// Set the maximum number of results to return.
///
/// # Arguments
///
/// * `limit` - The maximum number of results to return.
pub fn limit(mut self, limit: usize) -> Query {
self.limit = limit;
self.limit = Some(limit);
self
}
@@ -101,7 +115,7 @@ impl Query {
///
/// * `vector` - The vector that will be used for search.
pub fn query_vector(mut self, query_vector: Float32Array) -> Query {
self.query_vector = query_vector;
self.query_vector = Some(query_vector);
self
}
@@ -174,7 +188,10 @@ mod tests {
use std::sync::Arc;
use super::*;
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader};
use arrow_array::{
cast::AsArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
RecordBatchReader,
};
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
use futures::StreamExt;
use lance::dataset::Dataset;
@@ -187,7 +204,7 @@ mod tests {
let batches = make_test_batches();
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
let vector = Float32Array::from_iter_values([0.1, 0.2]);
let vector = Some(Float32Array::from_iter_values([0.1, 0.2]));
let query = Query::new(Arc::new(ds), vector.clone());
assert_eq!(query.query_vector, vector);
@@ -201,8 +218,8 @@ mod tests {
.metric_type(Some(MetricType::Cosine))
.refine_factor(Some(999));
assert_eq!(query.query_vector, new_vector);
assert_eq!(query.limit, 100);
assert_eq!(query.query_vector.unwrap(), new_vector);
assert_eq!(query.limit.unwrap(), 100);
assert_eq!(query.nprobes, 1000);
assert_eq!(query.use_index, true);
assert_eq!(query.metric_type, Some(MetricType::Cosine));
@@ -214,7 +231,7 @@ mod tests {
let batches = make_non_empty_batches();
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
let vector = Float32Array::from_iter_values([0.1; 4]);
let vector = Some(Float32Array::from_iter_values([0.1; 4]));
let query = Query::new(ds.clone(), vector.clone());
let result = query
@@ -244,6 +261,27 @@ mod tests {
}
}
#[tokio::test]
async fn test_execute_no_vector() {
// test that it's ok to not specify a query vector (just filter / limit)
let batches = make_non_empty_batches();
let ds = Arc::new(Dataset::write(batches, "memory://foo", None).await.unwrap());
let query = Query::new(ds.clone(), None);
let result = query
.filter(Some("id % 2 == 0".to_string()))
.execute()
.await;
let mut stream = result.expect("should have result");
// should only have one batch
while let Some(batch) = stream.next().await {
let b = batch.expect("should be Ok");
// cast arr into Int32Array
let arr: &Int32Array = b["id"].as_primitive();
assert!(arr.iter().all(|x| x.unwrap() % 2 == 0));
}
}
fn make_non_empty_batches() -> impl RecordBatchReader + Send + 'static {
let vec = Box::new(RandomVector::new().named("vector".to_string()));
let id = Box::new(IncrementingInt32::new().named("id".to_string()));

View File

@@ -23,7 +23,7 @@ use lance::dataset::cleanup::RemovalStats;
use lance::dataset::optimize::{
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
};
use lance::dataset::{Dataset, WriteParams};
use lance::dataset::{Dataset, UpdateBuilder, WriteParams};
use lance::index::DatasetIndexExt;
use lance::io::object_store::WrappingObjectStore;
use std::path::Path;
@@ -308,10 +308,14 @@ impl Table {
/// # Returns
///
/// * A [Query] object.
pub fn search(&self, query_vector: Float32Array) -> Query {
pub fn search(&self, query_vector: Option<Float32Array>) -> Query {
Query::new(self.dataset.clone(), query_vector)
}
pub fn filter(&self, expr: String) -> Query {
Query::new(self.dataset.clone(), None).filter(Some(expr))
}
/// Returns the number of rows in this Table
pub async fn count_rows(&self) -> Result<usize> {
Ok(self.dataset.count_rows().await?)
@@ -338,6 +342,27 @@ impl Table {
Ok(())
}
pub async fn update(
&mut self,
predicate: Option<&str>,
updates: Vec<(&str, &str)>,
) -> Result<()> {
let mut builder = UpdateBuilder::new(self.dataset.clone());
if let Some(predicate) = predicate {
builder = builder.update_where(predicate)?;
}
for (column, value) in updates {
builder = builder.set(column, value)?;
}
let operation = builder.build()?;
let new_ds = operation.execute().await?;
self.dataset = new_ds;
Ok(())
}
/// Remove old versions of the dataset from disk.
///
/// # Arguments
@@ -413,11 +438,14 @@ mod tests {
use std::sync::Arc;
use arrow_array::{
Array, FixedSizeListArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
RecordBatchReader,
Array, BooleanArray, Date32Array, FixedSizeListArray, Float32Array, Float64Array,
Int32Array, Int64Array, LargeStringArray, RecordBatch, RecordBatchIterator,
RecordBatchReader, StringArray, TimestampMillisecondArray, TimestampNanosecondArray,
UInt32Array,
};
use arrow_data::ArrayDataBuilder;
use arrow_schema::{DataType, Field, Schema};
use arrow_schema::{DataType, Field, Schema, TimeUnit};
use futures::TryStreamExt;
use lance::dataset::{Dataset, WriteMode};
use lance::index::vector::pq::PQBuildParams;
use lance::io::object_store::{ObjectStoreParams, WrappingObjectStore};
@@ -540,6 +568,272 @@ mod tests {
assert_eq!(table.name, "test");
}
#[tokio::test]
async fn test_update_with_predicate() {
let tmp_dir = tempdir().unwrap();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let schema = Arc::new(Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("name", DataType::Utf8, false),
]));
let record_batch_iter = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..10)),
Arc::new(StringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Dataset::write(record_batch_iter, uri, None).await.unwrap();
let mut table = Table::open(uri).await.unwrap();
table
.update(Some("id > 5"), vec![("name", "'foo'")])
.await
.unwrap();
let ds_after = Dataset::open(uri).await.unwrap();
let mut batches = ds_after
.scan()
.project(&["id", "name"])
.unwrap()
.try_into_stream()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
while let Some(batch) = batches.pop() {
let ids = batch
.column(0)
.as_any()
.downcast_ref::<Int32Array>()
.unwrap()
.iter()
.collect::<Vec<_>>();
let names = batch
.column(1)
.as_any()
.downcast_ref::<StringArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for (i, name) in names.iter().enumerate() {
let id = ids[i].unwrap();
let name = name.unwrap();
if id > 5 {
assert_eq!(name, "foo");
} else {
assert_eq!(name, &format!("{}", (b'a' + id as u8) as char));
}
}
}
}
#[tokio::test]
async fn test_update_all_types() {
let tmp_dir = tempdir().unwrap();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = dataset_path.to_str().unwrap();
let schema = Arc::new(Schema::new(vec![
Field::new("int32", DataType::Int32, false),
Field::new("int64", DataType::Int64, false),
Field::new("uint32", DataType::UInt32, false),
Field::new("string", DataType::Utf8, false),
Field::new("large_string", DataType::LargeUtf8, false),
Field::new("float32", DataType::Float32, false),
Field::new("float64", DataType::Float64, false),
Field::new("bool", DataType::Boolean, false),
Field::new("date32", DataType::Date32, false),
Field::new(
"timestamp_ns",
DataType::Timestamp(TimeUnit::Nanosecond, None),
false,
),
Field::new(
"timestamp_ms",
DataType::Timestamp(TimeUnit::Millisecond, None),
false,
),
Field::new(
"vec_f32",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 2),
false,
),
Field::new(
"vec_f64",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float64, true)), 2),
false,
),
]));
let record_batch_iter = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..10)),
Arc::new(Int64Array::from_iter_values(0..10)),
Arc::new(UInt32Array::from_iter_values(0..10)),
Arc::new(StringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
Arc::new(LargeStringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
Arc::new(Float32Array::from_iter_values(
(0..10).into_iter().map(|i| i as f32),
)),
Arc::new(Float64Array::from_iter_values(
(0..10).into_iter().map(|i| i as f64),
)),
Arc::new(Into::<BooleanArray>::into(vec![
true, false, true, false, true, false, true, false, true, false,
])),
Arc::new(Date32Array::from_iter_values(0..10)),
Arc::new(TimestampNanosecondArray::from_iter_values(0..10)),
Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
Arc::new(
create_fixed_size_list(
Float32Array::from_iter_values((0..20).into_iter().map(|i| i as f32)),
2,
)
.unwrap(),
),
Arc::new(
create_fixed_size_list(
Float64Array::from_iter_values((0..20).into_iter().map(|i| i as f64)),
2,
)
.unwrap(),
),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Dataset::write(record_batch_iter, uri, None).await.unwrap();
let mut table = Table::open(uri).await.unwrap();
// check it can do update for each type
let updates: Vec<(&str, &str)> = vec![
("string", "'foo'"),
("large_string", "'large_foo'"),
("int32", "1"),
("int64", "1"),
("uint32", "1"),
("float32", "1.0"),
("float64", "1.0"),
("bool", "true"),
("date32", "1"),
("timestamp_ns", "1"),
("timestamp_ms", "1"),
("vec_f32", "[1.0, 1.0]"),
("vec_f64", "[1.0, 1.0]"),
];
// for (column, value) in test_cases {
table.update(None, updates).await.unwrap();
let ds_after = Dataset::open(uri).await.unwrap();
let mut batches = ds_after
.scan()
.project(&[
"string",
"large_string",
"int32",
"int64",
"uint32",
"float32",
"float64",
"bool",
"date32",
"timestamp_ns",
"timestamp_ms",
"vec_f32",
"vec_f64",
])
.unwrap()
.try_into_stream()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
let batch = batches.pop().unwrap();
macro_rules! assert_column {
($column:expr, $array_type:ty, $expected:expr) => {
let array = $column
.as_any()
.downcast_ref::<$array_type>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
assert_eq!(v, Some($expected));
}
};
}
assert_column!(batch.column(0), StringArray, "foo");
assert_column!(batch.column(1), LargeStringArray, "large_foo");
assert_column!(batch.column(2), Int32Array, 1);
assert_column!(batch.column(3), Int64Array, 1);
assert_column!(batch.column(4), UInt32Array, 1);
assert_column!(batch.column(5), Float32Array, 1.0);
assert_column!(batch.column(6), Float64Array, 1.0);
assert_column!(batch.column(7), BooleanArray, true);
assert_column!(batch.column(8), Date32Array, 1);
assert_column!(batch.column(9), TimestampNanosecondArray, 1);
assert_column!(batch.column(10), TimestampMillisecondArray, 1);
let array = batch
.column(11)
.as_any()
.downcast_ref::<FixedSizeListArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
let v = v.unwrap();
let f32array = v.as_any().downcast_ref::<Float32Array>().unwrap();
for v in f32array {
assert_eq!(v, Some(1.0));
}
}
let array = batch
.column(12)
.as_any()
.downcast_ref::<FixedSizeListArray>()
.unwrap()
.iter()
.collect::<Vec<_>>();
for v in array {
let v = v.unwrap();
let f64array = v.as_any().downcast_ref::<Float64Array>().unwrap();
for v in f64array {
assert_eq!(v, Some(1.0));
}
}
}
#[tokio::test]
async fn test_search() {
let tmp_dir = tempdir().unwrap();
@@ -554,8 +848,8 @@ mod tests {
let table = Table::open(uri).await.unwrap();
let vector = Float32Array::from_iter_values([0.1, 0.2]);
let query = table.search(vector.clone());
assert_eq!(vector, query.query_vector);
let query = table.search(Some(vector.clone()));
assert_eq!(vector, query.query_vector.unwrap());
}
#[derive(Default, Debug)]