mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-24 05:49:57 +00:00
Compare commits
17 Commits
python-v0.
...
changhiskh
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9eca8e7cd1 | ||
|
|
587fe6ffc1 | ||
|
|
89c8e5839b | ||
|
|
50c20af060 | ||
|
|
0965d7dd5a | ||
|
|
7bbb2872de | ||
|
|
e81d2975da | ||
|
|
2c7f96ba4f | ||
|
|
f9dd7a5d8a | ||
|
|
1d4943688d | ||
|
|
7856a94d2c | ||
|
|
371d2f979e | ||
|
|
fff8e399a3 | ||
|
|
73e4015797 | ||
|
|
5142a27482 | ||
|
|
81df2a524e | ||
|
|
40638e5515 |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.3.11
|
||||
current_version = 0.4.0
|
||||
commit = True
|
||||
message = Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
33
.github/ISSUE_TEMPLATE/bug-node.yml
vendored
Normal file
33
.github/ISSUE_TEMPLATE/bug-node.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
name: Bug Report - Node / Typescript
|
||||
description: File a bug report
|
||||
title: "bug(node): "
|
||||
labels: [bug, typescript]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
- type: input
|
||||
id: version
|
||||
attributes:
|
||||
label: LanceDB version
|
||||
description: What version of LanceDB are you using? `npm list | grep vectordb`.
|
||||
placeholder: v0.3.2
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
attributes:
|
||||
label: Are there known steps to reproduce?
|
||||
description: |
|
||||
Let us know how to reproduce the bug and we may be able to fix it more
|
||||
quickly. This is not required, but it is helpful.
|
||||
validations:
|
||||
required: false
|
||||
33
.github/ISSUE_TEMPLATE/bug-python.yml
vendored
Normal file
33
.github/ISSUE_TEMPLATE/bug-python.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
name: Bug Report - Python
|
||||
description: File a bug report
|
||||
title: "bug(python): "
|
||||
labels: [bug, python]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
- type: input
|
||||
id: version
|
||||
attributes:
|
||||
label: LanceDB version
|
||||
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
|
||||
placeholder: v0.3.2
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
attributes:
|
||||
label: Are there known steps to reproduce?
|
||||
description: |
|
||||
Let us know how to reproduce the bug and we may be able to fix it more
|
||||
quickly. This is not required, but it is helpful.
|
||||
validations:
|
||||
required: false
|
||||
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: Discord Community Support
|
||||
url: https://discord.com/invite/zMM32dvNtd
|
||||
about: Please ask and answer questions here.
|
||||
23
.github/ISSUE_TEMPLATE/documentation.yml
vendored
Normal file
23
.github/ISSUE_TEMPLATE/documentation.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: 'Documentation improvement'
|
||||
description: Report an issue with the documentation.
|
||||
labels: [documentation]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: >
|
||||
Describe the issue with the documentation and how it can be fixed or improved.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: input
|
||||
id: link
|
||||
attributes:
|
||||
label: Link
|
||||
description: >
|
||||
Provide a link to the existing documentation, if applicable.
|
||||
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
|
||||
validations:
|
||||
required: false
|
||||
31
.github/ISSUE_TEMPLATE/feature.yml
vendored
Normal file
31
.github/ISSUE_TEMPLATE/feature.yml
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
name: Feature suggestion
|
||||
description: Suggestion a new feature for LanceDB
|
||||
title: "Feature: "
|
||||
labels: [enhancement]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Share a new idea for a feature or improvement. Be sure to search existing
|
||||
issues first to avoid duplicates.
|
||||
- type: dropdown
|
||||
id: sdk
|
||||
attributes:
|
||||
label: SDK
|
||||
description: Which SDK are you using? This helps us prioritize.
|
||||
options:
|
||||
- Python
|
||||
- Node
|
||||
- Rust
|
||||
default: 0
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: |
|
||||
Describe the feature and why it would be useful. If applicable, consider
|
||||
providing a code example of what it might be like to use the feature.
|
||||
validations:
|
||||
required: true
|
||||
13
.github/workflows/python.yml
vendored
13
.github/workflows/python.yml
vendored
@@ -44,12 +44,19 @@ jobs:
|
||||
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||
- name: doctest
|
||||
run: pytest --doctest-modules lancedb
|
||||
mac:
|
||||
platform:
|
||||
name: "Platform: ${{ matrix.config.name }}"
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
mac-runner: [ "macos-13", "macos-13-xlarge" ]
|
||||
runs-on: "${{ matrix.mac-runner }}"
|
||||
config:
|
||||
- name: x86 Mac
|
||||
runner: macos-13
|
||||
- name: Arm Mac
|
||||
runner: macos-13-xlarge
|
||||
- name: x86 Windows
|
||||
runner: windows-latest
|
||||
runs-on: "${{ matrix.config.runner }}"
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
23
.github/workflows/rust.yml
vendored
23
.github/workflows/rust.yml
vendored
@@ -24,6 +24,29 @@ env:
|
||||
RUST_BACKTRACE: "1"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
timeout-minutes: 30
|
||||
runs-on: ubuntu-22.04
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Run format
|
||||
run: cargo fmt --all -- --check
|
||||
- name: Run clippy
|
||||
run: cargo clippy --all --all-features -- -D warnings
|
||||
linux:
|
||||
timeout-minutes: 30
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
26
Cargo.toml
26
Cargo.toml
@@ -5,24 +5,24 @@ exclude = ["python"]
|
||||
resolver = "2"
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.9.0", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.0" }
|
||||
lance-linalg = { "version" = "=0.9.0" }
|
||||
lance-testing = { "version" = "=0.9.0" }
|
||||
lance = { "version" = "=0.9.1", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.1" }
|
||||
lance-linalg = { "version" = "=0.9.1" }
|
||||
lance-testing = { "version" = "=0.9.1" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "47.0.0", optional = false }
|
||||
arrow-array = "47.0"
|
||||
arrow-data = "47.0"
|
||||
arrow-ipc = "47.0"
|
||||
arrow-ord = "47.0"
|
||||
arrow-schema = "47.0"
|
||||
arrow-arith = "47.0"
|
||||
arrow-cast = "47.0"
|
||||
arrow = { version = "49.0.0", optional = false }
|
||||
arrow-array = "49.0"
|
||||
arrow-data = "49.0"
|
||||
arrow-ipc = "49.0"
|
||||
arrow-ord = "49.0"
|
||||
arrow-schema = "49.0"
|
||||
arrow-arith = "49.0"
|
||||
arrow-cast = "49.0"
|
||||
chrono = "0.4.23"
|
||||
half = { "version" = "=2.3.1", default-features = false, features = [
|
||||
"num-traits",
|
||||
] }
|
||||
log = "0.4"
|
||||
object_store = "0.7.1"
|
||||
object_store = "0.8.0"
|
||||
snafu = "0.7.4"
|
||||
url = "2"
|
||||
|
||||
@@ -2,3 +2,4 @@ mkdocs==1.4.2
|
||||
mkdocs-jupyter==0.24.1
|
||||
mkdocs-material==9.1.3
|
||||
mkdocstrings[python]==0.20.0
|
||||
pydantic
|
||||
@@ -64,18 +64,26 @@ We'll cover the basics of using LanceDB on your local machine in this section.
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
|
||||
!!! warning
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
const tb = await db.createTable(
|
||||
"myTable",
|
||||
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
!!! warning
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
!!! warning
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `"overwrite"`
|
||||
to the `createTable` function like this: `await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })`
|
||||
|
||||
|
||||
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||
|
||||
@@ -108,7 +116,7 @@ Once created, you can open a table using the following code:
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tbl = await db.openTable("my_table");
|
||||
const tbl = await db.openTable("myTable");
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
@@ -194,10 +202,17 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
db.drop_table("my_table")
|
||||
```
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
By default, if the table does not exist an exception is raised. To suppress this,
|
||||
you can pass in `ignore_missing=True`.
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
By default, if the table does not exist an exception is raised. To suppress this,
|
||||
you can pass in `ignore_missing=True`.
|
||||
|
||||
=== "JavaScript"
|
||||
```javascript
|
||||
await db.dropTable('myTable')
|
||||
```
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
If the table does not exist an exception is raised.
|
||||
|
||||
## What's next
|
||||
|
||||
|
||||
@@ -201,8 +201,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
|
||||
```javascript
|
||||
data
|
||||
const tb = await db.createTable("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
|
||||
@@ -118,4 +118,101 @@ However, fast vector search using indices often entails making a trade-off with
|
||||
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
|
||||
always returns 100% recall.
|
||||
|
||||
See [ANN Index](ann_indexes.md) for more details.
|
||||
See [ANN Index](ann_indexes.md) for more details.
|
||||
|
||||
|
||||
### Output formats
|
||||
|
||||
LanceDB returns results in many different formats commonly used in python.
|
||||
Let's create a LanceDB table with a nested schema:
|
||||
|
||||
```python
|
||||
from datetime import datetime
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
import numpy as np
|
||||
from pydantic import BaseModel
|
||||
uri = "data/sample-lancedb-nested"
|
||||
|
||||
class Metadata(BaseModel):
|
||||
source: str
|
||||
timestamp: datetime
|
||||
|
||||
class Document(BaseModel):
|
||||
content: str
|
||||
meta: Metadata
|
||||
|
||||
class LanceSchema(LanceModel):
|
||||
id: str
|
||||
vector: Vector(1536)
|
||||
payload: Document
|
||||
|
||||
# Let's add 100 sample rows to our dataset
|
||||
data = [LanceSchema(
|
||||
id=f"id{i}",
|
||||
vector=np.random.randn(1536),
|
||||
payload=Document(
|
||||
content=f"document{i}", meta=Metadata(source=f"source{i%10}", timestamp=datetime.now())
|
||||
),
|
||||
) for i in range(100)]
|
||||
|
||||
tbl = db.create_table("documents", data=data)
|
||||
```
|
||||
|
||||
#### As a pyarrow table
|
||||
|
||||
Using `to_arrow()` we can get the results back as a pyarrow Table.
|
||||
This result table has the same columns as the LanceDB table, with
|
||||
the addition of an `_distance` column for vector search or a `score`
|
||||
column for full text search.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.randn(1536)).to_arrow()
|
||||
```
|
||||
|
||||
#### As a pandas dataframe
|
||||
|
||||
You can also get the results as a pandas dataframe.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.randn(1536)).to_pandas()
|
||||
```
|
||||
|
||||
While other formats like Arrow/Pydantic/Python dicts have a natural
|
||||
way to handle nested schemas, pandas can only store nested data as a
|
||||
python dict column, which makes it difficult to support nested references.
|
||||
So for convenience, you can also tell LanceDB to flatten a nested schema
|
||||
when creating the pandas dataframe.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)
|
||||
```
|
||||
|
||||
If your table has a deeply nested struct, you can control how many levels
|
||||
of nesting to flatten by passing in a positive integer.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.randn(1536)).to_pandas(flatten=1)
|
||||
```
|
||||
|
||||
|
||||
#### As a list of python dicts
|
||||
|
||||
You can of course return results as a list of python dicts.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.randn(1536)).to_list()
|
||||
```
|
||||
|
||||
#### As a list of pydantic models
|
||||
|
||||
We can add data using pydantic models, and we can certainly
|
||||
retrieve results as pydantic models
|
||||
|
||||
```python
|
||||
tbl.search(np.random.randn(1536)).to_pydantic(LanceSchema)
|
||||
```
|
||||
|
||||
Note that in this case the extra `_distance` field is discarded since
|
||||
it's not part of the LanceSchema.
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ import numpy as np
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
data = [{"vector": row, "item": f"item {i}"}
|
||||
data = [{"vector": row, "item": f"item {i}", "id": i}
|
||||
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
|
||||
|
||||
tbl = db.create_table("my_vectors", data=data)
|
||||
@@ -35,33 +35,25 @@ const db = await vectordb.connect('data/sample-lancedb')
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
data.push({vector: Array(1536).fill(i), id: i, item: `item ${i}`, strId: `${i}`})
|
||||
}
|
||||
const tbl = await db.createTable('my_vectors', data)
|
||||
const tbl = await db.createTable('myVectors', data)
|
||||
```
|
||||
-->
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search([100, 102]) \
|
||||
.where("""(
|
||||
(label IN [10, 20])
|
||||
AND
|
||||
(note.email IS NOT NULL)
|
||||
) OR NOT note.created
|
||||
""")
|
||||
|
||||
.where("(item IN ('item 0', 'item 2')) AND (id > 10)") \
|
||||
.to_arrow()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
|
||||
```javascript
|
||||
tbl.search([100, 102])
|
||||
.where(`(
|
||||
(label IN [10, 20])
|
||||
AND
|
||||
(note.email IS NOT NULL)
|
||||
) OR NOT note.created
|
||||
`)
|
||||
await tbl.search(Array(1536).fill(0))
|
||||
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
|
||||
.execute()
|
||||
```
|
||||
|
||||
|
||||
@@ -118,3 +110,22 @@ The mapping from SQL types to Arrow types is:
|
||||
|
||||
[^1]: See precision mapping in previous table.
|
||||
|
||||
|
||||
## Filtering without Vector Search
|
||||
|
||||
You can also filter your data without search.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search().where("id=10").limit(10).to_arrow()
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
```javascript
|
||||
await tbl.where('id=10').limit(10).execute()
|
||||
```
|
||||
|
||||
!!! warning
|
||||
If your table is large, this could potentially return a very large
|
||||
amount of data. Please be sure to use a `limit` clause unless
|
||||
you're sure you want to return the whole result set.
|
||||
|
||||
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.3.11",
|
||||
"version": "0.4.0",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.3.11",
|
||||
"version": "0.4.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -53,11 +53,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.3.11",
|
||||
"@lancedb/vectordb-darwin-x64": "0.3.11",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.11",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.11",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.11"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@apache-arrow/ts": {
|
||||
@@ -317,9 +317,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.11.tgz",
|
||||
"integrity": "sha512-N0Ak0jWmSh+QIUJKgtD85+/N0UMBZxaHrd9leusWgjEdtZdQqyzd6VWYAFPR6W6p8tt1hUZiuTRQ6ugfNhyEsg==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.0.tgz",
|
||||
"integrity": "sha512-cP6zGtBWXEcJHCI4uLNIP5ILtRvexvwmL8Uri1dnHG8dT8g12Ykug3BHO6Wt6wp/xASd2jJRIF/VAJsN9IeP1A==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -329,9 +329,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.11.tgz",
|
||||
"integrity": "sha512-vugA+Z4XDrV1gFW5PfqJImw0w84NpGrZsaTZ9afw2oc5a37alx5zOoHEoBQimaX88j+YjWme38h3B98qoNTP5w==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.0.tgz",
|
||||
"integrity": "sha512-ig0gV5ol1sFe2lb1HOatK0rizyj9I91WbnH79i7OdUl3nAQIcWm70CnxrPLtx0DS2NTGh2kFJbYCWcaUlu6YfA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -341,9 +341,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.11.tgz",
|
||||
"integrity": "sha512-mArXy17URht7cTdGgNc+yL6BOxvK4vAtNaPh68WBOy7e438l6++s2E4bZyaeyeoIv8sPENDmJZzBr4YuBEc7yw==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.0.tgz",
|
||||
"integrity": "sha512-gMXIDT2kriAPDwWIRKXdaTCNdOeFGEok1S9Y30AOruHXddW1vCIo4JNJIYbBqHnwAeI4wI3ae6GRCFaf1UxO3g==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -353,9 +353,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.11.tgz",
|
||||
"integrity": "sha512-AoF0f/mUP1d2r5nirLQiajHBVnhsYCD/vDGUlTmLWH4lX4v9zVqlh9HmXjpLBcaK4klGmt5CBmcb+tj5v2/ySA==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.0.tgz",
|
||||
"integrity": "sha512-ZQ3lDrDSz1IKdx/mS9Lz08agFO+OD5oSFrrcFNCoT1+H93eS1mCLdmCoEARu3jKbx0tMs38l5J9yXZ2QmJye3w==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -365,9 +365,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.11.tgz",
|
||||
"integrity": "sha512-Zq+JHtkaGaoozHcOdXid3jRkEj6u2d1C0VD+Wg+7AIpRokzYt5zcKWPzjDnqoRuD+VTv6YFjYN58RmYwa2Ktiw==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.0.tgz",
|
||||
"integrity": "sha512-toNcNwBRE1sdsSf5hr7W8QiqZ33csc/knVEek4CyvYkZHJGh4Z6WI+DJUIASo5wzUez4TX7qUPpRPL9HuaPMCg==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -4869,33 +4869,33 @@
|
||||
}
|
||||
},
|
||||
"@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.11.tgz",
|
||||
"integrity": "sha512-N0Ak0jWmSh+QIUJKgtD85+/N0UMBZxaHrd9leusWgjEdtZdQqyzd6VWYAFPR6W6p8tt1hUZiuTRQ6ugfNhyEsg==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.0.tgz",
|
||||
"integrity": "sha512-cP6zGtBWXEcJHCI4uLNIP5ILtRvexvwmL8Uri1dnHG8dT8g12Ykug3BHO6Wt6wp/xASd2jJRIF/VAJsN9IeP1A==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.11.tgz",
|
||||
"integrity": "sha512-vugA+Z4XDrV1gFW5PfqJImw0w84NpGrZsaTZ9afw2oc5a37alx5zOoHEoBQimaX88j+YjWme38h3B98qoNTP5w==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.0.tgz",
|
||||
"integrity": "sha512-ig0gV5ol1sFe2lb1HOatK0rizyj9I91WbnH79i7OdUl3nAQIcWm70CnxrPLtx0DS2NTGh2kFJbYCWcaUlu6YfA==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.11.tgz",
|
||||
"integrity": "sha512-mArXy17URht7cTdGgNc+yL6BOxvK4vAtNaPh68WBOy7e438l6++s2E4bZyaeyeoIv8sPENDmJZzBr4YuBEc7yw==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.0.tgz",
|
||||
"integrity": "sha512-gMXIDT2kriAPDwWIRKXdaTCNdOeFGEok1S9Y30AOruHXddW1vCIo4JNJIYbBqHnwAeI4wI3ae6GRCFaf1UxO3g==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.11.tgz",
|
||||
"integrity": "sha512-AoF0f/mUP1d2r5nirLQiajHBVnhsYCD/vDGUlTmLWH4lX4v9zVqlh9HmXjpLBcaK4klGmt5CBmcb+tj5v2/ySA==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.0.tgz",
|
||||
"integrity": "sha512-ZQ3lDrDSz1IKdx/mS9Lz08agFO+OD5oSFrrcFNCoT1+H93eS1mCLdmCoEARu3jKbx0tMs38l5J9yXZ2QmJye3w==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.3.11",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.11.tgz",
|
||||
"integrity": "sha512-Zq+JHtkaGaoozHcOdXid3jRkEj6u2d1C0VD+Wg+7AIpRokzYt5zcKWPzjDnqoRuD+VTv6YFjYN58RmYwa2Ktiw==",
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.0.tgz",
|
||||
"integrity": "sha512-toNcNwBRE1sdsSf5hr7W8QiqZ33csc/knVEek4CyvYkZHJGh4Z6WI+DJUIASo5wzUez4TX7qUPpRPL9HuaPMCg==",
|
||||
"optional": true
|
||||
},
|
||||
"@neon-rs/cli": {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.3.11",
|
||||
"version": "0.4.0",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
@@ -81,10 +81,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.3.11",
|
||||
"@lancedb/vectordb-darwin-x64": "0.3.11",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.3.11",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.3.11",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.3.11"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.0"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -744,6 +744,11 @@ export interface IvfPQIndexConfig {
|
||||
*/
|
||||
replace?: boolean
|
||||
|
||||
/**
|
||||
* Cache size of the index
|
||||
*/
|
||||
index_cache_size?: number
|
||||
|
||||
type: 'ivf_pq'
|
||||
}
|
||||
|
||||
|
||||
@@ -57,8 +57,8 @@ export class RemoteConnection implements Connection {
|
||||
return 'db://' + this._client.uri
|
||||
}
|
||||
|
||||
async tableNames (): Promise<string[]> {
|
||||
const response = await this._client.get('/v1/table/')
|
||||
async tableNames (pageToken: string = '', limit: number = 10): Promise<string[]> {
|
||||
const response = await this._client.get('/v1/table/', { limit, page_token: pageToken })
|
||||
return response.data.tables
|
||||
}
|
||||
|
||||
@@ -195,6 +195,17 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
||||
return this._name
|
||||
}
|
||||
|
||||
get schema (): Promise<any> {
|
||||
return this._client.post(`/v1/table/${this._name}/describe/`).then(res => {
|
||||
if (res.status !== 200) {
|
||||
throw new Error(`Server Error, status: ${res.status}, ` +
|
||||
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||
`message: ${res.statusText}: ${res.data}`)
|
||||
}
|
||||
return res.data?.schema
|
||||
})
|
||||
}
|
||||
|
||||
search (query: T): Query<T> {
|
||||
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
|
||||
}
|
||||
@@ -235,8 +246,41 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
||||
return data.length
|
||||
}
|
||||
|
||||
async createIndex (indexParams: VectorIndexParams): Promise<any> {
|
||||
throw new Error('Not implemented')
|
||||
async createIndex (indexParams: VectorIndexParams): Promise<void> {
|
||||
const unsupportedParams = [
|
||||
'index_name',
|
||||
'num_partitions',
|
||||
'max_iters',
|
||||
'use_opq',
|
||||
'num_sub_vectors',
|
||||
'num_bits',
|
||||
'max_opq_iters',
|
||||
'replace'
|
||||
]
|
||||
for (const param of unsupportedParams) {
|
||||
// eslint-disable-next-line @typescript-eslint/strict-boolean-expressions
|
||||
if (indexParams[param as keyof VectorIndexParams]) {
|
||||
throw new Error(`${param} is not supported for remote connections`)
|
||||
}
|
||||
}
|
||||
|
||||
const column = indexParams.column ?? 'vector'
|
||||
const indexType = 'vector' // only vector index is supported for remote connections
|
||||
const metricType = indexParams.metric_type ?? 'L2'
|
||||
const indexCacheSize = indexParams ?? null
|
||||
|
||||
const data = {
|
||||
column,
|
||||
index_type: indexType,
|
||||
metric_type: metricType,
|
||||
index_cache_size: indexCacheSize
|
||||
}
|
||||
const res = await this._client.post(`/v1/table/${this._name}/create_index/`, data)
|
||||
if (res.status !== 200) {
|
||||
throw new Error(`Server Error, status: ${res.status}, ` +
|
||||
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||
`message: ${res.statusText}: ${res.data}`)
|
||||
}
|
||||
}
|
||||
|
||||
async countRows (): Promise<number> {
|
||||
|
||||
@@ -23,7 +23,7 @@ from overrides import EnforceOverrides, override
|
||||
from pyarrow import fs
|
||||
|
||||
from .table import LanceTable, Table
|
||||
from .util import fs_from_uri, get_uri_location, get_uri_scheme
|
||||
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .common import DATA, URI
|
||||
@@ -288,14 +288,13 @@ class LanceDBConnection(DBConnection):
|
||||
A list of table names.
|
||||
"""
|
||||
try:
|
||||
filesystem, path = fs_from_uri(self.uri)
|
||||
filesystem = fs_from_uri(self.uri)[0]
|
||||
except pa.ArrowInvalid:
|
||||
raise NotImplementedError("Unsupported scheme: " + self.uri)
|
||||
|
||||
try:
|
||||
paths = filesystem.get_file_info(
|
||||
fs.FileSelector(get_uri_location(self.uri))
|
||||
)
|
||||
loc = get_uri_location(self.uri)
|
||||
paths = filesystem.get_file_info(fs.FileSelector(loc))
|
||||
except FileNotFoundError:
|
||||
# It is ok if the file does not exist since it will be created
|
||||
paths = []
|
||||
@@ -373,7 +372,7 @@ class LanceDBConnection(DBConnection):
|
||||
"""
|
||||
try:
|
||||
filesystem, path = fs_from_uri(self.uri)
|
||||
table_path = os.path.join(path, name + ".lance")
|
||||
table_path = join_uri(path, name + ".lance")
|
||||
filesystem.delete_dir(table_path)
|
||||
except FileNotFoundError:
|
||||
if not ignore_missing:
|
||||
|
||||
@@ -75,8 +75,14 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
|
||||
The number of rows indexed
|
||||
"""
|
||||
# first check the fields exist and are string or large string type
|
||||
nested = []
|
||||
for name in fields:
|
||||
f = table.schema.field(name) # raises KeyError if not found
|
||||
try:
|
||||
f = table.schema.field(name) # raises KeyError if not found
|
||||
except KeyError:
|
||||
f = resolve_path(table.schema, name)
|
||||
nested.append(name)
|
||||
|
||||
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
|
||||
raise TypeError(f"Field {name} is not a string type")
|
||||
|
||||
@@ -85,7 +91,16 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
|
||||
# write data into index
|
||||
dataset = table.to_lance()
|
||||
row_id = 0
|
||||
|
||||
max_nested_level = 0
|
||||
if len(nested) > 0:
|
||||
max_nested_level = max([len(name.split(".")) for name in nested])
|
||||
|
||||
for b in dataset.to_batches(columns=fields):
|
||||
if max_nested_level > 0:
|
||||
b = pa.Table.from_batches([b])
|
||||
for _ in range(max_nested_level - 1):
|
||||
b = b.flatten()
|
||||
for i in range(b.num_rows):
|
||||
doc = tantivy.Document()
|
||||
doc.add_integer("doc_id", row_id)
|
||||
@@ -98,6 +113,30 @@ def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -
|
||||
return row_id
|
||||
|
||||
|
||||
def resolve_path(schema, field_name: str) -> pa.Field:
|
||||
"""
|
||||
Resolve a nested field path to a list of field names
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field_name : str
|
||||
The field name to resolve
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[str]
|
||||
The resolved path
|
||||
"""
|
||||
path = field_name.split(".")
|
||||
field = schema.field(path.pop(0))
|
||||
for segment in path:
|
||||
if pa.types.is_struct(field.type):
|
||||
field = field.type.field(segment)
|
||||
else:
|
||||
raise KeyError(f"field {field_name} not found in schema {schema}")
|
||||
return field
|
||||
|
||||
|
||||
def search_index(
|
||||
index: tantivy.Index, query: str, limit: int = 10
|
||||
) -> Tuple[Tuple[int], Tuple[float]]:
|
||||
|
||||
@@ -185,14 +185,40 @@ class LanceQueryBuilder(ABC):
|
||||
"""
|
||||
return self.to_pandas()
|
||||
|
||||
def to_pandas(self) -> "pd.DataFrame":
|
||||
def to_pandas(self, flatten: Optional[Union[int, bool]] = None) -> "pd.DataFrame":
|
||||
"""
|
||||
Execute the query and return the results as a pandas DataFrame.
|
||||
In addition to the selected columns, LanceDB also returns a vector
|
||||
and also the "_distance" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
flatten: Optional[Union[int, bool]]
|
||||
If flatten is True, flatten all nested columns.
|
||||
If flatten is an integer, flatten the nested columns up to the
|
||||
specified depth.
|
||||
If unspecified, do not flatten the nested columns.
|
||||
"""
|
||||
return self.to_arrow().to_pandas()
|
||||
tbl = self.to_arrow()
|
||||
if flatten is True:
|
||||
while True:
|
||||
tbl = tbl.flatten()
|
||||
has_struct = False
|
||||
# loop through all columns to check if there is any struct column
|
||||
if any(pa.types.is_struct(col.type) for col in tbl.schema):
|
||||
continue
|
||||
else:
|
||||
break
|
||||
elif isinstance(flatten, int):
|
||||
if flatten <= 0:
|
||||
raise ValueError(
|
||||
"Please specify a positive integer for flatten or the boolean value `True`"
|
||||
)
|
||||
while flatten > 0:
|
||||
tbl = tbl.flatten()
|
||||
flatten -= 1
|
||||
return tbl.to_pandas()
|
||||
|
||||
@abstractmethod
|
||||
def to_arrow(self) -> pa.Table:
|
||||
|
||||
@@ -23,6 +23,7 @@ import lance
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
import pyarrow.compute as pc
|
||||
import pyarrow.fs as pa_fs
|
||||
from lance import LanceDataset
|
||||
from lance.vector import vec_to_table
|
||||
|
||||
@@ -30,7 +31,7 @@ from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||
from .pydantic import LanceModel, model_to_dict
|
||||
from .query import LanceQueryBuilder, Query
|
||||
from .util import fs_from_uri, safe_import_pandas, value_to_sql
|
||||
from .util import fs_from_uri, safe_import_pandas, value_to_sql, join_uri
|
||||
from .utils.events import register_event
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -396,14 +397,6 @@ class LanceTable(Table):
|
||||
self.name = name
|
||||
self._version = version
|
||||
|
||||
def _reset_dataset(self, version=None):
|
||||
try:
|
||||
if "_dataset" in self.__dict__:
|
||||
del self.__dict__["_dataset"]
|
||||
self._version = version
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
@property
|
||||
def schema(self) -> pa.Schema:
|
||||
"""Return the schema of the table.
|
||||
@@ -412,16 +405,16 @@ class LanceTable(Table):
|
||||
-------
|
||||
pa.Schema
|
||||
A PyArrow schema object."""
|
||||
return self._dataset.schema
|
||||
return self.to_lance().schema
|
||||
|
||||
def list_versions(self):
|
||||
"""List all versions of the table"""
|
||||
return self._dataset.versions()
|
||||
return self.to_lance().versions()
|
||||
|
||||
@property
|
||||
def version(self) -> int:
|
||||
"""Get the current version of the table"""
|
||||
return self._dataset.version
|
||||
return self.to_lance().version
|
||||
|
||||
def checkout(self, version: int):
|
||||
"""Checkout a version of the table. This is an in-place operation.
|
||||
@@ -454,14 +447,12 @@ class LanceTable(Table):
|
||||
vector type
|
||||
0 [1.1, 0.9] vector
|
||||
"""
|
||||
max_ver = max([v["version"] for v in self._dataset.versions()])
|
||||
max_ver = max([v["version"] for v in self.to_lance().versions()])
|
||||
if version < 1 or version > max_ver:
|
||||
raise ValueError(f"Invalid version {version}")
|
||||
self._reset_dataset(version=version)
|
||||
|
||||
try:
|
||||
# Accessing the property updates the cached value
|
||||
_ = self._dataset
|
||||
self.to_lance().checkout(version)
|
||||
except Exception as e:
|
||||
if "not found" in str(e):
|
||||
raise ValueError(
|
||||
@@ -504,7 +495,7 @@ class LanceTable(Table):
|
||||
>>> len(table.list_versions())
|
||||
4
|
||||
"""
|
||||
max_ver = max([v["version"] for v in self._dataset.versions()])
|
||||
max_ver = max([v["version"] for v in self.to_lance().versions()])
|
||||
if version is None:
|
||||
version = self.version
|
||||
elif version < 1 or version > max_ver:
|
||||
@@ -516,11 +507,10 @@ class LanceTable(Table):
|
||||
# no-op if restoring the latest version
|
||||
return
|
||||
|
||||
self._dataset.restore()
|
||||
self._reset_dataset()
|
||||
self.to_lance().restore()
|
||||
|
||||
def __len__(self):
|
||||
return self._dataset.count_rows()
|
||||
return self.to_lance().count_rows()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"LanceTable({self.name})"
|
||||
@@ -530,7 +520,7 @@ class LanceTable(Table):
|
||||
|
||||
def head(self, n=5) -> pa.Table:
|
||||
"""Return the first n rows of the table."""
|
||||
return self._dataset.head(n)
|
||||
return self.to_lance().head(n)
|
||||
|
||||
def to_pandas(self) -> "pd.DataFrame":
|
||||
"""Return the table as a pandas DataFrame.
|
||||
@@ -547,11 +537,11 @@ class LanceTable(Table):
|
||||
Returns
|
||||
-------
|
||||
pa.Table"""
|
||||
return self._dataset.to_table()
|
||||
return self.to_lance().to_table()
|
||||
|
||||
@property
|
||||
def _dataset_uri(self) -> str:
|
||||
return os.path.join(self._conn.uri, f"{self.name}.lance")
|
||||
return join_uri(self._conn.uri, f"{self.name}.lance")
|
||||
|
||||
def create_index(
|
||||
self,
|
||||
@@ -574,10 +564,11 @@ class LanceTable(Table):
|
||||
accelerator=accelerator,
|
||||
index_cache_size=index_cache_size,
|
||||
)
|
||||
self._reset_dataset()
|
||||
register_event("create_index")
|
||||
|
||||
def create_fts_index(self, field_names: Union[str, List[str]]):
|
||||
def create_fts_index(
|
||||
self, field_names: Union[str, List[str]], *, replace: bool = False
|
||||
):
|
||||
"""Create a full-text search index on the table.
|
||||
|
||||
Warning - this API is highly experimental and is highly likely to change
|
||||
@@ -587,17 +578,35 @@ class LanceTable(Table):
|
||||
----------
|
||||
field_names: str or list of str
|
||||
The name(s) of the field to index.
|
||||
replace: bool, default False
|
||||
If True, replace the existing index if it exists. Note that this is
|
||||
not yet an atomic operation; the index will be temporarily
|
||||
unavailable while the new index is being created.
|
||||
"""
|
||||
from .fts import create_index, populate_index
|
||||
|
||||
if isinstance(field_names, str):
|
||||
field_names = [field_names]
|
||||
|
||||
fs, path = fs_from_uri(self._get_fts_index_path())
|
||||
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
|
||||
if index_exists:
|
||||
if not replace:
|
||||
raise ValueError(
|
||||
f"Index already exists. Use replace=True to overwrite."
|
||||
)
|
||||
try:
|
||||
fs.delete_dir(path)
|
||||
except FileNotFoundError as e:
|
||||
if "Cannot get information for path" in str(e):
|
||||
pass
|
||||
|
||||
index = create_index(self._get_fts_index_path(), field_names)
|
||||
populate_index(index, self, field_names)
|
||||
register_event("create_fts_index")
|
||||
|
||||
def _get_fts_index_path(self):
|
||||
return os.path.join(self._dataset_uri, "_indices", "tantivy")
|
||||
return join_uri(self._dataset_uri, "_indices", "tantivy")
|
||||
|
||||
@cached_property
|
||||
def _dataset(self) -> LanceDataset:
|
||||
@@ -645,8 +654,7 @@ class LanceTable(Table):
|
||||
on_bad_vectors=on_bad_vectors,
|
||||
fill_value=fill_value,
|
||||
)
|
||||
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
|
||||
self._reset_dataset()
|
||||
self.to_lance().write(data, mode=mode)
|
||||
register_event("add")
|
||||
|
||||
def merge(
|
||||
@@ -707,10 +715,9 @@ class LanceTable(Table):
|
||||
other_table = other_table.to_lance()
|
||||
if isinstance(other_table, LanceDataset):
|
||||
other_table = other_table.to_table()
|
||||
self._dataset.merge(
|
||||
self.to_lance().merge(
|
||||
other_table, left_on=left_on, right_on=right_on, schema=schema
|
||||
)
|
||||
self._reset_dataset()
|
||||
register_event("merge")
|
||||
|
||||
@cached_property
|
||||
@@ -913,7 +920,7 @@ class LanceTable(Table):
|
||||
return tbl
|
||||
|
||||
def delete(self, where: str):
|
||||
self._dataset.delete(where)
|
||||
self.to_lance().delete(where)
|
||||
|
||||
def update(
|
||||
self,
|
||||
@@ -968,7 +975,6 @@ class LanceTable(Table):
|
||||
values_sql = {k: value_to_sql(v) for k, v in values.items()}
|
||||
|
||||
self.to_lance().update(values_sql, where)
|
||||
self._reset_dataset()
|
||||
register_event("update")
|
||||
|
||||
def _execute_query(self, query: Query) -> pa.Table:
|
||||
|
||||
@@ -14,7 +14,8 @@
|
||||
import os
|
||||
from datetime import date, datetime
|
||||
from functools import singledispatch
|
||||
from typing import Tuple
|
||||
import pathlib
|
||||
from typing import Tuple, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import numpy as np
|
||||
@@ -62,6 +63,12 @@ def get_uri_location(uri: str) -> str:
|
||||
str: Location part of the URL, without scheme
|
||||
"""
|
||||
parsed = urlparse(uri)
|
||||
if len(parsed.scheme) == 1:
|
||||
# Windows drive names are parsed as the scheme
|
||||
# e.g. "c:\path" -> ParseResult(scheme="c", netloc="", path="/path", ...)
|
||||
# So we add special handling here for schemes that are a single character
|
||||
return uri
|
||||
|
||||
if not parsed.netloc:
|
||||
return parsed.path
|
||||
else:
|
||||
@@ -84,6 +91,29 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
|
||||
return pa_fs.FileSystem.from_uri(uri)
|
||||
|
||||
|
||||
def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
|
||||
"""
|
||||
Join a URI with multiple parts, handles both local and remote paths
|
||||
|
||||
Parameters
|
||||
----------
|
||||
base : str
|
||||
The base URI
|
||||
parts : str
|
||||
The parts to join to the base URI, each separated by the
|
||||
appropriate path separator for the URI scheme and OS
|
||||
"""
|
||||
if isinstance(base, pathlib.Path):
|
||||
return base.joinpath(*parts)
|
||||
base = str(base)
|
||||
if get_uri_scheme(base) == "file":
|
||||
# using pathlib for local paths make this windows compatible
|
||||
# `get_uri_scheme` returns `file` for windows drive names (e.g. `c:\path`)
|
||||
return str(pathlib.Path(base, *parts))
|
||||
# for remote paths, just use os.path.join
|
||||
return "/".join([p.rstrip("/") for p in [base, *parts]])
|
||||
|
||||
|
||||
def safe_import_pandas():
|
||||
try:
|
||||
import pandas as pd
|
||||
|
||||
@@ -3,7 +3,7 @@ name = "lancedb"
|
||||
version = "0.4.0"
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.9.0",
|
||||
"pylance==0.9.1",
|
||||
"ratelimiter~=1.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.27.0",
|
||||
|
||||
@@ -43,7 +43,15 @@ def table(tmp_path) -> ldb.table.LanceTable:
|
||||
for _ in range(100)
|
||||
]
|
||||
table = db.create_table(
|
||||
"test", data=pd.DataFrame({"vector": vectors, "text": text, "text2": text})
|
||||
"test",
|
||||
data=pd.DataFrame(
|
||||
{
|
||||
"vector": vectors,
|
||||
"text": text,
|
||||
"text2": text,
|
||||
"nested": [{"text": t} for t in text],
|
||||
}
|
||||
),
|
||||
)
|
||||
return table
|
||||
|
||||
@@ -75,6 +83,24 @@ def test_create_index_from_table(tmp_path, table):
|
||||
assert len(df) == 10
|
||||
assert "text" in df.columns
|
||||
|
||||
# Check whether it can be updated
|
||||
table.add(
|
||||
[
|
||||
{
|
||||
"vector": np.random.randn(128),
|
||||
"text": "gorilla",
|
||||
"text2": "gorilla",
|
||||
"nested": {"text": "gorilla"},
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
table.create_fts_index("text", replace=True)
|
||||
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
|
||||
|
||||
with pytest.raises(ValueError, match="already exists"):
|
||||
table.create_fts_index("text")
|
||||
|
||||
|
||||
def test_create_index_multiple_columns(tmp_path, table):
|
||||
table.create_fts_index(["text", "text2"])
|
||||
@@ -89,3 +115,9 @@ def test_empty_rs(tmp_path, table, mocker):
|
||||
mocker.patch("lancedb.fts.search_index", return_value=([], []))
|
||||
df = table.search("puppy").limit(10).to_pandas()
|
||||
assert len(df) == 0
|
||||
|
||||
|
||||
def test_nested_schema(tmp_path, table):
|
||||
table.create_fts_index("nested.text")
|
||||
rs = table.search("puppy").limit(10).to_list()
|
||||
assert len(rs) == 10
|
||||
|
||||
@@ -21,8 +21,8 @@ import lance
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
from pydantic import BaseModel
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from lancedb.conftest import MockTextEmbeddingFunction
|
||||
from lancedb.db import LanceDBConnection
|
||||
@@ -144,9 +144,13 @@ def test_add(db):
|
||||
def test_add_pydantic_model(db):
|
||||
# https://github.com/lancedb/lancedb/issues/562
|
||||
|
||||
class Metadata(BaseModel):
|
||||
source: str
|
||||
timestamp: datetime
|
||||
|
||||
class Document(BaseModel):
|
||||
content: str
|
||||
source: str
|
||||
meta: Metadata
|
||||
|
||||
class LanceSchema(LanceModel):
|
||||
id: str
|
||||
@@ -162,13 +166,21 @@ def test_add_pydantic_model(db):
|
||||
id="id",
|
||||
vector=[0.0, 0.0],
|
||||
li=[1, 2, 3],
|
||||
payload=Document(content="foo", source="bar"),
|
||||
payload=Document(
|
||||
content="foo", meta=Metadata(source="bar", timestamp=datetime.now())
|
||||
),
|
||||
)
|
||||
tbl.add([expected])
|
||||
|
||||
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
|
||||
assert result == expected
|
||||
|
||||
flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=1)
|
||||
assert len(flattened.columns) == 6 # _distance is automatically added
|
||||
|
||||
really_flattened = tbl.search([0.0, 0.0]).limit(1).to_pandas(flatten=True)
|
||||
assert len(really_flattened.columns) == 7
|
||||
|
||||
|
||||
def _add(table, schema):
|
||||
# table = LanceTable(db, "test")
|
||||
@@ -214,39 +226,38 @@ def test_versioning(db):
|
||||
|
||||
|
||||
def test_create_index_method():
|
||||
with patch.object(LanceTable, "_reset_dataset", return_value=None):
|
||||
with patch.object(
|
||||
LanceTable, "_dataset", new_callable=PropertyMock
|
||||
) as mock_dataset:
|
||||
# Setup mock responses
|
||||
mock_dataset.return_value.create_index.return_value = None
|
||||
with patch.object(
|
||||
LanceTable, "_dataset", new_callable=PropertyMock
|
||||
) as mock_dataset:
|
||||
# Setup mock responses
|
||||
mock_dataset.return_value.create_index.return_value = None
|
||||
|
||||
# Create a LanceTable object
|
||||
connection = LanceDBConnection(uri="mock.uri")
|
||||
table = LanceTable(connection, "test_table")
|
||||
# Create a LanceTable object
|
||||
connection = LanceDBConnection(uri="mock.uri")
|
||||
table = LanceTable(connection, "test_table")
|
||||
|
||||
# Call the create_index method
|
||||
table.create_index(
|
||||
metric="L2",
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
vector_column_name="vector",
|
||||
replace=True,
|
||||
index_cache_size=256,
|
||||
)
|
||||
# Call the create_index method
|
||||
table.create_index(
|
||||
metric="L2",
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
vector_column_name="vector",
|
||||
replace=True,
|
||||
index_cache_size=256,
|
||||
)
|
||||
|
||||
# Check that the _dataset.create_index method was called
|
||||
# with the right parameters
|
||||
mock_dataset.return_value.create_index.assert_called_once_with(
|
||||
column="vector",
|
||||
index_type="IVF_PQ",
|
||||
metric="L2",
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
replace=True,
|
||||
accelerator=None,
|
||||
index_cache_size=256,
|
||||
)
|
||||
# Check that the _dataset.create_index method was called
|
||||
# with the right parameters
|
||||
mock_dataset.return_value.create_index.assert_called_once_with(
|
||||
column="vector",
|
||||
index_type="IVF_PQ",
|
||||
metric="L2",
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
replace=True,
|
||||
accelerator=None,
|
||||
index_cache_size=256,
|
||||
)
|
||||
|
||||
|
||||
def test_add_with_nans(db):
|
||||
|
||||
@@ -11,7 +11,12 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from lancedb.util import get_uri_scheme
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
import pytest
|
||||
|
||||
from lancedb.util import get_uri_scheme, join_uri
|
||||
|
||||
|
||||
def test_normalize_uri():
|
||||
@@ -28,3 +33,55 @@ def test_normalize_uri():
|
||||
for uri, expected_scheme in zip(uris, schemes):
|
||||
parsed_scheme = get_uri_scheme(uri)
|
||||
assert parsed_scheme == expected_scheme
|
||||
|
||||
|
||||
def test_join_uri_remote():
|
||||
schemes = ["s3", "az", "gs"]
|
||||
for scheme in schemes:
|
||||
expected = f"{scheme}://bucket/path/to/table.lance"
|
||||
base_uri = f"{scheme}://bucket/path/to/"
|
||||
parts = ["table.lance"]
|
||||
assert join_uri(base_uri, *parts) == expected
|
||||
|
||||
base_uri = f"{scheme}://bucket"
|
||||
parts = ["path", "to", "table.lance"]
|
||||
assert join_uri(base_uri, *parts) == expected
|
||||
|
||||
|
||||
# skip this test if on windows
|
||||
@pytest.mark.skipif(os.name == "nt", reason="Windows paths are not POSIX")
|
||||
def test_join_uri_posix():
|
||||
for base in [
|
||||
# relative path
|
||||
"relative/path",
|
||||
"relative/path/",
|
||||
# an absolute path
|
||||
"/absolute/path",
|
||||
"/absolute/path/",
|
||||
# a file URI
|
||||
"file:///absolute/path",
|
||||
"file:///absolute/path/",
|
||||
]:
|
||||
joined = join_uri(base, "table.lance")
|
||||
assert joined == str(pathlib.Path(base) / "table.lance")
|
||||
joined = join_uri(pathlib.Path(base), "table.lance")
|
||||
assert joined == pathlib.Path(base) / "table.lance"
|
||||
|
||||
|
||||
# skip this test if not on windows
|
||||
@pytest.mark.skipif(os.name != "nt", reason="Windows paths are not POSIX")
|
||||
def test_local_join_uri_windows():
|
||||
# https://learn.microsoft.com/en-us/dotnet/standard/io/file-path-formats
|
||||
for base in [
|
||||
# windows relative path
|
||||
"relative\\path",
|
||||
"relative\\path\\",
|
||||
# windows absolute path from current drive
|
||||
"c:\\absolute\\path",
|
||||
# relative path from root of current drive
|
||||
"\\relative\\path",
|
||||
]:
|
||||
joined = join_uri(base, "table.lance")
|
||||
assert joined == str(pathlib.Path(base) / "table.lance")
|
||||
joined = join_uri(pathlib.Path(base), "table.lance")
|
||||
assert joined == pathlib.Path(base) / "table.lance"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "vectordb-node"
|
||||
version = "0.3.11"
|
||||
version = "0.4.0"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license = "Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
@@ -23,7 +23,7 @@ pub enum Error {
|
||||
#[snafu(display("column '{name}' is missing"))]
|
||||
MissingColumn { name: String },
|
||||
#[snafu(display("{name}: {message}"))]
|
||||
RangeError { name: String, message: String },
|
||||
OutOfRange { name: String, message: String },
|
||||
#[snafu(display("{index_type} is not a valid index type"))]
|
||||
InvalidIndexType { index_type: String },
|
||||
|
||||
|
||||
@@ -65,12 +65,10 @@ fn get_index_params_builder(
|
||||
obj.get_opt::<JsString, _, _>(cx, "index_name")?
|
||||
.map(|s| index_builder.index_name(s.value(cx)));
|
||||
|
||||
obj.get_opt::<JsString, _, _>(cx, "metric_type")?
|
||||
.map(|s| MetricType::try_from(s.value(cx).as_str()))
|
||||
.map(|mt| {
|
||||
let metric_type = mt.unwrap();
|
||||
index_builder.metric_type(metric_type);
|
||||
});
|
||||
if let Some(metric_type) = obj.get_opt::<JsString, _, _>(cx, "metric_type")? {
|
||||
let metric_type = MetricType::try_from(metric_type.value(cx).as_str()).unwrap();
|
||||
index_builder.metric_type(metric_type);
|
||||
}
|
||||
|
||||
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
|
||||
let max_iters = obj.get_opt_usize(cx, "max_iters")?;
|
||||
@@ -85,23 +83,29 @@ fn get_index_params_builder(
|
||||
index_builder.ivf_params(ivf_params)
|
||||
});
|
||||
|
||||
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")?
|
||||
.map(|s| pq_params.use_opq = s.value(cx));
|
||||
if let Some(use_opq) = obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? {
|
||||
pq_params.use_opq = use_opq.value(cx);
|
||||
}
|
||||
|
||||
obj.get_opt_usize(cx, "num_sub_vectors")?
|
||||
.map(|s| pq_params.num_sub_vectors = s);
|
||||
if let Some(num_sub_vectors) = obj.get_opt_usize(cx, "num_sub_vectors")? {
|
||||
pq_params.num_sub_vectors = num_sub_vectors;
|
||||
}
|
||||
|
||||
obj.get_opt_usize(cx, "num_bits")?
|
||||
.map(|s| pq_params.num_bits = s);
|
||||
if let Some(num_bits) = obj.get_opt_usize(cx, "num_bits")? {
|
||||
pq_params.num_bits = num_bits;
|
||||
}
|
||||
|
||||
obj.get_opt_usize(cx, "max_iters")?
|
||||
.map(|s| pq_params.max_iters = s);
|
||||
if let Some(max_iters) = obj.get_opt_usize(cx, "max_iters")? {
|
||||
pq_params.max_iters = max_iters;
|
||||
}
|
||||
|
||||
obj.get_opt_usize(cx, "max_opq_iters")?
|
||||
.map(|s| pq_params.max_opq_iters = s);
|
||||
if let Some(max_opq_iters) = obj.get_opt_usize(cx, "max_opq_iters")? {
|
||||
pq_params.max_opq_iters = max_opq_iters;
|
||||
}
|
||||
|
||||
obj.get_opt::<JsBoolean, _, _>(cx, "replace")?
|
||||
.map(|s| index_builder.replace(s.value(cx)));
|
||||
if let Some(replace) = obj.get_opt::<JsBoolean, _, _>(cx, "replace")? {
|
||||
index_builder.replace(replace.value(cx));
|
||||
}
|
||||
|
||||
Ok(index_builder)
|
||||
}
|
||||
|
||||
@@ -47,15 +47,15 @@ fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
|
||||
use conv::*;
|
||||
|
||||
n.approx_as::<u32>().map_err(|e| match e {
|
||||
FloatError::NegOverflow(_) => Error::RangeError {
|
||||
FloatError::NegOverflow(_) => Error::OutOfRange {
|
||||
name: key.into(),
|
||||
message: "must be > 0".to_string(),
|
||||
},
|
||||
FloatError::PosOverflow(_) => Error::RangeError {
|
||||
FloatError::PosOverflow(_) => Error::OutOfRange {
|
||||
name: key.into(),
|
||||
message: format!("must be < {}", u32::MAX),
|
||||
},
|
||||
FloatError::NotANumber(_) => Error::RangeError {
|
||||
FloatError::NotANumber(_) => Error::OutOfRange {
|
||||
name: key.into(),
|
||||
message: "not a valid number".to_string(),
|
||||
},
|
||||
@@ -66,15 +66,15 @@ fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
|
||||
use conv::*;
|
||||
|
||||
n.approx_as::<usize>().map_err(|e| match e {
|
||||
FloatError::NegOverflow(_) => Error::RangeError {
|
||||
FloatError::NegOverflow(_) => Error::OutOfRange {
|
||||
name: key.into(),
|
||||
message: "must be > 0".to_string(),
|
||||
},
|
||||
FloatError::PosOverflow(_) => Error::RangeError {
|
||||
FloatError::PosOverflow(_) => Error::OutOfRange {
|
||||
name: key.into(),
|
||||
message: format!("must be < {}", usize::MAX),
|
||||
},
|
||||
FloatError::NotANumber(_) => Error::RangeError {
|
||||
FloatError::NotANumber(_) => Error::OutOfRange {
|
||||
name: key.into(),
|
||||
message: "not a valid number".to_string(),
|
||||
},
|
||||
|
||||
@@ -25,11 +25,11 @@ impl JsQuery {
|
||||
let limit = query_obj
|
||||
.get_opt::<JsNumber, _, _>(&mut cx, "_limit")?
|
||||
.map(|value| {
|
||||
let limit = value.value(&mut cx) as u64;
|
||||
if limit <= 0 {
|
||||
let limit = value.value(&mut cx);
|
||||
if limit <= 0.0 {
|
||||
panic!("Limit must be a positive integer");
|
||||
}
|
||||
limit
|
||||
limit as u64
|
||||
});
|
||||
let select = query_obj
|
||||
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
|
||||
@@ -73,7 +73,7 @@ impl JsQuery {
|
||||
|
||||
rt.spawn(async move {
|
||||
let mut builder = table
|
||||
.search(query.map(|q| Float32Array::from(q)))
|
||||
.search(query.map(Float32Array::from))
|
||||
.refine_factor(refine_factor)
|
||||
.nprobes(nprobes)
|
||||
.filter(filter)
|
||||
|
||||
@@ -45,7 +45,7 @@ impl JsTable {
|
||||
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
|
||||
let buffer = cx.argument::<JsBuffer>(1)?;
|
||||
let (batches, schema) =
|
||||
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
|
||||
arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
|
||||
|
||||
// Write mode
|
||||
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
|
||||
@@ -93,7 +93,7 @@ impl JsTable {
|
||||
let buffer = cx.argument::<JsBuffer>(0)?;
|
||||
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
|
||||
let (batches, schema) =
|
||||
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
|
||||
arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
|
||||
let rt = runtime(&mut cx)?;
|
||||
let channel = cx.channel();
|
||||
let mut table = js_table.table.clone();
|
||||
@@ -186,7 +186,7 @@ impl JsTable {
|
||||
.downcast_or_throw::<JsString, _>(&mut cx)?;
|
||||
|
||||
let value = updates_arg
|
||||
.get_value(&mut cx, property.clone())?
|
||||
.get_value(&mut cx, property)?
|
||||
.downcast_or_throw::<JsString, _>(&mut cx)?;
|
||||
|
||||
let property = property.value(&mut cx);
|
||||
@@ -216,7 +216,7 @@ impl JsTable {
|
||||
.map(|(k, v)| (k.as_str(), v.as_str()))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let predicate = predicate.as_ref().map(|s| s.as_str());
|
||||
let predicate = predicate.as_deref();
|
||||
|
||||
let update_result = table.update(predicate, updates_arg).await;
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "vectordb"
|
||||
version = "0.3.11"
|
||||
version = "0.4.0"
|
||||
edition = "2021"
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license = "Apache-2.0"
|
||||
|
||||
@@ -26,7 +26,7 @@ use futures::{stream::BoxStream, FutureExt, StreamExt};
|
||||
use lance::io::object_store::WrappingObjectStore;
|
||||
use object_store::{
|
||||
path::Path, Error, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore,
|
||||
Result,
|
||||
PutOptions, PutResult, Result,
|
||||
};
|
||||
|
||||
use async_trait::async_trait;
|
||||
@@ -72,13 +72,28 @@ impl PrimaryOnly for Path {
|
||||
/// Note: this object store does not mirror writes to *.manifest files
|
||||
#[async_trait]
|
||||
impl ObjectStore for MirroringObjectStore {
|
||||
async fn put(&self, location: &Path, bytes: Bytes) -> Result<()> {
|
||||
async fn put(&self, location: &Path, bytes: Bytes) -> Result<PutResult> {
|
||||
if location.primary_only() {
|
||||
self.primary.put(location, bytes).await
|
||||
} else {
|
||||
self.secondary.put(location, bytes.clone()).await?;
|
||||
self.primary.put(location, bytes).await?;
|
||||
Ok(())
|
||||
self.primary.put(location, bytes).await
|
||||
}
|
||||
}
|
||||
|
||||
async fn put_opts(
|
||||
&self,
|
||||
location: &Path,
|
||||
bytes: Bytes,
|
||||
options: PutOptions,
|
||||
) -> Result<PutResult> {
|
||||
if location.primary_only() {
|
||||
self.primary.put_opts(location, bytes, options).await
|
||||
} else {
|
||||
self.secondary
|
||||
.put_opts(location, bytes.clone(), options.clone())
|
||||
.await?;
|
||||
self.primary.put_opts(location, bytes, options).await
|
||||
}
|
||||
}
|
||||
|
||||
@@ -129,8 +144,8 @@ impl ObjectStore for MirroringObjectStore {
|
||||
self.primary.delete(location).await
|
||||
}
|
||||
|
||||
async fn list(&self, prefix: Option<&Path>) -> Result<BoxStream<'_, Result<ObjectMeta>>> {
|
||||
self.primary.list(prefix).await
|
||||
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, Result<ObjectMeta>> {
|
||||
self.primary.list(prefix)
|
||||
}
|
||||
|
||||
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> {
|
||||
|
||||
Reference in New Issue
Block a user