mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-24 13:59:58 +00:00
Compare commits
20 Commits
rmeng/migr
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8bcdc81fd3 | ||
|
|
39e14c70c5 | ||
|
|
af8263af94 | ||
|
|
be4ab9eef3 | ||
|
|
184d2bc969 | ||
|
|
ff6f005336 | ||
|
|
49333e522c | ||
|
|
4568df422d | ||
|
|
986891db98 | ||
|
|
036bf02901 | ||
|
|
4e31f0cc7a | ||
|
|
0a16e29b93 | ||
|
|
cf7d7a19f5 | ||
|
|
fe2fb91a8b | ||
|
|
81af350d85 | ||
|
|
99adfe065a | ||
|
|
277406509e | ||
|
|
63411b4d8b | ||
|
|
d998f80b04 | ||
|
|
629379a532 |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.2
|
||||
current_version = 0.4.3
|
||||
commit = True
|
||||
message = Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
4
.github/workflows/python.yml
vendored
4
.github/workflows/python.yml
vendored
@@ -49,7 +49,7 @@ jobs:
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
config:
|
||||
- name: x86 Mac
|
||||
runner: macos-13
|
||||
- name: Arm Mac
|
||||
@@ -74,7 +74,7 @@ jobs:
|
||||
run: |
|
||||
pip install -e .[tests]
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install pytest pytest-mock black
|
||||
pip install pytest pytest-mock
|
||||
- name: Run tests
|
||||
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||
pydantic1x:
|
||||
|
||||
@@ -5,10 +5,10 @@ exclude = ["python"]
|
||||
resolver = "2"
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.9.5", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.5" }
|
||||
lance-linalg = { "version" = "=0.9.5" }
|
||||
lance-testing = { "version" = "=0.9.5" }
|
||||
lance = { "version" = "=0.9.6", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.6" }
|
||||
lance-linalg = { "version" = "=0.9.6" }
|
||||
lance-testing = { "version" = "=0.9.6" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "49.0.0", optional = false }
|
||||
arrow-array = "49.0"
|
||||
|
||||
@@ -67,7 +67,7 @@ We'll cover the basics of using LanceDB on your local machine in this section.
|
||||
!!! warning
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
If you want to make sure you overwrite the table, pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
|
||||
=== "Javascript"
|
||||
|
||||
@@ -118,6 +118,42 @@ texts = [{"text": "Capitalism has been dominant in the Western world since the e
|
||||
tbl.add(texts)
|
||||
```
|
||||
|
||||
## Gemini Embedding Function
|
||||
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
|
||||
The Gemini Embedding Model API supports various task types:
|
||||
|
||||
| Task Type | Description |
|
||||
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
|
||||
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
|
||||
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
|
||||
| "`classification`" | Specifies that the embeddings will be used for classification. |
|
||||
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
|
||||
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
|
||||
model = get_registry().get("gemini-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
```
|
||||
|
||||
## Multi-modal embedding functions
|
||||
Multi-modal embedding functions allow you to query your table using both images and text.
|
||||
|
||||
|
||||
@@ -31,13 +31,23 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
|
||||
`create_table` supports an optional `exist_ok` parameter. When set to True
|
||||
and the table exists, then it simply opens the existing table. The data you
|
||||
passed in will NOT be appended to the table in that case.
|
||||
|
||||
```python
|
||||
db.create_table("name", data, exist_ok=True)
|
||||
```
|
||||
|
||||
Sometimes you want to make sure that you start fresh. If you want to
|
||||
overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
||||
|
||||
```python
|
||||
db.create_table("name", data, mode="overwrite")
|
||||
```
|
||||
|
||||
|
||||
### From pandas DataFrame
|
||||
|
||||
```python
|
||||
|
||||
594
node/package-lock.json
generated
594
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.2",
|
||||
"version": "0.4.3",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.2",
|
||||
"version": "0.4.3",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -18,9 +18,9 @@
|
||||
"win32"
|
||||
],
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^12.0.0",
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^12.0.0",
|
||||
"apache-arrow": "^14.0.2",
|
||||
"axios": "^1.4.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
@@ -53,39 +53,59 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.2",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.2",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.2",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.2",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.2"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.3",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.3",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.3",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.3",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.3"
|
||||
}
|
||||
},
|
||||
"node_modules/@75lb/deep-merge": {
|
||||
"version": "1.1.1",
|
||||
"resolved": "https://registry.npmjs.org/@75lb/deep-merge/-/deep-merge-1.1.1.tgz",
|
||||
"integrity": "sha512-xvgv6pkMGBA6GwdyJbNAnDmfAIR/DfWhrj9jgWh3TY7gRm3KO46x/GPjRg6wJ0nOepwqrNxFfojebh0Df4h4Tw==",
|
||||
"dependencies": {
|
||||
"lodash.assignwith": "^4.2.0",
|
||||
"typical": "^7.1.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=12.17"
|
||||
}
|
||||
},
|
||||
"node_modules/@75lb/deep-merge/node_modules/typical": {
|
||||
"version": "7.1.1",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
|
||||
"engines": {
|
||||
"node": ">=12.17"
|
||||
}
|
||||
},
|
||||
"node_modules/@apache-arrow/ts": {
|
||||
"version": "12.0.0",
|
||||
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-12.0.0.tgz",
|
||||
"integrity": "sha512-ArJ3Fw5W9RAeNWuyCU2CdjL/nEAZSVDG1p3jz/ZtLo/q3NTz2w7HUCOJeszejH/5alGX+QirYrJ5c6BW++/P7g==",
|
||||
"version": "14.0.2",
|
||||
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz",
|
||||
"integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==",
|
||||
"dependencies": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
"@types/node": "18.14.5",
|
||||
"@types/node": "20.3.0",
|
||||
"@types/pad-left": "2.1.1",
|
||||
"command-line-args": "5.2.1",
|
||||
"command-line-usage": "6.1.3",
|
||||
"flatbuffers": "23.3.3",
|
||||
"command-line-usage": "7.0.1",
|
||||
"flatbuffers": "23.5.26",
|
||||
"json-bignum": "^0.0.3",
|
||||
"pad-left": "^2.1.0",
|
||||
"tslib": "^2.5.0"
|
||||
"tslib": "^2.5.3"
|
||||
}
|
||||
},
|
||||
"node_modules/@apache-arrow/ts/node_modules/@types/node": {
|
||||
"version": "18.14.5",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
|
||||
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
|
||||
"version": "20.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||
},
|
||||
"node_modules/@apache-arrow/ts/node_modules/tslib": {
|
||||
"version": "2.5.0",
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
||||
"version": "2.6.2",
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
|
||||
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
|
||||
},
|
||||
"node_modules/@cargo-messages/android-arm-eabi": {
|
||||
"version": "0.0.160",
|
||||
@@ -317,9 +337,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.2.tgz",
|
||||
"integrity": "sha512-Ec73W2IHnZK4VC8g/7JyLbgcwcpNb9YI20yEhfTjEEFjJKoElZhDD/ZgghC3QQSRnrXFTxDzPK1V9BDT5QB2Hg==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.3.tgz",
|
||||
"integrity": "sha512-47CvvSaV1EdUsFEpXUJApTk+hMzAhCxVizipCFUlXCgcmzpCDL86wNgJij/X9a+j6zADhIX//Lsu0qd/an/Bpw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -329,9 +349,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.2.tgz",
|
||||
"integrity": "sha512-tj0JJlOfOdeSAfmM7EZhrhFdCFjoq9Bmrjt4741BNjtF+Nv4Otl53lFtUQrexTr4oh/E1yY1qaydJ7K++8u3UA==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.3.tgz",
|
||||
"integrity": "sha512-UlZZv8CmJIuRJNJG+Y1VmFsGyPR8W/72Q5EwgMMsSES6zpMQ9pNdBDWhL3UGX6nMRgnbprkwYiWJ3xHhJvtqtw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -341,9 +361,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.2.tgz",
|
||||
"integrity": "sha512-OQ7ra5Q5RrLLwxIyI338KfQ2sSl8NJfqAHWvwiMtjCYFFYxIJGjX7U0I2MjSEPqJ5/ZoyjV4mjsvs0G1q20u+Q==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.3.tgz",
|
||||
"integrity": "sha512-L6NVJr/lKEd8+904FzZNpT8BGQMs2cHNYbGJMIaVvGnMiIJgKAFKtOyGtdDjoe1xRZoEw21yjRGksGbnRO5wHQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -353,9 +373,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.2.tgz",
|
||||
"integrity": "sha512-9tgIFSOYqNJzonnYsQr7v2gGdJm8aZ62UsVX2SWAIVhypoP4A05tAlbzjBgKO3R5xy5gpcW8tt/Pt8IsYWON7Q==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.3.tgz",
|
||||
"integrity": "sha512-OBx3WF3pK0xNfFJeErmuD9R2QWLa3XdeZspyTsIrQmBDeKj3HKh8y7Scpx4NH5Y09+9JNqRRKRZN7OqWTYhITg==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -365,9 +385,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.2.tgz",
|
||||
"integrity": "sha512-jhG3MqZ3r8BexXANLRNX57RAnCZT9psdSBORG3KTu5qe2xaunRlJNSA2kk8a79tf+gtUT/BAmMiXMzAi/dwq8w==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.3.tgz",
|
||||
"integrity": "sha512-n9IvR81NXZKnSN91mrgeXbEyCiGM+YLJpOgbdHoEtMP04VDnS+iSU4jGOtQBKErvWeCJQaGFQ9qzdcVchpRGyw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -866,7 +886,6 @@
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
|
||||
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"color-convert": "^2.0.1"
|
||||
},
|
||||
@@ -891,34 +910,34 @@
|
||||
}
|
||||
},
|
||||
"node_modules/apache-arrow": {
|
||||
"version": "12.0.0",
|
||||
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-12.0.0.tgz",
|
||||
"integrity": "sha512-uI+hnZZsGfNJiR/wG8j5yPQuDjmOHx4hZpkA743G4x3TlFrCpA3MMX7KUkIOIw0e/CwZ8NYuaMzaQsblA47qVA==",
|
||||
"version": "14.0.2",
|
||||
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz",
|
||||
"integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==",
|
||||
"dependencies": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
"@types/node": "18.14.5",
|
||||
"@types/node": "20.3.0",
|
||||
"@types/pad-left": "2.1.1",
|
||||
"command-line-args": "5.2.1",
|
||||
"command-line-usage": "6.1.3",
|
||||
"flatbuffers": "23.3.3",
|
||||
"command-line-usage": "7.0.1",
|
||||
"flatbuffers": "23.5.26",
|
||||
"json-bignum": "^0.0.3",
|
||||
"pad-left": "^2.1.0",
|
||||
"tslib": "^2.5.0"
|
||||
"tslib": "^2.5.3"
|
||||
},
|
||||
"bin": {
|
||||
"arrow2csv": "bin/arrow2csv.js"
|
||||
}
|
||||
},
|
||||
"node_modules/apache-arrow/node_modules/@types/node": {
|
||||
"version": "18.14.5",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
|
||||
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
|
||||
"version": "20.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||
},
|
||||
"node_modules/apache-arrow/node_modules/tslib": {
|
||||
"version": "2.5.0",
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
||||
"version": "2.6.2",
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
|
||||
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
|
||||
},
|
||||
"node_modules/arg": {
|
||||
"version": "4.1.3",
|
||||
@@ -1170,7 +1189,6 @@
|
||||
"version": "4.1.2",
|
||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
||||
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"ansi-styles": "^4.1.0",
|
||||
"supports-color": "^7.1.0"
|
||||
@@ -1182,11 +1200,24 @@
|
||||
"url": "https://github.com/chalk/chalk?sponsor=1"
|
||||
}
|
||||
},
|
||||
"node_modules/chalk-template": {
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/chalk-template/-/chalk-template-0.4.0.tgz",
|
||||
"integrity": "sha512-/ghrgmhfY8RaSdeo43hNXxpoHAtxdbskUHjPpfqUWGttFgycUhYPGx3YZBCnUCvOa7Doivn1IZec3DEGFoMgLg==",
|
||||
"dependencies": {
|
||||
"chalk": "^4.1.2"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=12"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/chalk/chalk-template?sponsor=1"
|
||||
}
|
||||
},
|
||||
"node_modules/chalk/node_modules/supports-color": {
|
||||
"version": "7.2.0",
|
||||
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
|
||||
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"has-flag": "^4.0.0"
|
||||
},
|
||||
@@ -1245,7 +1276,6 @@
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
||||
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"color-name": "~1.1.4"
|
||||
},
|
||||
@@ -1256,8 +1286,7 @@
|
||||
"node_modules/color-name": {
|
||||
"version": "1.1.4",
|
||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
|
||||
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
|
||||
"dev": true
|
||||
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA=="
|
||||
},
|
||||
"node_modules/combined-stream": {
|
||||
"version": "1.0.8",
|
||||
@@ -1285,97 +1314,33 @@
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage": {
|
||||
"version": "6.1.3",
|
||||
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-6.1.3.tgz",
|
||||
"integrity": "sha512-sH5ZSPr+7UStsloltmDh7Ce5fb8XPlHyoPzTpyyMuYCtervL65+ubVZ6Q61cFtFl62UyJlc8/JwERRbAFPUqgw==",
|
||||
"version": "7.0.1",
|
||||
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-7.0.1.tgz",
|
||||
"integrity": "sha512-NCyznE//MuTjwi3y84QVUGEOT+P5oto1e1Pk/jFPVdPPfsG03qpTIl3yw6etR+v73d0lXsoojRpvbru2sqePxQ==",
|
||||
"dependencies": {
|
||||
"array-back": "^4.0.2",
|
||||
"chalk": "^2.4.2",
|
||||
"table-layout": "^1.0.2",
|
||||
"typical": "^5.2.0"
|
||||
"array-back": "^6.2.2",
|
||||
"chalk-template": "^0.4.0",
|
||||
"table-layout": "^3.0.0",
|
||||
"typical": "^7.1.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=8.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/ansi-styles": {
|
||||
"version": "3.2.1",
|
||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
|
||||
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
|
||||
"dependencies": {
|
||||
"color-convert": "^1.9.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=4"
|
||||
"node": ">=12.20.0"
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/array-back": {
|
||||
"version": "4.0.2",
|
||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
|
||||
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg==",
|
||||
"version": "6.2.2",
|
||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
|
||||
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw==",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/chalk": {
|
||||
"version": "2.4.2",
|
||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
|
||||
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
|
||||
"dependencies": {
|
||||
"ansi-styles": "^3.2.1",
|
||||
"escape-string-regexp": "^1.0.5",
|
||||
"supports-color": "^5.3.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=4"
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/color-convert": {
|
||||
"version": "1.9.3",
|
||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
|
||||
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
|
||||
"dependencies": {
|
||||
"color-name": "1.1.3"
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/color-name": {
|
||||
"version": "1.1.3",
|
||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
|
||||
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw=="
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/escape-string-regexp": {
|
||||
"version": "1.0.5",
|
||||
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
|
||||
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==",
|
||||
"engines": {
|
||||
"node": ">=0.8.0"
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/has-flag": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
|
||||
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==",
|
||||
"engines": {
|
||||
"node": ">=4"
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/supports-color": {
|
||||
"version": "5.5.0",
|
||||
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
|
||||
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
|
||||
"dependencies": {
|
||||
"has-flag": "^3.0.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=4"
|
||||
"node": ">=12.17"
|
||||
}
|
||||
},
|
||||
"node_modules/command-line-usage/node_modules/typical": {
|
||||
"version": "5.2.0",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
|
||||
"version": "7.1.1",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
"node": ">=12.17"
|
||||
}
|
||||
},
|
||||
"node_modules/concat-map": {
|
||||
@@ -1451,14 +1416,6 @@
|
||||
"node": ">=6"
|
||||
}
|
||||
},
|
||||
"node_modules/deep-extend": {
|
||||
"version": "0.6.0",
|
||||
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
|
||||
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA==",
|
||||
"engines": {
|
||||
"node": ">=4.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/deep-is": {
|
||||
"version": "0.1.4",
|
||||
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
|
||||
@@ -2237,9 +2194,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/flatbuffers": {
|
||||
"version": "23.3.3",
|
||||
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.3.3.tgz",
|
||||
"integrity": "sha512-jmreOaAT1t55keaf+Z259Tvh8tR/Srry9K8dgCgvizhKSEr6gLGgaOJI2WFL5fkOpGOGRZwxUrlFn0GCmXUy6g=="
|
||||
"version": "23.5.26",
|
||||
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.5.26.tgz",
|
||||
"integrity": "sha512-vE+SI9vrJDwi1oETtTIFldC/o9GsVKRM+s6EL0nQgxXlYV1Vc4Tk30hj4xGICftInKQKj1F3up2n8UbIVobISQ=="
|
||||
},
|
||||
"node_modules/flatted": {
|
||||
"version": "3.2.7",
|
||||
@@ -2535,7 +2492,6 @@
|
||||
"version": "4.0.0",
|
||||
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
|
||||
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
|
||||
"dev": true,
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
}
|
||||
@@ -3048,6 +3004,11 @@
|
||||
"url": "https://github.com/sponsors/sindresorhus"
|
||||
}
|
||||
},
|
||||
"node_modules/lodash.assignwith": {
|
||||
"version": "4.2.0",
|
||||
"resolved": "https://registry.npmjs.org/lodash.assignwith/-/lodash.assignwith-4.2.0.tgz",
|
||||
"integrity": "sha512-ZznplvbvtjK2gMvnQ1BR/zqPFZmS6jbK4p+6Up4xcRYA7yMIwxHCfbTcrYxXKzzqLsQ05eJPVznEW3tuwV7k1g=="
|
||||
},
|
||||
"node_modules/lodash.camelcase": {
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
|
||||
@@ -3668,14 +3629,6 @@
|
||||
"node": ">=8.10.0"
|
||||
}
|
||||
},
|
||||
"node_modules/reduce-flatten": {
|
||||
"version": "2.0.0",
|
||||
"resolved": "https://registry.npmjs.org/reduce-flatten/-/reduce-flatten-2.0.0.tgz",
|
||||
"integrity": "sha512-EJ4UNY/U1t2P/2k6oqotuX2Cc3T6nxJwsM0N0asT7dhrtH1ltUxDn4NalSYmPE2rCkVpcf/X6R0wDwcFpzhd4w==",
|
||||
"engines": {
|
||||
"node": ">=6"
|
||||
}
|
||||
},
|
||||
"node_modules/regexp.prototype.flags": {
|
||||
"version": "1.5.0",
|
||||
"resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.5.0.tgz",
|
||||
@@ -3965,6 +3918,14 @@
|
||||
"source-map": "^0.6.0"
|
||||
}
|
||||
},
|
||||
"node_modules/stream-read-all": {
|
||||
"version": "3.0.1",
|
||||
"resolved": "https://registry.npmjs.org/stream-read-all/-/stream-read-all-3.0.1.tgz",
|
||||
"integrity": "sha512-EWZT9XOceBPlVJRrYcykW8jyRSZYbkb/0ZK36uLEmoWVO5gxBOnntNTseNzfREsqxqdfEGQrD8SXQ3QWbBmq8A==",
|
||||
"engines": {
|
||||
"node": ">=10"
|
||||
}
|
||||
},
|
||||
"node_modules/string-width": {
|
||||
"version": "4.2.3",
|
||||
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
|
||||
@@ -4082,33 +4043,39 @@
|
||||
}
|
||||
},
|
||||
"node_modules/table-layout": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-1.0.2.tgz",
|
||||
"integrity": "sha512-qd/R7n5rQTRFi+Zf2sk5XVVd9UQl6ZkduPFC3S7WEGJAmetDTjY3qPN50eSKzwuzEyQKy5TN2TiZdkIjos2L6A==",
|
||||
"version": "3.0.2",
|
||||
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-3.0.2.tgz",
|
||||
"integrity": "sha512-rpyNZYRw+/C+dYkcQ3Pr+rLxW4CfHpXjPDnG7lYhdRoUcZTUt+KEsX+94RGp/aVp/MQU35JCITv2T/beY4m+hw==",
|
||||
"dependencies": {
|
||||
"array-back": "^4.0.1",
|
||||
"deep-extend": "~0.6.0",
|
||||
"typical": "^5.2.0",
|
||||
"wordwrapjs": "^4.0.0"
|
||||
"@75lb/deep-merge": "^1.1.1",
|
||||
"array-back": "^6.2.2",
|
||||
"command-line-args": "^5.2.1",
|
||||
"command-line-usage": "^7.0.0",
|
||||
"stream-read-all": "^3.0.1",
|
||||
"typical": "^7.1.1",
|
||||
"wordwrapjs": "^5.1.0"
|
||||
},
|
||||
"bin": {
|
||||
"table-layout": "bin/cli.js"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=8.0.0"
|
||||
"node": ">=12.17"
|
||||
}
|
||||
},
|
||||
"node_modules/table-layout/node_modules/array-back": {
|
||||
"version": "4.0.2",
|
||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
|
||||
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg==",
|
||||
"version": "6.2.2",
|
||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
|
||||
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw==",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
"node": ">=12.17"
|
||||
}
|
||||
},
|
||||
"node_modules/table-layout/node_modules/typical": {
|
||||
"version": "5.2.0",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
|
||||
"version": "7.1.1",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA==",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
"node": ">=12.17"
|
||||
}
|
||||
},
|
||||
"node_modules/temp": {
|
||||
@@ -4553,23 +4520,11 @@
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/wordwrapjs": {
|
||||
"version": "4.0.1",
|
||||
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
|
||||
"integrity": "sha512-kKlNACbvHrkpIw6oPeYDSmdCTu2hdMHoyXLTcUKala++lx5Y+wjJ/e474Jqv5abnVmwxw08DiTuHmw69lJGksA==",
|
||||
"dependencies": {
|
||||
"reduce-flatten": "^2.0.0",
|
||||
"typical": "^5.2.0"
|
||||
},
|
||||
"version": "5.1.0",
|
||||
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-5.1.0.tgz",
|
||||
"integrity": "sha512-JNjcULU2e4KJwUNv6CHgI46UvDGitb6dGryHajXTDiLgg1/RiGoPSDw4kZfYnwGtEXf2ZMeIewDQgFGzkCB2Sg==",
|
||||
"engines": {
|
||||
"node": ">=8.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/wordwrapjs/node_modules/typical": {
|
||||
"version": "5.2.0",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg==",
|
||||
"engines": {
|
||||
"node": ">=8"
|
||||
"node": ">=12.17"
|
||||
}
|
||||
},
|
||||
"node_modules/workerpool": {
|
||||
@@ -4690,32 +4645,48 @@
|
||||
}
|
||||
},
|
||||
"dependencies": {
|
||||
"@75lb/deep-merge": {
|
||||
"version": "1.1.1",
|
||||
"resolved": "https://registry.npmjs.org/@75lb/deep-merge/-/deep-merge-1.1.1.tgz",
|
||||
"integrity": "sha512-xvgv6pkMGBA6GwdyJbNAnDmfAIR/DfWhrj9jgWh3TY7gRm3KO46x/GPjRg6wJ0nOepwqrNxFfojebh0Df4h4Tw==",
|
||||
"requires": {
|
||||
"lodash.assignwith": "^4.2.0",
|
||||
"typical": "^7.1.1"
|
||||
},
|
||||
"dependencies": {
|
||||
"typical": {
|
||||
"version": "7.1.1",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
|
||||
}
|
||||
}
|
||||
},
|
||||
"@apache-arrow/ts": {
|
||||
"version": "12.0.0",
|
||||
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-12.0.0.tgz",
|
||||
"integrity": "sha512-ArJ3Fw5W9RAeNWuyCU2CdjL/nEAZSVDG1p3jz/ZtLo/q3NTz2w7HUCOJeszejH/5alGX+QirYrJ5c6BW++/P7g==",
|
||||
"version": "14.0.2",
|
||||
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz",
|
||||
"integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==",
|
||||
"requires": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
"@types/node": "18.14.5",
|
||||
"@types/node": "20.3.0",
|
||||
"@types/pad-left": "2.1.1",
|
||||
"command-line-args": "5.2.1",
|
||||
"command-line-usage": "6.1.3",
|
||||
"flatbuffers": "23.3.3",
|
||||
"command-line-usage": "7.0.1",
|
||||
"flatbuffers": "23.5.26",
|
||||
"json-bignum": "^0.0.3",
|
||||
"pad-left": "^2.1.0",
|
||||
"tslib": "^2.5.0"
|
||||
"tslib": "^2.5.3"
|
||||
},
|
||||
"dependencies": {
|
||||
"@types/node": {
|
||||
"version": "18.14.5",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
|
||||
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
|
||||
"version": "20.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||
},
|
||||
"tslib": {
|
||||
"version": "2.5.0",
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
||||
"version": "2.6.2",
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
|
||||
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -4869,33 +4840,33 @@
|
||||
}
|
||||
},
|
||||
"@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.2.tgz",
|
||||
"integrity": "sha512-Ec73W2IHnZK4VC8g/7JyLbgcwcpNb9YI20yEhfTjEEFjJKoElZhDD/ZgghC3QQSRnrXFTxDzPK1V9BDT5QB2Hg==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.3.tgz",
|
||||
"integrity": "sha512-47CvvSaV1EdUsFEpXUJApTk+hMzAhCxVizipCFUlXCgcmzpCDL86wNgJij/X9a+j6zADhIX//Lsu0qd/an/Bpw==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.2.tgz",
|
||||
"integrity": "sha512-tj0JJlOfOdeSAfmM7EZhrhFdCFjoq9Bmrjt4741BNjtF+Nv4Otl53lFtUQrexTr4oh/E1yY1qaydJ7K++8u3UA==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.3.tgz",
|
||||
"integrity": "sha512-UlZZv8CmJIuRJNJG+Y1VmFsGyPR8W/72Q5EwgMMsSES6zpMQ9pNdBDWhL3UGX6nMRgnbprkwYiWJ3xHhJvtqtw==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.2.tgz",
|
||||
"integrity": "sha512-OQ7ra5Q5RrLLwxIyI338KfQ2sSl8NJfqAHWvwiMtjCYFFYxIJGjX7U0I2MjSEPqJ5/ZoyjV4mjsvs0G1q20u+Q==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.3.tgz",
|
||||
"integrity": "sha512-L6NVJr/lKEd8+904FzZNpT8BGQMs2cHNYbGJMIaVvGnMiIJgKAFKtOyGtdDjoe1xRZoEw21yjRGksGbnRO5wHQ==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.2.tgz",
|
||||
"integrity": "sha512-9tgIFSOYqNJzonnYsQr7v2gGdJm8aZ62UsVX2SWAIVhypoP4A05tAlbzjBgKO3R5xy5gpcW8tt/Pt8IsYWON7Q==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.3.tgz",
|
||||
"integrity": "sha512-OBx3WF3pK0xNfFJeErmuD9R2QWLa3XdeZspyTsIrQmBDeKj3HKh8y7Scpx4NH5Y09+9JNqRRKRZN7OqWTYhITg==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.4.2",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.2.tgz",
|
||||
"integrity": "sha512-jhG3MqZ3r8BexXANLRNX57RAnCZT9psdSBORG3KTu5qe2xaunRlJNSA2kk8a79tf+gtUT/BAmMiXMzAi/dwq8w==",
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.3.tgz",
|
||||
"integrity": "sha512-n9IvR81NXZKnSN91mrgeXbEyCiGM+YLJpOgbdHoEtMP04VDnS+iSU4jGOtQBKErvWeCJQaGFQ9qzdcVchpRGyw==",
|
||||
"optional": true
|
||||
},
|
||||
"@neon-rs/cli": {
|
||||
@@ -5268,7 +5239,6 @@
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
|
||||
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"color-convert": "^2.0.1"
|
||||
}
|
||||
@@ -5284,31 +5254,31 @@
|
||||
}
|
||||
},
|
||||
"apache-arrow": {
|
||||
"version": "12.0.0",
|
||||
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-12.0.0.tgz",
|
||||
"integrity": "sha512-uI+hnZZsGfNJiR/wG8j5yPQuDjmOHx4hZpkA743G4x3TlFrCpA3MMX7KUkIOIw0e/CwZ8NYuaMzaQsblA47qVA==",
|
||||
"version": "14.0.2",
|
||||
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz",
|
||||
"integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==",
|
||||
"requires": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
"@types/node": "18.14.5",
|
||||
"@types/node": "20.3.0",
|
||||
"@types/pad-left": "2.1.1",
|
||||
"command-line-args": "5.2.1",
|
||||
"command-line-usage": "6.1.3",
|
||||
"flatbuffers": "23.3.3",
|
||||
"command-line-usage": "7.0.1",
|
||||
"flatbuffers": "23.5.26",
|
||||
"json-bignum": "^0.0.3",
|
||||
"pad-left": "^2.1.0",
|
||||
"tslib": "^2.5.0"
|
||||
"tslib": "^2.5.3"
|
||||
},
|
||||
"dependencies": {
|
||||
"@types/node": {
|
||||
"version": "18.14.5",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.14.5.tgz",
|
||||
"integrity": "sha512-CRT4tMK/DHYhw1fcCEBwME9CSaZNclxfzVMe7GsO6ULSwsttbj70wSiX6rZdIjGblu93sTJxLdhNIT85KKI7Qw=="
|
||||
"version": "20.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||
},
|
||||
"tslib": {
|
||||
"version": "2.5.0",
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
||||
"version": "2.6.2",
|
||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
|
||||
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q=="
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -5505,7 +5475,6 @@
|
||||
"version": "4.1.2",
|
||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
||||
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"ansi-styles": "^4.1.0",
|
||||
"supports-color": "^7.1.0"
|
||||
@@ -5515,13 +5484,20 @@
|
||||
"version": "7.2.0",
|
||||
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
|
||||
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"has-flag": "^4.0.0"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"chalk-template": {
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/chalk-template/-/chalk-template-0.4.0.tgz",
|
||||
"integrity": "sha512-/ghrgmhfY8RaSdeo43hNXxpoHAtxdbskUHjPpfqUWGttFgycUhYPGx3YZBCnUCvOa7Doivn1IZec3DEGFoMgLg==",
|
||||
"requires": {
|
||||
"chalk": "^4.1.2"
|
||||
}
|
||||
},
|
||||
"check-error": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/check-error/-/check-error-1.0.2.tgz",
|
||||
@@ -5559,7 +5535,6 @@
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
||||
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"color-name": "~1.1.4"
|
||||
}
|
||||
@@ -5567,8 +5542,7 @@
|
||||
"color-name": {
|
||||
"version": "1.1.4",
|
||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
|
||||
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
|
||||
"dev": true
|
||||
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA=="
|
||||
},
|
||||
"combined-stream": {
|
||||
"version": "1.0.8",
|
||||
@@ -5590,74 +5564,25 @@
|
||||
}
|
||||
},
|
||||
"command-line-usage": {
|
||||
"version": "6.1.3",
|
||||
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-6.1.3.tgz",
|
||||
"integrity": "sha512-sH5ZSPr+7UStsloltmDh7Ce5fb8XPlHyoPzTpyyMuYCtervL65+ubVZ6Q61cFtFl62UyJlc8/JwERRbAFPUqgw==",
|
||||
"version": "7.0.1",
|
||||
"resolved": "https://registry.npmjs.org/command-line-usage/-/command-line-usage-7.0.1.tgz",
|
||||
"integrity": "sha512-NCyznE//MuTjwi3y84QVUGEOT+P5oto1e1Pk/jFPVdPPfsG03qpTIl3yw6etR+v73d0lXsoojRpvbru2sqePxQ==",
|
||||
"requires": {
|
||||
"array-back": "^4.0.2",
|
||||
"chalk": "^2.4.2",
|
||||
"table-layout": "^1.0.2",
|
||||
"typical": "^5.2.0"
|
||||
"array-back": "^6.2.2",
|
||||
"chalk-template": "^0.4.0",
|
||||
"table-layout": "^3.0.0",
|
||||
"typical": "^7.1.1"
|
||||
},
|
||||
"dependencies": {
|
||||
"ansi-styles": {
|
||||
"version": "3.2.1",
|
||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
|
||||
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
|
||||
"requires": {
|
||||
"color-convert": "^1.9.0"
|
||||
}
|
||||
},
|
||||
"array-back": {
|
||||
"version": "4.0.2",
|
||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
|
||||
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg=="
|
||||
},
|
||||
"chalk": {
|
||||
"version": "2.4.2",
|
||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
|
||||
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
|
||||
"requires": {
|
||||
"ansi-styles": "^3.2.1",
|
||||
"escape-string-regexp": "^1.0.5",
|
||||
"supports-color": "^5.3.0"
|
||||
}
|
||||
},
|
||||
"color-convert": {
|
||||
"version": "1.9.3",
|
||||
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
|
||||
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
|
||||
"requires": {
|
||||
"color-name": "1.1.3"
|
||||
}
|
||||
},
|
||||
"color-name": {
|
||||
"version": "1.1.3",
|
||||
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
|
||||
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw=="
|
||||
},
|
||||
"escape-string-regexp": {
|
||||
"version": "1.0.5",
|
||||
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
|
||||
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg=="
|
||||
},
|
||||
"has-flag": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
|
||||
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw=="
|
||||
},
|
||||
"supports-color": {
|
||||
"version": "5.5.0",
|
||||
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
|
||||
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
|
||||
"requires": {
|
||||
"has-flag": "^3.0.0"
|
||||
}
|
||||
"version": "6.2.2",
|
||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
|
||||
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw=="
|
||||
},
|
||||
"typical": {
|
||||
"version": "5.2.0",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
|
||||
"version": "7.1.1",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -5716,11 +5641,6 @@
|
||||
"type-detect": "^4.0.0"
|
||||
}
|
||||
},
|
||||
"deep-extend": {
|
||||
"version": "0.6.0",
|
||||
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
|
||||
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA=="
|
||||
},
|
||||
"deep-is": {
|
||||
"version": "0.1.4",
|
||||
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
|
||||
@@ -6297,9 +6217,9 @@
|
||||
}
|
||||
},
|
||||
"flatbuffers": {
|
||||
"version": "23.3.3",
|
||||
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.3.3.tgz",
|
||||
"integrity": "sha512-jmreOaAT1t55keaf+Z259Tvh8tR/Srry9K8dgCgvizhKSEr6gLGgaOJI2WFL5fkOpGOGRZwxUrlFn0GCmXUy6g=="
|
||||
"version": "23.5.26",
|
||||
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-23.5.26.tgz",
|
||||
"integrity": "sha512-vE+SI9vrJDwi1oETtTIFldC/o9GsVKRM+s6EL0nQgxXlYV1Vc4Tk30hj4xGICftInKQKj1F3up2n8UbIVobISQ=="
|
||||
},
|
||||
"flatted": {
|
||||
"version": "3.2.7",
|
||||
@@ -6502,8 +6422,7 @@
|
||||
"has-flag": {
|
||||
"version": "4.0.0",
|
||||
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
|
||||
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
|
||||
"dev": true
|
||||
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ=="
|
||||
},
|
||||
"has-property-descriptors": {
|
||||
"version": "1.0.0",
|
||||
@@ -6856,6 +6775,11 @@
|
||||
"p-locate": "^5.0.0"
|
||||
}
|
||||
},
|
||||
"lodash.assignwith": {
|
||||
"version": "4.2.0",
|
||||
"resolved": "https://registry.npmjs.org/lodash.assignwith/-/lodash.assignwith-4.2.0.tgz",
|
||||
"integrity": "sha512-ZznplvbvtjK2gMvnQ1BR/zqPFZmS6jbK4p+6Up4xcRYA7yMIwxHCfbTcrYxXKzzqLsQ05eJPVznEW3tuwV7k1g=="
|
||||
},
|
||||
"lodash.camelcase": {
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
|
||||
@@ -7323,11 +7247,6 @@
|
||||
"picomatch": "^2.2.1"
|
||||
}
|
||||
},
|
||||
"reduce-flatten": {
|
||||
"version": "2.0.0",
|
||||
"resolved": "https://registry.npmjs.org/reduce-flatten/-/reduce-flatten-2.0.0.tgz",
|
||||
"integrity": "sha512-EJ4UNY/U1t2P/2k6oqotuX2Cc3T6nxJwsM0N0asT7dhrtH1ltUxDn4NalSYmPE2rCkVpcf/X6R0wDwcFpzhd4w=="
|
||||
},
|
||||
"regexp.prototype.flags": {
|
||||
"version": "1.5.0",
|
||||
"resolved": "https://registry.npmjs.org/regexp.prototype.flags/-/regexp.prototype.flags-1.5.0.tgz",
|
||||
@@ -7523,6 +7442,11 @@
|
||||
"source-map": "^0.6.0"
|
||||
}
|
||||
},
|
||||
"stream-read-all": {
|
||||
"version": "3.0.1",
|
||||
"resolved": "https://registry.npmjs.org/stream-read-all/-/stream-read-all-3.0.1.tgz",
|
||||
"integrity": "sha512-EWZT9XOceBPlVJRrYcykW8jyRSZYbkb/0ZK36uLEmoWVO5gxBOnntNTseNzfREsqxqdfEGQrD8SXQ3QWbBmq8A=="
|
||||
},
|
||||
"string-width": {
|
||||
"version": "4.2.3",
|
||||
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
|
||||
@@ -7604,25 +7528,28 @@
|
||||
"dev": true
|
||||
},
|
||||
"table-layout": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-1.0.2.tgz",
|
||||
"integrity": "sha512-qd/R7n5rQTRFi+Zf2sk5XVVd9UQl6ZkduPFC3S7WEGJAmetDTjY3qPN50eSKzwuzEyQKy5TN2TiZdkIjos2L6A==",
|
||||
"version": "3.0.2",
|
||||
"resolved": "https://registry.npmjs.org/table-layout/-/table-layout-3.0.2.tgz",
|
||||
"integrity": "sha512-rpyNZYRw+/C+dYkcQ3Pr+rLxW4CfHpXjPDnG7lYhdRoUcZTUt+KEsX+94RGp/aVp/MQU35JCITv2T/beY4m+hw==",
|
||||
"requires": {
|
||||
"array-back": "^4.0.1",
|
||||
"deep-extend": "~0.6.0",
|
||||
"typical": "^5.2.0",
|
||||
"wordwrapjs": "^4.0.0"
|
||||
"@75lb/deep-merge": "^1.1.1",
|
||||
"array-back": "^6.2.2",
|
||||
"command-line-args": "^5.2.1",
|
||||
"command-line-usage": "^7.0.0",
|
||||
"stream-read-all": "^3.0.1",
|
||||
"typical": "^7.1.1",
|
||||
"wordwrapjs": "^5.1.0"
|
||||
},
|
||||
"dependencies": {
|
||||
"array-back": {
|
||||
"version": "4.0.2",
|
||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-4.0.2.tgz",
|
||||
"integrity": "sha512-NbdMezxqf94cnNfWLL7V/im0Ub+Anbb0IoZhvzie8+4HJ4nMQuzHuy49FkGYCJK2yAloZ3meiB6AVMClbrI1vg=="
|
||||
"version": "6.2.2",
|
||||
"resolved": "https://registry.npmjs.org/array-back/-/array-back-6.2.2.tgz",
|
||||
"integrity": "sha512-gUAZ7HPyb4SJczXAMUXMGAvI976JoK3qEx9v1FTmeYuJj0IBiaKttG1ydtGKdkfqWkIkouke7nG8ufGy77+Cvw=="
|
||||
},
|
||||
"typical": {
|
||||
"version": "5.2.0",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
|
||||
"version": "7.1.1",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-7.1.1.tgz",
|
||||
"integrity": "sha512-T+tKVNs6Wu7IWiAce5BgMd7OZfNYUndHwc5MknN+UHOudi7sGZzuHdCadllRuqJ3fPtgFtIH9+lt9qRv6lmpfA=="
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -7940,20 +7867,9 @@
|
||||
"dev": true
|
||||
},
|
||||
"wordwrapjs": {
|
||||
"version": "4.0.1",
|
||||
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
|
||||
"integrity": "sha512-kKlNACbvHrkpIw6oPeYDSmdCTu2hdMHoyXLTcUKala++lx5Y+wjJ/e474Jqv5abnVmwxw08DiTuHmw69lJGksA==",
|
||||
"requires": {
|
||||
"reduce-flatten": "^2.0.0",
|
||||
"typical": "^5.2.0"
|
||||
},
|
||||
"dependencies": {
|
||||
"typical": {
|
||||
"version": "5.2.0",
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-5.2.0.tgz",
|
||||
"integrity": "sha512-dvdQgNDNJo+8B2uBQoqdb11eUCE1JQXhvjC/CZtgvZseVd5TYMXnq0+vuUemXbd/Se29cTaUuPX3YIc2xgbvIg=="
|
||||
}
|
||||
}
|
||||
"version": "5.1.0",
|
||||
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-5.1.0.tgz",
|
||||
"integrity": "sha512-JNjcULU2e4KJwUNv6CHgI46UvDGitb6dGryHajXTDiLgg1/RiGoPSDw4kZfYnwGtEXf2ZMeIewDQgFGzkCB2Sg=="
|
||||
},
|
||||
"workerpool": {
|
||||
"version": "6.2.1",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.2",
|
||||
"version": "0.4.3",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
@@ -57,9 +57,9 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^12.0.0",
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^12.0.0",
|
||||
"apache-arrow": "^14.0.2",
|
||||
"axios": "^1.4.0"
|
||||
},
|
||||
"os": [
|
||||
@@ -81,10 +81,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.2",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.2",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.2",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.2",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.2"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.3",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.3",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.3",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.3",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.3"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -17,10 +17,9 @@ import {
|
||||
Float32,
|
||||
makeBuilder,
|
||||
RecordBatchFileWriter,
|
||||
Utf8,
|
||||
type Vector,
|
||||
Utf8, type Vector,
|
||||
FixedSizeList,
|
||||
vectorFromArray, type Schema, Table as ArrowTable, RecordBatchStreamWriter, List, Float64
|
||||
vectorFromArray, type Schema, Table as ArrowTable, RecordBatchStreamWriter, List, Float64, RecordBatch, makeData, Struct
|
||||
} from 'apache-arrow'
|
||||
import { type EmbeddingFunction } from './index'
|
||||
|
||||
@@ -78,6 +77,7 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
|
||||
}
|
||||
records[columnsKey] = listBuilder.finish().toVector()
|
||||
} else {
|
||||
// TODO if this is a struct field then recursively align the subfields
|
||||
records[columnsKey] = vectorFromArray(values)
|
||||
}
|
||||
}
|
||||
@@ -110,21 +110,27 @@ function newVectorType (dim: number): FixedSizeList<Float32> {
|
||||
}
|
||||
|
||||
// Converts an Array of records into Arrow IPC format
|
||||
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
||||
const table = await convertToTable(data, embeddings)
|
||||
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
|
||||
let table = await convertToTable(data, embeddings)
|
||||
if (schema !== undefined) {
|
||||
table = alignTable(table, schema)
|
||||
}
|
||||
const writer = RecordBatchFileWriter.writeAll(table)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
}
|
||||
|
||||
// Converts an Array of records into Arrow IPC stream format
|
||||
export async function fromRecordsToStreamBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
||||
const table = await convertToTable(data, embeddings)
|
||||
export async function fromRecordsToStreamBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
|
||||
let table = await convertToTable(data, embeddings)
|
||||
if (schema !== undefined) {
|
||||
table = alignTable(table, schema)
|
||||
}
|
||||
const writer = RecordBatchStreamWriter.writeAll(table)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
}
|
||||
|
||||
// Converts an Arrow Table into Arrow IPC format
|
||||
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
||||
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
|
||||
if (embeddings !== undefined) {
|
||||
const source = table.getChild(embeddings.sourceColumn)
|
||||
|
||||
@@ -136,12 +142,15 @@ export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: Embe
|
||||
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
||||
table = table.assign(new ArrowTable({ vector: column }))
|
||||
}
|
||||
if (schema !== undefined) {
|
||||
table = alignTable(table, schema)
|
||||
}
|
||||
const writer = RecordBatchFileWriter.writeAll(table)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
}
|
||||
|
||||
// Converts an Arrow Table into Arrow IPC stream format
|
||||
export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
||||
export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<Buffer> {
|
||||
if (embeddings !== undefined) {
|
||||
const source = table.getChild(embeddings.sourceColumn)
|
||||
|
||||
@@ -153,10 +162,36 @@ export async function fromTableToStreamBuffer<T> (table: ArrowTable, embeddings?
|
||||
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
||||
table = table.assign(new ArrowTable({ vector: column }))
|
||||
}
|
||||
if (schema !== undefined) {
|
||||
table = alignTable(table, schema)
|
||||
}
|
||||
const writer = RecordBatchStreamWriter.writeAll(table)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
}
|
||||
|
||||
function alignBatch (batch: RecordBatch, schema: Schema): RecordBatch {
|
||||
const alignedChildren = []
|
||||
for (const field of schema.fields) {
|
||||
const indexInBatch = batch.schema.fields?.findIndex((f) => f.name === field.name)
|
||||
if (indexInBatch < 0) {
|
||||
throw new Error(`The column ${field.name} was not found in the Arrow Table`)
|
||||
}
|
||||
alignedChildren.push(batch.data.children[indexInBatch])
|
||||
}
|
||||
const newData = makeData({
|
||||
type: new Struct(schema.fields),
|
||||
length: batch.numRows,
|
||||
nullCount: batch.nullCount,
|
||||
children: alignedChildren
|
||||
})
|
||||
return new RecordBatch(schema, newData)
|
||||
}
|
||||
|
||||
function alignTable (table: ArrowTable, schema: Schema): ArrowTable {
|
||||
const alignedBatches = table.batches.map(batch => alignBatch(batch, schema))
|
||||
return new ArrowTable(schema, alignedBatches)
|
||||
}
|
||||
|
||||
// Creates an empty Arrow Table
|
||||
export function createEmptyTable (schema: Schema): ArrowTable {
|
||||
return new ArrowTable(schema)
|
||||
|
||||
@@ -485,10 +485,10 @@ export class LocalConnection implements Connection {
|
||||
}
|
||||
buffer = await fromTableToBuffer(createEmptyTable(schema))
|
||||
} else if (data instanceof ArrowTable) {
|
||||
buffer = await fromTableToBuffer(data, embeddingFunction)
|
||||
buffer = await fromTableToBuffer(data, embeddingFunction, schema)
|
||||
} else {
|
||||
// data is Array<Record<...>>
|
||||
buffer = await fromRecordsToBuffer(data, embeddingFunction)
|
||||
buffer = await fromRecordsToBuffer(data, embeddingFunction, schema)
|
||||
}
|
||||
|
||||
const tbl = await tableCreate.call(this._db, name, buffer, writeOptions?.writeMode?.toString(), ...getAwsArgs(this._options()))
|
||||
@@ -560,9 +560,10 @@ export class LocalTable<T = number[]> implements Table<T> {
|
||||
* @return The number of rows added to the table
|
||||
*/
|
||||
async add (data: Array<Record<string, unknown>>): Promise<number> {
|
||||
const schema = await this.schema
|
||||
return tableAdd.call(
|
||||
this._tbl,
|
||||
await fromRecordsToBuffer(data, this._embeddings),
|
||||
await fromRecordsToBuffer(data, this._embeddings, schema),
|
||||
WriteMode.Append.toString(),
|
||||
...getAwsArgs(this._options())
|
||||
).then((newTable: any) => { this._tbl = newTable })
|
||||
|
||||
@@ -176,6 +176,26 @@ describe('LanceDB client', function () {
|
||||
assert.deepEqual(await con.tableNames(), ['vectors'])
|
||||
})
|
||||
|
||||
it('create a table with a schema and records', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
|
||||
const schema = new Schema(
|
||||
[new Field('id', new Int32()),
|
||||
new Field('name', new Utf8()),
|
||||
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), false)
|
||||
]
|
||||
)
|
||||
const data = [
|
||||
{ vector: [0.5, 0.2], name: 'foo', id: 0 },
|
||||
{ vector: [0.3, 0.1], name: 'bar', id: 1 }
|
||||
]
|
||||
// even thought the keys in data is out of order it should still work
|
||||
const table = await con.createTable({ name: 'vectors', data, schema })
|
||||
assert.equal(table.name, 'vectors')
|
||||
assert.deepEqual(await con.tableNames(), ['vectors'])
|
||||
})
|
||||
|
||||
it('create a table with a empty data array', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
@@ -294,6 +314,25 @@ describe('LanceDB client', function () {
|
||||
assert.equal(await table.countRows(), 4)
|
||||
})
|
||||
|
||||
it('appends records with fields in a different order', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
|
||||
const data = [
|
||||
{ id: 1, vector: [0.1, 0.2], price: 10, name: 'a' },
|
||||
{ id: 2, vector: [1.1, 1.2], price: 50, name: 'b' }
|
||||
]
|
||||
|
||||
const table = await con.createTable('vectors', data)
|
||||
|
||||
const dataAdd = [
|
||||
{ id: 3, vector: [2.1, 2.2], name: 'c', price: 10 },
|
||||
{ id: 4, vector: [3.1, 3.2], name: 'd', price: 50 }
|
||||
]
|
||||
await table.add(dataAdd)
|
||||
assert.equal(await table.countRows(), 4)
|
||||
})
|
||||
|
||||
it('overwrite all records in a table', async function () {
|
||||
const uri = await createTestDB()
|
||||
const con = await lancedb.connect(uri)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.3
|
||||
current_version = 0.5.0
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -45,8 +45,8 @@ pytest
|
||||
To run linter and automatically fix all errors:
|
||||
|
||||
```bash
|
||||
black .
|
||||
isort .
|
||||
ruff format python
|
||||
ruff --fix python
|
||||
```
|
||||
|
||||
If any packages are missing, install them with:
|
||||
@@ -82,4 +82,4 @@ pip install tantivy
|
||||
To run the unit tests:
|
||||
```bash
|
||||
pytest
|
||||
```
|
||||
```
|
||||
|
||||
@@ -56,6 +56,7 @@ class DBConnection(EnforceOverrides):
|
||||
data: Optional[DATA] = None,
|
||||
schema: Optional[Union[pa.Schema, LanceModel]] = None,
|
||||
mode: str = "create",
|
||||
exist_ok: bool = False,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||
@@ -86,6 +87,11 @@ class DBConnection(EnforceOverrides):
|
||||
Can be either "create" or "overwrite".
|
||||
By default, if the table already exists, an exception is raised.
|
||||
If you want to overwrite the table, use mode="overwrite".
|
||||
exist_ok: bool, default False
|
||||
If a table by the same name already exists, then raise an exception
|
||||
if exist_ok=False. If exist_ok=True, then open the existing table;
|
||||
it will not add the provided data but will validate against any
|
||||
schema that's specified.
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
@@ -319,6 +325,7 @@ class LanceDBConnection(DBConnection):
|
||||
data: Optional[DATA] = None,
|
||||
schema: Optional[Union[pa.Schema, LanceModel]] = None,
|
||||
mode: str = "create",
|
||||
exist_ok: bool = False,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||
@@ -338,6 +345,7 @@ class LanceDBConnection(DBConnection):
|
||||
data,
|
||||
schema,
|
||||
mode=mode,
|
||||
exist_ok=exist_ok,
|
||||
on_bad_vectors=on_bad_vectors,
|
||||
fill_value=fill_value,
|
||||
embedding_functions=embedding_functions,
|
||||
|
||||
@@ -19,4 +19,5 @@ from .open_clip import OpenClipEmbeddings
|
||||
from .openai import OpenAIEmbeddings
|
||||
from .registry import EmbeddingFunctionRegistry, get_registry
|
||||
from .sentence_transformers import SentenceTransformerEmbeddings
|
||||
from .gemini_text import GeminiText
|
||||
from .utils import with_embeddings
|
||||
|
||||
131
python/lancedb/embeddings/gemini_text.py
Normal file
131
python/lancedb/embeddings/gemini_text.py
Normal file
@@ -0,0 +1,131 @@
|
||||
# Copyright (c) 2023. LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from functools import cached_property
|
||||
from typing import List, Union, Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import api_key_not_found_help, TEXT
|
||||
from lancedb.pydantic import PYDANTIC_VERSION
|
||||
|
||||
|
||||
@register("gemini-text")
|
||||
class GeminiText(TextEmbeddingFunction):
|
||||
"""
|
||||
An embedding function that uses the Google's Gemini API. Requires GOOGLE_API_KEY to be set.
|
||||
|
||||
https://ai.google.dev/docs/embeddings_guide
|
||||
|
||||
Supports various tasks types:
|
||||
| Task Type | Description |
|
||||
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
|
||||
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
|
||||
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
|
||||
| "`classification`" | Specifies that the embeddings will be used for classification. |
|
||||
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
|
||||
|
||||
|
||||
Note: The supported task types might change in the Gemini API, but as long as a supported task type and its argument set is provided,
|
||||
those will be delegated to the API calls.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str, default "models/embedding-001"
|
||||
The name of the model to use. See the Gemini documentation for a list of available models.
|
||||
|
||||
query_task_type: str, default "retrieval_query"
|
||||
Sets the task type for the queries.
|
||||
source_task_type: str, default "retrieval_document"
|
||||
Sets the task type for ingestion.
|
||||
|
||||
Examples
|
||||
--------
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
model = get_registry().get("gemini-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
|
||||
"""
|
||||
|
||||
name: str = "models/embedding-001"
|
||||
query_task_type: str = "retrieval_query"
|
||||
source_task_type: str = "retrieval_document"
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
def ndims(self):
|
||||
# TODO: fix hardcoding
|
||||
return 768
|
||||
|
||||
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
|
||||
return self.compute_source_embeddings(query, task_type=self.query_task_type)
|
||||
|
||||
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
|
||||
texts = self.sanitize_input(texts)
|
||||
task_type = (
|
||||
kwargs.get("task_type") or self.source_task_type
|
||||
) # assume source task type if not passed by `compute_query_embeddings`
|
||||
return self.generate_embeddings(texts, task_type=task_type)
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray], *args, **kwargs
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts: list[str] or np.ndarray (of str)
|
||||
The texts to embed
|
||||
"""
|
||||
if (
|
||||
kwargs.get("task_type") == "retrieval_document"
|
||||
): # Provide a title to use existing API design
|
||||
title = "Embedding of a document"
|
||||
kwargs["title"] = title
|
||||
|
||||
return [
|
||||
self.client.embed_content(model=self.name, content=text, **kwargs)[
|
||||
"embedding"
|
||||
]
|
||||
for text in texts
|
||||
]
|
||||
|
||||
@cached_property
|
||||
def client(self):
|
||||
genai = self.safe_import("google.generativeai", "google.generativeai")
|
||||
|
||||
if not os.environ.get("GOOGLE_API_KEY"):
|
||||
api_key_not_found_help("google")
|
||||
return genai
|
||||
@@ -10,6 +10,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from functools import cached_property
|
||||
from typing import List, Union
|
||||
|
||||
@@ -17,6 +18,7 @@ import numpy as np
|
||||
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import api_key_not_found_help
|
||||
|
||||
|
||||
@register("openai")
|
||||
@@ -51,4 +53,7 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
||||
@cached_property
|
||||
def _openai_client(self):
|
||||
openai = self.safe_import("openai")
|
||||
|
||||
if not os.environ.get("OPENAI_API_KEY"):
|
||||
api_key_not_found_help("openai")
|
||||
return openai.OpenAI()
|
||||
|
||||
@@ -216,7 +216,6 @@ def retry_with_exponential_backoff(
|
||||
exponential_base: float = 2,
|
||||
jitter: bool = True,
|
||||
max_retries: int = 7,
|
||||
# errors: tuple = (),
|
||||
):
|
||||
"""Retry a function with exponential backoff.
|
||||
|
||||
@@ -226,7 +225,6 @@ def retry_with_exponential_backoff(
|
||||
exponential_base (float): The base for exponential backoff (default is 2).
|
||||
jitter (bool): Whether to add jitter to the delay (default is True).
|
||||
max_retries (int): Maximum number of retries (default is 10).
|
||||
errors (tuple): Tuple of specific exceptions to retry on (default is (openai.error.RateLimitError,)).
|
||||
|
||||
Returns:
|
||||
function: The decorated function.
|
||||
|
||||
@@ -260,20 +260,41 @@ class LanceQueryBuilder(ABC):
|
||||
for row in self.to_arrow().to_pylist()
|
||||
]
|
||||
|
||||
def limit(self, limit: int) -> LanceQueryBuilder:
|
||||
def to_polars(self) -> "pl.DataFrame":
|
||||
"""
|
||||
Execute the query and return the results as a Polars DataFrame.
|
||||
In addition to the selected columns, LanceDB also returns a vector
|
||||
and also the "_distance" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
"""
|
||||
import polars as pl
|
||||
|
||||
return pl.from_arrow(self.to_arrow())
|
||||
|
||||
def limit(self, limit: Union[int, None]) -> LanceQueryBuilder:
|
||||
"""Set the maximum number of results to return.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
limit: int
|
||||
The maximum number of results to return.
|
||||
By default the query is limited to the first 10.
|
||||
Call this method and pass 0, a negative value,
|
||||
or None to remove the limit.
|
||||
*WARNING* if you have a large dataset, removing
|
||||
the limit can potentially result in reading a
|
||||
large amount of data into memory and cause
|
||||
out of memory issues.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._limit = limit
|
||||
if limit is None or limit <= 0:
|
||||
self._limit = None
|
||||
else:
|
||||
self._limit = limit
|
||||
return self
|
||||
|
||||
def select(self, columns: list) -> LanceQueryBuilder:
|
||||
@@ -468,6 +489,24 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
def __init__(self, table: "lancedb.table.Table", query: str):
|
||||
super().__init__(table)
|
||||
self._query = query
|
||||
self._phrase_query = False
|
||||
|
||||
def phrase_query(self, phrase_query: bool = True) -> LanceFtsQueryBuilder:
|
||||
"""Set whether to use phrase query.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
phrase_query: bool, default True
|
||||
If True, then the query will be wrapped in quotes and
|
||||
double quotes replaced by single quotes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceFtsQueryBuilder
|
||||
The LanceFtsQueryBuilder object.
|
||||
"""
|
||||
self._phrase_query = phrase_query
|
||||
return self
|
||||
|
||||
def to_arrow(self) -> pa.Table:
|
||||
try:
|
||||
@@ -490,7 +529,11 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
# open the index
|
||||
index = tantivy.Index.open(index_path)
|
||||
# get the scores and doc ids
|
||||
row_ids, scores = search_index(index, self._query, self._limit)
|
||||
query = self._query
|
||||
if self._phrase_query:
|
||||
query = query.replace('"', "'")
|
||||
query = f'"{query}"'
|
||||
row_ids, scores = search_index(index, query, self._limit)
|
||||
if len(row_ids) == 0:
|
||||
empty_schema = pa.schema([pa.field("score", pa.float32())])
|
||||
return pa.Table.from_pylist([], schema=empty_schema)
|
||||
|
||||
@@ -13,10 +13,10 @@
|
||||
|
||||
|
||||
import functools
|
||||
from typing import Any, Callable, Dict, Iterable, Optional, Union
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import requests
|
||||
import urllib.parse
|
||||
import attrs
|
||||
import pyarrow as pa
|
||||
from pydantic import BaseModel
|
||||
@@ -39,7 +39,7 @@ def _check_not_closed(f):
|
||||
|
||||
|
||||
def _read_ipc(resp: requests.Response) -> pa.Table:
|
||||
resp_body = resp.raw.read()
|
||||
resp_body = resp.content
|
||||
with pa.ipc.open_file(pa.BufferReader(resp_body)) as reader:
|
||||
return reader.read_all()
|
||||
|
||||
@@ -55,21 +55,15 @@ class RestfulLanceDBClient:
|
||||
|
||||
@functools.cached_property
|
||||
def session(self) -> requests.Session:
|
||||
session = requests.session()
|
||||
session.stream = True
|
||||
return requests.Session()
|
||||
|
||||
return session
|
||||
|
||||
@functools.cached_property
|
||||
@property
|
||||
def url(self) -> str:
|
||||
return (
|
||||
self.host_override
|
||||
or f"https://{self.db_name}.{self.region}.api.lancedb.com"
|
||||
)
|
||||
|
||||
def _get_request_url(self, uri: str) -> str:
|
||||
return urllib.parse.urljoin(self.url, uri)
|
||||
|
||||
def close(self):
|
||||
self.session.close()
|
||||
self.closed = True
|
||||
@@ -85,22 +79,36 @@ class RestfulLanceDBClient:
|
||||
headers["x-lancedb-database"] = self.db_name
|
||||
return headers
|
||||
|
||||
@staticmethod
|
||||
def _check_status(resp: requests.Response):
|
||||
if resp.status_code == 404:
|
||||
raise LanceDBClientError(f"Not found: {resp.text}")
|
||||
elif 400 <= resp.status_code < 500:
|
||||
raise LanceDBClientError(
|
||||
f"Bad Request: {resp.status_code}, error: {resp.text}"
|
||||
)
|
||||
elif 500 <= resp.status_code < 600:
|
||||
raise LanceDBClientError(
|
||||
f"Internal Server Error: {resp.status_code}, error: {resp.text}"
|
||||
)
|
||||
elif resp.status_code != 200:
|
||||
raise LanceDBClientError(
|
||||
f"Unknown Error: {resp.status_code}, error: {resp.text}"
|
||||
)
|
||||
|
||||
@_check_not_closed
|
||||
def get(self, uri: str, params: Union[Dict[str, Any], BaseModel] = None):
|
||||
"""Send a GET request and returns the deserialized response payload."""
|
||||
if isinstance(params, BaseModel):
|
||||
params: Dict[str, Any] = params.dict(exclude_none=True)
|
||||
|
||||
resp = self.session.get(
|
||||
self._get_request_url(uri),
|
||||
with self.session.get(
|
||||
urljoin(self.url, uri),
|
||||
params=params,
|
||||
headers=self.headers,
|
||||
# 5s connect timeout, 30s read timeout
|
||||
timeout=(5.0, 30.0),
|
||||
)
|
||||
|
||||
resp.raise_for_status()
|
||||
return resp.json()
|
||||
) as resp:
|
||||
self._check_status(resp)
|
||||
return resp.json()
|
||||
|
||||
@_check_not_closed
|
||||
def post(
|
||||
@@ -135,23 +143,18 @@ class RestfulLanceDBClient:
|
||||
headers["content-type"] = content_type
|
||||
if request_id is not None:
|
||||
headers["x-request-id"] = request_id
|
||||
|
||||
resp = self.session.post(
|
||||
self._get_request_url(uri),
|
||||
with self.session.post(
|
||||
urljoin(self.url, uri),
|
||||
headers=headers,
|
||||
params=params,
|
||||
headers=self.headers,
|
||||
# 5s connect timeout, 30s read timeout
|
||||
timeout=(5.0, 30.0),
|
||||
**req_kwargs,
|
||||
)
|
||||
resp.raise_for_status()
|
||||
|
||||
return deserialize(resp)
|
||||
) as resp:
|
||||
self._check_status(resp)
|
||||
return deserialize(resp)
|
||||
|
||||
@_check_not_closed
|
||||
def list_tables(
|
||||
self, limit: int, page_token: Optional[str] = None
|
||||
) -> Iterable[str]:
|
||||
def list_tables(self, limit: int, page_token: Optional[str] = None) -> List[str]:
|
||||
"""List all tables in the database."""
|
||||
if page_token is None:
|
||||
page_token = ""
|
||||
|
||||
@@ -73,12 +73,13 @@ class RemoteDBConnection(DBConnection):
|
||||
"""
|
||||
while True:
|
||||
result = self._client.list_tables(limit, page_token)
|
||||
|
||||
if len(result) > 0:
|
||||
page_token = result[len(result) - 1]
|
||||
else:
|
||||
break
|
||||
for item in result:
|
||||
yield item
|
||||
if len(result) < limit:
|
||||
break
|
||||
else:
|
||||
page_token = result[len(result) - 1]
|
||||
|
||||
@override
|
||||
def open_table(self, name: str) -> Table:
|
||||
@@ -246,6 +247,7 @@ class RemoteDBConnection(DBConnection):
|
||||
request_id=request_id,
|
||||
content_type=ARROW_STREAM_CONTENT_TYPE,
|
||||
)
|
||||
|
||||
return RemoteTable(self, name)
|
||||
|
||||
@override
|
||||
@@ -257,6 +259,7 @@ class RemoteDBConnection(DBConnection):
|
||||
name: str
|
||||
The name of the table.
|
||||
"""
|
||||
|
||||
self._client.post(
|
||||
f"/v1/table/{name}/drop/",
|
||||
)
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from functools import cached_property
|
||||
from typing import Dict, Optional, Union
|
||||
@@ -114,6 +115,7 @@ class RemoteTable(Table):
|
||||
resp = self._conn._client.post(
|
||||
f"/v1/table/{self._name}/create_index/", data=data
|
||||
)
|
||||
|
||||
return resp
|
||||
|
||||
def add(
|
||||
@@ -226,17 +228,19 @@ class RemoteTable(Table):
|
||||
and len(query.vector) > 0
|
||||
and not isinstance(query.vector[0], float)
|
||||
):
|
||||
result = []
|
||||
results = []
|
||||
for v in query.vector:
|
||||
v = list(v)
|
||||
q = query.copy()
|
||||
q.vector = v
|
||||
result.append(self._conn._client.query(self._name, q))
|
||||
results.append(self._conn._client.query(self._name, q))
|
||||
|
||||
return pa.concat_tables(
|
||||
[add_index(r.to_arrow(), i) for i, r in enumerate(result)]
|
||||
[add_index(r.to_arrow(), i) for i, r in enumerate(results)]
|
||||
)
|
||||
else:
|
||||
return self._conn._client.query(self._name, query).to_arrow()
|
||||
result = self._conn._client.query(self._name, query)
|
||||
return result.to_arrow()
|
||||
|
||||
def delete(self, predicate: str):
|
||||
"""Delete rows from the table.
|
||||
|
||||
@@ -31,7 +31,13 @@ from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||
from .pydantic import LanceModel, model_to_dict
|
||||
from .query import LanceQueryBuilder, Query
|
||||
from .util import fs_from_uri, safe_import_pandas, value_to_sql, join_uri
|
||||
from .util import (
|
||||
fs_from_uri,
|
||||
safe_import_pandas,
|
||||
safe_import_polars,
|
||||
value_to_sql,
|
||||
join_uri,
|
||||
)
|
||||
from .utils.events import register_event
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -41,6 +47,7 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
pd = safe_import_pandas()
|
||||
pl = safe_import_polars()
|
||||
|
||||
|
||||
def _sanitize_data(
|
||||
@@ -66,6 +73,8 @@ def _sanitize_data(
|
||||
meta = data.schema.metadata if data.schema.metadata is not None else {}
|
||||
meta = {k: v for k, v in meta.items() if k != b"pandas"}
|
||||
data = data.replace_schema_metadata(meta)
|
||||
elif pl is not None and isinstance(data, pl.DataFrame):
|
||||
data = data.to_arrow()
|
||||
|
||||
if isinstance(data, pa.Table):
|
||||
if metadata:
|
||||
@@ -647,8 +656,19 @@ class LanceTable(Table):
|
||||
self._dataset.restore()
|
||||
self._reset_dataset()
|
||||
|
||||
def count_rows(self, filter: Optional[str] = None) -> int:
|
||||
"""
|
||||
Count the number of rows in the table.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filter: str, optional
|
||||
A SQL where clause to filter the rows to count.
|
||||
"""
|
||||
return self._dataset.count_rows(filter)
|
||||
|
||||
def __len__(self):
|
||||
return self._dataset.count_rows()
|
||||
return self.count_rows()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"LanceTable({self.name})"
|
||||
@@ -677,6 +697,30 @@ class LanceTable(Table):
|
||||
pa.Table"""
|
||||
return self._dataset.to_table()
|
||||
|
||||
def to_polars(self, batch_size=None) -> "pl.LazyFrame":
|
||||
"""Return the table as a polars LazyFrame.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
batch_size: int, optional
|
||||
Passed to polars. This is the maximum row count for
|
||||
scanned pyarrow record batches
|
||||
|
||||
Note
|
||||
----
|
||||
1. This requires polars to be installed separately
|
||||
2. Currently we've disabled push-down of the filters from polars
|
||||
because polars pushdown into pyarrow uses pyarrow compute
|
||||
expressions rather than SQl strings (which LanceDB supports)
|
||||
|
||||
Returns
|
||||
-------
|
||||
pl.LazyFrame
|
||||
"""
|
||||
return pl.scan_pyarrow_dataset(
|
||||
self.to_lance(), allow_pyarrow_filter=False, batch_size=batch_size
|
||||
)
|
||||
|
||||
@property
|
||||
def _dataset_uri(self) -> str:
|
||||
return join_uri(self._conn.uri, f"{self.name}.lance")
|
||||
@@ -952,6 +996,7 @@ class LanceTable(Table):
|
||||
data=None,
|
||||
schema=None,
|
||||
mode="create",
|
||||
exist_ok=False,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
embedding_functions: List[EmbeddingFunctionConfig] = None,
|
||||
@@ -991,6 +1036,10 @@ class LanceTable(Table):
|
||||
mode: str, default "create"
|
||||
The mode to use when writing the data. Valid values are
|
||||
"create", "overwrite", and "append".
|
||||
exist_ok: bool, default False
|
||||
If the table already exists then raise an error if False,
|
||||
otherwise just open the table, it will not add the provided
|
||||
data but will validate against any schema that's specified.
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
@@ -1041,14 +1090,24 @@ class LanceTable(Table):
|
||||
schema = schema.with_metadata(metadata)
|
||||
|
||||
empty = pa.Table.from_pylist([], schema=schema)
|
||||
lance.write_dataset(empty, tbl._dataset_uri, schema=schema, mode=mode)
|
||||
table = LanceTable(db, name)
|
||||
try:
|
||||
lance.write_dataset(empty, tbl._dataset_uri, schema=schema, mode=mode)
|
||||
except OSError as err:
|
||||
if "Dataset already exists" in str(err) and exist_ok:
|
||||
if tbl.schema != schema:
|
||||
raise ValueError(
|
||||
f"Table {name} already exists with a different schema"
|
||||
)
|
||||
return tbl
|
||||
raise
|
||||
|
||||
new_table = LanceTable(db, name)
|
||||
|
||||
if data is not None:
|
||||
table.add(data)
|
||||
new_table.add(data)
|
||||
|
||||
register_event("create_table")
|
||||
return table
|
||||
return new_table
|
||||
|
||||
@classmethod
|
||||
def open(cls, db, name):
|
||||
@@ -1265,7 +1324,8 @@ def _sanitize_vector_column(
|
||||
"""
|
||||
# ChunkedArray is annoying to work with, so we combine chunks here
|
||||
vec_arr = data[vector_column_name].combine_chunks()
|
||||
if pa.types.is_list(data[vector_column_name].type):
|
||||
typ = data[vector_column_name].type
|
||||
if pa.types.is_list(typ) or pa.types.is_large_list(typ):
|
||||
# if it's a variable size list array,
|
||||
# we make sure the dimensions are all the same
|
||||
has_jagged_ndims = len(vec_arr.values) % len(data) != 0
|
||||
|
||||
@@ -123,6 +123,15 @@ def safe_import_pandas():
|
||||
return None
|
||||
|
||||
|
||||
def safe_import_polars():
|
||||
try:
|
||||
import polars as pl
|
||||
|
||||
return pl
|
||||
except ImportError:
|
||||
return None
|
||||
|
||||
|
||||
@singledispatch
|
||||
def value_to_sql(value):
|
||||
raise NotImplementedError("SQL conversion is not implemented for this type")
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
[project]
|
||||
name = "lancedb"
|
||||
version = "0.4.3"
|
||||
version = "0.5.0"
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.9.5",
|
||||
"pylance==0.9.6",
|
||||
"ratelimiter~=1.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.27.0",
|
||||
"requests>=2.31,<3",
|
||||
"pydantic>=1.10",
|
||||
"attrs>=21.3.0",
|
||||
"semver>=3.0",
|
||||
@@ -49,8 +48,8 @@ classifiers = [
|
||||
repository = "https://github.com/lancedb/lancedb"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests", "duckdb", "pytz"]
|
||||
dev = ["ruff", "pre-commit", "black"]
|
||||
tests = ["aiohttp", "pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "duckdb", "pytz", "polars"]
|
||||
dev = ["ruff", "pre-commit"]
|
||||
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
|
||||
clip = ["torch", "pillow", "open-clip"]
|
||||
embeddings = ["openai>=1.6.1", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "InstructorEmbedding"]
|
||||
@@ -62,9 +61,6 @@ lancedb = "lancedb.cli.cli:cli"
|
||||
requires = ["setuptools", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
|
||||
[tool.ruff]
|
||||
select = ["F", "E", "W", "I", "G", "TCH", "PERF"]
|
||||
|
||||
|
||||
@@ -190,6 +190,48 @@ def test_create_mode(tmp_path):
|
||||
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
|
||||
|
||||
|
||||
def test_create_exist_ok(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
tbl = db.create_table("test", data=data)
|
||||
|
||||
with pytest.raises(OSError):
|
||||
db.create_table("test", data=data)
|
||||
|
||||
# open the table but don't add more rows
|
||||
tbl2 = db.create_table("test", data=data, exist_ok=True)
|
||||
assert tbl.name == tbl2.name
|
||||
assert tbl.schema == tbl2.schema
|
||||
assert len(tbl) == len(tbl2)
|
||||
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), list_size=2)),
|
||||
pa.field("item", pa.utf8()),
|
||||
pa.field("price", pa.float64()),
|
||||
]
|
||||
)
|
||||
tbl3 = db.create_table("test", schema=schema, exist_ok=True)
|
||||
assert tbl3.schema == schema
|
||||
|
||||
bad_schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), list_size=2)),
|
||||
pa.field("item", pa.utf8()),
|
||||
pa.field("price", pa.float64()),
|
||||
pa.field("extra", pa.float32()),
|
||||
]
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
db.create_table("test", schema=bad_schema, exist_ok=True)
|
||||
|
||||
|
||||
def test_delete_table(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
data = pd.DataFrame(
|
||||
|
||||
27
python/tests/test_e2e_remote_db.py
Normal file
27
python/tests/test_e2e_remote_db.py
Normal file
@@ -0,0 +1,27 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from lancedb import LanceDBConnection
|
||||
|
||||
# TODO: setup integ test mark and script
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Need to set up a local server")
|
||||
def test_against_local_server():
|
||||
conn = LanceDBConnection("lancedb+http://localhost:10024")
|
||||
table = conn.open_table("sift1m_ivf1024_pq16")
|
||||
df = table.search(np.random.rand(128)).to_pandas()
|
||||
assert len(df) == 10
|
||||
@@ -89,7 +89,7 @@ def test_openclip(tmp_path):
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = get_registry()
|
||||
func = registry.get("open-clip").create()
|
||||
func = registry.get("open-clip").create(max_retries=0)
|
||||
|
||||
class Images(LanceModel):
|
||||
label: str
|
||||
@@ -170,7 +170,7 @@ def test_cohere_embedding_function():
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_instructor_embedding(tmp_path):
|
||||
model = get_registry().get("instructor").create()
|
||||
model = get_registry().get("instructor").create(max_retries=0)
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
@@ -182,3 +182,23 @@ def test_instructor_embedding(tmp_path):
|
||||
|
||||
tbl.add(df)
|
||||
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set"
|
||||
)
|
||||
def test_gemini_embedding(tmp_path):
|
||||
model = get_registry().get("gemini-text").create(max_retries=0)
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect(tmp_path)
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
|
||||
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
|
||||
|
||||
@@ -169,13 +169,16 @@ def test_syntax(table):
|
||||
table.create_fts_index("text")
|
||||
with pytest.raises(ValueError, match="Syntax Error"):
|
||||
table.search("they could have been dogs OR cats").limit(10).to_list()
|
||||
table.search("they could have been dogs OR cats").phrase_query().limit(10).to_list()
|
||||
# this should work
|
||||
table.search('"they could have been dogs OR cats"').limit(10).to_list()
|
||||
# this should work too
|
||||
table.search('''"the cats OR dogs were not really 'pets' at all"''').limit(
|
||||
10
|
||||
).to_list()
|
||||
with pytest.raises(ValueError, match="Syntax Error"):
|
||||
table.search('''"the cats OR dogs were not really "pets" at all"''').limit(
|
||||
10
|
||||
).to_list()
|
||||
table.search('the cats OR dogs were not really "pets" at all').phrase_query().limit(
|
||||
10
|
||||
).to_list()
|
||||
table.search('the cats OR dogs were not really "pets" at all').phrase_query().limit(
|
||||
10
|
||||
).to_list()
|
||||
|
||||
95
python/tests/test_remote_client.py
Normal file
95
python/tests/test_remote_client.py
Normal file
@@ -0,0 +1,95 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import attrs
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
from aiohttp import web
|
||||
|
||||
from lancedb.remote.client import RestfulLanceDBClient, VectorQuery
|
||||
|
||||
|
||||
@attrs.define
|
||||
class MockLanceDBServer:
|
||||
runner: web.AppRunner = attrs.field(init=False)
|
||||
site: web.TCPSite = attrs.field(init=False)
|
||||
|
||||
async def query_handler(self, request: web.Request) -> web.Response:
|
||||
table_name = request.match_info["table_name"]
|
||||
assert table_name == "test_table"
|
||||
|
||||
await request.json()
|
||||
# TODO: do some matching
|
||||
|
||||
vecs = pd.Series([np.random.rand(128) for x in range(10)], name="vector")
|
||||
ids = pd.Series(range(10), name="id")
|
||||
df = pd.DataFrame([vecs, ids]).T
|
||||
|
||||
batch = pa.RecordBatch.from_pandas(
|
||||
df,
|
||||
schema=pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 128)),
|
||||
pa.field("id", pa.int64()),
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
sink = pa.BufferOutputStream()
|
||||
with pa.ipc.new_file(sink, batch.schema) as writer:
|
||||
writer.write_batch(batch)
|
||||
|
||||
return web.Response(body=sink.getvalue().to_pybytes())
|
||||
|
||||
async def setup(self):
|
||||
app = web.Application()
|
||||
app.add_routes([web.post("/table/{table_name}", self.query_handler)])
|
||||
self.runner = web.AppRunner(app)
|
||||
await self.runner.setup()
|
||||
self.site = web.TCPSite(self.runner, "localhost", 8111)
|
||||
|
||||
async def start(self):
|
||||
await self.site.start()
|
||||
|
||||
async def stop(self):
|
||||
await self.runner.cleanup()
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="flaky somehow, fix later")
|
||||
@pytest.mark.asyncio
|
||||
async def test_e2e_with_mock_server():
|
||||
mock_server = MockLanceDBServer()
|
||||
await mock_server.setup()
|
||||
await mock_server.start()
|
||||
|
||||
try:
|
||||
client = RestfulLanceDBClient("lancedb+http://localhost:8111")
|
||||
df = (
|
||||
await client.query(
|
||||
"test_table",
|
||||
VectorQuery(
|
||||
vector=np.random.rand(128).tolist(),
|
||||
k=10,
|
||||
_metric="L2",
|
||||
columns=["id", "vector"],
|
||||
),
|
||||
)
|
||||
).to_pandas()
|
||||
|
||||
assert "vector" in df.columns
|
||||
assert "id" in df.columns
|
||||
finally:
|
||||
# make sure we don't leak resources
|
||||
await mock_server.stop()
|
||||
@@ -18,15 +18,15 @@ from lancedb.remote.client import VectorQuery, VectorQueryResult
|
||||
|
||||
|
||||
class FakeLanceDBClient:
|
||||
async def close(self):
|
||||
def close(self):
|
||||
pass
|
||||
|
||||
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
|
||||
def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
|
||||
assert table_name == "test"
|
||||
t = pa.schema([]).empty_table()
|
||||
return VectorQueryResult(t)
|
||||
|
||||
async def post(self, path: str):
|
||||
def post(self, path: str):
|
||||
pass
|
||||
|
||||
|
||||
|
||||
@@ -20,6 +20,7 @@ from unittest.mock import PropertyMock, patch
|
||||
import lance
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import polars as pl
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
@@ -182,6 +183,46 @@ def test_add_pydantic_model(db):
|
||||
assert len(really_flattened.columns) == 7
|
||||
|
||||
|
||||
def test_polars(db):
|
||||
data = {
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
# Ingest polars dataframe
|
||||
table = LanceTable.create(db, "test", data=pl.DataFrame(data))
|
||||
assert len(table) == 2
|
||||
|
||||
result = table.to_pandas()
|
||||
assert np.allclose(result["vector"].tolist(), data["vector"])
|
||||
assert result["item"].tolist() == data["item"]
|
||||
assert np.allclose(result["price"].tolist(), data["price"])
|
||||
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||
pa.field("item", pa.large_string()),
|
||||
pa.field("price", pa.float64()),
|
||||
]
|
||||
)
|
||||
assert table.schema == schema
|
||||
|
||||
# search results to polars dataframe
|
||||
q = [3.1, 4.1]
|
||||
result = table.search(q).limit(1).to_polars()
|
||||
assert np.allclose(result["vector"][0], q)
|
||||
assert result["item"][0] == "foo"
|
||||
assert np.allclose(result["price"][0], 10.0)
|
||||
|
||||
# enter table to polars dataframe
|
||||
result = table.to_polars()
|
||||
assert np.allclose(result.collect()["vector"].to_list(), data["vector"])
|
||||
|
||||
# make sure filtering isn't broken
|
||||
filtered_result = result.filter(pl.col("item").is_in(["foo", "bar"])).collect()
|
||||
assert len(filtered_result) == 2
|
||||
|
||||
|
||||
def _add(table, schema):
|
||||
# table = LanceTable(db, "test")
|
||||
assert len(table) == 2
|
||||
@@ -569,6 +610,14 @@ def test_empty_query(db):
|
||||
val = df.id.iloc[0]
|
||||
assert val == 1
|
||||
|
||||
table = LanceTable.create(db, "my_table2", data=[{"id": i} for i in range(100)])
|
||||
df = table.search().select(["id"]).to_pandas()
|
||||
assert len(df) == 10
|
||||
df = table.search().select(["id"]).limit(None).to_pandas()
|
||||
assert len(df) == 100
|
||||
df = table.search().select(["id"]).limit(-1).to_pandas()
|
||||
assert len(df) == 100
|
||||
|
||||
|
||||
def test_compact_cleanup(db):
|
||||
table = LanceTable.create(
|
||||
@@ -597,3 +646,14 @@ def test_compact_cleanup(db):
|
||||
|
||||
with pytest.raises(Exception, match="Version 3 no longer exists"):
|
||||
table.checkout(3)
|
||||
|
||||
|
||||
def test_count_rows(db):
|
||||
table = LanceTable.create(
|
||||
db,
|
||||
"my_table",
|
||||
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
|
||||
)
|
||||
assert len(table) == 2
|
||||
assert table.count_rows() == 2
|
||||
assert table.count_rows(filter="text='bar'") == 1
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "vectordb-node"
|
||||
version = "0.4.2"
|
||||
version = "0.4.3"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license = "Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
@@ -50,7 +50,7 @@ pub(crate) fn record_batch_to_buffer(batches: Vec<RecordBatch>) -> Result<Vec<u8
|
||||
return Ok(Vec::new());
|
||||
}
|
||||
|
||||
let schema = batches.get(0).unwrap().schema();
|
||||
let schema = batches.first().unwrap().schema();
|
||||
let mut fr = FileWriter::try_new(Vec::new(), schema.deref())?;
|
||||
for batch in batches.iter() {
|
||||
fr.write(batch)?
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "vectordb"
|
||||
version = "0.4.2"
|
||||
version = "0.4.3"
|
||||
edition = "2021"
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license = "Apache-2.0"
|
||||
|
||||
Reference in New Issue
Block a user