Compare commits

..

12 Commits

Author SHA1 Message Date
Jai
091fb9b665 add existence check (#112) 2023-06-01 11:45:26 -07:00
Chang She
03013a4434 Multimodal search demo (#118)
Slow roasted over 12 hours, Pairs well with #111

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-01 10:34:08 -07:00
gsilvestrin
3e14b357e7 add openai embedding function to nodejs client (#107)
- openai is an optional dependency for lancedb
- added an example to show how to use it
2023-06-01 10:25:00 -07:00
Lei Xu
99cbda8b07 Generate diffusiondb embeddings (#111) 2023-06-01 10:23:29 -07:00
Will Jones
e50b642d80 refactor: pull node binaries into separate packages (#88)
Changes:

* Refactors the Node module to load the shared library from a separate
package. When a user does `npm install vectordb`, the correct optional
dependency is automatically downloaded by npm.
* Brings Rust and Node versions in alignment at 0.1.2.
* Add scripts and instructions to build Linux and MacOS node artifacts
locally.
* Add instructions for publishing the npm module and crates.
2023-06-01 09:17:19 -07:00
gsilvestrin
6d8cf52e01 Better error granularity for table operations (#113) 2023-06-01 09:04:42 -07:00
Akash
53f3882d6e Fixed documentation link for the Youtube Transcripts Jupyter Notebook (#105)
Changed the link to the Youtube Transcripts jupyter notebook path on the
documentation.

Previously it went inside docs/notebooks (which does not exist). I've
modified it to go inside the notebooks folder instead.
2023-06-01 09:00:40 -07:00
Chang She
2b26775ed1 python v0.1.4 2023-05-31 20:11:25 -07:00
Lei Xu
306ada5cb8 Support S3 and GCS from typescript SDK (#106) 2023-05-30 21:32:17 -07:00
gsilvestrin
d3aa8bfbc5 add embedding functions to the nodejs client (#95) 2023-05-26 18:09:20 -07:00
Chang She
04d97347d7 move tantivy-py installation to be separate from wheel (#97)
pypi does not allow packages to be uploaded that has a direct reference

for now we'll just ask the user to install tantivy separately

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-05-25 17:57:26 -06:00
Chang She
22aa8a93c2 bump version for v0.1.3 2023-05-25 17:01:52 -06:00
45 changed files with 1705 additions and 313 deletions

View File

@@ -33,34 +33,12 @@ jobs:
fetch-depth: 0
lfs: true
- name: Install cargo utils
run: cargo install cargo-bump cargo-get
- name: Bump vectordb
working-directory: rust/vectordb
run: cargo install cargo-edit
- name: Bump versions
run: |
cargo bump ${{ inputs.part }}
echo "CRATE_VERSION=$(cargo get version)" >> $GITHUB_ENV
- name: Bump rust/ffi/node
working-directory: rust/ffi/node
run: |
cargo bump ${{ inputs.part }}
echo "FFI_CRATE_VERSION=$(cargo get version)" >> $GITHUB_ENV
- name: Bump node
working-directory: node
run: |
npm version ${{ inputs.part }}
echo "NPM_PACKAGE_VERSION=$(cat package.json | jq -r '.version')" >> $GITHUB_ENV
- name: Create tag
run: |
if [ "$CRATE_VERSION" != "$FFI_CRATE_VERSION" ]; then
echo "Version mismatch between rust/vectordb and rust/ffi/node"
exit 1
fi
if [ "$CRATE_VERSION" != "$NPM_PACKAGE_VERSION" ]; then
echo "Version mismatch between rust/vectordb and node"
exit 1
fi
export TAG="v$CRATE_VERSION'"
git tag $TAG
NEW_VERSION=$(bash ci/bump_versions.sh ${{ inputs.part }})
echo "New version: v$NEW_VERSION"
git tag v$NEW_VERSION
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master

View File

@@ -70,7 +70,9 @@ jobs:
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run test
macos:
@@ -99,7 +101,9 @@ jobs:
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: |
npm run test

View File

@@ -30,7 +30,8 @@ jobs:
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
run: |
pip install -e ".[fts]"
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest
- name: Run tests
run: pytest -x -v --durations=30 tests
@@ -52,7 +53,8 @@ jobs:
python-version: "3.11"
- name: Install lancedb
run: |
pip install -e ".[fts]"
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest
- name: Run tests
run: pytest -x -v --durations=30 tests

View File

@@ -1,12 +1,12 @@
name: Prepare Release
# TODO: bump versions in CI
# NOTE: Python is a separate release for now.
on:
push:
tags:
- v*
# Currently disabled until it can be completed.
# on:
# push:
# tags:
# - v*
jobs:
draft-release:
@@ -51,7 +51,7 @@ jobs:
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v2
uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: 20
@@ -81,7 +81,7 @@ jobs:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v2
uses: actions/checkout@v33
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
@@ -96,7 +96,7 @@ jobs:
- uses: softprops/action-gh-release@v1
with:
draft: true
files: node/dist/vectordb-darwin*.tgz
files: node/dist/lancedb-vectordb-darwin*.tgz
fail_on_unmatched_files: true
node-linux:
@@ -113,10 +113,11 @@ jobs:
# - musl
arch:
- x86_64
- aarch64
# Building on aarch64 is too slow for now
# - aarch64
steps:
- name: Checkout
uses: actions/checkout@v2
uses: actions/checkout@v3
- name: Change owner to root (for npm)
# The docker container is run as root, so we need the files to be owned by root
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
@@ -143,7 +144,7 @@ jobs:
- uses: softprops/action-gh-release@v1
with:
draft: true
files: node/dist/vectordb-linux*.tgz
files: node/dist/lancedb-vectordb-linux*.tgz
fail_on_unmatched_files: true
release:
@@ -151,14 +152,6 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/download-artifact@v3
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_TOKEN }}
run: |
python -m twine upload --non-interactive \
--skip-existing \
--repository testpypi python/dist/*
- name: Publish to NPM
run: |
for filename in node/dist/*.tgz; do

8
Cargo.lock generated
View File

@@ -1052,6 +1052,7 @@ dependencies = [
"paste",
"petgraph",
"rand",
"regex",
"uuid",
]
@@ -1645,9 +1646,9 @@ dependencies = [
[[package]]
name = "lance"
version = "0.4.12"
version = "0.4.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fc96cf89139af6f439a0e28ccd04ddf81be795b79fda3105b7a8952fadeb778e"
checksum = "86dda8185bd1ffae7b910c1f68035af23be9b717c52e9cc4de176cd30b47f772"
dependencies = [
"accelerate-src",
"arrow",
@@ -1684,6 +1685,7 @@ dependencies = [
"rand",
"reqwest",
"shellexpand",
"snafu",
"sqlparser-lance",
"tokio",
"url",
@@ -3362,7 +3364,9 @@ dependencies = [
"arrow-data",
"arrow-schema",
"lance",
"object_store",
"rand",
"snafu",
"tempfile",
"tokio",
]

View File

@@ -66,6 +66,11 @@ build_node_binary() {
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, espcially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# and openblas-src doesn't do well with cross-compilation.
npm run build-release

View File

@@ -1,30 +1,21 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./build_macos_artifacts.sh [target]
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
for target in $1
do
echo "Building rust library for $target"
export RUST_BACKTRACE=1
cargo build --release --target $target
done
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
for target in $1
do
echo "Building node library for $target"
npm run build-release -- --target $target
npm run pack-build -- --target $target
done
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
@@ -34,5 +25,9 @@ else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
prebuild_rust $targets
build_node_binaries $targets
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

58
ci/bump_versions.sh Normal file
View File

@@ -0,0 +1,58 @@
#!/bin/bash
set -e
# if cargo bump isn't installed return an error
if ! cargo set-version &> /dev/null
then
echo "cargo-edit could not be found. Install with `cargo install cargo-edit`"
exit
fi
BUMP_PART=${1:-patch}
# if BUMP_PART isn't patch, minor, or major return an error
if [ "$BUMP_PART" != "patch" ] && [ "$BUMP_PART" != "minor" ] && [ "$BUMP_PART" != "major" ]
then
echo "BUMP_PART must be one of patch, minor, or major"
exit
fi
function get_crate_version() {
cargo pkgid -p $1 | cut -d@ -f2 | cut -d# -f2
}
# First, validate versions are starting as same
VECTORDB_VERSION=$(get_crate_version vectordb)
FFI_NODE_VERSION=$(get_crate_version vectordb-node)
# FYI, we pipe all output to /dev/null because the only thing we want to ouput
# if success is the new tag. This way it can be then used with `git tag`.
pushd node > /dev/null
NODE_VERSION=$(npm pkg get version | xargs echo)
popd > /dev/null
if [ "$VECTORDB_VERSION" != "$FFI_NODE_VERSION" ] || [ "$VECTORDB_VERSION" != "$NODE_VERSION" ]
then
echo "Version mismatch between rust/vectordb, rust/ffi/node, and node"
echo "rust/vectordb: $VECTORDB_VERSION"
echo "rust/ffi/node: $FFI_NODE_VERSION"
echo "node: $NODE_VERSION"
exit
fi
cargo set-version --bump $BUMP_PART > /dev/null 2>&1
NEW_VERSION=$(get_crate_version vectordb)
pushd node > /dev/null
npm version $BUMP_PART > /dev/null
# Also need to update version of the native modules
NATIVE_MODULES=$(npm pkg get optionalDependencies | jq 'keys[]' | grep @vectordb/ | tr -d '"')
for module in $NATIVE_MODULES
do
npm install $module@$NEW_VERSION --save-optional > /dev/null
done
popd > /dev/null
echo $NEW_VERSION

View File

@@ -3,6 +3,7 @@
This is for the Rust crate and Node module. For now, the Python module is
released separately.
<!--
The release is started by bumping the versions and pushing a new tag. To do this
automatically, use the `make_release_commit` GitHub action.
@@ -16,9 +17,23 @@ and CI changes to the bottom.
Once the jobs have finished, the release will be marked as not draft and the
artifacts will be released to crates.io, NPM, and PyPI.
-->
## Manual process
You can also build the artifacts locally on a MacOS machine.
The manual release process can be completed on a MacOS machine.
### Bump the versions
You can use the script `ci/bump_versions.sh` to bump the versions. It defaults
to a `patch` bump, but you can also pass `minor` and `major`. Once you have the
tag created, push it to GitHub.
```shell
VERSION=$(bash ci/bump_versions.sh)
git tag v$VERSION
git push origin v$VERSION
```
### Build the MacOS release libraries
@@ -28,7 +43,7 @@ One-time setup:
rustup target add x86_64-apple-darwin aarch64-apple-darwin
```
To build:
To build both x64 and arm64, run `ci/build_macos_artifacts.sh` without any args:
```shell
bash ci/build_macos_artifacts.sh
@@ -46,8 +61,12 @@ docker run \
bash ci/build_linux_artifacts.sh $ARCH-unknown-linux-gnu
```
You can change `ARCH` to `x86_64`.
For x64, change `ARCH` to `x86_64`. NOTE: compiling for a different architecture
than your machine in Docker is very slow. It's best to do this on a machine with
matching architecture.
<!--
Similar script for musl binaries (not yet working):
```shell
@@ -59,6 +78,8 @@ docker run \
bash ci/build_linux_artifacts.sh $ARCH-unknown-linux-musl
```
-->
<!--
For debugging, use these snippets:
@@ -82,9 +103,34 @@ docker run -it \
Note: musllinux_1_1 is Alpine Linux 3.12
-->
### Build the npm module
To build the typescript and create a release tarball, run:
```shell
npm ci
npm tsc
npm pack
```
### Release to npm
Assuming you still have `VERSION` set from earlier:
```shell
pushd node
npm publish lancedb-vectordb-$VERSION.tgz
for tarball in ./dist/lancedb-vectordb-*-$VERSION.tgz;
do
npm publish $tarball
done
popd
```
### Release to crates.io
```shell
cargo publish -p vectordb
cargo publish -p vectordb-node
```
docker run \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_aarch64 \
bash alpine_repro.sh
```

View File

@@ -6,9 +6,10 @@ to make this available for JS as well.
## Installation
To use full text search, you must install the fts optional dependencies:
To use full text search, you must install optional dependency tantivy-py:
`pip install lancedb[fts]`
# tantivy 0.19.2
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
## Quickstart

View File

@@ -38,7 +38,7 @@ result = table.search([100, 100]).limit(2).to_df()
## Complete Demos
We will be adding completed demo apps built using LanceDB.
- [YouTube Transcript Search](../notebooks/youtube_transcript_search.ipynb)
- [YouTube Transcript Search](../../notebooks/youtube_transcript_search.ipynb)
## Documentation Quick Links

View File

@@ -1,2 +1,4 @@
gen_test_data.py
index.node
dist/lancedb*.tgz
vectordb*.tgz

View File

@@ -28,30 +28,33 @@ The [examples](./examples) folder contains complete examples.
## Development
Build and install the rust library with:
To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
```bash
npm test
```
### Rebuilding Rust library
```bash
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
```
`npm run build` builds the Rust library, `npm run pack-build` packages the Rust
binary into an npm module called `@vectordb/<platform>` (for example,
`@vectordb/darwin-arm64.node`), and then `npm run install ...` installs that
module.
The LanceDB javascript is built with npm:
### Rebuilding Typescript
```bash
npm run tsc
```
Run the tests with
```bash
npm test
```
### Fix lints
To run the linter and have it automatically fix all errors

View File

@@ -0,0 +1,41 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
async function example () {
const lancedb = require('vectordb')
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
const apiKey = process.env.OPENAI_API_KEY
// The embedding function will create embeddings for the 'text' column(text in this case)
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
const db = await lancedb.connect('data/sample-lancedb')
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, embedding)
console.log(await db.tableNames())
const results = await table
.search('keeps me warm')
.limit(1)
.execute()
console.log(results[0].text)
}
example().then(_ => { console.log('All done!') })

View File

@@ -0,0 +1,15 @@
{
"name": "vectordb-example-js-openai",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "file:../..",
"openai": "^3.2.1"
}
}

View File

@@ -9,6 +9,6 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "^0.1.0"
"vectordb": "file:../.."
}
}

View File

@@ -17,6 +17,6 @@
"typescript": "*"
},
"dependencies": {
"vectordb": "^0.1.0"
"vectordb": "file:../.."
}
}

View File

@@ -17,14 +17,20 @@ const { currentTarget } = require('@neon-rs/load');
let nativeLib;
try {
nativeLib = require(`@vectordb/${currentTarget()}`);
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`);
} catch (e) {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install @vectordb/${currentTarget()}\`.
try {
// Might be developing locally, so try that. But don't expose that error
// to the user.
nativeLib = require("./index.node");
} catch {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`);
}
}
// Dynamic require for runtime.

519
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.1.1",
"version": "0.1.2",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.1.1",
"version": "0.1.2",
"cpu": [
"x64",
"arm64"
@@ -19,10 +19,6 @@
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"@vectordb/darwin-arm64": "0.1.1",
"@vectordb/darwin-x64": "0.1.1",
"@vectordb/linux-x64-gnu": "0.1.1",
"@vectordb/linux-x64-musl": "0.1.1",
"apache-arrow": "^12.0.0"
},
"devDependencies": {
@@ -40,16 +36,18 @@
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^3.2.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typescript": "*"
},
"optionalDependencies": {
"@vectordb/darwin-arm64": "0.1.1",
"@vectordb/darwin-x64": "0.1.1",
"@vectordb/linux-x64-gnu": "0.1.1",
"@vectordb/linux-x64-musl": "0.1.1"
"@lancedb/vectordb-darwin-arm64": "0.1.2",
"@lancedb/vectordb-darwin-x64": "0.1.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.2",
"@lancedb/vectordb-linux-x64-gnu": "0.1.2"
}
},
"node_modules/@apache-arrow/ts": {
@@ -217,6 +215,32 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.1.2",
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-darwin-arm64/0.1.2/84d71331e03e8aaeb9fb12cdacc759dc82cfd3b0",
"integrity": "sha512-DU6tHmmn/coSj5r5FGwTMXMQfsSSxQN1ozOl9mFUXr0aVtlx5nlA8ZY5BAF/V371yL5QzNPKtaNpogP6iw51NA==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.2",
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-linux-arm64-gnu/0.1.2/d5a9d66c3969494cf3546195fb5511f9f49aa295",
"integrity": "sha512-LZZ4KgoGqD5AzKX/utBrsxrwXq6whpUNa02tWxl/ND/601ruNi9ZUaXCTb1rSVUWJkgMR2wASk15kssyaPRSjw==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"linux"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
@@ -266,6 +290,50 @@
"node": ">= 8"
}
},
"node_modules/@sinonjs/commons": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-3.0.0.tgz",
"integrity": "sha512-jXBtWAF4vmdNmZgD5FoKsVLv3rPgDnLgPbU84LIJ3otV44vJlDRokVng5v8NFJdCf/da9legHcKaRuZs4L7faA==",
"dev": true,
"dependencies": {
"type-detect": "4.0.8"
}
},
"node_modules/@sinonjs/fake-timers": {
"version": "10.2.0",
"resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-10.2.0.tgz",
"integrity": "sha512-OPwQlEdg40HAj5KNF8WW6q2KG4Z+cBCZb3m4ninfTZKaBmbIJodviQsDBoYMPHkOyJJMHnOJo5j2+LKDOhOACg==",
"dev": true,
"dependencies": {
"@sinonjs/commons": "^3.0.0"
}
},
"node_modules/@sinonjs/samsam": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/samsam/-/samsam-8.0.0.tgz",
"integrity": "sha512-Bp8KUVlLp8ibJZrnvq2foVhP0IVX2CIprMJPK0vqGqgrDa0OHVKeZyBykqskkrdxV6yKBPmGasO8LVjAKR3Gew==",
"dev": true,
"dependencies": {
"@sinonjs/commons": "^2.0.0",
"lodash.get": "^4.4.2",
"type-detect": "^4.0.8"
}
},
"node_modules/@sinonjs/samsam/node_modules/@sinonjs/commons": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-2.0.0.tgz",
"integrity": "sha512-uLa0j859mMrg2slwQYdO/AkrOfmH+X6LTVmNTS9CqexuE2IvVORIkSpJLqePAbEnKJ77aMmCwr1NUZ57120Xcg==",
"dev": true,
"dependencies": {
"type-detect": "4.0.8"
}
},
"node_modules/@sinonjs/text-encoding": {
"version": "0.7.2",
"resolved": "https://registry.npmjs.org/@sinonjs/text-encoding/-/text-encoding-0.7.2.tgz",
"integrity": "sha512-sXXKG+uL9IrKqViTtao2Ws6dy0znu9sOaP1di/jKGW1M6VssO8vlpXCQcpZ+jisQ1tTFAC5Jo/EOzFbggBagFQ==",
"dev": true
},
"node_modules/@tsconfig/node10": {
"version": "1.0.9",
"resolved": "https://registry.npmjs.org/@tsconfig/node10/-/node10-1.0.9.tgz",
@@ -341,6 +409,21 @@
"integrity": "sha512-21cFJr9z3g5dW8B0CVI9g2O9beqaThGQ6ZFBqHfwhzLDKUxaqTIy3vnfah/UPkfOiF2pLq+tGz+W8RyCskuslw==",
"dev": true
},
"node_modules/@types/sinon": {
"version": "10.0.15",
"resolved": "https://registry.npmjs.org/@types/sinon/-/sinon-10.0.15.tgz",
"integrity": "sha512-3lrFNQG0Kr2LDzvjyjB6AMJk4ge+8iYhQfdnSwIwlG88FUOV43kPcQqDZkDa/h3WSZy6i8Fr0BSjfQtB1B3xuQ==",
"dev": true,
"dependencies": {
"@types/sinonjs__fake-timers": "*"
}
},
"node_modules/@types/sinonjs__fake-timers": {
"version": "8.1.2",
"resolved": "https://registry.npmjs.org/@types/sinonjs__fake-timers/-/sinonjs__fake-timers-8.1.2.tgz",
"integrity": "sha512-9GcLXF0/v3t80caGs5p2rRfkB+a8VBGLJZVih6CNFkx8IZ994wiKKLSRs9nuFwk1HevWs/1mnUmkApGrSGsShA==",
"dev": true
},
"node_modules/@types/strip-bom": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/@types/strip-bom/-/strip-bom-3.0.0.tgz",
@@ -778,6 +861,12 @@
"node": "*"
}
},
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"node_modules/available-typed-arrays": {
"version": "1.0.5",
"resolved": "https://registry.npmjs.org/available-typed-arrays/-/available-typed-arrays-1.0.5.tgz",
@@ -790,6 +879,15 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.14.8"
}
},
"node_modules/balanced-match": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz",
@@ -1002,6 +1100,18 @@
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"dev": true
},
"node_modules/combined-stream": {
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"dependencies": {
"delayed-stream": "~1.0.0"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/command-line-args": {
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/command-line-args/-/command-line-args-5.2.1.tgz",
@@ -1213,6 +1323,15 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true,
"engines": {
"node": ">=0.4.0"
}
},
"node_modules/diff": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/diff/-/diff-4.0.2.tgz",
@@ -1976,6 +2095,26 @@
"integrity": "sha512-5nqDSxl8nn5BSNxyR3n4I6eDmbolI6WT+QqR547RwxQapgjQBmtktdP+HTBb/a/zLsbzERTONyUB5pefh5TtjQ==",
"dev": true
},
"node_modules/follow-redirects": {
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true,
"funding": [
{
"type": "individual",
"url": "https://github.com/sponsors/RubenVerborgh"
}
],
"engines": {
"node": ">=4.0"
},
"peerDependenciesMeta": {
"debug": {
"optional": true
}
}
},
"node_modules/for-each": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/for-each/-/for-each-0.3.3.tgz",
@@ -1985,6 +2124,20 @@
"is-callable": "^1.1.3"
}
},
"node_modules/form-data": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
"mime-types": "^2.1.12"
},
"engines": {
"node": ">= 6"
}
},
"node_modules/fs.realpath": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz",
@@ -2618,6 +2771,12 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/isarray": {
"version": "0.0.1",
"resolved": "https://registry.npmjs.org/isarray/-/isarray-0.0.1.tgz",
"integrity": "sha512-D2S+3GLxWH+uhrNEcoh/fnmYeP8E8/zHl644d/jdA0g2uyXvy3sb0qxotE+ne0LtccHknQzWwZEzhak7oJ0COQ==",
"dev": true
},
"node_modules/isexe": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz",
@@ -2678,6 +2837,12 @@
"json5": "lib/cli.js"
}
},
"node_modules/just-extend": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
"integrity": "sha512-g3UB796vUFIY90VIv/WX3L2c8CS2MdWUww3CNrYmqza1Fg0DURc2K/O4YrnklBdQarSJ/y8JnJYDGc+1iumQjg==",
"dev": true
},
"node_modules/levn": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/levn/-/levn-0.4.1.tgz",
@@ -2711,6 +2876,12 @@
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
"integrity": "sha512-TwuEnCnxbc3rAvhf/LbG7tJUDzhqXyFnv3dtzLOPgCG/hODL7WFnsbwktkD7yUV0RrreP/l1PALq/YSg6VvjlA=="
},
"node_modules/lodash.get": {
"version": "4.4.2",
"resolved": "https://registry.npmjs.org/lodash.get/-/lodash.get-4.4.2.tgz",
"integrity": "sha512-z+Uw/vLuy6gQe8cfaFWD7p0wVv8fJl3mbzXh33RS+0oW2wvUqiRXiQ69gLWSLpgB5/6sU+r6BlQR0MBILadqTQ==",
"dev": true
},
"node_modules/lodash.merge": {
"version": "4.6.2",
"resolved": "https://registry.npmjs.org/lodash.merge/-/lodash.merge-4.6.2.tgz",
@@ -2782,6 +2953,27 @@
"node": ">=8.6"
}
},
"node_modules/mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true,
"engines": {
"node": ">= 0.6"
}
},
"node_modules/mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"dependencies": {
"mime-db": "1.52.0"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/minimatch": {
"version": "3.1.2",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
@@ -2959,6 +3151,28 @@
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
"dev": true
},
"node_modules/nise": {
"version": "5.1.4",
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
"integrity": "sha512-8+Ib8rRJ4L0o3kfmyVCL7gzrohyDe0cMFTBa2d364yIrEGMEoetznKJx899YxjybU6bL9SQkYPSBBs1gyYs8Xg==",
"dev": true,
"dependencies": {
"@sinonjs/commons": "^2.0.0",
"@sinonjs/fake-timers": "^10.0.2",
"@sinonjs/text-encoding": "^0.7.1",
"just-extend": "^4.0.2",
"path-to-regexp": "^1.7.0"
}
},
"node_modules/nise/node_modules/@sinonjs/commons": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-2.0.0.tgz",
"integrity": "sha512-uLa0j859mMrg2slwQYdO/AkrOfmH+X6LTVmNTS9CqexuE2IvVORIkSpJLqePAbEnKJ77aMmCwr1NUZ57120Xcg==",
"dev": true,
"dependencies": {
"type-detect": "4.0.8"
}
},
"node_modules/normalize-path": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
@@ -3030,6 +3244,16 @@
"wrappy": "1"
}
},
"node_modules/openai": {
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/openai/-/openai-3.2.1.tgz",
"integrity": "sha512-762C9BNlJPbjjlWZi4WYK9iM2tAVAv0uUp1UmI34vb0CN5T2mjB/qM6RYBmNKMh/dN9fC+bxqPwWJZUTWW052A==",
"dev": true,
"dependencies": {
"axios": "^0.26.0",
"form-data": "^4.0.0"
}
},
"node_modules/optionator": {
"version": "0.9.1",
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
@@ -3133,6 +3357,15 @@
"integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==",
"dev": true
},
"node_modules/path-to-regexp": {
"version": "1.8.0",
"resolved": "https://registry.npmjs.org/path-to-regexp/-/path-to-regexp-1.8.0.tgz",
"integrity": "sha512-n43JRhlUKUAlibEJhPeir1ncUID16QnEjNpwzNdO3Lm4ywrBpBZ5oLD0I6br9evr1Y9JTqwRtAh7JLoOzAQdVA==",
"dev": true,
"dependencies": {
"isarray": "0.0.1"
}
},
"node_modules/path-type": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/path-type/-/path-type-4.0.0.tgz",
@@ -3440,6 +3673,45 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/sinon": {
"version": "15.1.0",
"resolved": "https://registry.npmjs.org/sinon/-/sinon-15.1.0.tgz",
"integrity": "sha512-cS5FgpDdE9/zx7no8bxROHymSlPLZzq0ChbbLk1DrxBfc+eTeBK3y8nIL+nu/0QeYydhhbLIr7ecHJpywjQaoQ==",
"dev": true,
"dependencies": {
"@sinonjs/commons": "^3.0.0",
"@sinonjs/fake-timers": "^10.2.0",
"@sinonjs/samsam": "^8.0.0",
"diff": "^5.1.0",
"nise": "^5.1.4",
"supports-color": "^7.2.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/sinon"
}
},
"node_modules/sinon/node_modules/diff": {
"version": "5.1.0",
"resolved": "https://registry.npmjs.org/diff/-/diff-5.1.0.tgz",
"integrity": "sha512-D+mk+qE8VC/PAUrlAU34N+VfXev0ghe5ywmpqrawphmVZc1bEfn56uo9qpyGp1p4xpzOHkSW4ztBd6L7Xx4ACw==",
"dev": true,
"engines": {
"node": ">=0.3.1"
}
},
"node_modules/sinon/node_modules/supports-color": {
"version": "7.2.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true,
"dependencies": {
"has-flag": "^4.0.0"
},
"engines": {
"node": ">=8"
}
},
"node_modules/slash": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz",
@@ -4225,6 +4497,18 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.1.2",
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-darwin-arm64/0.1.2/84d71331e03e8aaeb9fb12cdacc759dc82cfd3b0",
"integrity": "sha512-DU6tHmmn/coSj5r5FGwTMXMQfsSSxQN1ozOl9mFUXr0aVtlx5nlA8ZY5BAF/V371yL5QzNPKtaNpogP6iw51NA==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.2",
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-linux-arm64-gnu/0.1.2/d5a9d66c3969494cf3546195fb5511f9f49aa295",
"integrity": "sha512-LZZ4KgoGqD5AzKX/utBrsxrwXq6whpUNa02tWxl/ND/601ruNi9ZUaXCTb1rSVUWJkgMR2wASk15kssyaPRSjw==",
"optional": true
},
"@neon-rs/cli": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
@@ -4262,6 +4546,52 @@
"fastq": "^1.6.0"
}
},
"@sinonjs/commons": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-3.0.0.tgz",
"integrity": "sha512-jXBtWAF4vmdNmZgD5FoKsVLv3rPgDnLgPbU84LIJ3otV44vJlDRokVng5v8NFJdCf/da9legHcKaRuZs4L7faA==",
"dev": true,
"requires": {
"type-detect": "4.0.8"
}
},
"@sinonjs/fake-timers": {
"version": "10.2.0",
"resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-10.2.0.tgz",
"integrity": "sha512-OPwQlEdg40HAj5KNF8WW6q2KG4Z+cBCZb3m4ninfTZKaBmbIJodviQsDBoYMPHkOyJJMHnOJo5j2+LKDOhOACg==",
"dev": true,
"requires": {
"@sinonjs/commons": "^3.0.0"
}
},
"@sinonjs/samsam": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/samsam/-/samsam-8.0.0.tgz",
"integrity": "sha512-Bp8KUVlLp8ibJZrnvq2foVhP0IVX2CIprMJPK0vqGqgrDa0OHVKeZyBykqskkrdxV6yKBPmGasO8LVjAKR3Gew==",
"dev": true,
"requires": {
"@sinonjs/commons": "^2.0.0",
"lodash.get": "^4.4.2",
"type-detect": "^4.0.8"
},
"dependencies": {
"@sinonjs/commons": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-2.0.0.tgz",
"integrity": "sha512-uLa0j859mMrg2slwQYdO/AkrOfmH+X6LTVmNTS9CqexuE2IvVORIkSpJLqePAbEnKJ77aMmCwr1NUZ57120Xcg==",
"dev": true,
"requires": {
"type-detect": "4.0.8"
}
}
}
},
"@sinonjs/text-encoding": {
"version": "0.7.2",
"resolved": "https://registry.npmjs.org/@sinonjs/text-encoding/-/text-encoding-0.7.2.tgz",
"integrity": "sha512-sXXKG+uL9IrKqViTtao2Ws6dy0znu9sOaP1di/jKGW1M6VssO8vlpXCQcpZ+jisQ1tTFAC5Jo/EOzFbggBagFQ==",
"dev": true
},
"@tsconfig/node10": {
"version": "1.0.9",
"resolved": "https://registry.npmjs.org/@tsconfig/node10/-/node10-1.0.9.tgz",
@@ -4337,6 +4667,21 @@
"integrity": "sha512-21cFJr9z3g5dW8B0CVI9g2O9beqaThGQ6ZFBqHfwhzLDKUxaqTIy3vnfah/UPkfOiF2pLq+tGz+W8RyCskuslw==",
"dev": true
},
"@types/sinon": {
"version": "10.0.15",
"resolved": "https://registry.npmjs.org/@types/sinon/-/sinon-10.0.15.tgz",
"integrity": "sha512-3lrFNQG0Kr2LDzvjyjB6AMJk4ge+8iYhQfdnSwIwlG88FUOV43kPcQqDZkDa/h3WSZy6i8Fr0BSjfQtB1B3xuQ==",
"dev": true,
"requires": {
"@types/sinonjs__fake-timers": "*"
}
},
"@types/sinonjs__fake-timers": {
"version": "8.1.2",
"resolved": "https://registry.npmjs.org/@types/sinonjs__fake-timers/-/sinonjs__fake-timers-8.1.2.tgz",
"integrity": "sha512-9GcLXF0/v3t80caGs5p2rRfkB+a8VBGLJZVih6CNFkx8IZ994wiKKLSRs9nuFwk1HevWs/1mnUmkApGrSGsShA==",
"dev": true
},
"@types/strip-bom": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/@types/strip-bom/-/strip-bom-3.0.0.tgz",
@@ -4624,12 +4969,27 @@
"integrity": "sha512-jgsaNduz+ndvGyFt3uSuWqvy4lCnIJiovtouQN5JZHOKCS2QuhEdbcQHFhVksz2N2U9hXJo8odG7ETyWlEeuDw==",
"dev": true
},
"asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"available-typed-arrays": {
"version": "1.0.5",
"resolved": "https://registry.npmjs.org/available-typed-arrays/-/available-typed-arrays-1.0.5.tgz",
"integrity": "sha512-DMD0KiN46eipeziST1LPP/STfDU0sufISXmjSgvVsoU2tqxctQeASejWcfNtxYKqETM1UxQ8sp2OrSBWpHY6sw==",
"dev": true
},
"axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.14.8"
}
},
"balanced-match": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz",
@@ -4794,6 +5154,15 @@
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"dev": true
},
"combined-stream": {
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"requires": {
"delayed-stream": "~1.0.0"
}
},
"command-line-args": {
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/command-line-args/-/command-line-args-5.2.1.tgz",
@@ -4953,6 +5322,12 @@
"object-keys": "^1.1.1"
}
},
"delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true
},
"diff": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/diff/-/diff-4.0.2.tgz",
@@ -5520,6 +5895,12 @@
"integrity": "sha512-5nqDSxl8nn5BSNxyR3n4I6eDmbolI6WT+QqR547RwxQapgjQBmtktdP+HTBb/a/zLsbzERTONyUB5pefh5TtjQ==",
"dev": true
},
"follow-redirects": {
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true
},
"for-each": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/for-each/-/for-each-0.3.3.tgz",
@@ -5529,6 +5910,17 @@
"is-callable": "^1.1.3"
}
},
"form-data": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"requires": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
"mime-types": "^2.1.12"
}
},
"fs.realpath": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz",
@@ -5957,6 +6349,12 @@
"call-bind": "^1.0.2"
}
},
"isarray": {
"version": "0.0.1",
"resolved": "https://registry.npmjs.org/isarray/-/isarray-0.0.1.tgz",
"integrity": "sha512-D2S+3GLxWH+uhrNEcoh/fnmYeP8E8/zHl644d/jdA0g2uyXvy3sb0qxotE+ne0LtccHknQzWwZEzhak7oJ0COQ==",
"dev": true
},
"isexe": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz",
@@ -6004,6 +6402,12 @@
"minimist": "^1.2.0"
}
},
"just-extend": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
"integrity": "sha512-g3UB796vUFIY90VIv/WX3L2c8CS2MdWUww3CNrYmqza1Fg0DURc2K/O4YrnklBdQarSJ/y8JnJYDGc+1iumQjg==",
"dev": true
},
"levn": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/levn/-/levn-0.4.1.tgz",
@@ -6028,6 +6432,12 @@
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
"integrity": "sha512-TwuEnCnxbc3rAvhf/LbG7tJUDzhqXyFnv3dtzLOPgCG/hODL7WFnsbwktkD7yUV0RrreP/l1PALq/YSg6VvjlA=="
},
"lodash.get": {
"version": "4.4.2",
"resolved": "https://registry.npmjs.org/lodash.get/-/lodash.get-4.4.2.tgz",
"integrity": "sha512-z+Uw/vLuy6gQe8cfaFWD7p0wVv8fJl3mbzXh33RS+0oW2wvUqiRXiQ69gLWSLpgB5/6sU+r6BlQR0MBILadqTQ==",
"dev": true
},
"lodash.merge": {
"version": "4.6.2",
"resolved": "https://registry.npmjs.org/lodash.merge/-/lodash.merge-4.6.2.tgz",
@@ -6084,6 +6494,21 @@
"picomatch": "^2.3.1"
}
},
"mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true
},
"mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"requires": {
"mime-db": "1.52.0"
}
},
"minimatch": {
"version": "3.1.2",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
@@ -6217,6 +6642,30 @@
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
"dev": true
},
"nise": {
"version": "5.1.4",
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
"integrity": "sha512-8+Ib8rRJ4L0o3kfmyVCL7gzrohyDe0cMFTBa2d364yIrEGMEoetznKJx899YxjybU6bL9SQkYPSBBs1gyYs8Xg==",
"dev": true,
"requires": {
"@sinonjs/commons": "^2.0.0",
"@sinonjs/fake-timers": "^10.0.2",
"@sinonjs/text-encoding": "^0.7.1",
"just-extend": "^4.0.2",
"path-to-regexp": "^1.7.0"
},
"dependencies": {
"@sinonjs/commons": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-2.0.0.tgz",
"integrity": "sha512-uLa0j859mMrg2slwQYdO/AkrOfmH+X6LTVmNTS9CqexuE2IvVORIkSpJLqePAbEnKJ77aMmCwr1NUZ57120Xcg==",
"dev": true,
"requires": {
"type-detect": "4.0.8"
}
}
}
},
"normalize-path": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
@@ -6267,6 +6716,16 @@
"wrappy": "1"
}
},
"openai": {
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/openai/-/openai-3.2.1.tgz",
"integrity": "sha512-762C9BNlJPbjjlWZi4WYK9iM2tAVAv0uUp1UmI34vb0CN5T2mjB/qM6RYBmNKMh/dN9fC+bxqPwWJZUTWW052A==",
"dev": true,
"requires": {
"axios": "^0.26.0",
"form-data": "^4.0.0"
}
},
"optionator": {
"version": "0.9.1",
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
@@ -6340,6 +6799,15 @@
"integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==",
"dev": true
},
"path-to-regexp": {
"version": "1.8.0",
"resolved": "https://registry.npmjs.org/path-to-regexp/-/path-to-regexp-1.8.0.tgz",
"integrity": "sha512-n43JRhlUKUAlibEJhPeir1ncUID16QnEjNpwzNdO3Lm4ywrBpBZ5oLD0I6br9evr1Y9JTqwRtAh7JLoOzAQdVA==",
"dev": true,
"requires": {
"isarray": "0.0.1"
}
},
"path-type": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/path-type/-/path-type-4.0.0.tgz",
@@ -6529,6 +6997,37 @@
"object-inspect": "^1.9.0"
}
},
"sinon": {
"version": "15.1.0",
"resolved": "https://registry.npmjs.org/sinon/-/sinon-15.1.0.tgz",
"integrity": "sha512-cS5FgpDdE9/zx7no8bxROHymSlPLZzq0ChbbLk1DrxBfc+eTeBK3y8nIL+nu/0QeYydhhbLIr7ecHJpywjQaoQ==",
"dev": true,
"requires": {
"@sinonjs/commons": "^3.0.0",
"@sinonjs/fake-timers": "^10.2.0",
"@sinonjs/samsam": "^8.0.0",
"diff": "^5.1.0",
"nise": "^5.1.4",
"supports-color": "^7.2.0"
},
"dependencies": {
"diff": {
"version": "5.1.0",
"resolved": "https://registry.npmjs.org/diff/-/diff-5.1.0.tgz",
"integrity": "sha512-D+mk+qE8VC/PAUrlAU34N+VfXev0ghe5ywmpqrawphmVZc1bEfn56uo9qpyGp1p4xpzOHkSW4ztBd6L7Xx4ACw==",
"dev": true
},
"supports-color": {
"version": "7.2.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true,
"requires": {
"has-flag": "^4.0.0"
}
}
}
},
"slash": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz",

View File

@@ -31,6 +31,7 @@
"@types/chai": "^4.3.4",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
@@ -41,6 +42,8 @@
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"sinon": "^15.1.0",
"openai": "^3.2.1",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
@@ -61,20 +64,16 @@
],
"neon": {
"targets": {
"x86_64-apple-darwin": "@vectordb/darwin-x64",
"aarch64-apple-darwin": "@vectordb/darwin-arm64",
"x86_64-unknown-linux-gnu": "@vectordb/linux-x64-gnu",
"x86_64-unknown-linux-musl": "@vectordb/linux-x64-musl",
"aarch64-unknown-linux-gnu": "@vectordb/linux-arm64-gnu",
"aarch64-unknown-linux-musl": "@vectordb/linux-arm64-musl"
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64",
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu"
}
},
"optionalDependencies": {
"@vectordb/darwin-arm64": "0.1.2",
"@vectordb/darwin-x64": "0.1.2",
"@vectordb/linux-x64-gnu": "0.1.2",
"@vectordb/linux-x64-musl": "0.1.2",
"@vectordb/linux-arm64-gnu": "0.1.2",
"@vectordb/linux-arm64-musl": "0.1.2"
"@lancedb/vectordb-darwin-arm64": "0.1.2",
"@lancedb/vectordb-darwin-x64": "0.1.2",
"@lancedb/vectordb-linux-x64-gnu": "0.1.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.2"
}
}

View File

@@ -15,15 +15,16 @@
import {
Field,
Float32,
List,
List, type ListBuilder,
makeBuilder,
RecordBatchFileWriter,
Table, Utf8,
type Vector,
vectorFromArray
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
export function convertToTable (data: Array<Record<string, unknown>>): Table {
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
@@ -33,11 +34,7 @@ export function convertToTable (data: Array<Record<string, unknown>>): Table {
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
const listBuilder = makeBuilder({
type: list
})
const listBuilder = newVectorListBuilder()
const vectorSize = (data[0].vector as any[]).length
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
@@ -52,6 +49,14 @@ export function convertToTable (data: Array<Record<string, unknown>>): Table {
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
const listBuilder = newVectorListBuilder()
vectors.map(v => listBuilder.append(v))
records.vector = listBuilder.finish().toVector()
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
@@ -64,8 +69,17 @@ export function convertToTable (data: Array<Record<string, unknown>>): Table {
return new Table(records)
}
export async function fromRecordsToBuffer (data: Array<Record<string, unknown>>): Promise<Buffer> {
const table = convertToTable(data)
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorListBuilder (): ListBuilder<Float32, any> {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
return makeBuilder({
type: list
})
}
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}

View File

@@ -0,0 +1,28 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]>
}

View File

@@ -0,0 +1,51 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { type EmbeddingFunction } from '../index'
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
private readonly _openai: any
private readonly _modelName: string
constructor (sourceColumn: string, openAIKey: string, modelName: string = 'text-embedding-ada-002') {
let openai
try {
// eslint-disable-next-line @typescript-eslint/no-var-requires
openai = require('openai')
} catch {
throw new Error('please install openai using npm install openai')
}
this.sourceColumn = sourceColumn
const configuration = new openai.Configuration({
apiKey: openAIKey
})
this._openai = new openai.OpenAIApi(configuration)
this._modelName = modelName
}
async embed (data: string[]): Promise<number[][]> {
const response = await this._openai.createEmbedding({
model: this._modelName,
input: data
})
const embeddings: number[][] = []
for (let i = 0; i < response.data.data.length; i++) {
embeddings.push(response.data.data[i].embedding as number[])
}
return embeddings
}
sourceColumn: string
}

View File

@@ -19,16 +19,21 @@ import {
Vector
} from 'apache-arrow'
import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js')
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
/**
* Connect to a LanceDB instance at the given URI
* @param uri The uri of the database.
*/
export async function connect (uri: string): Promise<Connection> {
return new Connection(uri)
const db = await databaseNew(uri)
return new Connection(db, uri)
}
/**
@@ -38,9 +43,9 @@ export class Connection {
private readonly _uri: string
private readonly _db: any
constructor (uri: string) {
constructor (db: any, uri: string) {
this._uri = uri
this._db = databaseNew(uri)
this._db = db
}
get uri (): string {
@@ -55,17 +60,50 @@ export class Connection {
}
/**
* Open a table in the database.
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table> {
* Open a table in the database.
*
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this Table
*/
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name)
return new Table(tbl, name)
if (embeddings !== undefined) {
return new Table(tbl, name, embeddings)
} else {
return new Table(tbl, name)
}
}
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table> {
await tableCreate.call(this._db, name, await fromRecordsToBuffer(data))
return await this.openTable(name)
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
*/
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await tableCreate.call(this._db, name, await fromRecordsToBuffer(data, embeddings))
if (embeddings !== undefined) {
return new Table(tbl, name, embeddings)
} else {
return new Table(tbl, name)
}
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
@@ -75,16 +113,22 @@ export class Connection {
}
}
/**
* A table in a LanceDB database.
*/
export class Table {
export class Table<T = number[]> {
private readonly _tbl: any
private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, name: string) {
constructor (tbl: any, name: string)
/**
* @param tbl
* @param name
* @param embeddings An embedding function to use when interacting with this table
*/
constructor (tbl: any, name: string, embeddings: EmbeddingFunction<T>)
constructor (tbl: any, name: string, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
}
get name (): string {
@@ -92,11 +136,11 @@ export class Table {
}
/**
* Create a search query to find the nearest neighbors of the given query vector.
* @param queryVector The query vector.
*/
search (queryVector: number[]): Query {
return new Query(this._tbl, queryVector)
* Creates a search query to find the nearest neighbors of the given search term
* @param query The query search term
*/
search (query: T): Query<T> {
return new Query(this._tbl, query, this._embeddings)
}
/**
@@ -106,7 +150,7 @@ export class Table {
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data), WriteMode.Append.toString())
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString())
}
/**
@@ -116,9 +160,14 @@ export class Table {
* @return The number of rows added to the table
*/
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data), WriteMode.Overwrite.toString())
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
}
/**
* Create an ANN index on this Table vector index.
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async create_index (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
@@ -177,32 +226,35 @@ export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query {
export class Query<T = number[]> {
private readonly _tbl: any
private readonly _queryVector: number[]
private readonly _query: T
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private readonly _columns?: string[]
private _filter?: string
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, queryVector: number[]) {
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._queryVector = queryVector
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._columns = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query {
limit (value: number): Query<T> {
this._limit = value
return this
}
@@ -211,7 +263,7 @@ export class Query {
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query {
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
@@ -220,7 +272,7 @@ export class Query {
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query {
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
@@ -229,7 +281,7 @@ export class Query {
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query {
filter (value: string): Query<T> {
this._filter = value
return this
}
@@ -238,7 +290,7 @@ export class Query {
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query {
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
@@ -247,6 +299,12 @@ export class Query {
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {

View File

@@ -0,0 +1,50 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai')
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { stub } = require('sinon')
describe('OpenAPIEmbeddings', function () {
const stubValue = {
data: {
data: [
{
embedding: Array(1536).fill(1.0)
},
{
embedding: Array(1536).fill(2.0)
}
]
}
}
describe('#embed', function () {
it('should create vector embeddings', async function () {
const openAIStub = stub(OpenAIApi.prototype, 'createEmbedding').returns(stubValue)
const f = new OpenAIEmbeddingFunction('text', 'sk-key')
const vectors = await f.embed(['abc', 'def'])
assert.isTrue(openAIStub.calledOnce)
assert.equal(vectors.length, 2)
assert.deepEqual(vectors[0], stubValue.data.data[0].embedding)
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
})
})
})

52
node/src/test/io.ts Normal file
View File

@@ -0,0 +1,52 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// IO tests
import { describe } from 'mocha'
import { assert } from 'chai'
import * as lancedb from '../index'
describe('LanceDB S3 client', function () {
if (process.env.TEST_S3_BASE_URL != null) {
const baseUri = process.env.TEST_S3_BASE_URL
it('should have a valid url', async function () {
const uri = `${baseUri}/valid_url`
const table = await createTestDB(uri, 2, 20)
const con = await lancedb.connect(uri)
assert.equal(con.uri, uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5)
})
} else {
describe.skip('Skip S3 test', function () {})
}
})
async function createTestDB (uri: string, numDimensions: number = 2, numRows: number = 2): Promise<lancedb.Table> {
const con = await lancedb.connect(uri)
const data = []
for (let i = 0; i < numRows; i++) {
const vector = []
for (let j = 0; j < numDimensions; j++) {
vector.push(i + (j * 0.1))
}
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
return await con.createTable('vectors', data)
}

View File

@@ -17,7 +17,7 @@ import { assert } from 'chai'
import { track } from 'temp'
import * as lancedb from '../index'
import { MetricType, Query } from '../index'
import { type EmbeddingFunction, MetricType, Query } from '../index'
describe('LanceDB client', function () {
describe('when creating a connection to lancedb', function () {
@@ -140,6 +140,39 @@ describe('LanceDB client', function () {
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
})
describe('when using a custom embedding function', function () {
class TextEmbedding implements EmbeddingFunction<string> {
sourceColumn: string
constructor (targetColumn: string) {
this.sourceColumn = targetColumn
}
_embedding_map = new Map<string, number[]>([
['foo', [2.1, 2.2]],
['bar', [3.1, 3.2]]
])
async embed (data: string[]): Promise<number[][]> {
return data.map(datum => this._embedding_map.get(datum) ?? [0.0, 0.0])
}
}
it('should encode the original data into embeddings', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const embeddings = new TextEmbedding('name')
const data = [
{ price: 10, name: 'foo' },
{ price: 50, name: 'bar' }
]
const table = await con.createTable('vectors', data, embeddings)
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
})
})
describe('Query object', function () {

108
notebooks/diffusiondb/datagen.py Executable file
View File

@@ -0,0 +1,108 @@
#!/usr/bin/env python
#
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset hf://poloclub/diffusiondb
"""
import io
from argparse import ArgumentParser
from multiprocessing import Pool
import lance
import lancedb
import pyarrow as pa
from datasets import load_dataset
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
MODEL_ID = "openai/clip-vit-base-patch32"
device = "cuda"
tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
schema = pa.schema(
[
pa.field("prompt", pa.string()),
pa.field("seed", pa.uint32()),
pa.field("step", pa.uint16()),
pa.field("cfg", pa.float32()),
pa.field("sampler", pa.string()),
pa.field("width", pa.uint16()),
pa.field("height", pa.uint16()),
pa.field("timestamp", pa.timestamp("s")),
pa.field("image_nsfw", pa.float32()),
pa.field("prompt_nsfw", pa.float32()),
pa.field("vector", pa.list_(pa.float32(), 512)),
pa.field("image", pa.binary()),
]
)
def pil_to_bytes(img) -> list[bytes]:
buf = io.BytesIO()
img.save(buf, format="PNG")
return buf.getvalue()
def generate_clip_embeddings(batch) -> pa.RecordBatch:
image = processor(text=None, images=batch["image"], return_tensors="pt")[
"pixel_values"
].to(device)
img_emb = model.get_image_features(image)
batch["vector"] = img_emb.cpu().tolist()
with Pool() as p:
batch["image_bytes"] = p.map(pil_to_bytes, batch["image"])
return batch
def datagen(args):
"""Generate DiffusionDB dataset, and use CLIP model to generate image embeddings."""
dataset = load_dataset("poloclub/diffusiondb", args.subset)
data = []
for b in dataset.map(
generate_clip_embeddings, batched=True, batch_size=256, remove_columns=["image"]
)["train"]:
b["image"] = b["image_bytes"]
del b["image_bytes"]
data.append(b)
tbl = pa.Table.from_pylist(data, schema=schema)
return tbl
def main():
parser = ArgumentParser()
parser.add_argument(
"-o", "--output", metavar="DIR", help="Output lance directory", required=True
)
parser.add_argument(
"-s",
"--subset",
choices=["2m_all", "2m_first_10k", "2m_first_100k"],
default="2m_first_10k",
help="subset of the hg dataset",
)
args = parser.parse_args()
batches = datagen(args)
lance.write_dataset(batches, args.output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,9 @@
datasets
Pillow
lancedb
isort
black
transformers
--index-url https://download.pytorch.org/whl/cu118
torch
torchvision

View File

@@ -0,0 +1,240 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install --quiet -U lancedb\n",
"!pip install --quiet gradio transformers torch torchvision"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"import PIL\n",
"import duckdb\n",
"import lancedb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First run setup: Download data and pre-process"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<lance.dataset.LanceDataset at 0x3045db590>"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# remove null prompts\n",
"import lance\n",
"import pyarrow.compute as pc\n",
"\n",
"# download s3://eto-public/datasets/diffusiondb/small_10k.lance to this uri\n",
"data = lance.dataset(\"~/datasets/rawdata.lance\").to_table()\n",
"\n",
"# First data processing and full-text-search index\n",
"db = lancedb.connect(\"~/datasets/demo\")\n",
"tbl = db.create_table(\"diffusiondb\", data.filter(~pc.field(\"prompt\").is_null()))\n",
"tbl = tbl.create_fts_index([\"prompt\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create / Open LanceDB Table"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"db = lancedb.connect(\"~/datasets/demo\")\n",
"tbl = db.open_table(\"diffusiondb\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create CLIP embedding function for the text"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast\n",
"\n",
"MODEL_ID = \"openai/clip-vit-base-patch32\"\n",
"\n",
"tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)\n",
"model = CLIPModel.from_pretrained(MODEL_ID)\n",
"processor = CLIPProcessor.from_pretrained(MODEL_ID)\n",
"\n",
"def embed_func(query):\n",
" inputs = tokenizer([query], padding=True, return_tensors=\"pt\")\n",
" text_features = model.get_text_features(**inputs)\n",
" return text_features.detach().numpy()[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search functions for Gradio"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"def find_image_vectors(query):\n",
" emb = embed_func(query)\n",
" return _extract(tbl.search(emb).limit(9).to_df())\n",
"\n",
"def find_image_keywords(query):\n",
" return _extract(tbl.search(query).limit(9).to_df())\n",
"\n",
"def find_image_sql(query):\n",
" diffusiondb = tbl.to_lance()\n",
" return _extract(duckdb.query(query).to_df())\n",
"\n",
"def _extract(df):\n",
" image_col = \"image\"\n",
" return [(PIL.Image.open(io.BytesIO(row[image_col])), row[\"prompt\"]) for _, row in df.iterrows()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Gradio interface"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7867\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
"\n",
" with gr.Row():\n",
" with gr.Tab(\"Embeddings\"):\n",
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
" b1 = gr.Button(\"Submit\")\n",
" with gr.Tab(\"Keywords\"):\n",
" keyword_query = gr.Textbox(value=\"ninja turtle\", show_label=False)\n",
" b2 = gr.Button(\"Submit\")\n",
" with gr.Tab(\"SQL\"):\n",
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
" b3 = gr.Button(\"Submit\")\n",
" with gr.Row():\n",
" gallery = gr.Gallery(\n",
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
" \n",
" b1.click(find_image_vectors, inputs=vector_query, outputs=gallery)\n",
" b2.click(find_image_keywords, inputs=keyword_query, outputs=gallery)\n",
" b3.click(find_image_sql, inputs=sql_query, outputs=gallery)\n",
" \n",
"demo.launch()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -16,7 +16,13 @@ import os
from typing import List, Tuple
import pyarrow as pa
import tantivy
try:
import tantivy
except ImportError:
raise ImportError(
"Please install tantivy-py `pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985` to use the full text search feature."
)
from .table import LanceTable

View File

@@ -153,7 +153,7 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
import tantivy
except ImportError:
raise ImportError(
"You need to install the `lancedb[fts]` extra to use this method."
"Please install tantivy-py `pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985` to use the full text search feature."
)
from .fts import search_index

View File

@@ -253,8 +253,7 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
vector_column_name: str
The name of the vector column.
"""
i = data.column_names.index(vector_column_name)
if i < 0:
if vector_column_name not in data.column_names:
raise ValueError(f"Missing vector column: {vector_column_name}")
vec_arr = data[vector_column_name].combine_chunks()
if pa.types.is_fixed_size_list(vec_arr.type):
@@ -266,4 +265,4 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
values = values.cast(pa.float32())
list_size = len(values) / len(data)
vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size)
return data.set_column(i, vector_column_name, vec_arr)
return data.set_column(data.column_names.index(vector_column_name), vector_column_name, vec_arr)

View File

@@ -1,7 +1,7 @@
[project]
name = "lancedb"
version = "0.1.2"
dependencies = ["pylance>=0.4.6", "ratelimiter", "retry", "tqdm"]
version = "0.1.4"
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"]
description = "lancedb"
authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" },
@@ -45,10 +45,6 @@ dev = [
docs = [
"mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"
]
fts = [
# tantivy 0.19.2
"tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985"
]
[build-system]
requires = [

View File

@@ -14,7 +14,6 @@ import sys
import numpy as np
import pyarrow as pa
from lancedb.embeddings import with_embeddings

View File

@@ -13,13 +13,13 @@
import os
import random
import lancedb.fts
import numpy as np
import pandas as pd
import pytest
import tantivy
import lancedb as ldb
import lancedb.fts
@pytest.fixture

View File

@@ -17,7 +17,6 @@ import pandas as pd
import pandas.testing as tm
import pyarrow as pa
import pytest
from lancedb.query import LanceQueryBuilder

View File

@@ -16,7 +16,6 @@ from pathlib import Path
import pandas as pd
import pyarrow as pa
import pytest
from lancedb.table import LanceTable

View File

@@ -15,7 +15,7 @@ arrow-ipc = "37.0"
arrow-schema = "37.0"
once_cell = "1"
futures = "0.3"
lance = "0.4.3"
lance = "0.4.17"
vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }

View File

@@ -39,7 +39,7 @@ pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsP
let add_result = table
.lock()
.unwrap()
.create_idx(&index_params_builder)
.create_index(&index_params_builder)
.await;
deferred.settle_with(&channel, move |mut cx| {

View File

@@ -56,23 +56,46 @@ fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string())))
}
fn database_new(mut cx: FunctionContext) -> JsResult<JsBox<JsDatabase>> {
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
let path = cx.argument::<JsString>(0)?.value(&mut cx);
let db = JsDatabase {
database: Arc::new(Database::connect(path).or_else(|err| cx.throw_error(err.to_string()))?),
};
Ok(cx.boxed(db))
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
rt.spawn(async move {
let database = Database::connect(&path).await;
deferred.settle_with(&channel, move |mut cx| {
let db = JsDatabase {
database: Arc::new(database.or_else(|err| cx.throw_error(err.to_string()))?),
};
Ok(cx.boxed(db))
});
});
Ok(promise)
}
fn database_table_names(mut cx: FunctionContext) -> JsResult<JsArray> {
fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
let db = cx
.this()
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let tables = db
.database
.table_names()
.or_else(|err| cx.throw_error(err.to_string()))?;
convert::vec_str_to_array(&tables, &mut cx)
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let database = db.database.clone();
rt.spawn(async move {
let tables_rst = database.table_names().await;
deferred.settle_with(&channel, move |mut cx| {
let tables = tables_rst.or_else(|err| cx.throw_error(err.to_string()))?;
let table_names = convert::vec_str_to_array(&tables, &mut cx);
table_names
});
});
Ok(promise)
}
fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
@@ -87,7 +110,7 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let (deferred, promise) = cx.promise();
rt.spawn(async move {
let table_rst = database.open_table(table_name).await;
let table_rst = database.open_table(&table_name).await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
@@ -186,7 +209,7 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
rt.block_on(async move {
let batch_reader: Box<dyn RecordBatchReader> = Box::new(RecordBatchBuffer::new(batches));
let table_rst = database.create_table(table_name, batch_reader).await;
let table_rst = database.create_table(&table_name, batch_reader).await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(

View File

@@ -12,7 +12,9 @@ repository = "https://github.com/lancedb/lancedb"
arrow-array = "37.0"
arrow-data = "37.0"
arrow-schema = "37.0"
lance = "0.4.3"
object_store = "0.5.6"
snafu = "0.7.4"
lance = "0.4.17"
tokio = { version = "1.23", features = ["rt-multi-thread"] }
[dev-dependencies]

View File

@@ -12,16 +12,20 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_array::RecordBatchReader;
use std::fs::create_dir_all;
use std::path::{Path, PathBuf};
use std::sync::Arc;
use std::path::Path;
use crate::error::Result;
use arrow_array::RecordBatchReader;
use lance::io::object_store::ObjectStore;
use snafu::prelude::*;
use crate::error::{CreateDirSnafu, Result};
use crate::table::Table;
pub struct Database {
pub(crate) path: Arc<PathBuf>,
object_store: ObjectStore,
pub(crate) uri: String,
}
const LANCE_EXTENSION: &str = "lance";
@@ -37,26 +41,38 @@ impl Database {
/// # Returns
///
/// * A [Database] object.
pub fn connect<P: AsRef<Path>>(path: P) -> Result<Database> {
if !path.as_ref().try_exists()? {
create_dir_all(&path)?;
pub async fn connect(uri: &str) -> Result<Database> {
let object_store = ObjectStore::new(uri).await?;
if object_store.is_local() {
Self::try_create_dir(uri).context(CreateDirSnafu { path: uri })?;
}
Ok(Database {
path: Arc::new(path.as_ref().to_path_buf()),
uri: uri.to_string(),
object_store,
})
}
/// Try to create a local directory to store the lancedb dataset
fn try_create_dir(path: &str) -> core::result::Result<(), std::io::Error> {
let path = Path::new(path);
if !path.try_exists()? {
create_dir_all(&path)?;
}
Ok(())
}
/// Get the names of all tables in the database.
///
/// # Returns
///
/// * A [Vec<String>] with all table names.
pub fn table_names(&self) -> Result<Vec<String>> {
pub async fn table_names(&self) -> Result<Vec<String>> {
let f = self
.path
.read_dir()?
.flatten()
.map(|dir_entry| dir_entry.path())
.object_store
.read_dir("/")
.await?
.iter()
.map(|fname| Path::new(fname))
.filter(|path| {
let is_lance = path
.extension()
@@ -76,10 +92,10 @@ impl Database {
pub async fn create_table(
&self,
name: String,
name: &str,
batches: Box<dyn RecordBatchReader>,
) -> Result<Table> {
Table::create(self.path.clone(), name, batches).await
Table::create(&self.uri, name, batches).await
}
/// Open a table in the database.
@@ -90,8 +106,8 @@ impl Database {
/// # Returns
///
/// * A [Table] object.
pub async fn open_table(&self, name: String) -> Result<Table> {
Table::open(self.path.clone(), name).await
pub async fn open_table(&self, name: &str) -> Result<Table> {
Table::open(&self.uri, name).await
}
}
@@ -105,10 +121,10 @@ mod tests {
#[tokio::test]
async fn test_connect() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let db = Database::connect(&path_buf);
let uri = tmp_dir.path().to_str().unwrap();
let db = Database::connect(uri).await.unwrap();
assert_eq!(db.unwrap().path.as_path(), path_buf.as_path())
assert_eq!(db.uri, uri);
}
#[tokio::test]
@@ -118,10 +134,16 @@ mod tests {
create_dir_all(tmp_dir.path().join("table2.lance")).unwrap();
create_dir_all(tmp_dir.path().join("invalidlance")).unwrap();
let db = Database::connect(&tmp_dir.into_path()).unwrap();
let tables = db.table_names().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let db = Database::connect(uri).await.unwrap();
let tables = db.table_names().await.unwrap();
assert_eq!(tables.len(), 2);
assert!(tables.contains(&String::from("table1")));
assert!(tables.contains(&String::from("table2")));
}
#[tokio::test]
async fn test_connect_s3() {
// let db = Database::connect("s3://bucket/path/to/database").await.unwrap();
}
}

View File

@@ -12,32 +12,50 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#[derive(Debug)]
pub enum Error {
IO(String),
Lance(String),
}
use snafu::Snafu;
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let (catalog, message) = match self {
Self::IO(s) => ("I/O", s.as_str()),
Self::Lance(s) => ("Lance", s.as_str()),
};
write!(f, "LanceDBError({catalog}): {message}")
}
#[derive(Debug, Snafu)]
#[snafu(visibility(pub(crate)))]
pub enum Error {
#[snafu(display("LanceDBError: Invalid table name: {name}"))]
InvalidTableName { name: String },
#[snafu(display("LanceDBError: Table '{name}' was not found"))]
TableNotFound { name: String },
#[snafu(display("LanceDBError: Table '{name}' already exists"))]
TableAlreadyExists { name: String },
#[snafu(display("LanceDBError: Unable to created lance dataset at {path}: {source}"))]
CreateDir {
path: String,
source: std::io::Error,
},
#[snafu(display("LanceDBError: {message}"))]
Store { message: String },
#[snafu(display("LanceDBError: {message}"))]
Lance { message: String },
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<std::io::Error> for Error {
fn from(e: std::io::Error) -> Self {
Self::IO(e.to_string())
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::Lance {
message: e.to_string(),
}
}
}
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::Lance(e.to_string())
impl From<object_store::Error> for Error {
fn from(e: object_store::Error) -> Self {
Self::Store {
message: e.to_string(),
}
}
}
impl From<object_store::path::Error> for Error {
fn from(e: object_store::path::Error) -> Self {
Self::Store {
message: e.to_string(),
}
}
}

View File

@@ -12,28 +12,35 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::path::PathBuf;
use std::path::Path;
use std::sync::Arc;
use arrow_array::{Float32Array, RecordBatchReader};
use lance::dataset::{Dataset, WriteMode, WriteParams};
use lance::index::IndexType;
use snafu::prelude::*;
use crate::error::{Error, Result};
use crate::error::{Error, InvalidTableNameSnafu, Result};
use crate::index::vector::VectorIndexBuilder;
use crate::query::Query;
pub const VECTOR_COLUMN_NAME: &str = "vector";
pub const LANCE_FILE_EXTENSION: &str = "lance";
/// A table in a LanceDB database.
#[derive(Debug)]
pub struct Table {
name: String,
path: String,
uri: String,
dataset: Arc<Dataset>,
}
impl std::fmt::Display for Table {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Table({})", self.name)
}
}
impl Table {
/// Opens an existing Table
///
@@ -45,18 +52,28 @@ impl Table {
/// # Returns
///
/// * A [Table] object.
pub async fn open(base_path: Arc<PathBuf>, name: String) -> Result<Self> {
let ds_path = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let ds_uri = ds_path
pub async fn open(base_uri: &str, name: &str) -> Result<Self> {
let path = Path::new(base_uri);
let table_uri = path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let uri = table_uri
.as_path()
.to_str()
.ok_or(Error::IO(format!("Unable to find table {}", name)))?;
let dataset = Dataset::open(ds_uri).await?;
let table = Table {
name,
path: ds_uri.to_string(),
.context(InvalidTableNameSnafu { name })?;
let dataset = Dataset::open(&uri).await.map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
name: name.to_string(),
},
e => Error::Lance {
message: e.to_string(),
},
})?;
Ok(Table {
name: name.to_string(),
uri: uri.to_string(),
dataset: Arc::new(dataset),
};
Ok(table)
})
}
/// Creates a new Table
@@ -71,25 +88,36 @@ impl Table {
///
/// * A [Table] object.
pub async fn create(
base_path: Arc<PathBuf>,
name: String,
base_uri: &str,
name: &str,
mut batches: Box<dyn RecordBatchReader>,
) -> Result<Self> {
let ds_path = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let path = ds_path
let base_path = Path::new(base_uri);
let table_uri = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let uri = table_uri
.as_path()
.to_str()
.ok_or(Error::IO(format!("Unable to find table {}", name)))?;
let dataset =
Arc::new(Dataset::write(&mut batches, path, Some(WriteParams::default())).await?);
.context(InvalidTableNameSnafu { name })?
.to_string();
let dataset = Dataset::write(&mut batches, &uri, Some(WriteParams::default()))
.await
.map_err(|e| match e {
lance::Error::DatasetAlreadyExists { .. } => Error::TableAlreadyExists {
name: name.to_string(),
},
e => Error::Lance {
message: e.to_string(),
},
})?;
Ok(Table {
name,
path: path.to_string(),
dataset,
name: name.to_string(),
uri,
dataset: Arc::new(dataset),
})
}
pub async fn create_idx(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
/// Create index on the table.
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt;
let dataset = self
@@ -125,8 +153,7 @@ impl Table {
let mut params = WriteParams::default();
params.mode = write_mode.unwrap_or(WriteMode::Append);
self.dataset =
Arc::new(Dataset::write(&mut batches, self.path.as_str(), Some(params)).await?);
self.dataset = Arc::new(Dataset::write(&mut batches, &self.uri, Some(params)).await?);
Ok(batches.count())
}
@@ -151,6 +178,8 @@ impl Table {
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow_array::{
Array, FixedSizeListArray, Float32Array, Int32Array, RecordBatch, RecordBatchReader,
};
@@ -161,53 +190,68 @@ mod tests {
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use rand::Rng;
use std::sync::Arc;
use tempfile::tempdir;
use crate::error::Result;
use super::*;
use crate::index::vector::IvfPQIndexBuilder;
use crate::table::Table;
#[tokio::test]
async fn test_new_table_not_exists() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let table = Table::open(Arc::new(path_buf), "test".to_string()).await;
assert!(table.is_err());
}
#[tokio::test]
async fn test_open() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = tmp_dir.path().to_str().unwrap();
let mut batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
Dataset::write(
&mut batches,
path_buf.join("test.lance").to_str().unwrap(),
None,
)
.await
.unwrap();
let table = Table::open(Arc::new(path_buf), "test".to_string())
Dataset::write(&mut batches, dataset_path.to_str().unwrap(), None)
.await
.unwrap();
let table = Table::open(uri, "test").await.unwrap();
assert_eq!(table.name, "test")
}
#[tokio::test]
async fn test_add() {
async fn test_open_not_found() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let uri = tmp_dir.path().to_str().unwrap();
let table = Table::open(uri, "test").await;
assert!(matches!(table.unwrap_err(), Error::TableNotFound { .. }));
}
#[test]
fn test_object_store_path() {
use std::path::Path as StdPath;
let p = StdPath::new("s3://bucket/path/to/file");
let c = p.join("subfile");
assert_eq!(c.to_str().unwrap(), "s3://bucket/path/to/file/subfile");
}
#[tokio::test]
async fn test_create_already_exists() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let mut table = Table::create(Arc::new(path_buf), "test".to_string(), batches)
.await
.unwrap();
Table::create(&uri, "test", batches).await.unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let result = Table::create(&uri, "test", batches).await;
assert!(matches!(
result.unwrap_err(),
Error::TableAlreadyExists { .. }
));
}
#[tokio::test]
async fn test_add() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let mut table = Table::create(&uri, "test", batches).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches: Box<dyn RecordBatchReader> =
@@ -225,13 +269,11 @@ mod tests {
#[tokio::test]
async fn test_add_overwrite() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let uri = tmp_dir.path().to_str().unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let mut table = Table::create(Arc::new(path_buf), "test".to_string(), batches)
.await
.unwrap();
let mut table = Table::create(uri, "test", batches).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches: Box<dyn RecordBatchReader> =
@@ -252,21 +294,16 @@ mod tests {
#[tokio::test]
async fn test_search() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = tmp_dir.path().to_str().unwrap();
let mut batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
Dataset::write(
&mut batches,
path_buf.join("test.lance").to_str().unwrap(),
None,
)
.await
.unwrap();
let table = Table::open(Arc::new(path_buf), "test".to_string())
Dataset::write(&mut batches, dataset_path.to_str().unwrap(), None)
.await
.unwrap();
let table = Table::open(uri, "test").await.unwrap();
let vector = Float32Array::from_iter_values([0.1, 0.2]);
let query = table.search(vector.clone());
assert_eq!(vector, query.query_vector);
@@ -291,7 +328,7 @@ mod tests {
use arrow_array::Float32Array;
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let uri = tmp_dir.path().to_str().unwrap();
let dimension = 16;
let schema = Arc::new(ArrowSchema::new(vec![Field::new(
@@ -318,9 +355,7 @@ mod tests {
.unwrap()]);
let reader: Box<dyn RecordBatchReader + Send> = Box::new(batches);
let mut table = Table::create(Arc::new(path_buf), "test".to_string(), reader)
.await
.unwrap();
let mut table = Table::create(uri, "test", reader).await.unwrap();
let mut i = IvfPQIndexBuilder::new();
@@ -330,7 +365,7 @@ mod tests {
.ivf_params(IvfBuildParams::new(256))
.pq_params(PQBuildParams::default());
table.create_idx(index_builder).await.unwrap();
table.create_index(index_builder).await.unwrap();
assert_eq!(table.dataset.load_indices().await.unwrap().len(), 1);
assert_eq!(table.count_rows().await.unwrap(), 512);