Compare commits

...

15 Commits

Author SHA1 Message Date
Chang She
fbd0bc7740 bump version for v0.1.5-python 2023-06-02 09:18:26 -07:00
gsilvestrin
f765a453cf Use fsspec to implement table_names with cloud storage support (#117)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-01 16:56:26 -07:00
gsilvestrin
45b3a14f26 Bumping vectordb to v0.1.3 (#124) 2023-06-01 16:36:11 -07:00
Lei Xu
9965b4564d [Python] Support drop table (#123)
Closes #86
2023-06-01 15:58:45 -07:00
gsilvestrin
0719e4b3fb Revert "refactor: pull node binaries into separate packages (#88)" (#122)
This reverts commit e50b642d80.
2023-06-01 13:53:07 -07:00
Jai
091fb9b665 add existence check (#112) 2023-06-01 11:45:26 -07:00
Chang She
03013a4434 Multimodal search demo (#118)
Slow roasted over 12 hours, Pairs well with #111

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-01 10:34:08 -07:00
gsilvestrin
3e14b357e7 add openai embedding function to nodejs client (#107)
- openai is an optional dependency for lancedb
- added an example to show how to use it
2023-06-01 10:25:00 -07:00
Lei Xu
99cbda8b07 Generate diffusiondb embeddings (#111) 2023-06-01 10:23:29 -07:00
Will Jones
e50b642d80 refactor: pull node binaries into separate packages (#88)
Changes:

* Refactors the Node module to load the shared library from a separate
package. When a user does `npm install vectordb`, the correct optional
dependency is automatically downloaded by npm.
* Brings Rust and Node versions in alignment at 0.1.2.
* Add scripts and instructions to build Linux and MacOS node artifacts
locally.
* Add instructions for publishing the npm module and crates.
2023-06-01 09:17:19 -07:00
gsilvestrin
6d8cf52e01 Better error granularity for table operations (#113) 2023-06-01 09:04:42 -07:00
Akash
53f3882d6e Fixed documentation link for the Youtube Transcripts Jupyter Notebook (#105)
Changed the link to the Youtube Transcripts jupyter notebook path on the
documentation.

Previously it went inside docs/notebooks (which does not exist). I've
modified it to go inside the notebooks folder instead.
2023-06-01 09:00:40 -07:00
Chang She
2b26775ed1 python v0.1.4 2023-05-31 20:11:25 -07:00
Lei Xu
306ada5cb8 Support S3 and GCS from typescript SDK (#106) 2023-05-30 21:32:17 -07:00
gsilvestrin
d3aa8bfbc5 add embedding functions to the nodejs client (#95) 2023-05-26 18:09:20 -07:00
31 changed files with 1580 additions and 193 deletions

8
Cargo.lock generated
View File

@@ -1052,6 +1052,7 @@ dependencies = [
"paste",
"petgraph",
"rand",
"regex",
"uuid",
]
@@ -1645,9 +1646,9 @@ dependencies = [
[[package]]
name = "lance"
version = "0.4.12"
version = "0.4.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fc96cf89139af6f439a0e28ccd04ddf81be795b79fda3105b7a8952fadeb778e"
checksum = "86dda8185bd1ffae7b910c1f68035af23be9b717c52e9cc4de176cd30b47f772"
dependencies = [
"accelerate-src",
"arrow",
@@ -1684,6 +1685,7 @@ dependencies = [
"rand",
"reqwest",
"shellexpand",
"snafu",
"sqlparser-lance",
"tokio",
"url",
@@ -3362,7 +3364,9 @@ dependencies = [
"arrow-data",
"arrow-schema",
"lance",
"object_store",
"rand",
"snafu",
"tempfile",
"tokio",
]

View File

@@ -38,7 +38,7 @@ result = table.search([100, 100]).limit(2).to_df()
## Complete Demos
We will be adding completed demo apps built using LanceDB.
- [YouTube Transcript Search](../notebooks/youtube_transcript_search.ipynb)
- [YouTube Transcript Search](../../notebooks/youtube_transcript_search.ipynb)
## Documentation Quick Links

View File

@@ -0,0 +1,41 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
async function example () {
const lancedb = require('vectordb')
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
const apiKey = process.env.OPENAI_API_KEY
// The embedding function will create embeddings for the 'text' column(text in this case)
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
const db = await lancedb.connect('data/sample-lancedb')
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, embedding)
console.log(await db.tableNames())
const results = await table
.search('keeps me warm')
.limit(1)
.execute()
console.log(results[0].text)
}
example().then(_ => { console.log('All done!') })

View File

@@ -0,0 +1,15 @@
{
"name": "vectordb-example-js-openai",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "file:../..",
"openai": "^3.2.1"
}
}

View File

@@ -9,6 +9,6 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "^0.1.0"
"vectordb": "file:../.."
}
}

View File

@@ -17,6 +17,6 @@
"typescript": "*"
},
"dependencies": {
"vectordb": "^0.1.0"
"vectordb": "file:../.."
}
}

470
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.1.1",
"version": "0.1.3",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.1.1",
"version": "0.1.3",
"license": "Apache-2.0",
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
@@ -16,6 +16,7 @@
"@types/chai": "^4.3.4",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
@@ -26,6 +27,8 @@
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^3.2.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
@@ -232,6 +235,50 @@
"node": ">= 8"
}
},
"node_modules/@sinonjs/commons": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-3.0.0.tgz",
"integrity": "sha512-jXBtWAF4vmdNmZgD5FoKsVLv3rPgDnLgPbU84LIJ3otV44vJlDRokVng5v8NFJdCf/da9legHcKaRuZs4L7faA==",
"dev": true,
"dependencies": {
"type-detect": "4.0.8"
}
},
"node_modules/@sinonjs/fake-timers": {
"version": "10.2.0",
"resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-10.2.0.tgz",
"integrity": "sha512-OPwQlEdg40HAj5KNF8WW6q2KG4Z+cBCZb3m4ninfTZKaBmbIJodviQsDBoYMPHkOyJJMHnOJo5j2+LKDOhOACg==",
"dev": true,
"dependencies": {
"@sinonjs/commons": "^3.0.0"
}
},
"node_modules/@sinonjs/samsam": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/samsam/-/samsam-8.0.0.tgz",
"integrity": "sha512-Bp8KUVlLp8ibJZrnvq2foVhP0IVX2CIprMJPK0vqGqgrDa0OHVKeZyBykqskkrdxV6yKBPmGasO8LVjAKR3Gew==",
"dev": true,
"dependencies": {
"@sinonjs/commons": "^2.0.0",
"lodash.get": "^4.4.2",
"type-detect": "^4.0.8"
}
},
"node_modules/@sinonjs/samsam/node_modules/@sinonjs/commons": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-2.0.0.tgz",
"integrity": "sha512-uLa0j859mMrg2slwQYdO/AkrOfmH+X6LTVmNTS9CqexuE2IvVORIkSpJLqePAbEnKJ77aMmCwr1NUZ57120Xcg==",
"dev": true,
"dependencies": {
"type-detect": "4.0.8"
}
},
"node_modules/@sinonjs/text-encoding": {
"version": "0.7.2",
"resolved": "https://registry.npmjs.org/@sinonjs/text-encoding/-/text-encoding-0.7.2.tgz",
"integrity": "sha512-sXXKG+uL9IrKqViTtao2Ws6dy0znu9sOaP1di/jKGW1M6VssO8vlpXCQcpZ+jisQ1tTFAC5Jo/EOzFbggBagFQ==",
"dev": true
},
"node_modules/@tsconfig/node10": {
"version": "1.0.9",
"resolved": "https://registry.npmjs.org/@tsconfig/node10/-/node10-1.0.9.tgz",
@@ -307,6 +354,21 @@
"integrity": "sha512-21cFJr9z3g5dW8B0CVI9g2O9beqaThGQ6ZFBqHfwhzLDKUxaqTIy3vnfah/UPkfOiF2pLq+tGz+W8RyCskuslw==",
"dev": true
},
"node_modules/@types/sinon": {
"version": "10.0.15",
"resolved": "https://registry.npmjs.org/@types/sinon/-/sinon-10.0.15.tgz",
"integrity": "sha512-3lrFNQG0Kr2LDzvjyjB6AMJk4ge+8iYhQfdnSwIwlG88FUOV43kPcQqDZkDa/h3WSZy6i8Fr0BSjfQtB1B3xuQ==",
"dev": true,
"dependencies": {
"@types/sinonjs__fake-timers": "*"
}
},
"node_modules/@types/sinonjs__fake-timers": {
"version": "8.1.2",
"resolved": "https://registry.npmjs.org/@types/sinonjs__fake-timers/-/sinonjs__fake-timers-8.1.2.tgz",
"integrity": "sha512-9GcLXF0/v3t80caGs5p2rRfkB+a8VBGLJZVih6CNFkx8IZ994wiKKLSRs9nuFwk1HevWs/1mnUmkApGrSGsShA==",
"dev": true
},
"node_modules/@types/strip-bom": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/@types/strip-bom/-/strip-bom-3.0.0.tgz",
@@ -744,6 +806,12 @@
"node": "*"
}
},
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"node_modules/available-typed-arrays": {
"version": "1.0.5",
"resolved": "https://registry.npmjs.org/available-typed-arrays/-/available-typed-arrays-1.0.5.tgz",
@@ -756,6 +824,15 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.14.8"
}
},
"node_modules/balanced-match": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz",
@@ -968,6 +1045,18 @@
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"dev": true
},
"node_modules/combined-stream": {
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"dependencies": {
"delayed-stream": "~1.0.0"
},
"engines": {
"node": ">= 0.8"
}
},
"node_modules/command-line-args": {
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/command-line-args/-/command-line-args-5.2.1.tgz",
@@ -1179,6 +1268,15 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true,
"engines": {
"node": ">=0.4.0"
}
},
"node_modules/diff": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/diff/-/diff-4.0.2.tgz",
@@ -1942,6 +2040,26 @@
"integrity": "sha512-5nqDSxl8nn5BSNxyR3n4I6eDmbolI6WT+QqR547RwxQapgjQBmtktdP+HTBb/a/zLsbzERTONyUB5pefh5TtjQ==",
"dev": true
},
"node_modules/follow-redirects": {
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true,
"funding": [
{
"type": "individual",
"url": "https://github.com/sponsors/RubenVerborgh"
}
],
"engines": {
"node": ">=4.0"
},
"peerDependenciesMeta": {
"debug": {
"optional": true
}
}
},
"node_modules/for-each": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/for-each/-/for-each-0.3.3.tgz",
@@ -1951,6 +2069,20 @@
"is-callable": "^1.1.3"
}
},
"node_modules/form-data": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
"mime-types": "^2.1.12"
},
"engines": {
"node": ">= 6"
}
},
"node_modules/fs.realpath": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz",
@@ -2584,6 +2716,12 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/isarray": {
"version": "0.0.1",
"resolved": "https://registry.npmjs.org/isarray/-/isarray-0.0.1.tgz",
"integrity": "sha512-D2S+3GLxWH+uhrNEcoh/fnmYeP8E8/zHl644d/jdA0g2uyXvy3sb0qxotE+ne0LtccHknQzWwZEzhak7oJ0COQ==",
"dev": true
},
"node_modules/isexe": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz",
@@ -2644,6 +2782,12 @@
"json5": "lib/cli.js"
}
},
"node_modules/just-extend": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
"integrity": "sha512-g3UB796vUFIY90VIv/WX3L2c8CS2MdWUww3CNrYmqza1Fg0DURc2K/O4YrnklBdQarSJ/y8JnJYDGc+1iumQjg==",
"dev": true
},
"node_modules/levn": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/levn/-/levn-0.4.1.tgz",
@@ -2677,6 +2821,12 @@
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
"integrity": "sha512-TwuEnCnxbc3rAvhf/LbG7tJUDzhqXyFnv3dtzLOPgCG/hODL7WFnsbwktkD7yUV0RrreP/l1PALq/YSg6VvjlA=="
},
"node_modules/lodash.get": {
"version": "4.4.2",
"resolved": "https://registry.npmjs.org/lodash.get/-/lodash.get-4.4.2.tgz",
"integrity": "sha512-z+Uw/vLuy6gQe8cfaFWD7p0wVv8fJl3mbzXh33RS+0oW2wvUqiRXiQ69gLWSLpgB5/6sU+r6BlQR0MBILadqTQ==",
"dev": true
},
"node_modules/lodash.merge": {
"version": "4.6.2",
"resolved": "https://registry.npmjs.org/lodash.merge/-/lodash.merge-4.6.2.tgz",
@@ -2748,6 +2898,27 @@
"node": ">=8.6"
}
},
"node_modules/mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true,
"engines": {
"node": ">= 0.6"
}
},
"node_modules/mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"dependencies": {
"mime-db": "1.52.0"
},
"engines": {
"node": ">= 0.6"
}
},
"node_modules/minimatch": {
"version": "3.1.2",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
@@ -2925,6 +3096,28 @@
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
"dev": true
},
"node_modules/nise": {
"version": "5.1.4",
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
"integrity": "sha512-8+Ib8rRJ4L0o3kfmyVCL7gzrohyDe0cMFTBa2d364yIrEGMEoetznKJx899YxjybU6bL9SQkYPSBBs1gyYs8Xg==",
"dev": true,
"dependencies": {
"@sinonjs/commons": "^2.0.0",
"@sinonjs/fake-timers": "^10.0.2",
"@sinonjs/text-encoding": "^0.7.1",
"just-extend": "^4.0.2",
"path-to-regexp": "^1.7.0"
}
},
"node_modules/nise/node_modules/@sinonjs/commons": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-2.0.0.tgz",
"integrity": "sha512-uLa0j859mMrg2slwQYdO/AkrOfmH+X6LTVmNTS9CqexuE2IvVORIkSpJLqePAbEnKJ77aMmCwr1NUZ57120Xcg==",
"dev": true,
"dependencies": {
"type-detect": "4.0.8"
}
},
"node_modules/normalize-path": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
@@ -2996,6 +3189,16 @@
"wrappy": "1"
}
},
"node_modules/openai": {
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/openai/-/openai-3.2.1.tgz",
"integrity": "sha512-762C9BNlJPbjjlWZi4WYK9iM2tAVAv0uUp1UmI34vb0CN5T2mjB/qM6RYBmNKMh/dN9fC+bxqPwWJZUTWW052A==",
"dev": true,
"dependencies": {
"axios": "^0.26.0",
"form-data": "^4.0.0"
}
},
"node_modules/optionator": {
"version": "0.9.1",
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
@@ -3099,6 +3302,15 @@
"integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==",
"dev": true
},
"node_modules/path-to-regexp": {
"version": "1.8.0",
"resolved": "https://registry.npmjs.org/path-to-regexp/-/path-to-regexp-1.8.0.tgz",
"integrity": "sha512-n43JRhlUKUAlibEJhPeir1ncUID16QnEjNpwzNdO3Lm4ywrBpBZ5oLD0I6br9evr1Y9JTqwRtAh7JLoOzAQdVA==",
"dev": true,
"dependencies": {
"isarray": "0.0.1"
}
},
"node_modules/path-type": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/path-type/-/path-type-4.0.0.tgz",
@@ -3406,6 +3618,45 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/sinon": {
"version": "15.1.0",
"resolved": "https://registry.npmjs.org/sinon/-/sinon-15.1.0.tgz",
"integrity": "sha512-cS5FgpDdE9/zx7no8bxROHymSlPLZzq0ChbbLk1DrxBfc+eTeBK3y8nIL+nu/0QeYydhhbLIr7ecHJpywjQaoQ==",
"dev": true,
"dependencies": {
"@sinonjs/commons": "^3.0.0",
"@sinonjs/fake-timers": "^10.2.0",
"@sinonjs/samsam": "^8.0.0",
"diff": "^5.1.0",
"nise": "^5.1.4",
"supports-color": "^7.2.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/sinon"
}
},
"node_modules/sinon/node_modules/diff": {
"version": "5.1.0",
"resolved": "https://registry.npmjs.org/diff/-/diff-5.1.0.tgz",
"integrity": "sha512-D+mk+qE8VC/PAUrlAU34N+VfXev0ghe5ywmpqrawphmVZc1bEfn56uo9qpyGp1p4xpzOHkSW4ztBd6L7Xx4ACw==",
"dev": true,
"engines": {
"node": ">=0.3.1"
}
},
"node_modules/sinon/node_modules/supports-color": {
"version": "7.2.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true,
"dependencies": {
"has-flag": "^4.0.0"
},
"engines": {
"node": ">=8"
}
},
"node_modules/slash": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz",
@@ -4217,6 +4468,52 @@
"fastq": "^1.6.0"
}
},
"@sinonjs/commons": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-3.0.0.tgz",
"integrity": "sha512-jXBtWAF4vmdNmZgD5FoKsVLv3rPgDnLgPbU84LIJ3otV44vJlDRokVng5v8NFJdCf/da9legHcKaRuZs4L7faA==",
"dev": true,
"requires": {
"type-detect": "4.0.8"
}
},
"@sinonjs/fake-timers": {
"version": "10.2.0",
"resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-10.2.0.tgz",
"integrity": "sha512-OPwQlEdg40HAj5KNF8WW6q2KG4Z+cBCZb3m4ninfTZKaBmbIJodviQsDBoYMPHkOyJJMHnOJo5j2+LKDOhOACg==",
"dev": true,
"requires": {
"@sinonjs/commons": "^3.0.0"
}
},
"@sinonjs/samsam": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/samsam/-/samsam-8.0.0.tgz",
"integrity": "sha512-Bp8KUVlLp8ibJZrnvq2foVhP0IVX2CIprMJPK0vqGqgrDa0OHVKeZyBykqskkrdxV6yKBPmGasO8LVjAKR3Gew==",
"dev": true,
"requires": {
"@sinonjs/commons": "^2.0.0",
"lodash.get": "^4.4.2",
"type-detect": "^4.0.8"
},
"dependencies": {
"@sinonjs/commons": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-2.0.0.tgz",
"integrity": "sha512-uLa0j859mMrg2slwQYdO/AkrOfmH+X6LTVmNTS9CqexuE2IvVORIkSpJLqePAbEnKJ77aMmCwr1NUZ57120Xcg==",
"dev": true,
"requires": {
"type-detect": "4.0.8"
}
}
}
},
"@sinonjs/text-encoding": {
"version": "0.7.2",
"resolved": "https://registry.npmjs.org/@sinonjs/text-encoding/-/text-encoding-0.7.2.tgz",
"integrity": "sha512-sXXKG+uL9IrKqViTtao2Ws6dy0znu9sOaP1di/jKGW1M6VssO8vlpXCQcpZ+jisQ1tTFAC5Jo/EOzFbggBagFQ==",
"dev": true
},
"@tsconfig/node10": {
"version": "1.0.9",
"resolved": "https://registry.npmjs.org/@tsconfig/node10/-/node10-1.0.9.tgz",
@@ -4292,6 +4589,21 @@
"integrity": "sha512-21cFJr9z3g5dW8B0CVI9g2O9beqaThGQ6ZFBqHfwhzLDKUxaqTIy3vnfah/UPkfOiF2pLq+tGz+W8RyCskuslw==",
"dev": true
},
"@types/sinon": {
"version": "10.0.15",
"resolved": "https://registry.npmjs.org/@types/sinon/-/sinon-10.0.15.tgz",
"integrity": "sha512-3lrFNQG0Kr2LDzvjyjB6AMJk4ge+8iYhQfdnSwIwlG88FUOV43kPcQqDZkDa/h3WSZy6i8Fr0BSjfQtB1B3xuQ==",
"dev": true,
"requires": {
"@types/sinonjs__fake-timers": "*"
}
},
"@types/sinonjs__fake-timers": {
"version": "8.1.2",
"resolved": "https://registry.npmjs.org/@types/sinonjs__fake-timers/-/sinonjs__fake-timers-8.1.2.tgz",
"integrity": "sha512-9GcLXF0/v3t80caGs5p2rRfkB+a8VBGLJZVih6CNFkx8IZ994wiKKLSRs9nuFwk1HevWs/1mnUmkApGrSGsShA==",
"dev": true
},
"@types/strip-bom": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/@types/strip-bom/-/strip-bom-3.0.0.tgz",
@@ -4579,12 +4891,27 @@
"integrity": "sha512-jgsaNduz+ndvGyFt3uSuWqvy4lCnIJiovtouQN5JZHOKCS2QuhEdbcQHFhVksz2N2U9hXJo8odG7ETyWlEeuDw==",
"dev": true
},
"asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"dev": true
},
"available-typed-arrays": {
"version": "1.0.5",
"resolved": "https://registry.npmjs.org/available-typed-arrays/-/available-typed-arrays-1.0.5.tgz",
"integrity": "sha512-DMD0KiN46eipeziST1LPP/STfDU0sufISXmjSgvVsoU2tqxctQeASejWcfNtxYKqETM1UxQ8sp2OrSBWpHY6sw==",
"dev": true
},
"axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.14.8"
}
},
"balanced-match": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz",
@@ -4749,6 +5076,15 @@
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"dev": true
},
"combined-stream": {
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"requires": {
"delayed-stream": "~1.0.0"
}
},
"command-line-args": {
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/command-line-args/-/command-line-args-5.2.1.tgz",
@@ -4908,6 +5244,12 @@
"object-keys": "^1.1.1"
}
},
"delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true
},
"diff": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/diff/-/diff-4.0.2.tgz",
@@ -5475,6 +5817,12 @@
"integrity": "sha512-5nqDSxl8nn5BSNxyR3n4I6eDmbolI6WT+QqR547RwxQapgjQBmtktdP+HTBb/a/zLsbzERTONyUB5pefh5TtjQ==",
"dev": true
},
"follow-redirects": {
"version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true
},
"for-each": {
"version": "0.3.3",
"resolved": "https://registry.npmjs.org/for-each/-/for-each-0.3.3.tgz",
@@ -5484,6 +5832,17 @@
"is-callable": "^1.1.3"
}
},
"form-data": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"requires": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
"mime-types": "^2.1.12"
}
},
"fs.realpath": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz",
@@ -5912,6 +6271,12 @@
"call-bind": "^1.0.2"
}
},
"isarray": {
"version": "0.0.1",
"resolved": "https://registry.npmjs.org/isarray/-/isarray-0.0.1.tgz",
"integrity": "sha512-D2S+3GLxWH+uhrNEcoh/fnmYeP8E8/zHl644d/jdA0g2uyXvy3sb0qxotE+ne0LtccHknQzWwZEzhak7oJ0COQ==",
"dev": true
},
"isexe": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz",
@@ -5959,6 +6324,12 @@
"minimist": "^1.2.0"
}
},
"just-extend": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
"integrity": "sha512-g3UB796vUFIY90VIv/WX3L2c8CS2MdWUww3CNrYmqza1Fg0DURc2K/O4YrnklBdQarSJ/y8JnJYDGc+1iumQjg==",
"dev": true
},
"levn": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/levn/-/levn-0.4.1.tgz",
@@ -5983,6 +6354,12 @@
"resolved": "https://registry.npmjs.org/lodash.camelcase/-/lodash.camelcase-4.3.0.tgz",
"integrity": "sha512-TwuEnCnxbc3rAvhf/LbG7tJUDzhqXyFnv3dtzLOPgCG/hODL7WFnsbwktkD7yUV0RrreP/l1PALq/YSg6VvjlA=="
},
"lodash.get": {
"version": "4.4.2",
"resolved": "https://registry.npmjs.org/lodash.get/-/lodash.get-4.4.2.tgz",
"integrity": "sha512-z+Uw/vLuy6gQe8cfaFWD7p0wVv8fJl3mbzXh33RS+0oW2wvUqiRXiQ69gLWSLpgB5/6sU+r6BlQR0MBILadqTQ==",
"dev": true
},
"lodash.merge": {
"version": "4.6.2",
"resolved": "https://registry.npmjs.org/lodash.merge/-/lodash.merge-4.6.2.tgz",
@@ -6039,6 +6416,21 @@
"picomatch": "^2.3.1"
}
},
"mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true
},
"mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"requires": {
"mime-db": "1.52.0"
}
},
"minimatch": {
"version": "3.1.2",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
@@ -6172,6 +6564,30 @@
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
"dev": true
},
"nise": {
"version": "5.1.4",
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
"integrity": "sha512-8+Ib8rRJ4L0o3kfmyVCL7gzrohyDe0cMFTBa2d364yIrEGMEoetznKJx899YxjybU6bL9SQkYPSBBs1gyYs8Xg==",
"dev": true,
"requires": {
"@sinonjs/commons": "^2.0.0",
"@sinonjs/fake-timers": "^10.0.2",
"@sinonjs/text-encoding": "^0.7.1",
"just-extend": "^4.0.2",
"path-to-regexp": "^1.7.0"
},
"dependencies": {
"@sinonjs/commons": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-2.0.0.tgz",
"integrity": "sha512-uLa0j859mMrg2slwQYdO/AkrOfmH+X6LTVmNTS9CqexuE2IvVORIkSpJLqePAbEnKJ77aMmCwr1NUZ57120Xcg==",
"dev": true,
"requires": {
"type-detect": "4.0.8"
}
}
}
},
"normalize-path": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
@@ -6222,6 +6638,16 @@
"wrappy": "1"
}
},
"openai": {
"version": "3.2.1",
"resolved": "https://registry.npmjs.org/openai/-/openai-3.2.1.tgz",
"integrity": "sha512-762C9BNlJPbjjlWZi4WYK9iM2tAVAv0uUp1UmI34vb0CN5T2mjB/qM6RYBmNKMh/dN9fC+bxqPwWJZUTWW052A==",
"dev": true,
"requires": {
"axios": "^0.26.0",
"form-data": "^4.0.0"
}
},
"optionator": {
"version": "0.9.1",
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
@@ -6295,6 +6721,15 @@
"integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==",
"dev": true
},
"path-to-regexp": {
"version": "1.8.0",
"resolved": "https://registry.npmjs.org/path-to-regexp/-/path-to-regexp-1.8.0.tgz",
"integrity": "sha512-n43JRhlUKUAlibEJhPeir1ncUID16QnEjNpwzNdO3Lm4ywrBpBZ5oLD0I6br9evr1Y9JTqwRtAh7JLoOzAQdVA==",
"dev": true,
"requires": {
"isarray": "0.0.1"
}
},
"path-type": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/path-type/-/path-type-4.0.0.tgz",
@@ -6484,6 +6919,37 @@
"object-inspect": "^1.9.0"
}
},
"sinon": {
"version": "15.1.0",
"resolved": "https://registry.npmjs.org/sinon/-/sinon-15.1.0.tgz",
"integrity": "sha512-cS5FgpDdE9/zx7no8bxROHymSlPLZzq0ChbbLk1DrxBfc+eTeBK3y8nIL+nu/0QeYydhhbLIr7ecHJpywjQaoQ==",
"dev": true,
"requires": {
"@sinonjs/commons": "^3.0.0",
"@sinonjs/fake-timers": "^10.2.0",
"@sinonjs/samsam": "^8.0.0",
"diff": "^5.1.0",
"nise": "^5.1.4",
"supports-color": "^7.2.0"
},
"dependencies": {
"diff": {
"version": "5.1.0",
"resolved": "https://registry.npmjs.org/diff/-/diff-5.1.0.tgz",
"integrity": "sha512-D+mk+qE8VC/PAUrlAU34N+VfXev0ghe5ywmpqrawphmVZc1bEfn56uo9qpyGp1p4xpzOHkSW4ztBd6L7Xx4ACw==",
"dev": true
},
"supports-color": {
"version": "7.2.0",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true,
"requires": {
"has-flag": "^4.0.0"
}
}
}
},
"slash": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.1.1",
"version": "0.1.3",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -27,6 +27,7 @@
"@types/chai": "^4.3.4",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
@@ -37,6 +38,8 @@
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"sinon": "^15.1.0",
"openai": "^3.2.1",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",

View File

@@ -15,15 +15,16 @@
import {
Field,
Float32,
List,
List, type ListBuilder,
makeBuilder,
RecordBatchFileWriter,
Table, Utf8,
type Vector,
vectorFromArray
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
export function convertToTable (data: Array<Record<string, unknown>>): Table {
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
@@ -33,11 +34,7 @@ export function convertToTable (data: Array<Record<string, unknown>>): Table {
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
const listBuilder = makeBuilder({
type: list
})
const listBuilder = newVectorListBuilder()
const vectorSize = (data[0].vector as any[]).length
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
@@ -52,6 +49,14 @@ export function convertToTable (data: Array<Record<string, unknown>>): Table {
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
const listBuilder = newVectorListBuilder()
vectors.map(v => listBuilder.append(v))
records.vector = listBuilder.finish().toVector()
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
@@ -64,8 +69,17 @@ export function convertToTable (data: Array<Record<string, unknown>>): Table {
return new Table(records)
}
export async function fromRecordsToBuffer (data: Array<Record<string, unknown>>): Promise<Buffer> {
const table = convertToTable(data)
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorListBuilder (): ListBuilder<Float32, any> {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
return makeBuilder({
type: list
})
}
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}

View File

@@ -0,0 +1,28 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]>
}

View File

@@ -0,0 +1,51 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { type EmbeddingFunction } from '../index'
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
private readonly _openai: any
private readonly _modelName: string
constructor (sourceColumn: string, openAIKey: string, modelName: string = 'text-embedding-ada-002') {
let openai
try {
// eslint-disable-next-line @typescript-eslint/no-var-requires
openai = require('openai')
} catch {
throw new Error('please install openai using npm install openai')
}
this.sourceColumn = sourceColumn
const configuration = new openai.Configuration({
apiKey: openAIKey
})
this._openai = new openai.OpenAIApi(configuration)
this._modelName = modelName
}
async embed (data: string[]): Promise<number[][]> {
const response = await this._openai.createEmbedding({
model: this._modelName,
input: data
})
const embeddings: number[][] = []
for (let i = 0; i < response.data.data.length; i++) {
embeddings.push(response.data.data[i].embedding as number[])
}
return embeddings
}
sourceColumn: string
}

View File

@@ -19,16 +19,21 @@ import {
Vector
} from 'apache-arrow'
import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js')
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
/**
* Connect to a LanceDB instance at the given URI
* @param uri The uri of the database.
*/
export async function connect (uri: string): Promise<Connection> {
return new Connection(uri)
const db = await databaseNew(uri)
return new Connection(db, uri)
}
/**
@@ -38,9 +43,9 @@ export class Connection {
private readonly _uri: string
private readonly _db: any
constructor (uri: string) {
constructor (db: any, uri: string) {
this._uri = uri
this._db = databaseNew(uri)
this._db = db
}
get uri (): string {
@@ -55,17 +60,50 @@ export class Connection {
}
/**
* Open a table in the database.
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table> {
* Open a table in the database.
*
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this Table
*/
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name)
return new Table(tbl, name)
if (embeddings !== undefined) {
return new Table(tbl, name, embeddings)
} else {
return new Table(tbl, name)
}
}
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table> {
await tableCreate.call(this._db, name, await fromRecordsToBuffer(data))
return await this.openTable(name)
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
*/
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await tableCreate.call(this._db, name, await fromRecordsToBuffer(data, embeddings))
if (embeddings !== undefined) {
return new Table(tbl, name, embeddings)
} else {
return new Table(tbl, name)
}
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
@@ -75,16 +113,22 @@ export class Connection {
}
}
/**
* A table in a LanceDB database.
*/
export class Table {
export class Table<T = number[]> {
private readonly _tbl: any
private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, name: string) {
constructor (tbl: any, name: string)
/**
* @param tbl
* @param name
* @param embeddings An embedding function to use when interacting with this table
*/
constructor (tbl: any, name: string, embeddings: EmbeddingFunction<T>)
constructor (tbl: any, name: string, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
}
get name (): string {
@@ -92,11 +136,11 @@ export class Table {
}
/**
* Create a search query to find the nearest neighbors of the given query vector.
* @param queryVector The query vector.
*/
search (queryVector: number[]): Query {
return new Query(this._tbl, queryVector)
* Creates a search query to find the nearest neighbors of the given search term
* @param query The query search term
*/
search (query: T): Query<T> {
return new Query(this._tbl, query, this._embeddings)
}
/**
@@ -106,7 +150,7 @@ export class Table {
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data), WriteMode.Append.toString())
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString())
}
/**
@@ -116,9 +160,14 @@ export class Table {
* @return The number of rows added to the table
*/
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data), WriteMode.Overwrite.toString())
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
}
/**
* Create an ANN index on this Table vector index.
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async create_index (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
@@ -177,32 +226,35 @@ export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query {
export class Query<T = number[]> {
private readonly _tbl: any
private readonly _queryVector: number[]
private readonly _query: T
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private readonly _columns?: string[]
private _filter?: string
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, queryVector: number[]) {
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._queryVector = queryVector
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._columns = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query {
limit (value: number): Query<T> {
this._limit = value
return this
}
@@ -211,7 +263,7 @@ export class Query {
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query {
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
@@ -220,7 +272,7 @@ export class Query {
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query {
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
@@ -229,7 +281,7 @@ export class Query {
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query {
filter (value: string): Query<T> {
this._filter = value
return this
}
@@ -238,7 +290,7 @@ export class Query {
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query {
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
@@ -247,6 +299,12 @@ export class Query {
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {

View File

@@ -0,0 +1,50 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai')
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { stub } = require('sinon')
describe('OpenAPIEmbeddings', function () {
const stubValue = {
data: {
data: [
{
embedding: Array(1536).fill(1.0)
},
{
embedding: Array(1536).fill(2.0)
}
]
}
}
describe('#embed', function () {
it('should create vector embeddings', async function () {
const openAIStub = stub(OpenAIApi.prototype, 'createEmbedding').returns(stubValue)
const f = new OpenAIEmbeddingFunction('text', 'sk-key')
const vectors = await f.embed(['abc', 'def'])
assert.isTrue(openAIStub.calledOnce)
assert.equal(vectors.length, 2)
assert.deepEqual(vectors[0], stubValue.data.data[0].embedding)
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
})
})
})

52
node/src/test/io.ts Normal file
View File

@@ -0,0 +1,52 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// IO tests
import { describe } from 'mocha'
import { assert } from 'chai'
import * as lancedb from '../index'
describe('LanceDB S3 client', function () {
if (process.env.TEST_S3_BASE_URL != null) {
const baseUri = process.env.TEST_S3_BASE_URL
it('should have a valid url', async function () {
const uri = `${baseUri}/valid_url`
const table = await createTestDB(uri, 2, 20)
const con = await lancedb.connect(uri)
assert.equal(con.uri, uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5)
})
} else {
describe.skip('Skip S3 test', function () {})
}
})
async function createTestDB (uri: string, numDimensions: number = 2, numRows: number = 2): Promise<lancedb.Table> {
const con = await lancedb.connect(uri)
const data = []
for (let i = 0; i < numRows; i++) {
const vector = []
for (let j = 0; j < numDimensions; j++) {
vector.push(i + (j * 0.1))
}
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
return await con.createTable('vectors', data)
}

View File

@@ -17,7 +17,7 @@ import { assert } from 'chai'
import { track } from 'temp'
import * as lancedb from '../index'
import { MetricType, Query } from '../index'
import { type EmbeddingFunction, MetricType, Query } from '../index'
describe('LanceDB client', function () {
describe('when creating a connection to lancedb', function () {
@@ -140,6 +140,39 @@ describe('LanceDB client', function () {
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
})
describe('when using a custom embedding function', function () {
class TextEmbedding implements EmbeddingFunction<string> {
sourceColumn: string
constructor (targetColumn: string) {
this.sourceColumn = targetColumn
}
_embedding_map = new Map<string, number[]>([
['foo', [2.1, 2.2]],
['bar', [3.1, 3.2]]
])
async embed (data: string[]): Promise<number[][]> {
return data.map(datum => this._embedding_map.get(datum) ?? [0.0, 0.0])
}
}
it('should encode the original data into embeddings', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const embeddings = new TextEmbedding('name')
const data = [
{ price: 10, name: 'foo' },
{ price: 50, name: 'bar' }
]
const table = await con.createTable('vectors', data, embeddings)
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
})
})
describe('Query object', function () {

108
notebooks/diffusiondb/datagen.py Executable file
View File

@@ -0,0 +1,108 @@
#!/usr/bin/env python
#
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset hf://poloclub/diffusiondb
"""
import io
from argparse import ArgumentParser
from multiprocessing import Pool
import lance
import lancedb
import pyarrow as pa
from datasets import load_dataset
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
MODEL_ID = "openai/clip-vit-base-patch32"
device = "cuda"
tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
schema = pa.schema(
[
pa.field("prompt", pa.string()),
pa.field("seed", pa.uint32()),
pa.field("step", pa.uint16()),
pa.field("cfg", pa.float32()),
pa.field("sampler", pa.string()),
pa.field("width", pa.uint16()),
pa.field("height", pa.uint16()),
pa.field("timestamp", pa.timestamp("s")),
pa.field("image_nsfw", pa.float32()),
pa.field("prompt_nsfw", pa.float32()),
pa.field("vector", pa.list_(pa.float32(), 512)),
pa.field("image", pa.binary()),
]
)
def pil_to_bytes(img) -> list[bytes]:
buf = io.BytesIO()
img.save(buf, format="PNG")
return buf.getvalue()
def generate_clip_embeddings(batch) -> pa.RecordBatch:
image = processor(text=None, images=batch["image"], return_tensors="pt")[
"pixel_values"
].to(device)
img_emb = model.get_image_features(image)
batch["vector"] = img_emb.cpu().tolist()
with Pool() as p:
batch["image_bytes"] = p.map(pil_to_bytes, batch["image"])
return batch
def datagen(args):
"""Generate DiffusionDB dataset, and use CLIP model to generate image embeddings."""
dataset = load_dataset("poloclub/diffusiondb", args.subset)
data = []
for b in dataset.map(
generate_clip_embeddings, batched=True, batch_size=256, remove_columns=["image"]
)["train"]:
b["image"] = b["image_bytes"]
del b["image_bytes"]
data.append(b)
tbl = pa.Table.from_pylist(data, schema=schema)
return tbl
def main():
parser = ArgumentParser()
parser.add_argument(
"-o", "--output", metavar="DIR", help="Output lance directory", required=True
)
parser.add_argument(
"-s",
"--subset",
choices=["2m_all", "2m_first_10k", "2m_first_100k"],
default="2m_first_10k",
help="subset of the hg dataset",
)
args = parser.parse_args()
batches = datagen(args)
lance.write_dataset(batches, args.output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,9 @@
datasets
Pillow
lancedb
isort
black
transformers
--index-url https://download.pytorch.org/whl/cu118
torch
torchvision

View File

@@ -0,0 +1,240 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install --quiet -U lancedb\n",
"!pip install --quiet gradio transformers torch torchvision"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"import PIL\n",
"import duckdb\n",
"import lancedb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First run setup: Download data and pre-process"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<lance.dataset.LanceDataset at 0x3045db590>"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# remove null prompts\n",
"import lance\n",
"import pyarrow.compute as pc\n",
"\n",
"# download s3://eto-public/datasets/diffusiondb/small_10k.lance to this uri\n",
"data = lance.dataset(\"~/datasets/rawdata.lance\").to_table()\n",
"\n",
"# First data processing and full-text-search index\n",
"db = lancedb.connect(\"~/datasets/demo\")\n",
"tbl = db.create_table(\"diffusiondb\", data.filter(~pc.field(\"prompt\").is_null()))\n",
"tbl = tbl.create_fts_index([\"prompt\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create / Open LanceDB Table"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"db = lancedb.connect(\"~/datasets/demo\")\n",
"tbl = db.open_table(\"diffusiondb\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create CLIP embedding function for the text"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast\n",
"\n",
"MODEL_ID = \"openai/clip-vit-base-patch32\"\n",
"\n",
"tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)\n",
"model = CLIPModel.from_pretrained(MODEL_ID)\n",
"processor = CLIPProcessor.from_pretrained(MODEL_ID)\n",
"\n",
"def embed_func(query):\n",
" inputs = tokenizer([query], padding=True, return_tensors=\"pt\")\n",
" text_features = model.get_text_features(**inputs)\n",
" return text_features.detach().numpy()[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search functions for Gradio"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"def find_image_vectors(query):\n",
" emb = embed_func(query)\n",
" return _extract(tbl.search(emb).limit(9).to_df())\n",
"\n",
"def find_image_keywords(query):\n",
" return _extract(tbl.search(query).limit(9).to_df())\n",
"\n",
"def find_image_sql(query):\n",
" diffusiondb = tbl.to_lance()\n",
" return _extract(duckdb.query(query).to_df())\n",
"\n",
"def _extract(df):\n",
" image_col = \"image\"\n",
" return [(PIL.Image.open(io.BytesIO(row[image_col])), row[\"prompt\"]) for _, row in df.iterrows()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Gradio interface"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7867\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
"\n",
" with gr.Row():\n",
" with gr.Tab(\"Embeddings\"):\n",
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
" b1 = gr.Button(\"Submit\")\n",
" with gr.Tab(\"Keywords\"):\n",
" keyword_query = gr.Textbox(value=\"ninja turtle\", show_label=False)\n",
" b2 = gr.Button(\"Submit\")\n",
" with gr.Tab(\"SQL\"):\n",
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
" b3 = gr.Button(\"Submit\")\n",
" with gr.Row():\n",
" gallery = gr.Gallery(\n",
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
" \n",
" b1.click(find_image_vectors, inputs=vector_query, outputs=gallery)\n",
" b2.click(find_image_keywords, inputs=keyword_query, outputs=gallery)\n",
" b3.click(find_image_sql, inputs=sql_query, outputs=gallery)\n",
" \n",
"demo.launch()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -13,13 +13,16 @@
from __future__ import annotations
import os
from pathlib import Path
import os
import pyarrow as pa
from pyarrow import fs
from .common import DATA, URI
from .table import LanceTable
from .util import get_uri_scheme
from .util import get_uri_scheme, get_uri_location
class LanceDBConnection:
@@ -47,11 +50,20 @@ class LanceDBConnection:
-------
A list of table names.
"""
if get_uri_scheme(self.uri) == "file":
return [p.stem for p in Path(self.uri).glob("*.lance")]
raise NotImplementedError(
"List table_names is only supported for local filesystem for now"
)
try:
filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid:
raise NotImplementedError(
"Unsupported scheme: " + self.uri
)
try:
paths = filesystem.get_file_info(fs.FileSelector(get_uri_location(self.uri)))
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
tables = [os.path.splitext(file_info.base_name)[0] for file_info in paths if file_info.extension == 'lance']
return tables
def __len__(self) -> int:
return len(self.table_names())
@@ -112,3 +124,15 @@ class LanceDBConnection:
A LanceTable object representing the table.
"""
return LanceTable(self, name)
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)

View File

@@ -253,8 +253,7 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
vector_column_name: str
The name of the vector column.
"""
i = data.column_names.index(vector_column_name)
if i < 0:
if vector_column_name not in data.column_names:
raise ValueError(f"Missing vector column: {vector_column_name}")
vec_arr = data[vector_column_name].combine_chunks()
if pa.types.is_fixed_size_list(vec_arr.type):
@@ -266,4 +265,4 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
values = values.cast(pa.float32())
list_size = len(values) / len(data)
vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size)
return data.set_column(i, vector_column_name, vec_arr)
return data.set_column(data.column_names.index(vector_column_name), vector_column_name, vec_arr)

View File

@@ -41,3 +41,23 @@ def get_uri_scheme(uri: str) -> str:
# So we add special handling here for schemes that are a single character
scheme = "file"
return scheme
def get_uri_location(uri: str) -> str:
"""
Get the location of a URI. If the parameter is not a url, assumes it is just a path
Parameters
----------
uri : str
The URI to parse.
Returns
-------
str: Location part of the URL, without scheme
"""
parsed = urlparse(uri)
if not parsed.netloc:
return parsed.path
else:
return parsed.netloc + parsed.path

View File

@@ -1,7 +1,7 @@
[project]
name = "lancedb"
version = "0.1.3"
dependencies = ["pylance>=0.4.15", "ratelimiter", "retry", "tqdm"]
version = "0.1.5"
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"]
description = "lancedb"
authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" },

View File

@@ -97,3 +97,26 @@ def test_create_mode(tmp_path):
)
tbl = db.create_table("test", data=new_data, mode="overwrite")
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
def test_delete_table(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
db.create_table("test", data=data)
with pytest.raises(Exception):
db.create_table("test", data=data)
assert db.table_names() == ["test"]
db.drop_table("test")
assert db.table_names() == []
db.create_table("test", data=data)
assert db.table_names() == ["test"]

49
python/tests/test_io.py Normal file
View File

@@ -0,0 +1,49 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
import lancedb
# You need to setup AWS credentials an a base path to run this test. Example
# AWS_PROFILE=default TEST_S3_BASE_URL=s3://my_bucket/dataset pytest tests/test_io.py
@pytest.mark.skipif(
(os.environ.get("TEST_S3_BASE_URL") is None),
reason="please setup s3 base url",
)
def test_s3_io():
db = lancedb.connect(os.environ.get("TEST_S3_BASE_URL"))
assert db.table_names() == []
table = db.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
)
rs = table.search([100, 100]).limit(1).to_df()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
assert len(rs) == 1
assert rs["item"].iloc[0] == "foo"
assert db.table_names() == ["test"]
assert "test" in db
assert len(db) == 1
assert db.open_table("test").name == db["test"].name

View File

@@ -15,7 +15,7 @@ arrow-ipc = "37.0"
arrow-schema = "37.0"
once_cell = "1"
futures = "0.3"
lance = "0.4.3"
lance = "0.4.17"
vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }

View File

@@ -39,7 +39,7 @@ pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsP
let add_result = table
.lock()
.unwrap()
.create_idx(&index_params_builder)
.create_index(&index_params_builder)
.await;
deferred.settle_with(&channel, move |mut cx| {

View File

@@ -56,23 +56,46 @@ fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string())))
}
fn database_new(mut cx: FunctionContext) -> JsResult<JsBox<JsDatabase>> {
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
let path = cx.argument::<JsString>(0)?.value(&mut cx);
let db = JsDatabase {
database: Arc::new(Database::connect(path).or_else(|err| cx.throw_error(err.to_string()))?),
};
Ok(cx.boxed(db))
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
rt.spawn(async move {
let database = Database::connect(&path).await;
deferred.settle_with(&channel, move |mut cx| {
let db = JsDatabase {
database: Arc::new(database.or_else(|err| cx.throw_error(err.to_string()))?),
};
Ok(cx.boxed(db))
});
});
Ok(promise)
}
fn database_table_names(mut cx: FunctionContext) -> JsResult<JsArray> {
fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
let db = cx
.this()
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let tables = db
.database
.table_names()
.or_else(|err| cx.throw_error(err.to_string()))?;
convert::vec_str_to_array(&tables, &mut cx)
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let database = db.database.clone();
rt.spawn(async move {
let tables_rst = database.table_names().await;
deferred.settle_with(&channel, move |mut cx| {
let tables = tables_rst.or_else(|err| cx.throw_error(err.to_string()))?;
let table_names = convert::vec_str_to_array(&tables, &mut cx);
table_names
});
});
Ok(promise)
}
fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
@@ -87,7 +110,7 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let (deferred, promise) = cx.promise();
rt.spawn(async move {
let table_rst = database.open_table(table_name).await;
let table_rst = database.open_table(&table_name).await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
@@ -186,7 +209,7 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
rt.block_on(async move {
let batch_reader: Box<dyn RecordBatchReader> = Box::new(RecordBatchBuffer::new(batches));
let table_rst = database.create_table(table_name, batch_reader).await;
let table_rst = database.create_table(&table_name, batch_reader).await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(

View File

@@ -12,7 +12,9 @@ repository = "https://github.com/lancedb/lancedb"
arrow-array = "37.0"
arrow-data = "37.0"
arrow-schema = "37.0"
lance = "0.4.3"
object_store = "0.5.6"
snafu = "0.7.4"
lance = "0.4.17"
tokio = { version = "1.23", features = ["rt-multi-thread"] }
[dev-dependencies]

View File

@@ -12,16 +12,20 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_array::RecordBatchReader;
use std::fs::create_dir_all;
use std::path::{Path, PathBuf};
use std::sync::Arc;
use std::path::Path;
use crate::error::Result;
use arrow_array::RecordBatchReader;
use lance::io::object_store::ObjectStore;
use snafu::prelude::*;
use crate::error::{CreateDirSnafu, Result};
use crate::table::Table;
pub struct Database {
pub(crate) path: Arc<PathBuf>,
object_store: ObjectStore,
pub(crate) uri: String,
}
const LANCE_EXTENSION: &str = "lance";
@@ -37,26 +41,38 @@ impl Database {
/// # Returns
///
/// * A [Database] object.
pub fn connect<P: AsRef<Path>>(path: P) -> Result<Database> {
if !path.as_ref().try_exists()? {
create_dir_all(&path)?;
pub async fn connect(uri: &str) -> Result<Database> {
let object_store = ObjectStore::new(uri).await?;
if object_store.is_local() {
Self::try_create_dir(uri).context(CreateDirSnafu { path: uri })?;
}
Ok(Database {
path: Arc::new(path.as_ref().to_path_buf()),
uri: uri.to_string(),
object_store,
})
}
/// Try to create a local directory to store the lancedb dataset
fn try_create_dir(path: &str) -> core::result::Result<(), std::io::Error> {
let path = Path::new(path);
if !path.try_exists()? {
create_dir_all(&path)?;
}
Ok(())
}
/// Get the names of all tables in the database.
///
/// # Returns
///
/// * A [Vec<String>] with all table names.
pub fn table_names(&self) -> Result<Vec<String>> {
pub async fn table_names(&self) -> Result<Vec<String>> {
let f = self
.path
.read_dir()?
.flatten()
.map(|dir_entry| dir_entry.path())
.object_store
.read_dir("/")
.await?
.iter()
.map(|fname| Path::new(fname))
.filter(|path| {
let is_lance = path
.extension()
@@ -76,10 +92,10 @@ impl Database {
pub async fn create_table(
&self,
name: String,
name: &str,
batches: Box<dyn RecordBatchReader>,
) -> Result<Table> {
Table::create(self.path.clone(), name, batches).await
Table::create(&self.uri, name, batches).await
}
/// Open a table in the database.
@@ -90,8 +106,8 @@ impl Database {
/// # Returns
///
/// * A [Table] object.
pub async fn open_table(&self, name: String) -> Result<Table> {
Table::open(self.path.clone(), name).await
pub async fn open_table(&self, name: &str) -> Result<Table> {
Table::open(&self.uri, name).await
}
}
@@ -105,10 +121,10 @@ mod tests {
#[tokio::test]
async fn test_connect() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let db = Database::connect(&path_buf);
let uri = tmp_dir.path().to_str().unwrap();
let db = Database::connect(uri).await.unwrap();
assert_eq!(db.unwrap().path.as_path(), path_buf.as_path())
assert_eq!(db.uri, uri);
}
#[tokio::test]
@@ -118,10 +134,16 @@ mod tests {
create_dir_all(tmp_dir.path().join("table2.lance")).unwrap();
create_dir_all(tmp_dir.path().join("invalidlance")).unwrap();
let db = Database::connect(&tmp_dir.into_path()).unwrap();
let tables = db.table_names().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let db = Database::connect(uri).await.unwrap();
let tables = db.table_names().await.unwrap();
assert_eq!(tables.len(), 2);
assert!(tables.contains(&String::from("table1")));
assert!(tables.contains(&String::from("table2")));
}
#[tokio::test]
async fn test_connect_s3() {
// let db = Database::connect("s3://bucket/path/to/database").await.unwrap();
}
}

View File

@@ -12,32 +12,50 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#[derive(Debug)]
pub enum Error {
IO(String),
Lance(String),
}
use snafu::Snafu;
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let (catalog, message) = match self {
Self::IO(s) => ("I/O", s.as_str()),
Self::Lance(s) => ("Lance", s.as_str()),
};
write!(f, "LanceDBError({catalog}): {message}")
}
#[derive(Debug, Snafu)]
#[snafu(visibility(pub(crate)))]
pub enum Error {
#[snafu(display("LanceDBError: Invalid table name: {name}"))]
InvalidTableName { name: String },
#[snafu(display("LanceDBError: Table '{name}' was not found"))]
TableNotFound { name: String },
#[snafu(display("LanceDBError: Table '{name}' already exists"))]
TableAlreadyExists { name: String },
#[snafu(display("LanceDBError: Unable to created lance dataset at {path}: {source}"))]
CreateDir {
path: String,
source: std::io::Error,
},
#[snafu(display("LanceDBError: {message}"))]
Store { message: String },
#[snafu(display("LanceDBError: {message}"))]
Lance { message: String },
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<std::io::Error> for Error {
fn from(e: std::io::Error) -> Self {
Self::IO(e.to_string())
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::Lance {
message: e.to_string(),
}
}
}
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::Lance(e.to_string())
impl From<object_store::Error> for Error {
fn from(e: object_store::Error) -> Self {
Self::Store {
message: e.to_string(),
}
}
}
impl From<object_store::path::Error> for Error {
fn from(e: object_store::path::Error) -> Self {
Self::Store {
message: e.to_string(),
}
}
}

View File

@@ -12,28 +12,35 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::path::PathBuf;
use std::path::Path;
use std::sync::Arc;
use arrow_array::{Float32Array, RecordBatchReader};
use lance::dataset::{Dataset, WriteMode, WriteParams};
use lance::index::IndexType;
use snafu::prelude::*;
use crate::error::{Error, Result};
use crate::error::{Error, InvalidTableNameSnafu, Result};
use crate::index::vector::VectorIndexBuilder;
use crate::query::Query;
pub const VECTOR_COLUMN_NAME: &str = "vector";
pub const LANCE_FILE_EXTENSION: &str = "lance";
/// A table in a LanceDB database.
#[derive(Debug)]
pub struct Table {
name: String,
path: String,
uri: String,
dataset: Arc<Dataset>,
}
impl std::fmt::Display for Table {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Table({})", self.name)
}
}
impl Table {
/// Opens an existing Table
///
@@ -45,18 +52,28 @@ impl Table {
/// # Returns
///
/// * A [Table] object.
pub async fn open(base_path: Arc<PathBuf>, name: String) -> Result<Self> {
let ds_path = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let ds_uri = ds_path
pub async fn open(base_uri: &str, name: &str) -> Result<Self> {
let path = Path::new(base_uri);
let table_uri = path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let uri = table_uri
.as_path()
.to_str()
.ok_or(Error::IO(format!("Unable to find table {}", name)))?;
let dataset = Dataset::open(ds_uri).await?;
let table = Table {
name,
path: ds_uri.to_string(),
.context(InvalidTableNameSnafu { name })?;
let dataset = Dataset::open(&uri).await.map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
name: name.to_string(),
},
e => Error::Lance {
message: e.to_string(),
},
})?;
Ok(Table {
name: name.to_string(),
uri: uri.to_string(),
dataset: Arc::new(dataset),
};
Ok(table)
})
}
/// Creates a new Table
@@ -71,25 +88,36 @@ impl Table {
///
/// * A [Table] object.
pub async fn create(
base_path: Arc<PathBuf>,
name: String,
base_uri: &str,
name: &str,
mut batches: Box<dyn RecordBatchReader>,
) -> Result<Self> {
let ds_path = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let path = ds_path
let base_path = Path::new(base_uri);
let table_uri = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let uri = table_uri
.as_path()
.to_str()
.ok_or(Error::IO(format!("Unable to find table {}", name)))?;
let dataset =
Arc::new(Dataset::write(&mut batches, path, Some(WriteParams::default())).await?);
.context(InvalidTableNameSnafu { name })?
.to_string();
let dataset = Dataset::write(&mut batches, &uri, Some(WriteParams::default()))
.await
.map_err(|e| match e {
lance::Error::DatasetAlreadyExists { .. } => Error::TableAlreadyExists {
name: name.to_string(),
},
e => Error::Lance {
message: e.to_string(),
},
})?;
Ok(Table {
name,
path: path.to_string(),
dataset,
name: name.to_string(),
uri,
dataset: Arc::new(dataset),
})
}
pub async fn create_idx(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
/// Create index on the table.
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt;
let dataset = self
@@ -125,8 +153,7 @@ impl Table {
let mut params = WriteParams::default();
params.mode = write_mode.unwrap_or(WriteMode::Append);
self.dataset =
Arc::new(Dataset::write(&mut batches, self.path.as_str(), Some(params)).await?);
self.dataset = Arc::new(Dataset::write(&mut batches, &self.uri, Some(params)).await?);
Ok(batches.count())
}
@@ -151,6 +178,8 @@ impl Table {
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow_array::{
Array, FixedSizeListArray, Float32Array, Int32Array, RecordBatch, RecordBatchReader,
};
@@ -161,53 +190,68 @@ mod tests {
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use rand::Rng;
use std::sync::Arc;
use tempfile::tempdir;
use crate::error::Result;
use super::*;
use crate::index::vector::IvfPQIndexBuilder;
use crate::table::Table;
#[tokio::test]
async fn test_new_table_not_exists() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let table = Table::open(Arc::new(path_buf), "test".to_string()).await;
assert!(table.is_err());
}
#[tokio::test]
async fn test_open() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = tmp_dir.path().to_str().unwrap();
let mut batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
Dataset::write(
&mut batches,
path_buf.join("test.lance").to_str().unwrap(),
None,
)
.await
.unwrap();
let table = Table::open(Arc::new(path_buf), "test".to_string())
Dataset::write(&mut batches, dataset_path.to_str().unwrap(), None)
.await
.unwrap();
let table = Table::open(uri, "test").await.unwrap();
assert_eq!(table.name, "test")
}
#[tokio::test]
async fn test_add() {
async fn test_open_not_found() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let uri = tmp_dir.path().to_str().unwrap();
let table = Table::open(uri, "test").await;
assert!(matches!(table.unwrap_err(), Error::TableNotFound { .. }));
}
#[test]
fn test_object_store_path() {
use std::path::Path as StdPath;
let p = StdPath::new("s3://bucket/path/to/file");
let c = p.join("subfile");
assert_eq!(c.to_str().unwrap(), "s3://bucket/path/to/file/subfile");
}
#[tokio::test]
async fn test_create_already_exists() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let mut table = Table::create(Arc::new(path_buf), "test".to_string(), batches)
.await
.unwrap();
Table::create(&uri, "test", batches).await.unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let result = Table::create(&uri, "test", batches).await;
assert!(matches!(
result.unwrap_err(),
Error::TableAlreadyExists { .. }
));
}
#[tokio::test]
async fn test_add() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let mut table = Table::create(&uri, "test", batches).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches: Box<dyn RecordBatchReader> =
@@ -225,13 +269,11 @@ mod tests {
#[tokio::test]
async fn test_add_overwrite() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let uri = tmp_dir.path().to_str().unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let mut table = Table::create(Arc::new(path_buf), "test".to_string(), batches)
.await
.unwrap();
let mut table = Table::create(uri, "test", batches).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches: Box<dyn RecordBatchReader> =
@@ -252,21 +294,16 @@ mod tests {
#[tokio::test]
async fn test_search() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = tmp_dir.path().to_str().unwrap();
let mut batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
Dataset::write(
&mut batches,
path_buf.join("test.lance").to_str().unwrap(),
None,
)
.await
.unwrap();
let table = Table::open(Arc::new(path_buf), "test".to_string())
Dataset::write(&mut batches, dataset_path.to_str().unwrap(), None)
.await
.unwrap();
let table = Table::open(uri, "test").await.unwrap();
let vector = Float32Array::from_iter_values([0.1, 0.2]);
let query = table.search(vector.clone());
assert_eq!(vector, query.query_vector);
@@ -291,7 +328,7 @@ mod tests {
use arrow_array::Float32Array;
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let uri = tmp_dir.path().to_str().unwrap();
let dimension = 16;
let schema = Arc::new(ArrowSchema::new(vec![Field::new(
@@ -318,9 +355,7 @@ mod tests {
.unwrap()]);
let reader: Box<dyn RecordBatchReader + Send> = Box::new(batches);
let mut table = Table::create(Arc::new(path_buf), "test".to_string(), reader)
.await
.unwrap();
let mut table = Table::create(uri, "test", reader).await.unwrap();
let mut i = IvfPQIndexBuilder::new();
@@ -330,7 +365,7 @@ mod tests {
.ivf_params(IvfBuildParams::new(256))
.pq_params(PQBuildParams::default());
table.create_idx(index_builder).await.unwrap();
table.create_index(index_builder).await.unwrap();
assert_eq!(table.dataset.load_indices().await.unwrap().len(), 1);
assert_eq!(table.count_rows().await.unwrap(), 512);