Compare commits

..

7 Commits

Author SHA1 Message Date
Will Jones
181f8e1ebf try manylinux again 2023-05-24 21:27:59 -07:00
Will Jones
c4237c61d5 fixes for action 2023-05-24 18:22:08 -07:00
Will Jones
47f5163768 cleanup 2023-05-23 18:43:24 -07:00
Will Jones
7ea809d8a0 match versions 2023-05-23 17:41:42 -07:00
Will Jones
8d7726b1ea fill out rest of release script 2023-05-23 17:40:34 -07:00
Will Jones
f5bb2a2096 more progress on release workflow 2023-05-23 17:14:58 -07:00
Will Jones
89aee07fa9 wip: see if we can build the lib in ci 2023-05-22 14:27:47 -07:00
85 changed files with 942 additions and 4836 deletions

View File

@@ -67,8 +67,10 @@ jobs:
- name: Build
run: |
npm ci
npm run build
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
- name: Test
run: npm run test
macos:
@@ -94,8 +96,10 @@ jobs:
- name: Build
run: |
npm ci
npm run build
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
- name: Test
run: |
npm run test

View File

@@ -31,8 +31,7 @@ jobs:
- name: Install lancedb
run: |
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock
pip install pytest
- name: Run tests
run: pytest -x -v --durations=30 tests
mac:
@@ -50,11 +49,10 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.11"
python-version: "3.10"
- name: Install lancedb
run: |
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock
pip install pytest
- name: Run tests
run: pytest -x -v --durations=30 tests

205
.github/workflows/release.yml vendored Normal file
View File

@@ -0,0 +1,205 @@
name: Prepare Release
# Based on https://github.com/dherman/neon-prebuild-example/blob/eaa4d33d682e5eb7abbc3da7aed153a1b1acb1b3/.github/workflows/publish.yml
on:
push:
tags:
- v*
jobs:
draft-release:
runs-on: ubuntu-latest
steps:
- uses: softprops/action-gh-release@v1
with:
draft: true
prerelease: true # hardcoded on for now
generate_release_notes: true
rust:
runs-on: ubuntu-latest
needs: draft-release
defaults:
run:
shell: bash
working-directory: rust/vectordb
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Package Rust
run: cargo package --all-features
- uses: softprops/action-gh-release@v1
with:
draft: true
files: target/vectordb-*.crate
python:
runs-on: ubuntu-latest
needs: draft-release
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Build wheel
run: |
pip install wheel
python setup.py sdist bdist_wheel
- uses: softprops/action-gh-release@v1
with:
draft: true
files: |
python/dist/lancedb-*.tar.gz
python/dist/lancedb-*.whl
node:
runs-on: ubuntu-latest
needs: draft-release
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v2
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- uses: softprops/action-gh-release@v1
with:
draft: true
files: node/vectordb-*.tgz
node-macos:
runs-on: macos-12
needs: draft-release
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- uses: softprops/action-gh-release@v1
with:
draft: true
files: node/dist/vectordb-darwin*.tgz
node-linux:
name: Linux ${{ matrix.settings.arch}} native node module
runs-on: ubuntu-latest
needs: draft-release
strategy:
fail-fast: false
matrix:
libc:
- gnu
- musl
settings:
- container: quay.io/pypa/manylinux2014_x86_64
arch: x86_64
protoc_arch: x86_64
# TODO: find a way to build aarch64 on GA
# - container: quay.io/pypa/manylinux2014_aarch64
# arch: aarch64
# protoc_arch: aarch_64
container:
image: ${{ matrix.settings.container }}
options: --platform linux/amd64
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Install system dependencies
run: |
yum install -y openssl-devel unzip
# Install new enough protobuf (yum-provided is old)
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-${{ matrix.settings.protoc_arch }}.zip
unzip protoc-$PB_VERSION-linux-${{ matrix.settings.protoc_arch }}.zip -d /usr/local
- name: Setup Node
uses: actions/setup-node@v3
with:
node-version: 17 # Last that support glibc 2.17
- name: Setup Rust
run: |
curl https://sh.rustup.rs -sSf | bash -s -- -y
echo "/root/.cargo/bin" >> $GITHUB_PATH
- name: Install npm dependencies
run: npm ci
- name: Build ${{ matrix.settings.libc }} library
run: |
BUILD_TARGET=${{ matrix.settings.arch }}-unknown-linux-${{ matrix.settings.libc }}
rustup target add $BUILD_TARGET
export RUSTFLAGS="-C target-feature=-crt-static" # for musl
npm run build-release -- --target $BUILD_TARGET
npm run pack-build -- --target $BUILD_TARGET
- uses: softprops/action-gh-release@v1
with:
draft: true
files: node/dist/vectordb-linux*.tgz
release:
needs: [python, node, node-macos, node-linux, rust]
runs-on: ubuntu-latest
steps:
- uses: actions/download-artifact@v3
- name: Publish to PyPI
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_TOKEN }}
run: |
python -m twine upload --non-interactive \
--skip-existing \
--repository testpypi python/dist/*
- name: Publish to NPM
run: |
for filename in node/dist/*.tgz; do
npm publish --dry-run $filename
done
- name: Publish to crates.io
env:
CARGO_REGISTRY_TOKEN: ${{ secrets.CARGO_REGISTRY_TOKEN }}
run: |
cargo publish --dry-run --no-verify rust/target/vectordb-*.crate
# - uses: softprops/action-gh-release@v1
# with:
# draft: false

4
.gitignore vendored
View File

@@ -4,6 +4,8 @@
**/__pycache__
.DS_Store
.vscode
rust/target
rust/Cargo.lock
@@ -15,7 +17,7 @@ site
python/build
python/dist
**/.ipynb_checkpoints
notebooks/.ipynb_checkpoints
**/.hypothesis

14
Cargo.lock generated
View File

@@ -1052,7 +1052,6 @@ dependencies = [
"paste",
"petgraph",
"rand",
"regex",
"uuid",
]
@@ -1646,9 +1645,9 @@ dependencies = [
[[package]]
name = "lance"
version = "0.4.17"
version = "0.4.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "86dda8185bd1ffae7b910c1f68035af23be9b717c52e9cc4de176cd30b47f772"
checksum = "fc96cf89139af6f439a0e28ccd04ddf81be795b79fda3105b7a8952fadeb778e"
dependencies = [
"accelerate-src",
"arrow",
@@ -1685,7 +1684,6 @@ dependencies = [
"rand",
"reqwest",
"shellexpand",
"snafu",
"sqlparser-lance",
"tokio",
"url",
@@ -3358,22 +3356,18 @@ checksum = "accd4ea62f7bb7a82fe23066fb0957d48ef677f6eeb8215f372f52e48bb32426"
[[package]]
name = "vectordb"
version = "0.0.1"
version = "0.1.2"
dependencies = [
"arrow-array",
"arrow-data",
"arrow-schema",
"lance",
"object_store",
"rand",
"snafu",
"tempfile",
"tokio",
]
[[package]]
name = "vectordb-node"
version = "0.1.0"
version = "0.1.2"
dependencies = [
"arrow-array",
"arrow-ipc",

39
Cross.toml Normal file
View File

@@ -0,0 +1,39 @@
# These make sure our builds are compatible with old glibc versions.
[target.x86_64-unknown-linux-gnu]
pre-build = [
# Install newer gfortran
"yum install -y openssl-devel unzip gcc-gfortran",
"scl enable devtoolset-11 bash",
# protobuf is too old, so we directly download binaries
"PB_REL=https://github.com/protocolbuffers/protobuf/releases",
"PB_VERSION=23.1",
"curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-x86_64.zip",
"unzip protoc-$PB_VERSION-linux-x86_64.zip -d /usr/local",
]
image = "ghcr.io/cross-rs/x86_64-unknown-linux-gnu:main-centos"
[target.aarch64-unknown-linux-gnu]
pre-build = [
"yum install -y openssl-devel unzip",
# protobuf is too old, so we directly download binaries
"PB_REL=https://github.com/protocolbuffers/protobuf/releases",
"PB_VERSION=23.1",
"curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-x86_64.zip",
"unzip protoc-$PB_VERSION-linux-x86_64.zip -d /usr/local",
]
# https://github.com/cross-rs/cross/blob/main/docker/Dockerfile.aarch64-unknown-linux-gnu.centos
image = "ghcr.io/cross-rs/aarch64-unknown-linux-gnu:main-centos"
[target.x86_64-unknown-linux-musl]
# https://github.com/cross-rs/cross/blob/main/docker/Dockerfile.x86_64-unknown-linux-musl
pre-build = [
"dpkg --add-architecture $CROSS_DEB_ARCH",
"apt-get update && apt-get install --assume-yes libssl-dev:$CROSS_DEB_ARCH",
]
[target.aarch64-unknown-linux-musl]
# https://github.com/cross-rs/cross/blob/main/docker/Dockerfile.aarch64-unknown-linux-musl
pre-build = [
"dpkg --add-architecture $CROSS_DEB_ARCH",
"apt-get update && apt-get install --assume-yes libssl-dev:$CROSS_DEB_ARCH",
]

View File

@@ -10,10 +10,6 @@
<a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a>
</p>
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
</p>
</div>
@@ -27,15 +23,13 @@ The key features of LanceDB include:
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/eto-ai/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start

View File

@@ -0,0 +1,40 @@
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# On MacOS, need to run in a linux container:
# docker run -v $(pwd):/io -w /io
# Must run rustup toolchain install stable-x86_64-unknown-linux-gnu --force-non-host
set -e
build_node_binaries() {
pushd node
for target in $1
do
echo "Building node library for $target"
# cross doesn't yet pass this down to Docker, so we do it ourselves.
export CROSS_CONTAINER_OPTS="--platform linux/amd64"
if [[ $target == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
RUSTFLAGS="-C target-feature=-crt-static"
fi
npm run cross-release -- --target $target
npm run pack-build -- --target $target
done
popd
}
if [ -n "$1" ]; then
targets=$1
else
# targets="x86_64-unknown-linux-gnu aarch64-unknown-linux-gnu aarch64-unknown-linux-musl x86_64-unknown-linux-musl"
targets="aarch64-unknown-linux-gnu"
fi
build_node_binaries $targets

View File

@@ -0,0 +1,22 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
build_node_binaries() {
pushd node
for target in $1
do
echo "Building node library for $target"
npm run build-release -- --target $target
npm run pack-build -- --target $target
done
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
build_node_binaries $targets

View File

@@ -0,0 +1,31 @@
# On MacOS, need to run in a linux container:
# cat ci/ubuntu_build.dockerfile | docker build -t lancedb-node-build -
# docker run -v /var/run/docker.sock:/var/run/docker.sock -v $(pwd):/io -w /io lancedb-node-build bash ci/build_linux_artifacts.sh
FROM ubuntu:20.04
ARG DEBIAN_FRONTEND=noninteractive
ENV TZ=Europe/Moscow
RUN apt update && apt install -y protobuf-compiler libssl-dev build-essential curl \
software-properties-common npm docker.io
# Install rust
RUN curl https://sh.rustup.rs -sSf | bash -s -- -y
ENV PATH="/root/.cargo/bin:${PATH}"
# Install cross
# https://github.com/cross-rs/cross/issues/1257#issuecomment-1544553706
RUN cargo install cross --git https://github.com/cross-rs/cross
# Install additional build targets
RUN rustup target add x86_64-unknown-linux-gnu aarch64-unknown-linux-gnu aarch64-unknown-linux-musl x86_64-unknown-linux-musl
# Install node
RUN npm install npm@latest -g && \
npm install n -g && \
n latest
# set CROSS_CONTAINER_IN_CONTAINER to inform `cross` that it is executed from within a container
ENV CROSS_CONTAINER_IN_CONTAINER=true
ENV CROSS_CONTAINER_ENGINE_NO_BUILDKIT=1

View File

@@ -1,16 +1,10 @@
site_name: LanceDB Docs
repo_url: https://github.com/lancedb/lancedb
repo_name: lancedb/lancedb
site_name: LanceDB Documentation
docs_dir: src
theme:
name: "material"
logo: assets/logo.png
features:
- content.code.copy
- content.tabs.link
icon:
repo: fontawesome/brands/github
plugins:
- search
@@ -20,36 +14,19 @@ plugins:
paths: [../python]
- mkdocs-jupyter
nav:
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Indexing: ann_indexes.md
- Integrations: integrations.md
- Python API: python.md
markdown_extensions:
- admonition
- pymdownx.superfences
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
nav:
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Python integrations: integrations.md
- Python examples:
- YouTube Transcript Search using OpenAI: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- References:
- Vector Search: search.md
- Indexing: ann_indexes.md
- API references:
- Python API: python/python.md
- Javascript API: javascript/modules.md
extra_css:
- styles/global.css
- pymdownx.superfences

View File

@@ -12,43 +12,29 @@ In the future we will look to automatically create and configure the ANN index.
## Creating an ANN Index
=== "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
import lancedb
import numpy as np
uri = "~/.lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Javascript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const table = await db.createTable('vectors', data)
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
```
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
creation by providing the following parameters:
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support "cosine" distance.
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support cosine distance.
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
A higher number leads to faster queries, but it makes index generation slower.
@@ -71,28 +57,18 @@ There are a couple of parameters that can be used to fine-tune the search:
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python"
```python
tbl.search(np.random.random((768))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_df()
```python
tbl.search(np.random.random((768))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_df()
vector item score
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Javascript"
```javascript
const results = await table
.search(Array(768).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
```
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
The search will return the data requested in addition to the score of each item.
@@ -102,36 +78,18 @@ The search will return the data requested in addition to the score of each item.
You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
```
=== "Javascript"
```javascript
const results = await table
.search(Array(1536).fill(1.2))
.where("item != 'item 1141'")
.execute()
```
```python
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
```
### Projections (select clause)
You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((768))).select(["vector"]).to_df()
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "Javascript"
```javascript
const results = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.execute()
```
```python
tbl.search(np.random.random((768))).select(["vector"]).to_df()
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```

Binary file not shown.

Before

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.7 KiB

View File

@@ -1,142 +1,74 @@
# Basic LanceDB Functionality
We'll cover the basics of using LanceDB on your local machine in this section.
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Javascript"
```shell
npm install vectordb
```
## How to connect to a database
=== "Python"
```python
import lancedb
uri = "~/.lancedb"
db = lancedb.connect(uri)
```
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code:
```python
import lancedb
uri = "~/.lancedb"
db = lancedb.connect(uri)
```
LanceDB will create the directory if it doesn't exist (including parent directories).
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, use the `db.uri` property.
=== "Javascript"
```javascript
const lancedb = require("vectordb");
const uri = "~./lancedb";
const db = await lancedb.connect(uri);
```
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
If you need a reminder of the uri, use the `db.uri` property.
## How to create a table
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
To create a table, you can use the following code:
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
Under the hood, LanceDB is converting the input data into an Apache Arrow table
and persisting it to disk in [Lance format](github.com/eto-ai/lance).
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
=== "Javascript"
```javascript
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
## How to open an existing table
Once created, you can open a table using the following code:
```python
tbl = db.open_table("my_table")
```
=== "Python"
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names:
If you forget the name of your table, you can always get a listing of all table names:
```python
print(db.table_names())
```
=== "Javascript"
```javascript
const tbl = await db.openTable("my_table");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript
console.log(db.tableNames());
```
```python
db.table_names()
```
## How to add data to a table
After a table has been created, you can always add more data to it using
=== "Python"
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Javascript"
```javascript
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code:
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_df()
```
```python
tbl.search([100, 100]).limit(2).to_df()
```
This returns a pandas DataFrame with the results.
=== "Javascript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute();
```
This returns a pandas DataFrame with the results.
## What's next

View File

@@ -25,88 +25,55 @@ def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
Please note that currently HuggingFace is only supported in the Python SDK.
### OpenAI example
You can also use an external API like OpenAI to generate embeddings
=== "Python"
```python
import openai
import os
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "Javascript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
## Applying an embedding function
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame([{"text": "pepperoni"},
{"text": "pineapple"}])
data = with_embeddings(embed_func, df)
df = pd.DataFrame([{"text": "pepperoni"},
{"text": "pineapple"}])
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "Javascript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
You can just pass the embedding function created previously and LanceDB will automatically generate
embededings for your data.
```javascript
const db = await lancedb.connect("/tmp/lancedb");
const data = [
{ text: 'pepperoni' },
{ text: 'pineapple' }
]
const table = await db.createTable('vectors', data, embedding)
```
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Searching with an embedding function
@@ -114,25 +81,13 @@ At inference time, you also need the same embedding function to embed your query
It's important that you use the same model / function otherwise the embedding vectors don't
belong in the same latent space and your results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "Javascript"
```javascript
const results = await table
.search('What's the best pizza topping?')
.limit(10)
.execute()
```
The above snippet returns an array of records with the 10 closest vectors to the query.
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
## Roadmap

View File

@@ -4,4 +4,4 @@
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/code_qa_bot.ipynb)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/code_qa_bot.ipynb)

View File

@@ -1,166 +0,0 @@
# Serverless QA Bot with Modal and LangChain
## use LanceDB's LangChain integration with Modal to run a serverless app
<img id="splash" width="400" alt="modal" src="https://github.com/lancedb/lancedb/assets/917119/7d80a40f-60d7-48a6-972f-dab05000eccf">
We're going to build a QA bot for your documentation using LanceDB's LangChain integration and use Modal for deployment.
Modal is an end-to-end compute platform for model inference, batch jobs, task queues, web apps and more. It's a great way to deploy your LanceDB models and apps.
To get started, ensure that you have created an account and logged into [Modal](https://modal.com/). To follow along, the full source code is available on Github [here](https://github.com/lancedb/lancedb/blob/main/docs/src/examples/modal_langchain.py).
### Setting up Modal
We'll start by specifying our dependencies and creating a new Modal `Stub`:
```python
lancedb_image = Image.debian_slim().pip_install(
"lancedb",
"langchain",
"openai",
"pandas",
"tiktoken",
"unstructured",
"tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
```
We're using Modal's Secrets injection to secure our OpenAI key. To set your own, you can access the Modal UI and enter your key.
### Setting up caches for LanceDB and LangChain
Next, we can setup some globals to cache our LanceDB database, as well as our LangChain docsource:
```python
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
```
### Downloading our dataset
We're going use a pregenerated dataset, which stores HTML files of the Pandas 2.0 documentation.
You could switch this out for your own dataset.
```python
def download_docs():
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
```
### Pre-processing the dataset and generating metadata
Once we've downloaded it, we want to parse and pre-process them using LangChain, and then vectorize them and store it in LanceDB.
Let's first create a function that uses LangChains `UnstructuredHTMLLoader` to parse them.
We can then add our own metadata to it and store it alongside the data, we'll later be able to use this for filtering metadata.
```python
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
```
### Simple LangChain chain for a QA bot
Now we can create a simple LangChain chain for our QA bot. We'll use the `RecursiveCharacterTextSplitter` to split our documents into chunks, and then use the `OpenAIEmbeddings` to vectorize them.
Lastly, we'll create a LanceDB table and store the vectorized documents in it, then create a `RetrievalQA` model from the chain and return it.
```python
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table("pandas_docs", data=[
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
], mode="overwrite")
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
return qa.run(query)
```
### Creating our Modal entry points
Now we can create our Modal entry points for our CLI and web endpoint:
```python
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)
```
# Testing it out!
Testing the CLI:
```bash
modal run modal_langchain.py --query "What are the major differences in pandas 2.0?"
```
Testing the web endpoint:
```bash
modal serve modal_langchain.py
```
In the CLI, Modal will provide you a web endpoint. Copy this endpoint URI for the next step.
Once this is served, then we can hit it with `curl`.
Note, the first time this runs, it will take a few minutes to download the dataset and vectorize it.
An actual production example would pre-cache/load the dataset and vectorized documents prior
```bash
curl --get --data-urlencode "query=What are the major differences in pandas 2.0?" https://your-modal-endpoint-app.modal.run
{"answer":" The major differences in pandas 2.0 include the ability to use any numpy numeric dtype in a Index, installing optional dependencies with pip extras, and enhancements, bug fixes, and performance improvements."}
```

View File

@@ -1,107 +0,0 @@
import sys
from modal import Secret, Stub, Image, web_endpoint
import lancedb
import re
import pickle
import requests
import zipfile
from pathlib import Path
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
lancedb_image = Image.debian_slim().pip_install(
"lancedb",
"langchain",
"openai",
"pandas",
"tiktoken",
"unstructured",
"tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
def get_document_title(document):
m = str(document.metadata["source"])
title = re.findall("pandas.documentation(.*).html", m)
if title[0] is not None:
return(title[0])
return ''
def download_docs():
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table("pandas_docs", data=[
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
], mode="overwrite")
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
return qa.run(query)
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)

View File

@@ -1,7 +0,0 @@
# Image multimodal search
## Search through an image dataset using natural language, full text and SQL
<img id="splash" width="400" alt="multimodal search" src="https://github.com/lancedb/lancedb/assets/917119/993a7c9f-be01-449d-942e-1ce1d4ed63af">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/multimodal_search.ipynb)

View File

@@ -4,4 +4,4 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb)

View File

@@ -1,51 +0,0 @@
# [EXPERIMENTAL] Full text search
LanceDB now provides experimental support for full text search.
This is currently Python only. We plan to push the integration down to Rust in the future
to make this available for JS as well.
## Installation
To use full text search, you must install optional dependency tantivy-py:
# tantivy 0.19.2
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
## Quickstart
Assume:
1. `table` is a LanceDB Table
2. `text` is the name of the Table column that we want to index
To create the index:
```python
table.create_fts_index("text")
```
To search:
```python
df = table.search("puppy").limit(10).select(["text"]).to_df()
```
LanceDB automatically looks for an FTS index if the input is str.
## Multiple text columns
If you have multiple columns to index, pass them all as a list to `create_fts_index`:
```python
table.create_fts_index(["text1", "text2"])
```
Note that the search API call does not change - you can search over all indexed columns at once.
## Current limitations
1. Currently we do not yet support incremental writes.
If you add data after fts index creation, it won't be reflected
in search results until you do a full reindex.
2. We currently only support local filesystem paths for the fts index.

View File

@@ -1,6 +1,6 @@
# Welcome to LanceDB's Documentation
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrivial, filtering and management of embeddings.
The key features of LanceDB include:
@@ -8,57 +8,42 @@ The key features of LanceDB include:
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Native Python and Javascript/Typescript support.
* Native Python and Javascript/Typescript support (coming soon).
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
## Quick Start
=== "Python"
```shell
pip install lancedb
```
## Installation
```python
import lancedb
```shell
pip install lancedb
```
uri = "/tmp/lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
## Quickstart
=== "Javascript"
```shell
npm install vectordb
```
```python
import lancedb
```javascript
const lancedb = require("vectordb");
db = lancedb.connect(".")
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
const uri = "/tmp/lancedb";
const db = await lancedb.connect(uri);
const table = await db.createTable("my_table",
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
const results = await table.search([100, 100]).limit(2).execute();
```
## Complete Demos
We will be adding completed demo apps built using LanceDB.
- [YouTube Transcript Search](../notebooks/youtube_transcript_search.ipynb)
## Complete Demos (Python)
- [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb)
- [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb)
- [Multimodal search using CLIP](notebooks/multimodal_search.ipynb)
## Documentation Quick Links
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
* [`Embedding Functions`](embedding.md) - functions for working with embeddings.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem.
* [`API Reference`](python.md) - detailed documentation for the LanceDB Python SDK.

View File

@@ -1 +0,0 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

View File

@@ -1,51 +0,0 @@
vectordb / [Exports](modules.md)
# LanceDB
A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install vectordb
```
## Usage
### Basic Example
```javascript
const lancedb = require('vectordb');
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
const table = await db.openTable('my_table');
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
console.log(results);
```
The [examples](./examples) folder contains complete examples.
## Development
The LanceDB javascript is built with npm:
```bash
npm run tsc
```
Run the tests with
```bash
npm test
```
To run the linter and have it automatically fix all errors
```bash
npm run lint -- --fix
```
To build documentation
```bash
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
```

View File

@@ -1,211 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / Connection
# Class: Connection
A connection to a LanceDB database.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [\_db](Connection.md#_db)
- [\_uri](Connection.md#_uri)
### Accessors
- [uri](Connection.md#uri)
### Methods
- [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### constructor
**new Connection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `uri` | `string` |
#### Defined in
[index.ts:46](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L46)
## Properties
### \_db
`Private` `Readonly` **\_db**: `any`
#### Defined in
[index.ts:44](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L44)
___
### \_uri
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:43](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L43)
## Accessors
### uri
`get` **uri**(): `string`
#### Returns
`string`
#### Defined in
[index.ts:51](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L51)
## Methods
### createTable
**createTable**(`name`, `data`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:91](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L91)
**createTable**<`T`\>(`name`, `data`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:99](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L99)
___
### createTableArrow
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:109](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L109)
___
### openTable
**openTable**(`name`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:67](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L67)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:74](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L74)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
Get the names of all tables in the database.
#### Returns
`Promise`<`string`[]\>
#### Defined in
[index.ts:58](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L58)

View File

@@ -1,105 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
## Table of contents
### Constructors
- [constructor](OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `'text-embedding-ada-002'` |
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L21)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L19)
___
### \_openai
`Private` `Readonly` **\_openai**: `any`
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L18)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[sourceColumn](../interfaces/EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L50)
## Methods
### embed
**embed**(`data`): `Promise`<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[embed](../interfaces/EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L38)

View File

@@ -1,299 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / Query
# Class: Query<T\>
A builder for nearest neighbor queries for LanceDB.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [\_columns](Query.md#_columns)
- [\_embeddings](Query.md#_embeddings)
- [\_filter](Query.md#_filter)
- [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype)
- [\_nprobes](Query.md#_nprobes)
- [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor)
- [\_tbl](Query.md#_tbl)
### Methods
- [execute](Query.md#execute)
- [filter](Query.md#filter)
- [limit](Query.md#limit)
- [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes)
- [refineFactor](Query.md#refinefactor)
## Constructors
### constructor
**new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `query` | `T` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L241)
## Properties
### \_columns
`Private` `Optional` `Readonly` **\_columns**: `string`[]
#### Defined in
[index.ts:236](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L236)
___
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:239](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L239)
___
### \_filter
`Private` `Optional` **\_filter**: `string`
#### Defined in
[index.ts:237](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L237)
___
### \_limit
`Private` **\_limit**: `number`
#### Defined in
[index.ts:233](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L233)
___
### \_metricType
`Private` `Optional` **\_metricType**: [`MetricType`](../enums/MetricType.md)
#### Defined in
[index.ts:238](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L238)
___
### \_nprobes
`Private` **\_nprobes**: `number`
#### Defined in
[index.ts:235](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L235)
___
### \_query
`Private` `Readonly` **\_query**: `T`
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L231)
___
### \_queryVector
`Private` `Optional` **\_queryVector**: `number`[]
#### Defined in
[index.ts:232](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L232)
___
### \_refineFactor
`Private` `Optional` **\_refineFactor**: `number`
#### Defined in
[index.ts:234](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L234)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L230)
## Methods
### execute
**execute**<`T`\>(): `Promise`<`T`[]\>
Execute the query and return the results as an Array of Objects
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> |
#### Returns
`Promise`<`T`[]\>
#### Defined in
[index.ts:301](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L301)
___
### filter
**filter**(`value`): [`Query`](Query.md)<`T`\>
A filter statement to be applied to this query.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L284)
___
### limit
**limit**(`value`): [`Query`](Query.md)<`T`\>
Sets the number of results that will be returned
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | number of results |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:257](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L257)
___
### metricType
**metricType**(`value`): [`Query`](Query.md)<`T`\>
The MetricType used for this Query.
**`See`**
MetricType for the different options
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | [`MetricType`](../enums/MetricType.md) | The metric to the. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:293](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L293)
___
### nprobes
**nprobes**(`value`): [`Query`](Query.md)<`T`\>
The number of probes used. A higher number makes search more accurate but also slower.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | The number of probes used. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:275](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L275)
___
### refineFactor
**refineFactor**(`value`): [`Query`](Query.md)<`T`\>
Refine the results by reading extra elements and re-ranking them in memory.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | refine factor to use in this query. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L266)

View File

@@ -1,215 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table
# Class: Table<T\>
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [\_embeddings](Table.md#_embeddings)
- [\_name](Table.md#_name)
- [\_tbl](Table.md#_tbl)
### Accessors
- [name](Table.md#name)
### Methods
- [add](Table.md#add)
- [create\_index](Table.md#create_index)
- [overwrite](Table.md#overwrite)
- [search](Table.md#search)
## Constructors
### constructor
**new Table**<`T`\>(`tbl`, `name`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
#### Defined in
[index.ts:121](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L121)
**new Table**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:127](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L127)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:119](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L119)
___
### \_name
`Private` `Readonly` **\_name**: `string`
#### Defined in
[index.ts:118](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L118)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:117](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L117)
## Accessors
### name
`get` **name**(): `string`
#### Returns
`string`
#### Defined in
[index.ts:134](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L134)
## Methods
### add
**add**(`data`): `Promise`<`number`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:152](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L152)
___
### create\_index
**create_index**(`indexParams`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
`Promise`<`any`\>
#### Defined in
[index.ts:171](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L171)
___
### overwrite
**overwrite**(`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:162](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L162)
___
### search
**search**(`query`): [`Query`](Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:142](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L142)

View File

@@ -1,36 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / MetricType
# Enumeration: MetricType
Distance metrics type.
## Table of contents
### Enumeration Members
- [Cosine](MetricType.md#cosine)
- [L2](MetricType.md#l2)
## Enumeration Members
### Cosine
**Cosine** = ``"cosine"``
Cosine distance
#### Defined in
[index.ts:341](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L341)
___
### L2
• **L2** = ``"l2"``
Euclidean distance
#### Defined in
[index.ts:336](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L336)

View File

@@ -1,30 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"append"``
#### Defined in
[index.ts:326](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L326)
___
### Overwrite
• **Overwrite** = ``"overwrite"``
#### Defined in
[index.ts:325](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L325)

View File

@@ -1,60 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
# Interface: EmbeddingFunction<T\>
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [embed](EmbeddingFunction.md#embed)
- [sourceColumn](EmbeddingFunction.md#sourcecolumn)
## Properties
### embed
**embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
#### Type declaration
▸ (`data`): `Promise`<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L27)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L22)

View File

@@ -1,61 +0,0 @@
[vectordb](README.md) / Exports
# vectordb
## Table of contents
### Enumerations
- [MetricType](enums/MetricType.md)
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [Query](classes/Query.md)
- [Table](classes/Table.md)
### Interfaces
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
### Type Aliases
- [VectorIndexParams](modules.md#vectorindexparams)
### Functions
- [connect](modules.md#connect)
## Type Aliases
### VectorIndexParams
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
#### Defined in
[index.ts:224](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L224)
## Functions
### connect
**connect**(`uri`): `Promise`<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. |
#### Returns
`Promise`<[`Connection`](classes/Connection.md)\>
#### Defined in
[index.ts:34](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L34)

View File

@@ -1,108 +0,0 @@
#!/usr/bin/env python
#
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset hf://poloclub/diffusiondb
"""
import io
from argparse import ArgumentParser
from multiprocessing import Pool
import lance
import lancedb
import pyarrow as pa
from datasets import load_dataset
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
MODEL_ID = "openai/clip-vit-base-patch32"
device = "cuda"
tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
schema = pa.schema(
[
pa.field("prompt", pa.string()),
pa.field("seed", pa.uint32()),
pa.field("step", pa.uint16()),
pa.field("cfg", pa.float32()),
pa.field("sampler", pa.string()),
pa.field("width", pa.uint16()),
pa.field("height", pa.uint16()),
pa.field("timestamp", pa.timestamp("s")),
pa.field("image_nsfw", pa.float32()),
pa.field("prompt_nsfw", pa.float32()),
pa.field("vector", pa.list_(pa.float32(), 512)),
pa.field("image", pa.binary()),
]
)
def pil_to_bytes(img) -> list[bytes]:
buf = io.BytesIO()
img.save(buf, format="PNG")
return buf.getvalue()
def generate_clip_embeddings(batch) -> pa.RecordBatch:
image = processor(text=None, images=batch["image"], return_tensors="pt")[
"pixel_values"
].to(device)
img_emb = model.get_image_features(image)
batch["vector"] = img_emb.cpu().tolist()
with Pool() as p:
batch["image_bytes"] = p.map(pil_to_bytes, batch["image"])
return batch
def datagen(args):
"""Generate DiffusionDB dataset, and use CLIP model to generate image embeddings."""
dataset = load_dataset("poloclub/diffusiondb", args.subset)
data = []
for b in dataset.map(
generate_clip_embeddings, batched=True, batch_size=256, remove_columns=["image"]
)["train"]:
b["image"] = b["image_bytes"]
del b["image_bytes"]
data.append(b)
tbl = pa.Table.from_pylist(data, schema=schema)
return tbl
def main():
parser = ArgumentParser()
parser.add_argument(
"-o", "--output", metavar="DIR", help="Output lance directory", required=True
)
parser.add_argument(
"-s",
"--subset",
choices=["2m_all", "2m_first_10k", "2m_first_100k"],
default="2m_first_10k",
help="subset of the hg dataset",
)
args = parser.parse_args()
batches = datagen(args)
lance.write_dataset(batches, args.output)
if __name__ == "__main__":
main()

View File

@@ -1,9 +0,0 @@
datasets
Pillow
lancedb
isort
black
transformers
--index-url https://download.pytorch.org/whl/cu118
torch
torchvision

View File

@@ -1,269 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install --quiet -U lancedb\n",
"!pip install --quiet gradio transformers torch torchvision"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"import PIL\n",
"import duckdb\n",
"import lancedb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First run setup: Download data and pre-process"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<lance.dataset.LanceDataset at 0x3045db590>"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# remove null prompts\n",
"import lance\n",
"import pyarrow.compute as pc\n",
"\n",
"# download s3://eto-public/datasets/diffusiondb/small_10k.lance to this uri\n",
"data = lance.dataset(\"~/datasets/rawdata.lance\").to_table()\n",
"\n",
"# First data processing and full-text-search index\n",
"db = lancedb.connect(\"~/datasets/demo\")\n",
"tbl = db.create_table(\"diffusiondb\", data.filter(~pc.field(\"prompt\").is_null()))\n",
"tbl = tbl.create_fts_index([\"prompt\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create / Open LanceDB Table"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"db = lancedb.connect(\"~/datasets/demo\")\n",
"tbl = db.open_table(\"diffusiondb\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create CLIP embedding function for the text"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast\n",
"\n",
"MODEL_ID = \"openai/clip-vit-base-patch32\"\n",
"\n",
"tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)\n",
"model = CLIPModel.from_pretrained(MODEL_ID)\n",
"processor = CLIPProcessor.from_pretrained(MODEL_ID)\n",
"\n",
"def embed_func(query):\n",
" inputs = tokenizer([query], padding=True, return_tensors=\"pt\")\n",
" text_features = model.get_text_features(**inputs)\n",
" return text_features.detach().numpy()[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search functions for Gradio"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def find_image_vectors(query):\n",
" emb = embed_func(query)\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
"\n",
"def find_image_keywords(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
"\n",
"def find_image_sql(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"import duckdb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" \"diffusiondb = tbl.to_lance()\\n\"\n",
" f\"duckdb.sql('{query}').to_df()\"\n",
" ) \n",
" diffusiondb = tbl.to_lance()\n",
" return (_extract(duckdb.sql(query).to_df()), code)\n",
"\n",
"def _extract(df):\n",
" image_col = \"image\"\n",
" return [(PIL.Image.open(io.BytesIO(row[image_col])), row[\"prompt\"]) for _, row in df.iterrows()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Gradio interface"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7881\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" with gr.Row():\n",
" with gr.Tab(\"Embeddings\"):\n",
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
" b1 = gr.Button(\"Submit\")\n",
" with gr.Tab(\"Keywords\"):\n",
" keyword_query = gr.Textbox(value=\"ninja turtle\", show_label=False)\n",
" b2 = gr.Button(\"Submit\")\n",
" with gr.Tab(\"SQL\"):\n",
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
" b3 = gr.Button(\"Submit\")\n",
" with gr.Row():\n",
" code = gr.Code(label=\"Code\", language=\"python\")\n",
" with gr.Row():\n",
" gallery = gr.Gallery(\n",
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
" \n",
" b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n",
" b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n",
" b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n",
" \n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,85 +0,0 @@
# Vector Search
`Vector Search` finds the nearest vectors from the database.
In a recommendation system or search engine, you can find similar products from
the one you searched.
In LLM and other AI applications,
each data point can be [presented by the embeddings generated from some models](embedding.md),
it returns the most relevant features.
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
## Metric
In LanceDB, a `Metric` is the way to describe the distance between a pair of vectors.
Currently, we support the following metrics:
| Metric | Description |
| ----------- | ------------------------------------ |
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
## Search
### Flat Search
If there is no [vector index is created](ann_indexes.md), LanceDB will just brute-force scan
the vector column and compute the distance.
=== "Python"
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
tbl = db.open_table("my_vectors")
df = tbl.search(np.random.random((768)))
.limit(10)
.to_df()
```
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
tbl = db.open_table("my_vectors")
const results = await tbl.search(Array(768))
.limit(20)
.execute()
```
By default, `l2` will be used as `Metric` type. You can customize the metric type
as well.
=== "Python"
```python
df = tbl.search(np.random.random((768)))
.metric("cosine")
.limit(10)
.to_df()
```
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
tbl = db.open_table("my_vectors")
const results = await tbl.search(Array(768))
.metric("cosine")
.limit(20)
.execute()
```
### Search with Vector Index.
See [ANN Index](ann_indexes.md) for more details.

View File

@@ -1,6 +0,0 @@
:root {
--md-primary-fg-color: #625eff;
--md-primary-fg-color--dark: #4338ca;
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
}

2
node/.npmignore Normal file
View File

@@ -0,0 +1,2 @@
gen_test_data.py
index.node

View File

@@ -1,58 +0,0 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.1.4] - 2023-06-03
### Added
- Select / Project query API
### Changed
- Deprecated created_index in favor of createIndex
## [0.1.3] - 2023-06-01
### Added
- Support S3 and Google Cloud Storage
- Embedding functions support
- OpenAI embedding function
## [0.1.2] - 2023-05-27
### Added
- Append records API
- Extra query params to to nodejs client
- Create_index API
### Fixed
- bugfix: string columns should be converted to Utf8Array (#94)
## [0.1.1] - 2023-05-16
### Added
- create_table API
- limit parameter for queries
- Typescript / JavaScript examples
- Linux support
## [0.1.0] - 2023-05-16
### Added
- Initial JavaScript / Node.js library for LanceDB
- Read-only api to query LanceDB datasets
- Supports macOS arm only
## [pre-0.1.0]
- Various prototypes / test builds

View File

@@ -8,6 +8,9 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, Intel MacOS, and ARM (M1/M2) MacOS.
## Usage
### Basic Example
@@ -24,6 +27,19 @@ The [examples](./examples) folder contains complete examples.
## Development
Build and install the rust library with:
```bash
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
```
`npm run build` builds the Rust library, `npm run pack-build` packages the Rust
binary into an npm module called `@vectordb/<platform>` (for example,
`@vectordb/darwin-arm64.node`), and then `npm run install ...` installs that
module.
The LanceDB javascript is built with npm:
```bash
@@ -41,9 +57,3 @@ To run the linter and have it automatically fix all errors
```bash
npm run lint -- --fix
```
To build documentation
```bash
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
```

View File

@@ -1,41 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
async function example () {
const lancedb = require('vectordb')
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
const apiKey = process.env.OPENAI_API_KEY
// The embedding function will create embeddings for the 'text' column(text in this case)
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
const db = await lancedb.connect('data/sample-lancedb')
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, embedding)
console.log(await db.tableNames())
const results = await table
.search('keeps me warm')
.limit(1)
.execute()
console.log(results[0].text)
}
example().then(_ => { console.log('All done!') })

View File

@@ -1,15 +0,0 @@
{
"name": "vectordb-example-js-openai",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "file:../..",
"openai": "^3.2.1"
}
}

View File

@@ -9,6 +9,6 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "file:../.."
"vectordb": "^0.1.0"
}
}

View File

@@ -17,6 +17,6 @@
"typescript": "*"
},
"dependencies": {
"vectordb": "file:../.."
"vectordb": "^0.1.0"
}
}

8
node/gen_test_data.py Normal file
View File

@@ -0,0 +1,8 @@
import lancedb
uri = "sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])

View File

@@ -12,29 +12,20 @@
// See the License for the specific language governing permissions and
// limitations under the License.
const { currentTarget } = require('@neon-rs/load');
let nativeLib;
function getPlatformLibrary() {
if (process.platform === "darwin" && process.arch == "arm64") {
return require('./aarch64-apple-darwin.node');
} else if (process.platform === "darwin" && process.arch == "x64") {
return require('./x86_64-apple-darwin.node');
} else if (process.platform === "linux" && process.arch == "x64") {
return require('./x86_64-unknown-linux-gnu.node');
} else {
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
}
}
try {
nativeLib = require('./index.node')
nativeLib = require(`@vectordb/${currentTarget()}`);
} catch (e) {
if (e.code === "MODULE_NOT_FOUND") {
nativeLib = getPlatformLibrary();
} else {
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues');
}
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install @vectordb/${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`);
}
module.exports = nativeLib
// Dynamic require for runtime.
module.exports = nativeLib;

795
node/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,16 +1,17 @@
{
"name": "vectordb",
"version": "0.1.4",
"version": "0.1.2",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
"tsc": "tsc -b",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"cross-release": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cross build --message-format=json --release -p vectordb-node",
"test": "mocha -recursive dist/test",
"lint": "eslint src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/"
"pack-build": "neon pack-build"
},
"repository": {
"type": "git",
@@ -25,10 +26,10 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"devDependencies": {
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
@@ -39,17 +40,40 @@
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^3.2.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*"
},
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0"
},
"os": [
"darwin",
"linux"
],
"cpu": [
"x64",
"arm64"
],
"neon": {
"targets": {
"x86_64-apple-darwin": "@vectordb/darwin-x64",
"aarch64-apple-darwin": "@vectordb/darwin-arm64",
"x86_64-unknown-linux-gnu": "@vectordb/linux-x64-gnu",
"x86_64-unknown-linux-musl": "@vectordb/linux-x64-musl",
"aarch64-unknown-linux-gnu": "@vectordb/linux-arm64-gnu",
"aarch64-unknown-linux-musl": "@vectordb/linux-arm64-musl"
}
},
"optionalDependencies": {
"@vectordb/darwin-arm64": "0.1.2",
"@vectordb/darwin-x64": "0.1.2",
"@vectordb/linux-x64-gnu": "0.1.2",
"@vectordb/linux-x64-musl": "0.1.2",
"@vectordb/linux-arm64-gnu": "0.1.2",
"@vectordb/linux-arm64-musl": "0.1.2"
}
}

View File

@@ -15,16 +15,15 @@
import {
Field,
Float32,
List, type ListBuilder,
List,
makeBuilder,
RecordBatchFileWriter,
Table, Utf8,
Table,
type Vector,
vectorFromArray
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
export function convertToTable (data: Array<Record<string, unknown>>): Table {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
@@ -34,7 +33,11 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const listBuilder = newVectorListBuilder()
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
const listBuilder = makeBuilder({
type: list
})
const vectorSize = (data[0].vector as any[]).length
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
@@ -49,37 +52,15 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
const listBuilder = newVectorListBuilder()
vectors.map(v => listBuilder.append(v))
records.vector = listBuilder.finish().toVector()
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else {
records[columnsKey] = vectorFromArray(values)
}
records[columnsKey] = vectorFromArray(values)
}
}
return new Table(records)
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorListBuilder (): ListBuilder<Float32, any> {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
return makeBuilder({
type: list
})
}
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
export async function fromRecordsToBuffer (data: Array<Record<string, unknown>>): Promise<Buffer> {
const table = convertToTable(data)
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}

View File

@@ -1,28 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]>
}

View File

@@ -1,51 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { type EmbeddingFunction } from '../index'
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
private readonly _openai: any
private readonly _modelName: string
constructor (sourceColumn: string, openAIKey: string, modelName: string = 'text-embedding-ada-002') {
let openai
try {
// eslint-disable-next-line @typescript-eslint/no-var-requires
openai = require('openai')
} catch {
throw new Error('please install openai using npm install openai')
}
this.sourceColumn = sourceColumn
const configuration = new openai.Configuration({
apiKey: openAIKey
})
this._openai = new openai.OpenAIApi(configuration)
this._modelName = modelName
}
async embed (data: string[]): Promise<number[][]> {
const response = await this._openai.createEmbedding({
model: this._modelName,
input: data
})
const embeddings: number[][] = []
for (let i = 0; i < response.data.data.length; i++) {
embeddings.push(response.data.data[i].embedding as number[])
}
return embeddings
}
sourceColumn: string
}

View File

@@ -19,21 +19,16 @@ import {
Vector
} from 'apache-arrow'
import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js')
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd } = require('../native.js')
/**
* Connect to a LanceDB instance at the given URI
* @param uri The uri of the database.
*/
export async function connect (uri: string): Promise<Connection> {
const db = await databaseNew(uri)
return new Connection(db, uri)
return new Connection(uri)
}
/**
@@ -43,9 +38,9 @@ export class Connection {
private readonly _uri: string
private readonly _db: any
constructor (db: any, uri: string) {
constructor (uri: string) {
this._uri = uri
this._db = db
this._db = databaseNew(uri)
}
get uri (): string {
@@ -60,50 +55,17 @@ export class Connection {
}
/**
* Open a table in the database.
*
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this Table
*/
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
* Open a table in the database.
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table> {
const tbl = await databaseOpenTable.call(this._db, name)
if (embeddings !== undefined) {
return new Table(tbl, name, embeddings)
} else {
return new Table(tbl, name)
}
return new Table(tbl, name)
}
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
*/
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await tableCreate.call(this._db, name, await fromRecordsToBuffer(data, embeddings))
if (embeddings !== undefined) {
return new Table(tbl, name, embeddings)
} else {
return new Table(tbl, name)
}
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table> {
await tableCreate.call(this._db, name, await fromRecordsToBuffer(data))
return await this.openTable(name)
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
@@ -113,22 +75,16 @@ export class Connection {
}
}
export class Table<T = number[]> {
/**
* A table in a LanceDB database.
*/
export class Table {
private readonly _tbl: any
private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, name: string)
/**
* @param tbl
* @param name
* @param embeddings An embedding function to use when interacting with this table
*/
constructor (tbl: any, name: string, embeddings: EmbeddingFunction<T>)
constructor (tbl: any, name: string, embeddings?: EmbeddingFunction<T>) {
constructor (tbl: any, name: string) {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
}
get name (): string {
@@ -136,192 +92,72 @@ export class Table<T = number[]> {
}
/**
* Creates a search query to find the nearest neighbors of the given search term
* @param query The query search term
*/
search (query: T): Query<T> {
return new Query(this._tbl, query, this._embeddings)
* Create a search query to find the nearest neighbors of the given query vector.
* @param queryVector The query vector.
*/
search (queryVector: number[]): Query {
return new Query(this._tbl, queryVector)
}
/**
* Insert records into this Table.
*
* Insert records into this Table
* @param data Records to be inserted into the Table
*
* @param mode Append / Overwrite existing records. Default: Append
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString())
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data), WriteMode.Append.toString())
}
/**
* Insert records into this Table, replacing its contents.
*
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
}
/**
* Create an ANN index on this Table vector index.
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async createIndex (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
/**
* @deprecated Use [Table.createIndex]
*/
async create_index (indexParams: VectorIndexParams): Promise<any> {
return await this.createIndex(indexParams)
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data), WriteMode.Overwrite.toString())
}
}
interface IvfPQIndexConfig {
/**
* The column to be indexed
*/
column?: string
/**
* A unique name for the index
*/
index_name?: string
/**
* Metric type, L2 or Cosine
*/
metric_type?: MetricType
/**
* The number of partitions this index
*/
num_partitions?: number
/**
* The max number of iterations for kmeans training.
*/
max_iters?: number
/**
* Train as optimized product quantization.
*/
use_opq?: boolean
/**
* Number of subvectors to build PQ code
*/
num_sub_vectors?: number
/**
* The number of bits to present one PQ centroid.
*/
num_bits?: number
/**
* Max number of iterations to train OPQ, if `use_opq` is true.
*/
max_opq_iters?: number
type: 'ivf_pq'
}
export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
export class Query {
private readonly _tbl: any
private readonly _query: T
private _queryVector?: number[]
private readonly _query_vector: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private readonly _refine_factor?: number
private readonly _nprobes: number
private readonly _columns?: string[]
private _filter?: string
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _metric = 'L2'
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
constructor (tbl: any, queryVector: number[]) {
this._tbl = tbl
this._query = query
this._query_vector = queryVector
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._refine_factor = undefined
this._columns = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
limit (value: number): Query {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
filter (value: string): Query {
this._filter = value
return this
}
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
let buffer
if (this._filter != null) {
buffer = await tableSearch.call(this._tbl, this._query_vector, this._limit, this._filter)
} else {
this._queryVector = this._query as number[]
buffer = await tableSearch.call(this._tbl, this._query_vector, this._limit)
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
@@ -341,18 +177,3 @@ export enum WriteMode {
Overwrite = 'overwrite',
Append = 'append'
}
/**
* Distance metrics type.
*/
export enum MetricType {
/**
* Euclidean distance
*/
L2 = 'l2',
/**
* Cosine distance
*/
Cosine = 'cosine'
}

View File

@@ -1,50 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai')
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { stub } = require('sinon')
describe('OpenAPIEmbeddings', function () {
const stubValue = {
data: {
data: [
{
embedding: Array(1536).fill(1.0)
},
{
embedding: Array(1536).fill(2.0)
}
]
}
}
describe('#embed', function () {
it('should create vector embeddings', async function () {
const openAIStub = stub(OpenAIApi.prototype, 'createEmbedding').returns(stubValue)
const f = new OpenAIEmbeddingFunction('text', 'sk-key')
const vectors = await f.embed(['abc', 'def'])
assert.isTrue(openAIStub.calledOnce)
assert.equal(vectors.length, 2)
assert.deepEqual(vectors[0], stubValue.data.data[0].embedding)
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
})
})
})

View File

@@ -1,52 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// IO tests
import { describe } from 'mocha'
import { assert } from 'chai'
import * as lancedb from '../index'
describe('LanceDB S3 client', function () {
if (process.env.TEST_S3_BASE_URL != null) {
const baseUri = process.env.TEST_S3_BASE_URL
it('should have a valid url', async function () {
const uri = `${baseUri}/valid_url`
const table = await createTestDB(uri, 2, 20)
const con = await lancedb.connect(uri)
assert.equal(con.uri, uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5)
})
} else {
describe.skip('Skip S3 test', function () {})
}
})
async function createTestDB (uri: string, numDimensions: number = 2, numRows: number = 2): Promise<lancedb.Table> {
const con = await lancedb.connect(uri)
const data = []
for (let i = 0; i < numRows; i++) {
const vector = []
for (let j = 0; j < numDimensions; j++) {
vector.push(i + (j * 0.1))
}
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
return await con.createTable('vectors', data)
}

View File

@@ -17,7 +17,6 @@ import { assert } from 'chai'
import { track } from 'temp'
import * as lancedb from '../index'
import { type EmbeddingFunction, MetricType, Query } from '../index'
describe('LanceDB client', function () {
describe('when creating a connection to lancedb', function () {
@@ -68,26 +67,10 @@ describe('LanceDB client', function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).filter('id == 2').execute()
const results = await table.search([0.1, 0.3]).filter('id == 2').execute()
assert.equal(results.length, 1)
assert.equal(results[0].id, 2)
})
it('select only a subset of columns', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2)
// vector and score are always returned
assert.isDefined(results[0].vector)
assert.isDefined(results[0].score)
assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id)
assert.isUndefined(results[0].name)
assert.isUndefined(results[0].price)
})
})
describe('when creating a new dataset', function () {
@@ -113,8 +96,8 @@ describe('LanceDB client', function () {
const con = await lancedb.connect(dir)
const data = [
{ id: 1, vector: [0.1, 0.2], price: 10, name: 'a' },
{ id: 2, vector: [1.1, 1.2], price: 50, name: 'b' }
{ id: 1, vector: [0.1, 0.2], price: 10 },
{ id: 2, vector: [1.1, 1.2], price: 50 }
]
const table = await con.createTable('vectors', data)
@@ -122,8 +105,8 @@ describe('LanceDB client', function () {
assert.equal(results.length, 2)
const dataAdd = [
{ id: 3, vector: [2.1, 2.2], price: 10, name: 'c' },
{ id: 4, vector: [3.1, 3.2], price: 50, name: 'd' }
{ id: 3, vector: [2.1, 2.2], price: 10 },
{ id: 4, vector: [3.1, 3.2], price: 50 }
]
await table.add(dataAdd)
const resultsAdd = await table.search([0.1, 0.3]).execute()
@@ -147,78 +130,16 @@ describe('LanceDB client', function () {
assert.equal(resultsAdd.length, 2)
})
})
describe('when creating a vector index', function () {
it('overwrite all records in a table', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
})
describe('when using a custom embedding function', function () {
class TextEmbedding implements EmbeddingFunction<string> {
sourceColumn: string
constructor (targetColumn: string) {
this.sourceColumn = targetColumn
}
_embedding_map = new Map<string, number[]>([
['foo', [2.1, 2.2]],
['bar', [3.1, 3.2]]
])
async embed (data: string[]): Promise<number[][]> {
return data.map(datum => this._embedding_map.get(datum) ?? [0.0, 0.0])
}
}
it('should encode the original data into embeddings', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const embeddings = new TextEmbedding('name')
const data = [
{ price: 10, name: 'foo' },
{ price: 50, name: 'bar' }
]
const table = await con.createTable('vectors', data, embeddings)
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
})
})
describe('Query object', function () {
it('sets custom parameters', async function () {
const query = new Query(undefined, [0.1, 0.3])
.limit(1)
.metricType(MetricType.Cosine)
.refineFactor(100)
.select(['a', 'b'])
.nprobes(20) as Record<string, any>
assert.equal(query._limit, 1)
assert.equal(query._metricType, MetricType.Cosine)
assert.equal(query._refineFactor, 100)
assert.equal(query._nprobes, 20)
assert.deepEqual(query._select, ['a', 'b'])
})
})
async function createTestDB (numDimensions: number = 2, numRows: number = 2): Promise<string> {
async function createTestDB (): Promise<string> {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = []
for (let i = 0; i < numRows; i++) {
const vector = []
for (let j = 0; j < numDimensions; j++) {
vector.push(i + (j * 0.1))
}
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
const data = [
{ id: 1, vector: [0.1, 0.2], name: 'foo', price: 10, is_active: true },
{ id: 2, vector: [1.1, 1.2], name: 'bar', price: 50, is_active: false }
]
await con.createTable('vectors', data)
return dir

View File

@@ -72,8 +72,6 @@
"import lancedb\n",
"import re\n",
"import pickle\n",
"import requests\n",
"import zipfile\n",
"from pathlib import Path\n",
"\n",
"from langchain.document_loaders import UnstructuredHTMLLoader\n",
@@ -87,25 +85,10 @@
{
"attachments": {},
"cell_type": "markdown",
"id": "56cc6d50",
"id": "6ccf9b2b",
"metadata": {},
"source": [
"To make this easier, we've downloaded Pandas documentation and stored the raw HTML files for you to download. We'll download them and then use LangChain's HTML document readers to parse them and store them in LanceDB as a vector store, along with relevant metadata."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7da77e75",
"metadata": {},
"outputs": [],
"source": [
"pandas_docs = requests.get(\"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip\")\n",
"with open('/tmp/pandas.documentation.zip', 'wb') as f:\n",
" f.write(pandas_docs.content)\n",
"\n",
"file = zipfile.ZipFile(\"/tmp/pandas.documentation.zip\")\n",
"file.extractall(path=\"/tmp/pandas_docs\")"
"You can download the Pandas documentation from https://pandas.pydata.org/docs/. To make sure we're not littering our repo with docs, we won't include it in the LanceDB repo, so download this and store it locally first."
]
},
{
@@ -154,8 +137,7 @@
"docs = []\n",
"\n",
"if not docs_path.exists():\n",
" for p in Path(\"/tmp/pandas_docs/pandas.documentation\").rglob(\"*.html\"):\n",
" print(p)\n",
" for p in Path(\"./pandas.documentation\").rglob(\"*.html\"):\n",
" if p.is_dir():\n",
" continue\n",
" loader = UnstructuredHTMLLoader(p)\n",

View File

@@ -13,16 +13,13 @@
from __future__ import annotations
import os
from pathlib import Path
import os
import pyarrow as pa
from pyarrow import fs
from .common import DATA, URI
from .table import LanceTable
from .util import get_uri_scheme, get_uri_location
from .util import get_uri_scheme
class LanceDBConnection:
@@ -50,20 +47,11 @@ class LanceDBConnection:
-------
A list of table names.
"""
try:
filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid:
raise NotImplementedError(
"Unsupported scheme: " + self.uri
)
try:
paths = filesystem.get_file_info(fs.FileSelector(get_uri_location(self.uri)))
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
tables = [os.path.splitext(file_info.base_name)[0] for file_info in paths if file_info.extension == 'lance']
return tables
if get_uri_scheme(self.uri) == "file":
return [p.stem for p in Path(self.uri).glob("*.lance")]
raise NotImplementedError(
"List table_names is only supported for local filesystem for now"
)
def __len__(self) -> int:
return len(self.table_names())
@@ -124,15 +112,3 @@ class LanceDBConnection:
A LanceTable object representing the table.
"""
return LanceTable(self, name)
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)

View File

@@ -1,130 +0,0 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Full text search index using tantivy-py"""
import os
from typing import List, Tuple
import pyarrow as pa
try:
import tantivy
except ImportError:
raise ImportError(
"Please install tantivy-py `pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985` to use the full text search feature."
)
from .table import LanceTable
def create_index(index_path: str, text_fields: List[str]) -> tantivy.Index:
"""
Create a new Index (not populated)
Parameters
----------
index_path : str
Path to the index directory
text_fields : List[str]
List of text fields to index
Returns
-------
index : tantivy.Index
The index object (not yet populated)
"""
# Declaring our schema.
schema_builder = tantivy.SchemaBuilder()
# special field that we'll populate with row_id
schema_builder.add_integer_field("doc_id", stored=True)
# data fields
for name in text_fields:
schema_builder.add_text_field(name, stored=True)
schema = schema_builder.build()
os.makedirs(index_path, exist_ok=True)
index = tantivy.Index(schema, path=index_path)
return index
def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -> int:
"""
Populate an index with data from a LanceTable
Parameters
----------
index : tantivy.Index
The index object
table : LanceTable
The table to index
fields : List[str]
List of fields to index
"""
# first check the fields exist and are string or large string type
for name in fields:
f = table.schema.field(name) # raises KeyError if not found
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
raise TypeError(f"Field {name} is not a string type")
# create a tantivy writer
writer = index.writer()
# write data into index
dataset = table.to_lance()
row_id = 0
for b in dataset.to_batches(columns=fields):
for i in range(b.num_rows):
doc = tantivy.Document()
doc.add_integer("doc_id", row_id)
for name in fields:
doc.add_text(name, b[name][i].as_py())
writer.add_document(doc)
row_id += 1
# commit changes
writer.commit()
return row_id
def search_index(
index: tantivy.Index, query: str, limit: int = 10
) -> Tuple[Tuple[int], Tuple[float]]:
"""
Search an index for a query
Parameters
----------
index : tantivy.Index
The index object
query : str
The query string
limit : int
The maximum number of results to return
Returns
-------
ids_and_score: list[tuple[int], tuple[float]]
A tuple of two tuples, the first containing the document ids
and the second containing the scores
"""
searcher = index.searcher()
query = index.parse_query(query)
# get top results
results = searcher.search(query, limit)
if results.count == 0:
return tuple(), tuple()
return tuple(
zip(
*[
(searcher.doc(doc_address)["doc_id"][0], score)
for score, doc_address in results.hits
]
)
)

View File

@@ -14,7 +14,6 @@ from __future__ import annotations
import numpy as np
import pandas as pd
import pyarrow as pa
from .common import VECTOR_COLUMN_NAME
@@ -132,6 +131,7 @@ class LanceQueryBuilder:
vector and the returned vector.
"""
ds = self._table.to_lance()
# TODO indexed search
tbl = ds.to_table(
columns=self._columns,
filter=self._where,
@@ -145,28 +145,3 @@ class LanceQueryBuilder:
},
)
return tbl.to_pandas()
class LanceFtsQueryBuilder(LanceQueryBuilder):
def to_df(self) -> pd.DataFrame:
try:
import tantivy
except ImportError:
raise ImportError(
"Please install tantivy-py `pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985` to use the full text search feature."
)
from .fts import search_index
# get the index path
index_path = self._table._get_fts_index_path()
# open the index
index = tantivy.Index.open(index_path)
# get the scores and doc ids
row_ids, scores = search_index(index, self._query, self._limit)
if len(row_ids) == 0:
return pd.DataFrame()
scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores)
return output_tbl.to_pandas()

View File

@@ -14,9 +14,7 @@
from __future__ import annotations
import os
import shutil
from functools import cached_property
from typing import List, Union
import lance
import numpy as np
@@ -26,8 +24,7 @@ from lance import LanceDataset
from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .query import LanceFtsQueryBuilder, LanceQueryBuilder
from .util import get_uri_scheme
from .query import LanceQueryBuilder
def _sanitize_data(data, schema):
@@ -133,27 +130,6 @@ class LanceTable:
)
self._reset_dataset()
def create_fts_index(self, field_names: Union[str, List[str]]):
"""Create a full-text search index on the table.
Warning - this API is highly experimental and is highly likely to change
in the future.
Parameters
----------
field_names: str or list of str
The name(s) of the field to index.
"""
from .fts import create_index, populate_index
if isinstance(field_names, str):
field_names = [field_names]
index = create_index(self._get_fts_index_path(), field_names)
populate_index(index, self, field_names)
def _get_fts_index_path(self):
return os.path.join(self._dataset_uri, "_indices", "tantivy")
@cached_property
def _dataset(self) -> LanceDataset:
return lance.dataset(self._dataset_uri, version=self._version)
@@ -182,7 +158,7 @@ class LanceTable:
self._reset_dataset()
return len(self)
def search(self, query: Union[VEC, str]) -> LanceQueryBuilder:
def search(self, query: VEC) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector.
@@ -198,10 +174,6 @@ class LanceTable:
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
if isinstance(query, str):
# fts
return LanceFtsQueryBuilder(self, query)
if isinstance(query, list):
query = np.array(query)
if isinstance(query, np.ndarray):
@@ -253,7 +225,8 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
vector_column_name: str
The name of the vector column.
"""
if vector_column_name not in data.column_names:
i = data.column_names.index(vector_column_name)
if i < 0:
raise ValueError(f"Missing vector column: {vector_column_name}")
vec_arr = data[vector_column_name].combine_chunks()
if pa.types.is_fixed_size_list(vec_arr.type):
@@ -265,4 +238,4 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
values = values.cast(pa.float32())
list_size = len(values) / len(data)
vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size)
return data.set_column(data.column_names.index(vector_column_name), vector_column_name, vec_arr)
return data.set_column(i, vector_column_name, vec_arr)

View File

@@ -41,23 +41,3 @@ def get_uri_scheme(uri: str) -> str:
# So we add special handling here for schemes that are a single character
scheme = "file"
return scheme
def get_uri_location(uri: str) -> str:
"""
Get the location of a URI. If the parameter is not a url, assumes it is just a path
Parameters
----------
uri : str
The URI to parse.
Returns
-------
str: Location part of the URL, without scheme
"""
parsed = urlparse(uri)
if not parsed.netloc:
return parsed.path
else:
return parsed.netloc + parsed.path

View File

@@ -1,7 +1,7 @@
[project]
name = "lancedb"
version = "0.1.6"
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"]
version = "0.1.2"
dependencies = ["pylance>=0.4.6", "ratelimiter", "retry", "tqdm"]
description = "lancedb"
authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" },
@@ -33,11 +33,11 @@ classifiers = [
]
[project.urls]
repository = "https://github.com/lancedb/lancedb"
repository = "https://github.com/eto-ai/lancedb"
[project.optional-dependencies]
tests = [
"pytest", "pytest-mock"
"pytest"
]
dev = [
"ruff", "pre-commit", "black"

View File

@@ -97,26 +97,3 @@ def test_create_mode(tmp_path):
)
tbl = db.create_table("test", data=new_data, mode="overwrite")
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
def test_delete_table(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
db.create_table("test", data=data)
with pytest.raises(Exception):
db.create_table("test", data=data)
assert db.table_names() == ["test"]
db.drop_table("test")
assert db.table_names() == []
db.create_table("test", data=data)
assert db.table_names() == ["test"]

View File

@@ -14,6 +14,7 @@ import sys
import numpy as np
import pyarrow as pa
from lancedb.embeddings import with_embeddings

View File

@@ -1,91 +0,0 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import lancedb.fts
import numpy as np
import pandas as pd
import pytest
import tantivy
import lancedb as ldb
@pytest.fixture
def table(tmp_path) -> ldb.table.LanceTable:
db = ldb.connect(tmp_path)
vectors = [np.random.randn(128) for _ in range(100)]
nouns = ("puppy", "car", "rabbit", "girl", "monkey")
verbs = ("runs", "hits", "jumps", "drives", "barfs")
adv = ("crazily.", "dutifully.", "foolishly.", "merrily.", "occasionally.")
adj = ("adorable", "clueless", "dirty", "odd", "stupid")
text = [
" ".join(
[
nouns[random.randrange(0, 5)],
verbs[random.randrange(0, 5)],
adv[random.randrange(0, 5)],
adj[random.randrange(0, 5)],
]
)
for _ in range(100)
]
table = db.create_table(
"test", data=pd.DataFrame({"vector": vectors, "text": text, "text2": text})
)
return table
def test_create_index(tmp_path):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert isinstance(index, tantivy.Index)
assert os.path.exists(str(tmp_path / "index"))
def test_populate_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert ldb.fts.populate_index(index, table, ["text"]) == len(table)
def test_search_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
ldb.fts.populate_index(index, table, ["text"])
index.reload()
results = ldb.fts.search_index(index, query="puppy", limit=10)
assert len(results) == 2
assert len(results[0]) == 10 # row_ids
assert len(results[1]) == 10 # scores
def test_create_index_from_table(tmp_path, table):
table.create_fts_index("text")
df = table.search("puppy").limit(10).select(["text"]).to_df()
assert len(df) == 10
assert "text" in df.columns
def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"])
df = table.search("puppy").limit(10).to_df()
assert len(df) == 10
assert "text" in df.columns
assert "text2" in df.columns
def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"])
mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_df()
assert len(df) == 0

View File

@@ -1,49 +0,0 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
import lancedb
# You need to setup AWS credentials an a base path to run this test. Example
# AWS_PROFILE=default TEST_S3_BASE_URL=s3://my_bucket/dataset pytest tests/test_io.py
@pytest.mark.skipif(
(os.environ.get("TEST_S3_BASE_URL") is None),
reason="please setup s3 base url",
)
def test_s3_io():
db = lancedb.connect(os.environ.get("TEST_S3_BASE_URL"))
assert db.table_names() == []
table = db.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
)
rs = table.search([100, 100]).limit(1).to_df()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
assert len(rs) == 1
assert rs["item"].iloc[0] == "foo"
assert db.table_names() == ["test"]
assert "test" in db
assert len(db) == 1
assert db.open_table("test").name == db["test"].name

View File

@@ -17,6 +17,7 @@ import pandas as pd
import pandas.testing as tm
import pyarrow as pa
import pytest
from lancedb.query import LanceQueryBuilder

View File

@@ -16,6 +16,7 @@ from pathlib import Path
import pandas as pd
import pyarrow as pa
import pytest
from lancedb.table import LanceTable

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.1.0"
version = "0.1.2"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"
@@ -15,7 +15,7 @@ arrow-ipc = "37.0"
arrow-schema = "37.0"
once_cell = "1"
futures = "0.3"
lance = "0.4.17"
lance = "0.4.3"
vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }

View File

@@ -0,0 +1,85 @@
How to release the node module
### 1. Bump the versions
<!-- TODO: we also need to bump the optional dependencies for node! -->
```shell
pushd rust/vectordb
cargo bump minor
popd
pushd rust/ffi/node
cargo bump minor
popd
pushd python
cargo bump minor
popd
pushd node
npm version minor
popd
git add -u
git commit -m "Bump versions"
git push
```
### 2. Push a new tag
```shell
git tag vX.X.X
git push --tag vX.X.X
```
When the tag is pushed, GitHub actions will start building the libraries and
will upload them to a draft release. Wait for those jobs to complete.
### 3. Publish the release
Once the jobs are complete, you can edit the
2. Push a tag, such as vX.X.X. Once the tag is pushrf, GitHub actions will start
building the native libraries and uploading them to a draft release. Wait for
those jobs to complete.
3. If the libraries are successful, edit the changelog and then publish the
release. Once you publish, a new action will start and upload all the
release artifacts to npm.
## Manual process
You can build the artifacts locally on a MacOS machine.
### Build the MacOS release libraries
One-time setup:
```shell
rustup target add x86_64-apple-darwin aarch64-apple-darwin
```
To build:
```shell
bash ci/build_macos_artifacts.sh
```
### Build the Linux release libraries
One-time setup, building the Docker container
```shell
cat ci/ubuntu_build.dockerfile | docker build -t lancedb-node-build -
```
To build:
```shell
docker run \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd):/io -w /io \
lancedb-node-build \
bash ci/build_linux_artifacts.sh
```

View File

@@ -1,15 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod vector;

View File

@@ -1,128 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::convert::TryFrom;
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::MetricType;
use neon::context::FunctionContext;
use neon::prelude::*;
use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
use crate::{runtime, JsTable};
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let index_params = cx.argument::<JsObject>(0)?;
let index_params_builder = get_index_params_builder(&mut cx, index_params).unwrap();
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
rt.block_on(async move {
let add_result = table
.lock()
.unwrap()
.create_index(&index_params_builder)
.await;
deferred.settle_with(&channel, move |mut cx| {
add_result
.map(|_| cx.undefined())
.or_else(|err| cx.throw_error(err.to_string()))
});
});
Ok(promise)
}
fn get_index_params_builder(
cx: &mut FunctionContext,
obj: Handle<JsObject>,
) -> Result<impl VectorIndexBuilder, String> {
let idx_type = obj
.get::<JsString, _, _>(cx, "type")
.map_err(|t| t.to_string())?
.value(cx);
match idx_type.as_str() {
"ivf_pq" => {
let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new();
let mut pq_params = PQBuildParams::default();
obj.get_opt::<JsString, _, _>(cx, "column")
.map_err(|t| t.to_string())?
.map(|s| index_builder.column(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "index_name")
.map_err(|t| t.to_string())?
.map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type")
.map_err(|t| t.to_string())?
.map(|s| MetricType::try_from(s.value(cx).as_str()))
.map(|mt| {
let metric_type = mt.unwrap();
index_builder.metric_type(metric_type);
pq_params.metric_type = metric_type;
});
let num_partitions = obj
.get_opt::<JsNumber, _, _>(cx, "num_partitions")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
let max_iters = obj
.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
num_partitions.map(|np| {
let max_iters = max_iters.unwrap_or(50);
let ivf_params = IvfBuildParams {
num_partitions: np,
max_iters,
};
index_builder.ivf_params(ivf_params)
});
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")
.map_err(|t| t.to_string())?
.map(|s| pq_params.use_opq = s.value(cx));
obj.get_opt::<JsNumber, _, _>(cx, "num_sub_vectors")
.map_err(|t| t.to_string())?
.map(|s| pq_params.num_sub_vectors = s.value(cx) as usize);
obj.get_opt::<JsNumber, _, _>(cx, "num_bits")
.map_err(|t| t.to_string())?
.map(|s| pq_params.num_bits = s.value(cx) as usize);
obj.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map_err(|t| t.to_string())?
.map(|s| pq_params.max_iters = s.value(cx) as usize);
obj.get_opt::<JsNumber, _, _>(cx, "max_opq_iters")
.map_err(|t| t.to_string())?
.map(|s| pq_params.max_opq_iters = s.value(cx) as usize);
Ok(index_builder)
}
t => Err(format!("{} is not a valid index type", t).to_string()),
}
}

View File

@@ -13,7 +13,6 @@
// limitations under the License.
use std::collections::HashMap;
use std::convert::TryFrom;
use std::ops::Deref;
use std::sync::{Arc, Mutex};
@@ -22,7 +21,6 @@ use arrow_ipc::writer::FileWriter;
use futures::{TryFutureExt, TryStreamExt};
use lance::arrow::RecordBatchBuffer;
use lance::dataset::WriteMode;
use lance::index::vector::MetricType;
use neon::prelude::*;
use neon::types::buffer::TypedArray;
use once_cell::sync::OnceCell;
@@ -36,18 +34,17 @@ use crate::arrow::arrow_buffer_to_record_batch;
mod arrow;
mod convert;
mod index;
struct JsDatabase {
database: Arc<Database>,
}
impl Finalize for JsDatabase {}
struct JsTable {
table: Arc<Mutex<Table>>,
}
impl Finalize for JsDatabase {}
impl Finalize for JsTable {}
fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
@@ -56,46 +53,23 @@ fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string())))
}
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
fn database_new(mut cx: FunctionContext) -> JsResult<JsBox<JsDatabase>> {
let path = cx.argument::<JsString>(0)?.value(&mut cx);
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
rt.spawn(async move {
let database = Database::connect(&path).await;
deferred.settle_with(&channel, move |mut cx| {
let db = JsDatabase {
database: Arc::new(database.or_else(|err| cx.throw_error(err.to_string()))?),
};
Ok(cx.boxed(db))
});
});
Ok(promise)
let db = JsDatabase {
database: Arc::new(Database::connect(path).or_else(|err| cx.throw_error(err.to_string()))?),
};
Ok(cx.boxed(db))
}
fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
fn database_table_names(mut cx: FunctionContext) -> JsResult<JsArray> {
let db = cx
.this()
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let database = db.database.clone();
rt.spawn(async move {
let tables_rst = database.table_names().await;
deferred.settle_with(&channel, move |mut cx| {
let tables = tables_rst.or_else(|err| cx.throw_error(err.to_string()))?;
let table_names = convert::vec_str_to_array(&tables, &mut cx);
table_names
});
});
Ok(promise)
let tables = db
.database
.table_names()
.or_else(|err| cx.throw_error(err.to_string()))?;
convert::vec_str_to_array(&tables, &mut cx)
}
fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
@@ -110,12 +84,10 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let (deferred, promise) = cx.promise();
rt.spawn(async move {
let table_rst = database.open_table(&table_name).await;
let table_rst = database.open_table(table_name).await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
let table = Arc::new(Mutex::new(table_rst.or_else(|err| cx.throw_error(err.to_string()))?));
Ok(cx.boxed(JsTable { table }))
});
});
@@ -124,43 +96,15 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let query_obj = cx.argument::<JsObject>(0)?;
let limit = query_obj
.get::<JsNumber, _, _>(&mut cx, "_limit")?
.value(&mut cx);
let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
.map(|arr| {
let js_array = arr.deref();
let mut projection_vec: Vec<String> = Vec::new();
for i in 0..js_array.len(&mut cx) {
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
projection_vec.push(entry.value(&mut cx));
}
projection_vec
});
let filter = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
.map(|s| s.value(&mut cx));
let refine_factor = query_obj
.get_opt::<JsNumber, _, _>(&mut cx, "_refineFactor")?
.map(|s| s.value(&mut cx))
.map(|i| i as u32);
let nprobes = query_obj
.get::<JsNumber, _, _>(&mut cx, "_nprobes")?
.value(&mut cx) as usize;
let metric_type = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_metricType")?
.map(|s| s.value(&mut cx))
.map(|s| MetricType::try_from(s.as_str()).unwrap());
let query_vector = cx.argument::<JsArray>(0)?; //. .as_value(&mut cx);
let limit = cx.argument::<JsNumber>(1)?.value(&mut cx);
let filter = cx.argument_opt(2).map(|f| f.downcast_or_throw::<JsString, _>(&mut cx).unwrap().value(&mut cx));
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?;
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
rt.spawn(async move {
@@ -169,11 +113,7 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
.unwrap()
.search(Float32Array::from(query))
.limit(limit as usize)
.refine_factor(refine_factor)
.nprobes(nprobes)
.filter(filter)
.metric_type(metric_type)
.select(select);
.filter(filter);
let record_batch_stream = builder.execute();
let results = record_batch_stream
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
@@ -221,12 +161,10 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
rt.block_on(async move {
let batch_reader: Box<dyn RecordBatchReader> = Box::new(RecordBatchBuffer::new(batches));
let table_rst = database.create_table(&table_name, batch_reader).await;
let table_rst = database.create_table(table_name, batch_reader).await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
let table = Arc::new(Mutex::new(table_rst.or_else(|err| cx.throw_error(err.to_string()))?));
Ok(cx.boxed(JsTable { table }))
});
});
@@ -240,7 +178,9 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
("overwrite", WriteMode::Overwrite),
]);
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx
.this()
.downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
@@ -264,6 +204,7 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
Ok(promise)
}
#[neon::main]
fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("databaseNew", database_new)?;
@@ -272,9 +213,5 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableSearch", table_search)?;
cx.export_function("tableCreate", table_create)?;
cx.export_function("tableAdd", table_add)?;
cx.export_function(
"tableCreateVectorIndex",
index::vector::table_create_vector_index,
)?;
Ok(())
}

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb"
version = "0.0.1"
version = "0.1.2"
edition = "2021"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
@@ -10,13 +10,9 @@ repository = "https://github.com/lancedb/lancedb"
[dependencies]
arrow-array = "37.0"
arrow-data = "37.0"
arrow-schema = "37.0"
object_store = "0.5.6"
snafu = "0.7.4"
lance = "0.4.17"
lance = "0.4.3"
tokio = { version = "1.23", features = ["rt-multi-thread"] }
[dev-dependencies]
tempfile = "3.5.0"
rand = { version = "0.8.3", features = ["small_rng"] }

View File

@@ -12,20 +12,16 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::fs::create_dir_all;
use std::path::Path;
use arrow_array::RecordBatchReader;
use lance::io::object_store::ObjectStore;
use snafu::prelude::*;
use std::fs::create_dir_all;
use std::path::{Path, PathBuf};
use std::sync::Arc;
use crate::error::{CreateDirSnafu, Result};
use crate::error::Result;
use crate::table::Table;
pub struct Database {
object_store: ObjectStore,
pub(crate) uri: String,
pub(crate) path: Arc<PathBuf>,
}
const LANCE_EXTENSION: &str = "lance";
@@ -41,24 +37,13 @@ impl Database {
/// # Returns
///
/// * A [Database] object.
pub async fn connect(uri: &str) -> Result<Database> {
let object_store = ObjectStore::new(uri).await?;
if object_store.is_local() {
Self::try_create_dir(uri).context(CreateDirSnafu { path: uri })?;
}
Ok(Database {
uri: uri.to_string(),
object_store,
})
}
/// Try to create a local directory to store the lancedb dataset
fn try_create_dir(path: &str) -> core::result::Result<(), std::io::Error> {
let path = Path::new(path);
if !path.try_exists()? {
pub fn connect<P: AsRef<Path>>(path: P) -> Result<Database> {
if !path.as_ref().try_exists()? {
create_dir_all(&path)?;
}
Ok(())
Ok(Database {
path: Arc::new(path.as_ref().to_path_buf()),
})
}
/// Get the names of all tables in the database.
@@ -66,13 +51,12 @@ impl Database {
/// # Returns
///
/// * A [Vec<String>] with all table names.
pub async fn table_names(&self) -> Result<Vec<String>> {
pub fn table_names(&self) -> Result<Vec<String>> {
let f = self
.object_store
.read_dir("/")
.await?
.iter()
.map(|fname| Path::new(fname))
.path
.read_dir()?
.flatten()
.map(|dir_entry| dir_entry.path())
.filter(|path| {
let is_lance = path
.extension()
@@ -92,10 +76,10 @@ impl Database {
pub async fn create_table(
&self,
name: &str,
name: String,
batches: Box<dyn RecordBatchReader>,
) -> Result<Table> {
Table::create(&self.uri, name, batches).await
Table::create(self.path.clone(), name, batches).await
}
/// Open a table in the database.
@@ -106,8 +90,8 @@ impl Database {
/// # Returns
///
/// * A [Table] object.
pub async fn open_table(&self, name: &str) -> Result<Table> {
Table::open(&self.uri, name).await
pub async fn open_table(&self, name: String) -> Result<Table> {
Table::open(self.path.clone(), name).await
}
}
@@ -121,10 +105,10 @@ mod tests {
#[tokio::test]
async fn test_connect() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let db = Database::connect(uri).await.unwrap();
let path_buf = tmp_dir.into_path();
let db = Database::connect(&path_buf);
assert_eq!(db.uri, uri);
assert_eq!(db.unwrap().path.as_path(), path_buf.as_path())
}
#[tokio::test]
@@ -134,16 +118,10 @@ mod tests {
create_dir_all(tmp_dir.path().join("table2.lance")).unwrap();
create_dir_all(tmp_dir.path().join("invalidlance")).unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let db = Database::connect(uri).await.unwrap();
let tables = db.table_names().await.unwrap();
let db = Database::connect(&tmp_dir.into_path()).unwrap();
let tables = db.table_names().unwrap();
assert_eq!(tables.len(), 2);
assert!(tables.contains(&String::from("table1")));
assert!(tables.contains(&String::from("table2")));
}
#[tokio::test]
async fn test_connect_s3() {
// let db = Database::connect("s3://bucket/path/to/database").await.unwrap();
}
}

View File

@@ -12,50 +12,32 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use snafu::Snafu;
#[derive(Debug, Snafu)]
#[snafu(visibility(pub(crate)))]
#[derive(Debug)]
pub enum Error {
#[snafu(display("LanceDBError: Invalid table name: {name}"))]
InvalidTableName { name: String },
#[snafu(display("LanceDBError: Table '{name}' was not found"))]
TableNotFound { name: String },
#[snafu(display("LanceDBError: Table '{name}' already exists"))]
TableAlreadyExists { name: String },
#[snafu(display("LanceDBError: Unable to created lance dataset at {path}: {source}"))]
CreateDir {
path: String,
source: std::io::Error,
},
#[snafu(display("LanceDBError: {message}"))]
Store { message: String },
#[snafu(display("LanceDBError: {message}"))]
Lance { message: String },
IO(String),
Lance(String),
}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let (catalog, message) = match self {
Self::IO(s) => ("I/O", s.as_str()),
Self::Lance(s) => ("Lance", s.as_str()),
};
write!(f, "LanceDBError({catalog}): {message}")
}
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<std::io::Error> for Error {
fn from(e: std::io::Error) -> Self {
Self::IO(e.to_string())
}
}
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::Lance {
message: e.to_string(),
}
}
}
impl From<object_store::Error> for Error {
fn from(e: object_store::Error) -> Self {
Self::Store {
message: e.to_string(),
}
}
}
impl From<object_store::path::Error> for Error {
fn from(e: object_store::path::Error) -> Self {
Self::Store {
message: e.to_string(),
}
Self::Lance(e.to_string())
}
}

View File

@@ -1,15 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod vector;

View File

@@ -1,163 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::{MetricType, VectorIndexParams};
pub trait VectorIndexBuilder {
fn get_column(&self) -> Option<String>;
fn get_index_name(&self) -> Option<String>;
fn build(&self) -> VectorIndexParams;
}
pub struct IvfPQIndexBuilder {
column: Option<String>,
index_name: Option<String>,
metric_type: Option<MetricType>,
ivf_params: Option<IvfBuildParams>,
pq_params: Option<PQBuildParams>,
}
impl IvfPQIndexBuilder {
pub fn new() -> IvfPQIndexBuilder {
IvfPQIndexBuilder {
column: None,
index_name: None,
metric_type: None,
ivf_params: None,
pq_params: None,
}
}
}
impl IvfPQIndexBuilder {
pub fn column(&mut self, column: String) -> &mut IvfPQIndexBuilder {
self.column = Some(column);
self
}
pub fn index_name(&mut self, index_name: String) -> &mut IvfPQIndexBuilder {
self.index_name = Some(index_name);
self
}
pub fn metric_type(&mut self, metric_type: MetricType) -> &mut IvfPQIndexBuilder {
self.metric_type = Some(metric_type);
self
}
pub fn ivf_params(&mut self, ivf_params: IvfBuildParams) -> &mut IvfPQIndexBuilder {
self.ivf_params = Some(ivf_params);
self
}
pub fn pq_params(&mut self, pq_params: PQBuildParams) -> &mut IvfPQIndexBuilder {
self.pq_params = Some(pq_params);
self
}
}
impl VectorIndexBuilder for IvfPQIndexBuilder {
fn get_column(&self) -> Option<String> {
self.column.clone()
}
fn get_index_name(&self) -> Option<String> {
self.index_name.clone()
}
fn build(&self) -> VectorIndexParams {
let ivf_params = self.ivf_params.clone().unwrap_or(IvfBuildParams::default());
let pq_params = self.pq_params.clone().unwrap_or(PQBuildParams::default());
VectorIndexParams::with_ivf_pq_params(pq_params.metric_type, ivf_params, pq_params)
}
}
#[cfg(test)]
mod tests {
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::{MetricType, StageParams};
use crate::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
#[test]
fn test_builder_no_params() {
let index_builder = IvfPQIndexBuilder::new();
assert!(index_builder.get_column().is_none());
assert!(index_builder.get_index_name().is_none());
let index_params = index_builder.build();
assert_eq!(index_params.stages.len(), 2);
if let StageParams::Ivf(ivf_params) = index_params.stages.get(0).unwrap() {
let default = IvfBuildParams::default();
assert_eq!(ivf_params.num_partitions, default.num_partitions);
assert_eq!(ivf_params.max_iters, default.max_iters);
} else {
panic!("Expected first stage to be ivf")
}
if let StageParams::PQ(pq_params) = index_params.stages.get(1).unwrap() {
assert_eq!(pq_params.use_opq, false);
} else {
panic!("Expected second stage to be pq")
}
}
#[test]
fn test_builder_all_params() {
let mut index_builder = IvfPQIndexBuilder::new();
index_builder
.column("c".to_owned())
.metric_type(MetricType::Cosine)
.index_name("index".to_owned());
assert_eq!(index_builder.column.clone().unwrap(), "c");
assert_eq!(index_builder.metric_type.unwrap(), MetricType::Cosine);
assert_eq!(index_builder.index_name.clone().unwrap(), "index");
let ivf_params = IvfBuildParams::new(500);
let mut pq_params = PQBuildParams::default();
pq_params.use_opq = true;
pq_params.max_iters = 1;
pq_params.num_bits = 8;
pq_params.num_sub_vectors = 50;
pq_params.metric_type = MetricType::Cosine;
pq_params.max_opq_iters = 2;
index_builder.ivf_params(ivf_params);
index_builder.pq_params(pq_params);
let index_params = index_builder.build();
assert_eq!(index_params.stages.len(), 2);
if let StageParams::Ivf(ivf_params) = index_params.stages.get(0).unwrap() {
assert_eq!(ivf_params.num_partitions, 500);
} else {
assert!(false, "Expected first stage to be ivf")
}
if let StageParams::PQ(pq_params) = index_params.stages.get(1).unwrap() {
assert_eq!(pq_params.use_opq, true);
assert_eq!(pq_params.max_iters, 1);
assert_eq!(pq_params.num_bits, 8);
assert_eq!(pq_params.num_sub_vectors, 50);
assert_eq!(pq_params.metric_type, MetricType::Cosine);
assert_eq!(pq_params.max_opq_iters, 2);
} else {
assert!(false, "Expected second stage to be pq")
}
}
}

View File

@@ -14,6 +14,5 @@
pub mod database;
pub mod error;
pub mod index;
pub mod query;
pub mod table;

View File

@@ -27,10 +27,9 @@ pub struct Query {
pub query_vector: Float32Array,
pub limit: usize,
pub filter: Option<String>,
pub select: Option<Vec<String>>,
pub nprobes: usize,
pub refine_factor: Option<u32>,
pub metric_type: Option<MetricType>,
pub metric_type: MetricType,
pub use_index: bool,
}
@@ -52,10 +51,9 @@ impl Query {
limit: 10,
nprobes: 20,
refine_factor: None,
metric_type: None,
metric_type: MetricType::L2,
use_index: false,
filter: None,
select: None,
filter: None
}
}
@@ -73,13 +71,10 @@ impl Query {
self.limit,
)?;
scanner.nprobs(self.nprobes);
scanner.distance_metric(self.metric_type);
scanner.use_index(self.use_index);
self.select
.as_ref()
.map(|p| scanner.project(p.as_slice()));
self.filter.as_ref().map(|f| scanner.filter(f));
self.refine_factor.map(|rf| scanner.refine(rf));
self.metric_type.map(|mt| scanner.distance_metric(mt));
Ok(scanner.try_into_stream().await?)
}
@@ -128,7 +123,7 @@ impl Query {
/// # Arguments
///
/// * `metric_type` - The distance metric to use. By default [MetricType::L2] is used.
pub fn metric_type(mut self, metric_type: Option<MetricType>) -> Query {
pub fn metric_type(mut self, metric_type: MetricType) -> Query {
self.metric_type = metric_type;
self
}
@@ -143,23 +138,10 @@ impl Query {
self
}
/// A filter statement to be applied to this query.
///
/// # Arguments
///
/// * `filter` - value A filter in the same format used by a sql WHERE clause.
pub fn filter(mut self, filter: Option<String>) -> Query {
self.filter = filter;
self
}
/// Return only the specified columns.
///
/// Only select the specified columns. If not specified, all columns will be returned.
pub fn select(mut self, columns: Option<Vec<String>>) -> Query {
self.select = columns;
self
}
}
#[cfg(test)]
@@ -192,14 +174,14 @@ mod tests {
.limit(100)
.nprobes(1000)
.use_index(true)
.metric_type(Some(MetricType::Cosine))
.metric_type(MetricType::Cosine)
.refine_factor(Some(999));
assert_eq!(query.query_vector, new_vector);
assert_eq!(query.limit, 100);
assert_eq!(query.nprobes, 1000);
assert_eq!(query.use_index, true);
assert_eq!(query.metric_type, Some(MetricType::Cosine));
assert_eq!(query.metric_type, MetricType::Cosine);
assert_eq!(query.refine_factor, Some(999));
}

View File

@@ -12,35 +12,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::path::Path;
use std::path::PathBuf;
use std::sync::Arc;
use arrow_array::{Float32Array, RecordBatchReader};
use lance::dataset::{Dataset, WriteMode, WriteParams};
use lance::index::IndexType;
use snafu::prelude::*;
use crate::error::{Error, InvalidTableNameSnafu, Result};
use crate::index::vector::VectorIndexBuilder;
use crate::error::{Error, Result};
use crate::query::Query;
pub const VECTOR_COLUMN_NAME: &str = "vector";
pub const LANCE_FILE_EXTENSION: &str = "lance";
/// A table in a LanceDB database.
#[derive(Debug)]
pub struct Table {
name: String,
uri: String,
path: String,
dataset: Arc<Dataset>,
}
impl std::fmt::Display for Table {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Table({})", self.name)
}
}
impl Table {
/// Opens an existing Table
///
@@ -52,28 +43,18 @@ impl Table {
/// # Returns
///
/// * A [Table] object.
pub async fn open(base_uri: &str, name: &str) -> Result<Self> {
let path = Path::new(base_uri);
let table_uri = path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let uri = table_uri
.as_path()
pub async fn open(base_path: Arc<PathBuf>, name: String) -> Result<Self> {
let ds_path = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let ds_uri = ds_path
.to_str()
.context(InvalidTableNameSnafu { name })?;
let dataset = Dataset::open(&uri).await.map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
name: name.to_string(),
},
e => Error::Lance {
message: e.to_string(),
},
})?;
Ok(Table {
name: name.to_string(),
uri: uri.to_string(),
.ok_or(Error::IO(format!("Unable to find table {}", name)))?;
let dataset = Dataset::open(ds_uri).await?;
let table = Table {
name,
path: ds_uri.to_string(),
dataset: Arc::new(dataset),
})
};
Ok(table)
}
/// Creates a new Table
@@ -88,52 +69,18 @@ impl Table {
///
/// * A [Table] object.
pub async fn create(
base_uri: &str,
name: &str,
base_path: Arc<PathBuf>,
name: String,
mut batches: Box<dyn RecordBatchReader>,
) -> Result<Self> {
let base_path = Path::new(base_uri);
let table_uri = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let uri = table_uri
.as_path()
let ds_path = base_path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let path = ds_path
.to_str()
.context(InvalidTableNameSnafu { name })?
.to_string();
let dataset = Dataset::write(&mut batches, &uri, Some(WriteParams::default()))
.await
.map_err(|e| match e {
lance::Error::DatasetAlreadyExists { .. } => Error::TableAlreadyExists {
name: name.to_string(),
},
e => Error::Lance {
message: e.to_string(),
},
})?;
Ok(Table {
name: name.to_string(),
uri,
dataset: Arc::new(dataset),
})
}
.ok_or(Error::IO(format!("Unable to find table {}", name)))?;
/// Create index on the table.
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt;
let dataset = self
.dataset
.create_index(
&[index_builder
.get_column()
.unwrap_or(VECTOR_COLUMN_NAME.to_string())
.as_str()],
IndexType::Vector,
index_builder.get_index_name(),
&index_builder.build(),
)
.await?;
self.dataset = Arc::new(dataset);
Ok(())
let dataset =
Arc::new(Dataset::write(&mut batches, path, Some(WriteParams::default())).await?);
Ok(Table { name, path: path.to_string(), dataset })
}
/// Insert records into this Table
@@ -148,12 +95,12 @@ impl Table {
pub async fn add(
&mut self,
mut batches: Box<dyn RecordBatchReader>,
write_mode: Option<WriteMode>,
write_mode: Option<WriteMode>
) -> Result<usize> {
let mut params = WriteParams::default();
params.mode = write_mode.unwrap_or(WriteMode::Append);
self.dataset = Arc::new(Dataset::write(&mut batches, &self.uri, Some(params)).await?);
self.dataset = Arc::new(Dataset::write(&mut batches, self.path.as_str(), Some(params)).await?);
Ok(batches.count())
}
@@ -178,88 +125,60 @@ impl Table {
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow_array::{
Array, FixedSizeListArray, Float32Array, Int32Array, RecordBatch, RecordBatchReader,
};
use arrow_data::ArrayDataBuilder;
use arrow_array::{Float32Array, Int32Array, RecordBatch, RecordBatchReader};
use arrow_schema::{DataType, Field, Schema};
use lance::arrow::RecordBatchBuffer;
use lance::dataset::{Dataset, WriteMode};
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use rand::Rng;
use std::sync::Arc;
use tempfile::tempdir;
use super::*;
use crate::index::vector::IvfPQIndexBuilder;
use crate::table::Table;
#[tokio::test]
async fn test_new_table_not_exists() {
let tmp_dir = tempdir().unwrap();
let path_buf = tmp_dir.into_path();
let table = Table::open(Arc::new(path_buf), "test".to_string()).await;
assert!(table.is_err());
}
#[tokio::test]
async fn test_open() {
let tmp_dir = tempdir().unwrap();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = tmp_dir.path().to_str().unwrap();
let path_buf = tmp_dir.into_path();
let mut batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
Dataset::write(&mut batches, dataset_path.to_str().unwrap(), None)
Dataset::write(
&mut batches,
path_buf.join("test.lance").to_str().unwrap(),
None,
)
.await
.unwrap();
let table = Table::open(Arc::new(path_buf), "test".to_string())
.await
.unwrap();
let table = Table::open(uri, "test").await.unwrap();
assert_eq!(table.name, "test")
}
#[tokio::test]
async fn test_open_not_found() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let table = Table::open(uri, "test").await;
assert!(matches!(table.unwrap_err(), Error::TableNotFound { .. }));
}
#[test]
fn test_object_store_path() {
use std::path::Path as StdPath;
let p = StdPath::new("s3://bucket/path/to/file");
let c = p.join("subfile");
assert_eq!(c.to_str().unwrap(), "s3://bucket/path/to/file/subfile");
}
#[tokio::test]
async fn test_create_already_exists() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
Table::create(&uri, "test", batches).await.unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let result = Table::create(&uri, "test", batches).await;
assert!(matches!(
result.unwrap_err(),
Error::TableAlreadyExists { .. }
));
}
#[tokio::test]
async fn test_add() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let path_buf = tmp_dir.into_path();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let mut table = Table::create(&uri, "test", batches).await.unwrap();
let mut table = Table::create(Arc::new(path_buf), "test".to_string(), batches).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches: Box<dyn RecordBatchReader> =
Box::new(RecordBatchBuffer::new(vec![RecordBatch::try_new(
schema,
vec![Arc::new(Int32Array::from_iter_values(100..110))],
)
.unwrap()]));
let new_batches: Box<dyn RecordBatchReader> = Box::new(RecordBatchBuffer::new(vec![RecordBatch::try_new(
schema,
vec![Arc::new(Int32Array::from_iter_values(100..110))],
)
.unwrap()]));
table.add(new_batches, None).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 20);
@@ -269,24 +188,19 @@ mod tests {
#[tokio::test]
async fn test_add_overwrite() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let path_buf = tmp_dir.into_path();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let mut table = Table::create(uri, "test", batches).await.unwrap();
let mut table = Table::create(Arc::new(path_buf), "test".to_string(), batches).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches: Box<dyn RecordBatchReader> =
Box::new(RecordBatchBuffer::new(vec![RecordBatch::try_new(
schema,
vec![Arc::new(Int32Array::from_iter_values(100..110))],
)
.unwrap()]));
let new_batches: Box<dyn RecordBatchReader> = Box::new(RecordBatchBuffer::new(vec![RecordBatch::try_new(
schema,
vec![Arc::new(Int32Array::from_iter_values(100..110))],
).unwrap()]));
table
.add(new_batches, Some(WriteMode::Overwrite))
.await
.unwrap();
table.add(new_batches, Some(WriteMode::Overwrite)).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
assert_eq!(table.name, "test");
}
@@ -294,16 +208,21 @@ mod tests {
#[tokio::test]
async fn test_search() {
let tmp_dir = tempdir().unwrap();
let dataset_path = tmp_dir.path().join("test.lance");
let uri = tmp_dir.path().to_str().unwrap();
let path_buf = tmp_dir.into_path();
let mut batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
Dataset::write(&mut batches, dataset_path.to_str().unwrap(), None)
Dataset::write(
&mut batches,
path_buf.join("test.lance").to_str().unwrap(),
None,
)
.await
.unwrap();
let table = Table::open(Arc::new(path_buf), "test".to_string())
.await
.unwrap();
let table = Table::open(uri, "test").await.unwrap();
let vector = Float32Array::from_iter_values([0.1, 0.2]);
let query = table.search(vector.clone());
assert_eq!(vector, query.query_vector);
@@ -317,72 +236,4 @@ mod tests {
)
.unwrap()])
}
#[tokio::test]
async fn test_create_index() {
use arrow_array::RecordBatch;
use arrow_schema::{DataType, Field, Schema as ArrowSchema};
use rand;
use std::iter::repeat_with;
use arrow_array::Float32Array;
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let dimension = 16;
let schema = Arc::new(ArrowSchema::new(vec![Field::new(
"embeddings",
DataType::FixedSizeList(
Arc::new(Field::new("item", DataType::Float32, true)),
dimension,
),
false,
)]));
let mut rng = rand::thread_rng();
let float_arr = Float32Array::from(
repeat_with(|| rng.gen::<f32>())
.take(512 * dimension as usize)
.collect::<Vec<f32>>(),
);
let vectors = Arc::new(create_fixed_size_list(float_arr, dimension).unwrap());
let batches = RecordBatchBuffer::new(vec![RecordBatch::try_new(
schema.clone(),
vec![vectors.clone()],
)
.unwrap()]);
let reader: Box<dyn RecordBatchReader + Send> = Box::new(batches);
let mut table = Table::create(uri, "test", reader).await.unwrap();
let mut i = IvfPQIndexBuilder::new();
let index_builder = i
.column("embeddings".to_string())
.index_name("my_index".to_string())
.ivf_params(IvfBuildParams::new(256))
.pq_params(PQBuildParams::default());
table.create_index(index_builder).await.unwrap();
assert_eq!(table.dataset.load_indices().await.unwrap().len(), 1);
assert_eq!(table.count_rows().await.unwrap(), 512);
assert_eq!(table.name, "test");
}
fn create_fixed_size_list<T: Array>(values: T, list_size: i32) -> Result<FixedSizeListArray> {
let list_type = DataType::FixedSizeList(
Arc::new(Field::new("item", values.data_type().clone(), true)),
list_size,
);
let data = ArrayDataBuilder::new(list_type)
.len(values.len() / list_size as usize)
.add_child_data(values.into_data())
.build()
.unwrap();
Ok(FixedSizeListArray::from(data))
}
}