Compare commits

..

1 Commits

Author SHA1 Message Date
Lance Release
6b5130cccb Bump version: 0.21.0-beta.0 → 0.21.0 2025-06-20 05:46:32 +00:00
37 changed files with 351 additions and 571 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.21.1"
current_version = "0.21.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

386
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,14 +21,14 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.31.1", features = ["dynamodb"] }
lance-io = { "version" = "=0.31.1" }
lance-index = { "version" = "=0.31.1" }
lance-linalg = { "version" = "=0.31.1" }
lance-table = { "version" = "=0.31.1" }
lance-testing = { "version" = "=0.31.1" }
lance-datafusion = { "version" = "=0.31.1" }
lance-encoding = { "version" = "=0.31.1" }
lance = { "version" = "=0.30.0", "features" = ["dynamodb"] }
lance-io = "=0.30.0"
lance-index = "=0.30.0"
lance-linalg = "=0.30.0"
lance-table = "=0.30.0"
lance-testing = "=0.30.0"
lance-datafusion = "=0.30.0"
lance-encoding = "=0.30.0"
# Note that this one does not include pyarrow
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
@@ -39,20 +39,20 @@ arrow-schema = "55.1"
arrow-arith = "55.1"
arrow-cast = "55.1"
async-trait = "0"
datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "48.0"
datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "48.0"
datafusion-expr = "48.0"
datafusion-physical-plan = "48.0"
datafusion = { version = "47.0", default-features = false }
datafusion-catalog = "47.0"
datafusion-common = { version = "47.0", default-features = false }
datafusion-execution = "47.0"
datafusion-expr = "47.0"
datafusion-physical-plan = "47.0"
env_logger = "0.11"
half = { "version" = "2.6.0", default-features = false, features = [
half = { "version" = "=2.5.0", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
moka = { version = "0.12", features = ["future"] }
object_store = "0.12.0"
object_store = "0.11.0"
pin-project = "1.0.7"
snafu = "0.8"
url = "2"

View File

@@ -428,7 +428,7 @@
"\n",
"**Why?** \n",
"Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n",
"- **Use the pre-prepared table with index created** (provided below) to proceed directly to **Step 7**: search. \n",
"- **Use the pre-prepared table with index created ** (provided below) to proceed directly to step7: search. \n",
"- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n",
"- **Step 6** contains the details on creating the index on the multivector column"
]

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.1-final.0</version>
<version>0.21.0-final.0</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.1-final.0</version>
<version>0.21.0-final.0</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

44
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.21.1-beta.1",
"version": "0.20.1-beta.2",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.21.1-beta.1",
"version": "0.20.1-beta.2",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.21.1-beta.1",
"@lancedb/vectordb-darwin-x64": "0.21.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.21.1-beta.1"
"@lancedb/vectordb-darwin-arm64": "0.20.1-beta.2",
"@lancedb/vectordb-darwin-x64": "0.20.1-beta.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.20.1-beta.2",
"@lancedb/vectordb-linux-x64-gnu": "0.20.1-beta.2",
"@lancedb/vectordb-win32-x64-msvc": "0.20.1-beta.2"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -327,9 +327,9 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.21.1-beta.1.tgz",
"integrity": "sha512-D9SOLFb/40E2/9bt82xOti3jogRAaR1UkT2LfGZJw/0wBu8d8/xKjWgfm3d26S5K6in6DWsX1njLxevrFqD5HA==",
"version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.20.1-beta.2.tgz",
"integrity": "sha512-mqi0yI+ZwBTydaDy1FRHAUZwrWS28u6tbHTe1s4uSrmERbVI6PfmoPR+NZWWAp6ZhlseSdl/+yeI4imk11rQSw==",
"cpu": [
"arm64"
],
@@ -339,9 +339,9 @@
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.21.1-beta.1.tgz",
"integrity": "sha512-JnZ41aDOJs6LWfI9t/+MnpqsK/Fj9r/hDdZSOjcQquLOcm2eP3NnvEnDvn+1pqWBN6ceqf1avTatPBGnD/yhNA==",
"version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.20.1-beta.2.tgz",
"integrity": "sha512-m8EYYA8JZIeNsJqQsBDUMu6r31/u7FzpjonJ4Y+CjapVl6UdvI65KUkeL2dYrFao++RuIoaiqcm3e7gRgFZpXQ==",
"cpu": [
"x64"
],
@@ -351,9 +351,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.21.1-beta.1.tgz",
"integrity": "sha512-Xnw0wYtnfzVUr4DzppJCSx+HZdAHr6sqMC8SdaYNQ9XEjBZE20n5SO2AdBYjejbmONJ7lpGs3ydnLIZ6N40dAQ==",
"version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.20.1-beta.2.tgz",
"integrity": "sha512-3Og2+bk4GlWmMO1Yg2HBfeb5zrOMLaIHD7bEqQ4+6yw4IckAaV+ke05H0tyyqmOVrOQ0LpvtXgD7pPztjm9r9A==",
"cpu": [
"arm64"
],
@@ -363,9 +363,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.21.1-beta.1.tgz",
"integrity": "sha512-7S7gV13hv9Ho5W1Jat3FYiaMJOjRAwZOol7lKvOhU+sR/tJMEfZIOWAgymoqhAowbMtf+wwLoeKacfybXGET/w==",
"version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.20.1-beta.2.tgz",
"integrity": "sha512-mwTQyA/FBoU/FkPuvCNBZG3y83gBN+iYoejehBH2HBkLUIcmlsDgSRZ1OQ+f9ijj12EMBCA11tBUPA9zhHzyrw==",
"cpu": [
"x64"
],
@@ -375,9 +375,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.21.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.21.1-beta.1.tgz",
"integrity": "sha512-w6fEQA9IquvJ/GUYfiawRQvvdFD6OU44UW9JWm+FoscUFzdLiV7qmH4QjYEeEXQD7ob83ikFaxXGPTksYXpNOA==",
"version": "0.20.1-beta.2",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.20.1-beta.2.tgz",
"integrity": "sha512-VkjNpqhK3l3uHLLPmox+HrmKPMaZgV+qsGQWx0nfseGnSOEmXAWZWQFe0APVCQ9y0xTypQB0oH7eSOPZv2t4WQ==",
"cpu": [
"x64"
],

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.21.1",
"version": "0.21.0",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
@@ -89,10 +89,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.21.1",
"@lancedb/vectordb-darwin-arm64": "0.21.1",
"@lancedb/vectordb-linux-x64-gnu": "0.21.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.1",
"@lancedb/vectordb-win32-x64-msvc": "0.21.1"
"@lancedb/vectordb-darwin-x64": "0.21.0",
"@lancedb/vectordb-darwin-arm64": "0.21.0",
"@lancedb/vectordb-linux-x64-gnu": "0.21.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.0",
"@lancedb/vectordb-win32-x64-msvc": "0.21.0"
}
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.21.1"
version = "0.21.0"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -368,9 +368,9 @@ describe("merge insert", () => {
{ a: 4, b: "z" },
];
const result = (await table.toArrow()).toArray().sort((a, b) => a.a - b.a);
expect(result.map((row) => ({ ...row }))).toEqual(expected);
expect(
JSON.parse(JSON.stringify((await table.toArrow()).toArray())),
).toEqual(expected);
});
test("conditional update", async () => {
const newData = [

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.21.1",
"version": "0.21.0",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.21.1",
"version": "0.21.0",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.21.1",
"version": "0.21.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.21.1",
"version": "0.21.0",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.21.1",
"version": "0.21.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.21.1",
"version": "0.21.0",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.21.1",
"version": "0.21.0",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.21.1",
"version": "0.21.0",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.21.1-beta.1",
"version": "0.20.1-beta.2",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.21.1-beta.1",
"version": "0.20.1-beta.2",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.21.1",
"version": "0.21.0",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.24.1"
current_version = "0.24.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.24.1"
version = "0.24.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -85,7 +85,7 @@ embeddings = [
"boto3>=1.28.57",
"awscli>=1.29.57",
"botocore>=1.31.57",
"ollama>=0.3.0",
"ollama",
"ibm-watsonx-ai>=1.1.2",
]
azure = ["adlfs>=2024.2.0"]

View File

@@ -2,15 +2,14 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from functools import cached_property
from typing import TYPE_CHECKING, List, Optional, Sequence, Union
import numpy as np
from typing import TYPE_CHECKING, List, Optional, Union
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
if TYPE_CHECKING:
import numpy as np
import ollama
@@ -29,21 +28,23 @@ class OllamaEmbeddings(TextEmbeddingFunction):
keep_alive: Optional[Union[float, str]] = None
ollama_client_kwargs: Optional[dict] = {}
def ndims(self) -> int:
def ndims(self):
return len(self.generate_embeddings(["foo"])[0])
def _compute_embedding(self, text: Sequence[str]) -> Sequence[Sequence[float]]:
response = self._ollama_client.embed(
model=self.name,
input=text,
options=self.options,
keep_alive=self.keep_alive,
def _compute_embedding(self, text) -> Union["np.array", None]:
return (
self._ollama_client.embeddings(
model=self.name,
prompt=text,
options=self.options,
keep_alive=self.keep_alive,
)["embedding"]
or None
)
return response.embeddings
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> list[Union[np.array, None]]:
self, texts: Union[List[str], "np.ndarray"]
) -> list[Union["np.array", None]]:
"""
Get the embeddings for the given texts
@@ -53,8 +54,8 @@ class OllamaEmbeddings(TextEmbeddingFunction):
The texts to embed
"""
# TODO retry, rate limit, token limit
embeddings = self._compute_embedding(texts)
return list(embeddings)
embeddings = [self._compute_embedding(text) for text in texts]
return embeddings
@cached_property
def _ollama_client(self) -> "ollama.Client":

View File

@@ -3042,21 +3042,15 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Vector Search Plan:
ProjectionExec: expr=[vector@0 as vector, text@3 as text, _distance@2 as _distance]
Take: columns="vector, _rowid, _distance, (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
<BLANKLINE>
Take: columns="vector, _rowid, _distance, (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
FTS Search Plan:
ProjectionExec: expr=[vector@2 as vector, text@3 as text, _score@1 as _score]
Take: columns="_rowid, _score, (vector), (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
MatchQuery: query=hello
<BLANKLINE>
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true
Parameters
----------

View File

@@ -18,7 +18,7 @@ from lancedb._lancedb import (
UpdateResult,
)
from lancedb.embeddings.base import EmbeddingFunctionConfig
from lancedb.index import FTS, BTree, Bitmap, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.remote.db import LOOP
import pyarrow as pa
@@ -89,7 +89,7 @@ class RemoteTable(Table):
def to_pandas(self):
"""to_pandas() is not yet supported on LanceDB cloud."""
raise NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version: Union[int, str]):
return LOOP.run(self._table.checkout(version))
@@ -186,8 +186,6 @@ class RemoteTable(Table):
accelerator: Optional[str] = None,
index_type="vector",
wait_timeout: Optional[timedelta] = None,
*,
num_bits: int = 8,
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -222,6 +220,11 @@ class RemoteTable(Table):
>>> table.create_index("l2", "vector") # doctest: +SKIP
"""
if num_partitions is not None:
logging.warning(
"num_partitions is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if num_sub_vectors is not None:
logging.warning(
"num_sub_vectors is not supported on LanceDB cloud."
@@ -241,21 +244,13 @@ class RemoteTable(Table):
index_type = index_type.upper()
if index_type == "VECTOR" or index_type == "IVF_PQ":
config = IvfPq(
distance_type=metric,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
)
config = IvfPq(distance_type=metric)
elif index_type == "IVF_HNSW_PQ":
raise ValueError(
"IVF_HNSW_PQ is not supported on LanceDB cloud."
"Please use IVF_HNSW_SQ instead."
)
config = HnswPq(distance_type=metric)
elif index_type == "IVF_HNSW_SQ":
config = HnswSq(distance_type=metric, num_partitions=num_partitions)
config = HnswSq(distance_type=metric)
elif index_type == "IVF_FLAT":
config = IvfFlat(distance_type=metric, num_partitions=num_partitions)
config = IvfFlat(distance_type=metric)
else:
raise ValueError(
f"Unknown vector index type: {index_type}. Valid options are"

View File

@@ -775,82 +775,6 @@ async def test_explain_plan_async(table_async: AsyncTable):
assert "KNN" in plan
@pytest.mark.asyncio
async def test_explain_plan_fts(table_async: AsyncTable):
"""Test explain plan for FTS queries"""
# Create FTS index
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
# Test pure FTS query
query = await table_async.search("dog", query_type="fts", fts_columns="text")
plan = await query.explain_plan()
# Should show FTS details (issue #2465 is now fixed)
assert "MatchQuery: query=dog" in plan
assert "GlobalLimitExec" in plan # Default limit
# Test FTS query with limit
query_with_limit = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_limit = await query_with_limit.limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test FTS query with offset and limit
query_with_offset = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_offset = await query_with_offset.offset(1).limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_vector_with_limit_offset(table_async: AsyncTable):
"""Test explain plan for vector queries with limit and offset"""
# Test vector query with limit
plan_with_limit = await (
table_async.query().nearest_to(pa.array([1, 2])).limit(1).explain_plan()
)
assert "KNN" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test vector query with offset and limit
plan_with_offset = await (
table_async.query()
.nearest_to(pa.array([1, 2]))
.offset(1)
.limit(1)
.explain_plan()
)
assert "KNN" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_with_filters(table_async: AsyncTable):
"""Test explain plan for queries with filters"""
# Test vector query with filter
plan_with_filter = await (
table_async.query().nearest_to(pa.array([1, 2])).where("id = 1").explain_plan()
)
assert "KNN" in plan_with_filter
assert "FilterExec" in plan_with_filter
# Test FTS query with filter
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
query_fts_filter = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_fts_filter = await query_fts_filter.where("id = 1").explain_plan()
assert "MatchQuery: query=dog" in plan_fts_filter
assert "FilterExec: id@" in plan_fts_filter # Should show filter details
@pytest.mark.asyncio
async def test_query_camelcase_async(tmp_path):
db = await lancedb.connect_async(tmp_path)

View File

@@ -210,25 +210,6 @@ async def test_retry_error():
assert cause.status_code == 429
def test_table_unimplemented_functions():
def handler(request):
if request.path == "/v1/table/test/create/?mode=create":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(b"{}")
else:
request.send_response(404)
request.end_headers()
with mock_lancedb_connection(handler) as db:
table = db.create_table("test", [{"id": 1}])
with pytest.raises(NotImplementedError):
table.to_arrow()
with pytest.raises(NotImplementedError):
table.to_pandas()
def test_table_add_in_threadpool():
def handler(request):
if request.path == "/v1/table/test/insert/":

View File

@@ -52,7 +52,7 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let operator = ob.getattr("operator")?.extract::<String>()?;
let prefix_length = ob.getattr("prefix_length")?.extract()?;
Ok(Self(
Ok(PyLanceDB(
MatchQuery::new(query)
.with_column(Some(column))
.with_boost(boost)
@@ -70,7 +70,7 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let column = ob.getattr("column")?.extract()?;
let slop = ob.getattr("slop")?.extract()?;
Ok(Self(
Ok(PyLanceDB(
PhraseQuery::new(query)
.with_column(Some(column))
.with_slop(slop)
@@ -78,10 +78,10 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
))
}
"BoostQuery" => {
let positive: Self = ob.getattr("positive")?.extract()?;
let negative: Self = ob.getattr("negative")?.extract()?;
let positive: PyLanceDB<FtsQuery> = ob.getattr("positive")?.extract()?;
let negative: PyLanceDB<FtsQuery> = ob.getattr("negative")?.extract()?;
let negative_boost = ob.getattr("negative_boost")?.extract()?;
Ok(Self(
Ok(PyLanceDB(
BoostQuery::new(positive.0, negative.0, negative_boost).into(),
))
}
@@ -103,17 +103,18 @@ impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
let op = Operator::try_from(operator.as_str())
.map_err(|e| PyValueError::new_err(format!("Invalid operator: {}", e)))?;
Ok(Self(q.with_operator(op).into()))
Ok(PyLanceDB(q.with_operator(op).into()))
}
"BooleanQuery" => {
let queries: Vec<(String, Self)> = ob.getattr("queries")?.extract()?;
let queries: Vec<(String, PyLanceDB<FtsQuery>)> =
ob.getattr("queries")?.extract()?;
let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries {
let occur = Occur::try_from(occur.as_str())
.map_err(|e| PyValueError::new_err(e.to_string()))?;
sub_queries.push((occur, q.0));
}
Ok(Self(BooleanQuery::new(sub_queries).into()))
Ok(PyLanceDB(BooleanQuery::new(sub_queries).into()))
}
name => Err(PyValueError::new_err(format!(
"Unsupported FTS query type: {}",
@@ -154,8 +155,8 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
.call((query.terms, query.column.unwrap()), Some(&kwargs))
}
FtsQuery::Boost(query) => {
let positive = Self(query.positive.as_ref().clone()).into_pyobject(py)?;
let negative = Self(query.negative.as_ref().clone()).into_pyobject(py)?;
let positive = PyLanceDB(query.positive.as_ref().clone()).into_pyobject(py)?;
let negative = PyLanceDB(query.negative.as_ref().clone()).into_pyobject(py)?;
let kwargs = PyDict::new(py);
kwargs.set_item("negative_boost", query.negative_boost)?;
namespace
@@ -181,13 +182,13 @@ impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
query.should.len() + query.must.len() + query.must_not.len(),
);
for q in query.should {
queries.push((Occur::Should.into(), Self(q).into_pyobject(py)?));
queries.push((Occur::Should.into(), PyLanceDB(q).into_pyobject(py)?));
}
for q in query.must {
queries.push((Occur::Must.into(), Self(q).into_pyobject(py)?));
queries.push((Occur::Must.into(), PyLanceDB(q).into_pyobject(py)?));
}
for q in query.must_not {
queries.push((Occur::MustNot.into(), Self(q).into_pyobject(py)?));
queries.push((Occur::MustNot.into(), PyLanceDB(q).into_pyobject(py)?));
}
namespace
@@ -562,10 +563,7 @@ impl FTSQuery {
}
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
let inner = self_
.inner
.clone()
.full_text_search(self_.fts_query.clone());
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.explain_plan(verbose)
@@ -575,10 +573,7 @@ impl FTSQuery {
}
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_
.inner
.clone()
.full_text_search(self_.fts_query.clone());
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.analyze_plan()

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.21.1"
version = "0.21.0"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.21.1"
version = "0.21.0"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true

View File

@@ -105,7 +105,7 @@ impl ListingCatalog {
}
async fn open_path(path: &str) -> Result<Self> {
let (object_store, base_path) = ObjectStore::from_uri(path).await?;
let (object_store, base_path) = ObjectStore::from_uri(path).await.unwrap();
if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path })?;
}

View File

@@ -107,7 +107,7 @@ impl ObjectStore for MirroringObjectStore {
self.primary.delete(location).await
}
fn list(&self, prefix: Option<&Path>) -> BoxStream<'static, Result<ObjectMeta>> {
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, Result<ObjectMeta>> {
self.primary.list(prefix)
}

View File

@@ -119,7 +119,7 @@ impl ObjectStore for IoTrackingStore {
let result = self.target.get(location).await;
if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes);
self.record_read(num_bytes as u64);
}
result
}
@@ -128,12 +128,12 @@ impl ObjectStore for IoTrackingStore {
let result = self.target.get_opts(location, options).await;
if let Ok(result) = &result {
let num_bytes = result.range.end - result.range.start;
self.record_read(num_bytes);
self.record_read(num_bytes as u64);
}
result
}
async fn get_range(&self, location: &Path, range: std::ops::Range<u64>) -> OSResult<Bytes> {
async fn get_range(&self, location: &Path, range: std::ops::Range<usize>) -> OSResult<Bytes> {
let result = self.target.get_range(location, range).await;
if let Ok(result) = &result {
self.record_read(result.len() as u64);
@@ -144,7 +144,7 @@ impl ObjectStore for IoTrackingStore {
async fn get_ranges(
&self,
location: &Path,
ranges: &[std::ops::Range<u64>],
ranges: &[std::ops::Range<usize>],
) -> OSResult<Vec<Bytes>> {
let result = self.target.get_ranges(location, ranges).await;
if let Ok(result) = &result {
@@ -170,7 +170,7 @@ impl ObjectStore for IoTrackingStore {
self.target.delete_stream(locations)
}
fn list(&self, prefix: Option<&Path>) -> BoxStream<'static, OSResult<ObjectMeta>> {
fn list(&self, prefix: Option<&Path>) -> BoxStream<'_, OSResult<ObjectMeta>> {
self.record_read(0);
self.target.list(prefix)
}
@@ -179,7 +179,7 @@ impl ObjectStore for IoTrackingStore {
&self,
prefix: Option<&Path>,
offset: &Path,
) -> BoxStream<'static, OSResult<ObjectMeta>> {
) -> BoxStream<'_, OSResult<ObjectMeta>> {
self.record_read(0);
self.target.list_with_offset(prefix, offset)
}

View File

@@ -57,8 +57,6 @@ use crate::{
};
const REQUEST_TIMEOUT_HEADER: HeaderName = HeaderName::from_static("x-request-timeout-ms");
const METRIC_TYPE_KEY: &str = "metric_type";
const INDEX_TYPE_KEY: &str = "index_type";
pub struct RemoteTags<'a, S: HttpSend = Sender> {
inner: &'a RemoteTable<S>,
@@ -999,53 +997,23 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
"column": column
});
match index.index {
let (index_type, distance_type) = match index.index {
// TODO: Should we pass the actual index parameters? SaaS does not
// yet support them.
Index::IvfFlat(index) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_FLAT".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
if let Some(num_partitions) = index.num_partitions {
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
}
Index::IvfPq(index) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_PQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
if let Some(num_partitions) = index.num_partitions {
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
if let Some(num_bits) = index.num_bits {
body["num_bits"] = serde_json::Value::Number(num_bits.into());
}
}
Index::IvfHnswSq(index) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_HNSW_SQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
if let Some(num_partitions) = index.num_partitions {
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
}
}
Index::BTree(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("BTREE".to_string());
}
Index::Bitmap(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("BITMAP".to_string());
}
Index::LabelList(_) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("LABEL_LIST".to_string());
}
Index::IvfFlat(index) => ("IVF_FLAT", Some(index.distance_type)),
Index::IvfPq(index) => ("IVF_PQ", Some(index.distance_type)),
Index::IvfHnswSq(index) => ("IVF_HNSW_SQ", Some(index.distance_type)),
Index::BTree(_) => ("BTREE", None),
Index::Bitmap(_) => ("BITMAP", None),
Index::LabelList(_) => ("LABEL_LIST", None),
Index::FTS(fts) => {
body[INDEX_TYPE_KEY] = serde_json::Value::String("FTS".to_string());
let params = serde_json::to_value(&fts).map_err(|e| Error::InvalidInput {
message: format!("failed to serialize FTS index params {:?}", e),
})?;
for (key, value) in params.as_object().unwrap() {
body[key] = value.clone();
}
("FTS", None)
}
Index::Auto => {
let schema = self.schema().await?;
@@ -1055,11 +1023,9 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
message: format!("Column {} not found in schema", column),
})?;
if supported_vector_data_type(field.data_type()) {
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_PQ".to_string());
body[METRIC_TYPE_KEY] =
serde_json::Value::String(DistanceType::L2.to_string().to_lowercase());
("IVF_PQ", Some(DistanceType::L2))
} else if supported_btree_data_type(field.data_type()) {
body[INDEX_TYPE_KEY] = serde_json::Value::String("BTREE".to_string());
("BTREE", None)
} else {
return Err(Error::NotSupported {
message: format!(
@@ -1076,6 +1042,12 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
})
}
};
body["index_type"] = serde_json::Value::String(index_type.into());
if let Some(distance_type) = distance_type {
// Phalanx expects this to be lowercase right now.
body["metric_type"] =
serde_json::Value::String(distance_type.to_string().to_lowercase());
}
let request = request.json(&body);
@@ -1457,12 +1429,11 @@ mod tests {
use chrono::{DateTime, Utc};
use futures::{future::BoxFuture, StreamExt, TryFutureExt};
use lance_index::scalar::inverted::query::MatchQuery;
use lance_index::scalar::{FullTextSearchQuery, InvertedIndexParams};
use lance_index::scalar::FullTextSearchQuery;
use reqwest::Body;
use rstest::rstest;
use serde_json::json;
use crate::index::vector::{IvfFlatIndexBuilder, IvfHnswSqIndexBuilder};
use crate::index::vector::IvfFlatIndexBuilder;
use crate::remote::db::DEFAULT_SERVER_VERSION;
use crate::remote::JSON_CONTENT_TYPE;
use crate::{
@@ -2462,79 +2433,29 @@ mod tests {
let cases = [
(
"IVF_FLAT",
json!({
"metric_type": "hamming",
}),
Some("hamming"),
Index::IvfFlat(IvfFlatIndexBuilder::default().distance_type(DistanceType::Hamming)),
),
(
"IVF_FLAT",
json!({
"metric_type": "hamming",
"num_partitions": 128,
}),
Index::IvfFlat(
IvfFlatIndexBuilder::default()
.distance_type(DistanceType::Hamming)
.num_partitions(128),
),
),
("IVF_PQ", Some("l2"), Index::IvfPq(Default::default())),
(
"IVF_PQ",
json!({
"metric_type": "l2",
}),
Index::IvfPq(Default::default()),
),
(
"IVF_PQ",
json!({
"metric_type": "cosine",
"num_partitions": 128,
"num_bits": 4,
}),
Index::IvfPq(
IvfPqIndexBuilder::default()
.distance_type(DistanceType::Cosine)
.num_partitions(128)
.num_bits(4),
),
Some("cosine"),
Index::IvfPq(IvfPqIndexBuilder::default().distance_type(DistanceType::Cosine)),
),
(
"IVF_HNSW_SQ",
json!({
"metric_type": "l2",
}),
Some("l2"),
Index::IvfHnswSq(Default::default()),
),
(
"IVF_HNSW_SQ",
json!({
"metric_type": "l2",
"num_partitions": 128,
}),
Index::IvfHnswSq(
IvfHnswSqIndexBuilder::default()
.distance_type(DistanceType::L2)
.num_partitions(128),
),
),
// HNSW_PQ isn't yet supported on SaaS
("BTREE", json!({}), Index::BTree(Default::default())),
("BITMAP", json!({}), Index::Bitmap(Default::default())),
(
"LABEL_LIST",
json!({}),
Index::LabelList(Default::default()),
),
(
"FTS",
serde_json::to_value(InvertedIndexParams::default()).unwrap(),
Index::FTS(Default::default()),
),
("BTREE", None, Index::BTree(Default::default())),
("BITMAP", None, Index::Bitmap(Default::default())),
("LABEL_LIST", None, Index::LabelList(Default::default())),
("FTS", None, Index::FTS(Default::default())),
];
for (index_type, expected_body, index) in cases {
for (index_type, distance_type, index) in cases {
let params = index.clone();
let table = Table::new_with_handler("my_table", move |request| {
assert_eq!(request.method(), "POST");
assert_eq!(request.url().path(), "/v1/table/my_table/create_index/");
@@ -2544,9 +2465,19 @@ mod tests {
);
let body = request.body().unwrap().as_bytes().unwrap();
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
let mut expected_body = expected_body.clone();
expected_body["column"] = "a".into();
expected_body[INDEX_TYPE_KEY] = index_type.into();
let mut expected_body = serde_json::json!({
"column": "a",
"index_type": index_type,
});
if let Some(distance_type) = distance_type {
expected_body["metric_type"] = distance_type.to_lowercase().into();
}
if let Index::FTS(fts) = &params {
let params = serde_json::to_value(fts).unwrap();
for (key, value) in params.as_object().unwrap() {
expected_body[key] = value.clone();
}
}
assert_eq!(body, expected_body);

View File

@@ -392,18 +392,9 @@ pub mod tests {
} else {
expected_line.trim()
};
assert_eq!(
&actual_trimmed[..expected_trimmed.len()],
expected_trimmed,
"\nactual:\n{physical_plan}\nexpected:\n{expected}"
);
assert_eq!(&actual_trimmed[..expected_trimmed.len()], expected_trimmed);
}
assert_eq!(
lines_checked,
expected.lines().count(),
"\nlines_checked:\n{lines_checked}\nexpected:\n{}",
expected.lines().count()
);
assert_eq!(lines_checked, expected.lines().count());
}
}
@@ -486,9 +477,9 @@ pub mod tests {
TestFixture::check_plan(
plan,
"MetadataEraserExec
RepartitionExec:...
CoalesceBatchesExec:...
FilterExec: i@0 >= 5
RepartitionExec:...
ProjectionExec:...
LanceScan:...",
)

View File

@@ -129,9 +129,7 @@ impl DatasetRef {
dataset: ref mut ds,
..
} => {
if dataset.manifest().version > ds.manifest().version {
*ds = dataset;
}
*ds = dataset;
}
_ => unreachable!("Dataset should be in latest mode at this point"),
}