mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-03 02:12:56 +00:00
Compare commits
6 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d67a8743ba | ||
|
|
46fcbbc1e3 | ||
|
|
ff53b76ac0 | ||
|
|
2adb10e6a8 | ||
|
|
ac164c352b | ||
|
|
8bcac7e372 |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.23.1-beta.2"
|
||||
current_version = "0.23.1"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
6
Cargo.lock
generated
6
Cargo.lock
generated
@@ -4987,7 +4987,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lancedb"
|
||||
version = "0.23.1-beta.1"
|
||||
version = "0.23.1"
|
||||
dependencies = [
|
||||
"ahash",
|
||||
"anyhow",
|
||||
@@ -5066,7 +5066,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lancedb-nodejs"
|
||||
version = "0.23.1-beta.1"
|
||||
version = "0.23.1"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"arrow-ipc",
|
||||
@@ -5086,7 +5086,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lancedb-python"
|
||||
version = "0.26.1-beta.1"
|
||||
version = "0.26.1"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"async-trait",
|
||||
|
||||
@@ -16,7 +16,7 @@ check_command_exists() {
|
||||
}
|
||||
|
||||
if [[ ! -e ./lancedb ]]; then
|
||||
if [[ -v SOPHON_READ_TOKEN ]]; then
|
||||
if [[ x${SOPHON_READ_TOKEN} != "x" ]]; then
|
||||
INPUT="lancedb-linux-x64"
|
||||
gh release \
|
||||
--repo lancedb/lancedb \
|
||||
|
||||
@@ -11,7 +11,7 @@ watch:
|
||||
theme:
|
||||
name: "material"
|
||||
logo: assets/logo.png
|
||||
favicon: assets/logo.png
|
||||
favicon: assets/favicon.ico
|
||||
palette:
|
||||
# Palette toggle for light mode
|
||||
- scheme: lancedb
|
||||
@@ -32,8 +32,6 @@ theme:
|
||||
- content.tooltips
|
||||
- toc.follow
|
||||
- navigation.top
|
||||
- navigation.tabs
|
||||
- navigation.tabs.sticky
|
||||
- navigation.footer
|
||||
- navigation.tracking
|
||||
- navigation.instant
|
||||
@@ -115,12 +113,13 @@ markdown_extensions:
|
||||
emoji_index: !!python/name:material.extensions.emoji.twemoji
|
||||
emoji_generator: !!python/name:material.extensions.emoji.to_svg
|
||||
- markdown.extensions.toc:
|
||||
baselevel: 1
|
||||
permalink: ""
|
||||
toc_depth: 3
|
||||
permalink: true
|
||||
permalink_title: Anchor link to this section
|
||||
|
||||
nav:
|
||||
- API reference:
|
||||
- Overview: index.md
|
||||
- Documentation:
|
||||
- SDK Reference: index.md
|
||||
- Python: python/python.md
|
||||
- Javascript/TypeScript: js/globals.md
|
||||
- Java: java/java.md
|
||||
|
||||
BIN
docs/src/assets/favicon.ico
Normal file
BIN
docs/src/assets/favicon.ico
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 15 KiB |
@@ -0,0 +1,111 @@
|
||||
# VoyageAI Embeddings : Multimodal
|
||||
|
||||
VoyageAI embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
|
||||
under [https://docs.voyageai.com/docs/multimodal-embeddings](https://docs.voyageai.com/docs/multimodal-embeddings)
|
||||
|
||||
Supported multimodal models:
|
||||
|
||||
- `voyage-multimodal-3` - 1024 dimensions (text + images)
|
||||
- `voyage-multimodal-3.5` - Flexible dimensions (256, 512, 1024 default, 2048). Supports text, images, and video.
|
||||
|
||||
### Video Support (voyage-multimodal-3.5)
|
||||
|
||||
The `voyage-multimodal-3.5` model supports video input through:
|
||||
- Video URLs (`.mp4`, `.webm`, `.mov`, `.avi`, `.mkv`, `.m4v`, `.gif`)
|
||||
- Video file paths
|
||||
|
||||
Constraints: Max 20MB video size.
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|-------------------------|-------------------------------------------|
|
||||
| `name` | `str` | `"voyage-multimodal-3"` | The model ID of the VoyageAI model to use |
|
||||
| `output_dimension` | `int` | `None` | Output dimension for voyage-multimodal-3.5. Valid: 256, 512, 1024, 2048 |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import base64
|
||||
import os
|
||||
from io import BytesIO
|
||||
|
||||
import requests
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
import pandas as pd
|
||||
|
||||
os.environ['VOYAGE_API_KEY'] = 'YOUR_VOYAGE_API_KEY'
|
||||
|
||||
db = lancedb.connect(".lancedb")
|
||||
func = get_registry().get("voyageai").create(name="voyage-multimodal-3")
|
||||
|
||||
|
||||
def image_to_base64(image_bytes: bytes):
|
||||
buffered = BytesIO(image_bytes)
|
||||
img_str = base64.b64encode(buffered.getvalue())
|
||||
return img_str.decode("utf-8")
|
||||
|
||||
|
||||
class Images(LanceModel):
|
||||
label: str
|
||||
image_uri: str = func.SourceField() # image uri as the source
|
||||
image_bytes: str = func.SourceField() # image bytes base64 encoded as the source
|
||||
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||
|
||||
|
||||
if "images" in db.table_names():
|
||||
db.drop_table("images")
|
||||
table = db.create_table("images", schema=Images)
|
||||
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||
]
|
||||
# get each uri as bytes
|
||||
images_bytes = [image_to_base64(requests.get(uri).content) for uri in uris]
|
||||
table.add(
|
||||
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": images_bytes})
|
||||
)
|
||||
```
|
||||
Now we can search using text from both the default vector column and the custom vector column
|
||||
```python
|
||||
|
||||
# text search
|
||||
actual = table.search("man's best friend", "vec_from_bytes").limit(1).to_pydantic(Images)[0]
|
||||
print(actual.label) # prints "dog"
|
||||
|
||||
frombytes = (
|
||||
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
print(frombytes.label)
|
||||
|
||||
```
|
||||
|
||||
Because we're using a multi-modal embedding function, we can also search using images
|
||||
|
||||
```python
|
||||
# image search
|
||||
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
||||
image_bytes = requests.get(query_image_uri).content
|
||||
query_image = Image.open(BytesIO(image_bytes))
|
||||
actual = table.search(query_image, "vec_from_bytes").limit(1).to_pydantic(Images)[0]
|
||||
print(actual.label == "dog")
|
||||
|
||||
# image search using a custom vector column
|
||||
other = (
|
||||
table.search(query_image, vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
print(actual.label)
|
||||
|
||||
```
|
||||
@@ -1,8 +1,12 @@
|
||||
# API Reference
|
||||
# SDK Reference
|
||||
|
||||
This page contains the API reference for the SDKs supported by the LanceDB team.
|
||||
This site contains the API reference for the client SDKs supported by [LanceDB](https://lancedb.com).
|
||||
|
||||
- [Python](python/python.md)
|
||||
- [JavaScript/TypeScript](js/globals.md)
|
||||
- [Java](java/java.md)
|
||||
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)
|
||||
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)
|
||||
|
||||
!!! info "LanceDB Documentation"
|
||||
|
||||
If you're looking for the full documentation of LanceDB, visit [docs.lancedb.com](https://docs.lancedb.com).
|
||||
|
||||
@@ -14,7 +14,7 @@ Add the following dependency to your `pom.xml`:
|
||||
<dependency>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-core</artifactId>
|
||||
<version>0.23.1-beta.2</version>
|
||||
<version>0.23.1</version>
|
||||
</dependency>
|
||||
```
|
||||
|
||||
|
||||
@@ -85,17 +85,26 @@
|
||||
|
||||
/* Header gradient (only header area) */
|
||||
.md-header {
|
||||
background: linear-gradient(90deg, #3B2E58 0%, #F0B7C1 45%, #E55A2B 100%);
|
||||
background: linear-gradient(90deg, #e4d8f8 0%, #F0B7C1 45%, #E55A2B 100%);
|
||||
box-shadow: inset 0 1px 0 rgba(255,255,255,0.08), 0 1px 0 rgba(0,0,0,0.08);
|
||||
}
|
||||
|
||||
/* Improve brand title contrast on the lavender side */
|
||||
.md-header__title,
|
||||
.md-header__topic,
|
||||
.md-header__title .md-ellipsis,
|
||||
.md-header__topic .md-ellipsis {
|
||||
color: #2b1b3a;
|
||||
text-shadow: 0 1px 0 rgba(255, 255, 255, 0.25);
|
||||
}
|
||||
|
||||
/* Same colors as header for tabs (that hold the text) */
|
||||
.md-tabs {
|
||||
background: linear-gradient(90deg, #3B2E58 0%, #F0B7C1 45%, #E55A2B 100%);
|
||||
background: linear-gradient(90deg, #e4d8f8 0%, #F0B7C1 45%, #E55A2B 100%);
|
||||
}
|
||||
|
||||
/* Dark scheme variant */
|
||||
[data-md-color-scheme="slate"] .md-header,
|
||||
[data-md-color-scheme="slate"] .md-tabs {
|
||||
background: linear-gradient(90deg, #3B2E58 0%, #F0B7C1 45%, #E55A2B 100%);
|
||||
background: linear-gradient(90deg, #e4d8f8 0%, #F0B7C1 45%, #E55A2B 100%);
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.23.1-beta.2</version>
|
||||
<version>0.23.1-final.0</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.23.1-beta.2</version>
|
||||
<version>0.23.1-final.0</version>
|
||||
<packaging>pom</packaging>
|
||||
<name>${project.artifactId}</name>
|
||||
<description>LanceDB Java SDK Parent POM</description>
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "lancedb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.23.1-beta.2"
|
||||
version = "0.23.1"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
4
nodejs/package-lock.json
generated
4
nodejs/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.23.1-beta.1",
|
||||
"version": "0.23.1",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.23.1-beta.1",
|
||||
"version": "0.23.1",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
"ann"
|
||||
],
|
||||
"private": false,
|
||||
"version": "0.23.1-beta.2",
|
||||
"version": "0.23.1",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
|
||||
@@ -13,6 +13,7 @@ __version__ = importlib.metadata.version("lancedb")
|
||||
|
||||
from ._lancedb import connect as lancedb_connect
|
||||
from .common import URI, sanitize_uri
|
||||
from urllib.parse import urlparse
|
||||
from .db import AsyncConnection, DBConnection, LanceDBConnection
|
||||
from .io import StorageOptionsProvider
|
||||
from .remote import ClientConfig
|
||||
@@ -28,6 +29,39 @@ from .namespace import (
|
||||
)
|
||||
|
||||
|
||||
def _check_s3_bucket_with_dots(
|
||||
uri: str, storage_options: Optional[Dict[str, str]]
|
||||
) -> None:
|
||||
"""
|
||||
Check if an S3 URI has a bucket name containing dots and warn if no region
|
||||
is specified. S3 buckets with dots cannot use virtual-hosted-style URLs,
|
||||
which breaks automatic region detection.
|
||||
|
||||
See: https://github.com/lancedb/lancedb/issues/1898
|
||||
"""
|
||||
if not isinstance(uri, str) or not uri.startswith("s3://"):
|
||||
return
|
||||
|
||||
parsed = urlparse(uri)
|
||||
bucket = parsed.netloc
|
||||
|
||||
if "." not in bucket:
|
||||
return
|
||||
|
||||
# Check if region is provided in storage_options
|
||||
region_keys = {"region", "aws_region"}
|
||||
has_region = storage_options and any(k in storage_options for k in region_keys)
|
||||
|
||||
if not has_region:
|
||||
raise ValueError(
|
||||
f"S3 bucket name '{bucket}' contains dots, which prevents automatic "
|
||||
f"region detection. Please specify the region explicitly via "
|
||||
f"storage_options={{'region': '<your-region>'}} or "
|
||||
f"storage_options={{'aws_region': '<your-region>'}}. "
|
||||
f"See https://github.com/lancedb/lancedb/issues/1898 for details."
|
||||
)
|
||||
|
||||
|
||||
def connect(
|
||||
uri: URI,
|
||||
*,
|
||||
@@ -121,9 +155,11 @@ def connect(
|
||||
storage_options=storage_options,
|
||||
**kwargs,
|
||||
)
|
||||
_check_s3_bucket_with_dots(str(uri), storage_options)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unknown keyword arguments: {kwargs}")
|
||||
|
||||
return LanceDBConnection(
|
||||
uri,
|
||||
read_consistency_interval=read_consistency_interval,
|
||||
@@ -211,6 +247,8 @@ async def connect_async(
|
||||
if isinstance(client_config, dict):
|
||||
client_config = ClientConfig(**client_config)
|
||||
|
||||
_check_s3_bucket_with_dots(str(uri), storage_options)
|
||||
|
||||
return AsyncConnection(
|
||||
await lancedb_connect(
|
||||
sanitize_uri(uri),
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import base64
|
||||
import os
|
||||
from typing import ClassVar, TYPE_CHECKING, List, Union, Any, Generator
|
||||
from typing import ClassVar, TYPE_CHECKING, List, Union, Any, Generator, Optional
|
||||
|
||||
from pathlib import Path
|
||||
from urllib.parse import urlparse
|
||||
@@ -45,11 +45,29 @@ def is_valid_url(text):
|
||||
return False
|
||||
|
||||
|
||||
VIDEO_EXTENSIONS = {".mp4", ".webm", ".mov", ".avi", ".mkv", ".m4v", ".gif"}
|
||||
|
||||
|
||||
def is_video_url(url: str) -> bool:
|
||||
"""Check if URL points to a video file based on extension."""
|
||||
parsed = urlparse(url)
|
||||
path = parsed.path.lower()
|
||||
return any(path.endswith(ext) for ext in VIDEO_EXTENSIONS)
|
||||
|
||||
|
||||
def is_video_path(path: Path) -> bool:
|
||||
"""Check if file path is a video file based on extension."""
|
||||
return path.suffix.lower() in VIDEO_EXTENSIONS
|
||||
|
||||
|
||||
def transform_input(input_data: Union[str, bytes, Path]):
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
if isinstance(input_data, str):
|
||||
if is_valid_url(input_data):
|
||||
content = {"type": "image_url", "image_url": input_data}
|
||||
if is_video_url(input_data):
|
||||
content = {"type": "video_url", "video_url": input_data}
|
||||
else:
|
||||
content = {"type": "image_url", "image_url": input_data}
|
||||
else:
|
||||
content = {"type": "text", "text": input_data}
|
||||
elif isinstance(input_data, PIL.Image.Image):
|
||||
@@ -70,14 +88,24 @@ def transform_input(input_data: Union[str, bytes, Path]):
|
||||
"image_base64": "data:image/jpeg;base64," + img_str,
|
||||
}
|
||||
elif isinstance(input_data, Path):
|
||||
img = PIL.Image.open(input_data)
|
||||
buffered = BytesIO()
|
||||
img.save(buffered, format="JPEG")
|
||||
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
content = {
|
||||
"type": "image_base64",
|
||||
"image_base64": "data:image/jpeg;base64," + img_str,
|
||||
}
|
||||
if is_video_path(input_data):
|
||||
# Read video file and encode as base64
|
||||
with open(input_data, "rb") as f:
|
||||
video_bytes = f.read()
|
||||
video_str = base64.b64encode(video_bytes).decode("utf-8")
|
||||
content = {
|
||||
"type": "video_base64",
|
||||
"video_base64": video_str,
|
||||
}
|
||||
else:
|
||||
img = PIL.Image.open(input_data)
|
||||
buffered = BytesIO()
|
||||
img.save(buffered, format="JPEG")
|
||||
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
content = {
|
||||
"type": "image_base64",
|
||||
"image_base64": "data:image/jpeg;base64," + img_str,
|
||||
}
|
||||
else:
|
||||
raise ValueError("Each input should be either str, bytes, Path or Image.")
|
||||
|
||||
@@ -91,6 +119,8 @@ def sanitize_multimodal_input(inputs: Union[TEXT, IMAGES]) -> List[Any]:
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
if isinstance(inputs, (str, bytes, Path, PIL.Image.Image)):
|
||||
inputs = [inputs]
|
||||
elif isinstance(inputs, list):
|
||||
pass # Already a list, use as-is
|
||||
elif isinstance(inputs, pa.Array):
|
||||
inputs = inputs.to_pylist()
|
||||
elif isinstance(inputs, pa.ChunkedArray):
|
||||
@@ -143,11 +173,16 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
* voyage-3
|
||||
* voyage-3-lite
|
||||
* voyage-multimodal-3
|
||||
* voyage-multimodal-3.5
|
||||
* voyage-finance-2
|
||||
* voyage-multilingual-2
|
||||
* voyage-law-2
|
||||
* voyage-code-2
|
||||
|
||||
output_dimension: int, optional
|
||||
The output dimension for models that support flexible dimensions.
|
||||
Currently only voyage-multimodal-3.5 supports this feature.
|
||||
Valid options: 256, 512, 1024 (default), 2048.
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -175,7 +210,10 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
"""
|
||||
|
||||
name: str
|
||||
output_dimension: Optional[int] = None
|
||||
client: ClassVar = None
|
||||
_FLEXIBLE_DIM_MODELS: ClassVar[list] = ["voyage-multimodal-3.5"]
|
||||
_VALID_DIMENSIONS: ClassVar[list] = [256, 512, 1024, 2048]
|
||||
text_embedding_models: list = [
|
||||
"voyage-3.5",
|
||||
"voyage-3.5-lite",
|
||||
@@ -186,7 +224,7 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
"voyage-law-2",
|
||||
"voyage-code-2",
|
||||
]
|
||||
multimodal_embedding_models: list = ["voyage-multimodal-3"]
|
||||
multimodal_embedding_models: list = ["voyage-multimodal-3", "voyage-multimodal-3.5"]
|
||||
contextual_embedding_models: list = ["voyage-context-3"]
|
||||
|
||||
def _is_multimodal_model(self, model_name: str):
|
||||
@@ -198,6 +236,17 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
return model_name in self.contextual_embedding_models or "context" in model_name
|
||||
|
||||
def ndims(self):
|
||||
# Handle flexible dimension models
|
||||
if self.name in self._FLEXIBLE_DIM_MODELS:
|
||||
if self.output_dimension is not None:
|
||||
if self.output_dimension not in self._VALID_DIMENSIONS:
|
||||
raise ValueError(
|
||||
f"Invalid output_dimension {self.output_dimension} "
|
||||
f"for {self.name}. Valid options: {self._VALID_DIMENSIONS}"
|
||||
)
|
||||
return self.output_dimension
|
||||
return 1024 # default dimension
|
||||
|
||||
if self.name == "voyage-3-lite":
|
||||
return 512
|
||||
elif self.name == "voyage-code-2":
|
||||
@@ -211,12 +260,17 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
"voyage-finance-2",
|
||||
"voyage-multilingual-2",
|
||||
"voyage-law-2",
|
||||
"voyage-multimodal-3",
|
||||
]:
|
||||
return 1024
|
||||
else:
|
||||
raise ValueError(f"Model {self.name} not supported")
|
||||
|
||||
def _get_multimodal_kwargs(self, **kwargs):
|
||||
"""Get kwargs for multimodal embed call, including output_dimension if set."""
|
||||
if self.name in self._FLEXIBLE_DIM_MODELS and self.output_dimension is not None:
|
||||
kwargs["output_dimension"] = self.output_dimension
|
||||
return kwargs
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
|
||||
) -> List[np.ndarray]:
|
||||
@@ -234,6 +288,7 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
"""
|
||||
client = VoyageAIEmbeddingFunction._get_client()
|
||||
if self._is_multimodal_model(self.name):
|
||||
kwargs = self._get_multimodal_kwargs(**kwargs)
|
||||
result = client.multimodal_embed(
|
||||
inputs=[[query]], model=self.name, input_type="query", **kwargs
|
||||
)
|
||||
@@ -275,6 +330,7 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
)
|
||||
if has_images:
|
||||
# Use non-batched API for images
|
||||
kwargs = self._get_multimodal_kwargs(**kwargs)
|
||||
result = client.multimodal_embed(
|
||||
inputs=sanitized, model=self.name, input_type="document", **kwargs
|
||||
)
|
||||
@@ -357,6 +413,7 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
callable: A function that takes a batch of texts and returns embeddings.
|
||||
"""
|
||||
if self._is_multimodal_model(self.name):
|
||||
multimodal_kwargs = self._get_multimodal_kwargs(**kwargs)
|
||||
|
||||
def embed_batch(batch: List[str]) -> List[np.array]:
|
||||
batch_inputs = sanitize_multimodal_input(batch)
|
||||
@@ -364,7 +421,7 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
inputs=batch_inputs,
|
||||
model=self.name,
|
||||
input_type=input_type,
|
||||
**kwargs,
|
||||
**multimodal_kwargs,
|
||||
)
|
||||
return result.embeddings
|
||||
|
||||
|
||||
@@ -18,7 +18,17 @@ from lancedb._lancedb import (
|
||||
UpdateResult,
|
||||
)
|
||||
from lancedb.embeddings.base import EmbeddingFunctionConfig
|
||||
from lancedb.index import FTS, BTree, Bitmap, HnswSq, IvfFlat, IvfPq, IvfSq, LabelList
|
||||
from lancedb.index import (
|
||||
FTS,
|
||||
BTree,
|
||||
Bitmap,
|
||||
HnswSq,
|
||||
IvfFlat,
|
||||
IvfPq,
|
||||
IvfRq,
|
||||
IvfSq,
|
||||
LabelList,
|
||||
)
|
||||
from lancedb.remote.db import LOOP
|
||||
import pyarrow as pa
|
||||
|
||||
@@ -265,6 +275,12 @@ class RemoteTable(Table):
|
||||
num_sub_vectors=num_sub_vectors,
|
||||
num_bits=num_bits,
|
||||
)
|
||||
elif index_type == "IVF_RQ":
|
||||
config = IvfRq(
|
||||
distance_type=metric,
|
||||
num_partitions=num_partitions,
|
||||
num_bits=num_bits,
|
||||
)
|
||||
elif index_type == "IVF_SQ":
|
||||
config = IvfSq(distance_type=metric, num_partitions=num_partitions)
|
||||
elif index_type == "IVF_HNSW_PQ":
|
||||
@@ -279,7 +295,8 @@ class RemoteTable(Table):
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unknown vector index type: {index_type}. Valid options are"
|
||||
" 'IVF_FLAT', 'IVF_SQ', 'IVF_PQ', 'IVF_HNSW_PQ', 'IVF_HNSW_SQ'"
|
||||
" 'IVF_FLAT', 'IVF_PQ', 'IVF_RQ', 'IVF_SQ',"
|
||||
" 'IVF_HNSW_PQ', 'IVF_HNSW_SQ'"
|
||||
)
|
||||
|
||||
LOOP.run(
|
||||
|
||||
@@ -613,6 +613,133 @@ def test_voyageai_multimodal_embedding_text_function():
|
||||
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
|
||||
)
|
||||
def test_voyageai_multimodal_35_embedding_function():
|
||||
"""Test voyage-multimodal-3.5 model with text input."""
|
||||
voyageai = (
|
||||
get_registry()
|
||||
.get("voyageai")
|
||||
.create(name="voyage-multimodal-3.5", max_retries=0)
|
||||
)
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = voyageai.SourceField()
|
||||
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("~/lancedb")
|
||||
tbl = db.create_table("test_multimodal_35", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
|
||||
assert voyageai.ndims() == 1024
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
|
||||
)
|
||||
def test_voyageai_multimodal_35_flexible_dimensions():
|
||||
"""Test voyage-multimodal-3.5 model with custom output dimension."""
|
||||
voyageai = (
|
||||
get_registry()
|
||||
.get("voyageai")
|
||||
.create(name="voyage-multimodal-3.5", output_dimension=512, max_retries=0)
|
||||
)
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = voyageai.SourceField()
|
||||
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
|
||||
|
||||
assert voyageai.ndims() == 512
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("~/lancedb")
|
||||
tbl = db.create_table("test_multimodal_35_dim", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
assert len(tbl.to_pandas()["vector"][0]) == 512
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
|
||||
)
|
||||
def test_voyageai_multimodal_35_image_embedding():
|
||||
"""Test voyage-multimodal-3.5 model with image input."""
|
||||
voyageai = (
|
||||
get_registry()
|
||||
.get("voyageai")
|
||||
.create(name="voyage-multimodal-3.5", max_retries=0)
|
||||
)
|
||||
|
||||
class Images(LanceModel):
|
||||
label: str
|
||||
image_uri: str = voyageai.SourceField()
|
||||
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
|
||||
|
||||
db = lancedb.connect("~/lancedb")
|
||||
table = db.create_table(
|
||||
"test_multimodal_35_images", schema=Images, mode="overwrite"
|
||||
)
|
||||
labels = ["cat", "dog"]
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
]
|
||||
table.add(pd.DataFrame({"label": labels, "image_uri": uris}))
|
||||
assert len(table.to_pandas()["vector"][0]) == voyageai.ndims()
|
||||
assert voyageai.ndims() == 1024
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
|
||||
)
|
||||
@pytest.mark.parametrize("dimension", [256, 512, 1024, 2048])
|
||||
def test_voyageai_multimodal_35_all_dimensions(dimension):
|
||||
"""Test voyage-multimodal-3.5 model with all valid output dimensions."""
|
||||
voyageai = (
|
||||
get_registry()
|
||||
.get("voyageai")
|
||||
.create(name="voyage-multimodal-3.5", output_dimension=dimension, max_retries=0)
|
||||
)
|
||||
|
||||
assert voyageai.ndims() == dimension
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = voyageai.SourceField()
|
||||
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world"]})
|
||||
db = lancedb.connect("~/lancedb")
|
||||
tbl = db.create_table(
|
||||
f"test_multimodal_35_dim_{dimension}", schema=TextModel, mode="overwrite"
|
||||
)
|
||||
|
||||
tbl.add(df)
|
||||
assert len(tbl.to_pandas()["vector"][0]) == dimension
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
|
||||
)
|
||||
def test_voyageai_multimodal_35_invalid_dimension():
|
||||
"""Test voyage-multimodal-3.5 model raises error for invalid output dimension."""
|
||||
with pytest.raises(ValueError, match="Invalid output_dimension"):
|
||||
voyageai = (
|
||||
get_registry()
|
||||
.get("voyageai")
|
||||
.create(name="voyage-multimodal-3.5", output_dimension=999, max_retries=0)
|
||||
)
|
||||
# ndims() is where the validation happens
|
||||
voyageai.ndims()
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("colpali_engine") is None,
|
||||
|
||||
68
python/python/tests/test_s3_bucket_dots.py
Normal file
68
python/python/tests/test_s3_bucket_dots.py
Normal file
@@ -0,0 +1,68 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
"""
|
||||
Tests for S3 bucket names containing dots.
|
||||
|
||||
Related issue: https://github.com/lancedb/lancedb/issues/1898
|
||||
|
||||
These tests validate the early error checking for S3 bucket names with dots.
|
||||
No actual S3 connection is made - validation happens before connection.
|
||||
"""
|
||||
|
||||
import pytest
|
||||
import lancedb
|
||||
|
||||
# Test URIs
|
||||
BUCKET_WITH_DOTS = "s3://my.bucket.name/path"
|
||||
BUCKET_WITH_DOTS_AND_REGION = ("s3://my.bucket.name", {"region": "us-east-1"})
|
||||
BUCKET_WITH_DOTS_AND_AWS_REGION = ("s3://my.bucket.name", {"aws_region": "us-east-1"})
|
||||
BUCKET_WITHOUT_DOTS = "s3://my-bucket/path"
|
||||
|
||||
|
||||
class TestS3BucketWithDotsSync:
|
||||
"""Tests for connect()."""
|
||||
|
||||
def test_bucket_with_dots_requires_region(self):
|
||||
with pytest.raises(ValueError, match="contains dots"):
|
||||
lancedb.connect(BUCKET_WITH_DOTS)
|
||||
|
||||
def test_bucket_with_dots_and_region_passes(self):
|
||||
uri, opts = BUCKET_WITH_DOTS_AND_REGION
|
||||
db = lancedb.connect(uri, storage_options=opts)
|
||||
assert db is not None
|
||||
|
||||
def test_bucket_with_dots_and_aws_region_passes(self):
|
||||
uri, opts = BUCKET_WITH_DOTS_AND_AWS_REGION
|
||||
db = lancedb.connect(uri, storage_options=opts)
|
||||
assert db is not None
|
||||
|
||||
def test_bucket_without_dots_passes(self):
|
||||
db = lancedb.connect(BUCKET_WITHOUT_DOTS)
|
||||
assert db is not None
|
||||
|
||||
|
||||
class TestS3BucketWithDotsAsync:
|
||||
"""Tests for connect_async()."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_bucket_with_dots_requires_region(self):
|
||||
with pytest.raises(ValueError, match="contains dots"):
|
||||
await lancedb.connect_async(BUCKET_WITH_DOTS)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_bucket_with_dots_and_region_passes(self):
|
||||
uri, opts = BUCKET_WITH_DOTS_AND_REGION
|
||||
db = await lancedb.connect_async(uri, storage_options=opts)
|
||||
assert db is not None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_bucket_with_dots_and_aws_region_passes(self):
|
||||
uri, opts = BUCKET_WITH_DOTS_AND_AWS_REGION
|
||||
db = await lancedb.connect_async(uri, storage_options=opts)
|
||||
assert db is not None
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_bucket_without_dots_passes(self):
|
||||
db = await lancedb.connect_async(BUCKET_WITHOUT_DOTS)
|
||||
assert db is not None
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb"
|
||||
version = "0.23.1-beta.2"
|
||||
version = "0.23.1"
|
||||
edition.workspace = true
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
|
||||
@@ -1325,25 +1325,27 @@ mod tests {
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_table_names() {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let tc = new_test_connection().await.unwrap();
|
||||
let db = tc.connection;
|
||||
let schema = Arc::new(Schema::new(vec![Field::new("x", DataType::Int32, false)]));
|
||||
let mut names = Vec::with_capacity(100);
|
||||
for _ in 0..100 {
|
||||
let mut name = uuid::Uuid::new_v4().to_string();
|
||||
let name = uuid::Uuid::new_v4().to_string();
|
||||
names.push(name.clone());
|
||||
name.push_str(".lance");
|
||||
create_dir_all(tmp_dir.path().join(&name)).unwrap();
|
||||
db.create_empty_table(name, schema.clone())
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
}
|
||||
names.sort();
|
||||
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
let db = connect(uri).execute().await.unwrap();
|
||||
let tables = db.table_names().execute().await.unwrap();
|
||||
let tables = db.table_names().limit(100).execute().await.unwrap();
|
||||
|
||||
assert_eq!(tables, names);
|
||||
|
||||
let tables = db
|
||||
.table_names()
|
||||
.start_after(&names[30])
|
||||
.limit(100)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
@@ -1088,6 +1088,17 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
|
||||
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
|
||||
}
|
||||
}
|
||||
Index::IvfRq(index) => {
|
||||
body[INDEX_TYPE_KEY] = serde_json::Value::String("IVF_RQ".to_string());
|
||||
body[METRIC_TYPE_KEY] =
|
||||
serde_json::Value::String(index.distance_type.to_string().to_lowercase());
|
||||
if let Some(num_partitions) = index.num_partitions {
|
||||
body["num_partitions"] = serde_json::Value::Number(num_partitions.into());
|
||||
}
|
||||
if let Some(num_bits) = index.num_bits {
|
||||
body["num_bits"] = serde_json::Value::Number(num_bits.into());
|
||||
}
|
||||
}
|
||||
Index::BTree(_) => {
|
||||
body[INDEX_TYPE_KEY] = serde_json::Value::String("BTREE".to_string());
|
||||
}
|
||||
|
||||
@@ -5,16 +5,19 @@
|
||||
|
||||
use regex::Regex;
|
||||
use std::env;
|
||||
use std::io::{BufRead, BufReader};
|
||||
use std::process::{Child, ChildStdout, Command, Stdio};
|
||||
use std::process::Stdio;
|
||||
use tokio::io::{AsyncBufReadExt, BufReader};
|
||||
use tokio::process::{Child, ChildStdout, Command};
|
||||
use tokio::sync::mpsc;
|
||||
|
||||
use crate::{connect, Connection};
|
||||
use anyhow::{bail, Result};
|
||||
use anyhow::{anyhow, bail, Result};
|
||||
use tempfile::{tempdir, TempDir};
|
||||
|
||||
pub struct TestConnection {
|
||||
pub uri: String,
|
||||
pub connection: Connection,
|
||||
pub is_remote: bool,
|
||||
_temp_dir: Option<TempDir>,
|
||||
_process: Option<TestProcess>,
|
||||
}
|
||||
@@ -37,6 +40,56 @@ pub async fn new_test_connection() -> Result<TestConnection> {
|
||||
}
|
||||
}
|
||||
|
||||
async fn spawn_stdout_reader(
|
||||
mut stdout: BufReader<ChildStdout>,
|
||||
port_sender: mpsc::Sender<anyhow::Result<String>>,
|
||||
) -> tokio::task::JoinHandle<()> {
|
||||
let print_stdout = env::var("PRINT_LANCEDB_TEST_CONNECTION_SCRIPT_OUTPUT").is_ok();
|
||||
tokio::spawn(async move {
|
||||
let mut line = String::new();
|
||||
let re = Regex::new(r"Query node now listening on 0.0.0.0:(.*)").unwrap();
|
||||
loop {
|
||||
line.clear();
|
||||
let result = stdout.read_line(&mut line).await;
|
||||
if let Err(err) = result {
|
||||
port_sender
|
||||
.send(Err(anyhow!(
|
||||
"error while reading from process output: {}",
|
||||
err
|
||||
)))
|
||||
.await
|
||||
.unwrap();
|
||||
return;
|
||||
} else if result.unwrap() == 0 {
|
||||
port_sender
|
||||
.send(Err(anyhow!(
|
||||
" hit EOF before reading port from process output."
|
||||
)))
|
||||
.await
|
||||
.unwrap();
|
||||
return;
|
||||
}
|
||||
if re.is_match(&line) {
|
||||
let caps = re.captures(&line).unwrap();
|
||||
port_sender.send(Ok(caps[1].to_string())).await.unwrap();
|
||||
break;
|
||||
}
|
||||
}
|
||||
loop {
|
||||
line.clear();
|
||||
match stdout.read_line(&mut line).await {
|
||||
Err(_) => return,
|
||||
Ok(0) => return,
|
||||
Ok(_size) => {
|
||||
if print_stdout {
|
||||
print!("{}", line);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
async fn new_remote_connection(script_path: &str) -> Result<TestConnection> {
|
||||
let temp_dir = tempdir()?;
|
||||
let data_path = temp_dir.path().to_str().unwrap().to_string();
|
||||
@@ -57,38 +110,25 @@ async fn new_remote_connection(script_path: &str) -> Result<TestConnection> {
|
||||
child: child_result.unwrap(),
|
||||
};
|
||||
let stdout = BufReader::new(process.child.stdout.take().unwrap());
|
||||
let port = read_process_port(stdout)?;
|
||||
let (port_sender, mut port_receiver) = mpsc::channel(5);
|
||||
let _reader = spawn_stdout_reader(stdout, port_sender).await;
|
||||
let port = match port_receiver.recv().await {
|
||||
None => bail!("Unable to determine the port number used by the phalanx process we spawned, because the reader thread was closed too soon."),
|
||||
Some(Err(err)) => bail!("Unable to determine the port number used by the phalanx process we spawned, because of an error, {}", err),
|
||||
Some(Ok(port)) => port,
|
||||
};
|
||||
let uri = "db://test";
|
||||
let host_override = format!("http://localhost:{}", port);
|
||||
let connection = create_new_connection(uri, &host_override).await?;
|
||||
Ok(TestConnection {
|
||||
uri: uri.to_string(),
|
||||
connection,
|
||||
is_remote: true,
|
||||
_temp_dir: Some(temp_dir),
|
||||
_process: Some(process),
|
||||
})
|
||||
}
|
||||
|
||||
fn read_process_port(mut stdout: BufReader<ChildStdout>) -> Result<String> {
|
||||
let mut line = String::new();
|
||||
let re = Regex::new(r"Query node now listening on 0.0.0.0:(.*)").unwrap();
|
||||
loop {
|
||||
let result = stdout.read_line(&mut line);
|
||||
if let Err(err) = result {
|
||||
bail!(format!(
|
||||
"read_process_port: error while reading from process output: {}",
|
||||
err
|
||||
));
|
||||
} else if result.unwrap() == 0 {
|
||||
bail!("read_process_port: hit EOF before reading port from process output.");
|
||||
}
|
||||
if re.is_match(&line) {
|
||||
let caps = re.captures(&line).unwrap();
|
||||
return Ok(caps[1].to_string());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "remote")]
|
||||
async fn create_new_connection(uri: &str, host_override: &str) -> crate::error::Result<Connection> {
|
||||
connect(uri)
|
||||
@@ -114,6 +154,7 @@ async fn new_local_connection() -> Result<TestConnection> {
|
||||
Ok(TestConnection {
|
||||
uri: uri.to_string(),
|
||||
connection,
|
||||
is_remote: false,
|
||||
_temp_dir: Some(temp_dir),
|
||||
_process: None,
|
||||
})
|
||||
|
||||
Reference in New Issue
Block a user