Compare commits

..

1 Commits

Author SHA1 Message Date
qzhu
c3be2e3962 small fix for the guides/table page 2024-02-01 14:41:00 -08:00
134 changed files with 2684 additions and 6328 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.11
current_version = 0.4.7
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
@@ -9,4 +9,4 @@ tag_name = v{new_version}
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/lancedb/Cargo.toml]
[bumpversion:file:rust/vectordb/Cargo.toml]

View File

@@ -1,40 +0,0 @@
[profile.release]
lto = "fat"
codegen-units = 1
[profile.release-with-debug]
inherits = "release"
debug = true
# Prioritize compile time over runtime performance
codegen-units = 16
lto = "thin"
[target.'cfg(all())']
rustflags = [
"-Wclippy::all",
"-Wclippy::style",
"-Wclippy::fallible_impl_from",
"-Wclippy::manual_let_else",
"-Wclippy::redundant_pub_crate",
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
]
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
# Not all Windows systems have the C runtime installed, so this avoids library
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -26,4 +26,4 @@ jobs:
sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package
run: |
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -49,9 +49,6 @@ jobs:
test-node:
name: Test doc nodejs code
runs-on: "ubuntu-latest"
timeout-minutes: 45
strategy:
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -69,12 +66,6 @@ jobs:
uses: swatinem/rust-cache@v2
- name: Install node dependencies
run: |
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release

View File

@@ -80,25 +80,10 @@ jobs:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
runner: buildjet-4vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}

View File

@@ -1,23 +1,20 @@
[workspace]
members = ["rust/ffi/node", "rust/lancedb", "nodejs"]
members = ["rust/ffi/node", "rust/vectordb", "nodejs"]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
[workspace.package]
edition = "2021"
authors = ["LanceDB Devs <dev@lancedb.com>"]
authors = ["Lance Devs <dev@lancedb.com>"]
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.9.18", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.18" }
lance-linalg = { "version" = "=0.9.18" }
lance-testing = { "version" = "=0.9.18" }
lance = { "version" = "=0.9.10", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.10" }
lance-linalg = { "version" = "=0.9.10" }
lance-testing = { "version" = "=0.9.10" }
# Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"

View File

@@ -13,9 +13,7 @@ docker build \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH

View File

@@ -57,16 +57,6 @@ plugins:
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
- ultralytics:
verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
markdown_extensions:
- admonition
@@ -100,18 +90,16 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Hybrid search: hybrid_search.md
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Explicit management: embeddings/embedding_explicit.md
- Implicit management: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
@@ -164,18 +152,16 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Hybrid search: hybrid_search.md
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Explicit management: embeddings/embedding_explicit.md
- Implicit management: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:

View File

@@ -2,5 +2,4 @@ mkdocs==1.5.3
mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0
pydantic
mkdocs-ultralytics-plugin==0.0.44
pydantic

View File

@@ -17,7 +17,6 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -82,7 +81,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -110,14 +109,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -176,7 +175,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -184,7 +183,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -9,9 +9,6 @@ Contains the text embedding functions registered by default.
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |

View File

@@ -0,0 +1,141 @@
In this workflow, you define your own embedding function and pass it as a callable to LanceDB, invoking it in your code to generate the embeddings. Let's look at some examples.
### Hugging Face
!!! note
Currently, the Hugging Face method is only supported in the Python SDK.
=== "Python"
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "JavaScript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function to data
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "JavaScript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Simply pass the embedding function created above and LanceDB will use it to generate
embeddings for your data.
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.

View File

@@ -3,126 +3,61 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings.
Using the implicit embeddings management approach means that you can forget about the manually passing around embedding
functions in your code, as long as you don't intend to change it at a later time. If your embedding function changes,
you'll have to re-configure your table with the new embedding function and regenerate the embeddings.
## 1. Define the embedding function
We have some pre-defined embedding functions in the global registry, with more coming soon. Here's let's an implementation of CLIP as example.
```
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
=== "Python"
In the LanceDB python SDK, we define a global embedding function registry with
many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example.
```python
from lancedb.embeddings import get_registry
registry = get_registry()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
```
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
## 2. Define the data model or schema
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
=== "Python"
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
## 3. Create LanceDB table
Now that we have chosen/defined our embedding function and the schema, we can create the table:
=== "JavaScript"
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
```
## 3. Create table and add data
That's it! We've provided all the information needed to embed the source and query inputs. We can now forget about the model and dimension details and start to build our VectorDB pipeline.
Now that we have chosen/defined our embedding function and the schema,
we can create the table and ingest data without needing to explicitly generate
the embeddings at all:
## 4. Ingest lots of data and query your table
Any new or incoming data can just be added and it'll be vectorized automatically.
=== "Python"
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
```python
table.add([{"image_uri": u} for u in uris])
```
table.add([{"image_uri": u} for u in uris])
```
Our OpenCLIP query embedding function supports querying via both text and images:
=== "JavaScript"
```python
result = table.search("dog")
```
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
Let's query an image:
const table = await db.createTable("vectors", data, embedding)
```
## 4. Querying your table
Not only can you forget about the embeddings during ingestion, you also don't
need to worry about it when you query the table:
=== "Python"
Our OpenCLIP query embedding function supports querying via both text and images:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
)
```
Or we can search using an image:
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
table.search(query_image)
```
---
@@ -165,5 +100,4 @@ rs[2].image
![](../assets/dog_clip_output.png)
Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).
Now that you have the basic idea about implicit management via embedding functions, let's dive deeper into a [custom API](./api.md) that you can use to implement your own embedding functions.

View File

@@ -1,14 +1,8 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio. This makes them a very powerful tool for machine learning practitioners. However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs (both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 3 methods of working with embeddings.
LanceDB supports 2 methods of vectorizing your raw data into embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
1. **Explicit**: By manually calling LanceDB's `with_embedding` function to vectorize your data via an `embed_func` of your choice
2. **Implicit**: Allow LanceDB to embed the data and queries in the background as they come in, by using the table's `EmbeddingRegistry` information
For python users, there is also a legacy [with_embeddings API](./legacy.md).
It is retained for compatibility and will be removed in a future version.
See the [explicit](embedding_explicit.md) and [implicit](embedding_functions.md) embedding sections for more details.

View File

@@ -1,99 +0,0 @@
The legacy `with_embeddings` API is for Python only and is deprecated.
### Hugging Face
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
client = openai.OpenAI()
def embed_func(c):
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
return [record.embedding for record in rs["data"]]
```
## Applying an embedding function to data
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
tbl = db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -1,5 +1,6 @@
import pickle
import re
import sys
import zipfile
from pathlib import Path

View File

@@ -69,19 +69,3 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
- Call `lancedb.connect("s3://minio_bucket_name")`
### Where can I find benchmarks for LanceDB?
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
### How much data can LanceDB practically manage without effecting performance?
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
### Does LanceDB support concurrent operations?
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
!!! info "Multiprocessing with LanceDB"
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)

View File

@@ -100,9 +100,7 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
```python
custom_schema = pa.schema([
@@ -636,70 +634,6 @@ The `values` parameter is used to provide the new values for the columns as lite
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## Consistency
In LanceDB OSS, users can set the `read_consistency_interval` parameter on connections to achieve different levels of read consistency. This parameter determines how frequently the database synchronizes with the underlying storage system to check for updates made by other processes. If another process updates a table, the database will not see the changes until the next synchronization.
There are three possible settings for `read_consistency_interval`:
1. **Unset (default)**: The database does not check for updates to tables made by other processes. This provides the best query performance, but means that clients may not see the most up-to-date data. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS.
3. **Custom interval (Eventual consistency)**: The database checks for updates at a custom interval, such as every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
!!! tip "Consistency in LanceDB Cloud"
This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent.
=== "Python"
To set strong consistency, use `timedelta(0)`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
table = db.open_table("my_table")
```
For eventual consistency, use a custom `timedelta`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
table = db.open_table("my_table")
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
# (Other writes happen to my_table from another process)
# Check for updates
table.checkout_latest()
```
=== "JavaScript/Typescript"
To set strong consistency, use `0`:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
Once it does, we can show manual consistency check for Node as well.
-->
## What's next?
Learn the best practices on creating an ANN index and getting the most out of it.

View File

@@ -1,29 +1,22 @@
# Hybrid Search
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
LanceDB supports both semantic and keyword-based search. In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.pydanatic import LanceModel, Vector
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
vector: Vector(embeddings.ndims) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
@@ -38,19 +31,17 @@ data = [
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
By default, LanceDB uses `LinearCombinationReranker(weights=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weights=0.7)`.
The reranker to use. If not specified, the default reranker is used.
@@ -64,12 +55,12 @@ This is the default re-ranker used by LanceDB. It combines the results of semant
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
reranker = LinearCombinationReranker(weights=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
@@ -91,9 +82,9 @@ reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
Arguments
----------------
* `model_name` : str, default `"rerank-english-v2.0"`
* `model_name`` : str, default `"rerank-english-v2.0"``
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
@@ -117,7 +108,7 @@ results = table.search("harmony hall", query_type="hybrid").rerank(reranker=rera
```
### Arguments
Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
@@ -130,61 +121,6 @@ results = table.search("harmony hall", query_type="hybrid").rerank(reranker=rera
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
@@ -201,7 +137,7 @@ class MyReranker(Reranker):
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
def rerank_hybrid(self, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
@@ -213,30 +149,24 @@ class MyReranker(Reranker):
```
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
You can also accept additional arguments like a filter along with fts and vector search results
```python
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
from lancedb.rerankers import Reranker
import pyarrow as pa
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
class MyReranker(Reranker):
...
def rerank_hybrid(self, vector_results: pa.Table, fts_results: pa.Table, filter: str):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results & filter
# ...
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
# Return the combined results
return combined_result
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

View File

@@ -1,49 +0,0 @@
# Hybrid Search
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline - `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.73` | `0.74` | `0.85` |
| Cross Encoder | `0.71` | `0.70` | `0.77` |
| Cohere | `0.81` | `0.81` | `0.85` |
| ColBERT | `0.68` | `0.68` | `0.73` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/d57b1780-ef27-414c-a5c3-73bee7808a45">
</p>
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline - `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.68` | `0.70` | `0.84` |
| Cross Encoder | `0.72` | `0.72` | `0.79` |
| Cohere | `0.79` | `0.79` | `0.84` |
| ColBERT | `0.70` | `0.70` | `0.76` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/259adfd2-6ec6-4df6-a77d-1456598970dd">
</p>
### Conclusion
The results show that the reranking methods are able to improve the search results. However, the improvement is not consistent across all rerankers. The choice of reranker depends on the dataset and the application. It is also important to note that the reranking methods are not a replacement for the search methods. They are complementary and should be used together to get the best results. The speed to recall tradeoff is also an important factor to consider when choosing the reranker.

View File

@@ -290,7 +290,7 @@
"from lancedb.pydantic import LanceModel, Vector\n",
"\n",
"class Pets(LanceModel):\n",
" vector: Vector(clip.ndims()) = clip.VectorField()\n",
" vector: Vector(clip.ndims) = clip.VectorField()\n",
" image_uri: str = clip.SourceField()\n",
"\n",
" @property\n",
@@ -360,7 +360,7 @@
" table = db.create_table(\"pets\", schema=Pets)\n",
" # use a sampling of 1000 images\n",
" p = Path(\"~/Downloads/images\").expanduser()\n",
" uris = [str(f) for f in p.glob(\"*.jpg\")]\n",
" uris = [str(f) for f in p.iterdir()]\n",
" uris = sample(uris, 1000)\n",
" table.add(pd.DataFrame({\"image_uri\": uris}))"
]
@@ -543,7 +543,7 @@
],
"source": [
"from PIL import Image\n",
"p = Path(\"~/Downloads/images/samoyed_100.jpg\").expanduser()\n",
"p = Path(\"/Users/changshe/Downloads/images/samoyed_100.jpg\")\n",
"query_image = Image.open(p)\n",
"query_image"
]

View File

@@ -23,8 +23,10 @@ from multiprocessing import Pool
import lance
import pyarrow as pa
from datasets import load_dataset
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
import lancedb
MODEL_ID = "openai/clip-vit-base-patch32"

File diff suppressed because it is too large Load Diff

View File

@@ -1,9 +1,6 @@
# DuckDB
In Python, LanceDB tables can also be queried with [DuckDB](https://duckdb.org/), an in-process SQL OLAP database. This means you can write complex SQL queries to analyze your data in LanceDB.
This integration is done via [Apache Arrow](https://duckdb.org/docs/guides/python/sql_on_arrow), which provides zero-copy data sharing between LanceDB and DuckDB. DuckDB is capable of passing down column selections and basic filters to LanceDB, reducing the amount of data that needs to be scanned to perform your query. Finally, the integration allows streaming data from LanceDB tables, allowing you to aggregate tables that won't fit into memory. All of this uses the same mechanism described in DuckDB's blog post *[DuckDB quacks Arrow](https://duckdb.org/2021/12/03/duck-arrow.html)*.
LanceDB is very well-integrated with [DuckDB](https://duckdb.org/), an in-process SQL OLAP database. This integration is done via [Arrow](https://duckdb.org/docs/guides/python/sql_on_arrow) .
We can demonstrate this by first installing `duckdb` and `lancedb`.
@@ -22,15 +19,14 @@ data = [
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
```
To query the table, first call `to_lance` to convert the table to a "dataset", which is an object that can be queried by DuckDB. Then all you need to do is reference that dataset by the same name in your SQL query.
DuckDB can directly query the `pyarrow.Table` object:
```python
import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table")
```

View File

@@ -14,7 +14,7 @@ excluded_globs = [
"../src/concepts/*.md",
"../src/ann_indexes.md",
"../src/basic.md",
"../src/hybrid_search/hybrid_search.md",
"../src/hybrid_search.md",
]
python_prefix = "py"

44
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.4.10",
"version": "0.4.7",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.4.10",
"version": "0.4.7",
"cpu": [
"x64",
"arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
"@lancedb/vectordb-darwin-arm64": "0.4.7",
"@lancedb/vectordb-darwin-x64": "0.4.7",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.7",
"@lancedb/vectordb-linux-x64-gnu": "0.4.7",
"@lancedb/vectordb-win32-x64-msvc": "0.4.7"
}
},
"node_modules/@75lb/deep-merge": {
@@ -329,9 +329,9 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.10.tgz",
"integrity": "sha512-y/uHOGb0g15pvqv5tdTyZ6oN+0QVpBmZDzKFWW6pPbuSZjB2uPqcs+ti0RB+AUdmS21kavVQqaNsw/HLKEGrHA==",
"version": "0.4.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.7.tgz",
"integrity": "sha512-kACOIytgjBfX8NRwjPKe311XRN3lbSN13B7avT5htMd3kYm3AnnMag9tZhlwoO7lIuvGaXhy7mApygJrjhfJ4g==",
"cpu": [
"arm64"
],
@@ -341,9 +341,9 @@
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.10.tgz",
"integrity": "sha512-XbfR58OkQpAe0xMSTrwJh9ZjGSzG9EZ7zwO6HfYem8PxcLYAcC6eWRWoSG/T0uObyrPTcYYyvHsp0eNQWYBFAQ==",
"version": "0.4.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.7.tgz",
"integrity": "sha512-vb74iK5uPWCwz5E60r3yWp/R/HSg54/Z9AZWYckYXqsPv4w/nfbkM5iZhfRqqR/9uE6JClWJKOtjbk7b8CFRFg==",
"cpu": [
"x64"
],
@@ -353,9 +353,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.10.tgz",
"integrity": "sha512-x40WKH9b+KxorRmKr9G7fv8p5mMj8QJQvRMA0v6v+nbZHr2FLlAZV+9mvhHOnm4AGIkPP5335cUgv6Qz6hgwkQ==",
"version": "0.4.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.7.tgz",
"integrity": "sha512-jHp7THm6S9sB8RaCxGoZXLAwGAUHnawUUilB1K3mvQsRdfB2bBs0f7wDehW+PDhr+Iog4LshaWbcnoQEUJWR+Q==",
"cpu": [
"arm64"
],
@@ -365,9 +365,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.10.tgz",
"integrity": "sha512-CTGPpuzlqq2nVjUxI9gAJOT1oBANIovtIaFsOmBSnEAHgX7oeAxKy2b6L/kJzsgqSzvR5vfLwYcWFrr6ZmBxSA==",
"version": "0.4.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.7.tgz",
"integrity": "sha512-LKbVe6Wrp/AGqCCjKliNDmYoeTNgY/wfb2DTLjrx41Jko/04ywLrJ6xSEAn3XD5RDCO5u3fyUdXHHHv5a3VAAQ==",
"cpu": [
"x64"
],
@@ -377,9 +377,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.10.tgz",
"integrity": "sha512-Fd7r74coZyrKzkfXg4WthqOL+uKyJyPTia6imcrMNqKOlTGdKmHf02Qi2QxWZrFaabkRYo4Tpn5FeRJ3yYX8CA==",
"version": "0.4.7",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.7.tgz",
"integrity": "sha512-C5ln4+wafeY1Sm4PeV0Ios9lUaQVVip5Mjl9XU7ngioSEMEuXI/XMVfIdVfDPppVNXPeQxg33wLA272uw88D1Q==",
"cpu": [
"x64"
],

View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.4.11",
"version": "0.4.7",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
"tsc": "tsc -b",
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib lancedb-node index.node -- cargo build --message-format=json",
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",
@@ -85,10 +85,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.11",
"@lancedb/vectordb-darwin-x64": "0.4.11",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.11",
"@lancedb/vectordb-linux-x64-gnu": "0.4.11",
"@lancedb/vectordb-win32-x64-msvc": "0.4.11"
"@lancedb/vectordb-darwin-arm64": "0.4.7",
"@lancedb/vectordb-darwin-x64": "0.4.7",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.7",
"@lancedb/vectordb-linux-x64-gnu": "0.4.7",
"@lancedb/vectordb-win32-x64-msvc": "0.4.7"
}
}
}

View File

@@ -14,6 +14,8 @@
import {
Field,
type FixedSizeListBuilder,
Float32,
makeBuilder,
RecordBatchFileWriter,
Utf8,
@@ -24,19 +26,14 @@ import {
Table as ArrowTable,
RecordBatchStreamWriter,
List,
Float64,
RecordBatch,
makeData,
Struct,
type Float,
DataType,
Binary,
Float32
type Float
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
/*
* Options to control how a column should be converted to a vector array
*/
export class VectorColumnOptions {
/** Vector column type. */
type: Float = new Float32()
@@ -48,50 +45,14 @@ export class VectorColumnOptions {
/** Options to control the makeArrowTable call. */
export class MakeArrowTableOptions {
/*
* Schema of the data.
*
* If this is not provided then the data type will be inferred from the
* JS type. Integer numbers will become int64, floating point numbers
* will become float64 and arrays will become variable sized lists with
* the data type inferred from the first element in the array.
*
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
/** Provided schema. */
schema?: Schema
/*
* Mapping from vector column name to expected type
*
* Lance expects vector columns to be fixed size list arrays (i.e. tensors)
* However, `makeArrowTable` will not infer this by default (it creates
* variable size list arrays). This field can be used to indicate that a column
* should be treated as a vector column and converted to a fixed size list.
*
* The keys should be the names of the vector columns. The value specifies the
* expected data type of the vector columns.
*
* If `schema` is provided then this field is ignored.
*
* By default, the column named "vector" will be assumed to be a float32
* vector column.
*/
/** Vector columns */
vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions()
}
/**
* If true then string columns will be encoded with dictionary encoding
*
* Set this to true if your string columns tend to repeat the same values
* often. For more precise control use the `schema` property to specify the
* data type for individual columns.
*
* If `schema` is provided then this property is ignored.
*/
dictionaryEncodeStrings: boolean = false
constructor (values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values)
}
@@ -101,29 +62,8 @@ export class MakeArrowTableOptions {
* An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns.
*
* This function converts an array of Record<String, any> (row-major JS objects)
* to an Arrow Table (a columnar structure)
*
* Note that it currently does not support nulls.
*
* If a schema is provided then it will be used to determine the resulting array
* types. Fields will also be reordered to fit the order defined by the schema.
*
* If a schema is not provided then the types will be inferred and the field order
* will be controlled by the order of properties in the first record.
*
* If the input is empty then a schema must be provided to create an empty table.
*
* When a schema is not specified then data types will be inferred. The inference
* rules are as follows:
*
* - boolean => Bool
* - number => Float64
* - String => Utf8
* - Buffer => Binary
* - Record<String, any> => Struct
* - Array<any> => List
*
* @param data input data
* @param options options to control the makeArrowTable call.
*
@@ -146,10 +86,8 @@ export class MakeArrowTableOptions {
* ], { schema });
* ```
*
* By default it assumes that the column named `vector` is a vector column
* and it will be converted into a fixed size list array of type float32.
* The `vectorColumns` option can be used to support other vector column
* names and data types.
* It guesses the vector columns if the schema is not provided. For example,
* by default it assumes that the column named `vector` is a vector column.
*
* ```ts
*
@@ -196,304 +134,211 @@ export function makeArrowTable (
data: Array<Record<string, any>>,
options?: Partial<MakeArrowTableOptions>
): ArrowTable {
if (data.length === 0 && (options?.schema === undefined || options?.schema === null)) {
throw new Error('At least one record or a schema needs to be provided')
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
const columns: Record<string, Vector> = {}
// TODO: sample dataset to find missing columns
// Prefer the field ordering of the schema, if present
const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
const columnNames = Object.keys(data[0])
for (const colName of columnNames) {
if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
// The field is present in the schema, but not in the data, skip it
continue
}
// Extract a single column from the records (transpose from row-major to col-major)
let values = data.map((datum) => datum[colName])
const values = data.map((datum) => datum[colName])
let vector: Vector
// By default (type === undefined) arrow will infer the type from the JS type
let type
if (opt.schema !== undefined) {
// If there is a schema provided, then use that for the type instead
type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
if (DataType.isInt(type) && type.bitWidth === 64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
values = values.map((v) => {
if (v === null) {
return v
}
return BigInt(v)
})
}
// Explicit schema is provided, highest priority
vector = vectorFromArray(
values,
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
)
} else {
// Otherwise, check to see if this column is one of the vector columns
// defined by opt.vectorColumns and, if so, use the fixed size list type
const vectorColumnOptions = opt.vectorColumns[colName]
if (vectorColumnOptions !== undefined) {
type = newVectorType(values[0].length, vectorColumnOptions.type)
}
}
try {
// Convert an Array of JS values to an arrow vector
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings)
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`)
}
}
if (opt.schema != null) {
// `new ArrowTable(columns)` infers a schema which may sometimes have
// incorrect nullability (it assumes nullable=true if there are 0 rows)
//
// `new ArrowTable(schema, columns)` will also fail because it will create a
// batch with an inferred schema and then complain that the batch schema
// does not match the provided schema.
//
// To work around this we first create a table with the wrong schema and
// then patch the schema of the batches so we can use
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns)
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const batchesFixed = firstTable.batches.map(batch => new RecordBatch(opt.schema!, batch.data))
return new ArrowTable(opt.schema, batchesFixed)
} else {
return new ArrowTable(columns)
}
}
/**
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable (schema: Schema): ArrowTable {
return makeArrowTable([], { schema })
}
// Helper function to convert Array<Array<any>> to a variable sized list array
function makeListVector (lists: any[][]): Vector<any> {
if (lists.length === 0 || lists[0].length === 0) {
throw Error('Cannot infer list vector from empty array or empty list')
}
const sampleList = lists[0]
let inferredType
try {
const sampleVector = makeVector(sampleList)
inferredType = sampleVector.type
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', inferredType, true))
})
for (const list of lists) {
listBuilder.append(list)
}
return listBuilder.finish().toVector()
}
// Helper function to convert an Array of JS values to an Arrow Vector
function makeVector (values: any[], type?: DataType, stringAsDictionary?: boolean): Vector<any> {
if (type !== undefined) {
// No need for inference, let Arrow create it
return vectorFromArray(values, type)
}
if (values.length === 0) {
throw Error('makeVector requires at least one value or the type must be specfied')
}
const sampleValue = values.find(val => val !== null && val !== undefined)
if (sampleValue === undefined) {
throw Error('makeVector cannot infer the type if all values are null or undefined')
}
if (Array.isArray(sampleValue)) {
// Default Arrow inference doesn't handle list types
return makeListVector(values)
} else if (Buffer.isBuffer(sampleValue)) {
// Default Arrow inference doesn't handle Buffer
return vectorFromArray(values, new Binary())
} else if (!(stringAsDictionary ?? false) && (typeof sampleValue === 'string' || sampleValue instanceof String)) {
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
// because it will always use dictionary encoding for strings
return vectorFromArray(values, new Utf8())
} else {
// Convert a JS array of values to an arrow vector
return vectorFromArray(values)
}
}
async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<ArrowTable> {
if (embeddings == null) {
return table
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
const name = table.schema.fields[idx].name
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const vec = table.getChildAt(idx)!
return [name, vec]
})
const newColumns = Object.fromEntries(colEntries)
const sourceColumn = newColumns[embeddings.sourceColumn]
const destColumn = embeddings.destColumn ?? 'vector'
const innerDestType = embeddings.embeddingDataType ?? new Float32()
if (sourceColumn === undefined) {
throw new Error(`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`)
}
if (table.numRows === 0) {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
// We have an empty table and it already has the embedding column so no work needs to be done
// Note: we don't return an error like we did below because this is a common occurrence. For example,
// if we call convertToTable with 0 records and a schema that includes the embedding
return table
}
if (embeddings.embeddingDimension !== undefined) {
const destType = newVectorType(embeddings.embeddingDimension, innerDestType)
newColumns[destColumn] = makeVector([], destType)
} else if (schema != null) {
const destField = schema.fields.find(f => f.name === destColumn)
if (destField != null) {
newColumns[destColumn] = makeVector([], destField.type)
const fslType = new FixedSizeList(
values[0].length,
new Field('item', vectorColumnOptions.type, false)
)
vector = vectorFromArray(values, fslType)
} else {
throw new Error(`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`)
// Normal case
vector = vectorFromArray(values)
}
} else {
throw new Error('Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`')
}
} else {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(`Attempt to apply embeddings to table failed because column ${destColumn} already existed`)
}
if (table.batches.length > 1) {
throw new Error('Internal error: `makeArrowTable` unexpectedly created a table with more than one batch')
}
const values = sourceColumn.toArray()
const vectors = await embeddings.embed(values as T[])
if (vectors.length !== values.length) {
throw new Error('Embedding function did not return an embedding for each input element')
}
const destType = newVectorType(vectors[0].length, innerDestType)
newColumns[destColumn] = makeVector(vectors, destType)
columns[colName] = vector
}
const newTable = new ArrowTable(newColumns)
if (schema != null) {
if (schema.fields.find(f => f.name === destColumn) === undefined) {
throw new Error(`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`)
}
return alignTable(newTable, schema)
}
return newTable
return new ArrowTable(columns)
}
/*
* Convert an Array of records into an Arrow Table, optionally applying an
* embeddings function to it.
*
* This function calls `makeArrowTable` first to create the Arrow Table.
* Any provided `makeTableOptions` (e.g. a schema) will be passed on to
* that call.
*
* The embedding function will be passed a column of values (based on the
* `sourceColumn` of the embedding function) and expects to receive back
* number[][] which will be converted into a fixed size list column. By
* default this will be a fixed size list of Float32 but that can be
* customized by the `embeddingDataType` property of the embedding function.
*
* If a schema is provided in `makeTableOptions` then it should include the
* embedding columns. If no schema is provded then embedding columns will
* be placed at the end of the table, after all of the input columns.
*/
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
export async function convertToTable<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
makeTableOptions?: Partial<MakeArrowTableOptions>
embeddings?: EmbeddingFunction<T>
): Promise<ArrowTable> {
const table = makeArrowTable(data, makeTableOptions)
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema)
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
const columns = Object.keys(data[0])
const records: Record<string, Vector> = {}
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
}
listBuilder.append(datum[columnsKey])
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
const values = []
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(
vectors,
newVectorType(vectors[0].length)
)
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else if (Array.isArray(values[0])) {
const elementType = getElementType(values[0])
let innerType
if (elementType === 'string') {
innerType = new Utf8()
} else if (elementType === 'number') {
innerType = new Float64()
} else {
// TODO: pass in schema if it exists, else keep going to the next element
throw new Error(`Unsupported array element type ${elementType}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', innerType, true))
})
for (const value of values) {
listBuilder.append(value)
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
// TODO if this is a struct field then recursively align the subfields
records[columnsKey] = vectorFromArray(values)
}
}
}
return new ArrowTable(records)
}
function getElementType (arr: any[]): string {
if (arr.length === 0) {
return 'undefined'
}
return typeof arr[0]
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
return makeBuilder({
type: newVectorType(dim)
})
}
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeList<T> {
function newVectorType (dim: number): FixedSizeList<Float32> {
// Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<T>('item', innerType, true)
const children = new Field<Float32>('item', new Float32(), true)
return new FixedSizeList(dim, children)
}
/**
* Serialize an Array of records into a buffer using the Arrow IPC File serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
// Converts an Array of records into Arrow IPC format
export async function fromRecordsToBuffer<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
const table = await convertToTable(data, embeddings, { schema })
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
/**
* Serialize an Array of records into a buffer using the Arrow IPC Stream serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
// Converts an Array of records into Arrow IPC stream format
export async function fromRecordsToStreamBuffer<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
const table = await convertToTable(data, embeddings, { schema })
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
// Converts an Arrow Table into Arrow IPC format
export async function fromTableToBuffer<T> (
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC Stream serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
// Converts an Arrow Table into Arrow IPC stream format
export async function fromTableToStreamBuffer<T> (
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}

View File

@@ -12,53 +12,18 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { type Float } from 'apache-arrow'
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* The data type of the embedding
*
* The embedding function should return `number`. This will be converted into
* an Arrow float array. By default this will be Float32 but this property can
* be used to control the conversion.
*/
embeddingDataType?: Float
/**
* The dimension of the embedding
*
* This is optional, normally this can be determined by looking at the results of
* `embed`. If this is not specified, and there is an attempt to apply the embedding
* to an empty table, then that process will fail.
*/
embeddingDimension?: number
/**
* The name of the column that will contain the embedding
*
* By default this is "vector"
*/
destColumn?: string
/**
* Should the source column be excluded from the resulting table
*
* By default the source column is included. Set this to true and
* only the embedding will be stored.
*/
excludeSource?: boolean
/**
* Creates a vector representation for the given values.
*/
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]>
}

View File

@@ -37,7 +37,6 @@ const {
tableCountRows,
tableDelete,
tableUpdate,
tableMergeInsert,
tableCleanupOldVersions,
tableCompactFiles,
tableListIndices,
@@ -49,7 +48,7 @@ const {
export { Query }
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
export { convertToTable, makeArrowTable, type MakeArrowTableOptions } from './arrow'
export { makeArrowTable, type MakeArrowTableOptions } from './arrow'
const defaultAwsRegion = 'us-west-2'
@@ -96,19 +95,6 @@ export interface ConnectionOptions {
* This is useful for local testing.
*/
hostOverride?: string
/**
* (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not
* checked. For performance reasons, this is the default. For strong
* consistency, set this to zero seconds. Then every read will check for
* updates from other processes. As a compromise, you can set this to a
* non-zero value for eventual consistency. If more than that interval
* has passed since the last check, then the table will be checked for updates.
* Note: this consistency only applies to read operations. Write operations are
* always consistent.
*/
readConsistencyInterval?: number
}
function getAwsArgs (opts: ConnectionOptions): any[] {
@@ -194,8 +180,7 @@ export async function connect (
opts.awsCredentials?.accessKeyId,
opts.awsCredentials?.secretKey,
opts.awsCredentials?.sessionToken,
opts.awsRegion,
opts.readConsistencyInterval
opts.awsRegion
)
return new LocalConnection(db, opts)
}
@@ -386,7 +371,7 @@ export interface Table<T = number[]> {
/**
* Returns the number of rows in this table.
*/
countRows: (filter?: string) => Promise<number>
countRows: () => Promise<number>
/**
* Delete rows from this table.
@@ -455,38 +440,6 @@ export interface Table<T = number[]> {
*/
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/**
* Runs a "merge insert" operation on the table
*
* This operation can add rows, update rows, and remove rows all in a single
* transaction. It is a very generic tool that can be used to create
* behaviors like "insert if not exists", "update or insert (i.e. upsert)",
* or even replace a portion of existing data with new data (e.g. replace
* all data where month="january")
*
* The merge insert operation works by combining new data from a
* **source table** with existing data in a **target table** by using a
* join. There are three categories of records.
*
* "Matched" records are records that exist in both the source table and
* the target table. "Not matched" records exist only in the source table
* (e.g. these are new data) "Not matched by source" records exist only
* in the target table (this is old data)
*
* The MergeInsertArgs can be used to customize what should happen for
* each category of data.
*
* Please note that the data may appear to be reordered as part of this
* operation. This is because updated rows will be deleted from the
* dataset and then reinserted at the end with the new values.
*
* @param on a column to join on. This is how records from the source
* table and target table are matched.
* @param data the new data to insert
* @param args parameters controlling how the operation should behave
*/
mergeInsert: (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs) => Promise<void>
/**
* List the indicies on this table.
*/
@@ -530,47 +483,6 @@ export interface UpdateSqlArgs {
valuesSql: Record<string, string>
}
export interface MergeInsertArgs {
/**
* If true then rows that exist in both the source table (new data) and
* the target table (old data) will be updated, replacing the old row
* with the corresponding matching row.
*
* If there are multiple matches then the behavior is undefined.
* Currently this causes multiple copies of the row to be created
* but that behavior is subject to change.
*
* Optionally, a filter can be specified. This should be an SQL
* filter where fields with the prefix "target." refer to fields
* in the target table (old data) and fields with the prefix
* "source." refer to fields in the source table (new data). For
* example, the filter "target.lastUpdated < source.lastUpdated" will
* only update matched rows when the incoming `lastUpdated` value is
* newer.
*
* Rows that do not match the filter will not be updated. Rows that
* do not match the filter do become "not matched" rows.
*/
whenMatchedUpdateAll?: string | boolean
/**
* If true then rows that exist only in the source table (new data)
* will be inserted into the target table.
*/
whenNotMatchedInsertAll?: boolean
/**
* If true then rows that exist only in the target table (old data)
* will be deleted.
*
* If this is a string then it will be treated as an SQL filter and
* only rows that both do not match any row in the source table and
* match the given filter will be deleted.
*
* This can be used to replace a selection of existing data with
* new data.
*/
whenNotMatchedBySourceDelete?: string | boolean
}
export interface VectorIndex {
columns: string[]
name: string
@@ -865,8 +777,8 @@ export class LocalTable<T = number[]> implements Table<T> {
/**
* Returns the number of rows in this table.
*/
async countRows (filter?: string): Promise<number> {
return tableCountRows.call(this._tbl, filter)
async countRows (): Promise<number> {
return tableCountRows.call(this._tbl)
}
/**
@@ -909,46 +821,6 @@ export class LocalTable<T = number[]> implements Table<T> {
})
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let whenMatchedUpdateAll = false
let whenMatchedUpdateAllFilt = null
if (args.whenMatchedUpdateAll !== undefined && args.whenMatchedUpdateAll !== null) {
whenMatchedUpdateAll = true
if (args.whenMatchedUpdateAll !== true) {
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll
}
}
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false
let whenNotMatchedBySourceDelete = false
let whenNotMatchedBySourceDeleteFilt = null
if (args.whenNotMatchedBySourceDelete !== undefined && args.whenNotMatchedBySourceDelete !== null) {
whenNotMatchedBySourceDelete = true
if (args.whenNotMatchedBySourceDelete !== true) {
whenNotMatchedBySourceDeleteFilt = args.whenNotMatchedBySourceDelete
}
}
const schema = await this.schema
let tbl: ArrowTable
if (data instanceof ArrowTable) {
tbl = data
} else {
tbl = makeArrowTable(data, { schema })
}
const buffer = await fromTableToBuffer(tbl, this._embeddings, schema)
this._tbl = await tableMergeInsert.call(
this._tbl,
on,
whenMatchedUpdateAll,
whenMatchedUpdateAllFilt,
whenNotMatchedInsertAll,
whenNotMatchedBySourceDelete,
whenNotMatchedBySourceDeleteFilt,
buffer
)
}
/**
* Clean up old versions of the table, freeing disk space.
*

View File

@@ -24,8 +24,7 @@ import {
type IndexStats,
type UpdateArgs,
type UpdateSqlArgs,
makeArrowTable,
type MergeInsertArgs
makeArrowTable
} from '../index'
import { Query } from '../query'
@@ -275,55 +274,6 @@ export class RemoteTable<T = number[]> implements Table<T> {
throw new Error('Not implemented')
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let tbl: ArrowTable
if (data instanceof ArrowTable) {
tbl = data
} else {
tbl = makeArrowTable(data, await this.schema)
}
const queryParams: any = {
on
}
if (args.whenMatchedUpdateAll !== false && args.whenMatchedUpdateAll !== null && args.whenMatchedUpdateAll !== undefined) {
queryParams.when_matched_update_all = 'true'
if (typeof args.whenMatchedUpdateAll === 'string') {
queryParams.when_matched_update_all_filt = args.whenMatchedUpdateAll
}
} else {
queryParams.when_matched_update_all = 'false'
}
if (args.whenNotMatchedInsertAll ?? false) {
queryParams.when_not_matched_insert_all = 'true'
} else {
queryParams.when_not_matched_insert_all = 'false'
}
if (args.whenNotMatchedBySourceDelete !== false && args.whenNotMatchedBySourceDelete !== null && args.whenNotMatchedBySourceDelete !== undefined) {
queryParams.when_not_matched_by_source_delete = 'true'
if (typeof args.whenNotMatchedBySourceDelete === 'string') {
queryParams.when_not_matched_by_source_delete_filt = args.whenNotMatchedBySourceDelete
}
} else {
queryParams.when_not_matched_by_source_delete = 'false'
}
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/merge_insert/`,
buffer,
queryParams,
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
)
}
}
async add (data: Array<Record<string, unknown>> | ArrowTable): Promise<number> {
let tbl: ArrowTable
if (data instanceof ArrowTable) {

View File

@@ -13,10 +13,9 @@
// limitations under the License.
import { describe } from 'mocha'
import { assert, expect, use as chaiUse } from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { assert } from 'chai'
import { convertToTable, fromTableToBuffer, makeArrowTable, makeEmptyTable } from '../arrow'
import { fromTableToBuffer, makeArrowTable } from '../arrow'
import {
Field,
FixedSizeList,
@@ -25,79 +24,21 @@ import {
Int32,
tableFromIPC,
Schema,
Float64,
type Table,
Binary,
Bool,
Utf8,
Struct,
List,
DataType,
Dictionary,
Int64
Float64
} from 'apache-arrow'
import { type EmbeddingFunction } from '../embedding/embedding_function'
chaiUse(chaiAsPromised)
function sampleRecords (): Array<Record<string, any>> {
return [
{
binary: Buffer.alloc(5),
boolean: false,
number: 7,
string: 'hello',
struct: { x: 0, y: 0 },
list: ['anime', 'action', 'comedy']
}
]
}
// Helper method to verify various ways to create a table
async function checkTableCreation (tableCreationMethod: (records: any, recordsReversed: any, schema: Schema) => Promise<Table>): Promise<void> {
const records = sampleRecords()
const recordsReversed = [{
list: ['anime', 'action', 'comedy'],
struct: { x: 0, y: 0 },
string: 'hello',
number: 7,
boolean: false,
binary: Buffer.alloc(5)
}]
const schema = new Schema([
new Field('binary', new Binary(), false),
new Field('boolean', new Bool(), false),
new Field('number', new Float64(), false),
new Field('string', new Utf8(), false),
new Field('struct', new Struct([
new Field('x', new Float64(), false),
new Field('y', new Float64(), false)
])),
new Field('list', new List(new Field('item', new Utf8(), false)), false)
])
const table = await tableCreationMethod(records, recordsReversed, schema)
schema.fields.forEach((field, idx) => {
const actualField = table.schema.fields[idx]
assert.isFalse(actualField.nullable)
assert.equal(table.getChild(field.name)?.type.toString(), field.type.toString())
assert.equal(table.getChildAt(idx)?.type.toString(), field.type.toString())
})
}
describe('The function makeArrowTable', function () {
it('will use data types from a provided schema instead of inference', async function () {
describe('Apache Arrow tables', function () {
it('customized schema', async function () {
const schema = new Schema([
new Field('a', new Int32()),
new Field('b', new Float32()),
new Field('c', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('d', new Int64())
new Field('c', new FixedSizeList(3, new Field('item', new Float16())))
])
const table = makeArrowTable(
[
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
{ a: 7, b: 8, c: [7, 8, 9], d: null }
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] }
],
{ schema }
)
@@ -111,13 +52,13 @@ describe('The function makeArrowTable', function () {
assert.deepEqual(actualSchema, schema)
})
it('will assume the column `vector` is FixedSizeList<Float32> by default', async function () {
it('default vector column', async function () {
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field(
'vector',
new FixedSizeList(3, new Field('item', new Float32(), true))
new FixedSizeList(3, new Field('item', new Float32()))
)
])
const table = makeArrowTable([
@@ -135,12 +76,12 @@ describe('The function makeArrowTable', function () {
assert.deepEqual(actualSchema, schema)
})
it('can support multiple vector columns', async function () {
it('2 vector columns', async function () {
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16(), true))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16(), true)))
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
])
const table = makeArrowTable(
[
@@ -164,157 +105,4 @@ describe('The function makeArrowTable', function () {
const actualSchema = actual.schema
assert.deepEqual(actualSchema, schema)
})
it('will allow different vector column types', async function () {
const table = makeArrowTable(
[
{ fp16: [1], fp32: [1], fp64: [1] }
],
{
vectorColumns: {
fp16: { type: new Float16() },
fp32: { type: new Float32() },
fp64: { type: new Float64() }
}
}
)
assert.equal(table.getChild('fp16')?.type.children[0].type.toString(), new Float16().toString())
assert.equal(table.getChild('fp32')?.type.children[0].type.toString(), new Float32().toString())
assert.equal(table.getChild('fp64')?.type.children[0].type.toString(), new Float64().toString())
})
it('will use dictionary encoded strings if asked', async function () {
const table = makeArrowTable([{ str: 'hello' }])
assert.isTrue(DataType.isUtf8(table.getChild('str')?.type))
const tableWithDict = makeArrowTable([{ str: 'hello' }], { dictionaryEncodeStrings: true })
assert.isTrue(DataType.isDictionary(tableWithDict.getChild('str')?.type))
const schema = new Schema([
new Field('str', new Dictionary(new Utf8(), new Int32()))
])
const tableWithDict2 = makeArrowTable([{ str: 'hello' }], { schema })
assert.isTrue(DataType.isDictionary(tableWithDict2.getChild('str')?.type))
})
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => makeArrowTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => makeArrowTable(records, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => makeArrowTable(recordsReversed, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeArrowTable([], { schema }))
})
})
class DummyEmbedding implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
public readonly embeddingDimension = 2
public readonly embeddingDataType = new Float16()
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
describe('convertToTable', function () {
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => await convertToTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => await convertToTable(records, undefined, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => await convertToTable(recordsReversed, undefined, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => await convertToTable([], undefined, { schema }))
})
it('will apply embeddings', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will fail if missing the embedding source column', async function () {
return await expect(convertToTable([{ id: 1 }], new DummyEmbedding())).to.be.rejectedWith("'string' was not present")
})
it('use embeddingDimension if embedding missing from table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
// Simulate getting an empty Arrow table (minus embedding) from some other source
// In other words, we aren't starting with records
const table = makeEmptyTable(schema)
// If the embedding specifies the dimension we are fine
await fromTableToBuffer(table, new DummyEmbedding())
// We can also supply a schema and should be ok
const schemaWithEmbedding = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
await fromTableToBuffer(table, new DummyEmbeddingWithNoDimension(), schemaWithEmbedding)
// Otherwise we will get an error
return await expect(fromTableToBuffer(table, new DummyEmbeddingWithNoDimension())).to.be.rejectedWith('does not specify `embeddingDimension`')
})
it('will apply embeddings to an empty table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
const table = await convertToTable([], new DummyEmbedding(), { schema })
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will complain if embeddings present but schema missing embedding column', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
return await expect(convertToTable([], new DummyEmbedding(), { schema })).to.be.rejectedWith('column vector was missing')
})
it('will provide a nice error if run twice', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
// fromTableToBuffer will try and apply the embeddings again
return await expect(fromTableToBuffer(table, new DummyEmbedding())).to.be.rejectedWith('already existed')
})
})
describe('makeEmptyTable', function () {
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
})
})

View File

@@ -294,7 +294,6 @@ describe('LanceDB client', function () {
})
assert.equal(table.name, 'vectors')
assert.equal(await table.countRows(), 10)
assert.equal(await table.countRows('vector IS NULL'), 0)
assert.deepEqual(await con.tableNames(), ['vectors'])
})
@@ -370,7 +369,6 @@ describe('LanceDB client', function () {
const table = await con.createTable('f16', data)
assert.equal(table.name, 'f16')
assert.equal(await table.countRows(), total)
assert.equal(await table.countRows('id < 5'), 5)
assert.deepEqual(await con.tableNames(), ['f16'])
assert.deepEqual(await table.schema, schema)
@@ -533,54 +531,6 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('can merge insert records into the table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [{ id: 1, age: 1 }, { id: 2, age: 1 }]
const table = await con.createTable('my_table', data)
// insert if not exists
let newData = [{ id: 2, age: 2 }, { id: 3, age: 2 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 2'), 1)
// conditional update
newData = [{ id: 2, age: 3 }, { id: 3, age: 3 }]
await table.mergeInsert('id', newData, {
whenMatchedUpdateAll: 'target.age = 1'
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 1'), 1)
assert.equal(await table.countRows('age = 3'), 1)
newData = [{ id: 3, age: 4 }, { id: 4, age: 4 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true
})
assert.equal(await table.countRows(), 4)
assert.equal((await table.filter('age = 4').execute()).length, 2)
newData = [{ id: 5, age: 5 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: 'age < 4'
})
assert.equal(await table.countRows(), 3)
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: true
})
assert.equal(await table.countRows(), 1)
})
it('can update records in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)

View File

@@ -9,6 +9,6 @@
"declaration": true,
"outDir": "./dist",
"strict": true,
"sourceMap": true,
// "esModuleInterop": true,
}
}

View File

@@ -18,5 +18,5 @@ module.exports = {
"@typescript-eslint/method-signature-style": "off",
"@typescript-eslint/no-explicit-any": "off",
},
ignorePatterns: ["node_modules/", "dist/", "build/", "lancedb/native.*"],
ignorePatterns: ["node_modules/", "dist/", "build/", "vectordb/native.*"],
};

View File

@@ -1,12 +1,9 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
name = "vectordb-nodejs"
edition = "2021"
version = "0.0.0"
license.workspace = true
description.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
[lib]
crate-type = ["cdylib"]
@@ -16,15 +13,16 @@ arrow-ipc.workspace = true
futures.workspace = true
lance-linalg.workspace = true
lance.workspace = true
lancedb = { path = "../rust/lancedb" }
napi = { version = "2.15", default-features = false, features = [
vectordb = { path = "../rust/vectordb" }
napi = { version = "2.14", default-features = false, features = [
"napi7",
"async"
] }
napi-derive = "2"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }
napi-derive = "2.14"
[build-dependencies]
napi-build = "2.1"
[profile.release]
lto = true
strip = "symbols"

View File

@@ -12,9 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { makeArrowTable, toBuffer } from "../lancedb/arrow";
import { makeArrowTable, toBuffer } from "../vectordb/arrow";
import {
Int64,
Field,
FixedSizeList,
Float16,
@@ -105,16 +104,3 @@ test("2 vector columns", function () {
const actualSchema = actual.schema;
expect(actualSchema.toString()).toEqual(schema.toString());
});
test("handles int64", function() {
// https://github.com/lancedb/lancedb/issues/960
const schema = new Schema([
new Field("x", new Int64(), true)
]);
const table = makeArrowTable([
{ x: 1 },
{ x: 2 },
{ x: 3 }
], { schema });
expect(table.schema).toEqual(schema);
})

View File

@@ -29,6 +29,6 @@ test("open database", async () => {
const tbl = await db.createTable("test", [{ id: 1 }, { id: 2 }]);
expect(await db.tableNames()).toStrictEqual(["test"]);
const schema = await tbl.schema();
const schema = tbl.schema;
expect(schema).toEqual(new Schema([new Field("id", new Float64(), true)]));
});

View File

@@ -181,37 +181,3 @@ describe("Test creating index", () => {
// TODO: check index type.
});
});
describe("Read consistency interval", () => {
let tmpDir: string;
beforeEach(() => {
tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "read-consistency-"));
});
// const intervals = [undefined, 0, 0.1];
const intervals = [0];
test.each(intervals)("read consistency interval %p", async (interval) => {
const db = await connect({ uri: tmpDir });
const table = await db.createTable("my_table", [{ id: 1 }]);
const db2 = await connect({ uri: tmpDir, readConsistencyInterval: interval });
const table2 = await db2.openTable("my_table");
expect(await table2.countRows()).toEqual(await table.countRows());
await table.add([{ id: 2 }]);
if (interval === undefined) {
expect(await table2.countRows()).toEqual(1n);
// TODO: once we implement time travel we can uncomment this part of the test.
// await table2.checkout_latest();
// expect(await table2.countRows()).toEqual(2);
} else if (interval === 0) {
expect(await table2.countRows()).toEqual(2n);
} else {
// interval == 0.1
expect(await table2.countRows()).toEqual(1n);
await new Promise(r => setTimeout(r, 100));
expect(await table2.countRows()).toEqual(2n);
}
});
});

View File

@@ -2,6 +2,4 @@
module.exports = {
preset: 'ts-jest',
testEnvironment: 'node',
moduleDirectories: ["node_modules", "./dist"],
moduleFileExtensions: ["js", "ts"],
};
};

View File

@@ -1,3 +1,3 @@
# `lancedb-darwin-arm64`
# `vectordb-darwin-arm64`
This is the **aarch64-apple-darwin** binary for `lancedb`
This is the **aarch64-apple-darwin** binary for `vectordb`

View File

@@ -1,5 +1,5 @@
{
"name": "lancedb-darwin-arm64",
"name": "vectordb-darwin-arm64",
"version": "0.4.3",
"os": [
"darwin"
@@ -7,9 +7,9 @@
"cpu": [
"arm64"
],
"main": "lancedb.darwin-arm64.node",
"main": "vectordb.darwin-arm64.node",
"files": [
"lancedb.darwin-arm64.node"
"vectordb.darwin-arm64.node"
],
"license": "MIT",
"engines": {

View File

@@ -1,3 +1,3 @@
# `lancedb-darwin-x64`
# `vectordb-darwin-x64`
This is the **x86_64-apple-darwin** binary for `lancedb`
This is the **x86_64-apple-darwin** binary for `vectordb`

View File

@@ -1,5 +1,5 @@
{
"name": "lancedb-darwin-x64",
"name": "vectordb-darwin-x64",
"version": "0.4.3",
"os": [
"darwin"
@@ -7,9 +7,9 @@
"cpu": [
"x64"
],
"main": "lancedb.darwin-x64.node",
"main": "vectordb.darwin-x64.node",
"files": [
"lancedb.darwin-x64.node"
"vectordb.darwin-x64.node"
],
"license": "MIT",
"engines": {

View File

@@ -1,3 +1,3 @@
# `lancedb-linux-arm64-gnu`
# `vectordb-linux-arm64-gnu`
This is the **aarch64-unknown-linux-gnu** binary for `lancedb`
This is the **aarch64-unknown-linux-gnu** binary for `vectordb`

View File

@@ -1,5 +1,5 @@
{
"name": "lancedb-linux-arm64-gnu",
"name": "vectordb-linux-arm64-gnu",
"version": "0.4.3",
"os": [
"linux"
@@ -7,9 +7,9 @@
"cpu": [
"arm64"
],
"main": "lancedb.linux-arm64-gnu.node",
"main": "vectordb.linux-arm64-gnu.node",
"files": [
"lancedb.linux-arm64-gnu.node"
"vectordb.linux-arm64-gnu.node"
],
"license": "MIT",
"engines": {

View File

@@ -1,3 +1,3 @@
# `lancedb-linux-x64-gnu`
# `vectordb-linux-x64-gnu`
This is the **x86_64-unknown-linux-gnu** binary for `lancedb`
This is the **x86_64-unknown-linux-gnu** binary for `vectordb`

View File

@@ -1,5 +1,5 @@
{
"name": "lancedb-linux-x64-gnu",
"name": "vectordb-linux-x64-gnu",
"version": "0.4.3",
"os": [
"linux"
@@ -7,9 +7,9 @@
"cpu": [
"x64"
],
"main": "lancedb.linux-x64-gnu.node",
"main": "vectordb.linux-x64-gnu.node",
"files": [
"lancedb.linux-x64-gnu.node"
"vectordb.linux-x64-gnu.node"
],
"license": "MIT",
"engines": {

1087
nodejs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,10 +1,10 @@
{
"name": "lancedb",
"name": "vectordb",
"version": "0.4.3",
"main": "./dist/index.js",
"types": "./dist/index.d.ts",
"napi": {
"name": "lancedb-nodejs",
"name": "vectordb-nodejs",
"triples": {
"defaults": false,
"additional": [
@@ -18,7 +18,7 @@
"license": "Apache 2.0",
"devDependencies": {
"@napi-rs/cli": "^2.18.0",
"@types/jest": "^29.1.2",
"@types/jest": "^29.5.11",
"@typescript-eslint/eslint-plugin": "^6.19.0",
"@typescript-eslint/parser": "^6.19.0",
"eslint": "^8.56.0",
@@ -45,22 +45,21 @@
],
"scripts": {
"artifacts": "napi artifacts",
"build:native": "napi build --platform --release --js lancedb/native.js --dts lancedb/native.d.ts dist/",
"build:debug": "napi build --platform --dts ../lancedb/native.d.ts --js ../lancedb/native.js dist/",
"build:native": "napi build --platform --release --js vectordb/native.js --dts vectordb/native.d.ts dist/",
"build:debug": "napi build --platform --dts ../vectordb/native.d.ts --js ../vectordb/native.js dist/",
"build": "npm run build:debug && tsc -b",
"docs": "typedoc --plugin typedoc-plugin-markdown lancedb/index.ts",
"lint": "eslint lancedb --ext .js,.ts",
"docs": "typedoc --plugin typedoc-plugin-markdown vectordb/index.ts",
"lint": "eslint vectordb --ext .js,.ts",
"prepublishOnly": "napi prepublish -t npm",
"//": "maxWorkers=1 is workaround for bigint issue in jest: https://github.com/jestjs/jest/issues/11617#issuecomment-1068732414",
"test": "npm run build && jest --maxWorkers=1",
"test": "npm run build && jest",
"universal": "napi universal",
"version": "napi version"
},
"optionalDependencies": {
"lancedb-darwin-arm64": "0.4.3",
"lancedb-darwin-x64": "0.4.3",
"lancedb-linux-arm64-gnu": "0.4.3",
"lancedb-linux-x64-gnu": "0.4.3"
"vectordb-darwin-arm64": "0.4.3",
"vectordb-darwin-x64": "0.4.3",
"vectordb-linux-arm64-gnu": "0.4.3",
"vectordb-linux-x64-gnu": "0.4.3"
},
"dependencies": {
"apache-arrow": "^15.0.0"

View File

@@ -12,40 +12,29 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use napi::bindgen_prelude::*;
use napi_derive::*;
use crate::table::Table;
use crate::ConnectionOptions;
use lancedb::connection::{ConnectBuilder, Connection as LanceDBConnection};
use lancedb::ipc::ipc_file_to_batches;
use vectordb::connection::{Connection as LanceDBConnection, Database};
use vectordb::ipc::ipc_file_to_batches;
#[napi]
pub struct Connection {
conn: LanceDBConnection,
conn: Arc<dyn LanceDBConnection>,
}
#[napi]
impl Connection {
/// Create a new Connection instance from the given URI.
#[napi(factory)]
pub async fn new(options: ConnectionOptions) -> napi::Result<Self> {
let mut builder = ConnectBuilder::new(&options.uri);
if let Some(api_key) = options.api_key {
builder = builder.api_key(&api_key);
}
if let Some(host_override) = options.host_override {
builder = builder.host_override(&host_override);
}
if let Some(interval) = options.read_consistency_interval {
builder =
builder.read_consistency_interval(std::time::Duration::from_secs_f64(interval));
}
pub async fn new(uri: String) -> napi::Result<Self> {
Ok(Self {
conn: builder
.execute()
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
conn: Arc::new(Database::connect(&uri).await.map_err(|e| {
napi::Error::from_reason(format!("Failed to connect to database: {}", e))
})?),
})
}
@@ -70,8 +59,7 @@ impl Connection {
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
let tbl = self
.conn
.create_table(&name, Box::new(batches))
.execute()
.create_table(&name, Box::new(batches), None)
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
Ok(Table::new(tbl))
@@ -82,7 +70,6 @@ impl Connection {
let tbl = self
.conn
.open_table(&name)
.execute()
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
Ok(Table::new(tbl))

View File

@@ -40,12 +40,12 @@ impl From<MetricType> for LanceMetricType {
#[napi]
pub struct IndexBuilder {
inner: lancedb::index::IndexBuilder,
inner: vectordb::index::IndexBuilder,
}
#[napi]
impl IndexBuilder {
pub fn new(tbl: &dyn lancedb::Table) -> Self {
pub fn new(tbl: &dyn vectordb::Table) -> Self {
let inner = tbl.create_index(&[]);
Self { inner }
}

View File

@@ -14,9 +14,9 @@
use futures::StreamExt;
use lance::io::RecordBatchStream;
use lancedb::ipc::batches_to_ipc_file;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::ipc::batches_to_ipc_file;
/** Typescript-style Async Iterator over RecordBatches */
#[napi]

View File

@@ -22,21 +22,10 @@ mod query;
mod table;
#[napi(object)]
#[derive(Debug)]
pub struct ConnectionOptions {
pub uri: String,
pub api_key: Option<String>,
pub host_override: Option<String>,
/// (For LanceDB OSS only): The interval, in seconds, at which to check for
/// updates to the table from other processes. If None, then consistency is not
/// checked. For performance reasons, this is the default. For strong
/// consistency, set this to zero seconds. Then every read will check for
/// updates from other processes. As a compromise, you can set this to a
/// non-zero value for eventual consistency. If more than that interval
/// has passed since the last check, then the table will be checked for updates.
/// Note: this consistency only applies to read operations. Write operations are
/// always consistent.
pub read_consistency_interval: Option<f64>,
}
/// Write mode for writing a table.
@@ -55,5 +44,5 @@ pub struct WriteOptions {
#[napi]
pub async fn connect(options: ConnectionOptions) -> napi::Result<Connection> {
Connection::new(options).await
Connection::new(options.uri.clone()).await
}

View File

@@ -12,9 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use lancedb::query::Query as LanceDBQuery;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::query::Query as LanceDBQuery;
use crate::{iterator::RecordBatchIterator, table::Table};

View File

@@ -13,10 +13,9 @@
// limitations under the License.
use arrow_ipc::writer::FileWriter;
use lancedb::table::AddDataOptions;
use lancedb::{ipc::ipc_file_to_batches, table::TableRef};
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::{ipc::ipc_file_to_batches, table::TableRef};
use crate::index::IndexBuilder;
use crate::query::Query;
@@ -34,12 +33,8 @@ impl Table {
/// Return Schema as empty Arrow IPC file.
#[napi]
pub async fn schema(&self) -> napi::Result<Buffer> {
let schema =
self.table.schema().await.map_err(|e| {
napi::Error::from_reason(format!("Failed to create IPC file: {}", e))
})?;
let mut writer = FileWriter::try_new(vec![], &schema)
pub fn schema(&self) -> napi::Result<Buffer> {
let mut writer = FileWriter::try_new(vec![], &self.table.schema())
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
writer
.finish()
@@ -53,20 +48,17 @@ impl Table {
pub async fn add(&self, buf: Buffer) -> napi::Result<()> {
let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
self.table
.add(Box::new(batches), AddDataOptions::default())
.await
.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to add batches to table {}: {}",
self.table, e
))
})
self.table.add(Box::new(batches), None).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to add batches to table {}: {}",
self.table, e
))
})
}
#[napi]
pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<usize> {
self.table.count_rows(filter).await.map_err(|e| {
pub async fn count_rows(&self) -> napi::Result<usize> {
self.table.count_rows().await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to count rows in table {}: {}",
self.table, e

View File

@@ -1,8 +1,8 @@
{
"include": [
"lancedb/*.ts",
"lancedb/**/*.ts",
"lancedb/*.js",
"vectordb/*.ts",
"vectordb/**/*.ts",
"vectordb/*.js",
],
"compilerOptions": {
"target": "es2022",
@@ -18,7 +18,7 @@
],
"typedocOptions": {
"entryPoints": [
"lancedb/index.ts"
"vectordb/index.ts"
],
"out": "../docs/src/javascript/",
"visibilityFilters": {

View File

@@ -13,7 +13,6 @@
// limitations under the License.
import {
Int64,
Field,
FixedSizeList,
Float,
@@ -24,7 +23,6 @@ import {
Vector,
vectorFromArray,
tableToIPC,
DataType,
} from "apache-arrow";
/** Data type accepted by NodeJS SDK */
@@ -139,18 +137,15 @@ export function makeArrowTable(
const columnNames = Object.keys(data[0]);
for (const colName of columnNames) {
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
let values = data.map((datum) => datum[colName]);
const values = data.map((datum) => datum[colName]);
let vector: Vector;
if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority
const fieldType: DataType | undefined = opt.schema.fields.filter((f) => f.name === colName)[0]?.type as DataType;
if (fieldType instanceof Int64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
// eslint-disable-next-line @typescript-eslint/no-unsafe-argument
values = values.map((v) => BigInt(v));
}
vector = vectorFromArray(values, fieldType);
vector = vectorFromArray(
values,
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
);
} else {
const vectorColumnOptions = opt.vectorColumns[colName];
if (vectorColumnOptions !== undefined) {

View File

@@ -53,12 +53,12 @@ export async function connect(
opts = Object.assign(
{
uri: "",
apiKey: undefined,
hostOverride: undefined,
apiKey: "",
hostOverride: "",
},
args
);
}
const nativeConn = await NativeConnection.new(opts);
const nativeConn = await NativeConnection.new(opts.uri);
return new Connection(nativeConn);
}

View File

@@ -16,18 +16,6 @@ export interface ConnectionOptions {
uri: string
apiKey?: string
hostOverride?: string
/**
* (For LanceDB OSS only): The interval, in seconds, at which to check for
* updates to the table from other processes. If None, then consistency is not
* checked. For performance reasons, this is the default. For strong
* consistency, set this to zero seconds. Then every read will check for
* updates from other processes. As a compromise, you can set this to a
* non-zero value for eventual consistency. If more than that interval
* has passed since the last check, then the table will be checked for updates.
* Note: this consistency only applies to read operations. Write operations are
* always consistent.
*/
readConsistencyInterval?: number
}
/** Write mode for writing a table. */
export const enum WriteMode {
@@ -42,7 +30,7 @@ export interface WriteOptions {
export function connect(options: ConnectionOptions): Promise<Connection>
export class Connection {
/** Create a new Connection instance from the given URI. */
static new(options: ConnectionOptions): Promise<Connection>
static new(uri: string): Promise<Connection>
/** List all tables in the dataset. */
tableNames(): Promise<Array<string>>
/**
@@ -83,9 +71,9 @@ export class Query {
}
export class Table {
/** Return Schema as empty Arrow IPC file. */
schema(): Promise<Buffer>
schema(): Buffer
add(buf: Buffer): Promise<void>
countRows(filter?: string | undefined | null): Promise<bigint>
countRows(): Promise<bigint>
delete(predicate: string): Promise<void>
createIndex(): IndexBuilder
query(): Query

View File

@@ -32,24 +32,24 @@ switch (platform) {
case 'android':
switch (arch) {
case 'arm64':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.android-arm64.node'))
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.android-arm64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.android-arm64.node')
nativeBinding = require('./vectordb-nodejs.android-arm64.node')
} else {
nativeBinding = require('lancedb-android-arm64')
nativeBinding = require('vectordb-android-arm64')
}
} catch (e) {
loadError = e
}
break
case 'arm':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.android-arm-eabi.node'))
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.android-arm-eabi.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.android-arm-eabi.node')
nativeBinding = require('./vectordb-nodejs.android-arm-eabi.node')
} else {
nativeBinding = require('lancedb-android-arm-eabi')
nativeBinding = require('vectordb-android-arm-eabi')
}
} catch (e) {
loadError = e
@@ -63,13 +63,13 @@ switch (platform) {
switch (arch) {
case 'x64':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-x64-msvc.node')
join(__dirname, 'vectordb-nodejs.win32-x64-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-x64-msvc.node')
nativeBinding = require('./vectordb-nodejs.win32-x64-msvc.node')
} else {
nativeBinding = require('lancedb-win32-x64-msvc')
nativeBinding = require('vectordb-win32-x64-msvc')
}
} catch (e) {
loadError = e
@@ -77,13 +77,13 @@ switch (platform) {
break
case 'ia32':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-ia32-msvc.node')
join(__dirname, 'vectordb-nodejs.win32-ia32-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-ia32-msvc.node')
nativeBinding = require('./vectordb-nodejs.win32-ia32-msvc.node')
} else {
nativeBinding = require('lancedb-win32-ia32-msvc')
nativeBinding = require('vectordb-win32-ia32-msvc')
}
} catch (e) {
loadError = e
@@ -91,13 +91,13 @@ switch (platform) {
break
case 'arm64':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.win32-arm64-msvc.node')
join(__dirname, 'vectordb-nodejs.win32-arm64-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.win32-arm64-msvc.node')
nativeBinding = require('./vectordb-nodejs.win32-arm64-msvc.node')
} else {
nativeBinding = require('lancedb-win32-arm64-msvc')
nativeBinding = require('vectordb-win32-arm64-msvc')
}
} catch (e) {
loadError = e
@@ -108,23 +108,23 @@ switch (platform) {
}
break
case 'darwin':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.darwin-universal.node'))
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.darwin-universal.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-universal.node')
nativeBinding = require('./vectordb-nodejs.darwin-universal.node')
} else {
nativeBinding = require('lancedb-darwin-universal')
nativeBinding = require('vectordb-darwin-universal')
}
break
} catch {}
switch (arch) {
case 'x64':
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.darwin-x64.node'))
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.darwin-x64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-x64.node')
nativeBinding = require('./vectordb-nodejs.darwin-x64.node')
} else {
nativeBinding = require('lancedb-darwin-x64')
nativeBinding = require('vectordb-darwin-x64')
}
} catch (e) {
loadError = e
@@ -132,13 +132,13 @@ switch (platform) {
break
case 'arm64':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.darwin-arm64.node')
join(__dirname, 'vectordb-nodejs.darwin-arm64.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.darwin-arm64.node')
nativeBinding = require('./vectordb-nodejs.darwin-arm64.node')
} else {
nativeBinding = require('lancedb-darwin-arm64')
nativeBinding = require('vectordb-darwin-arm64')
}
} catch (e) {
loadError = e
@@ -152,12 +152,12 @@ switch (platform) {
if (arch !== 'x64') {
throw new Error(`Unsupported architecture on FreeBSD: ${arch}`)
}
localFileExisted = existsSync(join(__dirname, 'lancedb-nodejs.freebsd-x64.node'))
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.freebsd-x64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.freebsd-x64.node')
nativeBinding = require('./vectordb-nodejs.freebsd-x64.node')
} else {
nativeBinding = require('lancedb-freebsd-x64')
nativeBinding = require('vectordb-freebsd-x64')
}
} catch (e) {
loadError = e
@@ -168,26 +168,26 @@ switch (platform) {
case 'x64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-x64-musl.node')
join(__dirname, 'vectordb-nodejs.linux-x64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-x64-musl.node')
nativeBinding = require('./vectordb-nodejs.linux-x64-musl.node')
} else {
nativeBinding = require('lancedb-linux-x64-musl')
nativeBinding = require('vectordb-linux-x64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-x64-gnu.node')
join(__dirname, 'vectordb-nodejs.linux-x64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-x64-gnu.node')
nativeBinding = require('./vectordb-nodejs.linux-x64-gnu.node')
} else {
nativeBinding = require('lancedb-linux-x64-gnu')
nativeBinding = require('vectordb-linux-x64-gnu')
}
} catch (e) {
loadError = e
@@ -197,26 +197,26 @@ switch (platform) {
case 'arm64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm64-musl.node')
join(__dirname, 'vectordb-nodejs.linux-arm64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm64-musl.node')
nativeBinding = require('./vectordb-nodejs.linux-arm64-musl.node')
} else {
nativeBinding = require('lancedb-linux-arm64-musl')
nativeBinding = require('vectordb-linux-arm64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm64-gnu.node')
join(__dirname, 'vectordb-nodejs.linux-arm64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm64-gnu.node')
nativeBinding = require('./vectordb-nodejs.linux-arm64-gnu.node')
} else {
nativeBinding = require('lancedb-linux-arm64-gnu')
nativeBinding = require('vectordb-linux-arm64-gnu')
}
} catch (e) {
loadError = e
@@ -225,13 +225,13 @@ switch (platform) {
break
case 'arm':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-arm-gnueabihf.node')
join(__dirname, 'vectordb-nodejs.linux-arm-gnueabihf.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-arm-gnueabihf.node')
nativeBinding = require('./vectordb-nodejs.linux-arm-gnueabihf.node')
} else {
nativeBinding = require('lancedb-linux-arm-gnueabihf')
nativeBinding = require('vectordb-linux-arm-gnueabihf')
}
} catch (e) {
loadError = e
@@ -240,26 +240,26 @@ switch (platform) {
case 'riscv64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-riscv64-musl.node')
join(__dirname, 'vectordb-nodejs.linux-riscv64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-riscv64-musl.node')
nativeBinding = require('./vectordb-nodejs.linux-riscv64-musl.node')
} else {
nativeBinding = require('lancedb-linux-riscv64-musl')
nativeBinding = require('vectordb-linux-riscv64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-riscv64-gnu.node')
join(__dirname, 'vectordb-nodejs.linux-riscv64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-riscv64-gnu.node')
nativeBinding = require('./vectordb-nodejs.linux-riscv64-gnu.node')
} else {
nativeBinding = require('lancedb-linux-riscv64-gnu')
nativeBinding = require('vectordb-linux-riscv64-gnu')
}
} catch (e) {
loadError = e
@@ -268,13 +268,13 @@ switch (platform) {
break
case 's390x':
localFileExisted = existsSync(
join(__dirname, 'lancedb-nodejs.linux-s390x-gnu.node')
join(__dirname, 'vectordb-nodejs.linux-s390x-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./lancedb-nodejs.linux-s390x-gnu.node')
nativeBinding = require('./vectordb-nodejs.linux-s390x-gnu.node')
} else {
nativeBinding = require('lancedb-linux-s390x-gnu')
nativeBinding = require('vectordb-linux-s390x-gnu')
}
} catch (e) {
loadError = e

View File

@@ -32,8 +32,8 @@ export class Table {
}
/** Get the schema of the table. */
async schema(): Promise<Schema> {
const schemaBuf = await this.inner.schema();
get schema(): Schema {
const schemaBuf = this.inner.schema();
const tbl = tableFromIPC(schemaBuf);
return tbl.schema;
}
@@ -50,8 +50,8 @@ export class Table {
}
/** Count the total number of rows in the dataset. */
async countRows(filter?: string): Promise<bigint> {
return await this.inner.countRows(filter);
async countRows(): Promise<bigint> {
return await this.inner.countRows();
}
/** Delete the rows that satisfy the predicate. */

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.5.7
current_version = 0.5.1
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -42,12 +42,6 @@ To run the unit tests:
pytest
```
To run the doc tests:
```bash
pytest --doctest-modules lancedb
```
To run linter and automatically fix all errors:
```bash

View File

@@ -13,9 +13,7 @@
import importlib.metadata
import os
from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta
from typing import Optional, Union
from typing import Optional
__version__ = importlib.metadata.version("lancedb")
@@ -32,8 +30,6 @@ def connect(
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -49,25 +45,6 @@ def connect(
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
request_thread_pool: int or ThreadPoolExecutor, optional
The thread pool to use for making batch requests to the LanceDB Cloud API.
If an integer, then a ThreadPoolExecutor will be created with that
number of threads. If None, then a ThreadPoolExecutor will be created
with the default number of threads. If a ThreadPoolExecutor, then that
executor will be used for making requests. This is for LanceDB Cloud
only and is only used when making batch requests (i.e., passing in
multiple queries to the search method at once).
Examples
--------
@@ -95,9 +72,5 @@ def connect(
api_key = os.environ.get("LANCEDB_API_KEY")
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
if isinstance(request_thread_pool, int):
request_thread_pool = ThreadPoolExecutor(request_thread_pool)
return RemoteDBConnection(
uri, api_key, region, host_override, request_thread_pool=request_thread_pool
)
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)
return RemoteDBConnection(uri, api_key, region, host_override)
return LanceDBConnection(uri)

View File

@@ -16,9 +16,9 @@ from typing import Iterable, List, Union
import numpy as np
import pyarrow as pa
from .util import safe_import_pandas
from .util import safe_import
pd = safe_import_pandas()
pd = safe_import("pandas")
DATA = Union[List[dict], dict, "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]

View File

@@ -16,9 +16,9 @@ import deprecation
from . import __version__
from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas
from .util import safe_import
pd = safe_import_pandas()
pd = safe_import("pandas")
def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:

View File

@@ -26,8 +26,6 @@ from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING:
from datetime import timedelta
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
@@ -120,7 +118,7 @@ class DBConnection(EnforceOverrides):
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(connection=..., name="my_table")
LanceTable(my_table)
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -141,7 +139,7 @@ class DBConnection(EnforceOverrides):
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(connection=..., name="table2")
LanceTable(table2)
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -163,7 +161,7 @@ class DBConnection(EnforceOverrides):
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(connection=..., name="table3")
LanceTable(table3)
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -197,7 +195,7 @@ class DBConnection(EnforceOverrides):
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(connection=..., name="table4")
LanceTable(table4)
"""
raise NotImplementedError
@@ -245,16 +243,6 @@ class LanceDBConnection(DBConnection):
----------
uri: str or Path
The root uri of the database.
read_consistency_interval: timedelta, default None
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples
--------
@@ -262,24 +250,22 @@ class LanceDBConnection(DBConnection):
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(connection=..., name="my_table")
LanceTable(my_table)
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(connection=..., name="another_table")
LanceTable(another_table)
>>> sorted(db.table_names())
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(connection=..., name="my_table")
LanceTable(my_table)
>>> "my_table" in db
True
>>> db.drop_table("my_table")
>>> db.drop_table("another_table")
"""
def __init__(
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
):
def __init__(self, uri: URI):
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
@@ -291,14 +277,6 @@ class LanceDBConnection(DBConnection):
self._uri = str(uri)
self._entered = False
self.read_consistency_interval = read_consistency_interval
def __repr__(self) -> str:
val = f"{self.__class__.__name__}({self._uri}"
if self.read_consistency_interval is not None:
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
val += ")"
return val
@property
def uri(self) -> str:

View File

@@ -10,6 +10,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from abc import ABC, abstractmethod
from typing import List, Union
@@ -90,6 +91,25 @@ class EmbeddingFunction(BaseModel, ABC):
texts = texts.combine_chunks().to_pylist()
return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION

View File

@@ -19,7 +19,6 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT
@@ -184,8 +183,8 @@ class BedRockText(TextEmbeddingFunction):
boto3.client
The boto3 client for Amazon Bedrock service
"""
botocore = attempt_import_or_raise("botocore")
boto3 = attempt_import_or_raise("boto3")
botocore = self.safe_import("botocore")
boto3 = self.safe_import("boto3")
session_kwargs = {"region_name": self.region}
client_kwargs = {**session_kwargs}

View File

@@ -16,7 +16,6 @@ from typing import ClassVar, List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@@ -85,7 +84,7 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
return [emb for emb in rs.embeddings]
def _init_client(self):
cohere = attempt_import_or_raise("cohere")
cohere = self.safe_import("cohere")
if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere")

View File

@@ -19,7 +19,6 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, api_key_not_found_help
@@ -135,7 +134,7 @@ class GeminiText(TextEmbeddingFunction):
@cached_property
def client(self):
genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
genai = self.safe_import("google.generativeai", "google.generativeai")
if not os.environ.get("GOOGLE_API_KEY"):
api_key_not_found_help("google")

View File

@@ -14,7 +14,6 @@ from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@@ -123,7 +122,7 @@ class GteEmbeddings(TextEmbeddingFunction):
return Model()
else:
sentence_transformers = attempt_import_or_raise(
sentence_transformers = self.safe_import(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(

View File

@@ -1,172 +0,0 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import cached_property
from typing import List, Union
import numpy as np
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import AUDIO, IMAGES, TEXT
@register("imagebind")
class ImageBindEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the ImageBind API
For generating multi-modal embeddings across
six different modalities: images, text, audio, depth, thermal, and IMU data
to download package, run :
`pip install imagebind@git+https://github.com/raghavdixit99/ImageBind`
"""
name: str = "imagebind_huge"
device: str = "cpu"
normalize: bool = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._ndims = 1024
self._audio_extensions = (".mp3", ".wav", ".flac", ".ogg", ".aac")
self._image_extensions = (".jpg", ".jpeg", ".png", ".gif", ".bmp")
@cached_property
def embedding_model(self):
"""
Get the embedding model. This is cached so that the model is only loaded
once per process.
"""
return self.get_embedding_model()
@cached_property
def _data(self):
"""
Get the data module from imagebind
"""
data = attempt_import_or_raise("imagebind.data", "imagebind")
return data
@cached_property
def _ModalityType(self):
"""
Get the ModalityType from imagebind
"""
imagebind = attempt_import_or_raise("imagebind", "imagebind")
return imagebind.imagebind_model.ModalityType
def ndims(self):
return self._ndims
def compute_query_embeddings(
self, query: Union[str], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str]
The query to embed. A query can be either text, image paths or audio paths.
"""
query = self.sanitize_input(query)
if query[0].endswith(self._audio_extensions):
return [self.generate_audio_embeddings(query)]
elif query[0].endswith(self._image_extensions):
return [self.generate_image_embeddings(query)]
else:
return [self.generate_text_embeddings(query)]
def generate_image_embeddings(self, image: IMAGES) -> np.ndarray:
torch = attempt_import_or_raise("torch")
inputs = {
self._ModalityType.VISION: self._data.load_and_transform_vision_data(
image, self.device
)
}
with torch.no_grad():
image_features = self.embedding_model(inputs)[self._ModalityType.VISION]
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
def generate_audio_embeddings(self, audio: AUDIO) -> np.ndarray:
torch = attempt_import_or_raise("torch")
inputs = {
self._ModalityType.AUDIO: self._data.load_and_transform_audio_data(
audio, self.device
)
}
with torch.no_grad():
audio_features = self.embedding_model(inputs)[self._ModalityType.AUDIO]
if self.normalize:
audio_features /= audio_features.norm(dim=-1, keepdim=True)
return audio_features.cpu().numpy().squeeze()
def generate_text_embeddings(self, text: TEXT) -> np.ndarray:
torch = attempt_import_or_raise("torch")
inputs = {
self._ModalityType.TEXT: self._data.load_and_transform_text(
text, self.device
)
}
with torch.no_grad():
text_features = self.embedding_model(inputs)[self._ModalityType.TEXT]
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def compute_source_embeddings(
self, source: Union[IMAGES, AUDIO], *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given sourcefield column in the pydantic model.
"""
source = self.sanitize_input(source)
embeddings = []
if source[0].endswith(self._audio_extensions):
embeddings.extend(self.generate_audio_embeddings(source))
return embeddings
elif source[0].endswith(self._image_extensions):
embeddings.extend(self.generate_image_embeddings(source))
return embeddings
else:
embeddings.extend(self.generate_text_embeddings(source))
return embeddings
def sanitize_input(
self, input: Union[IMAGES, AUDIO]
) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(input, (str, bytes)):
input = [input]
elif isinstance(input, pa.Array):
input = input.to_pylist()
elif isinstance(input, pa.ChunkedArray):
input = input.combine_chunks().to_pylist()
return input
def get_embedding_model(self):
"""
fetches the imagebind embedding model
"""
imagebind = attempt_import_or_raise("imagebind", "imagebind")
model = imagebind.imagebind_model.imagebind_huge(pretrained=True)
model.eval()
model.to(self.device)
return model

View File

@@ -14,7 +14,6 @@ from typing import List
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, weak_lru
@@ -103,9 +102,9 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval"
query_instruction: (
str
) = "represent the document for retrieving the most similar documents"
query_instruction: str = (
"represent the document for retrieving the most similar documents"
)
@weak_lru(maxsize=1)
def ndims(self):
@@ -132,10 +131,10 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
@weak_lru(maxsize=1)
def get_model(self):
instructor_embedding = attempt_import_or_raise(
instructor_embedding = self.safe_import(
"InstructorEmbedding", "InstructorEmbedding"
)
torch = attempt_import_or_raise("torch", "torch")
torch = self.safe_import("torch", "torch")
model = instructor_embedding.INSTRUCTOR(self.name)
if self.quantize:

View File

@@ -21,7 +21,6 @@ import pyarrow as pa
from pydantic import PrivateAttr
from tqdm import tqdm
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import IMAGES, url_retrieve
@@ -51,7 +50,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip")
open_clip = self.safe_import("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -79,14 +78,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -145,7 +144,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -153,7 +152,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -12,11 +12,10 @@
# limitations under the License.
import os
from functools import cached_property
from typing import List, Optional, Union
from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@@ -31,21 +30,10 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
"""
name: str = "text-embedding-ada-002"
dim: Optional[int] = None
def ndims(self):
return self._ndims
@cached_property
def _ndims(self):
if self.name == "text-embedding-ada-002":
return 1536
elif self.name == "text-embedding-3-large":
return self.dim or 3072
elif self.name == "text-embedding-3-small":
return self.dim or 1536
else:
raise ValueError(f"Unknown model name {self.name}")
# TODO don't hardcode this
return 1536
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
@@ -59,17 +47,12 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
The texts to embed
"""
# TODO retry, rate limit, token limit
if self.name == "text-embedding-ada-002":
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
else:
rs = self._openai_client.embeddings.create(
input=texts, model=self.name, dimensions=self.ndims()
)
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
return [v.embedding for v in rs.data]
@cached_property
def _openai_client(self):
openai = attempt_import_or_raise("openai")
openai = self.safe_import("openai")
if not os.environ.get("OPENAI_API_KEY"):
api_key_not_found_help("openai")

View File

@@ -14,7 +14,6 @@ from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@@ -76,7 +75,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
TODO: use lru_cache instead with a reasonable/configurable maxsize
"""
sentence_transformers = attempt_import_or_raise(
sentence_transformers = self.safe_import(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(self.name, device=self.device)

View File

@@ -26,20 +26,18 @@ import pyarrow as pa
from lance.vector import vec_to_table
from retry import retry
from ..util import deprecated, safe_import_pandas
from ..util import safe_import
from ..utils.general import LOGGER
pd = safe_import_pandas()
pd = safe_import("pandas")
DATA = Union[pa.Table, "pd.DataFrame"]
TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
]
AUDIO = Union[str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray]
@deprecated
def with_embeddings(
func: Callable,
data: DATA,

View File

@@ -12,7 +12,7 @@
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional
from typing import TYPE_CHECKING, Iterable, Optional
if TYPE_CHECKING:
from .common import DATA
@@ -25,21 +25,18 @@ class LanceMergeInsertBuilder(object):
more context
"""
def __init__(self, table: "Table", on: List[str]): # noqa: F821
def __init__(self, table: "Table", on: Iterable[str]): # noqa: F821
# Do not put a docstring here. This method should be hidden
# from API docs. Users should use merge_insert to create
# this object.
self._table = table
self._on = on
self._when_matched_update_all = False
self._when_matched_update_all_condition = None
self._when_not_matched_insert_all = False
self._when_not_matched_by_source_delete = False
self._when_not_matched_by_source_condition = None
def when_matched_update_all(
self, *, where: Optional[str] = None
) -> LanceMergeInsertBuilder:
def when_matched_update_all(self) -> LanceMergeInsertBuilder:
"""
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
@@ -50,7 +47,6 @@ class LanceMergeInsertBuilder(object):
but that behavior is subject to change.
"""
self._when_matched_update_all = True
self._when_matched_update_all_condition = where
return self
def when_not_matched_insert_all(self) -> LanceMergeInsertBuilder:
@@ -81,27 +77,10 @@ class LanceMergeInsertBuilder(object):
self._when_not_matched_by_source_condition = condition
return self
def execute(
self,
new_data: DATA,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
):
def execute(self, new_data: DATA):
"""
Executes the merge insert operation
Nothing is returned but the [`Table`][lancedb.table.Table] is updated
Parameters
----------
new_data: DATA
New records which will be matched against the existing records
to potentially insert or update into the table. This parameter
can be anything you use for [`add`][lancedb.table.Table.add]
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
self._table._do_merge(self, new_data, on_bad_vectors, fill_value)
self._table._do_merge(self, new_data)

View File

@@ -304,7 +304,7 @@ class LanceModel(pydantic.BaseModel):
... name: str
... vector: Vector(2)
...
>>> db = lancedb.connect("./example")
>>> db = lancedb.connect("/tmp")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])

View File

@@ -24,10 +24,10 @@ import pyarrow as pa
import pydantic
from . import __version__
from .common import VEC
from .common import VEC, VECTOR_COLUMN_NAME
from .rerankers.base import Reranker
from .rerankers.linear_combination import LinearCombinationReranker
from .util import safe_import_pandas
from .util import safe_import
if TYPE_CHECKING:
import PIL
@@ -36,7 +36,7 @@ if TYPE_CHECKING:
from .pydantic import LanceModel
from .table import Table
pd = safe_import_pandas()
pd = safe_import("pandas")
class Query(pydantic.BaseModel):
@@ -75,7 +75,7 @@ class Query(pydantic.BaseModel):
tuning advice.
"""
vector_column: Optional[str] = None
vector_column: str = VECTOR_COLUMN_NAME
# vector to search for
vector: Union[List[float], List[List[float]]]
@@ -403,7 +403,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self,
table: "Table",
query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str,
vector_column: str = VECTOR_COLUMN_NAME,
):
super().__init__(table)
self._query = query
@@ -626,6 +626,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "Table", query: str, vector_column: str):
super().__init__(table)
self._validate_fts_index()
self._query = query
vector_query, fts_query = self._validate_query(query)
self._fts_query = LanceFtsQueryBuilder(table, fts_query)
vector_query = self._query_to_vector(table, vector_query, vector_column)
@@ -678,18 +679,12 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
# rerankers might need to preserve this score to support `return_score="all"`
fts_results = self._normalize_scores(fts_results, "score")
results = self._reranker.rerank_hybrid(
self._fts_query._query, vector_results, fts_results
)
results = self._reranker.rerank_hybrid(self, vector_results, fts_results)
if not isinstance(results, pa.Table): # Enforce type
raise TypeError(
f"rerank_hybrid must return a pyarrow.Table, got {type(results)}"
)
# apply limit after reranking
results = results.slice(length=self._limit)
if not self._with_row_id:
results = results.drop(["_rowid"])
return results
@@ -781,8 +776,6 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
"""
self._vector_query.limit(limit)
self._fts_query.limit(limit)
self._limit = limit
return self
def select(self, columns: list) -> LanceHybridQueryBuilder:

View File

@@ -13,8 +13,6 @@
import functools
import logging
import os
from typing import Any, Callable, Dict, List, Optional, Union
from urllib.parse import urljoin
@@ -22,8 +20,6 @@ import attrs
import pyarrow as pa
import requests
from pydantic import BaseModel
from requests.adapters import HTTPAdapter
from urllib3 import Retry
from lancedb.common import Credential
from lancedb.remote import VectorQuery, VectorQueryResult
@@ -61,10 +57,6 @@ class RestfulLanceDBClient:
@functools.cached_property
def session(self) -> requests.Session:
sess = requests.Session()
retry_adapter_instance = retry_adapter(retry_adapter_options())
sess.mount(urljoin(self.url, "/v1/table/"), retry_adapter_instance)
adapter_class = LanceDBClientHTTPAdapterFactory()
sess.mount("https://", adapter_class())
return sess
@@ -178,72 +170,3 @@ class RestfulLanceDBClient:
"""Query a table."""
tbl = self.post(f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc)
return VectorQueryResult(tbl)
def mount_retry_adapter_for_table(self, table_name: str) -> None:
"""
Adds an http adapter to session that will retry retryable requests to the table.
"""
retry_options = retry_adapter_options(methods=["GET", "POST"])
retry_adapter_instance = retry_adapter(retry_options)
session = self.session
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/query/"), retry_adapter_instance
)
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/describe/"),
retry_adapter_instance,
)
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/index/list/"),
retry_adapter_instance,
)
def retry_adapter_options(methods=["GET"]) -> Dict[str, Any]:
return {
"retries": int(os.environ.get("LANCE_CLIENT_MAX_RETRIES", "3")),
"connect_retries": int(os.environ.get("LANCE_CLIENT_CONNECT_RETRIES", "3")),
"read_retries": int(os.environ.get("LANCE_CLIENT_READ_RETRIES", "3")),
"backoff_factor": float(
os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_FACTOR", "0.25")
),
"backoff_jitter": float(
os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_JITTER", "0.25")
),
"statuses": [
int(i.strip())
for i in os.environ.get(
"LANCE_CLIENT_RETRY_STATUSES", "429, 500, 502, 503"
).split(",")
],
"methods": methods,
}
def retry_adapter(options: Dict[str, Any]) -> HTTPAdapter:
total_retries = options["retries"]
connect_retries = options["connect_retries"]
read_retries = options["read_retries"]
backoff_factor = options["backoff_factor"]
backoff_jitter = options["backoff_jitter"]
statuses = options["statuses"]
methods = frozenset(options["methods"])
logging.debug(
f"Setting up retry adapter with {total_retries} retries," # noqa G003
+ f"connect retries {connect_retries}, read retries {read_retries},"
+ f"backoff factor {backoff_factor}, statuses {statuses}, "
+ f"methods {methods}"
)
return HTTPAdapter(
max_retries=Retry(
total=total_retries,
connect=connect_retries,
read=read_retries,
backoff_factor=backoff_factor,
backoff_jitter=backoff_jitter,
status_forcelist=statuses,
allowed_methods=methods,
)
)

View File

@@ -14,7 +14,6 @@
import inspect
import logging
import uuid
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List, Optional, Union
from urllib.parse import urlparse
@@ -40,7 +39,6 @@ class RemoteDBConnection(DBConnection):
api_key: str,
region: str,
host_override: Optional[str] = None,
request_thread_pool: Optional[ThreadPoolExecutor] = None,
):
"""Connect to a remote LanceDB database."""
parsed = urlparse(db_url)
@@ -51,7 +49,6 @@ class RemoteDBConnection(DBConnection):
self._client = RestfulLanceDBClient(
self.db_name, region, api_key, host_override
)
self._request_thread_pool = request_thread_pool
def __repr__(self) -> str:
return f"RemoteConnect(name={self.db_name})"
@@ -98,8 +95,6 @@ class RemoteDBConnection(DBConnection):
"""
from .table import RemoteTable
self._client.mount_retry_adapter_for_table(name)
# check if table exists
try:
self._client.post(f"/v1/table/{name}/describe/")
@@ -121,7 +116,6 @@ class RemoteDBConnection(DBConnection):
schema: Optional[Union[pa.Schema, LanceModel]] = None,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
mode: Optional[str] = None,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
@@ -219,13 +213,11 @@ class RemoteDBConnection(DBConnection):
if data is None and schema is None:
raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None:
logging.warning(
"embedding_functions is not yet supported on LanceDB Cloud."
raise NotImplementedError(
"embedding_functions is not supported for remote databases."
"Please vote https://github.com/lancedb/lancedb/issues/626 "
"for this feature."
)
if mode is not None:
logging.warning("mode is not yet supported on LanceDB Cloud.")
if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema

View File

@@ -11,9 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import uuid
from concurrent.futures import Future
from functools import cached_property
from typing import Dict, Optional, Union
@@ -21,11 +19,10 @@ import pyarrow as pa
from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from lancedb.merge import LanceMergeInsertBuilder
from ..query import LanceVectorQueryBuilder
from ..table import Query, Table, _sanitize_data
from ..util import inf_vector_column_query, value_to_sql
from ..util import value_to_sql
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection
@@ -39,9 +36,6 @@ class RemoteTable(Table):
def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self._name})"
def __len__(self) -> int:
self.count_rows(None)
@cached_property
def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
@@ -59,17 +53,17 @@ class RemoteTable(Table):
return resp["version"]
def to_arrow(self) -> pa.Table:
"""to_arrow() is not yet supported on LanceDB cloud."""
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
"""to_arrow() is not supported on the LanceDB cloud"""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self):
"""to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
"""to_pandas() is not supported on the LanceDB cloud"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
def create_scalar_index(self, *args, **kwargs):
"""Creates a scalar index"""
return NotImplementedError(
"create_scalar_index() is not yet supported on LanceDB cloud."
"create_scalar_index() is not supported on the LanceDB cloud"
)
def create_index(
@@ -77,10 +71,6 @@ class RemoteTable(Table):
metric="L2",
vector_column_name: str = VECTOR_COLUMN_NAME,
index_cache_size: Optional[int] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
replace: Optional[bool] = None,
accelerator: Optional[str] = None,
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -114,28 +104,6 @@ class RemoteTable(Table):
... )
>>> table.create_index("L2", "vector") # doctest: +SKIP
"""
if num_partitions is not None:
logging.warning(
"num_partitions is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if num_sub_vectors is not None:
logging.warning(
"num_sub_vectors is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if accelerator is not None:
logging.warning(
"GPU accelerator is not yet supported on LanceDB cloud."
"If you have 100M+ vectors to index,"
"please contact us at contact@lancedb.com"
)
if replace is not None:
logging.warning(
"replace is not supported on LanceDB cloud."
"Existing indexes will always be replaced."
)
index_type = "vector"
data = {
@@ -199,9 +167,7 @@ class RemoteTable(Table):
)
def search(
self,
query: Union[VEC, str],
vector_column_name: Optional[str] = None,
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
@@ -220,7 +186,7 @@ class RemoteTable(Table):
... ]
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query) # doctest: +SKIP
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
... .select(["caption", "original_width"]) # doctest: +SKIP
... .limit(2) # doctest: +SKIP
@@ -239,14 +205,9 @@ class RemoteTable(Table):
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str, optional
vector_column_name: str
The name of the vector column to search.
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
*default "vector"*
Returns
-------
@@ -261,8 +222,6 @@ class RemoteTable(Table):
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if vector_column_name is None:
vector_column_name = inf_vector_column_query(self.schema)
return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table:
@@ -271,77 +230,23 @@ class RemoteTable(Table):
and len(query.vector) > 0
and not isinstance(query.vector[0], float)
):
if self._conn._request_thread_pool is None:
def submit(name, q):
f = Future()
f.set_result(self._conn._client.query(name, q))
return f
else:
def submit(name, q):
return self._conn._request_thread_pool.submit(
self._conn._client.query, name, q
)
results = []
for v in query.vector:
v = list(v)
q = query.copy()
q.vector = v
results.append(submit(self._name, q))
results.append(self._conn._client.query(self._name, q))
return pa.concat_tables(
[add_index(r.result().to_arrow(), i) for i, r in enumerate(results)]
[add_index(r.to_arrow(), i) for i, r in enumerate(results)]
)
else:
result = self._conn._client.query(self._name, query)
return result.to_arrow()
def _do_merge(
self,
merge: LanceMergeInsertBuilder,
new_data: DATA,
on_bad_vectors: str,
fill_value: float,
):
data = _sanitize_data(
new_data,
self.schema,
metadata=None,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
payload = to_ipc_binary(data)
params = {}
if len(merge._on) != 1:
raise ValueError(
"RemoteTable only supports a single on key in merge_insert"
)
params["on"] = merge._on[0]
params["when_matched_update_all"] = str(merge._when_matched_update_all).lower()
if merge._when_matched_update_all_condition is not None:
params[
"when_matched_update_all_filt"
] = merge._when_matched_update_all_condition
params["when_not_matched_insert_all"] = str(
merge._when_not_matched_insert_all
).lower()
params["when_not_matched_by_source_delete"] = str(
merge._when_not_matched_by_source_delete
).lower()
if merge._when_not_matched_by_source_condition is not None:
params[
"when_not_matched_by_source_delete_filt"
] = merge._when_not_matched_by_source_condition
self._conn._client.post(
f"/v1/table/{self._name}/merge_insert/",
data=payload,
params=params,
content_type=ARROW_STREAM_CONTENT_TYPE,
)
def _do_merge(self, *_args):
"""_do_merge() is not supported on the LanceDB cloud yet"""
return NotImplementedError("_do_merge() is not supported on the LanceDB cloud")
def delete(self, predicate: str):
"""Delete rows from the table.
@@ -454,25 +359,6 @@ class RemoteTable(Table):
payload = {"predicate": where, "updates": updates}
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
def cleanup_old_versions(self, *_):
"""cleanup_old_versions() is not supported on the LanceDB cloud"""
raise NotImplementedError(
"cleanup_old_versions() is not supported on the LanceDB cloud"
)
def compact_files(self, *_):
"""compact_files() is not supported on the LanceDB cloud"""
raise NotImplementedError(
"compact_files() is not supported on the LanceDB cloud"
)
def count_rows(self, filter: Optional[str] = None) -> int:
# payload = {"filter": filter}
# self._conn._client.post(f"/v1/table/{self._name}/count_rows/", data=payload)
return NotImplementedError(
"count_rows() is not yet supported on the LanceDB cloud"
)
def add_index(tbl: pa.Table, i: int) -> pa.Table:
return tbl.add_column(

View File

@@ -1,15 +1,11 @@
from .base import Reranker
from .cohere import CohereReranker
from .colbert import ColbertReranker
from .cross_encoder import CrossEncoderReranker
from .linear_combination import LinearCombinationReranker
from .openai import OpenaiReranker
__all__ = [
"Reranker",
"CrossEncoderReranker",
"CohereReranker",
"LinearCombinationReranker",
"OpenaiReranker",
"ColbertReranker",
]

View File

@@ -1,8 +1,12 @@
import typing
from abc import ABC, abstractmethod
import numpy as np
import pyarrow as pa
if typing.TYPE_CHECKING:
import lancedb
class Reranker(ABC):
def __init__(self, return_score: str = "relevance"):
@@ -26,7 +30,7 @@ class Reranker(ABC):
@abstractmethod
def rerank_hybrid(
query: str,
query_builder: "lancedb.HybridQueryBuilder",
vector_results: pa.Table,
fts_results: pa.Table,
):
@@ -37,8 +41,8 @@ class Reranker(ABC):
Parameters
----------
query : str
The input query
query_builder : "lancedb.HybridQueryBuilder"
The query builder object that was used to generate the results
vector_results : pa.Table
The results from the vector search
fts_results : pa.Table
@@ -46,6 +50,36 @@ class Reranker(ABC):
"""
pass
def rerank_vector(
query_builder: "lancedb.VectorQueryBuilder", vector_results: pa.Table
):
"""
Rerank function receives the individual results from the vector search.
This isn't mandatory to implement
Parameters
----------
query_builder : "lancedb.VectorQueryBuilder"
The query builder object that was used to generate the results
vector_results : pa.Table
The results from the vector search
"""
raise NotImplementedError("Vector Reranking is not implemented")
def rerank_fts(query_builder: "lancedb.FTSQueryBuilder", fts_results: pa.Table):
"""
Rerank function receives the individual results from the FTS search.
This isn't mandatory to implement
Parameters
----------
query_builder : "lancedb.FTSQueryBuilder"
The query builder object that was used to generate the results
fts_results : pa.Table
The results from the FTS search
"""
raise NotImplementedError("FTS Reranking is not implemented")
def merge_results(self, vector_results: pa.Table, fts_results: pa.Table):
"""
Merge the results from the vector and FTS search. This is a vanilla merging

View File

@@ -1,12 +1,16 @@
import os
import typing
from functools import cached_property
from typing import Union
import pyarrow as pa
from ..util import attempt_import_or_raise
from ..util import safe_import
from .base import Reranker
if typing.TYPE_CHECKING:
import lancedb
class CohereReranker(Reranker):
"""
@@ -41,7 +45,7 @@ class CohereReranker(Reranker):
@cached_property
def _client(self):
cohere = attempt_import_or_raise("cohere")
cohere = safe_import("cohere")
if os.environ.get("COHERE_API_KEY") is None and self.api_key is None:
raise ValueError(
"COHERE_API_KEY not set. Either set it in your environment or \
@@ -51,14 +55,14 @@ class CohereReranker(Reranker):
def rerank_hybrid(
self,
query: str,
query_builder: "lancedb.HybridQueryBuilder",
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
results = self._client.rerank(
query=query,
query=query_builder._query,
documents=docs,
top_n=self.top_n,
model=self.model_name,

View File

@@ -1,109 +0,0 @@
from functools import cached_property
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class ColbertReranker(Reranker):
"""
Reranks the results using the ColBERT model.
Parameters
----------
model_name : str, default "colbert-ir/colbertv2.0"
The name of the cross encoder model to use.
column : str, default "text"
The name of the column to use as input to the cross encoder model.
return_score : str, default "relevance"
options are "relevance" or "all". Only "relevance" is supported for now.
"""
def __init__(
self,
model_name: str = "colbert-ir/colbertv2.0",
column: str = "text",
return_score="relevance",
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.torch = attempt_import_or_raise(
"torch"
) # import here for faster ops later
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
tokenizer, model = self._model
# Encode the query
query_encoding = tokenizer(query, return_tensors="pt")
query_embedding = model(**query_encoding).last_hidden_state.mean(dim=1)
scores = []
# Get score for each document
for document in docs:
document_encoding = tokenizer(
document, return_tensors="pt", truncation=True, max_length=512
)
document_embedding = model(**document_encoding).last_hidden_state
# Calculate MaxSim score
score = self.maxsim(query_embedding.unsqueeze(0), document_embedding)
scores.append(score.item())
# replace the self.column column with the docs
combined_results = combined_results.drop(self.column)
combined_results = combined_results.append_column(
self.column, pa.array(docs, type=pa.string())
)
# add the scores
combined_results = combined_results.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)
return combined_results
@cached_property
def _model(self):
transformers = attempt_import_or_raise("transformers")
tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
model = transformers.AutoModel.from_pretrained(self.model_name)
return tokenizer, model
def maxsim(self, query_embedding, document_embedding):
# Expand dimensions for broadcasting
# Query: [batch, length, size] -> [batch, query, 1, size]
# Document: [batch, length, size] -> [batch, 1, length, size]
expanded_query = query_embedding.unsqueeze(2)
expanded_doc = document_embedding.unsqueeze(1)
# Compute cosine similarity across the embedding dimension
sim_matrix = self.torch.nn.functional.cosine_similarity(
expanded_query, expanded_doc, dim=-1
)
# Take the maximum similarity for each query token (across all document tokens)
# sim_matrix shape: [batch_size, query_length, doc_length]
max_sim_scores, _ = self.torch.max(sim_matrix, dim=2)
# Average these maximum scores across all query tokens
avg_max_sim = self.torch.mean(max_sim_scores, dim=1)
return avg_max_sim

View File

@@ -1,11 +1,15 @@
import typing
from functools import cached_property
from typing import Union
import pyarrow as pa
from ..util import attempt_import_or_raise
from ..util import safe_import
from .base import Reranker
if typing.TYPE_CHECKING:
import lancedb
class CrossEncoderReranker(Reranker):
"""
@@ -32,7 +36,7 @@ class CrossEncoderReranker(Reranker):
return_score="relevance",
):
super().__init__(return_score)
torch = attempt_import_or_raise("torch")
torch = safe_import("torch")
self.model_name = model_name
self.column = column
self.device = device
@@ -41,20 +45,20 @@ class CrossEncoderReranker(Reranker):
@cached_property
def model(self):
sbert = attempt_import_or_raise("sentence_transformers")
sbert = safe_import("sentence_transformers")
cross_encoder = sbert.CrossEncoder(self.model_name)
return cross_encoder
def rerank_hybrid(
self,
query: str,
query_builder: "lancedb.HybridQueryBuilder",
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
passages = combined_results[self.column].to_pylist()
cross_inp = [[query, passage] for passage in passages]
cross_inp = [[query_builder._query, passage] for passage in passages]
cross_scores = self.model.predict(cross_inp)
combined_results = combined_results.append_column(
"_relevance_score", pa.array(cross_scores, type=pa.float32())

View File

@@ -36,7 +36,7 @@ class LinearCombinationReranker(Reranker):
def rerank_hybrid(
self,
query: str, # noqa: F821
query_builder: "lancedb.HybridQueryBuilder", # noqa: F821
vector_results: pa.Table,
fts_results: pa.Table,
):

View File

@@ -1,104 +0,0 @@
import json
import os
from functools import cached_property
from typing import Optional
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class OpenaiReranker(Reranker):
"""
Reranks the results using the OpenAI API.
WARNING: This is a prompt based reranker that uses chat model that is
not a dedicated reranker API. This should be treated as experimental.
Parameters
----------
model_name : str, default "gpt-4-turbo-preview"
The name of the cross encoder model to use.
column : str, default "text"
The name of the column to use as input to the cross encoder model.
return_score : str, default "relevance"
options are "relevance" or "all". Only "relevance" is supported for now.
api_key : str, default None
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
"""
def __init__(
self,
model_name: str = "gpt-4-turbo-preview",
column: str = "text",
return_score="relevance",
api_key: Optional[str] = None,
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.api_key = api_key
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
response = self._client.chat.completions.create(
model=self.model_name,
response_format={"type": "json_object"},
temperature=0,
messages=[
{
"role": "system",
"content": "You are an expert relevance ranker. Given a list of\
documents and a query, your job is to determine the relevance\
each document is for answering the query. Your output is JSON,\
which is a list of documents. Each document has two fields,\
content and relevance_score. relevance_score is from 0.0 to\
1.0 indicating the relevance of the text to the given query.\
Make sure to include all documents in the response.",
},
{"role": "user", "content": f"Query: {query} Docs: {docs}"},
],
)
results = json.loads(response.choices[0].message.content)["documents"]
docs, scores = list(
zip(*[(result["content"], result["relevance_score"]) for result in results])
) # tuples
# replace the self.column column with the docs
combined_results = combined_results.drop(self.column)
combined_results = combined_results.append_column(
self.column, pa.array(docs, type=pa.string())
)
# add the scores
combined_results = combined_results.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)
return combined_results
@cached_property
def _client(self):
openai = attempt_import_or_raise(
"openai"
) # TODO: force version or handle versions < 1.0
if os.environ.get("OPENAI_API_KEY") is None and self.api_key is None:
raise ValueError(
"OPENAI_API_KEY not set. Either set it in your environment or \
pass it as `api_key` argument to the CohereReranker."
)
return openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY") or self.api_key)

View File

@@ -14,10 +14,7 @@
from __future__ import annotations
import inspect
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import timedelta
from functools import cached_property
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Union
@@ -36,23 +33,23 @@ from .pydantic import LanceModel, model_to_dict
from .query import LanceQueryBuilder, Query
from .util import (
fs_from_uri,
inf_vector_column_query,
join_uri,
safe_import_pandas,
safe_import_polars,
safe_import,
value_to_sql,
)
from .utils.events import register_event
if TYPE_CHECKING:
from datetime import timedelta
import PIL
from lance.dataset import CleanupStats, ReaderLike
from .db import LanceDBConnection
pd = safe_import_pandas()
pl = safe_import_polars()
pd = safe_import("pandas")
pl = safe_import("polars")
def _sanitize_data(
@@ -178,18 +175,6 @@ class Table(ABC):
"""
raise NotImplementedError
@abstractmethod
def count_rows(self, filter: Optional[str] = None) -> int:
"""
Count the number of rows in the table.
Parameters
----------
filter: str, optional
A SQL where clause to filter the rows to count.
"""
raise NotImplementedError
def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame.
@@ -313,7 +298,7 @@ class Table(ABC):
import lance
dataset = lance.dataset("./images.lance")
dataset = lance.dataset("/tmp/images.lance")
dataset.create_scalar_index("category")
"""
raise NotImplementedError
@@ -406,15 +391,13 @@ class Table(ABC):
2 3 y
3 4 z
"""
on = [on] if isinstance(on, str) else list(on.iter())
return LanceMergeInsertBuilder(self, on)
@abstractmethod
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: Optional[str] = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
@@ -434,7 +417,7 @@ class Table(ABC):
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query)
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
@@ -453,19 +436,12 @@ class Table(ABC):
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str, optional
vector_column_name: str
The name of the vector column to search.
The vector column needs to be a pyarrow fixed size list type
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
*default "vector"*
query_type: str
*default "auto"*.
Acceptable types are: "vector", "fts", "hybrid", or "auto"
Acceptable types are: "vector", "fts", or "auto"
- If "auto" then the query type is inferred from the query;
@@ -502,8 +478,8 @@ class Table(ABC):
self,
merge: LanceMergeInsertBuilder,
new_data: DATA,
on_bad_vectors: str,
fill_value: float,
*,
schema: Optional[pa.Schema] = None,
):
pass
@@ -614,192 +590,24 @@ class Table(ABC):
"""
raise NotImplementedError
@abstractmethod
def cleanup_old_versions(
self,
older_than: Optional[timedelta] = None,
*,
delete_unverified: bool = False,
) -> CleanupStats:
"""
Clean up old versions of the table, freeing disk space.
Note: This function is not available in LanceDb Cloud (since LanceDb
Cloud manages cleanup for you automatically)
Parameters
----------
older_than: timedelta, default None
The minimum age of the version to delete. If None, then this defaults
to two weeks.
delete_unverified: bool, default False
Because they may be part of an in-progress transaction, files newer
than 7 days old are not deleted by default. If you are sure that
there are no in-progress transactions, then you can set this to True
to delete all files older than `older_than`.
Returns
-------
CleanupStats
The stats of the cleanup operation, including how many bytes were
freed.
"""
@abstractmethod
def compact_files(self, *args, **kwargs):
"""
Run the compaction process on the table.
Note: This function is not available in LanceDb Cloud (since LanceDb
Cloud manages compaction for you automatically)
This can be run after making several small appends to optimize the table
for faster reads.
Arguments are passed onto :meth:`lance.dataset.DatasetOptimizer.compact_files`.
For most cases, the default should be fine.
"""
class _LanceDatasetRef(ABC):
@property
@abstractmethod
def dataset(self) -> LanceDataset:
pass
@property
@abstractmethod
def dataset_mut(self) -> LanceDataset:
pass
@dataclass
class _LanceLatestDatasetRef(_LanceDatasetRef):
"""Reference to the latest version of a LanceDataset."""
uri: str
read_consistency_interval: Optional[timedelta] = None
last_consistency_check: Optional[float] = None
_dataset: Optional[LanceDataset] = None
@property
def dataset(self) -> LanceDataset:
if not self._dataset:
self._dataset = lance.dataset(self.uri)
self.last_consistency_check = time.monotonic()
elif self.read_consistency_interval is not None:
now = time.monotonic()
diff = timedelta(seconds=now - self.last_consistency_check)
if (
self.last_consistency_check is None
or diff > self.read_consistency_interval
):
self._dataset = self._dataset.checkout_version(
self._dataset.latest_version
)
self.last_consistency_check = time.monotonic()
return self._dataset
@dataset.setter
def dataset(self, value: LanceDataset):
self._dataset = value
self.last_consistency_check = time.monotonic()
@property
def dataset_mut(self) -> LanceDataset:
return self.dataset
@dataclass
class _LanceTimeTravelRef(_LanceDatasetRef):
uri: str
version: int
_dataset: Optional[LanceDataset] = None
@property
def dataset(self) -> LanceDataset:
if not self._dataset:
self._dataset = lance.dataset(self.uri, version=self.version)
return self._dataset
@dataset.setter
def dataset(self, value: LanceDataset):
self._dataset = value
self.version = value.version
@property
def dataset_mut(self) -> LanceDataset:
raise ValueError(
"Cannot mutate table reference fixed at version "
f"{self.version}. Call checkout_latest() to get a mutable "
"table reference."
)
class LanceTable(Table):
"""
A table in a LanceDB database.
This can be opened in two modes: standard and time-travel.
Standard mode is the default. In this mode, the table is mutable and tracks
the latest version of the table. The level of read consistency is controlled
by the `read_consistency_interval` parameter on the connection.
Time-travel mode is activated by specifying a version number. In this mode,
the table is immutable and fixed to a specific version. This is useful for
querying historical versions of the table.
"""
def __init__(
self,
connection: "LanceDBConnection",
name: str,
version: Optional[int] = None,
):
def __init__(self, connection: "LanceDBConnection", name: str, version: int = None):
self._conn = connection
self.name = name
self._version = version
if version is not None:
self._ref = _LanceTimeTravelRef(
uri=self._dataset_uri,
version=version,
)
else:
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=connection.read_consistency_interval,
)
@classmethod
def open(cls, db, name, **kwargs):
tbl = cls(db, name, **kwargs)
fs, path = fs_from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError(
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
register_event("open_table")
return tbl
@property
def _dataset_uri(self) -> str:
return join_uri(self._conn.uri, f"{self.name}.lance")
@property
def _dataset(self) -> LanceDataset:
return self._ref.dataset
@property
def _dataset_mut(self) -> LanceDataset:
return self._ref.dataset_mut
def to_lance(self) -> LanceDataset:
"""Return the LanceDataset backing this table."""
return self._dataset
def _reset_dataset(self, version=None):
try:
if "_dataset" in self.__dict__:
del self.__dict__["_dataset"]
self._version = version
except AttributeError:
pass
@property
def schema(self) -> pa.Schema:
@@ -827,9 +635,6 @@ class LanceTable(Table):
keep writing to the dataset starting from an old version, then use
the `restore` function.
Calling this method will set the table into time-travel mode. If you
wish to return to standard mode, call `checkout_latest`.
Parameters
----------
version : int
@@ -854,13 +659,15 @@ class LanceTable(Table):
vector type
0 [1.1, 0.9] vector
"""
max_ver = self._dataset.latest_version
max_ver = max([v["version"] for v in self._dataset.versions()])
if version < 1 or version > max_ver:
raise ValueError(f"Invalid version {version}")
self._reset_dataset(version=version)
try:
ds = self._dataset.checkout_version(version)
except IOError as e:
# Accessing the property updates the cached value
_ = self._dataset
except Exception as e:
if "not found" in str(e):
raise ValueError(
f"Version {version} no longer exists. Was it cleaned up?"
@@ -868,27 +675,6 @@ class LanceTable(Table):
else:
raise e
self._ref = _LanceTimeTravelRef(
uri=self._dataset_uri,
version=version,
)
# We've already loaded the version so we can populate it directly.
self._ref.dataset = ds
def checkout_latest(self):
"""Checkout the latest version of the table. This is an in-place operation.
The table will be set back into standard mode, and will track the latest
version of the table.
"""
self.checkout(self._dataset.latest_version)
ds = self._ref.dataset
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=self._conn.read_consistency_interval,
)
self._ref.dataset = ds
def restore(self, version: int = None):
"""Restore a version of the table. This is an in-place operation.
@@ -923,7 +709,7 @@ class LanceTable(Table):
>>> len(table.list_versions())
4
"""
max_ver = self._dataset.latest_version
max_ver = max([v["version"] for v in self._dataset.versions()])
if version is None:
version = self.version
elif version < 1 or version > max_ver:
@@ -931,30 +717,29 @@ class LanceTable(Table):
else:
self.checkout(version)
ds = self._dataset
if version == max_ver:
# no-op if restoring the latest version
return
# no-op if restoring the latest version
if version != max_ver:
ds.restore()
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=self._conn.read_consistency_interval,
)
self._ref.dataset = ds
self._dataset.restore()
self._reset_dataset()
def count_rows(self, filter: Optional[str] = None) -> int:
"""
Count the number of rows in the table.
Parameters
----------
filter: str, optional
A SQL where clause to filter the rows to count.
"""
return self._dataset.count_rows(filter)
def __len__(self):
return self.count_rows()
def __repr__(self) -> str:
val = f'{self.__class__.__name__}(connection={self._conn!r}, name="{self.name}"'
if isinstance(self._ref, _LanceTimeTravelRef):
val += f", version={self._ref.version}"
val += ")"
return val
return f"LanceTable({self.name})"
def __str__(self) -> str:
return self.__repr__()
@@ -1004,6 +789,10 @@ class LanceTable(Table):
self.to_lance(), allow_pyarrow_filter=False, batch_size=batch_size
)
@property
def _dataset_uri(self) -> str:
return join_uri(self._conn.uri, f"{self.name}.lance")
def create_index(
self,
metric="L2",
@@ -1015,7 +804,7 @@ class LanceTable(Table):
index_cache_size: Optional[int] = None,
):
"""Create an index on the table."""
self._dataset_mut.create_index(
self._dataset.create_index(
column=vector_column_name,
index_type="IVF_PQ",
metric=metric,
@@ -1025,12 +814,11 @@ class LanceTable(Table):
accelerator=accelerator,
index_cache_size=index_cache_size,
)
self._reset_dataset()
register_event("create_index")
def create_scalar_index(self, column: str, *, replace: bool = True):
self._dataset_mut.create_scalar_index(
column, index_type="BTREE", replace=replace
)
self._dataset.create_scalar_index(column, index_type="BTREE", replace=replace)
def create_fts_index(
self,
@@ -1073,6 +861,14 @@ class LanceTable(Table):
def _get_fts_index_path(self):
return join_uri(self._dataset_uri, "_indices", "tantivy")
@cached_property
def _dataset(self) -> LanceDataset:
return lance.dataset(self._dataset_uri, version=self._version)
def to_lance(self) -> LanceDataset:
"""Return the LanceDataset backing this table."""
return self._dataset
def add(
self,
data: DATA,
@@ -1111,11 +907,8 @@ class LanceTable(Table):
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
# Access the dataset_mut property to ensure that the dataset is mutable.
self._ref.dataset_mut
self._ref.dataset = lance.write_dataset(
data, self._dataset_uri, schema=self.schema, mode=mode
)
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
self._reset_dataset()
register_event("add")
def merge(
@@ -1176,9 +969,10 @@ class LanceTable(Table):
other_table = other_table.to_lance()
if isinstance(other_table, LanceDataset):
other_table = other_table.to_table()
self._ref.dataset = self._dataset_mut.merge(
self._dataset.merge(
other_table, left_on=left_on, right_on=right_on, schema=schema
)
self._reset_dataset()
register_event("merge")
@cached_property
@@ -1199,7 +993,7 @@ class LanceTable(Table):
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: Optional[str] = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
@@ -1217,7 +1011,7 @@ class LanceTable(Table):
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query)
>>> (table.search(query, vector_column_name="vector")
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
@@ -1236,17 +1030,8 @@ class LanceTable(Table):
- If None then the select/[where][sql]/limit clauses are applied
to filter the table
vector_column_name: str, optional
vector_column_name: str, default "vector"
The name of the vector column to search.
The vector column needs to be a pyarrow fixed size list type
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
query_type: str, default "auto"
"vector", "fts", or "auto"
If "auto" then the query type is inferred from the query;
@@ -1264,8 +1049,6 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if vector_column_name is None and query is not None:
vector_column_name = inf_vector_column_query(self.schema)
register_event("search_table")
return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name
@@ -1392,8 +1175,22 @@ class LanceTable(Table):
register_event("create_table")
return new_table
@classmethod
def open(cls, db, name):
tbl = cls(db, name)
fs, path = fs_from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError(
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
register_event("open_table")
return tbl
def delete(self, where: str):
self._dataset_mut.delete(where)
self._dataset.delete(where)
def update(
self,
@@ -1447,12 +1244,12 @@ class LanceTable(Table):
if values is not None:
values_sql = {k: value_to_sql(v) for k, v in values.items()}
self._dataset_mut.update(values_sql, where)
self.to_lance().update(values_sql, where)
self._reset_dataset()
register_event("update")
def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance()
return ds.to_table(
columns=query.columns,
filter=query.filter,
@@ -1468,30 +1265,17 @@ class LanceTable(Table):
with_row_id=query.with_row_id,
)
def _do_merge(
self,
merge: LanceMergeInsertBuilder,
new_data: DATA,
on_bad_vectors: str,
fill_value: float,
):
new_data = _sanitize_data(
new_data,
self.schema,
metadata=self.schema.metadata,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
def _do_merge(self, merge: LanceMergeInsertBuilder, new_data: DATA, *, schema=None):
ds = self.to_lance()
builder = ds.merge_insert(merge._on)
if merge._when_matched_update_all:
builder.when_matched_update_all(merge._when_matched_update_all_condition)
builder.when_matched_update_all()
if merge._when_not_matched_insert_all:
builder.when_not_matched_insert_all()
if merge._when_not_matched_by_source_delete:
cond = merge._when_not_matched_by_source_condition
builder.when_not_matched_by_source_delete(cond)
builder.execute(new_data)
builder.execute(new_data, schema=schema)
def cleanup_old_versions(
self,
@@ -1530,9 +1314,8 @@ class LanceTable(Table):
This can be run after making several small appends to optimize the table
for faster reads.
Arguments are passed onto `lance.dataset.DatasetOptimizer.compact_files`.
(see Lance documentation for more details) For most cases, the default
should be fine.
Arguments are passed onto :meth:`lance.dataset.DatasetOptimizer.compact_files`.
For most cases, the default should be fine.
"""
return self.to_lance().optimize.compact_files(*args, **kwargs)

View File

@@ -11,18 +11,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import importlib
import os
import pathlib
import warnings
from datetime import date, datetime
from functools import singledispatch
from typing import Tuple, Union
from urllib.parse import urlparse
import numpy as np
import pyarrow as pa
import pyarrow.fs as pa_fs
@@ -118,7 +115,7 @@ def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
return "/".join([p.rstrip("/") for p in [base, *parts]])
def attempt_import_or_raise(module: str, mitigation=None):
def safe_import(module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
@@ -137,62 +134,6 @@ def attempt_import_or_raise(module: str, mitigation=None):
raise ImportError(f"Please install {mitigation or module}")
def safe_import_pandas():
try:
import pandas as pd
return pd
except ImportError:
return None
def safe_import_polars():
try:
import polars as pl
return pl
except ImportError:
return None
def inf_vector_column_query(schema: pa.Schema) -> str:
"""
Get the vector column name
Parameters
----------
schema : pa.Schema
The schema of the vector column.
Returns
-------
str: the vector column name.
"""
vector_col_name = ""
vector_col_count = 0
for field_name in schema.names:
field = schema.field(field_name)
if pa.types.is_fixed_size_list(field.type) and pa.types.is_floating(
field.type.value_type
):
vector_col_count += 1
if vector_col_count > 1:
raise ValueError(
"Schema has more than one vector column. "
"Please specify the vector column name "
"for vector search"
)
break
elif vector_col_count == 1:
vector_col_name = field_name
if vector_col_count == 0:
raise ValueError(
"There is no vector column in the data. "
"Please specify the vector column name for vector search"
)
return vector_col_name
@singledispatch
def value_to_sql(value):
raise NotImplementedError("SQL conversion is not implemented for this type")
@@ -241,25 +182,3 @@ def _(value: list):
@value_to_sql.register(np.ndarray)
def _(value: np.ndarray):
return value_to_sql(value.tolist())
def deprecated(func):
"""This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used."""
@functools.wraps(func)
def new_func(*args, **kwargs):
warnings.simplefilter("always", DeprecationWarning) # turn off filter
warnings.warn(
(
f"Function {func.__name__} is deprecated and will be "
"removed in a future version"
),
category=DeprecationWarning,
stacklevel=2,
)
warnings.simplefilter("default", DeprecationWarning) # reset filter
return func(*args, **kwargs)
return new_func

View File

@@ -1,9 +1,9 @@
[project]
name = "lancedb"
version = "0.5.7"
version = "0.5.1"
dependencies = [
"deprecation",
"pylance==0.9.18",
"pylance==0.9.11",
"ratelimiter~=1.0",
"retry>=0.9.2",
"tqdm>=4.27.0",
@@ -48,9 +48,9 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
tests = ["aiohttp", "pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "duckdb", "pytz", "polars>=0.19"]
tests = ["aiohttp", "pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "duckdb", "pytz", "polars"]
dev = ["ruff", "pre-commit"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]", "mkdocs-ultralytics-plugin==0.0.44"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai>=1.6.1", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "huggingface_hub",
"InstructorEmbedding", "google.generativeai", "boto3>=1.28.57", "awscli>=1.29.57", "botocore>=1.31.57"]

View File

@@ -88,7 +88,6 @@ def test_embedding_function(tmp_path):
assert np.allclose(actual, expected)
@pytest.mark.slow
def test_embedding_function_rate_limit(tmp_path):
def _get_schema_from_model(model):
class Schema(LanceModel):

View File

@@ -23,26 +23,14 @@ import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
# These are integration tests for embedding functions.
# They are slow because they require downloading models
# or connection to external api
try:
if importlib.util.find_spec("mlx.core") is not None:
_mlx = True
else:
_mlx = None
except Exception:
except ImportError:
_mlx = None
try:
if importlib.util.find_spec("imagebind") is not None:
_imagebind = True
else:
_imagebind = None
except Exception:
_imagebind = None
# These are integration tests for embedding functions.
# They are slow because they require downloading models
# or connection to external api
@pytest.mark.slow
@@ -86,14 +74,10 @@ def test_basic_text_embeddings(alias, tmp_path):
)
query = "greetings"
actual = (
table.search(query, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
actual = table.search(query).limit(1).to_pydantic(Words)[0]
vec = func.compute_query_embeddings(query)[0]
expected = (
table.search(vec, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
assert actual.text == expected.text
assert actual.text == "hello world"
assert not np.allclose(actual.vector, actual.vector2)
@@ -137,11 +121,7 @@ def test_openclip(tmp_path):
)
# text search
actual = (
table.search("man's best friend", vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
@@ -155,11 +135,7 @@ def test_openclip(tmp_path):
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = (
table.search(query_image, vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
@@ -175,89 +151,6 @@ def test_openclip(tmp_path):
)
@pytest.mark.skipif(
_imagebind is None,
reason="skip if imagebind not installed.",
)
@pytest.mark.slow
def test_imagebind(tmp_path):
import os
import shutil
import tempfile
import pandas as pd
import requests
import lancedb.embeddings.imagebind
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
with tempfile.TemporaryDirectory() as temp_dir:
print(f"Created temporary directory {temp_dir}")
def download_images(image_uris):
downloaded_image_paths = []
for uri in image_uris:
try:
response = requests.get(uri, stream=True)
if response.status_code == 200:
# Extract image name from URI
image_name = os.path.basename(uri)
image_path = os.path.join(temp_dir, image_name)
with open(image_path, "wb") as out_file:
shutil.copyfileobj(response.raw, out_file)
downloaded_image_paths.append(image_path)
except Exception as e: # noqa: PERF203
print(f"Failed to download {uri}. Error: {e}")
return temp_dir, downloaded_image_paths
db = lancedb.connect(tmp_path)
registry = get_registry()
func = registry.get("imagebind").create(max_retries=0)
class Images(LanceModel):
label: str
image_uri: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
temp_dir, downloaded_images = download_images(uris)
table.add(pd.DataFrame({"label": labels, "image_uri": downloaded_images}))
# text search
actual = (
table.search("man's best friend", vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog"
# image search
query_image_uri = [
"https://live.staticflickr.com/65535/33336453970_491665f66e_h.jpg"
]
temp_dir, downloaded_images = download_images(query_image_uri)
query_image_uri = downloaded_images[0]
actual = (
table.search(query_image_uri, vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog"
if os.path.isdir(temp_dir):
shutil.rmtree(temp_dir)
print(f"Deleted temporary directory {temp_dir}")
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
@@ -373,49 +266,3 @@ def test_bedrock_embedding(tmp_path):
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("OPENAI_API_KEY") is None, reason="OPENAI_API_KEY not set"
)
def test_openai_embedding(tmp_path):
def _get_table(model):
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
return tbl
model = get_registry().get("openai").create(max_retries=0)
tbl = _get_table(model)
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
model = (
get_registry()
.get("openai")
.create(max_retries=0, name="text-embedding-3-large")
)
tbl = _get_table(model)
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
model = (
get_registry()
.get("openai")
.create(max_retries=0, name="text-embedding-3-large", dim=1024)
)
tbl = _get_table(model)
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"

Some files were not shown because too many files have changed in this diff Show More