mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 14:29:56 +00:00
Compare commits
41 Commits
yang/relat
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
96933d7df8 | ||
|
|
d369233b3d | ||
|
|
43a670ed4b | ||
|
|
cb9a00a28d | ||
|
|
72af977a73 | ||
|
|
7cecb71df0 | ||
|
|
285071e5c8 | ||
|
|
114866fbcf | ||
|
|
5387c0e243 | ||
|
|
53d1535de1 | ||
|
|
b2f88f0b29 | ||
|
|
f2e3989831 | ||
|
|
83ae52938a | ||
|
|
267aa83bf8 | ||
|
|
cc72050206 | ||
|
|
72543c8b9d | ||
|
|
97d6210c33 | ||
|
|
a3d0c27b0a | ||
|
|
b23d8abcdd | ||
|
|
e3ea5cf9b9 | ||
|
|
4f8b086175 | ||
|
|
72330fb759 | ||
|
|
e3b2c5f438 | ||
|
|
66a881b33a | ||
|
|
a7515d6ee2 | ||
|
|
587c0824af | ||
|
|
b38a4269d0 | ||
|
|
119d88b9db | ||
|
|
74f660d223 | ||
|
|
b2b0979b90 | ||
|
|
ee2a40b182 | ||
|
|
4ca0b15354 | ||
|
|
d8c217b47d | ||
|
|
b724b1a01f | ||
|
|
abd75e0ead | ||
|
|
0fd8a50bd7 | ||
|
|
9f228feb0e | ||
|
|
90e9c52d0a | ||
|
|
68974a4e06 | ||
|
|
4c9bab0d92 | ||
|
|
5117aecc38 |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.13.0-beta.1"
|
||||
current_version = "0.13.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
@@ -87,6 +87,16 @@ glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
|
||||
|
||||
@@ -31,6 +31,9 @@ rustflags = [
|
||||
[target.x86_64-unknown-linux-gnu]
|
||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
||||
|
||||
[target.x86_64-unknown-linux-musl]
|
||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
|
||||
|
||||
[target.aarch64-apple-darwin]
|
||||
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
||||
|
||||
|
||||
6
.github/workflows/docs.yml
vendored
6
.github/workflows/docs.yml
vendored
@@ -31,7 +31,7 @@ jobs:
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
rustup update && rustup default
|
||||
rustup update && rustup default
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
@@ -41,8 +41,8 @@ jobs:
|
||||
- name: Build Python
|
||||
working-directory: python
|
||||
run: |
|
||||
python -m pip install -e .
|
||||
python -m pip install -r ../docs/requirements.txt
|
||||
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
|
||||
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
|
||||
- name: Set up node
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
|
||||
2
.github/workflows/docs_test.yml
vendored
2
.github/workflows/docs_test.yml
vendored
@@ -49,7 +49,7 @@ jobs:
|
||||
- name: Build Python
|
||||
working-directory: docs/test
|
||||
run:
|
||||
python -m pip install -r requirements.txt
|
||||
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
|
||||
- name: Create test files
|
||||
run: |
|
||||
cd docs/test
|
||||
|
||||
15
.github/workflows/nodejs.yml
vendored
15
.github/workflows/nodejs.yml
vendored
@@ -53,6 +53,9 @@ jobs:
|
||||
cargo clippy --all --all-features -- -D warnings
|
||||
npm ci
|
||||
npm run lint-ci
|
||||
- name: Lint examples
|
||||
working-directory: nodejs/examples
|
||||
run: npm ci && npm run lint-ci
|
||||
linux:
|
||||
name: Linux (NodeJS ${{ matrix.node-version }})
|
||||
timeout-minutes: 30
|
||||
@@ -91,6 +94,18 @@ jobs:
|
||||
env:
|
||||
S3_TEST: "1"
|
||||
run: npm run test
|
||||
- name: Setup examples
|
||||
working-directory: nodejs/examples
|
||||
run: npm ci
|
||||
- name: Test examples
|
||||
working-directory: ./
|
||||
env:
|
||||
OPENAI_API_KEY: test
|
||||
OPENAI_BASE_URL: http://0.0.0.0:8000
|
||||
run: |
|
||||
python ci/mock_openai.py &
|
||||
cd nodejs/examples
|
||||
npm test
|
||||
macos:
|
||||
timeout-minutes: 30
|
||||
runs-on: "macos-14"
|
||||
|
||||
536
.github/workflows/npm-publish.yml
vendored
536
.github/workflows/npm-publish.yml
vendored
@@ -101,7 +101,7 @@ jobs:
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
node-linux:
|
||||
node-linux-gnu:
|
||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
@@ -137,11 +137,63 @@ jobs:
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-linux-${{ matrix.config.arch }}
|
||||
name: node-native-linux-${{ matrix.config.arch }}-gnu
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-linux*.tgz
|
||||
|
||||
nodejs-linux:
|
||||
node-linux-musl:
|
||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
|
||||
runs-on: ubuntu-latest
|
||||
container: alpine:edge
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
- arch: x86_64
|
||||
- arch: aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install common dependencies
|
||||
run: |
|
||||
apk add protobuf-dev curl clang mold grep npm bash
|
||||
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||
echo "source $HOME/.cargo/env" >> saved_env
|
||||
echo "export CC=clang" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
source "$HOME/.cargo/env"
|
||||
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
|
||||
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||
curl -sSf $apk_url > apk_list
|
||||
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||
mkdir -p $sysroot_lib
|
||||
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
source ./saved_env
|
||||
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }}
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-linux-${{ matrix.config.arch }}-musl
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-linux*.tgz
|
||||
|
||||
nodejs-linux-gnu:
|
||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
@@ -178,7 +230,7 @@ jobs:
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
# The generic files are the same in all distros so we just pick
|
||||
@@ -192,6 +244,62 @@ jobs:
|
||||
nodejs/dist/*
|
||||
!nodejs/dist/*.node
|
||||
|
||||
nodejs-linux-musl:
|
||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
|
||||
runs-on: ubuntu-latest
|
||||
container: alpine:edge
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
- arch: x86_64
|
||||
- arch: aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install common dependencies
|
||||
run: |
|
||||
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
|
||||
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||
echo "source $HOME/.cargo/env" >> saved_env
|
||||
echo "export CC=clang" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
|
||||
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
|
||||
- name: Configure aarch64 build
|
||||
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||
run: |
|
||||
source "$HOME/.cargo/env"
|
||||
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
|
||||
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||
curl -sSf $apk_url > apk_list
|
||||
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||
mkdir -p $sysroot_lib
|
||||
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
|
||||
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
source ./saved_env
|
||||
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
node-windows:
|
||||
name: vectordb ${{ matrix.target }}
|
||||
runs-on: windows-2022
|
||||
@@ -226,125 +334,109 @@ jobs:
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-win32*.tgz
|
||||
|
||||
node-windows-arm64:
|
||||
name: vectordb win32-arm64-msvc
|
||||
runs-on: windows-4x-arm
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Cache installations
|
||||
id: cache-installs
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: |
|
||||
C:\Program Files\Git
|
||||
C:\BuildTools
|
||||
C:\Program Files (x86)\Windows Kits
|
||||
C:\Program Files\7-Zip
|
||||
C:\protoc
|
||||
key: ${{ runner.os }}-arm64-installs-v1
|
||||
restore-keys: |
|
||||
${{ runner.os }}-arm64-installs-
|
||||
- name: Install Git
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
shell: powershell
|
||||
- name: Add Git to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
shell: powershell
|
||||
- name: Configure Git symlinks
|
||||
run: git config --global core.symlinks true
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.13"
|
||||
- name: Install Visual Studio Build Tools
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
"--installPath", "C:\BuildTools", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
shell: powershell
|
||||
- name: Add Visual Studio Build Tools to PATH
|
||||
run: |
|
||||
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
|
||||
# node-windows-arm64:
|
||||
# name: vectordb win32-arm64-msvc
|
||||
# runs-on: windows-4x-arm
|
||||
# if: startsWith(github.ref, 'refs/tags/v')
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Install Git
|
||||
# run: |
|
||||
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
# shell: powershell
|
||||
# - name: Add Git to PATH
|
||||
# run: |
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
# shell: powershell
|
||||
# - name: Configure Git symlinks
|
||||
# run: git config --global core.symlinks true
|
||||
# - uses: actions/checkout@v4
|
||||
# - uses: actions/setup-python@v5
|
||||
# with:
|
||||
# python-version: "3.13"
|
||||
# - name: Install Visual Studio Build Tools
|
||||
# run: |
|
||||
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
# "--installPath", "C:\BuildTools", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
# shell: powershell
|
||||
# - name: Add Visual Studio Build Tools to PATH
|
||||
# run: |
|
||||
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
|
||||
# Add MSVC runtime libraries to LIB
|
||||
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
|
||||
# # Add MSVC runtime libraries to LIB
|
||||
# $env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
# Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
|
||||
|
||||
# Add INCLUDE paths
|
||||
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
|
||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
|
||||
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
|
||||
shell: powershell
|
||||
- name: Install Rust
|
||||
run: |
|
||||
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
shell: powershell
|
||||
- name: Add Rust to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
shell: powershell
|
||||
# # Add INCLUDE paths
|
||||
# $env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
|
||||
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
|
||||
# Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
|
||||
# shell: powershell
|
||||
# - name: Install Rust
|
||||
# run: |
|
||||
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
# shell: powershell
|
||||
# - name: Add Rust to PATH
|
||||
# run: |
|
||||
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
# shell: powershell
|
||||
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install 7-Zip ARM
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
shell: powershell
|
||||
- name: Add 7-Zip to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
shell: powershell
|
||||
- name: Install Protoc v21.12
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
working-directory: C:\
|
||||
run: |
|
||||
if (Test-Path 'C:\protoc') {
|
||||
Write-Host "Protoc directory exists, skipping installation"
|
||||
return
|
||||
}
|
||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
Set-Location C:\protoc
|
||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
shell: powershell
|
||||
- name: Add Protoc to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
shell: powershell
|
||||
- name: Build Windows native node modules
|
||||
run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
|
||||
- name: Upload Windows ARM64 Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: node-native-windows-arm64
|
||||
path: |
|
||||
node/dist/*.node
|
||||
# - uses: Swatinem/rust-cache@v2
|
||||
# with:
|
||||
# workspaces: rust
|
||||
# - name: Install 7-Zip ARM
|
||||
# run: |
|
||||
# New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
# shell: powershell
|
||||
# - name: Add 7-Zip to PATH
|
||||
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
# shell: powershell
|
||||
# - name: Install Protoc v21.12
|
||||
# working-directory: C:\
|
||||
# run: |
|
||||
# if (Test-Path 'C:\protoc') {
|
||||
# Write-Host "Protoc directory exists, skipping installation"
|
||||
# return
|
||||
# }
|
||||
# New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
# Set-Location C:\protoc
|
||||
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
# shell: powershell
|
||||
# - name: Add Protoc to PATH
|
||||
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
# shell: powershell
|
||||
# - name: Build Windows native node modules
|
||||
# run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
|
||||
# - name: Upload Windows ARM64 Artifacts
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: node-native-windows-arm64
|
||||
# path: |
|
||||
# node/dist/*.node
|
||||
|
||||
nodejs-windows:
|
||||
name: lancedb ${{ matrix.target }}
|
||||
@@ -380,119 +472,103 @@ jobs:
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
|
||||
nodejs-windows-arm64:
|
||||
name: lancedb win32-arm64-msvc
|
||||
runs-on: windows-4x-arm
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Cache installations
|
||||
id: cache-installs
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: |
|
||||
C:\Program Files\Git
|
||||
C:\BuildTools
|
||||
C:\Program Files (x86)\Windows Kits
|
||||
C:\Program Files\7-Zip
|
||||
C:\protoc
|
||||
key: ${{ runner.os }}-arm64-installs-v1
|
||||
restore-keys: |
|
||||
${{ runner.os }}-arm64-installs-
|
||||
- name: Install Git
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
shell: powershell
|
||||
- name: Add Git to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
shell: powershell
|
||||
- name: Configure Git symlinks
|
||||
run: git config --global core.symlinks true
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.13"
|
||||
- name: Install Visual Studio Build Tools
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
"--installPath", "C:\BuildTools", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
shell: powershell
|
||||
- name: Add Visual Studio Build Tools to PATH
|
||||
run: |
|
||||
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
|
||||
# nodejs-windows-arm64:
|
||||
# name: lancedb win32-arm64-msvc
|
||||
# runs-on: windows-4x-arm
|
||||
# if: startsWith(github.ref, 'refs/tags/v')
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Install Git
|
||||
# run: |
|
||||
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
# shell: powershell
|
||||
# - name: Add Git to PATH
|
||||
# run: |
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
# shell: powershell
|
||||
# - name: Configure Git symlinks
|
||||
# run: git config --global core.symlinks true
|
||||
# - uses: actions/checkout@v4
|
||||
# - uses: actions/setup-python@v5
|
||||
# with:
|
||||
# python-version: "3.13"
|
||||
# - name: Install Visual Studio Build Tools
|
||||
# run: |
|
||||
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
# "--installPath", "C:\BuildTools", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||
# shell: powershell
|
||||
# - name: Add Visual Studio Build Tools to PATH
|
||||
# run: |
|
||||
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||
|
||||
$env:LIB = ""
|
||||
Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
shell: powershell
|
||||
- name: Install Rust
|
||||
run: |
|
||||
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
shell: powershell
|
||||
- name: Add Rust to PATH
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
shell: powershell
|
||||
# $env:LIB = ""
|
||||
# Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||
# shell: powershell
|
||||
# - name: Install Rust
|
||||
# run: |
|
||||
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||
# shell: powershell
|
||||
# - name: Add Rust to PATH
|
||||
# run: |
|
||||
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
# shell: powershell
|
||||
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install 7-Zip ARM
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
shell: powershell
|
||||
- name: Add 7-Zip to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
shell: powershell
|
||||
- name: Install Protoc v21.12
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
working-directory: C:\
|
||||
run: |
|
||||
if (Test-Path 'C:\protoc') {
|
||||
Write-Host "Protoc directory exists, skipping installation"
|
||||
return
|
||||
}
|
||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
Set-Location C:\protoc
|
||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
shell: powershell
|
||||
- name: Add Protoc to PATH
|
||||
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
shell: powershell
|
||||
- name: Build Windows native node modules
|
||||
run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
|
||||
- name: Upload Windows ARM64 Artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: nodejs-native-windows-arm64
|
||||
path: |
|
||||
nodejs/dist/*.node
|
||||
# - uses: Swatinem/rust-cache@v2
|
||||
# with:
|
||||
# workspaces: rust
|
||||
# - name: Install 7-Zip ARM
|
||||
# run: |
|
||||
# New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||
# shell: powershell
|
||||
# - name: Add 7-Zip to PATH
|
||||
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
# shell: powershell
|
||||
# - name: Install Protoc v21.12
|
||||
# working-directory: C:\
|
||||
# run: |
|
||||
# if (Test-Path 'C:\protoc') {
|
||||
# Write-Host "Protoc directory exists, skipping installation"
|
||||
# return
|
||||
# }
|
||||
# New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
# Set-Location C:\protoc
|
||||
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||
# shell: powershell
|
||||
# - name: Add Protoc to PATH
|
||||
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
# shell: powershell
|
||||
# - name: Build Windows native node modules
|
||||
# run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
|
||||
# - name: Upload Windows ARM64 Artifacts
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: nodejs-native-windows-arm64
|
||||
# path: |
|
||||
# nodejs/dist/*.node
|
||||
|
||||
release:
|
||||
name: vectordb NPM Publish
|
||||
needs: [node, node-macos, node-linux, node-windows, node-windows-arm64]
|
||||
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -510,7 +586,7 @@ jobs:
|
||||
env:
|
||||
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||
run: |
|
||||
# Tag beta as "preview" instead of default "latest". See lancedb
|
||||
# Tag beta as "preview" instead of default "latest". See lancedb
|
||||
# npm publish step for more info.
|
||||
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
|
||||
PUBLISH_ARGS="--tag preview"
|
||||
@@ -532,7 +608,7 @@ jobs:
|
||||
|
||||
release-nodejs:
|
||||
name: lancedb NPM Publish
|
||||
needs: [nodejs-macos, nodejs-linux, nodejs-windows, nodejs-windows-arm64]
|
||||
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
|
||||
2
.github/workflows/python.yml
vendored
2
.github/workflows/python.yml
vendored
@@ -138,7 +138,7 @@ jobs:
|
||||
run: rm -rf target/wheels
|
||||
windows:
|
||||
name: "Windows: ${{ matrix.config.name }}"
|
||||
timeout-minutes: 30
|
||||
timeout-minutes: 60
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
|
||||
26
.github/workflows/rust.yml
vendored
26
.github/workflows/rust.yml
vendored
@@ -50,6 +50,7 @@ jobs:
|
||||
run: cargo fmt --all -- --check
|
||||
- name: Run clippy
|
||||
run: cargo clippy --workspace --tests --all-features -- -D warnings
|
||||
|
||||
linux:
|
||||
timeout-minutes: 30
|
||||
# To build all features, we need more disk space than is available
|
||||
@@ -91,6 +92,7 @@ jobs:
|
||||
run: cargo test --all-features
|
||||
- name: Run examples
|
||||
run: cargo run --example simple
|
||||
|
||||
macos:
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
@@ -118,6 +120,7 @@ jobs:
|
||||
- name: Run tests
|
||||
# Run with everything except the integration tests.
|
||||
run: cargo test --features remote,fp16kernels
|
||||
|
||||
windows:
|
||||
runs-on: windows-2022
|
||||
steps:
|
||||
@@ -139,24 +142,11 @@ jobs:
|
||||
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||
cargo build
|
||||
cargo test
|
||||
|
||||
windows-arm64:
|
||||
runs-on: windows-4x-arm
|
||||
steps:
|
||||
- name: Cache installations
|
||||
id: cache-installs
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: |
|
||||
C:\Program Files\Git
|
||||
C:\BuildTools
|
||||
C:\Program Files (x86)\Windows Kits
|
||||
C:\Program Files\7-Zip
|
||||
C:\protoc
|
||||
key: ${{ runner.os }}-arm64-installs-v1
|
||||
restore-keys: |
|
||||
${{ runner.os }}-arm64-installs-
|
||||
- name: Install Git
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||
@@ -173,7 +163,6 @@ jobs:
|
||||
with:
|
||||
python-version: "3.13"
|
||||
- name: Install Visual Studio Build Tools
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||
@@ -217,12 +206,10 @@ jobs:
|
||||
run: |
|
||||
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||
shell: powershell
|
||||
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install 7-Zip ARM
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
New-Item -Path 'C:\7zip' -ItemType Directory
|
||||
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||
@@ -232,12 +219,11 @@ jobs:
|
||||
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||
shell: powershell
|
||||
- name: Install Protoc v21.12
|
||||
if: steps.cache-installs.outputs.cache-hit != 'true'
|
||||
working-directory: C:\
|
||||
run: |
|
||||
if (Test-Path 'C:\protoc') {
|
||||
Write-Host "Protoc directory exists, skipping installation"
|
||||
return
|
||||
Write-Host "Protoc directory exists, skipping installation"
|
||||
return
|
||||
}
|
||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
Set-Location C:\protoc
|
||||
|
||||
18
Cargo.toml
18
Cargo.toml
@@ -18,18 +18,18 @@ repository = "https://github.com/lancedb/lancedb"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
|
||||
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.19.2", "features" = [
|
||||
lance = { "version" = "=0.20.0", "features" = [
|
||||
"dynamodb",
|
||||
], git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
|
||||
lance-index = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
|
||||
lance-linalg = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
|
||||
lance-table = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
|
||||
lance-testing = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
|
||||
lance-datafusion = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
|
||||
lance-encoding = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2-beta.3" }
|
||||
], git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-index = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-linalg = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-table = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-testing = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-datafusion = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
lance-encoding = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "52.2", optional = false }
|
||||
arrow-array = "52.2"
|
||||
|
||||
@@ -11,7 +11,8 @@ fi
|
||||
export OPENSSL_STATIC=1
|
||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||
|
||||
source $HOME/.bashrc
|
||||
#Alpine doesn't have .bashrc
|
||||
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||
|
||||
cd nodejs
|
||||
npm ci
|
||||
|
||||
@@ -5,13 +5,14 @@ ARCH=${1:-x86_64}
|
||||
|
||||
if [ "$ARCH" = "x86_64" ]; then
|
||||
export OPENSSL_LIB_DIR=/usr/local/lib64/
|
||||
else
|
||||
else
|
||||
export OPENSSL_LIB_DIR=/usr/local/lib/
|
||||
fi
|
||||
export OPENSSL_STATIC=1
|
||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||
|
||||
source $HOME/.bashrc
|
||||
#Alpine doesn't have .bashrc
|
||||
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||
|
||||
cd node
|
||||
npm ci
|
||||
|
||||
57
ci/mock_openai.py
Normal file
57
ci/mock_openai.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
|
||||
import argparse
|
||||
import json
|
||||
import http.server
|
||||
|
||||
|
||||
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
|
||||
def do_POST(self):
|
||||
content_length = int(self.headers["Content-Length"])
|
||||
post_data = self.rfile.read(content_length)
|
||||
post_data = json.loads(post_data.decode("utf-8"))
|
||||
# See: https://platform.openai.com/docs/api-reference/embeddings/create
|
||||
|
||||
if isinstance(post_data["input"], str):
|
||||
num_inputs = 1
|
||||
else:
|
||||
num_inputs = len(post_data["input"])
|
||||
|
||||
model = post_data.get("model", "text-embedding-ada-002")
|
||||
|
||||
data = []
|
||||
for i in range(num_inputs):
|
||||
data.append({
|
||||
"object": "embedding",
|
||||
"embedding": [0.1] * 1536,
|
||||
"index": i,
|
||||
})
|
||||
|
||||
response = {
|
||||
"object": "list",
|
||||
"data": data,
|
||||
"model": model,
|
||||
"usage": {
|
||||
"prompt_tokens": 0,
|
||||
"total_tokens": 0,
|
||||
}
|
||||
}
|
||||
|
||||
self.send_response(200)
|
||||
self.send_header("Content-type", "application/json")
|
||||
self.end_headers()
|
||||
self.wfile.write(json.dumps(response).encode("utf-8"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
|
||||
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
|
||||
args = parser.parse_args()
|
||||
port = args.port
|
||||
|
||||
print(f"server started on port {port}. Press Ctrl-C to stop.")
|
||||
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
|
||||
|
||||
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
|
||||
server.serve_forever()
|
||||
@@ -138,6 +138,7 @@ nav:
|
||||
- Jina Reranker: reranking/jina.md
|
||||
- OpenAI Reranker: reranking/openai.md
|
||||
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
||||
- Voyage AI Rerankers: reranking/voyageai.md
|
||||
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||
- Example: notebooks/lancedb_reranking.ipynb
|
||||
- Filtering: sql.md
|
||||
@@ -165,6 +166,7 @@ nav:
|
||||
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
||||
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
||||
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
||||
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
|
||||
- Multimodal Embedding Functions:
|
||||
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
||||
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
||||
|
||||
21
docs/package-lock.json
generated
21
docs/package-lock.json
generated
@@ -19,7 +19,7 @@
|
||||
},
|
||||
"../node": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.6",
|
||||
"version": "0.12.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -31,9 +31,7 @@
|
||||
"win32"
|
||||
],
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^14.0.2",
|
||||
"axios": "^1.4.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
@@ -46,6 +44,7 @@
|
||||
"@types/temp": "^0.9.1",
|
||||
"@types/uuid": "^9.0.3",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||
"cargo-cp-artifact": "^0.1",
|
||||
"chai": "^4.3.7",
|
||||
"chai-as-promised": "^7.1.1",
|
||||
@@ -62,15 +61,19 @@
|
||||
"ts-node-dev": "^2.0.0",
|
||||
"typedoc": "^0.24.7",
|
||||
"typedoc-plugin-markdown": "^3.15.3",
|
||||
"typescript": "*",
|
||||
"typescript": "^5.1.0",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.6",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.6",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.12.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.12.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"apache-arrow": "^14.0.2"
|
||||
}
|
||||
},
|
||||
"../node/node_modules/apache-arrow": {
|
||||
|
||||
@@ -45,9 +45,9 @@ Lance supports `IVF_PQ` index type by default.
|
||||
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
|
||||
|
||||
```typescript
|
||||
--8<--- "nodejs/examples/ann_indexes.ts:import"
|
||||
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
|
||||
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
|
||||
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -140,13 +140,15 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
|
||||
- **limit** (default: 10): The amount of results that will be returned
|
||||
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
|
||||
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
|
||||
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
|
||||
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
|
||||
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
|
||||
|
||||
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
|
||||
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
|
||||
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
|
||||
!!! note
|
||||
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
|
||||
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -169,7 +171,7 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search1"
|
||||
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -203,7 +205,7 @@ You can further filter the elements returned by a search using a where clause.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search2"
|
||||
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -235,7 +237,7 @@ You can select the columns returned by the query using a select clause.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search3"
|
||||
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -275,7 +277,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
|
||||
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
||||
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
||||
|
||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
|
||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
|
||||
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
|
||||
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
|
||||
!!! note
|
||||
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
|
||||
|
||||
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
|
||||
|
||||
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
|
||||
|
||||
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
|
||||
@@ -157,7 +157,7 @@ recommend switching to stable releases.
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import * as arrow from "apache-arrow";
|
||||
|
||||
--8<-- "nodejs/examples/basic.ts:connect"
|
||||
--8<-- "nodejs/examples/basic.test.ts:connect"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -212,7 +212,7 @@ table.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -268,7 +268,7 @@ similar to a `CREATE TABLE` statement in SQL.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -298,7 +298,7 @@ Once created, you can open a table as follows:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:open_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:open_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -327,7 +327,7 @@ If you forget the name of your table, you can always get a listing of all table
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:table_names"
|
||||
--8<-- "nodejs/examples/basic.test.ts:table_names"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -357,7 +357,7 @@ After a table has been created, you can always add more data to it as follows:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:add_data"
|
||||
--8<-- "nodejs/examples/basic.test.ts:add_data"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -389,7 +389,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:vector_search"
|
||||
--8<-- "nodejs/examples/basic.test.ts:vector_search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -429,7 +429,7 @@ LanceDB allows you to create an ANN index on a table as follows:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_index"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_index"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -469,7 +469,7 @@ This can delete any number of rows that match the filter.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:delete_rows"
|
||||
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -527,7 +527,7 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:drop_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:drop_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -561,8 +561,8 @@ You can use the embedding API when working with embedding models. It automatical
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/embedding.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
|
||||
--8<-- "nodejs/examples/embedding.test.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -57,6 +57,13 @@ Then the greedy search routine operates as follows:
|
||||
|
||||
## Usage
|
||||
|
||||
There are three key parameters to set when constructing an HNSW index:
|
||||
|
||||
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
|
||||
* `m`: The number of neighbors to select for each vector in the HNSW graph.
|
||||
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
|
||||
|
||||
|
||||
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
|
||||
|
||||
### Construct index
|
||||
|
||||
@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
|
||||
# Make sure you have enough data in the table for an effective training step
|
||||
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
!!! note
|
||||
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
|
||||
|
||||
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
|
||||
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
|
||||
|
||||
|
||||
### Query the index
|
||||
|
||||
@@ -20,7 +20,7 @@ Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|--------|---------|
|
||||
| `name` | `str` | `"voyage-3"` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
|
||||
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
|
||||
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
|
||||
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
|
||||
|
||||
|
||||
@@ -47,9 +47,9 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
|
||||
=== "TypeScript"
|
||||
|
||||
```ts
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
|
||||
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
|
||||
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
|
||||
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
|
||||
```
|
||||
|
||||
|
||||
@@ -78,7 +78,7 @@ Now you can use this embedding function to create your table schema and that's i
|
||||
=== "TypeScript"
|
||||
|
||||
```ts
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
|
||||
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
@@ -53,6 +53,7 @@ These functions are registered by default to handle text embeddings.
|
||||
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
|
||||
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
|
||||
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
|
||||
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
|
||||
|
||||
|
||||
|
||||
@@ -66,6 +67,7 @@ These functions are registered by default to handle text embeddings.
|
||||
[jina-key]: "jina"
|
||||
[aws-key]: "bedrock-text"
|
||||
[watsonx-key]: "watsonx"
|
||||
[voyageai-key]: "voyageai"
|
||||
|
||||
|
||||
## Multi-modal Embedding Functions🖼️
|
||||
|
||||
@@ -94,8 +94,8 @@ the embeddings at all:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/embedding.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.ts:embedding_function"
|
||||
--8<-- "nodejs/examples/embedding.test.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -150,7 +150,7 @@ need to worry about it when you query the table:
|
||||
.toArray()
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const results = await table
|
||||
|
||||
@@ -51,8 +51,8 @@ LanceDB registers the OpenAI embeddings function in the registry as `openai`. Yo
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
--8<--- "nodejs/examples/embedding.ts:imports"
|
||||
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
|
||||
--8<--- "nodejs/examples/embedding.test.ts:imports"
|
||||
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
@@ -121,12 +121,10 @@ class Words(LanceModel):
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
table.add([
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
])
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
|
||||
@@ -114,12 +114,45 @@ table.create_fts_index("text",
|
||||
|
||||
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
|
||||
|
||||
This can be invoked via the familiar `where` syntax:
|
||||
|
||||
This can be invoked via the familiar `where` syntax.
|
||||
|
||||
With pre-filtering:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl
|
||||
.search("puppy")
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.where("meta='foo'")
|
||||
.prefilter(true)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
table
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.limit(10)
|
||||
.only_if("meta='foo'")
|
||||
.execute()
|
||||
.await?;
|
||||
```
|
||||
|
||||
With post-filtering:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
@@ -130,6 +163,7 @@ This can be invoked via the familiar `where` syntax:
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.where("meta='foo'")
|
||||
.prefilter(false)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
@@ -140,6 +174,7 @@ This can be invoked via the familiar `where` syntax:
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.postfilter()
|
||||
.limit(10)
|
||||
.only_if("meta='foo'")
|
||||
.execute()
|
||||
@@ -160,3 +195,35 @@ To search for a phrase, the index must be created with `with_position=True`:
|
||||
table.create_fts_index("text", use_tantivy=False, with_position=True)
|
||||
```
|
||||
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
|
||||
|
||||
|
||||
## Incremental indexing
|
||||
|
||||
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
|
||||
|
||||
This can make the query more efficient, especially when the table is large and the new records are relatively small.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
|
||||
table.optimize()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
|
||||
await tbl.optimize();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||
tbl.add(more_data).execute().await?;
|
||||
tbl.optimize(OptimizeAction::All).execute().await?;
|
||||
```
|
||||
!!! note
|
||||
|
||||
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||
@@ -153,9 +153,7 @@ table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=
|
||||
|
||||
## Current limitations
|
||||
|
||||
1. Currently we do not yet support incremental writes.
|
||||
If you add data after FTS index creation, it won't be reflected
|
||||
in search results until you do a full reindex.
|
||||
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||
|
||||
2. We currently only support local filesystem paths for the FTS index.
|
||||
This is a tantivy limitation. We've implemented an object store plugin
|
||||
|
||||
@@ -85,13 +85,13 @@ Initialize a LanceDB connection and create a table
|
||||
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table"
|
||||
```
|
||||
|
||||
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table_with_schema"
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
@@ -100,14 +100,14 @@ Initialize a LanceDB connection and create a table
|
||||
passed in will NOT be appended to the table in that case.
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table_exists_ok"
|
||||
```
|
||||
|
||||
Sometimes you want to make sure that you start fresh. If you want to
|
||||
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_table_overwrite"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -227,7 +227,7 @@ LanceDB supports float16 data type!
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_f16_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_f16_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -274,7 +274,7 @@ table = db.create_table(table_name, schema=Content)
|
||||
|
||||
Sometimes your data model may contain nested objects.
|
||||
For example, you may want to store the document string
|
||||
and the document soure name as a nested Document object:
|
||||
and the document source name as a nested Document object:
|
||||
|
||||
```python
|
||||
class Document(BaseModel):
|
||||
@@ -455,7 +455,7 @@ You can create an empty table for scenarios where you want to add data to the ta
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
||||
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -466,7 +466,7 @@ You can create an empty table for scenarios where you want to add data to the ta
|
||||
|
||||
## Adding to a table
|
||||
|
||||
After a table has been created, you can always add more data to it usind the `add` method
|
||||
After a table has been created, you can always add more data to it using the `add` method
|
||||
|
||||
=== "Python"
|
||||
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
|
||||
@@ -535,7 +535,7 @@ After a table has been created, you can always add more data to it usind the `ad
|
||||
```
|
||||
|
||||
??? "Ingesting Pydantic models with LanceDB embedding API"
|
||||
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
|
||||
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
@@ -790,6 +790,27 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
If the table does not exist an exception is raised.
|
||||
|
||||
## Handling bad vectors
|
||||
|
||||
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
|
||||
invalid vector values are handled. Invalid vectors are vectors that are not valid
|
||||
because:
|
||||
|
||||
1. They are the wrong dimension
|
||||
2. They contain NaN values
|
||||
3. They are null but are on a non-nullable field
|
||||
|
||||
By default, LanceDB will raise an error if it encounters a bad vector. You can
|
||||
also choose one of the following options:
|
||||
|
||||
* `drop`: Ignore rows with bad vectors
|
||||
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
|
||||
the fill value specified in the `fill_value` parameter. An input like
|
||||
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
|
||||
* `null`: Replace bad vectors with null (only works if the column is nullable).
|
||||
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
|
||||
nullable. If the vector column is non-nullable, then bad vectors will cause an
|
||||
error
|
||||
|
||||
## Consistency
|
||||
|
||||
@@ -859,4 +880,4 @@ There are three possible settings for `read_consistency_interval`:
|
||||
|
||||
Learn the best practices on creating an ANN index and getting the most out of it.
|
||||
|
||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
|
||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -6,6 +6,9 @@ This re-ranker uses the [Cohere](https://cohere.ai/) API to rerank the search re
|
||||
!!! note
|
||||
Supported Query Types: Hybrid, Vector, FTS
|
||||
|
||||
```shell
|
||||
pip install cohere
|
||||
```
|
||||
|
||||
```python
|
||||
import numpy
|
||||
|
||||
@@ -9,6 +9,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
|
||||
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
|
||||
| `VoyageAIReranker` | Uses voyageai Reranker API to rerank results | Vector, FTS, Hybrid |
|
||||
|
||||
|
||||
## Using a Reranker
|
||||
@@ -73,6 +74,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
|
||||
- [Jina Reranker](./jina.md)
|
||||
- [AnswerDotAI Rerankers](./answerdotai.md)
|
||||
- [Reciprocal Rank Fusion Reranker](./rrf.md)
|
||||
- [VoyageAI Reranker](./voyageai.md)
|
||||
|
||||
## Creating Custom Rerankers
|
||||
|
||||
|
||||
@@ -58,9 +58,9 @@ db.create_table("my_vectors", data=data)
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/search.ts:import"
|
||||
--8<-- "nodejs/examples/search.test.ts:import"
|
||||
|
||||
--8<-- "nodejs/examples/search.ts:search1"
|
||||
--8<-- "nodejs/examples/search.test.ts:search1"
|
||||
```
|
||||
|
||||
|
||||
@@ -89,7 +89,7 @@ By default, `l2` will be used as metric type. You can specify the metric type as
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/search.ts:search2"
|
||||
--8<-- "nodejs/examples/search.test.ts:search2"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
@@ -49,7 +49,7 @@ const tbl = await db.createTable('myVectors', data)
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/filtering.ts:search"
|
||||
--8<-- "nodejs/examples/filtering.test.ts:search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -91,7 +91,7 @@ For example, the following filter string is acceptable:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/filtering.ts:vec_search"
|
||||
--8<-- "nodejs/examples/filtering.test.ts:vec_search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
@@ -169,7 +169,7 @@ You can also filter your data without search.
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/filtering.ts:sql_search"
|
||||
--8<-- "nodejs/examples/filtering.test.ts:sql_search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.13.0-beta.1</version>
|
||||
<version>0.13.0-final.0</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.13.0-beta.1</version>
|
||||
<version>0.13.0-final.0</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>LanceDB Parent</name>
|
||||
|
||||
52
node/package-lock.json
generated
52
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -52,12 +52,12 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.13.0",
|
||||
"@lancedb/vectordb-darwin-x64": "0.13.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
@@ -328,9 +328,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-beOrf6selCzzhLgDG8Nibma4nO/CSnA1wUKRmlJHEPtGcg7PW18z6MP/nfwQMpMR/FLRfTo8pPTbpzss47MiQQ==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0.tgz",
|
||||
"integrity": "sha512-8hdcjkRmgrdQYf1jN+DyZae40LIv8UUfnWy70Uid5qy63sSvRW/+MvIdqIPFr9QlLUXmpyyQuX0y3bZhUR99cQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -340,9 +340,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-YdraGRF/RbJRkKh0v3xT03LUhq47T2GtCvJ5gZp8wKlh4pHa8LuhLU0DIdvmG/DT5vuQA+td8HDkBm/e3EOdNg==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0.tgz",
|
||||
"integrity": "sha512-fWzAY4l5SQtNfMYh80v+M66ugZHhdxbkpk5mNEv6Zsug3DL6kRj3Uv31/i0wgzY6F5G3LUlbjZerN+eTnDLwOw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -352,9 +352,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-Pp0O/uhEqof1oLaWrNbv+Ym+q8kBkiCqaA5+2eAZ6a3e9U+Ozkvb0FQrHuyi9adJ5wKQ4NabyQE9BMf2bYpOnQ==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0.tgz",
|
||||
"integrity": "sha512-ltwAT9baOSuR5YiGykQXPC8/HGYF13vpI47qxhP9yfgiz9pA8EUn8p8YrBRzq7J4DIZ4b8JSVDXQnMIqEtB4Kg==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -364,9 +364,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-y8nxOye4egfWF5FGED9EfkmZ1O5HnRLU4a61B8m5JSpkivO9v2epTcbYN0yt/7ZFCgtqMfJ8VW4Mi7qQcz3KDA==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0.tgz",
|
||||
"integrity": "sha512-MiT/RBlMPGGRh7BX+MXwRuNiiUnKmuDcHH8nm88IH28T7TQxXIbA9w6UpSg5m9f3DgKQI2K8oLi29oKIB8ZwDQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -376,9 +376,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.13.0-beta.1",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0-beta.1.tgz",
|
||||
"integrity": "sha512-STMDP9dp0TBLkB3ro+16pKcGy6bmbhRuEZZZ1Tp5P75yTPeVh4zIgWkidMdU1qBbEYM7xacnsp9QAwgLnMU/Ow==",
|
||||
"version": "0.13.0",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0.tgz",
|
||||
"integrity": "sha512-SovP/hwWYLJIy65DKbVuXlBPTb/nwvVpTO6dh9zRch+L5ek6JmVAkwsfeTS2p5bMa8VPujsCXYUAVuCDEJU8wg==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -1501,9 +1501,9 @@
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/cross-spawn": {
|
||||
"version": "7.0.3",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
|
||||
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
|
||||
"version": "7.0.6",
|
||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
|
||||
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"path-key": "^3.1.0",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
@@ -89,11 +89,13 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1"
|
||||
"@lancedb/vectordb-darwin-x64": "0.13.0",
|
||||
"@lancedb/vectordb-darwin-arm64": "0.13.0",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0",
|
||||
"@lancedb/vectordb-linux-x64-musl": "0.13.0",
|
||||
"@lancedb/vectordb-linux-arm64-musl": "0.13.0",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0",
|
||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "lancedb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.13.0-beta.1"
|
||||
version = "0.13.0"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
|
||||
@@ -187,6 +187,81 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
||||
},
|
||||
);
|
||||
|
||||
// TODO: https://github.com/lancedb/lancedb/issues/1832
|
||||
it.skip("should be able to omit nullable fields", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field(
|
||||
"vector",
|
||||
new arrow.FixedSizeList(
|
||||
2,
|
||||
new arrow.Field("item", new arrow.Float64()),
|
||||
),
|
||||
true,
|
||||
),
|
||||
new arrow.Field("item", new arrow.Utf8(), true),
|
||||
new arrow.Field("price", new arrow.Float64(), false),
|
||||
]);
|
||||
const table = await db.createEmptyTable("test", schema);
|
||||
|
||||
const data1 = { item: "foo", price: 10.0 };
|
||||
await table.add([data1]);
|
||||
const data2 = { vector: [3.1, 4.1], price: 2.0 };
|
||||
await table.add([data2]);
|
||||
const data3 = { vector: [5.9, 26.5], item: "bar", price: 3.0 };
|
||||
await table.add([data3]);
|
||||
|
||||
let res = await table.query().limit(10).toArray();
|
||||
const resVector = res.map((r) => r.get("vector").toArray());
|
||||
expect(resVector).toEqual([null, data2.vector, data3.vector]);
|
||||
const resItem = res.map((r) => r.get("item").toArray());
|
||||
expect(resItem).toEqual(["foo", null, "bar"]);
|
||||
const resPrice = res.map((r) => r.get("price").toArray());
|
||||
expect(resPrice).toEqual([10.0, 2.0, 3.0]);
|
||||
|
||||
const data4 = { item: "foo" };
|
||||
// We can't omit a column if it's not nullable
|
||||
await expect(table.add([data4])).rejects.toThrow("Invalid user input");
|
||||
|
||||
// But we can alter columns to make them nullable
|
||||
await table.alterColumns([{ path: "price", nullable: true }]);
|
||||
await table.add([data4]);
|
||||
|
||||
res = (await table.query().limit(10).toArray()).map((r) => r.toJSON());
|
||||
expect(res).toEqual([data1, data2, data3, data4]);
|
||||
});
|
||||
|
||||
it("should be able to insert nullable data for non-nullable fields", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field("x", new arrow.Float64(), false),
|
||||
new arrow.Field("id", new arrow.Utf8(), false),
|
||||
]);
|
||||
const table = await db.createEmptyTable("test", schema);
|
||||
|
||||
const data1 = { x: 4.1, id: "foo" };
|
||||
await table.add([data1]);
|
||||
const res = (await table.query().toArray())[0];
|
||||
expect(res.x).toEqual(data1.x);
|
||||
expect(res.id).toEqual(data1.id);
|
||||
|
||||
const data2 = { x: null, id: "bar" };
|
||||
await expect(table.add([data2])).rejects.toThrow(
|
||||
"declared as non-nullable but contains null values",
|
||||
);
|
||||
|
||||
// But we can alter columns to make them nullable
|
||||
await table.alterColumns([{ path: "x", nullable: true }]);
|
||||
await table.add([data2]);
|
||||
|
||||
const res2 = await table.query().toArray();
|
||||
expect(res2.length).toBe(2);
|
||||
expect(res2[0].x).toEqual(data1.x);
|
||||
expect(res2[0].id).toEqual(data1.id);
|
||||
expect(res2[1].x).toBeNull();
|
||||
expect(res2[1].id).toEqual(data2.id);
|
||||
});
|
||||
|
||||
it("should return the table as an instance of an arrow table", async () => {
|
||||
const arrowTbl = await table.toArrow();
|
||||
expect(arrowTbl).toBeInstanceOf(ArrowTable);
|
||||
@@ -402,6 +477,54 @@ describe("When creating an index", () => {
|
||||
expect(rst.numRows).toBe(1);
|
||||
});
|
||||
|
||||
it("should create and search IVF_HNSW indices", async () => {
|
||||
await tbl.createIndex("vec", {
|
||||
config: Index.hnswSq(),
|
||||
});
|
||||
|
||||
// check index directory
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
const indices = await tbl.listIndices();
|
||||
expect(indices.length).toBe(1);
|
||||
expect(indices[0]).toEqual({
|
||||
name: "vec_idx",
|
||||
indexType: "IvfHnswSq",
|
||||
columns: ["vec"],
|
||||
});
|
||||
|
||||
// Search without specifying the column
|
||||
let rst = await tbl
|
||||
.query()
|
||||
.limit(2)
|
||||
.nearestTo(queryVec)
|
||||
.distanceType("dot")
|
||||
.toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search using `vectorSearch`
|
||||
rst = await tbl.vectorSearch(queryVec).limit(2).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search with specifying the column
|
||||
const rst2 = await tbl
|
||||
.query()
|
||||
.limit(2)
|
||||
.nearestTo(queryVec)
|
||||
.column("vec")
|
||||
.toArrow();
|
||||
expect(rst2.numRows).toBe(2);
|
||||
expect(rst.toString()).toEqual(rst2.toString());
|
||||
|
||||
// test offset
|
||||
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
|
||||
expect(rst.numRows).toBe(1);
|
||||
|
||||
// test ef
|
||||
rst = await tbl.query().limit(2).nearestTo(queryVec).ef(100).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
});
|
||||
|
||||
it("should be able to query unindexed data", async () => {
|
||||
await tbl.createIndex("vec");
|
||||
await tbl.add([
|
||||
@@ -998,4 +1121,18 @@ describe("column name options", () => {
|
||||
const results = await table.query().where("`camelCase` = 1").toArray();
|
||||
expect(results[0].camelCase).toBe(1);
|
||||
});
|
||||
|
||||
test("can make multiple vector queries in one go", async () => {
|
||||
const results = await table
|
||||
.query()
|
||||
.nearestTo([0.1, 0.2])
|
||||
.addQueryVector([0.1, 0.2])
|
||||
.limit(1)
|
||||
.toArray();
|
||||
console.log(results);
|
||||
expect(results.length).toBe(2);
|
||||
results.sort((a, b) => a.query_index - b.query_index);
|
||||
expect(results[0].query_index).toBe(0);
|
||||
expect(results[1].query_index).toBe(1);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -9,7 +9,8 @@
|
||||
"**/native.js",
|
||||
"**/native.d.ts",
|
||||
"**/npm/**/*",
|
||||
"**/.vscode/**"
|
||||
"**/.vscode/**",
|
||||
"./examples/*"
|
||||
]
|
||||
},
|
||||
"formatter": {
|
||||
|
||||
57
nodejs/examples/ann_indexes.test.ts
Normal file
57
nodejs/examples/ann_indexes.test.ts
Normal file
@@ -0,0 +1,57 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { expect, test } from "@jest/globals";
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import { VectorQuery } from "@lancedb/lancedb";
|
||||
// --8<-- [end:import]
|
||||
import { withTempDirectory } from "./util.ts";
|
||||
|
||||
test("ann index examples", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
// --8<-- [start:ingest]
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
|
||||
const data = Array.from({ length: 5_000 }, (_, i) => ({
|
||||
vector: Array(128).fill(i),
|
||||
id: `${i}`,
|
||||
content: "",
|
||||
longId: `${i}`,
|
||||
}));
|
||||
|
||||
const table = await db.createTable("my_vectors", data, {
|
||||
mode: "overwrite",
|
||||
});
|
||||
await table.createIndex("vector", {
|
||||
config: lancedb.Index.ivfPq({
|
||||
numPartitions: 10,
|
||||
numSubVectors: 16,
|
||||
}),
|
||||
});
|
||||
// --8<-- [end:ingest]
|
||||
|
||||
// --8<-- [start:search1]
|
||||
const search = table.search(Array(128).fill(1.2)).limit(2) as VectorQuery;
|
||||
const results1 = await search.nprobes(20).refineFactor(10).toArray();
|
||||
// --8<-- [end:search1]
|
||||
expect(results1.length).toBe(2);
|
||||
|
||||
// --8<-- [start:search2]
|
||||
const results2 = await table
|
||||
.search(Array(128).fill(1.2))
|
||||
.where("id != '1141'")
|
||||
.limit(2)
|
||||
.toArray();
|
||||
// --8<-- [end:search2]
|
||||
expect(results2.length).toBe(2);
|
||||
|
||||
// --8<-- [start:search3]
|
||||
const results3 = await table
|
||||
.search(Array(128).fill(1.2))
|
||||
.select(["id"])
|
||||
.limit(2)
|
||||
.toArray();
|
||||
// --8<-- [end:search3]
|
||||
expect(results3.length).toBe(2);
|
||||
});
|
||||
}, 100_000);
|
||||
@@ -1,49 +0,0 @@
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
// --8<-- [end:import]
|
||||
|
||||
// --8<-- [start:ingest]
|
||||
const db = await lancedb.connect("/tmp/lancedb/");
|
||||
|
||||
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||
vector: Array(1536).fill(i),
|
||||
id: `${i}`,
|
||||
content: "",
|
||||
longId: `${i}`,
|
||||
}));
|
||||
|
||||
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
|
||||
await table.createIndex("vector", {
|
||||
config: lancedb.Index.ivfPq({
|
||||
numPartitions: 16,
|
||||
numSubVectors: 48,
|
||||
}),
|
||||
});
|
||||
// --8<-- [end:ingest]
|
||||
|
||||
// --8<-- [start:search1]
|
||||
const _results1 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.limit(2)
|
||||
.nprobes(20)
|
||||
.refineFactor(10)
|
||||
.toArray();
|
||||
// --8<-- [end:search1]
|
||||
|
||||
// --8<-- [start:search2]
|
||||
const _results2 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.where("id != '1141'")
|
||||
.limit(2)
|
||||
.toArray();
|
||||
// --8<-- [end:search2]
|
||||
|
||||
// --8<-- [start:search3]
|
||||
const _results3 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.select(["id"])
|
||||
.limit(2)
|
||||
.toArray();
|
||||
// --8<-- [end:search3]
|
||||
|
||||
console.log("Ann indexes: done");
|
||||
175
nodejs/examples/basic.test.ts
Normal file
175
nodejs/examples/basic.test.ts
Normal file
@@ -0,0 +1,175 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { expect, test } from "@jest/globals";
|
||||
// --8<-- [start:imports]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import * as arrow from "apache-arrow";
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float16,
|
||||
Int32,
|
||||
Schema,
|
||||
Utf8,
|
||||
} from "apache-arrow";
|
||||
// --8<-- [end:imports]
|
||||
import { withTempDirectory } from "./util.ts";
|
||||
|
||||
test("basic table examples", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
// --8<-- [start:connect]
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
// --8<-- [end:connect]
|
||||
{
|
||||
// --8<-- [start:create_table]
|
||||
const _tbl = await db.createTable(
|
||||
"myTable",
|
||||
[
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
],
|
||||
{ mode: "overwrite" },
|
||||
);
|
||||
// --8<-- [end:create_table]
|
||||
|
||||
const data = [
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
];
|
||||
|
||||
{
|
||||
// --8<-- [start:create_table_exists_ok]
|
||||
const tbl = await db.createTable("myTable", data, {
|
||||
existOk: true,
|
||||
});
|
||||
// --8<-- [end:create_table_exists_ok]
|
||||
expect(await tbl.countRows()).toBe(2);
|
||||
}
|
||||
{
|
||||
// --8<-- [start:create_table_overwrite]
|
||||
const tbl = await db.createTable("myTable", data, {
|
||||
mode: "overwrite",
|
||||
});
|
||||
// --8<-- [end:create_table_overwrite]
|
||||
expect(await tbl.countRows()).toBe(2);
|
||||
}
|
||||
}
|
||||
|
||||
await db.dropTable("myTable");
|
||||
|
||||
{
|
||||
// --8<-- [start:create_table_with_schema]
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field(
|
||||
"vector",
|
||||
new arrow.FixedSizeList(
|
||||
2,
|
||||
new arrow.Field("item", new arrow.Float32(), true),
|
||||
),
|
||||
),
|
||||
new arrow.Field("item", new arrow.Utf8(), true),
|
||||
new arrow.Field("price", new arrow.Float32(), true),
|
||||
]);
|
||||
const data = [
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
];
|
||||
const tbl = await db.createTable("myTable", data, {
|
||||
schema,
|
||||
});
|
||||
// --8<-- [end:create_table_with_schema]
|
||||
expect(await tbl.countRows()).toBe(2);
|
||||
}
|
||||
|
||||
{
|
||||
// --8<-- [start:create_empty_table]
|
||||
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field("id", new arrow.Int32()),
|
||||
new arrow.Field("name", new arrow.Utf8()),
|
||||
]);
|
||||
|
||||
const emptyTbl = await db.createEmptyTable("empty_table", schema);
|
||||
// --8<-- [end:create_empty_table]
|
||||
expect(await emptyTbl.countRows()).toBe(0);
|
||||
}
|
||||
{
|
||||
// --8<-- [start:open_table]
|
||||
const _tbl = await db.openTable("myTable");
|
||||
// --8<-- [end:open_table]
|
||||
}
|
||||
|
||||
{
|
||||
// --8<-- [start:table_names]
|
||||
const tableNames = await db.tableNames();
|
||||
// --8<-- [end:table_names]
|
||||
expect(tableNames).toEqual(["empty_table", "myTable"]);
|
||||
}
|
||||
|
||||
const tbl = await db.openTable("myTable");
|
||||
{
|
||||
// --8<-- [start:add_data]
|
||||
const data = [
|
||||
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
|
||||
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
|
||||
];
|
||||
await tbl.add(data);
|
||||
// --8<-- [end:add_data]
|
||||
}
|
||||
{
|
||||
// --8<-- [start:vector_search]
|
||||
const res = await tbl.search([100, 100]).limit(2).toArray();
|
||||
// --8<-- [end:vector_search]
|
||||
expect(res.length).toBe(2);
|
||||
}
|
||||
{
|
||||
const data = Array.from({ length: 1000 })
|
||||
.fill(null)
|
||||
.map(() => ({
|
||||
vector: [Math.random(), Math.random()],
|
||||
item: "autogen",
|
||||
price: Math.round(Math.random() * 100),
|
||||
}));
|
||||
|
||||
await tbl.add(data);
|
||||
}
|
||||
|
||||
// --8<-- [start:create_index]
|
||||
await tbl.createIndex("vector");
|
||||
// --8<-- [end:create_index]
|
||||
|
||||
// --8<-- [start:delete_rows]
|
||||
await tbl.delete('item = "fizz"');
|
||||
// --8<-- [end:delete_rows]
|
||||
|
||||
// --8<-- [start:drop_table]
|
||||
await db.dropTable("myTable");
|
||||
// --8<-- [end:drop_table]
|
||||
await db.dropTable("empty_table");
|
||||
|
||||
{
|
||||
// --8<-- [start:create_f16_table]
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
const dim = 16;
|
||||
const total = 10;
|
||||
const f16Schema = new Schema([
|
||||
new Field("id", new Int32()),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(dim, new Field("item", new Float16(), true)),
|
||||
false,
|
||||
),
|
||||
]);
|
||||
const data = lancedb.makeArrowTable(
|
||||
Array.from(Array(total), (_, i) => ({
|
||||
id: i,
|
||||
vector: Array.from(Array(dim), Math.random),
|
||||
})),
|
||||
{ schema: f16Schema },
|
||||
);
|
||||
const _table = await db.createTable("f16_tbl", data);
|
||||
// --8<-- [end:create_f16_table]
|
||||
await db.dropTable("f16_tbl");
|
||||
}
|
||||
});
|
||||
});
|
||||
@@ -1,162 +0,0 @@
|
||||
// --8<-- [start:imports]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import * as arrow from "apache-arrow";
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float16,
|
||||
Int32,
|
||||
Schema,
|
||||
Utf8,
|
||||
} from "apache-arrow";
|
||||
|
||||
// --8<-- [end:imports]
|
||||
|
||||
// --8<-- [start:connect]
|
||||
const uri = "/tmp/lancedb/";
|
||||
const db = await lancedb.connect(uri);
|
||||
// --8<-- [end:connect]
|
||||
{
|
||||
// --8<-- [start:create_table]
|
||||
const tbl = await db.createTable(
|
||||
"myTable",
|
||||
[
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
],
|
||||
{ mode: "overwrite" },
|
||||
);
|
||||
// --8<-- [end:create_table]
|
||||
|
||||
const data = [
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
];
|
||||
|
||||
{
|
||||
// --8<-- [start:create_table_exists_ok]
|
||||
const tbl = await db.createTable("myTable", data, {
|
||||
existsOk: true,
|
||||
});
|
||||
// --8<-- [end:create_table_exists_ok]
|
||||
}
|
||||
{
|
||||
// --8<-- [start:create_table_overwrite]
|
||||
const _tbl = await db.createTable("myTable", data, {
|
||||
mode: "overwrite",
|
||||
});
|
||||
// --8<-- [end:create_table_overwrite]
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// --8<-- [start:create_table_with_schema]
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field(
|
||||
"vector",
|
||||
new arrow.FixedSizeList(
|
||||
2,
|
||||
new arrow.Field("item", new arrow.Float32(), true),
|
||||
),
|
||||
),
|
||||
new arrow.Field("item", new arrow.Utf8(), true),
|
||||
new arrow.Field("price", new arrow.Float32(), true),
|
||||
]);
|
||||
const data = [
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
];
|
||||
const _tbl = await db.createTable("myTable", data, {
|
||||
schema,
|
||||
});
|
||||
// --8<-- [end:create_table_with_schema]
|
||||
}
|
||||
|
||||
{
|
||||
// --8<-- [start:create_empty_table]
|
||||
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field("id", new arrow.Int32()),
|
||||
new arrow.Field("name", new arrow.Utf8()),
|
||||
]);
|
||||
|
||||
const empty_tbl = await db.createEmptyTable("empty_table", schema);
|
||||
// --8<-- [end:create_empty_table]
|
||||
}
|
||||
{
|
||||
// --8<-- [start:open_table]
|
||||
const _tbl = await db.openTable("myTable");
|
||||
// --8<-- [end:open_table]
|
||||
}
|
||||
|
||||
{
|
||||
// --8<-- [start:table_names]
|
||||
const tableNames = await db.tableNames();
|
||||
console.log(tableNames);
|
||||
// --8<-- [end:table_names]
|
||||
}
|
||||
|
||||
const tbl = await db.openTable("myTable");
|
||||
{
|
||||
// --8<-- [start:add_data]
|
||||
const data = [
|
||||
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
|
||||
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
|
||||
];
|
||||
await tbl.add(data);
|
||||
// --8<-- [end:add_data]
|
||||
}
|
||||
{
|
||||
// --8<-- [start:vector_search]
|
||||
const _res = tbl.search([100, 100]).limit(2).toArray();
|
||||
// --8<-- [end:vector_search]
|
||||
}
|
||||
{
|
||||
const data = Array.from({ length: 1000 })
|
||||
.fill(null)
|
||||
.map(() => ({
|
||||
vector: [Math.random(), Math.random()],
|
||||
item: "autogen",
|
||||
price: Math.round(Math.random() * 100),
|
||||
}));
|
||||
|
||||
await tbl.add(data);
|
||||
}
|
||||
|
||||
// --8<-- [start:create_index]
|
||||
await tbl.createIndex("vector");
|
||||
// --8<-- [end:create_index]
|
||||
|
||||
// --8<-- [start:delete_rows]
|
||||
await tbl.delete('item = "fizz"');
|
||||
// --8<-- [end:delete_rows]
|
||||
|
||||
// --8<-- [start:drop_table]
|
||||
await db.dropTable("myTable");
|
||||
// --8<-- [end:drop_table]
|
||||
await db.dropTable("empty_table");
|
||||
|
||||
{
|
||||
// --8<-- [start:create_f16_table]
|
||||
const db = await lancedb.connect("/tmp/lancedb");
|
||||
const dim = 16;
|
||||
const total = 10;
|
||||
const f16Schema = new Schema([
|
||||
new Field("id", new Int32()),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(dim, new Field("item", new Float16(), true)),
|
||||
false,
|
||||
),
|
||||
]);
|
||||
const data = lancedb.makeArrowTable(
|
||||
Array.from(Array(total), (_, i) => ({
|
||||
id: i,
|
||||
vector: Array.from(Array(dim), Math.random),
|
||||
})),
|
||||
{ schema: f16Schema },
|
||||
);
|
||||
const _table = await db.createTable("f16_tbl", data);
|
||||
// --8<-- [end:create_f16_table]
|
||||
await db.dropTable("f16_tbl");
|
||||
}
|
||||
76
nodejs/examples/custom_embedding_function.test.ts
Normal file
76
nodejs/examples/custom_embedding_function.test.ts
Normal file
@@ -0,0 +1,76 @@
|
||||
import { FeatureExtractionPipeline, pipeline } from "@huggingface/transformers";
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { expect, test } from "@jest/globals";
|
||||
// --8<-- [start:imports]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import {
|
||||
LanceSchema,
|
||||
TextEmbeddingFunction,
|
||||
getRegistry,
|
||||
register,
|
||||
} from "@lancedb/lancedb/embedding";
|
||||
// --8<-- [end:imports]
|
||||
import { withTempDirectory } from "./util.ts";
|
||||
|
||||
// --8<-- [start:embedding_impl]
|
||||
@register("sentence-transformers")
|
||||
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
|
||||
name = "Xenova/all-miniLM-L6-v2";
|
||||
#ndims!: number;
|
||||
extractor!: FeatureExtractionPipeline;
|
||||
|
||||
async init() {
|
||||
this.extractor = await pipeline("feature-extraction", this.name, {
|
||||
dtype: "fp32",
|
||||
});
|
||||
this.#ndims = await this.generateEmbeddings(["hello"]).then(
|
||||
(e) => e[0].length,
|
||||
);
|
||||
}
|
||||
|
||||
ndims() {
|
||||
return this.#ndims;
|
||||
}
|
||||
|
||||
toJSON() {
|
||||
return {
|
||||
name: this.name,
|
||||
};
|
||||
}
|
||||
async generateEmbeddings(texts: string[]) {
|
||||
const output = await this.extractor(texts, {
|
||||
pooling: "mean",
|
||||
normalize: true,
|
||||
});
|
||||
return output.tolist();
|
||||
}
|
||||
}
|
||||
// -8<-- [end:embedding_impl]
|
||||
|
||||
test("Registry examples", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
// --8<-- [start:call_custom_function]
|
||||
const registry = getRegistry();
|
||||
|
||||
const sentenceTransformer = await registry
|
||||
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
|
||||
.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
vector: sentenceTransformer.vectorField(),
|
||||
text: sentenceTransformer.sourceField(),
|
||||
});
|
||||
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
const table = await db.createEmptyTable("table", schema, {
|
||||
mode: "overwrite",
|
||||
});
|
||||
|
||||
await table.add([{ text: "hello" }, { text: "world" }]);
|
||||
|
||||
const results = await table.search("greeting").limit(1).toArray();
|
||||
// -8<-- [end:call_custom_function]
|
||||
expect(results.length).toBe(1);
|
||||
});
|
||||
}, 100_000);
|
||||
@@ -1,64 +0,0 @@
|
||||
// --8<-- [start:imports]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import {
|
||||
LanceSchema,
|
||||
TextEmbeddingFunction,
|
||||
getRegistry,
|
||||
register,
|
||||
} from "@lancedb/lancedb/embedding";
|
||||
import { pipeline } from "@xenova/transformers";
|
||||
// --8<-- [end:imports]
|
||||
|
||||
// --8<-- [start:embedding_impl]
|
||||
@register("sentence-transformers")
|
||||
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
|
||||
name = "Xenova/all-miniLM-L6-v2";
|
||||
#ndims!: number;
|
||||
extractor: any;
|
||||
|
||||
async init() {
|
||||
this.extractor = await pipeline("feature-extraction", this.name);
|
||||
this.#ndims = await this.generateEmbeddings(["hello"]).then(
|
||||
(e) => e[0].length,
|
||||
);
|
||||
}
|
||||
|
||||
ndims() {
|
||||
return this.#ndims;
|
||||
}
|
||||
|
||||
toJSON() {
|
||||
return {
|
||||
name: this.name,
|
||||
};
|
||||
}
|
||||
async generateEmbeddings(texts: string[]) {
|
||||
const output = await this.extractor(texts, {
|
||||
pooling: "mean",
|
||||
normalize: true,
|
||||
});
|
||||
return output.tolist();
|
||||
}
|
||||
}
|
||||
// -8<-- [end:embedding_impl]
|
||||
|
||||
// --8<-- [start:call_custom_function]
|
||||
const registry = getRegistry();
|
||||
|
||||
const sentenceTransformer = await registry
|
||||
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
|
||||
.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
vector: sentenceTransformer.vectorField(),
|
||||
text: sentenceTransformer.sourceField(),
|
||||
});
|
||||
|
||||
const db = await lancedb.connect("/tmp/db");
|
||||
const table = await db.createEmptyTable("table", schema, { mode: "overwrite" });
|
||||
|
||||
await table.add([{ text: "hello" }, { text: "world" }]);
|
||||
|
||||
const results = await table.search("greeting").limit(1).toArray();
|
||||
console.log(results[0].text);
|
||||
// -8<-- [end:call_custom_function]
|
||||
96
nodejs/examples/embedding.test.ts
Normal file
96
nodejs/examples/embedding.test.ts
Normal file
@@ -0,0 +1,96 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { expect, test } from "@jest/globals";
|
||||
// --8<-- [start:imports]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import "@lancedb/lancedb/embedding/openai";
|
||||
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
|
||||
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
|
||||
import { type Float, Float32, Utf8 } from "apache-arrow";
|
||||
// --8<-- [end:imports]
|
||||
import { withTempDirectory } from "./util.ts";
|
||||
|
||||
const openAiTest = process.env.OPENAI_API_KEY == null ? test.skip : test;
|
||||
|
||||
openAiTest("openai embeddings", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
// --8<-- [start:openai_embeddings]
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
const func = getRegistry()
|
||||
.get("openai")
|
||||
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
|
||||
|
||||
const wordsSchema = LanceSchema({
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
const tbl = await db.createEmptyTable("words", wordsSchema, {
|
||||
mode: "overwrite",
|
||||
});
|
||||
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
|
||||
|
||||
const query = "greetings";
|
||||
const actual = (await tbl.search(query).limit(1).toArray())[0];
|
||||
// --8<-- [end:openai_embeddings]
|
||||
expect(actual).toHaveProperty("text");
|
||||
});
|
||||
});
|
||||
|
||||
test("custom embedding function", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
// --8<-- [start:embedding_function]
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
|
||||
@register("my_embedding")
|
||||
class MyEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
// This is a placeholder for a real embedding function
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
// This is a placeholder for a real embedding function
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
|
||||
const func = new MyEmbeddingFunction();
|
||||
|
||||
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
|
||||
|
||||
// Option 1: manually specify the embedding function
|
||||
const table = await db.createTable("vectors", data, {
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
vectorColumn: "vector",
|
||||
},
|
||||
mode: "overwrite",
|
||||
});
|
||||
|
||||
// Option 2: provide the embedding function through a schema
|
||||
|
||||
const schema = LanceSchema({
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const table2 = await db.createTable("vectors2", data, {
|
||||
schema,
|
||||
mode: "overwrite",
|
||||
});
|
||||
// --8<-- [end:embedding_function]
|
||||
expect(await table.countRows()).toBe(2);
|
||||
expect(await table2.countRows()).toBe(2);
|
||||
});
|
||||
});
|
||||
@@ -1,83 +0,0 @@
|
||||
// --8<-- [start:imports]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
|
||||
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
|
||||
import { type Float, Float32, Utf8 } from "apache-arrow";
|
||||
// --8<-- [end:imports]
|
||||
|
||||
{
|
||||
// --8<-- [start:openai_embeddings]
|
||||
|
||||
const db = await lancedb.connect("/tmp/db");
|
||||
const func = getRegistry()
|
||||
.get("openai")
|
||||
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
|
||||
|
||||
const wordsSchema = LanceSchema({
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
const tbl = await db.createEmptyTable("words", wordsSchema, {
|
||||
mode: "overwrite",
|
||||
});
|
||||
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
|
||||
|
||||
const query = "greetings";
|
||||
const actual = (await (await tbl.search(query)).limit(1).toArray())[0];
|
||||
|
||||
// --8<-- [end:openai_embeddings]
|
||||
console.log("result = ", actual.text);
|
||||
}
|
||||
|
||||
{
|
||||
// --8<-- [start:embedding_function]
|
||||
const db = await lancedb.connect("/tmp/db");
|
||||
|
||||
@register("my_embedding")
|
||||
class MyEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
// This is a placeholder for a real embedding function
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
// This is a placeholder for a real embedding function
|
||||
return Array.from({ length: data.length }).fill([1, 2, 3]) as number[][];
|
||||
}
|
||||
}
|
||||
|
||||
const func = new MyEmbeddingFunction();
|
||||
|
||||
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
|
||||
|
||||
// Option 1: manually specify the embedding function
|
||||
const table = await db.createTable("vectors", data, {
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
vectorColumn: "vector",
|
||||
},
|
||||
mode: "overwrite",
|
||||
});
|
||||
|
||||
// Option 2: provide the embedding function through a schema
|
||||
|
||||
const schema = LanceSchema({
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const table2 = await db.createTable("vectors2", data, {
|
||||
schema,
|
||||
mode: "overwrite",
|
||||
});
|
||||
// --8<-- [end:embedding_function]
|
||||
}
|
||||
42
nodejs/examples/filtering.test.ts
Normal file
42
nodejs/examples/filtering.test.ts
Normal file
@@ -0,0 +1,42 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { expect, test } from "@jest/globals";
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import { withTempDirectory } from "./util.ts";
|
||||
|
||||
test("filtering examples", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
|
||||
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||
vector: Array(1536).fill(i),
|
||||
id: i,
|
||||
item: `item ${i}`,
|
||||
strId: `${i}`,
|
||||
}));
|
||||
|
||||
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
|
||||
|
||||
// --8<-- [start:search]
|
||||
const _result = await tbl
|
||||
.search(Array(1536).fill(0.5))
|
||||
.limit(1)
|
||||
.where("id = 10")
|
||||
.toArray();
|
||||
// --8<-- [end:search]
|
||||
|
||||
// --8<-- [start:vec_search]
|
||||
const result = await (
|
||||
tbl.search(Array(1536).fill(0)) as lancedb.VectorQuery
|
||||
)
|
||||
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
|
||||
.postfilter()
|
||||
.toArray();
|
||||
// --8<-- [end:vec_search]
|
||||
expect(result.length).toBe(0);
|
||||
|
||||
// --8<-- [start:sql_search]
|
||||
await tbl.query().where("id = 10").limit(10).toArray();
|
||||
// --8<-- [end:sql_search]
|
||||
});
|
||||
});
|
||||
@@ -1,34 +0,0 @@
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
|
||||
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||
vector: Array(1536).fill(i),
|
||||
id: i,
|
||||
item: `item ${i}`,
|
||||
strId: `${i}`,
|
||||
}));
|
||||
|
||||
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
|
||||
|
||||
// --8<-- [start:search]
|
||||
const _result = await tbl
|
||||
.search(Array(1536).fill(0.5))
|
||||
.limit(1)
|
||||
.where("id = 10")
|
||||
.toArray();
|
||||
// --8<-- [end:search]
|
||||
|
||||
// --8<-- [start:vec_search]
|
||||
await tbl
|
||||
.search(Array(1536).fill(0))
|
||||
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
|
||||
.postfilter()
|
||||
.toArray();
|
||||
// --8<-- [end:vec_search]
|
||||
|
||||
// --8<-- [start:sql_search]
|
||||
await tbl.query().where("id = 10").limit(10).toArray();
|
||||
// --8<-- [end:sql_search]
|
||||
|
||||
console.log("SQL search: done");
|
||||
45
nodejs/examples/full_text_search.test.ts
Normal file
45
nodejs/examples/full_text_search.test.ts
Normal file
@@ -0,0 +1,45 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { expect, test } from "@jest/globals";
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import { withTempDirectory } from "./util.ts";
|
||||
|
||||
test("full text search", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
|
||||
const words = [
|
||||
"apple",
|
||||
"banana",
|
||||
"cherry",
|
||||
"date",
|
||||
"elderberry",
|
||||
"fig",
|
||||
"grape",
|
||||
];
|
||||
|
||||
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||
vector: Array(1536).fill(i),
|
||||
id: i,
|
||||
item: `item ${i}`,
|
||||
strId: `${i}`,
|
||||
doc: words[i % words.length],
|
||||
}));
|
||||
|
||||
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
|
||||
|
||||
await tbl.createIndex("doc", {
|
||||
config: lancedb.Index.fts(),
|
||||
});
|
||||
|
||||
// --8<-- [start:full_text_search]
|
||||
const result = await tbl
|
||||
.query()
|
||||
.nearestToText("apple")
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.toArray();
|
||||
expect(result.length).toBe(10);
|
||||
// --8<-- [end:full_text_search]
|
||||
});
|
||||
});
|
||||
@@ -1,52 +0,0 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
|
||||
const words = [
|
||||
"apple",
|
||||
"banana",
|
||||
"cherry",
|
||||
"date",
|
||||
"elderberry",
|
||||
"fig",
|
||||
"grape",
|
||||
];
|
||||
|
||||
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||
vector: Array(1536).fill(i),
|
||||
id: i,
|
||||
item: `item ${i}`,
|
||||
strId: `${i}`,
|
||||
doc: words[i % words.length],
|
||||
}));
|
||||
|
||||
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
|
||||
|
||||
await tbl.createIndex("doc", {
|
||||
config: lancedb.Index.fts(),
|
||||
});
|
||||
|
||||
// --8<-- [start:full_text_search]
|
||||
let result = await tbl
|
||||
.search("apple")
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.toArray();
|
||||
console.log(result);
|
||||
// --8<-- [end:full_text_search]
|
||||
|
||||
console.log("SQL search: done");
|
||||
6
nodejs/examples/jest.config.cjs
Normal file
6
nodejs/examples/jest.config.cjs
Normal file
@@ -0,0 +1,6 @@
|
||||
/** @type {import('ts-jest').JestConfigWithTsJest} */
|
||||
module.exports = {
|
||||
preset: "ts-jest",
|
||||
testEnvironment: "node",
|
||||
testPathIgnorePatterns: ["./dist"],
|
||||
};
|
||||
@@ -1,27 +0,0 @@
|
||||
{
|
||||
"compilerOptions": {
|
||||
// Enable latest features
|
||||
"lib": ["ESNext", "DOM"],
|
||||
"target": "ESNext",
|
||||
"module": "ESNext",
|
||||
"moduleDetection": "force",
|
||||
"jsx": "react-jsx",
|
||||
"allowJs": true,
|
||||
|
||||
// Bundler mode
|
||||
"moduleResolution": "bundler",
|
||||
"allowImportingTsExtensions": true,
|
||||
"verbatimModuleSyntax": true,
|
||||
"noEmit": true,
|
||||
|
||||
// Best practices
|
||||
"strict": true,
|
||||
"skipLibCheck": true,
|
||||
"noFallthroughCasesInSwitch": true,
|
||||
|
||||
// Some stricter flags (disabled by default)
|
||||
"noUnusedLocals": false,
|
||||
"noUnusedParameters": false,
|
||||
"noPropertyAccessFromIndexSignature": false
|
||||
}
|
||||
}
|
||||
5009
nodejs/examples/package-lock.json
generated
5009
nodejs/examples/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -5,24 +5,29 @@
|
||||
"main": "index.js",
|
||||
"type": "module",
|
||||
"scripts": {
|
||||
"test": "echo \"Error: no test specified\" && exit 1"
|
||||
"//1": "--experimental-vm-modules is needed to run jest with sentence-transformers",
|
||||
"//2": "--testEnvironment is needed to run jest with sentence-transformers",
|
||||
"//3": "See: https://github.com/huggingface/transformers.js/issues/57",
|
||||
"test": "node --experimental-vm-modules node_modules/.bin/jest --testEnvironment jest-environment-node-single-context --verbose",
|
||||
"lint": "biome check *.ts && biome format *.ts",
|
||||
"lint-ci": "biome ci .",
|
||||
"lint-fix": "biome check --write *.ts && npm run format",
|
||||
"format": "biome format --write *.ts"
|
||||
},
|
||||
"author": "Lance Devs",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@lancedb/lancedb": "file:../",
|
||||
"@xenova/transformers": "^2.17.2"
|
||||
"@huggingface/transformers": "^3.0.2",
|
||||
"@lancedb/lancedb": "file:../dist",
|
||||
"openai": "^4.29.2",
|
||||
"sharp": "^0.33.5"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@biomejs/biome": "^1.7.3",
|
||||
"@jest/globals": "^29.7.0",
|
||||
"jest": "^29.7.0",
|
||||
"jest-environment-node-single-context": "^29.4.0",
|
||||
"ts-jest": "^29.2.5",
|
||||
"typescript": "^5.5.4"
|
||||
},
|
||||
"compilerOptions": {
|
||||
"target": "ESNext",
|
||||
"module": "ESNext",
|
||||
"moduleResolution": "Node",
|
||||
"strict": true,
|
||||
"esModuleInterop": true,
|
||||
"skipLibCheck": true,
|
||||
"forceConsistentCasingInFileNames": true
|
||||
}
|
||||
}
|
||||
|
||||
42
nodejs/examples/search.test.ts
Normal file
42
nodejs/examples/search.test.ts
Normal file
@@ -0,0 +1,42 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { expect, test } from "@jest/globals";
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
// --8<-- [end:import]
|
||||
import { withTempDirectory } from "./util.ts";
|
||||
|
||||
test("full text search", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
{
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
|
||||
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||
vector: Array(128).fill(i),
|
||||
id: `${i}`,
|
||||
content: "",
|
||||
longId: `${i}`,
|
||||
}));
|
||||
|
||||
await db.createTable("my_vectors", data);
|
||||
}
|
||||
|
||||
// --8<-- [start:search1]
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
const tbl = await db.openTable("my_vectors");
|
||||
|
||||
const results1 = await tbl.search(Array(128).fill(1.2)).limit(10).toArray();
|
||||
// --8<-- [end:search1]
|
||||
expect(results1.length).toBe(10);
|
||||
|
||||
// --8<-- [start:search2]
|
||||
const results2 = await (
|
||||
tbl.search(Array(128).fill(1.2)) as lancedb.VectorQuery
|
||||
)
|
||||
.distanceType("cosine")
|
||||
.limit(10)
|
||||
.toArray();
|
||||
// --8<-- [end:search2]
|
||||
expect(results2.length).toBe(10);
|
||||
});
|
||||
});
|
||||
@@ -1,38 +0,0 @@
|
||||
// --8<-- [end:import]
|
||||
import * as fs from "node:fs";
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
|
||||
async function setup() {
|
||||
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
|
||||
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||
vector: Array(1536).fill(i),
|
||||
id: `${i}`,
|
||||
content: "",
|
||||
longId: `${i}`,
|
||||
}));
|
||||
|
||||
await db.createTable("my_vectors", data);
|
||||
}
|
||||
|
||||
await setup();
|
||||
|
||||
// --8<-- [start:search1]
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
const tbl = await db.openTable("my_vectors");
|
||||
|
||||
const _results1 = await tbl.search(Array(1536).fill(1.2)).limit(10).toArray();
|
||||
// --8<-- [end:search1]
|
||||
|
||||
// --8<-- [start:search2]
|
||||
const _results2 = await tbl
|
||||
.search(Array(1536).fill(1.2))
|
||||
.distanceType("cosine")
|
||||
.limit(10)
|
||||
.toArray();
|
||||
console.log(_results2);
|
||||
// --8<-- [end:search2]
|
||||
|
||||
console.log("search: done");
|
||||
@@ -1,50 +0,0 @@
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
|
||||
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
|
||||
import { Utf8 } from "apache-arrow";
|
||||
|
||||
const db = await lancedb.connect("/tmp/db");
|
||||
const func = await getRegistry().get("huggingface").create();
|
||||
|
||||
const facts = [
|
||||
"Albert Einstein was a theoretical physicist.",
|
||||
"The capital of France is Paris.",
|
||||
"The Great Wall of China is one of the Seven Wonders of the World.",
|
||||
"Python is a popular programming language.",
|
||||
"Mount Everest is the highest mountain in the world.",
|
||||
"Leonardo da Vinci painted the Mona Lisa.",
|
||||
"Shakespeare wrote Hamlet.",
|
||||
"The human body has 206 bones.",
|
||||
"The speed of light is approximately 299,792 kilometers per second.",
|
||||
"Water boils at 100 degrees Celsius.",
|
||||
"The Earth orbits the Sun.",
|
||||
"The Pyramids of Giza are located in Egypt.",
|
||||
"Coffee is one of the most popular beverages in the world.",
|
||||
"Tokyo is the capital city of Japan.",
|
||||
"Photosynthesis is the process by which plants make their food.",
|
||||
"The Pacific Ocean is the largest ocean on Earth.",
|
||||
"Mozart was a prolific composer of classical music.",
|
||||
"The Internet is a global network of computers.",
|
||||
"Basketball is a sport played with a ball and a hoop.",
|
||||
"The first computer virus was created in 1983.",
|
||||
"Artificial neural networks are inspired by the human brain.",
|
||||
"Deep learning is a subset of machine learning.",
|
||||
"IBM's Watson won Jeopardy! in 2011.",
|
||||
"The first computer programmer was Ada Lovelace.",
|
||||
"The first chatbot was ELIZA, created in the 1960s.",
|
||||
].map((text) => ({ text }));
|
||||
|
||||
const factsSchema = LanceSchema({
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const tbl = await db.createTable("facts", facts, {
|
||||
mode: "overwrite",
|
||||
schema: factsSchema,
|
||||
});
|
||||
|
||||
const query = "How many bones are in the human body?";
|
||||
const actual = await tbl.search(query).limit(1).toArray();
|
||||
|
||||
console.log("Answer: ", actual[0]["text"]);
|
||||
63
nodejs/examples/sentence-transformers.test.ts
Normal file
63
nodejs/examples/sentence-transformers.test.ts
Normal file
@@ -0,0 +1,63 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import { expect, test } from "@jest/globals";
|
||||
import { withTempDirectory } from "./util.ts";
|
||||
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import "@lancedb/lancedb/embedding/transformers";
|
||||
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
|
||||
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
|
||||
import { Utf8 } from "apache-arrow";
|
||||
|
||||
test("full text search", async () => {
|
||||
await withTempDirectory(async (databaseDir) => {
|
||||
const db = await lancedb.connect(databaseDir);
|
||||
console.log(getRegistry());
|
||||
const func = (await getRegistry()
|
||||
.get("huggingface")
|
||||
?.create()) as EmbeddingFunction;
|
||||
|
||||
const facts = [
|
||||
"Albert Einstein was a theoretical physicist.",
|
||||
"The capital of France is Paris.",
|
||||
"The Great Wall of China is one of the Seven Wonders of the World.",
|
||||
"Python is a popular programming language.",
|
||||
"Mount Everest is the highest mountain in the world.",
|
||||
"Leonardo da Vinci painted the Mona Lisa.",
|
||||
"Shakespeare wrote Hamlet.",
|
||||
"The human body has 206 bones.",
|
||||
"The speed of light is approximately 299,792 kilometers per second.",
|
||||
"Water boils at 100 degrees Celsius.",
|
||||
"The Earth orbits the Sun.",
|
||||
"The Pyramids of Giza are located in Egypt.",
|
||||
"Coffee is one of the most popular beverages in the world.",
|
||||
"Tokyo is the capital city of Japan.",
|
||||
"Photosynthesis is the process by which plants make their food.",
|
||||
"The Pacific Ocean is the largest ocean on Earth.",
|
||||
"Mozart was a prolific composer of classical music.",
|
||||
"The Internet is a global network of computers.",
|
||||
"Basketball is a sport played with a ball and a hoop.",
|
||||
"The first computer virus was created in 1983.",
|
||||
"Artificial neural networks are inspired by the human brain.",
|
||||
"Deep learning is a subset of machine learning.",
|
||||
"IBM's Watson won Jeopardy! in 2011.",
|
||||
"The first computer programmer was Ada Lovelace.",
|
||||
"The first chatbot was ELIZA, created in the 1960s.",
|
||||
].map((text) => ({ text }));
|
||||
|
||||
const factsSchema = LanceSchema({
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const tbl = await db.createTable("facts", facts, {
|
||||
mode: "overwrite",
|
||||
schema: factsSchema,
|
||||
});
|
||||
|
||||
const query = "How many bones are in the human body?";
|
||||
const actual = await tbl.search(query).limit(1).toArray();
|
||||
|
||||
expect(actual[0]["text"]).toBe("The human body has 206 bones.");
|
||||
});
|
||||
}, 100_000);
|
||||
17
nodejs/examples/tsconfig.json
Normal file
17
nodejs/examples/tsconfig.json
Normal file
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"include": ["*.test.ts"],
|
||||
"compilerOptions": {
|
||||
"target": "es2022",
|
||||
"module": "NodeNext",
|
||||
"declaration": true,
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true,
|
||||
"emitDecoratorMetadata": true,
|
||||
"experimentalDecorators": true,
|
||||
"moduleResolution": "NodeNext",
|
||||
"allowImportingTsExtensions": true,
|
||||
"emitDeclarationOnly": true
|
||||
}
|
||||
}
|
||||
16
nodejs/examples/util.ts
Normal file
16
nodejs/examples/util.ts
Normal file
@@ -0,0 +1,16 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import * as fs from "fs";
|
||||
import { tmpdir } from "os";
|
||||
import * as path from "path";
|
||||
|
||||
export async function withTempDirectory(
|
||||
fn: (tempDir: string) => Promise<void>,
|
||||
) {
|
||||
const tmpDirPath = fs.mkdtempSync(path.join(tmpdir(), "temp-dir-"));
|
||||
try {
|
||||
await fn(tmpDirPath);
|
||||
} finally {
|
||||
fs.rmSync(tmpDirPath, { recursive: true });
|
||||
}
|
||||
}
|
||||
@@ -4,4 +4,5 @@ module.exports = {
|
||||
testEnvironment: "node",
|
||||
moduleDirectories: ["node_modules", "./dist"],
|
||||
moduleFileExtensions: ["js", "ts"],
|
||||
modulePathIgnorePatterns: ["<rootDir>/examples/"],
|
||||
};
|
||||
|
||||
@@ -19,9 +19,6 @@ import { EmbeddingFunctionConfig, getRegistry } from "./registry";
|
||||
|
||||
export { EmbeddingFunction, TextEmbeddingFunction } from "./embedding_function";
|
||||
|
||||
// We need to explicitly export '*' so that the `register` decorator actually registers the class.
|
||||
export * from "./openai";
|
||||
export * from "./transformers";
|
||||
export * from "./registry";
|
||||
|
||||
/**
|
||||
|
||||
@@ -17,8 +17,6 @@ import {
|
||||
type EmbeddingFunctionConstructor,
|
||||
} from "./embedding_function";
|
||||
import "reflect-metadata";
|
||||
import { OpenAIEmbeddingFunction } from "./openai";
|
||||
import { TransformersEmbeddingFunction } from "./transformers";
|
||||
|
||||
type CreateReturnType<T> = T extends { init: () => Promise<void> }
|
||||
? Promise<T>
|
||||
@@ -73,10 +71,6 @@ export class EmbeddingFunctionRegistry {
|
||||
};
|
||||
}
|
||||
|
||||
get(name: "openai"): EmbeddingFunctionCreate<OpenAIEmbeddingFunction>;
|
||||
get(
|
||||
name: "huggingface",
|
||||
): EmbeddingFunctionCreate<TransformersEmbeddingFunction>;
|
||||
get<T extends EmbeddingFunction<unknown>>(
|
||||
name: string,
|
||||
): EmbeddingFunctionCreate<T> | undefined;
|
||||
|
||||
@@ -47,8 +47,8 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
|
||||
string,
|
||||
Partial<XenovaTransformerOptions>
|
||||
> {
|
||||
#model?: import("@xenova/transformers").PreTrainedModel;
|
||||
#tokenizer?: import("@xenova/transformers").PreTrainedTokenizer;
|
||||
#model?: import("@huggingface/transformers").PreTrainedModel;
|
||||
#tokenizer?: import("@huggingface/transformers").PreTrainedTokenizer;
|
||||
#modelName: XenovaTransformerOptions["model"];
|
||||
#initialized = false;
|
||||
#tokenizerOptions: XenovaTransformerOptions["tokenizerOptions"];
|
||||
@@ -92,18 +92,19 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
|
||||
try {
|
||||
// SAFETY:
|
||||
// since typescript transpiles `import` to `require`, we need to do this in an unsafe way
|
||||
// We can't use `require` because `@xenova/transformers` is an ESM module
|
||||
// We can't use `require` because `@huggingface/transformers` is an ESM module
|
||||
// and we can't use `import` directly because typescript will transpile it to `require`.
|
||||
// and we want to remain compatible with both ESM and CJS modules
|
||||
// so we use `eval` to bypass typescript for this specific import.
|
||||
transformers = await eval('import("@xenova/transformers")');
|
||||
transformers = await eval('import("@huggingface/transformers")');
|
||||
} catch (e) {
|
||||
throw new Error(`error loading @xenova/transformers\nReason: ${e}`);
|
||||
throw new Error(`error loading @huggingface/transformers\nReason: ${e}`);
|
||||
}
|
||||
|
||||
try {
|
||||
this.#model = await transformers.AutoModel.from_pretrained(
|
||||
this.#modelName,
|
||||
{ dtype: "fp32" },
|
||||
);
|
||||
} catch (e) {
|
||||
throw new Error(
|
||||
@@ -128,7 +129,8 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
|
||||
} else {
|
||||
const config = this.#model!.config;
|
||||
|
||||
const ndims = config["hidden_size"];
|
||||
// biome-ignore lint/style/useNamingConvention: we don't control this name.
|
||||
const ndims = (config as unknown as { hidden_size: number }).hidden_size;
|
||||
if (!ndims) {
|
||||
throw new Error(
|
||||
"hidden_size not found in model config, you may need to manually specify the embedding dimensions. ",
|
||||
@@ -183,7 +185,7 @@ export class TransformersEmbeddingFunction extends EmbeddingFunction<
|
||||
}
|
||||
|
||||
const tensorDiv = (
|
||||
src: import("@xenova/transformers").Tensor,
|
||||
src: import("@huggingface/transformers").Tensor,
|
||||
divBy: number,
|
||||
) => {
|
||||
for (let i = 0; i < src.data.length; ++i) {
|
||||
|
||||
@@ -385,6 +385,20 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the number of candidates to consider during the search
|
||||
*
|
||||
* This argument is only used when the vector column has an HNSW index.
|
||||
* If there is no index then this value is ignored.
|
||||
*
|
||||
* Increasing this value will increase the recall of your query but will
|
||||
* also increase the latency of your query. The default value is 1.5*limit.
|
||||
*/
|
||||
ef(ef: number): VectorQuery {
|
||||
super.doCall((inner) => inner.ef(ef));
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the vector column to query
|
||||
*
|
||||
@@ -492,6 +506,42 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
|
||||
super.doCall((inner) => inner.bypassVectorIndex());
|
||||
return this;
|
||||
}
|
||||
|
||||
/*
|
||||
* Add a query vector to the search
|
||||
*
|
||||
* This method can be called multiple times to add multiple query vectors
|
||||
* to the search. If multiple query vectors are added, then they will be searched
|
||||
* in parallel, and the results will be concatenated. A column called `query_index`
|
||||
* will be added to indicate the index of the query vector that produced the result.
|
||||
*
|
||||
* Performance wise, this is equivalent to running multiple queries concurrently.
|
||||
*/
|
||||
addQueryVector(vector: IntoVector): VectorQuery {
|
||||
if (vector instanceof Promise) {
|
||||
const res = (async () => {
|
||||
try {
|
||||
const v = await vector;
|
||||
const arr = Float32Array.from(v);
|
||||
//
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we need to get the `inner`, but js has no package scoping
|
||||
const value: any = this.addQueryVector(arr);
|
||||
const inner = value.inner as
|
||||
| NativeVectorQuery
|
||||
| Promise<NativeVectorQuery>;
|
||||
return inner;
|
||||
} catch (e) {
|
||||
return Promise.reject(e);
|
||||
}
|
||||
})();
|
||||
return new VectorQuery(res);
|
||||
} else {
|
||||
super.doCall((inner) => {
|
||||
inner.addQueryVector(Float32Array.from(vector));
|
||||
});
|
||||
return this;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** A builder for LanceDB queries. */
|
||||
@@ -571,4 +621,9 @@ export class Query extends QueryBase<NativeQuery> {
|
||||
return new VectorQuery(vectorQuery);
|
||||
}
|
||||
}
|
||||
|
||||
nearestToText(query: string, columns?: string[]): Query {
|
||||
this.doCall((inner) => inner.fullTextSearch(query, columns));
|
||||
return this;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -87,6 +87,12 @@ export interface OptimizeOptions {
|
||||
deleteUnverified: boolean;
|
||||
}
|
||||
|
||||
export interface Version {
|
||||
version: number;
|
||||
timestamp: Date;
|
||||
metadata: Record<string, string>;
|
||||
}
|
||||
|
||||
/**
|
||||
* A Table is a collection of Records in a LanceDB Database.
|
||||
*
|
||||
@@ -360,6 +366,11 @@ export abstract class Table {
|
||||
*/
|
||||
abstract checkoutLatest(): Promise<void>;
|
||||
|
||||
/**
|
||||
* List all the versions of the table
|
||||
*/
|
||||
abstract listVersions(): Promise<Version[]>;
|
||||
|
||||
/**
|
||||
* Restore the table to the currently checked out version
|
||||
*
|
||||
@@ -659,6 +670,14 @@ export class LocalTable extends Table {
|
||||
await this.inner.checkoutLatest();
|
||||
}
|
||||
|
||||
async listVersions(): Promise<Version[]> {
|
||||
return (await this.inner.listVersions()).map((version) => ({
|
||||
version: version.version,
|
||||
timestamp: new Date(version.timestamp / 1000),
|
||||
metadata: version.metadata,
|
||||
}));
|
||||
}
|
||||
|
||||
async restore(): Promise<void> {
|
||||
await this.inner.restore();
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
3
nodejs/npm/linux-arm64-musl/README.md
Normal file
3
nodejs/npm/linux-arm64-musl/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `@lancedb/lancedb-linux-arm64-musl`
|
||||
|
||||
This is the **aarch64-unknown-linux-musl** binary for `@lancedb/lancedb`
|
||||
13
nodejs/npm/linux-arm64-musl/package.json
Normal file
13
nodejs/npm/linux-arm64-musl/package.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||
"version": "0.13.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-musl.node",
|
||||
"files": ["lancedb.linux-arm64-musl.node"],
|
||||
"license": "Apache 2.0",
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
},
|
||||
"libc": ["musl"]
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
3
nodejs/npm/linux-x64-musl/README.md
Normal file
3
nodejs/npm/linux-x64-musl/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `@lancedb/lancedb-linux-x64-musl`
|
||||
|
||||
This is the **x86_64-unknown-linux-musl** binary for `@lancedb/lancedb`
|
||||
13
nodejs/npm/linux-x64-musl/package.json
Normal file
13
nodejs/npm/linux-x64-musl/package.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||
"version": "0.13.0",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-musl.node",
|
||||
"files": ["lancedb.linux-x64-musl.node"],
|
||||
"license": "Apache 2.0",
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
},
|
||||
"libc": ["musl"]
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
1438
nodejs/package-lock.json
generated
1438
nodejs/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -10,11 +10,13 @@
|
||||
"vector database",
|
||||
"ann"
|
||||
],
|
||||
"version": "0.13.0-beta.1",
|
||||
"version": "0.13.0",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
"./embedding": "./dist/embedding/index.js"
|
||||
"./embedding": "./dist/embedding/index.js",
|
||||
"./embedding/openai": "./dist/embedding/openai.js",
|
||||
"./embedding/transformers": "./dist/embedding/transformers.js"
|
||||
},
|
||||
"types": "dist/index.d.ts",
|
||||
"napi": {
|
||||
@@ -22,10 +24,12 @@
|
||||
"triples": {
|
||||
"defaults": false,
|
||||
"additional": [
|
||||
"aarch64-apple-darwin",
|
||||
"aarch64-unknown-linux-gnu",
|
||||
"x86_64-apple-darwin",
|
||||
"aarch64-apple-darwin",
|
||||
"x86_64-unknown-linux-gnu",
|
||||
"aarch64-unknown-linux-gnu",
|
||||
"x86_64-unknown-linux-musl",
|
||||
"aarch64-unknown-linux-musl",
|
||||
"x86_64-pc-windows-msvc"
|
||||
]
|
||||
}
|
||||
@@ -85,7 +89,7 @@
|
||||
"reflect-metadata": "^0.2.2"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@xenova/transformers": ">=2.17 < 3",
|
||||
"@huggingface/transformers": "^3.0.2",
|
||||
"openai": "^4.29.2"
|
||||
},
|
||||
"peerDependencies": {
|
||||
|
||||
@@ -135,6 +135,16 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().column(&column);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn add_query_vector(&mut self, vector: Float32Array) -> Result<()> {
|
||||
self.inner = self
|
||||
.inner
|
||||
.clone()
|
||||
.add_query_vector(vector.as_ref())
|
||||
.default_error()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn distance_type(&mut self, distance_type: String) -> napi::Result<()> {
|
||||
let distance_type = parse_distance_type(distance_type)?;
|
||||
@@ -157,6 +167,11 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn ef(&mut self, ef: u32) {
|
||||
self.inner = self.inner.clone().ef(ef as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn bypass_vector_index(&mut self) {
|
||||
self.inner = self.inner.clone().bypass_vector_index()
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
use arrow_ipc::writer::FileWriter;
|
||||
use lancedb::ipc::ipc_file_to_batches;
|
||||
use lancedb::table::{
|
||||
@@ -226,6 +228,28 @@ impl Table {
|
||||
self.inner_ref()?.checkout_latest().await.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn list_versions(&self) -> napi::Result<Vec<Version>> {
|
||||
self.inner_ref()?
|
||||
.list_versions()
|
||||
.await
|
||||
.map(|versions| {
|
||||
versions
|
||||
.iter()
|
||||
.map(|version| Version {
|
||||
version: version.version as i64,
|
||||
timestamp: version.timestamp.timestamp_micros(),
|
||||
metadata: version
|
||||
.metadata
|
||||
.iter()
|
||||
.map(|(k, v)| (k.clone(), v.clone()))
|
||||
.collect(),
|
||||
})
|
||||
.collect()
|
||||
})
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn restore(&self) -> napi::Result<()> {
|
||||
self.inner_ref()?.restore().await.default_error()
|
||||
@@ -466,3 +490,10 @@ impl From<lancedb::index::IndexStatistics> for IndexStatistics {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct Version {
|
||||
pub version: i64,
|
||||
pub timestamp: i64,
|
||||
pub metadata: HashMap<String, String>,
|
||||
}
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
"experimentalDecorators": true,
|
||||
"moduleResolution": "Node"
|
||||
},
|
||||
"exclude": ["./dist/*"],
|
||||
"exclude": ["./dist/*", "./examples/*"],
|
||||
"typedocOptions": {
|
||||
"entryPoints": ["lancedb/index.ts"],
|
||||
"out": "../docs/src/javascript/",
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.16.0-beta.0"
|
||||
current_version = "0.16.1-beta.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.16.0-beta.0"
|
||||
version = "0.16.1-beta.0"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
@@ -15,7 +15,7 @@ crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
arrow = { version = "52.1", features = ["pyarrow"] }
|
||||
lancedb = { path = "../rust/lancedb" }
|
||||
lancedb = { path = "../rust/lancedb", default-features = false }
|
||||
env_logger.workspace = true
|
||||
pyo3 = { version = "0.21", features = ["extension-module", "abi3-py38", "gil-refs"] }
|
||||
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
|
||||
@@ -33,6 +33,11 @@ pyo3-build-config = { version = "0.20.3", features = [
|
||||
] }
|
||||
|
||||
[features]
|
||||
default = ["remote"]
|
||||
default = ["default-tls", "remote"]
|
||||
fp16kernels = ["lancedb/fp16kernels"]
|
||||
remote = ["lancedb/remote"]
|
||||
|
||||
# TLS
|
||||
default-tls = ["lancedb/default-tls"]
|
||||
native-tls = ["lancedb/native-tls"]
|
||||
rustls-tls = ["lancedb/rustls-tls"]
|
||||
|
||||
@@ -4,7 +4,7 @@ name = "lancedb"
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"nest-asyncio~=1.0",
|
||||
"pylance==0.19.2-beta.3",
|
||||
"pylance==0.20.0b2",
|
||||
"tqdm>=4.27.0",
|
||||
"pydantic>=1.10",
|
||||
"packaging",
|
||||
|
||||
@@ -1,15 +1,6 @@
|
||||
# Copyright (c) 2023. LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import json
|
||||
from typing import Dict, Optional
|
||||
|
||||
@@ -170,7 +161,7 @@ def register(name):
|
||||
return __REGISTRY__.get_instance().register(name)
|
||||
|
||||
|
||||
def get_registry():
|
||||
def get_registry() -> EmbeddingFunctionRegistry:
|
||||
"""
|
||||
Utility function to get the global instance of the registry
|
||||
|
||||
|
||||
@@ -131,6 +131,8 @@ class Query(pydantic.BaseModel):
|
||||
|
||||
fast_search: bool = False
|
||||
|
||||
ef: Optional[int] = None
|
||||
|
||||
|
||||
class LanceQueryBuilder(ABC):
|
||||
"""An abstract query builder. Subclasses are defined for vector search,
|
||||
@@ -257,6 +259,7 @@ class LanceQueryBuilder(ABC):
|
||||
self._with_row_id = False
|
||||
self._vector = None
|
||||
self._text = None
|
||||
self._ef = None
|
||||
|
||||
@deprecation.deprecated(
|
||||
deprecated_in="0.3.1",
|
||||
@@ -367,11 +370,13 @@ class LanceQueryBuilder(ABC):
|
||||
----------
|
||||
limit: int
|
||||
The maximum number of results to return.
|
||||
By default the query is limited to the first 10.
|
||||
Call this method and pass 0, a negative value,
|
||||
or None to remove the limit.
|
||||
*WARNING* if you have a large dataset, removing
|
||||
the limit can potentially result in reading a
|
||||
The default query limit is 10 results.
|
||||
For ANN/KNN queries, you must specify a limit.
|
||||
Entering 0, a negative number, or None will reset
|
||||
the limit to the default value of 10.
|
||||
*WARNING* if you have a large dataset, setting
|
||||
the limit to a large number, e.g. the table size,
|
||||
can potentially result in reading a
|
||||
large amount of data into memory and cause
|
||||
out of memory issues.
|
||||
|
||||
@@ -638,6 +643,28 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
self._nprobes = nprobes
|
||||
return self
|
||||
|
||||
def ef(self, ef: int) -> LanceVectorQueryBuilder:
|
||||
"""Set the number of candidates to consider during search.
|
||||
|
||||
Higher values will yield better recall (more likely to find vectors if
|
||||
they exist) at the expense of latency.
|
||||
|
||||
This only applies to the HNSW-related index.
|
||||
The default value is 1.5 * limit.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ef: int
|
||||
The number of candidates to consider during search.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceVectorQueryBuilder
|
||||
The LanceQueryBuilder object.
|
||||
"""
|
||||
self._ef = ef
|
||||
return self
|
||||
|
||||
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
|
||||
"""Set the refine factor to use, increasing the number of vectors sampled.
|
||||
|
||||
@@ -700,6 +727,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
with_row_id=self._with_row_id,
|
||||
offset=self._offset,
|
||||
fast_search=self._fast_search,
|
||||
ef=self._ef,
|
||||
)
|
||||
result_set = self._table._execute_query(query, batch_size)
|
||||
if self._reranker is not None:
|
||||
@@ -943,12 +971,16 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
|
||||
class LanceEmptyQueryBuilder(LanceQueryBuilder):
|
||||
def to_arrow(self) -> pa.Table:
|
||||
ds = self._table.to_lance()
|
||||
return ds.to_table(
|
||||
query = Query(
|
||||
columns=self._columns,
|
||||
filter=self._where,
|
||||
limit=self._limit,
|
||||
k=self._limit or 10,
|
||||
with_row_id=self._with_row_id,
|
||||
vector=[],
|
||||
# not actually respected in remote query
|
||||
offset=self._offset or 0,
|
||||
)
|
||||
return self._table._execute_query(query).read_all()
|
||||
|
||||
def rerank(self, reranker: Reranker) -> LanceEmptyQueryBuilder:
|
||||
"""Rerank the results using the specified reranker.
|
||||
@@ -1067,6 +1099,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._vector_query.nprobes(self._nprobes)
|
||||
if self._refine_factor:
|
||||
self._vector_query.refine_factor(self._refine_factor)
|
||||
if self._ef:
|
||||
self._vector_query.ef(self._ef)
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
|
||||
@@ -1193,6 +1227,29 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._nprobes = nprobes
|
||||
return self
|
||||
|
||||
def ef(self, ef: int) -> LanceHybridQueryBuilder:
|
||||
"""
|
||||
Set the number of candidates to consider during search.
|
||||
|
||||
Higher values will yield better recall (more likely to find vectors if
|
||||
they exist) at the expense of latency.
|
||||
|
||||
This only applies to the HNSW-related index.
|
||||
The default value is 1.5 * limit.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ef: int
|
||||
The number of candidates to consider during search.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceHybridQueryBuilder
|
||||
The LanceHybridQueryBuilder object.
|
||||
"""
|
||||
self._ef = ef
|
||||
return self
|
||||
|
||||
def metric(self, metric: Literal["L2", "cosine", "dot"]) -> LanceHybridQueryBuilder:
|
||||
"""Set the distance metric to use.
|
||||
|
||||
@@ -1491,7 +1548,8 @@ class AsyncQuery(AsyncQueryBase):
|
||||
return pa.array(vec)
|
||||
|
||||
def nearest_to(
|
||||
self, query_vector: Optional[Union[VEC, Tuple]] = None
|
||||
self,
|
||||
query_vector: Union[VEC, Tuple, List[VEC]],
|
||||
) -> AsyncVectorQuery:
|
||||
"""
|
||||
Find the nearest vectors to the given query vector.
|
||||
@@ -1529,10 +1587,33 @@ class AsyncQuery(AsyncQueryBase):
|
||||
|
||||
Vector searches always have a [limit][]. If `limit` has not been called then
|
||||
a default `limit` of 10 will be used.
|
||||
|
||||
Typically, a single vector is passed in as the query. However, you can also
|
||||
pass in multiple vectors. This can be useful if you want to find the nearest
|
||||
vectors to multiple query vectors. This is not expected to be faster than
|
||||
making multiple queries concurrently; it is just a convenience method.
|
||||
If multiple vectors are passed in then an additional column `query_index`
|
||||
will be added to the results. This column will contain the index of the
|
||||
query vector that the result is nearest to.
|
||||
"""
|
||||
return AsyncVectorQuery(
|
||||
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
|
||||
)
|
||||
if query_vector is None:
|
||||
raise ValueError("query_vector can not be None")
|
||||
|
||||
if (
|
||||
isinstance(query_vector, list)
|
||||
and len(query_vector) > 0
|
||||
and not isinstance(query_vector[0], (float, int))
|
||||
):
|
||||
# multiple have been passed
|
||||
query_vectors = [AsyncQuery._query_vec_to_array(v) for v in query_vector]
|
||||
new_self = self._inner.nearest_to(query_vectors[0])
|
||||
for v in query_vectors[1:]:
|
||||
new_self.add_query_vector(v)
|
||||
return AsyncVectorQuery(new_self)
|
||||
else:
|
||||
return AsyncVectorQuery(
|
||||
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
|
||||
)
|
||||
|
||||
def nearest_to_text(
|
||||
self, query: str, columns: Union[str, List[str]] = []
|
||||
@@ -1594,7 +1675,7 @@ class AsyncVectorQuery(AsyncQueryBase):
|
||||
"""
|
||||
Set the number of partitions to search (probe)
|
||||
|
||||
This argument is only used when the vector column has an IVF PQ index.
|
||||
This argument is only used when the vector column has an IVF-based index.
|
||||
If there is no index then this value is ignored.
|
||||
|
||||
The IVF stage of IVF PQ divides the input into partitions (clusters) of
|
||||
@@ -1616,6 +1697,21 @@ class AsyncVectorQuery(AsyncQueryBase):
|
||||
self._inner.nprobes(nprobes)
|
||||
return self
|
||||
|
||||
def ef(self, ef: int) -> AsyncVectorQuery:
|
||||
"""
|
||||
Set the number of candidates to consider during search
|
||||
|
||||
This argument is only used when the vector column has an HNSW index.
|
||||
If there is no index then this value is ignored.
|
||||
|
||||
Increasing this value will increase the recall of your query but will also
|
||||
increase the latency of your query. The default value is 1.5 * limit. This
|
||||
default is good for many cases but the best value to use will depend on your
|
||||
data and the recall that you need to achieve.
|
||||
"""
|
||||
self._inner.ef(ef)
|
||||
return self
|
||||
|
||||
def refine_factor(self, refine_factor: int) -> AsyncVectorQuery:
|
||||
"""
|
||||
A multiplier to control how many additional rows are taken during the refine
|
||||
|
||||
@@ -78,6 +78,10 @@ class RemoteTable(Table):
|
||||
self.schema.metadata
|
||||
)
|
||||
|
||||
def list_versions(self):
|
||||
"""List all versions of the table"""
|
||||
return self._loop.run_until_complete(self._table.list_versions())
|
||||
|
||||
def to_arrow(self) -> pa.Table:
|
||||
"""to_arrow() is not yet supported on LanceDB cloud."""
|
||||
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
|
||||
@@ -86,6 +90,12 @@ class RemoteTable(Table):
|
||||
"""to_pandas() is not yet supported on LanceDB cloud."""
|
||||
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
|
||||
|
||||
def checkout(self, version):
|
||||
return self._loop.run_until_complete(self._table.checkout(version))
|
||||
|
||||
def checkout_latest(self):
|
||||
return self._loop.run_until_complete(self._table.checkout_latest())
|
||||
|
||||
def list_indices(self):
|
||||
"""List all the indices on the table"""
|
||||
return self._loop.run_until_complete(self._table.list_indices())
|
||||
@@ -327,10 +337,6 @@ class RemoteTable(Table):
|
||||
- and also the "_distance" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
"""
|
||||
# empty query builder is not supported in saas, raise error
|
||||
if query is None and query_type != "hybrid":
|
||||
raise ValueError("Empty query is not supported")
|
||||
|
||||
return LanceQueryBuilder.create(
|
||||
self,
|
||||
query,
|
||||
|
||||
@@ -41,7 +41,7 @@ class CohereReranker(Reranker):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "rerank-english-v2.0",
|
||||
model_name: str = "rerank-english-v3.0",
|
||||
column: str = "text",
|
||||
top_n: Union[int, None] = None,
|
||||
return_score="relevance",
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
|
||||
import os
|
||||
from functools import cached_property
|
||||
from typing import Union, Optional
|
||||
from typing import Optional
|
||||
|
||||
import pyarrow as pa
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ import inspect
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from datetime import timedelta
|
||||
from datetime import datetime, timedelta
|
||||
from functools import cached_property
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
@@ -73,6 +73,21 @@ pl = safe_import_polars()
|
||||
QueryType = Literal["vector", "fts", "hybrid", "auto"]
|
||||
|
||||
|
||||
def _pd_schema_without_embedding_funcs(
|
||||
schema: Optional[pa.Schema], columns: List[str]
|
||||
) -> Optional[pa.Schema]:
|
||||
"""Return a schema without any embedding function columns"""
|
||||
if schema is None:
|
||||
return None
|
||||
embedding_functions = EmbeddingFunctionRegistry.get_instance().parse_functions(
|
||||
schema.metadata
|
||||
)
|
||||
if not embedding_functions:
|
||||
return schema
|
||||
columns = set(columns)
|
||||
return pa.schema([field for field in schema if field.name in columns])
|
||||
|
||||
|
||||
def _coerce_to_table(data, schema: Optional[pa.Schema] = None) -> pa.Table:
|
||||
if _check_for_hugging_face(data):
|
||||
# Huggingface datasets
|
||||
@@ -103,10 +118,10 @@ def _coerce_to_table(data, schema: Optional[pa.Schema] = None) -> pa.Table:
|
||||
elif isinstance(data[0], pa.RecordBatch):
|
||||
return pa.Table.from_batches(data, schema=schema)
|
||||
else:
|
||||
return pa.Table.from_pylist(data)
|
||||
return pa.Table.from_pylist(data, schema=schema)
|
||||
elif _check_for_pandas(data) and isinstance(data, pd.DataFrame):
|
||||
# Do not add schema here, since schema may contains the vector column
|
||||
table = pa.Table.from_pandas(data, preserve_index=False)
|
||||
raw_schema = _pd_schema_without_embedding_funcs(schema, data.columns.to_list())
|
||||
table = pa.Table.from_pandas(data, preserve_index=False, schema=raw_schema)
|
||||
# Do not serialize Pandas metadata
|
||||
meta = table.schema.metadata if table.schema.metadata is not None else {}
|
||||
meta = {k: v for k, v in meta.items() if k != b"pandas"}
|
||||
@@ -172,6 +187,8 @@ def sanitize_create_table(
|
||||
schema = schema.to_arrow_schema()
|
||||
|
||||
if data is not None:
|
||||
if metadata is None and schema is not None:
|
||||
metadata = schema.metadata
|
||||
data, schema = _sanitize_data(
|
||||
data,
|
||||
schema,
|
||||
@@ -995,6 +1012,39 @@ class Table(ABC):
|
||||
The names of the columns to drop.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def checkout(self):
|
||||
"""
|
||||
Checks out a specific version of the Table
|
||||
|
||||
Any read operation on the table will now access the data at the checked out
|
||||
version. As a consequence, calling this method will disable any read consistency
|
||||
interval that was previously set.
|
||||
|
||||
This is a read-only operation that turns the table into a sort of "view"
|
||||
or "detached head". Other table instances will not be affected. To make the
|
||||
change permanent you can use the `[Self::restore]` method.
|
||||
|
||||
Any operation that modifies the table will fail while the table is in a checked
|
||||
out state.
|
||||
|
||||
To return the table to a normal state use `[Self::checkout_latest]`
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def checkout_latest(self):
|
||||
"""
|
||||
Ensures the table is pointing at the latest version
|
||||
|
||||
This can be used to manually update a table when the read_consistency_interval
|
||||
is None
|
||||
It can also be used to undo a `[Self::checkout]` operation
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def list_versions(self):
|
||||
"""List all versions of the table"""
|
||||
|
||||
@cached_property
|
||||
def _dataset_uri(self) -> str:
|
||||
return _table_uri(self._conn.uri, self.name)
|
||||
@@ -1550,7 +1600,7 @@ class LanceTable(Table):
|
||||
"append" and "overwrite".
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
|
||||
@@ -1834,7 +1884,7 @@ class LanceTable(Table):
|
||||
data but will validate against any schema that's specified.
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
embedding_functions: list of EmbeddingFunctionModel, default None
|
||||
@@ -1942,6 +1992,7 @@ class LanceTable(Table):
|
||||
"metric": query.metric,
|
||||
"nprobes": query.nprobes,
|
||||
"refine_factor": query.refine_factor,
|
||||
"ef": query.ef,
|
||||
}
|
||||
return ds.scanner(
|
||||
columns=query.columns,
|
||||
@@ -2134,13 +2185,11 @@ def _sanitize_schema(
|
||||
vector column to fixed_size_list(float32) if necessary.
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
"""
|
||||
if schema is not None:
|
||||
if data.schema == schema:
|
||||
return data
|
||||
# cast the columns to the expected types
|
||||
data = data.combine_chunks()
|
||||
for field in schema:
|
||||
@@ -2160,6 +2209,7 @@ def _sanitize_schema(
|
||||
vector_column_name=field.name,
|
||||
on_bad_vectors=on_bad_vectors,
|
||||
fill_value=fill_value,
|
||||
table_schema=schema,
|
||||
)
|
||||
return pa.Table.from_arrays(
|
||||
[data[name] for name in schema.names], schema=schema
|
||||
@@ -2180,6 +2230,7 @@ def _sanitize_schema(
|
||||
def _sanitize_vector_column(
|
||||
data: pa.Table,
|
||||
vector_column_name: str,
|
||||
table_schema: Optional[pa.Schema] = None,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
) -> pa.Table:
|
||||
@@ -2194,12 +2245,16 @@ def _sanitize_vector_column(
|
||||
The name of the vector column.
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.0
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
"""
|
||||
# ChunkedArray is annoying to work with, so we combine chunks here
|
||||
vec_arr = data[vector_column_name].combine_chunks()
|
||||
if table_schema is not None:
|
||||
field = table_schema.field(vector_column_name)
|
||||
else:
|
||||
field = None
|
||||
typ = data[vector_column_name].type
|
||||
if pa.types.is_list(typ) or pa.types.is_large_list(typ):
|
||||
# if it's a variable size list array,
|
||||
@@ -2226,7 +2281,11 @@ def _sanitize_vector_column(
|
||||
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
||||
)
|
||||
else:
|
||||
if pc.any(pc.is_null(vec_arr.values, nan_is_null=True)).as_py():
|
||||
if (
|
||||
field is not None
|
||||
and not field.nullable
|
||||
and pc.any(pc.is_null(vec_arr.values)).as_py()
|
||||
) or (pc.any(pc.is_nan(vec_arr.values)).as_py()):
|
||||
data = _sanitize_nans(
|
||||
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
||||
)
|
||||
@@ -2270,6 +2329,12 @@ def _sanitize_jagged(data, fill_value, on_bad_vectors, vec_arr, vector_column_na
|
||||
)
|
||||
elif on_bad_vectors == "drop":
|
||||
data = data.filter(correct_ndims)
|
||||
elif on_bad_vectors == "null":
|
||||
data = data.set_column(
|
||||
data.column_names.index(vector_column_name),
|
||||
vector_column_name,
|
||||
pc.if_else(correct_ndims, vec_arr, pa.scalar(None)),
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
@@ -2286,7 +2351,8 @@ def _sanitize_nans(
|
||||
raise ValueError(
|
||||
f"Vector column {vector_column_name} has NaNs. "
|
||||
"Set on_bad_vectors='drop' to remove them, or "
|
||||
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
|
||||
"set on_bad_vectors='fill' and fill_value=<value> to replace them. "
|
||||
"Or set on_bad_vectors='null' to replace them with null."
|
||||
)
|
||||
elif on_bad_vectors == "fill":
|
||||
if fill_value is None:
|
||||
@@ -2306,6 +2372,17 @@ def _sanitize_nans(
|
||||
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
|
||||
not_nulls = np.any(np_arr, axis=1)
|
||||
data = data.filter(~not_nulls)
|
||||
elif on_bad_vectors == "null":
|
||||
# null = pa.nulls(len(vec_arr)).cast(vec_arr.type)
|
||||
# values = pc.if_else(pc.is_nan(vec_arr.values), fill_value, vec_arr.values)
|
||||
np_arr = np.isnan(vec_arr.values.to_numpy(zero_copy_only=False))
|
||||
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
|
||||
no_nans = np.any(np_arr, axis=1)
|
||||
data = data.set_column(
|
||||
data.column_names.index(vector_column_name),
|
||||
vector_column_name,
|
||||
pc.if_else(no_nans, vec_arr, pa.scalar(None)),
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
@@ -2571,7 +2648,7 @@ class AsyncTable:
|
||||
"append" and "overwrite".
|
||||
on_bad_vectors: str, default "error"
|
||||
What to do if any of the vectors are not the same size or contains NaNs.
|
||||
One of "error", "drop", "fill".
|
||||
One of "error", "drop", "fill", "null".
|
||||
fill_value: float, default 0.
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
|
||||
@@ -2654,7 +2731,7 @@ class AsyncTable:
|
||||
|
||||
def vector_search(
|
||||
self,
|
||||
query_vector: Optional[Union[VEC, Tuple]] = None,
|
||||
query_vector: Union[VEC, Tuple],
|
||||
) -> AsyncVectorQuery:
|
||||
"""
|
||||
Search the table with a given query vector.
|
||||
@@ -2693,6 +2770,8 @@ class AsyncTable:
|
||||
async_query = async_query.refine_factor(query.refine_factor)
|
||||
if query.vector_column:
|
||||
async_query = async_query.column(query.vector_column)
|
||||
if query.ef:
|
||||
async_query = async_query.ef(query.ef)
|
||||
|
||||
if not query.prefilter:
|
||||
async_query = async_query.postfilter()
|
||||
@@ -2856,6 +2935,19 @@ class AsyncTable:
|
||||
"""
|
||||
return await self._inner.version()
|
||||
|
||||
async def list_versions(self):
|
||||
"""
|
||||
List all versions of the table
|
||||
"""
|
||||
versions = await self._inner.list_versions()
|
||||
for v in versions:
|
||||
ts_nanos = v["timestamp"]
|
||||
v["timestamp"] = datetime.fromtimestamp(ts_nanos // 1e9) + timedelta(
|
||||
microseconds=(ts_nanos % 1e9) // 1e3
|
||||
)
|
||||
|
||||
return versions
|
||||
|
||||
async def checkout(self, version):
|
||||
"""
|
||||
Checks out a specific version of the Table
|
||||
|
||||
@@ -1,15 +1,6 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
from typing import List, Union
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
@@ -18,6 +9,7 @@ import lancedb
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
import pandas as pd
|
||||
from lancedb.conftest import MockTextEmbeddingFunction
|
||||
from lancedb.embeddings import (
|
||||
EmbeddingFunctionConfig,
|
||||
@@ -89,14 +81,15 @@ def test_embedding_function(tmp_path):
|
||||
|
||||
|
||||
def test_embedding_with_bad_results(tmp_path):
|
||||
@register("mock-embedding")
|
||||
class MockEmbeddingFunction(TextEmbeddingFunction):
|
||||
@register("null-embedding")
|
||||
class NullEmbeddingFunction(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 128
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> list[Union[np.array, None]]:
|
||||
# Return None, which is bad if field is non-nullable
|
||||
return [
|
||||
None if i % 2 == 0 else np.random.randn(self.ndims())
|
||||
for i in range(len(texts))
|
||||
@@ -104,13 +97,17 @@ def test_embedding_with_bad_results(tmp_path):
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
model = registry.get("mock-embedding").create()
|
||||
model = registry.get("null-embedding").create()
|
||||
|
||||
class Schema(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
table = db.create_table("test", schema=Schema, mode="overwrite")
|
||||
with pytest.raises(ValueError):
|
||||
# Default on_bad_vectors is "error"
|
||||
table.add([{"text": "hello world"}])
|
||||
|
||||
table.add(
|
||||
[{"text": "hello world"}, {"text": "bar"}],
|
||||
on_bad_vectors="drop",
|
||||
@@ -120,13 +117,169 @@ def test_embedding_with_bad_results(tmp_path):
|
||||
assert len(table) == 1
|
||||
assert df.iloc[0]["text"] == "bar"
|
||||
|
||||
# table = db.create_table("test2", schema=Schema, mode="overwrite")
|
||||
# table.add(
|
||||
# [{"text": "hello world"}, {"text": "bar"}],
|
||||
# )
|
||||
# assert len(table) == 2
|
||||
# tbl = table.to_arrow()
|
||||
# assert tbl["vector"].null_count == 1
|
||||
@register("nan-embedding")
|
||||
class NanEmbeddingFunction(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 128
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> list[Union[np.array, None]]:
|
||||
# Return NaN to produce bad vectors
|
||||
return [
|
||||
[np.NAN] * 128 if i % 2 == 0 else np.random.randn(self.ndims())
|
||||
for i in range(len(texts))
|
||||
]
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
model = registry.get("nan-embedding").create()
|
||||
|
||||
table = db.create_table("test2", schema=Schema, mode="overwrite")
|
||||
table.alter_columns(dict(path="vector", nullable=True))
|
||||
table.add(
|
||||
[{"text": "hello world"}, {"text": "bar"}],
|
||||
on_bad_vectors="null",
|
||||
)
|
||||
assert len(table) == 2
|
||||
tbl = table.to_arrow()
|
||||
assert tbl["vector"].null_count == 1
|
||||
|
||||
|
||||
def test_with_existing_vectors(tmp_path):
|
||||
@register("mock-embedding")
|
||||
class MockEmbeddingFunction(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 128
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
|
||||
|
||||
registry = get_registry()
|
||||
model = registry.get("mock-embedding").create()
|
||||
|
||||
class Schema(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||
tbl.add([{"text": "hello world", "vector": np.zeros(128).tolist()}])
|
||||
|
||||
embeddings = tbl.to_arrow()["vector"].to_pylist()
|
||||
assert not np.any(embeddings), "all zeros"
|
||||
|
||||
|
||||
def test_embedding_function_with_pandas(tmp_path):
|
||||
@register("mock-embedding")
|
||||
class _MockEmbeddingFunction(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 128
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
|
||||
|
||||
registery = get_registry()
|
||||
func = registery.get("mock-embedding").create()
|
||||
|
||||
class TestSchema(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
val: int
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"text": ["hello world", "goodbye world"],
|
||||
"val": [1, 2],
|
||||
"not-used": ["s1", "s3"],
|
||||
}
|
||||
)
|
||||
db = lancedb.connect(tmp_path)
|
||||
tbl = db.create_table("test", schema=TestSchema, mode="overwrite", data=df)
|
||||
schema = tbl.schema
|
||||
assert schema.field("text").type == pa.string()
|
||||
assert schema.field("val").type == pa.int64()
|
||||
assert schema.field("vector").type == pa.list_(pa.float32(), 128)
|
||||
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"text": ["extra", "more"],
|
||||
"val": [4, 5],
|
||||
"misc-col": ["s1", "s3"],
|
||||
}
|
||||
)
|
||||
tbl.add(df)
|
||||
|
||||
assert tbl.count_rows() == 4
|
||||
embeddings = tbl.to_arrow()["vector"]
|
||||
assert embeddings.null_count == 0
|
||||
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"text": ["with", "embeddings"],
|
||||
"val": [6, 7],
|
||||
"vector": [np.zeros(128).tolist(), np.zeros(128).tolist()],
|
||||
}
|
||||
)
|
||||
tbl.add(df)
|
||||
|
||||
embeddings = tbl.search().where("val > 5").to_arrow()["vector"].to_pylist()
|
||||
assert not np.any(embeddings), "all zeros"
|
||||
|
||||
|
||||
def test_multiple_embeddings_for_pandas(tmp_path):
|
||||
@register("mock-embedding")
|
||||
class MockFunc1(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 128
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
|
||||
|
||||
@register("mock-embedding2")
|
||||
class MockFunc2(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 512
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
|
||||
|
||||
registery = get_registry()
|
||||
func1 = registery.get("mock-embedding").create()
|
||||
func2 = registery.get("mock-embedding2").create()
|
||||
|
||||
class TestSchema(LanceModel):
|
||||
text: str = func1.SourceField()
|
||||
val: int
|
||||
vec1: Vector(func1.ndims()) = func1.VectorField()
|
||||
prompt: str = func2.SourceField()
|
||||
vec2: Vector(func2.ndims()) = func2.VectorField()
|
||||
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"text": ["hello world", "goodbye world"],
|
||||
"val": [1, 2],
|
||||
"prompt": ["hello", "goodbye"],
|
||||
}
|
||||
)
|
||||
db = lancedb.connect(tmp_path)
|
||||
tbl = db.create_table("test", schema=TestSchema, mode="overwrite", data=df)
|
||||
|
||||
schema = tbl.schema
|
||||
assert schema.field("text").type == pa.string()
|
||||
assert schema.field("val").type == pa.int64()
|
||||
assert schema.field("vec1").type == pa.list_(pa.float32(), 128)
|
||||
assert schema.field("prompt").type == pa.string()
|
||||
assert schema.field("vec2").type == pa.list_(pa.float32(), 512)
|
||||
assert tbl.count_rows() == 2
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
|
||||
@@ -1,21 +1,9 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import unittest.mock as mock
|
||||
from datetime import timedelta
|
||||
from typing import Optional
|
||||
|
||||
import lance
|
||||
import lancedb
|
||||
from lancedb.index import IvfPq
|
||||
import numpy as np
|
||||
@@ -23,41 +11,15 @@ import pandas.testing as tm
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from lancedb.db import LanceDBConnection
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.query import AsyncQueryBase, LanceVectorQueryBuilder, Query
|
||||
from lancedb.table import AsyncTable, LanceTable
|
||||
|
||||
|
||||
class MockTable:
|
||||
def __init__(self, tmp_path):
|
||||
self.uri = tmp_path
|
||||
self._conn = LanceDBConnection(self.uri)
|
||||
|
||||
def to_lance(self):
|
||||
return lance.dataset(self.uri)
|
||||
|
||||
def _execute_query(self, query, batch_size: Optional[int] = None):
|
||||
ds = self.to_lance()
|
||||
return ds.scanner(
|
||||
columns=query.columns,
|
||||
filter=query.filter,
|
||||
prefilter=query.prefilter,
|
||||
nearest={
|
||||
"column": query.vector_column,
|
||||
"q": query.vector,
|
||||
"k": query.k,
|
||||
"metric": query.metric,
|
||||
"nprobes": query.nprobes,
|
||||
"refine_factor": query.refine_factor,
|
||||
},
|
||||
batch_size=batch_size,
|
||||
offset=query.offset,
|
||||
).to_reader()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def table(tmp_path) -> MockTable:
|
||||
@pytest.fixture(scope="module")
|
||||
def table(tmpdir_factory) -> lancedb.table.Table:
|
||||
tmp_path = str(tmpdir_factory.mktemp("data"))
|
||||
db = lancedb.connect(tmp_path)
|
||||
df = pa.table(
|
||||
{
|
||||
"vector": pa.array(
|
||||
@@ -68,8 +30,7 @@ def table(tmp_path) -> MockTable:
|
||||
"float_field": pa.array([1.0, 2.0]),
|
||||
}
|
||||
)
|
||||
lance.write_dataset(df, tmp_path)
|
||||
return MockTable(tmp_path)
|
||||
return db.create_table("test", df)
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@@ -126,6 +87,12 @@ def test_query_builder(table):
|
||||
assert all(np.array(rs[0]["vector"]) == [1, 2])
|
||||
|
||||
|
||||
def test_with_row_id(table: lancedb.table.Table):
|
||||
rs = table.search().with_row_id(True).to_arrow()
|
||||
assert "_rowid" in rs.column_names
|
||||
assert rs["_rowid"].to_pylist() == [0, 1]
|
||||
|
||||
|
||||
def test_vector_query_with_no_limit(table):
|
||||
with pytest.raises(ValueError):
|
||||
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(0).select(
|
||||
@@ -365,6 +332,12 @@ async def test_query_to_pandas_async(table_async: AsyncTable):
|
||||
assert df.shape == (0, 4)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_none_query(table_async: AsyncTable):
|
||||
with pytest.raises(ValueError):
|
||||
await table_async.query().nearest_to(None).to_arrow()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_fast_search_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
|
||||
@@ -103,6 +103,47 @@ async def test_async_remote_db():
|
||||
assert table_names == []
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_checkout():
|
||||
def handler(request):
|
||||
if request.path == "/v1/table/test/describe/":
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
response = json.dumps({"version": 42, "schema": {"fields": []}})
|
||||
request.wfile.write(response.encode())
|
||||
return
|
||||
|
||||
content_len = int(request.headers.get("Content-Length"))
|
||||
body = request.rfile.read(content_len)
|
||||
body = json.loads(body)
|
||||
|
||||
print("body is", body)
|
||||
|
||||
count = 0
|
||||
if body["version"] == 1:
|
||||
count = 100
|
||||
elif body["version"] == 2:
|
||||
count = 200
|
||||
elif body["version"] is None:
|
||||
count = 300
|
||||
|
||||
request.send_response(200)
|
||||
request.send_header("Content-Type", "application/json")
|
||||
request.end_headers()
|
||||
request.wfile.write(json.dumps(count).encode())
|
||||
|
||||
async with mock_lancedb_connection_async(handler) as db:
|
||||
table = await db.open_table("test")
|
||||
assert await table.count_rows() == 300
|
||||
await table.checkout(1)
|
||||
assert await table.count_rows() == 100
|
||||
await table.checkout(2)
|
||||
assert await table.count_rows() == 200
|
||||
await table.checkout_latest()
|
||||
assert await table.count_rows() == 300
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_http_error():
|
||||
request_id_holder = {"request_id": None}
|
||||
@@ -185,8 +226,10 @@ def test_query_sync_minimal():
|
||||
"k": 10,
|
||||
"prefilter": False,
|
||||
"refine_factor": None,
|
||||
"ef": None,
|
||||
"vector": [1.0, 2.0, 3.0],
|
||||
"nprobes": 20,
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3]})
|
||||
@@ -197,6 +240,24 @@ def test_query_sync_minimal():
|
||||
assert data == expected
|
||||
|
||||
|
||||
def test_query_sync_empty_query():
|
||||
def handler(body):
|
||||
assert body == {
|
||||
"k": 10,
|
||||
"filter": "true",
|
||||
"vector": [],
|
||||
"columns": ["id"],
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3]})
|
||||
|
||||
with query_test_table(handler) as table:
|
||||
data = table.search(None).where("true").select(["id"]).limit(10).to_list()
|
||||
expected = [{"id": 1}, {"id": 2}, {"id": 3}]
|
||||
assert data == expected
|
||||
|
||||
|
||||
def test_query_sync_maximal():
|
||||
def handler(body):
|
||||
assert body == {
|
||||
@@ -206,11 +267,13 @@ def test_query_sync_maximal():
|
||||
"refine_factor": 10,
|
||||
"vector": [1.0, 2.0, 3.0],
|
||||
"nprobes": 5,
|
||||
"ef": None,
|
||||
"filter": "id > 0",
|
||||
"columns": ["id", "name"],
|
||||
"vector_column": "vector2",
|
||||
"fast_search": True,
|
||||
"with_row_id": True,
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
|
||||
@@ -229,6 +292,17 @@ def test_query_sync_maximal():
|
||||
)
|
||||
|
||||
|
||||
def test_query_sync_multiple_vectors():
|
||||
def handler(_body):
|
||||
return pa.table({"id": [1]})
|
||||
|
||||
with query_test_table(handler) as table:
|
||||
results = table.search([[1, 2, 3], [4, 5, 6]]).limit(1).to_list()
|
||||
assert len(results) == 2
|
||||
results.sort(key=lambda x: x["query_index"])
|
||||
assert results == [{"id": 1, "query_index": 0}, {"id": 1, "query_index": 1}]
|
||||
|
||||
|
||||
def test_query_sync_fts():
|
||||
def handler(body):
|
||||
assert body == {
|
||||
@@ -238,6 +312,7 @@ def test_query_sync_fts():
|
||||
},
|
||||
"k": 10,
|
||||
"vector": [],
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3]})
|
||||
@@ -254,6 +329,7 @@ def test_query_sync_fts():
|
||||
"k": 42,
|
||||
"vector": [],
|
||||
"with_row_id": True,
|
||||
"version": None,
|
||||
}
|
||||
|
||||
return pa.table({"id": [1, 2, 3]})
|
||||
@@ -279,6 +355,7 @@ def test_query_sync_hybrid():
|
||||
"k": 42,
|
||||
"vector": [],
|
||||
"with_row_id": True,
|
||||
"version": None,
|
||||
}
|
||||
return pa.table({"_rowid": [1, 2, 3], "_score": [0.1, 0.2, 0.3]})
|
||||
else:
|
||||
@@ -290,7 +367,9 @@ def test_query_sync_hybrid():
|
||||
"refine_factor": None,
|
||||
"vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
"nprobes": 20,
|
||||
"ef": None,
|
||||
"with_row_id": True,
|
||||
"version": None,
|
||||
}
|
||||
return pa.table({"_rowid": [1, 2, 3], "_distance": [0.1, 0.2, 0.3]})
|
||||
|
||||
|
||||
@@ -240,6 +240,121 @@ def test_add(db):
|
||||
_add(table, schema)
|
||||
|
||||
|
||||
def test_add_subschema(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||
pa.field("item", pa.string(), nullable=True),
|
||||
pa.field("price", pa.float64(), nullable=False),
|
||||
]
|
||||
)
|
||||
table = db.create_table("test", schema=schema)
|
||||
|
||||
data = {"price": 10.0, "item": "foo"}
|
||||
table.add([data])
|
||||
data = {"price": 2.0, "vector": [3.1, 4.1]}
|
||||
table.add([data])
|
||||
data = {"price": 3.0, "vector": [5.9, 26.5], "item": "bar"}
|
||||
table.add([data])
|
||||
|
||||
expected = pa.table(
|
||||
{
|
||||
"vector": [None, [3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", None, "bar"],
|
||||
"price": [10.0, 2.0, 3.0],
|
||||
},
|
||||
schema=schema,
|
||||
)
|
||||
assert table.to_arrow() == expected
|
||||
|
||||
data = {"item": "foo"}
|
||||
# We can't omit a column if it's not nullable
|
||||
with pytest.raises(OSError, match="Invalid user input"):
|
||||
table.add([data])
|
||||
|
||||
# We can add it if we make the column nullable
|
||||
table.alter_columns(dict(path="price", nullable=True))
|
||||
table.add([data])
|
||||
|
||||
expected_schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||
pa.field("item", pa.string(), nullable=True),
|
||||
pa.field("price", pa.float64(), nullable=True),
|
||||
]
|
||||
)
|
||||
expected = pa.table(
|
||||
{
|
||||
"vector": [None, [3.1, 4.1], [5.9, 26.5], None],
|
||||
"item": ["foo", None, "bar", "foo"],
|
||||
"price": [10.0, 2.0, 3.0, None],
|
||||
},
|
||||
schema=expected_schema,
|
||||
)
|
||||
assert table.to_arrow() == expected
|
||||
|
||||
|
||||
def test_add_nullability(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=False),
|
||||
pa.field("id", pa.string(), nullable=False),
|
||||
]
|
||||
)
|
||||
table = db.create_table("test", schema=schema)
|
||||
|
||||
nullable_schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||
pa.field("id", pa.string(), nullable=True),
|
||||
]
|
||||
)
|
||||
data = pa.table(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"id": ["foo", "bar"],
|
||||
},
|
||||
schema=nullable_schema,
|
||||
)
|
||||
# We can add nullable schema if it doesn't actually contain nulls
|
||||
table.add(data)
|
||||
|
||||
expected = data.cast(schema)
|
||||
assert table.to_arrow() == expected
|
||||
|
||||
data = pa.table(
|
||||
{
|
||||
"vector": [None],
|
||||
"id": ["baz"],
|
||||
},
|
||||
schema=nullable_schema,
|
||||
)
|
||||
# We can't add nullable schema if it contains nulls
|
||||
with pytest.raises(Exception, match="Vector column vector has NaNs"):
|
||||
table.add(data)
|
||||
|
||||
# But we can make it nullable
|
||||
table.alter_columns(dict(path="vector", nullable=True))
|
||||
table.add(data)
|
||||
|
||||
expected_schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||
pa.field("id", pa.string(), nullable=False),
|
||||
]
|
||||
)
|
||||
expected = pa.table(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5], None],
|
||||
"id": ["foo", "bar", "baz"],
|
||||
},
|
||||
schema=expected_schema,
|
||||
)
|
||||
assert table.to_arrow() == expected
|
||||
|
||||
|
||||
def test_add_pydantic_model(db):
|
||||
# https://github.com/lancedb/lancedb/issues/562
|
||||
|
||||
@@ -892,10 +1007,15 @@ def test_empty_query(db):
|
||||
table = LanceTable.create(db, "my_table2", data=[{"id": i} for i in range(100)])
|
||||
df = table.search().select(["id"]).to_pandas()
|
||||
assert len(df) == 10
|
||||
# None is the same as default
|
||||
df = table.search().select(["id"]).limit(None).to_pandas()
|
||||
assert len(df) == 100
|
||||
assert len(df) == 10
|
||||
# invalid limist is the same as None, wihch is the same as default
|
||||
df = table.search().select(["id"]).limit(-1).to_pandas()
|
||||
assert len(df) == 100
|
||||
assert len(df) == 10
|
||||
# valid limit should work
|
||||
df = table.search().select(["id"]).limit(42).to_pandas()
|
||||
assert len(df) == 42
|
||||
|
||||
|
||||
def test_search_with_schema_inf_single_vector(db):
|
||||
|
||||
@@ -142,6 +142,13 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().only_if(predicate);
|
||||
}
|
||||
|
||||
pub fn add_query_vector(&mut self, vector: Bound<'_, PyAny>) -> PyResult<()> {
|
||||
let data: ArrayData = ArrayData::from_pyarrow_bound(&vector)?;
|
||||
let array = make_array(data);
|
||||
self.inner = self.inner.clone().add_query_vector(array).infer_error()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
||||
self.inner = self.inner.clone().select(Select::dynamic(&columns));
|
||||
}
|
||||
@@ -188,6 +195,10 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||
}
|
||||
|
||||
pub fn ef(&mut self, ef: u32) {
|
||||
self.inner = self.inner.clone().ef(ef as usize);
|
||||
}
|
||||
|
||||
pub fn bypass_vector_index(&mut self) {
|
||||
self.inner = self.inner.clone().bypass_vector_index()
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ use lancedb::table::{
|
||||
use pyo3::{
|
||||
exceptions::{PyRuntimeError, PyValueError},
|
||||
pyclass, pymethods,
|
||||
types::{PyDict, PyDictMethods, PyString},
|
||||
types::{IntoPyDict, PyDict, PyDictMethods, PyString},
|
||||
Bound, FromPyObject, PyAny, PyRef, PyResult, Python, ToPyObject,
|
||||
};
|
||||
use pyo3_asyncio_0_21::tokio::future_into_py;
|
||||
@@ -246,6 +246,33 @@ impl Table {
|
||||
)
|
||||
}
|
||||
|
||||
pub fn list_versions(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
let versions = inner.list_versions().await.infer_error()?;
|
||||
let versions_as_dict = Python::with_gil(|py| {
|
||||
versions
|
||||
.iter()
|
||||
.map(|v| {
|
||||
let dict = PyDict::new_bound(py);
|
||||
dict.set_item("version", v.version).unwrap();
|
||||
dict.set_item(
|
||||
"timestamp",
|
||||
v.timestamp.timestamp_nanos_opt().unwrap_or_default(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let tup: Vec<(&String, &String)> = v.metadata.iter().collect();
|
||||
dict.set_item("metadata", tup.into_py_dict(py)).unwrap();
|
||||
dict.to_object(py)
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
});
|
||||
|
||||
Ok(versions_as_dict)
|
||||
})
|
||||
}
|
||||
|
||||
pub fn checkout(self_: PyRef<'_, Self>, version: u64) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-node"
|
||||
version = "0.13.0-beta.1"
|
||||
version = "0.13.0"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
edition.workspace = true
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb"
|
||||
version = "0.13.0-beta.1"
|
||||
version = "0.13.0"
|
||||
edition.workspace = true
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
@@ -46,10 +46,18 @@ serde = { version = "^1" }
|
||||
serde_json = { version = "1" }
|
||||
async-openai = { version = "0.20.0", optional = true }
|
||||
serde_with = { version = "3.8.1" }
|
||||
aws-sdk-bedrockruntime = { version = "1.27.0", optional = true }
|
||||
# For remote feature
|
||||
reqwest = { version = "0.12.0", features = ["gzip", "json", "stream"], optional = true }
|
||||
rand = { version = "0.8.3", features = ["small_rng"], optional = true}
|
||||
http = { version = "1", optional = true } # Matching what is in reqwest
|
||||
reqwest = { version = "0.12.0", default-features = false, features = [
|
||||
"charset",
|
||||
"gzip",
|
||||
"http2",
|
||||
"json",
|
||||
"macos-system-configuration",
|
||||
"stream",
|
||||
], optional = true }
|
||||
rand = { version = "0.8.3", features = ["small_rng"], optional = true }
|
||||
http = { version = "1", optional = true } # Matching what is in reqwest
|
||||
uuid = { version = "1.7.0", features = ["v4"], optional = true }
|
||||
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
|
||||
polars = { version = ">=0.37,<0.40.0", optional = true }
|
||||
@@ -72,11 +80,13 @@ aws-config = { version = "1.0" }
|
||||
aws-smithy-runtime = { version = "1.3" }
|
||||
http-body = "1" # Matching reqwest
|
||||
|
||||
|
||||
[features]
|
||||
default = []
|
||||
default = ["default-tls"]
|
||||
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
|
||||
fp16kernels = ["lance-linalg/fp16kernels"]
|
||||
s3-test = []
|
||||
bedrock = ["dep:aws-sdk-bedrockruntime"]
|
||||
openai = ["dep:async-openai", "dep:reqwest"]
|
||||
polars = ["dep:polars-arrow", "dep:polars"]
|
||||
sentence-transformers = [
|
||||
@@ -87,6 +97,11 @@ sentence-transformers = [
|
||||
"dep:tokenizers"
|
||||
]
|
||||
|
||||
# TLS
|
||||
default-tls = ["reqwest?/default-tls"]
|
||||
native-tls = ["reqwest?/native-tls"]
|
||||
rustls-tls = ["reqwest?/rustls-tls"]
|
||||
|
||||
[[example]]
|
||||
name = "openai"
|
||||
required-features = ["openai"]
|
||||
@@ -94,3 +109,7 @@ required-features = ["openai"]
|
||||
[[example]]
|
||||
name = "sentence_transformers"
|
||||
required-features = ["sentence-transformers"]
|
||||
|
||||
[[example]]
|
||||
name = "bedrock"
|
||||
required-features = ["bedrock"]
|
||||
|
||||
89
rust/lancedb/examples/bedrock.rs
Normal file
89
rust/lancedb/examples/bedrock.rs
Normal file
@@ -0,0 +1,89 @@
|
||||
use std::{iter::once, sync::Arc};
|
||||
|
||||
use arrow_array::{Float64Array, Int32Array, RecordBatch, RecordBatchIterator, StringArray};
|
||||
use arrow_schema::{DataType, Field, Schema};
|
||||
use aws_config::Region;
|
||||
use aws_sdk_bedrockruntime::Client;
|
||||
use futures::StreamExt;
|
||||
use lancedb::{
|
||||
arrow::IntoArrow,
|
||||
connect,
|
||||
embeddings::{bedrock::BedrockEmbeddingFunction, EmbeddingDefinition, EmbeddingFunction},
|
||||
query::{ExecutableQuery, QueryBase},
|
||||
Result,
|
||||
};
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<()> {
|
||||
let tempdir = tempfile::tempdir().unwrap();
|
||||
let tempdir = tempdir.path().to_str().unwrap();
|
||||
|
||||
// create Bedrock embedding function
|
||||
let region: String = "us-east-1".to_string();
|
||||
let config = aws_config::defaults(aws_config::BehaviorVersion::latest())
|
||||
.region(Region::new(region))
|
||||
.load()
|
||||
.await;
|
||||
|
||||
let embedding = Arc::new(BedrockEmbeddingFunction::new(
|
||||
Client::new(&config), // AWS Region
|
||||
));
|
||||
|
||||
let db = connect(tempdir).execute().await?;
|
||||
db.embedding_registry()
|
||||
.register("bedrock", embedding.clone())?;
|
||||
|
||||
let table = db
|
||||
.create_table("vectors", make_data())
|
||||
.add_embedding(EmbeddingDefinition::new(
|
||||
"text",
|
||||
"bedrock",
|
||||
Some("embeddings"),
|
||||
))?
|
||||
.execute()
|
||||
.await?;
|
||||
|
||||
// execute vector search
|
||||
let query = Arc::new(StringArray::from_iter_values(once("something warm")));
|
||||
let query_vector = embedding.compute_query_embeddings(query)?;
|
||||
let mut results = table
|
||||
.vector_search(query_vector)?
|
||||
.limit(1)
|
||||
.execute()
|
||||
.await?;
|
||||
|
||||
let rb = results.next().await.unwrap()?;
|
||||
let out = rb
|
||||
.column_by_name("text")
|
||||
.unwrap()
|
||||
.as_any()
|
||||
.downcast_ref::<StringArray>()
|
||||
.unwrap();
|
||||
let text = out.iter().next().unwrap().unwrap();
|
||||
println!("Closest match: {}", text);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn make_data() -> impl IntoArrow {
|
||||
let schema = Schema::new(vec![
|
||||
Field::new("id", DataType::Int32, true),
|
||||
Field::new("text", DataType::Utf8, false),
|
||||
Field::new("price", DataType::Float64, false),
|
||||
]);
|
||||
|
||||
let id = Int32Array::from(vec![1, 2, 3, 4]);
|
||||
let text = StringArray::from_iter_values(vec![
|
||||
"Black T-Shirt",
|
||||
"Leather Jacket",
|
||||
"Winter Parka",
|
||||
"Hooded Sweatshirt",
|
||||
]);
|
||||
let price = Float64Array::from(vec![10.0, 50.0, 100.0, 30.0]);
|
||||
let schema = Arc::new(schema);
|
||||
let rb = RecordBatch::try_new(
|
||||
schema.clone(),
|
||||
vec![Arc::new(id), Arc::new(text), Arc::new(price)],
|
||||
)
|
||||
.unwrap();
|
||||
Box::new(RecordBatchIterator::new(vec![Ok(rb)], schema))
|
||||
}
|
||||
@@ -17,6 +17,9 @@ pub mod openai;
|
||||
#[cfg(feature = "sentence-transformers")]
|
||||
pub mod sentence_transformers;
|
||||
|
||||
#[cfg(feature = "bedrock")]
|
||||
pub mod bedrock;
|
||||
|
||||
use lance::arrow::RecordBatchExt;
|
||||
use std::{
|
||||
borrow::Cow,
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user