Rob Meng 0554db03b3 progagate uri query string to lance; add aws integration tests (#486)
# WARNING: specifying engine is NOT a publicly supported feature in
lancedb yet. THE API WILL CHANGE.

This PR exposes dynamodb based commit to `vectordb` and JS SDK (will do
python in another PR since it's on a different release track)

This PR also added aws integration test using `localstack`

## What?
This PR adds uri parameters to DB connection string. User may specify
`engine` in the connection string to let LanceDB know that the user
wants to use an external store when reading and writing a table. User
may also pass any parameters required by the commitStore in the
connection string, these parameters will be propagated to lance.

e.g.
```
vectordb.connect("s3://my-db-bucket?engine=ddb&ddbTableName=my-commit-table")
```
will automatically convert table path to
```
s3+ddb://my-db-bucket/my_table.lance?&ddbTableName=my-commit-table
```
2023-09-09 13:33:16 -04:00
2023-03-17 18:15:19 -07:00

LanceDB Logo

Developer-friendly, serverless vector database for AI applications

DocumentationBlogDiscordTwitter

LanceDB Multimodal Search


LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.

The key features of LanceDB include:

  • Production-scale vector search with no servers to manage.

  • Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).

  • Support for vector similarity search, full-text search and SQL.

  • Native Python and Javascript/Typescript support.

  • Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.

  • Ecosystem integrations with LangChain 🦜🔗, LlamaIndex 🦙, Apache-Arrow, Pandas, Polars, DuckDB and more on the way.

LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.

Quick Start

Javascript

npm install vectordb
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');

const table = await db.createTable('vectors', 
      [{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
       { id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])

const query = table.search([0.1, 0.3]);
query.limit = 20;
const results = await query.execute();

Python

pip install lancedb
import lancedb

uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
                         data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
                               {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()

Blogs, Tutorials & Videos

Description
Languages
Rust 42.9%
Python 41.8%
TypeScript 14.2%
Shell 0.6%
Java 0.3%