This PR makes incremental changes to the documentation. * Closes #697 * Closes #698 ## Chores - [x] Add dark mode - [x] Fix headers in navbar - [x] Add `extra.css` to customize navbar styles - [x] Customize fonts for prose/code blocks, navbar and admonitions - [x] Inspect all admonition boxes (remove redundant dropdowns) and improve clarity and readability - [x] Ensure that all images in the docs have white background (not transparent) to be viewable in dark mode - [x] Improve code formatting in code blocks to make them consistent with autoformatters (eslint/ruff) - [x] Add bolder weight to h1 headers - [x] Add diagram showing the difference between embedded (OSS) and serverless (Cloud) - [x] Fix [Creating an empty table](https://lancedb.github.io/lancedb/guides/tables/#creating-empty-table) section: right now, the subheaders are not clickable. - [x] In critical data ingestion methods like `table.add` (among others), the type signature often does not match the actual code - [x] Proof-read each documentation section and rewrite as necessary to provide more context, use cases, and explanations so it reads less like reference documentation. This is especially important for CRUD and search sections since those are so central to the user experience. ## Restructure/new content - [x] The section for [Adding data](https://lancedb.github.io/lancedb/guides/tables/#adding-to-a-table) only shows examples for pandas and iterables. We should include pydantic models, arrow tables, etc. - [x] Add conceptual tutorial for IVF-PQ index - [x] Clearly separate vector search, FTS and filtering sections so that these are easier to find - [x] Add docs on refine factor to explain its importance for recall. Closes #716 - [x] Add an FAQ page showing answers to commonly asked questions about LanceDB. Closes #746 - [x] Add simple polars example to the integrations section. Closes #756 and closes #153 - [ ] Add basic docs for the Rust API (more detailed API docs can come later). Closes #781 - [x] Add a section on the various storage options on local vs. cloud (S3, EBS, EFS, local disk, etc.) and the tradeoffs involved. Closes #782 - [x] Revamp filtering docs: add pre-filtering examples and redo headers and update content for SQL filters. Closes #783 and closes #784. - [x] Add docs for data management: compaction, cleaning up old versions and incremental indexing. Closes #785 - [ ] Add a benchmark section that also discusses some best practices. Closes #787 --------- Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Will Jones <willjones127@gmail.com>
5.8 KiB
Vector Search
A vector search finds the approximate or exact nearest neighbors to a given query vector.
- In a recommendation system or search engine, you can find similar records to the one you searched.
- In LLM and other AI applications, each data point can be represented by embeddings generated from existing models, following which the search returns the most relevant features.
Distance metrics
Distance metrics are a measure of the similarity between a pair of vectors. Currently, LanceDB supports the following metrics:
| Metric | Description |
|---|---|
l2 |
Euclidean / L2 distance |
cosine |
Cosine Similarity |
dot |
Dot Production |
Exhaustive search (kNN)
If you do not create a vector index, LanceDB exhaustively scans the entire vector space and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
=== "Python"
```python
import lancedb
import numpy as np
db = lancedb.connect("data/sample-lancedb")
tbl = db.open_table("my_vectors")
df = tbl.search(np.random.random((1536))) \
.limit(10) \
.to_list()
```
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
const tbl = await db.openTable("my_vectors")
const results_1 = await tbl.search(Array(1536).fill(1.2))
.limit(10)
.execute()
```
By default, l2 will be used as metric type. You can specify the metric type as
cosine or dot if required.
=== "Python"
```python
df = tbl.search(np.random.random((1536))) \
.metric("cosine") \
.limit(10) \
.to_list()
```
=== "JavaScript"
```javascript
const results_2 = await tbl.search(Array(1536).fill(1.2))
.metricType("cosine")
.limit(10)
.execute()
```
Approximate nearest neighbor (ANN) search
To perform scalable vector retrieval with acceptable latencies, it's common to build a vector index. While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of an ANN search means that using an index often involves a trade-off between recall and latency.
See the IVF_PQ index for a deeper description of how IVF_PQ
indexes work in LanceDB.
Output search results
LanceDB returns vector search results via different formats commonly used in python. Let's create a LanceDB table with a nested schema:
=== "Python" ```python from datetime import datetime import lancedb from lancedb.pydantic import LanceModel, Vector import numpy as np from pydantic import BaseModel uri = "data/sample-lancedb-nested"
class Metadata(BaseModel):
source: str
timestamp: datetime
class Document(BaseModel):
content: str
meta: Metadata
class LanceSchema(LanceModel):
id: str
vector: Vector(1536)
payload: Document
# Let's add 100 sample rows to our dataset
data = [LanceSchema(
id=f"id{i}",
vector=np.random.randn(1536),
payload=Document(
content=f"document{i}", meta=Metadata(source=f"source{i % 10}", timestamp=datetime.now())
),
) for i in range(100)]
tbl = db.create_table("documents", data=data)
```
### As a PyArrow table
Using `to_arrow()` we can get the results back as a pyarrow Table.
This result table has the same columns as the LanceDB table, with
the addition of an `_distance` column for vector search or a `score`
column for full text search.
```python
tbl.search(np.random.randn(1536)).to_arrow()
```
### As a Pandas DataFrame
You can also get the results as a pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas()
```
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
python dict column, which makes it difficult to support nested references.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)
```
If your table has a deeply nested struct, you can control how many levels
of nesting to flatten by passing in a positive integer.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=1)
```
### As a list of Python dicts
You can of course return results as a list of python dicts.
```python
tbl.search(np.random.randn(1536)).to_list()
```
### As a list of Pydantic models
We can add data using Pydantic models, and we can certainly
retrieve results as Pydantic models
```python
tbl.search(np.random.randn(1536)).to_pydantic(LanceSchema)
```
Note that in this case the extra `_distance` field is discarded since
it's not part of the LanceSchema.