Closes #721 fts will return results as a pyarrow table. Pyarrow tables has a `filter` method but it does not take sql filter strings (only pyarrow compute expressions). Instead, we do one of two things to support `tbl.search("keywords").where("foo=5").limit(10).to_arrow()`: Default path: If duckdb is available then use duckdb to execute the sql filter string on the pyarrow table. Backup path: Otherwise, write the pyarrow table to a lance dataset and then do `to_table(filter=<filter>)` Neither is ideal. Default path has two issues: 1. requires installing an extra library (duckdb) 2. duckdb mangles some fields (like fixed size list => list) Backup path incurs a latency penalty (~20ms on ssd) to write the resultset to disk. In the short term, once #676 is addressed, we can write the dataset to "memory://" instead of disk, this makes the post filter evaluate much quicker (ETA next week). In the longer term, we'd like to be able to evaluate the filter string on the pyarrow Table directly, one possibility being that we use Substrait to generate pyarrow compute expressions from sql string. Or if there's enough progress on pyarrow, it could support Substrait expressions directly (no ETA) --------- Co-authored-by: Will Jones <willjones127@gmail.com>
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
-
Production-scale vector search with no servers to manage.
-
Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
-
Support for vector similarity search, full-text search and SQL.
-
Native Python and Javascript/Typescript support.
-
Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
-
GPU support in building vector index(*).
-
Ecosystem integrations with LangChain 🦜️🔗, LlamaIndex 🦙, Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
Quick Start
Javascript
npm install vectordb
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
Python
pip install lancedb
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
