Based on https://github.com/lancedb/lance/pull/4984 1. Bump to 1.0.0-beta.2 2. Use DirectoryNamespace in lance to perform all testing in python and rust for much better coverage 3. Refactor `ListingDatabase` to be able to accept location and namespace. This is because we have to leverage listing database (local lancedb connection) for using namespace, namespace only resolves the location and storage options but we don't want to bind all the way to rust since user will plug-in namespace from python side. And thus `ListingDatabase` needs to be able to accept location and namespace that are created from namespace connection. 4. For credentials vending, we also pass storage options provider all the way to rust layer, and the rust layer calls back to the python function to fetch next storage option. This is exactly the same thing we did in pylance.
The Multimodal AI Lakehouse
How to Install ✦ Detailed Documentation ✦ Tutorials and Recipes ✦ Contributors
The ultimate multimodal data platform for AI/ML applications.
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease. LanceDB is a central location where developers can build, train and analyze their AI workloads.
Demo: Multimodal Search by Keyword, Vector or with SQL
Star LanceDB to get updates!
Key Features:
- Fast Vector Search: Search billions of vectors in milliseconds with state-of-the-art indexing.
- Comprehensive Search: Support for vector similarity search, full-text search and SQL.
- Multimodal Support: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- Advanced Features: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
Products:
- Open Source & Local: 100% open source, runs locally or in your cloud. No vendor lock-in.
- Cloud and Enterprise: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
Ecosystem:
- Columnar Storage: Built on the Lance columnar format for efficient storage and analytics.
- Seamless Integration: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- Rich Ecosystem: Integrations with LangChain 🦜️🔗, LlamaIndex 🦙, Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
How to Install:
Follow the Quickstart doc to set up LanceDB locally.
API & SDK: We also support Python, Typescript and Rust SDKs
| Interface | Documentation |
|---|---|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
Join Us and Contribute
We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our Discord server.
Check out the GitHub Issues if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
