BREAKING CHANGE: embedding function implementations in Node need to now call `resolveVariables()` in their constructors and should **not** implement `toJSON()`. This tries to address the handling of secrets. In Node, they are currently lost. In Python, they are currently leaked into the table schema metadata. This PR introduces an in-memory variable store on the function registry. It also allows embedding function definitions to label certain config values as "sensitive", and the preprocessing logic will raise an error if users try to pass in hard-coded values. Closes #2110 Closes #521 --------- Co-authored-by: Weston Pace <weston.pace@gmail.com>
5.3 KiB
@lancedb/lancedb • Docs
@lancedb/lancedb / embedding / TextEmbeddingFunction
Class: abstract TextEmbeddingFunction<M>
an abstract class for implementing embedding functions that take text as input
Extends
EmbeddingFunction<string,M>
Type Parameters
• M extends FunctionOptions = FunctionOptions
Constructors
new TextEmbeddingFunction()
new TextEmbeddingFunction<M>(): TextEmbeddingFunction<M>
Returns
Inherited from
Methods
computeQueryEmbeddings()
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
Compute the embeddings for a single query
Parameters
- data:
string
Returns
Promise<number[] | Float32Array | Float64Array>
Overrides
EmbeddingFunction.computeQueryEmbeddings
computeSourceEmbeddings()
computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
Creates a vector representation for the given values.
Parameters
- data:
string[]
Returns
Promise<number[][] | Float32Array[] | Float64Array[]>
Overrides
EmbeddingFunction.computeSourceEmbeddings
embeddingDataType()
embeddingDataType(): Float<Floats>
The datatype of the embeddings
Returns
Float<Floats>
Overrides
EmbeddingFunction.embeddingDataType
generateEmbeddings()
abstract generateEmbeddings(texts, ...args): Promise<number[][] | Float32Array[] | Float64Array[]>
Parameters
-
texts:
string[] -
...args:
any[]
Returns
Promise<number[][] | Float32Array[] | Float64Array[]>
getSensitiveKeys()
protected getSensitiveKeys(): string[]
Provide a list of keys in the function options that should be treated as sensitive. If users pass raw values for these keys, they will be rejected.
Returns
string[]
Inherited from
EmbeddingFunction.getSensitiveKeys
init()?
optional init(): Promise<void>
Optionally load any resources needed for the embedding function.
This method is called after the embedding function has been initialized but before any embeddings are computed. It is useful for loading local models or other resources that are needed for the embedding function to work.
Returns
Promise<void>
Inherited from
ndims()
ndims(): undefined | number
The number of dimensions of the embeddings
Returns
undefined | number
Inherited from
resolveVariables()
protected resolveVariables(config): Partial<M>
Apply variables to the config.
Parameters
- config:
Partial<M>
Returns
Partial<M>
Inherited from
EmbeddingFunction.resolveVariables
sourceField()
sourceField(): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
sourceField is used in combination with LanceSchema to provide a declarative data model
Returns
[DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
See
Overrides
toJSON()
toJSON(): Record<string, any>
Get the original arguments to the constructor, to serialize them so they can be used to recreate the embedding function later.
Returns
Record<string, any>
Inherited from
vectorField()
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
vectorField is used in combination with LanceSchema to provide a declarative data model
Parameters
- optionsOrDatatype?:
DataType<Type,any> |Partial<FieldOptions<DataType<Type,any>>> The options for the field
Returns
[DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]