Add HNSW extension (#4227)

## Describe your changes

Port HNSW implementation for ANN search top Postgres 

## Issue ticket number and link

https://www.pinecone.io/learn/hnsw

## Checklist before requesting a review

- [ ] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.

## Checklist before merging

- [ ] Do not forget to reformat commit message to not include the above
checklist
This commit is contained in:
Konstantin Knizhnik
2023-06-04 11:41:38 +03:00
committed by GitHub
parent 4ba950a35a
commit 04542826be
12 changed files with 1139 additions and 0 deletions

View File

@@ -556,6 +556,10 @@ RUN make -j $(getconf _NPROCESSORS_ONLN) \
make -j $(getconf _NPROCESSORS_ONLN) \
PG_CONFIG=/usr/local/pgsql/bin/pg_config \
-C pgxn/neon_utils \
-s install && \
make -j $(getconf _NPROCESSORS_ONLN) \
PG_CONFIG=/usr/local/pgsql/bin/pg_config \
-C pgxn/hnsw \
-s install
#########################################################################################

View File

@@ -138,6 +138,11 @@ neon-pg-ext-%: postgres-%
$(MAKE) PG_CONFIG=$(POSTGRES_INSTALL_DIR)/$*/bin/pg_config CFLAGS='$(PG_CFLAGS) $(COPT)' \
-C $(POSTGRES_INSTALL_DIR)/build/neon-utils-$* \
-f $(ROOT_PROJECT_DIR)/pgxn/neon_utils/Makefile install
+@echo "Compiling hnsw $*"
mkdir -p $(POSTGRES_INSTALL_DIR)/build/hnsw-$*
$(MAKE) PG_CONFIG=$(POSTGRES_INSTALL_DIR)/$*/bin/pg_config CFLAGS='$(PG_CFLAGS) $(COPT)' \
-C $(POSTGRES_INSTALL_DIR)/build/hnsw-$* \
-f $(ROOT_PROJECT_DIR)/pgxn/hnsw/Makefile install
.PHONY: neon-pg-ext-clean-%
neon-pg-ext-clean-%:
@@ -153,6 +158,9 @@ neon-pg-ext-clean-%:
$(MAKE) PG_CONFIG=$(POSTGRES_INSTALL_DIR)/$*/bin/pg_config \
-C $(POSTGRES_INSTALL_DIR)/build/neon-utils-$* \
-f $(ROOT_PROJECT_DIR)/pgxn/neon_utils/Makefile clean
$(MAKE) PG_CONFIG=$(POSTGRES_INSTALL_DIR)/$*/bin/pg_config \
-C $(POSTGRES_INSTALL_DIR)/build/hnsw-$* \
-f $(ROOT_PROJECT_DIR)/pgxn/hnsw/Makefile clean
.PHONY: neon-pg-ext
neon-pg-ext: \

26
pgxn/hnsw/Makefile Normal file
View File

@@ -0,0 +1,26 @@
EXTENSION = hnsw
EXTVERSION = 0.1.0
MODULE_big = hnsw
DATA = $(wildcard *--*.sql)
OBJS = hnsw.o hnswalg.o
TESTS = $(wildcard test/sql/*.sql)
REGRESS = $(patsubst test/sql/%.sql,%,$(TESTS))
REGRESS_OPTS = --inputdir=test --load-extension=hnsw
# For auto-vectorization:
# - GCC (needs -ftree-vectorize OR -O3) - https://gcc.gnu.org/projects/tree-ssa/vectorization.html
PG_CFLAGS += -O3
PG_CPPFLAGS += -msse4.1 -O3 -march=native -ftree-vectorize -ftree-vectorizer-verbose=0
PG_LDFLAGS += -lstdc++
all: $(EXTENSION)--$(EXTVERSION).sql
PG_CONFIG ?= pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)
dist:
mkdir -p dist
git archive --format zip --prefix=$(EXTENSION)-$(EXTVERSION)/ --output dist/$(EXTENSION)-$(EXTVERSION).zip master

25
pgxn/hnsw/README.md Normal file
View File

@@ -0,0 +1,25 @@
# Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors
This ANN extension of Postgres is based
on [ivf-hnsw](https://github.com/dbaranchuk/ivf-hnsw.git) implementation of [HNSW](https://www.pinecone.io/learn/hnsw),
the code for the current state-of-the-art billion-scale nearest neighbor search system presented in the paper:
[Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors](http://openaccess.thecvf.com/content_ECCV_2018/html/Dmitry_Baranchuk_Revisiting_the_Inverted_ECCV_2018_paper.html),
<br>
Dmitry Baranchuk, Artem Babenko, Yury Malkov
# Postgres extension
HNSW index is hold in memory (built on demand) and it's maxial size is limited
by `maxelements` index parameter. Another required parameter is nubmer of dimensions (if it is not specified in column type).
Optional parameter `ef` specifies number of neighbors which are considered during index construction and search (corresponds `efConstruction` and `efSearch` parameters
described in the article).
# Example of usage:
```
create extension hnsw;
create table embeddings(id integer primary key, payload real[]);
create index on embeddings using hnsw(payload) with (maxelements=1000000, dims=100, m=32);
select id from embeddings order by payload <-> array[1.0, 2.0,...] limit 100;
```

29
pgxn/hnsw/hnsw--0.1.0.sql Normal file
View File

@@ -0,0 +1,29 @@
-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION hnsw" to load this file. \quit
-- functions
CREATE FUNCTION l2_distance(real[], real[]) RETURNS real
AS 'MODULE_PATHNAME' LANGUAGE C IMMUTABLE STRICT PARALLEL SAFE;
-- operators
CREATE OPERATOR <-> (
LEFTARG = real[], RIGHTARG = real[], PROCEDURE = l2_distance,
COMMUTATOR = '<->'
);
-- access method
CREATE FUNCTION hnsw_handler(internal) RETURNS index_am_handler
AS 'MODULE_PATHNAME' LANGUAGE C;
CREATE ACCESS METHOD hnsw TYPE INDEX HANDLER hnsw_handler;
COMMENT ON ACCESS METHOD hnsw IS 'hnsw index access method';
-- opclasses
CREATE OPERATOR CLASS knn_ops
DEFAULT FOR TYPE real[] USING hnsw AS
OPERATOR 1 <-> (real[], real[]) FOR ORDER BY float_ops;

551
pgxn/hnsw/hnsw.c Normal file
View File

@@ -0,0 +1,551 @@
#include "postgres.h"
#include "access/amapi.h"
#include "access/generic_xlog.h"
#include "access/relation.h"
#include "access/reloptions.h"
#include "access/tableam.h"
#include "catalog/index.h"
#include "commands/vacuum.h"
#include "nodes/execnodes.h"
#include "storage/bufmgr.h"
#include "utils/guc.h"
#include "utils/selfuncs.h"
#include <math.h>
#include <float.h>
#include "hnsw.h"
PG_MODULE_MAGIC;
typedef struct {
int32 vl_len_; /* varlena header (do not touch directly!) */
int dims;
int maxelements;
int efConstruction;
int efSearch;
int M;
} HnswOptions;
static relopt_kind hnsw_relopt_kind;
typedef struct {
HierarchicalNSW* hnsw;
size_t curr;
size_t n_results;
ItemPointer results;
} HnswScanOpaqueData;
typedef HnswScanOpaqueData* HnswScanOpaque;
typedef struct {
Oid relid;
uint32 status;
HierarchicalNSW* hnsw;
} HnswHashEntry;
#define SH_PREFIX hnsw_index
#define SH_ELEMENT_TYPE HnswHashEntry
#define SH_KEY_TYPE Oid
#define SH_KEY relid
#define SH_STORE_HASH
#define SH_GET_HASH(tb, a) ((a)->relid)
#define SH_HASH_KEY(tb, key) (key)
#define SH_EQUAL(tb, a, b) ((a) == (b))
#define SH_SCOPE static inline
#define SH_DEFINE
#define SH_DECLARE
#include "lib/simplehash.h"
#define INDEX_HASH_SIZE 11
#define DEFAULT_EF_SEARCH 64
PGDLLEXPORT void _PG_init(void);
static hnsw_index_hash *hnsw_indexes;
/*
* Initialize index options and variables
*/
void
_PG_init(void)
{
hnsw_relopt_kind = add_reloption_kind();
add_int_reloption(hnsw_relopt_kind, "dims", "Number of dimensions",
0, 0, INT_MAX, AccessExclusiveLock);
add_int_reloption(hnsw_relopt_kind, "maxelements", "Maximal number of elements",
0, 0, INT_MAX, AccessExclusiveLock);
add_int_reloption(hnsw_relopt_kind, "m", "Number of neighbors of each vertex",
100, 0, INT_MAX, AccessExclusiveLock);
add_int_reloption(hnsw_relopt_kind, "efconstruction", "Number of inspected neighbors during index construction",
16, 1, INT_MAX, AccessExclusiveLock);
add_int_reloption(hnsw_relopt_kind, "efsearch", "Number of inspected neighbors during index search",
64, 1, INT_MAX, AccessExclusiveLock);
hnsw_indexes = hnsw_index_create(TopMemoryContext, INDEX_HASH_SIZE, NULL);
}
static void
hnsw_build_callback(Relation index, ItemPointer tid, Datum *values,
bool *isnull, bool tupleIsAlive, void *state)
{
HierarchicalNSW* hnsw = (HierarchicalNSW*) state;
ArrayType* array;
int n_items;
label_t label = 0;
/* Skip nulls */
if (isnull[0])
return;
array = DatumGetArrayTypeP(values[0]);
n_items = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array));
if (n_items != hnsw_dimensions(hnsw))
{
elog(ERROR, "Wrong number of dimensions: %d instead of %d expected",
n_items, hnsw_dimensions(hnsw));
}
memcpy(&label, tid, sizeof(*tid));
hnsw_add_point(hnsw, (coord_t*)ARR_DATA_PTR(array), label);
}
static void
hnsw_populate(HierarchicalNSW* hnsw, Relation indexRel, Relation heapRel)
{
IndexInfo* indexInfo = BuildIndexInfo(indexRel);
Assert(indexInfo->ii_NumIndexAttrs == 1);
table_index_build_scan(heapRel, indexRel, indexInfo,
true, true, hnsw_build_callback, (void *) hnsw, NULL);
}
static HierarchicalNSW*
hnsw_get_index(Relation indexRel, Relation heapRel)
{
HierarchicalNSW* hnsw;
Oid indexoid = RelationGetRelid(indexRel);
HnswHashEntry* entry = hnsw_index_lookup(hnsw_indexes, indexoid);
if (entry == NULL)
{
size_t dims, maxelements;
size_t M;
size_t maxM;
size_t size_links_level0;
size_t size_data_per_element;
size_t data_size;
dsm_handle handle = indexoid << 1; /* make it even */
void* impl_private = NULL;
void* mapped_address = NULL;
Size mapped_size = 0;
Size shmem_size;
bool exists = true;
bool found;
HnswOptions *opts = (HnswOptions *) indexRel->rd_options;
if (opts == NULL || opts->maxelements == 0 || opts->dims == 0) {
elog(ERROR, "HNSW index requires 'maxelements' and 'dims' to be specified");
}
dims = opts->dims;
maxelements = opts->maxelements;
M = opts->M;
maxM = M * 2;
data_size = dims * sizeof(coord_t);
size_links_level0 = (maxM + 1) * sizeof(idx_t);
size_data_per_element = size_links_level0 + data_size + sizeof(label_t);
shmem_size = hnsw_sizeof() + maxelements * size_data_per_element;
/* first try to attach to existed index */
if (!dsm_impl_op(DSM_OP_ATTACH, handle, 0, &impl_private,
&mapped_address, &mapped_size, DEBUG1))
{
/* index doesn't exists: try to create it */
if (!dsm_impl_op(DSM_OP_CREATE, handle, shmem_size, &impl_private,
&mapped_address, &mapped_size, DEBUG1))
{
/* We can do it under shared lock, so some other backend may
* try to initialize index. If create is failed because index already
* created by somebody else, then try to attach to it once again
*/
if (!dsm_impl_op(DSM_OP_ATTACH, handle, 0, &impl_private,
&mapped_address, &mapped_size, ERROR))
{
return NULL;
}
}
else
{
exists = false;
}
}
Assert(mapped_size == shmem_size);
hnsw = (HierarchicalNSW*)mapped_address;
if (!exists)
{
hnsw_init(hnsw, dims, maxelements, M, maxM, opts->efConstruction);
hnsw_populate(hnsw, indexRel, heapRel);
}
entry = hnsw_index_insert(hnsw_indexes, indexoid, &found);
Assert(!found);
entry->hnsw = hnsw;
}
else
{
hnsw = entry->hnsw;
}
return hnsw;
}
/*
* Start or restart an index scan
*/
static IndexScanDesc
hnsw_beginscan(Relation index, int nkeys, int norderbys)
{
IndexScanDesc scan = RelationGetIndexScan(index, nkeys, norderbys);
HnswScanOpaque so = (HnswScanOpaque) palloc(sizeof(HnswScanOpaqueData));
Relation heap = relation_open(index->rd_index->indrelid, NoLock);
so->hnsw = hnsw_get_index(index, heap);
relation_close(heap, NoLock);
so->curr = 0;
so->n_results = 0;
so->results = NULL;
scan->opaque = so;
return scan;
}
/*
* Start or restart an index scan
*/
static void
hnsw_rescan(IndexScanDesc scan, ScanKey keys, int nkeys, ScanKey orderbys, int norderbys)
{
HnswScanOpaque so = (HnswScanOpaque) scan->opaque;
if (so->results)
{
pfree(so->results);
so->results = NULL;
}
so->curr = 0;
if (orderbys && scan->numberOfOrderBys > 0)
memmove(scan->orderByData, orderbys, scan->numberOfOrderBys * sizeof(ScanKeyData));
}
/*
* Fetch the next tuple in the given scan
*/
static bool
hnsw_gettuple(IndexScanDesc scan, ScanDirection dir)
{
HnswScanOpaque so = (HnswScanOpaque) scan->opaque;
/*
* Index can be used to scan backward, but Postgres doesn't support
* backward scan on operators
*/
Assert(ScanDirectionIsForward(dir));
if (so->curr == 0)
{
Datum value;
ArrayType* array;
int n_items;
size_t n_results;
label_t* results;
HnswOptions *opts = (HnswOptions *) scan->indexRelation->rd_options;
size_t efSearch = opts ? opts->efSearch : DEFAULT_EF_SEARCH;
/* Safety check */
if (scan->orderByData == NULL)
elog(ERROR, "cannot scan HNSW index without order");
/* No items will match if null */
if (scan->orderByData->sk_flags & SK_ISNULL)
return false;
value = scan->orderByData->sk_argument;
array = DatumGetArrayTypeP(value);
n_items = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array));
if (n_items != hnsw_dimensions(so->hnsw))
{
elog(ERROR, "Wrong number of dimensions: %d instead of %d expected",
n_items, hnsw_dimensions(so->hnsw));
}
if (!hnsw_search(so->hnsw, (coord_t*)ARR_DATA_PTR(array), efSearch, &n_results, &results))
elog(ERROR, "HNSW index search failed");
so->results = (ItemPointer)palloc(n_results*sizeof(ItemPointerData));
so->n_results = n_results;
for (size_t i = 0; i < n_results; i++)
{
memcpy(&so->results[i], &results[i], sizeof(so->results[i]));
}
free(results);
}
if (so->curr >= so->n_results)
{
return false;
}
else
{
scan->xs_heaptid = so->results[so->curr++];
scan->xs_recheckorderby = false;
return true;
}
}
/*
* End a scan and release resources
*/
static void
hnsw_endscan(IndexScanDesc scan)
{
HnswScanOpaque so = (HnswScanOpaque) scan->opaque;
if (so->results)
pfree(so->results);
pfree(so);
scan->opaque = NULL;
}
/*
* Estimate the cost of an index scan
*/
static void
hnsw_costestimate(PlannerInfo *root, IndexPath *path, double loop_count,
Cost *indexStartupCost, Cost *indexTotalCost,
Selectivity *indexSelectivity, double *indexCorrelation
,double *indexPages
)
{
GenericCosts costs;
/* Never use index without order */
if (path->indexorderbys == NULL)
{
*indexStartupCost = DBL_MAX;
*indexTotalCost = DBL_MAX;
*indexSelectivity = 0;
*indexCorrelation = 0;
*indexPages = 0;
return;
}
MemSet(&costs, 0, sizeof(costs));
genericcostestimate(root, path, loop_count, &costs);
/* Startup cost and total cost are same */
*indexStartupCost = costs.indexTotalCost;
*indexTotalCost = costs.indexTotalCost;
*indexSelectivity = costs.indexSelectivity;
*indexCorrelation = costs.indexCorrelation;
*indexPages = costs.numIndexPages;
}
/*
* Parse and validate the reloptions
*/
static bytea *
hnsw_options(Datum reloptions, bool validate)
{
static const relopt_parse_elt tab[] = {
{"dims", RELOPT_TYPE_INT, offsetof(HnswOptions, dims)},
{"maxelements", RELOPT_TYPE_INT, offsetof(HnswOptions, maxelements)},
{"efconstruction", RELOPT_TYPE_INT, offsetof(HnswOptions, efConstruction)},
{"efsearch", RELOPT_TYPE_INT, offsetof(HnswOptions, efSearch)},
{"m", RELOPT_TYPE_INT, offsetof(HnswOptions, M)}
};
return (bytea *) build_reloptions(reloptions, validate,
hnsw_relopt_kind,
sizeof(HnswOptions),
tab, lengthof(tab));
}
/*
* Validate catalog entries for the specified operator class
*/
static bool
hnsw_validate(Oid opclassoid)
{
return true;
}
/*
* Build the index for a logged table
*/
static IndexBuildResult *
hnsw_build(Relation heap, Relation index, IndexInfo *indexInfo)
{
HierarchicalNSW* hnsw = hnsw_get_index(index, heap);
IndexBuildResult* result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));
result->heap_tuples = result->index_tuples = hnsw_count(hnsw);
return result;
}
/*
* Insert a tuple into the index
*/
static bool
hnsw_insert(Relation index, Datum *values, bool *isnull, ItemPointer heap_tid,
Relation heap, IndexUniqueCheck checkUnique,
bool indexUnchanged,
IndexInfo *indexInfo)
{
HierarchicalNSW* hnsw = hnsw_get_index(index, heap);
Datum value;
ArrayType* array;
int n_items;
label_t label = 0;
/* Skip nulls */
if (isnull[0])
return false;
/* Detoast value */
value = PointerGetDatum(PG_DETOAST_DATUM(values[0]));
array = DatumGetArrayTypeP(value);
n_items = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array));
if (n_items != hnsw_dimensions(hnsw))
{
elog(ERROR, "Wrong number of dimensions: %d instead of %d expected",
n_items, hnsw_dimensions(hnsw));
}
memcpy(&label, heap_tid, sizeof(*heap_tid));
if (!hnsw_add_point(hnsw, (coord_t*)ARR_DATA_PTR(array), label))
elog(ERROR, "HNSW index insert failed");
return true;
}
/*
* Build the index for an unlogged table
*/
static void
hnsw_buildempty(Relation index)
{
/* index will be constructed on dema nd when accessed */
}
/*
* Clean up after a VACUUM operation
*/
static IndexBulkDeleteResult *
hnsw_vacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
{
Relation rel = info->index;
if (stats == NULL)
return NULL;
stats->num_pages = RelationGetNumberOfBlocks(rel);
return stats;
}
/*
* Bulk delete tuples from the index
*/
static IndexBulkDeleteResult *
hnsw_bulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback, void *callback_state)
{
if (stats == NULL)
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
return stats;
}
/*
* Define index handler
*
* See https://www.postgresql.org/docs/current/index-api.html
*/
PGDLLEXPORT PG_FUNCTION_INFO_V1(hnsw_handler);
Datum
hnsw_handler(PG_FUNCTION_ARGS)
{
IndexAmRoutine *amroutine = makeNode(IndexAmRoutine);
amroutine->amstrategies = 0;
amroutine->amsupport = 0;
amroutine->amoptsprocnum = 0;
amroutine->amcanorder = false;
amroutine->amcanorderbyop = true;
amroutine->amcanbackward = false; /* can change direction mid-scan */
amroutine->amcanunique = false;
amroutine->amcanmulticol = false;
amroutine->amoptionalkey = true;
amroutine->amsearcharray = false;
amroutine->amsearchnulls = false;
amroutine->amstorage = false;
amroutine->amclusterable = false;
amroutine->ampredlocks = false;
amroutine->amcanparallel = false;
amroutine->amcaninclude = false;
amroutine->amusemaintenanceworkmem = false; /* not used during VACUUM */
amroutine->amparallelvacuumoptions = VACUUM_OPTION_PARALLEL_BULKDEL;
amroutine->amkeytype = InvalidOid;
/* Interface functions */
amroutine->ambuild = hnsw_build;
amroutine->ambuildempty = hnsw_buildempty;
amroutine->aminsert = hnsw_insert;
amroutine->ambulkdelete = hnsw_bulkdelete;
amroutine->amvacuumcleanup = hnsw_vacuumcleanup;
amroutine->amcanreturn = NULL; /* tuple not included in heapsort */
amroutine->amcostestimate = hnsw_costestimate;
amroutine->amoptions = hnsw_options;
amroutine->amproperty = NULL; /* TODO AMPROP_DISTANCE_ORDERABLE */
amroutine->ambuildphasename = NULL;
amroutine->amvalidate = hnsw_validate;
amroutine->amadjustmembers = NULL;
amroutine->ambeginscan = hnsw_beginscan;
amroutine->amrescan = hnsw_rescan;
amroutine->amgettuple = hnsw_gettuple;
amroutine->amgetbitmap = NULL;
amroutine->amendscan = hnsw_endscan;
amroutine->ammarkpos = NULL;
amroutine->amrestrpos = NULL;
/* Interface functions to support parallel index scans */
amroutine->amestimateparallelscan = NULL;
amroutine->aminitparallelscan = NULL;
amroutine->amparallelrescan = NULL;
PG_RETURN_POINTER(amroutine);
}
/*
* Get the L2 distance between vectors
*/
PGDLLEXPORT PG_FUNCTION_INFO_V1(l2_distance);
Datum
l2_distance(PG_FUNCTION_ARGS)
{
ArrayType *a = PG_GETARG_ARRAYTYPE_P(0);
ArrayType *b = PG_GETARG_ARRAYTYPE_P(1);
int a_dim = ArrayGetNItems(ARR_NDIM(a), ARR_DIMS(a));
int b_dim = ArrayGetNItems(ARR_NDIM(b), ARR_DIMS(b));
dist_t distance = 0.0;
dist_t diff;
coord_t *ax = (coord_t*)ARR_DATA_PTR(a);
coord_t *bx = (coord_t*)ARR_DATA_PTR(b);
if (a_dim != b_dim)
{
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("different array dimensions %d and %d", a_dim, b_dim)));
}
for (int i = 0; i < a_dim; i++)
{
diff = ax[i] - bx[i];
distance += diff * diff;
}
PG_RETURN_FLOAT4((dist_t)sqrt(distance));
}

5
pgxn/hnsw/hnsw.control Normal file
View File

@@ -0,0 +1,5 @@
comment = 'hNsw index'
default_version = '0.1.0'
module_pathname = '$libdir/hnsw'
relocatable = true
trusted = true

15
pgxn/hnsw/hnsw.h Normal file
View File

@@ -0,0 +1,15 @@
#pragma once
typedef float coord_t;
typedef float dist_t;
typedef uint32_t idx_t;
typedef uint64_t label_t;
typedef struct HierarchicalNSW HierarchicalNSW;
bool hnsw_search(HierarchicalNSW* hnsw, const coord_t *point, size_t efSearch, size_t* n_results, label_t** results);
bool hnsw_add_point(HierarchicalNSW* hnsw, const coord_t *point, label_t label);
void hnsw_init(HierarchicalNSW* hnsw, size_t dim, size_t maxelements, size_t M, size_t maxM, size_t efConstruction);
int hnsw_dimensions(HierarchicalNSW* hnsw);
size_t hnsw_count(HierarchicalNSW* hnsw);
size_t hnsw_sizeof(void);

368
pgxn/hnsw/hnswalg.cpp Normal file
View File

@@ -0,0 +1,368 @@
#include "hnswalg.h"
#if defined(__x86_64__)
#include <x86intrin.h>
#define USE_AVX
#if defined(__GNUC__)
#define PORTABLE_ALIGN32 __attribute__((aligned(32)))
#else
#define PORTABLE_ALIGN32 __declspec(align(32))
#endif
#define PREFETCH(addr,hint) _mm_prefetch(addr, hint)
#else
#define PREFETCH(addr,hint)
#endif
HierarchicalNSW::HierarchicalNSW(size_t dim_, size_t maxelements_, size_t M_, size_t maxM_, size_t efConstruction_)
{
dim = dim_;
data_size = dim * sizeof(coord_t);
efConstruction = efConstruction_;
maxelements = maxelements_;
M = M_;
maxM = maxM_;
size_links_level0 = (maxM + 1) * sizeof(idx_t);
size_data_per_element = size_links_level0 + data_size + sizeof(label_t);
offset_data = size_links_level0;
offset_label = offset_data + data_size;
enterpoint_node = 0;
cur_element_count = 0;
dist_calc = 0;
}
std::priority_queue<std::pair<dist_t, idx_t>> HierarchicalNSW::searchBaseLayer(const coord_t *point, size_t ef)
{
std::vector<uint32_t> visited;
visited.resize((cur_element_count + 31) >> 5);
std::priority_queue<std::pair<dist_t, idx_t >> topResults;
std::priority_queue<std::pair<dist_t, idx_t >> candidateSet;
dist_t dist = fstdistfunc(point, getDataByInternalId(enterpoint_node));
topResults.emplace(dist, enterpoint_node);
candidateSet.emplace(-dist, enterpoint_node);
visited[enterpoint_node >> 5] = 1 << (enterpoint_node & 31);
dist_t lowerBound = dist;
while (!candidateSet.empty())
{
std::pair<dist_t, idx_t> curr_el_pair = candidateSet.top();
if (-curr_el_pair.first > lowerBound)
break;
candidateSet.pop();
idx_t curNodeNum = curr_el_pair.second;
idx_t* data = get_linklist0(curNodeNum);
size_t size = *data++;
PREFETCH(getDataByInternalId(*data), _MM_HINT_T0);
for (size_t j = 0; j < size; ++j) {
size_t tnum = *(data + j);
PREFETCH(getDataByInternalId(*(data + j + 1)), _MM_HINT_T0);
if (!(visited[tnum >> 5] & (1 << (tnum & 31)))) {
visited[tnum >> 5] |= 1 << (tnum & 31);
dist = fstdistfunc(point, getDataByInternalId(tnum));
if (topResults.top().first > dist || topResults.size() < ef) {
candidateSet.emplace(-dist, tnum);
PREFETCH(get_linklist0(candidateSet.top().second), _MM_HINT_T0);
topResults.emplace(dist, tnum);
if (topResults.size() > ef)
topResults.pop();
lowerBound = topResults.top().first;
}
}
}
}
return topResults;
}
void HierarchicalNSW::getNeighborsByHeuristic(std::priority_queue<std::pair<dist_t, idx_t>> &topResults, size_t NN)
{
if (topResults.size() < NN)
return;
std::priority_queue<std::pair<dist_t, idx_t>> resultSet;
std::vector<std::pair<dist_t, idx_t>> returnlist;
while (topResults.size() > 0) {
resultSet.emplace(-topResults.top().first, topResults.top().second);
topResults.pop();
}
while (resultSet.size()) {
if (returnlist.size() >= NN)
break;
std::pair<dist_t, idx_t> curen = resultSet.top();
dist_t dist_to_query = -curen.first;
resultSet.pop();
bool good = true;
for (std::pair<dist_t, idx_t> curen2 : returnlist) {
dist_t curdist = fstdistfunc(getDataByInternalId(curen2.second),
getDataByInternalId(curen.second));
if (curdist < dist_to_query) {
good = false;
break;
}
}
if (good) returnlist.push_back(curen);
}
for (std::pair<dist_t, idx_t> elem : returnlist)
topResults.emplace(-elem.first, elem.second);
}
void HierarchicalNSW::mutuallyConnectNewElement(const coord_t *point, idx_t cur_c,
std::priority_queue<std::pair<dist_t, idx_t>> topResults)
{
getNeighborsByHeuristic(topResults, M);
std::vector<idx_t> res;
res.reserve(M);
while (topResults.size() > 0) {
res.push_back(topResults.top().second);
topResults.pop();
}
{
idx_t* data = get_linklist0(cur_c);
if (*data)
throw std::runtime_error("Should be blank");
*data++ = res.size();
for (size_t idx = 0; idx < res.size(); idx++) {
if (data[idx])
throw std::runtime_error("Should be blank");
data[idx] = res[idx];
}
}
for (size_t idx = 0; idx < res.size(); idx++) {
if (res[idx] == cur_c)
throw std::runtime_error("Connection to the same element");
size_t resMmax = maxM;
idx_t *ll_other = get_linklist0(res[idx]);
idx_t sz_link_list_other = *ll_other;
if (sz_link_list_other > resMmax || sz_link_list_other < 0)
throw std::runtime_error("Bad sz_link_list_other");
if (sz_link_list_other < resMmax) {
idx_t *data = ll_other + 1;
data[sz_link_list_other] = cur_c;
*ll_other = sz_link_list_other + 1;
} else {
// finding the "weakest" element to replace it with the new one
idx_t *data = ll_other + 1;
dist_t d_max = fstdistfunc(getDataByInternalId(cur_c), getDataByInternalId(res[idx]));
// Heuristic:
std::priority_queue<std::pair<dist_t, idx_t>> candidates;
candidates.emplace(d_max, cur_c);
for (size_t j = 0; j < sz_link_list_other; j++)
candidates.emplace(fstdistfunc(getDataByInternalId(data[j]), getDataByInternalId(res[idx])), data[j]);
getNeighborsByHeuristic(candidates, resMmax);
size_t indx = 0;
while (!candidates.empty()) {
data[indx] = candidates.top().second;
candidates.pop();
indx++;
}
*ll_other = indx;
}
}
}
void HierarchicalNSW::addPoint(const coord_t *point, label_t label)
{
if (cur_element_count >= maxelements) {
throw std::runtime_error("The number of elements exceeds the specified limit");
}
idx_t cur_c = cur_element_count++;
memset((char *) get_linklist0(cur_c), 0, size_data_per_element);
memcpy(getDataByInternalId(cur_c), point, data_size);
memcpy(getExternalLabel(cur_c), &label, sizeof label);
// Do nothing for the first element
if (cur_c != 0) {
std::priority_queue <std::pair<dist_t, idx_t>> topResults = searchBaseLayer(point, efConstruction);
mutuallyConnectNewElement(point, cur_c, topResults);
}
};
std::priority_queue<std::pair<dist_t, label_t>> HierarchicalNSW::searchKnn(const coord_t *query, size_t k)
{
std::priority_queue<std::pair<dist_t, label_t>> topResults;
auto topCandidates = searchBaseLayer(query, k);
while (topCandidates.size() > k) {
topCandidates.pop();
}
while (!topCandidates.empty()) {
std::pair<dist_t, idx_t> rez = topCandidates.top();
label_t label;
memcpy(&label, getExternalLabel(rez.second), sizeof(label));
topResults.push(std::pair<dist_t, label_t>(rez.first, label));
topCandidates.pop();
}
return topResults;
};
dist_t HierarchicalNSW::fstdistfunc(const coord_t *x, const coord_t *y)
{
#if defined(__x86_64__)
float PORTABLE_ALIGN32 TmpRes[8];
size_t qty16 = dim >> 4;
const float *pEnd1 = x + (qty16 << 4);
#ifdef USE_AVX
__m256 diff, v1, v2;
__m256 sum = _mm256_set1_ps(0);
while (x < pEnd1) {
v1 = _mm256_loadu_ps(x);
x += 8;
v2 = _mm256_loadu_ps(y);
y += 8;
diff = _mm256_sub_ps(v1, v2);
sum = _mm256_add_ps(sum, _mm256_mul_ps(diff, diff));
v1 = _mm256_loadu_ps(x);
x += 8;
v2 = _mm256_loadu_ps(y);
y += 8;
diff = _mm256_sub_ps(v1, v2);
sum = _mm256_add_ps(sum, _mm256_mul_ps(diff, diff));
}
_mm256_store_ps(TmpRes, sum);
float res = TmpRes[0] + TmpRes[1] + TmpRes[2] + TmpRes[3] + TmpRes[4] + TmpRes[5] + TmpRes[6] + TmpRes[7];
return (res);
#else
__m128 diff, v1, v2;
__m128 sum = _mm_set1_ps(0);
while (x < pEnd1) {
v1 = _mm_loadu_ps(x);
x += 4;
v2 = _mm_loadu_ps(y);
y += 4;
diff = _mm_sub_ps(v1, v2);
sum = _mm_add_ps(sum, _mm_mul_ps(diff, diff));
v1 = _mm_loadu_ps(x);
x += 4;
v2 = _mm_loadu_ps(y);
y += 4;
diff = _mm_sub_ps(v1, v2);
sum = _mm_add_ps(sum, _mm_mul_ps(diff, diff));
v1 = _mm_loadu_ps(x);
x += 4;
v2 = _mm_loadu_ps(y);
y += 4;
diff = _mm_sub_ps(v1, v2);
sum = _mm_add_ps(sum, _mm_mul_ps(diff, diff));
v1 = _mm_loadu_ps(x);
x += 4;
v2 = _mm_loadu_ps(y);
y += 4;
diff = _mm_sub_ps(v1, v2);
sum = _mm_add_ps(sum, _mm_mul_ps(diff, diff));
}
_mm_store_ps(TmpRes, sum);
float res = TmpRes[0] + TmpRes[1] + TmpRes[2] + TmpRes[3];
return (res);
#endif
#else // portable implementation
dist_t distance = 0.0;
size_t n = dim;
dist_calc++;
for (size_t i = 0; i < n; i++)
{
dist_t diff = x[i] - y[i];
distance += diff * diff;
}
return distance;
#endif
}
bool hnsw_search(HierarchicalNSW* hnsw, const coord_t *point, size_t efSearch, size_t* n_results, label_t** results)
{
try
{
auto result = hnsw->searchKnn(point, efSearch);
size_t nResults = result.size();
*results = (label_t*)malloc(nResults*sizeof(label_t));
for (size_t i = nResults; i-- != 0;)
{
(*results)[i] = result.top().second;
result.pop();
}
*n_results = nResults;
return true;
}
catch (std::exception& x)
{
return false;
}
}
bool hnsw_add_point(HierarchicalNSW* hnsw, const coord_t *point, label_t label)
{
try
{
hnsw->addPoint(point, label);
return true;
}
catch (std::exception& x)
{
fprintf(stderr, "Catch %s\n", x.what());
return false;
}
}
void hnsw_init(HierarchicalNSW* hnsw, size_t dims, size_t maxelements, size_t M, size_t maxM, size_t efConstruction)
{
new ((void*)hnsw) HierarchicalNSW(dims, maxelements, M, maxM, efConstruction);
}
int hnsw_dimensions(HierarchicalNSW* hnsw)
{
return (int)hnsw->dim;
}
size_t hnsw_count(HierarchicalNSW* hnsw)
{
return hnsw->cur_element_count;
}
size_t hnsw_sizeof(void)
{
return sizeof(HierarchicalNSW);
}

67
pgxn/hnsw/hnswalg.h Normal file
View File

@@ -0,0 +1,67 @@
#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unordered_map>
#include <unordered_set>
#include <map>
#include <cmath>
#include <queue>
#include <stdexcept>
extern "C" {
#include "hnsw.h"
}
struct HierarchicalNSW
{
size_t maxelements;
size_t cur_element_count;
idx_t enterpoint_node;
size_t dist_calc;
size_t dim;
size_t data_size;
size_t offset_data;
size_t offset_label;
size_t size_data_per_element;
size_t M;
size_t maxM;
size_t size_links_level0;
size_t efConstruction;
char data_level0_memory[0]; // varying size
public:
HierarchicalNSW(size_t dim, size_t maxelements, size_t M, size_t maxM, size_t efConstruction);
~HierarchicalNSW();
inline coord_t *getDataByInternalId(idx_t internal_id) const {
return (coord_t *)&data_level0_memory[internal_id * size_data_per_element + offset_data];
}
inline idx_t *get_linklist0(idx_t internal_id) const {
return (idx_t*)&data_level0_memory[internal_id * size_data_per_element];
}
inline label_t *getExternalLabel(idx_t internal_id) const {
return (label_t *)&data_level0_memory[internal_id * size_data_per_element + offset_label];
}
std::priority_queue<std::pair<dist_t, idx_t>> searchBaseLayer(const coord_t *x, size_t ef);
void getNeighborsByHeuristic(std::priority_queue<std::pair<dist_t, idx_t>> &topResults, size_t NN);
void mutuallyConnectNewElement(const coord_t *x, idx_t id, std::priority_queue<std::pair<dist_t, idx_t>> topResults);
void addPoint(const coord_t *point, label_t label);
std::priority_queue<std::pair<dist_t, label_t>> searchKnn(const coord_t *query_data, size_t k);
dist_t fstdistfunc(const coord_t *x, const coord_t *y);
};

View File

@@ -0,0 +1,28 @@
SET enable_seqscan = off;
CREATE TABLE t (val real[]);
INSERT INTO t (val) VALUES ('{0,0,0}'), ('{1,2,3}'), ('{1,1,1}'), (NULL);
CREATE INDEX ON t USING hnsw (val) WITH (maxelements = 10, dims=3, m=3);
INSERT INTO t (val) VALUES (array[1,2,4]);
explain SELECT * FROM t ORDER BY val <-> array[3,3,3];
QUERY PLAN
--------------------------------------------------------------------
Index Scan using t_val_idx on t (cost=4.02..8.06 rows=3 width=36)
Order By: (val <-> '{3,3,3}'::real[])
(2 rows)
SELECT * FROM t ORDER BY val <-> array[3,3,3];
val
---------
{1,2,3}
{1,2,4}
{1,1,1}
{0,0,0}
(4 rows)
SELECT COUNT(*) FROM t;
count
-------
5
(1 row)
DROP TABLE t;

View File

@@ -0,0 +1,13 @@
SET enable_seqscan = off;
CREATE TABLE t (val real[]);
INSERT INTO t (val) VALUES ('{0,0,0}'), ('{1,2,3}'), ('{1,1,1}'), (NULL);
CREATE INDEX ON t USING hnsw (val) WITH (maxelements = 10, dims=3, m=3);
INSERT INTO t (val) VALUES (array[1,2,4]);
explain SELECT * FROM t ORDER BY val <-> array[3,3,3];
SELECT * FROM t ORDER BY val <-> array[3,3,3];
SELECT COUNT(*) FROM t;
DROP TABLE t;