mirror of
https://github.com/neondatabase/neon.git
synced 2026-01-03 19:42:55 +00:00
Add a docs page for storage controller (#7392)
## Problem External contributors need information on how to use the storage controller. ## Summary of changes - Background content on what the storage controller is. - Deployment information on how to use it. This is not super-detailed, but should be enough for a well motivated third party to get started, with an occasional peek at the code.
This commit is contained in:
150
docs/storage_controller.md
Normal file
150
docs/storage_controller.md
Normal file
@@ -0,0 +1,150 @@
|
||||
# Storage Controller
|
||||
|
||||
## Concepts
|
||||
|
||||
The storage controller sits between administrative API clients and pageservers, and handles the details of mapping tenants to pageserver tenant shards. For example, creating a tenant is one API call to the storage controller,
|
||||
which is mapped into many API calls to many pageservers (for multiple shards, and for secondary locations).
|
||||
|
||||
It implements a pageserver-compatible API that may be used for CRUD operations on tenants and timelines, translating these requests into appropriate operations on the shards within a tenant, which may be on many different pageservers. Using this API, the storage controller may be used in the same way as the pageserver's administrative HTTP API, hiding
|
||||
the underlying details of how data is spread across multiple nodes.
|
||||
|
||||
The storage controller also manages generations, high availability (via secondary locations) and live migrations for tenants under its management. This is done with a reconciliation loop pattern, where tenants have an “intent” state and a “reconcile” task that tries to make the outside world match the intent.
|
||||
|
||||
## APIs
|
||||
|
||||
The storage controller’s HTTP server implements four logically separate APIs:
|
||||
|
||||
- `/v1/...` path is the pageserver-compatible API. This has to be at the path root because that’s where clients expect to find it on a pageserver.
|
||||
- `/control/v1/...` path is the storage controller’s API, which enables operations such as registering and management pageservers, or executing shard splits.
|
||||
- `/debug/v1/...` path contains endpoints which are either exclusively used in tests, or are for use by engineers when supporting a deployed system.
|
||||
- `/upcall/v1/...` path contains endpoints that are called by pageservers. This includes the `/re-attach` and `/validate` APIs used by pageservers
|
||||
to ensure data safety with generation numbers.
|
||||
|
||||
The API is authenticated with a JWT token, and tokens must have scope `pageserverapi` (i.e. the same scope as pageservers’ APIs).
|
||||
|
||||
See the `http.rs` file in the source for where the HTTP APIs are implemented.
|
||||
|
||||
## Database
|
||||
|
||||
The storage controller uses a postgres database to persist a subset of its state. Note that the storage controller does _not_ keep all its state in the database: this is a design choice to enable most operations to be done efficiently in memory, rather than having to read from the database. See `persistence.rs` for a more comprehensive comment explaining what we do and do not persist: a useful metaphor is that we persist objects like tenants and nodes, but we do not
|
||||
persist the _relationships_ between them: the attachment state of a tenant's shards to nodes is kept in memory and
|
||||
rebuilt on startup.
|
||||
|
||||
The file `[persistence.rs](http://persistence.rs)` contains all the code for accessing the database, and has a large doc comment that goes into more detail about exactly what we persist and why.
|
||||
|
||||
The `diesel` crate is used for defining models & migrations.
|
||||
|
||||
Running a local cluster with `cargo neon` automatically starts a vanilla postgress process to host the storage controller’s database.
|
||||
|
||||
### Diesel tip: migrations
|
||||
|
||||
If you need to modify the database schema, here’s how to create a migration:
|
||||
|
||||
- Install the diesel CLI with `cargo install diesel_cli`
|
||||
- Use `diesel migration generate <name>` to create a new migration
|
||||
- Populate the SQL files in the `migrations/` subdirectory
|
||||
- Use `DATABASE_URL=... diesel migration run` to apply the migration you just wrote: this will update the `[schema.rs](http://schema.rs)` file automatically.
|
||||
- This requires a running database: the easiest way to do that is to just run `cargo neon init ; cargo neon start`, which will leave a database available at `postgresql://localhost:1235/attachment_service`
|
||||
- Commit the migration files and the changes to schema.rs
|
||||
- If you need to iterate, you can rewind migrations with `diesel migration revert -a` and then `diesel migration run` again.
|
||||
- The migrations are build into the storage controller binary, and automatically run at startup after it is deployed, so once you’ve committed a migration no further steps are needed.
|
||||
|
||||
## storcon_cli
|
||||
|
||||
The `storcon_cli` tool enables interactive management of the storage controller. This is usually
|
||||
only necessary for debug, but may also be used to manage nodes (e.g. marking a node as offline).
|
||||
|
||||
`storcon_cli --help` includes details on commands.
|
||||
|
||||
# Deploying
|
||||
|
||||
This section is aimed at engineers deploying the storage controller outside of Neon's cloud platform, as
|
||||
part of a self-hosted system.
|
||||
|
||||
_General note: since the default `neon_local` environment includes a storage controller, this is a useful
|
||||
reference when figuring out deployment._
|
||||
|
||||
## Database
|
||||
|
||||
It is **essential** that the database used by the storage controller is durable (**do not store it on ephemeral
|
||||
local disk**). This database contains pageserver generation numbers, which are essential to data safety on the pageserver.
|
||||
|
||||
The resource requirements for the database are very low: a single CPU core and 1GiB of memory should work well for most deployments. The physical size of the database is typically under a gigabyte.
|
||||
|
||||
Set the URL to the database using the `--database-url` CLI option.
|
||||
|
||||
There is no need to run migrations manually: the storage controller automatically applies migrations
|
||||
when it starts up.
|
||||
|
||||
## Configure pageservers to use the storage controller
|
||||
|
||||
1. The pageserver `control_plane_api` and `control_plane_api_token` should be set in the `pageserver.toml` file. The API setting should
|
||||
point to the "upcall" prefix, for example `http://127.0.0.1:1234/upcall/v1/` is used in neon_local clusters.
|
||||
2. Create a `metadata.json` file in the same directory as `pageserver.toml`: this enables the pageserver to automatically register itself
|
||||
with the storage controller when it starts up. See the example below for the format of this file.
|
||||
|
||||
### Example `metadata.json`
|
||||
|
||||
```
|
||||
{"host":"acmehost.localdomain","http_host":"acmehost.localdomain","http_port":9898,"port":64000}
|
||||
```
|
||||
|
||||
- `port` and `host` refer to the _postgres_ port and host, and these must be accessible from wherever
|
||||
postgres runs.
|
||||
- `http_port` and `http_host` refer to the pageserver's HTTP api, this must be accessible from where
|
||||
the storage controller runs.
|
||||
|
||||
## Handle compute notifications.
|
||||
|
||||
The storage controller independently moves tenant attachments between pageservers in response to
|
||||
changes such as a pageserver node becoming unavailable, or the tenant's shard count changing. To enable
|
||||
postgres clients to handle such changes, the storage controller calls an API hook when a tenant's pageserver
|
||||
location changes.
|
||||
|
||||
The hook is configured using the storage controller's `--compute-hook-url` CLI option. If the hook requires
|
||||
JWT auth, the token may be provided with `--control-plane-jwt-token`. The hook will be invoked with a `PUT` request.
|
||||
|
||||
In the Neon cloud service, this hook is implemented by Neon's internal cloud control plane. In `neon_local` systems
|
||||
the storage controller integrates directly with neon_local to reconfigure local postgres processes instead of calling
|
||||
the compute hook.
|
||||
|
||||
When implementing an on-premise Neon deployment, you must implement a service that handles the compute hook. This is not complicated:
|
||||
the request body has format of the `ComputeHookNotifyRequest` structure, provided below for convenience.
|
||||
|
||||
```
|
||||
struct ComputeHookNotifyRequestShard {
|
||||
node_id: NodeId,
|
||||
shard_number: ShardNumber,
|
||||
}
|
||||
|
||||
struct ComputeHookNotifyRequest {
|
||||
tenant_id: TenantId,
|
||||
stripe_size: Option<ShardStripeSize>,
|
||||
shards: Vec<ComputeHookNotifyRequestShard>,
|
||||
}
|
||||
```
|
||||
|
||||
When a notification is received:
|
||||
|
||||
1. Modify postgres configuration for this tenant:
|
||||
|
||||
- set `neon.pageserver_connstr` to a comma-separated list of postgres connection strings to pageservers according to the `shards` list. The
|
||||
shards identified by `NodeId` must be converted to the address+port of the node.
|
||||
- if stripe_size is not None, set `neon.stripe_size` to this value
|
||||
|
||||
2. Send SIGHUP to postgres to reload configuration
|
||||
3. Respond with 200 to the notification request. Do not return success if postgres was not updated: if an error is returned, the controller
|
||||
will retry the notification until it succeeds..
|
||||
|
||||
### Example notification body
|
||||
|
||||
```
|
||||
{
|
||||
"tenant_id": "1f359dd625e519a1a4e8d7509690f6fc",
|
||||
"stripe_size": 32768,
|
||||
"shards": [
|
||||
{"node_id": 344, "shard_number": 0},
|
||||
{"node_id": 722, "shard_number": 1},
|
||||
],
|
||||
}
|
||||
```
|
||||
Reference in New Issue
Block a user