This commit is contained in:
Erik Grinaker
2024-11-19 23:23:55 +01:00
committed by Yuchen Liang
parent b6a2516c1c
commit 1ca71d607b

View File

@@ -0,0 +1,112 @@
from __future__ import annotations
import random
from concurrent.futures import ThreadPoolExecutor
import pytest
from fixtures.benchmark_fixture import MetricReport, NeonBenchmarker
from fixtures.common_types import Lsn
from fixtures.log_helper import log
from fixtures.neon_fixtures import (
NeonEnvBuilder,
wait_for_last_flush_lsn,
)
from fixtures.pageserver.utils import wait_for_last_record_lsn
from fixtures.pg_version import PgVersion
@pytest.mark.timeout(600)
@pytest.mark.parametrize("size", [8, 64, 1024, 8192])
@pytest.mark.parametrize("backpressure", [True, False])
@pytest.mark.parametrize("fsync", [True, False])
def test_ingest_insert_bulk(
request: pytest.FixtureRequest,
neon_env_builder: NeonEnvBuilder,
zenbenchmark: NeonBenchmarker,
fsync: bool,
backpressure: bool,
size: int,
):
"""
Benchmarks ingestion of 8 GB of sequential insert WAL with concurrent inserts.
"""
CONCURRENCY = 1 # 1 is optimal without fsync or backpressure
VOLUME = 8 * 1024**3
rows = VOLUME // (size + 64) # +64 roughly accounts for per-row WAL overhead
neon_env_builder.safekeepers_enable_fsync = fsync
env = neon_env_builder.init_start()
# NB: neon_local defaults to max_replication_write_lag=15MB, which is too low.
# Production uses 500MB.
endpoint = env.endpoints.create_start(
"main",
config_lines=[
f"fsync = {fsync}",
"max_replication_apply_lag = 0",
f"max_replication_flush_lag = {'10GB' if backpressure else '0'}",
f"max_replication_write_lag = {'500MB' if backpressure else '0'}",
],
)
endpoint.safe_psql("create extension neon")
# Wait for the timeline to be propagated to the pageserver.
wait_for_last_flush_lsn(env, endpoint, env.initial_tenant, env.initial_timeline)
# Ingest rows.
log.info("Ingesting data")
start_lsn = Lsn(endpoint.safe_psql("select pg_current_wal_lsn()")[0][0])
def insert_rows(endpoint, table, count, value):
with endpoint.connect().cursor() as cur:
cur.execute("set statement_timeout = 0")
cur.execute(f"create table {table} (id int, data bytea)")
cur.execute(f"insert into {table} values (generate_series(1, {count}), %s)", (value,))
with zenbenchmark.record_duration("ingest"):
with ThreadPoolExecutor(max_workers=CONCURRENCY) as pool:
for i in range(CONCURRENCY):
# Write a random value for all rows. This is sufficient to prevent compression, e.g.
# in TOAST. Randomly generating every row is too slow.
value = random.randbytes(size)
worker_rows = rows / CONCURRENCY
pool.submit(insert_rows, endpoint, f"table{i}", worker_rows, value)
end_lsn = Lsn(endpoint.safe_psql("select pg_current_wal_lsn()")[0][0])
client = env.pageserver.http_client()
wait_for_last_record_lsn(client, env.initial_tenant, env.initial_timeline, end_lsn)
backpressure_time = endpoint.safe_psql("select backpressure_throttling_time()")[0][0]
# Now that all data is ingested, delete and recreate the tenant in the pageserver. This will
# reingest all the WAL directly from the safekeeper. This gives us a baseline of how fast the
# pageserver can ingest this WAL in isolation.
pg_version = PgVersion(
client.timeline_detail(env.initial_tenant, env.initial_timeline)["pg_version"]
)
status = env.storage_controller.inspect(tenant_shard_id=env.initial_tenant)
assert status is not None
endpoint.stop() # avoid spurious getpage errors
client.tenant_delete(env.initial_tenant)
env.pageserver.tenant_create(tenant_id=env.initial_tenant, generation=status[0])
with zenbenchmark.record_duration("recover"):
log.info("Recovering WAL into pageserver")
client.timeline_create(pg_version, env.initial_tenant, env.initial_timeline)
wait_for_last_record_lsn(client, env.initial_tenant, env.initial_timeline, end_lsn)
# Emit metrics.
wal_written_mb = round((end_lsn - start_lsn) / (1024 * 1024))
zenbenchmark.record("wal_written", wal_written_mb, "MB", MetricReport.TEST_PARAM)
zenbenchmark.record("row_count", rows, "rows", MetricReport.TEST_PARAM)
zenbenchmark.record("concurrency", CONCURRENCY, "clients", MetricReport.TEST_PARAM)
zenbenchmark.record(
"backpressure_time", backpressure_time // 1000, "ms", MetricReport.LOWER_IS_BETTER
)
props = {p["name"]: p["value"] for _, p in request.node.user_properties}
for name in ("ingest", "recover"):
throughput = int(wal_written_mb / props[name])
zenbenchmark.record(f"{name}_throughput", throughput, "MB/s", MetricReport.HIGHER_IS_BETTER)