mirror of
https://github.com/neondatabase/neon.git
synced 2026-01-05 04:22:56 +00:00
pageserver/client_grpc: reap idle channels immediately
This commit is contained in:
@@ -36,7 +36,8 @@
|
||||
//! * Idle streams are cheap. Benchmarks show that an idle GetPage stream takes up about 26 KB
|
||||
//! per stream (2.5 GB for 100,000 streams), so we can afford to scale out.
|
||||
//!
|
||||
//! Idle resources are removed from the pools periodically, to avoid holding onto server resources.
|
||||
//! Idle clients/streams are removed from the pools periodically, to free up server resources.
|
||||
//! Channels are reaped immediately when unused, and indirectly rely on client/stream idle timeouts.
|
||||
//!
|
||||
//! Each channel corresponds to one TCP connection. Each client unary request and each stream
|
||||
//! corresponds to one HTTP/2 stream and server task.
|
||||
@@ -63,14 +64,12 @@ use pageserver_page_api as page_api;
|
||||
use utils::id::{TenantId, TimelineId};
|
||||
use utils::shard::ShardIndex;
|
||||
|
||||
/// Reap channels/clients/streams that have been idle for this long.
|
||||
/// Reap clients/streams that have been idle for this long. Channels are reaped immediately when
|
||||
/// empty, and indirectly rely on the client/stream idle timeouts.
|
||||
///
|
||||
/// TODO: this is per-pool. For nested pools, it can take up to 3x as long for a TCP connection to
|
||||
/// be reaped. First, we must wait for an idle stream to be reaped, which marks its client as idle.
|
||||
/// Then, we must wait for the idle client to be reaped, which marks its channel as idle. Then, we
|
||||
/// must wait for the idle channel to be reaped. Is that a problem? Maybe not, we just have to
|
||||
/// account for it when setting the reap threshold. Alternatively, we can immediately reap empty
|
||||
/// channels, and/or stream pool clients.
|
||||
/// A stream's client will be reaped after 2x the idle threshold (first stream the client), but
|
||||
/// that's okay -- if the stream closes abruptly (e.g. due to timeout or cancellation), we want to
|
||||
/// keep its client around in the pool for a while.
|
||||
const REAP_IDLE_THRESHOLD: Duration = match cfg!(any(test, feature = "testing")) {
|
||||
false => Duration::from_secs(180),
|
||||
true => Duration::from_secs(1), // exercise reaping in tests
|
||||
@@ -98,8 +97,6 @@ pub struct ChannelPool {
|
||||
max_clients_per_channel: NonZero<usize>,
|
||||
/// Open channels.
|
||||
channels: Mutex<BTreeMap<ChannelID, ChannelEntry>>,
|
||||
/// Reaps idle channels.
|
||||
idle_reaper: Reaper,
|
||||
/// Channel ID generator.
|
||||
next_channel_id: AtomicUsize,
|
||||
}
|
||||
@@ -111,9 +108,6 @@ struct ChannelEntry {
|
||||
channel: Channel,
|
||||
/// Number of clients using this channel.
|
||||
clients: usize,
|
||||
/// The channel has been idle (no clients) since this time. None if channel is in use.
|
||||
/// INVARIANT: Some if clients == 0, otherwise None.
|
||||
idle_since: Option<Instant>,
|
||||
}
|
||||
|
||||
impl ChannelPool {
|
||||
@@ -123,15 +117,12 @@ impl ChannelPool {
|
||||
E: TryInto<Endpoint> + Send + Sync + 'static,
|
||||
<E as TryInto<Endpoint>>::Error: std::error::Error + Send + Sync,
|
||||
{
|
||||
let pool = Arc::new(Self {
|
||||
Ok(Arc::new(Self {
|
||||
endpoint: endpoint.try_into()?,
|
||||
max_clients_per_channel,
|
||||
channels: Mutex::default(),
|
||||
idle_reaper: Reaper::new(REAP_IDLE_THRESHOLD, REAP_IDLE_INTERVAL),
|
||||
next_channel_id: AtomicUsize::default(),
|
||||
});
|
||||
pool.idle_reaper.spawn(&pool);
|
||||
Ok(pool)
|
||||
}))
|
||||
}
|
||||
|
||||
/// Acquires a gRPC channel for a client. Multiple clients may acquire the same channel.
|
||||
@@ -152,22 +143,17 @@ impl ChannelPool {
|
||||
let mut channels = self.channels.lock().unwrap();
|
||||
|
||||
// Try to find an existing channel with available capacity. We check entries in BTreeMap
|
||||
// order, to fill up the lower-ordered channels first. The ClientPool also prefers clients
|
||||
// with lower-ordered channel IDs first. This will cluster clients in lower-ordered
|
||||
// order, to fill up the lower-ordered channels first. The client/stream pools also prefer
|
||||
// clients with lower-ordered channel IDs first. This will cluster clients in lower-ordered
|
||||
// channels, and free up higher-ordered channels such that they can be reaped.
|
||||
for (&id, entry) in channels.iter_mut() {
|
||||
assert!(
|
||||
entry.clients <= self.max_clients_per_channel.get(),
|
||||
"channel overflow"
|
||||
);
|
||||
assert_eq!(
|
||||
entry.idle_since.is_some(),
|
||||
entry.clients == 0,
|
||||
"incorrect channel idle state"
|
||||
);
|
||||
assert_ne!(entry.clients, 0, "empty channel not reaped");
|
||||
if entry.clients < self.max_clients_per_channel.get() {
|
||||
entry.clients += 1;
|
||||
entry.idle_since = None;
|
||||
return ChannelGuard {
|
||||
pool: Arc::downgrade(self),
|
||||
id,
|
||||
@@ -184,7 +170,6 @@ impl ChannelPool {
|
||||
let entry = ChannelEntry {
|
||||
channel: channel.clone(),
|
||||
clients: 1, // account for the guard below
|
||||
idle_since: None,
|
||||
};
|
||||
channels.insert(id, entry);
|
||||
|
||||
@@ -196,20 +181,6 @@ impl ChannelPool {
|
||||
}
|
||||
}
|
||||
|
||||
impl Reapable for ChannelPool {
|
||||
/// Reaps channels that have been idle since before the cutoff.
|
||||
fn reap_idle(&self, cutoff: Instant) {
|
||||
self.channels.lock().unwrap().retain(|_, entry| {
|
||||
let Some(idle_since) = entry.idle_since else {
|
||||
assert_ne!(entry.clients, 0, "empty channel not marked idle");
|
||||
return true;
|
||||
};
|
||||
assert_eq!(entry.clients, 0, "idle channel has clients");
|
||||
idle_since >= cutoff
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Tracks a channel acquired from the pool. The owned inner channel can be obtained with `take()`,
|
||||
/// since the gRPC client requires an owned `Channel`.
|
||||
pub struct ChannelGuard {
|
||||
@@ -226,7 +197,7 @@ impl ChannelGuard {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the channel to the pool.
|
||||
/// Returns the channel to the pool. The channel is closed when empty.
|
||||
impl Drop for ChannelGuard {
|
||||
fn drop(&mut self) {
|
||||
let Some(pool) = self.pool.upgrade() else {
|
||||
@@ -235,11 +206,12 @@ impl Drop for ChannelGuard {
|
||||
|
||||
let mut channels = pool.channels.lock().unwrap();
|
||||
let entry = channels.get_mut(&self.id).expect("unknown channel");
|
||||
assert!(entry.idle_since.is_none(), "active channel marked idle");
|
||||
assert!(entry.clients > 0, "channel underflow");
|
||||
entry.clients -= 1;
|
||||
|
||||
// Reap empty channels immediately.
|
||||
if entry.clients == 0 {
|
||||
entry.idle_since = Some(Instant::now()); // mark channel as idle
|
||||
channels.remove(&self.id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user