mirror of
https://github.com/neondatabase/neon.git
synced 2026-01-09 06:22:57 +00:00
Make the implementation of DiskBtreeReader::visit non-recursive (#4884)
## Problem The `DiskBtreeReader::visit` function calls `read_blk` internally, and while #4863 converted the API of `visit` to async, the internal function is still recursive. So, analogously to #4838, we turn the recursive function into an iterative one. ## Summary of changes First, we prepare the change by moving the for loop outside of the case switch, so that we only have one loop that calls recursion. Then, we switch from using recursion to an approach where we store the search path inside the tree on a stack on the heap. The caller of the `visit` function can control when the search over the B-Tree ends, by returning `false` from the closure. This is often used to either only find one specific entry (by always returning `false`), but it is also used to iterate over all entries of the B-tree (by always returning `true`), or to look for ranges (mostly in tests, but `get_value_reconstruct_data` also has such a use). Each stack entry contains two things: the block number (aka the block's offset), and a children iterator. The children iterator is constructed depending on the search direction, and with the results of a binary search over node's children list. It is the only thing that survives a spilling/push to the stack, everything else is reconstructed. In other words, each stack spill, will, if the search is still ongoing, cause an entire re-parsing of the node. Theoretically, this would be a linear overhead in the number of leaves the search visits. However, one needs to note: * the workloads to look for a specific entry are just visiting one leaf, ever, so this is mostly about workloads that visit larger ranges, including ones that visit the entire B-tree. * the requests first hit the page cache, so often the cost is just in terms of node deserialization * for nodes that only have leaf nodes as children, no spilling to the stack-on-heap happens (outside of the initial request where the iterator is `None`). In other words, for balanced trees, the spilling overhead is $\Theta\left(\frac{n}{b^2}\right)$, where `b` is the branching factor and `n` is the number of nodes in the tree. The B-Trees in the current implementation have a branching factor of roughly `PAGE_SZ/L` where `PAGE_SZ` is 8192, and `L` is `DELTA_KEY_SIZE = 26` or `KEY_SIZE = 18` in production code, so this gives us an estimate that we'd be re-loading an inner node for every 99000 leaves in the B-tree in the worst case. Due to these points above, I'd say that not fully caching the inner nodes with inner children is reasonable, especially as we also want to be fast for the "find one specific entry" workloads, where the stack content is never accessed: any action to make the spilling computationally more complex would contribute to wasted cycles here, even if these workloads "only" spill one node for each depth level of the b-tree (which is practically always a low single-digit number, Kleppmann points out on page 81 that for branching factor 500, a four level B-tree with 4 KB pages can store 250 TB of data). But disclaimer, this is all stuff I thought about in my head, I have not confirmed it with any benchmarks or data. Builds on top of #4863, part of #4743
This commit is contained in:
@@ -20,6 +20,7 @@
|
||||
//!
|
||||
use byteorder::{ReadBytesExt, BE};
|
||||
use bytes::{BufMut, Bytes, BytesMut};
|
||||
use either::Either;
|
||||
use hex;
|
||||
use std::{cmp::Ordering, io, result};
|
||||
use thiserror::Error;
|
||||
@@ -256,103 +257,77 @@ where
|
||||
where
|
||||
V: FnMut(&[u8], u64) -> bool,
|
||||
{
|
||||
self.search_recurse(self.root_blk, search_key, dir, &mut visitor)
|
||||
}
|
||||
let mut stack = Vec::new();
|
||||
stack.push((self.root_blk, None));
|
||||
while let Some((node_blknum, opt_iter)) = stack.pop() {
|
||||
// Locate the node.
|
||||
let node_buf = self.reader.read_blk(self.start_blk + node_blknum)?;
|
||||
|
||||
fn search_recurse<V>(
|
||||
&self,
|
||||
node_blknum: u32,
|
||||
search_key: &[u8; L],
|
||||
dir: VisitDirection,
|
||||
visitor: &mut V,
|
||||
) -> Result<bool>
|
||||
where
|
||||
V: FnMut(&[u8], u64) -> bool,
|
||||
{
|
||||
// Locate the node.
|
||||
let node_buf = self.reader.read_blk(self.start_blk + node_blknum)?;
|
||||
let node = OnDiskNode::deparse(node_buf.as_ref())?;
|
||||
let prefix_len = node.prefix_len as usize;
|
||||
let suffix_len = node.suffix_len as usize;
|
||||
|
||||
let node = OnDiskNode::deparse(node_buf.as_ref())?;
|
||||
let prefix_len = node.prefix_len as usize;
|
||||
let suffix_len = node.suffix_len as usize;
|
||||
assert!(node.num_children > 0);
|
||||
|
||||
assert!(node.num_children > 0);
|
||||
let mut keybuf = Vec::new();
|
||||
keybuf.extend(node.prefix);
|
||||
keybuf.resize(prefix_len + suffix_len, 0);
|
||||
|
||||
let mut keybuf = Vec::new();
|
||||
keybuf.extend(node.prefix);
|
||||
keybuf.resize(prefix_len + suffix_len, 0);
|
||||
|
||||
if dir == VisitDirection::Forwards {
|
||||
// Locate the first match
|
||||
let mut idx = match node.binary_search(search_key, keybuf.as_mut_slice()) {
|
||||
Ok(idx) => idx,
|
||||
Err(idx) => {
|
||||
if node.level == 0 {
|
||||
// Imagine that the node contains the following keys:
|
||||
//
|
||||
// 1
|
||||
// 3 <-- idx
|
||||
// 5
|
||||
//
|
||||
// If the search key is '2' and there is exact match,
|
||||
// the binary search would return the index of key
|
||||
// '3'. That's cool, '3' is the first key to return.
|
||||
let mut iter = if let Some(iter) = opt_iter {
|
||||
iter
|
||||
} else if dir == VisitDirection::Forwards {
|
||||
// Locate the first match
|
||||
let idx = match node.binary_search(search_key, keybuf.as_mut_slice()) {
|
||||
Ok(idx) => idx,
|
||||
Err(idx) => {
|
||||
if node.level == 0 {
|
||||
// Imagine that the node contains the following keys:
|
||||
//
|
||||
// 1
|
||||
// 3 <-- idx
|
||||
// 5
|
||||
//
|
||||
// If the search key is '2' and there is exact match,
|
||||
// the binary search would return the index of key
|
||||
// '3'. That's cool, '3' is the first key to return.
|
||||
idx
|
||||
} else {
|
||||
// This is an internal page, so each key represents a lower
|
||||
// bound for what's in the child page. If there is no exact
|
||||
// match, we have to return the *previous* entry.
|
||||
//
|
||||
// 1 <-- return this
|
||||
// 3 <-- idx
|
||||
// 5
|
||||
idx.saturating_sub(1)
|
||||
}
|
||||
}
|
||||
};
|
||||
Either::Left(idx..node.num_children.into())
|
||||
} else {
|
||||
let idx = match node.binary_search(search_key, keybuf.as_mut_slice()) {
|
||||
Ok(idx) => {
|
||||
// Exact match. That's the first entry to return, and walk
|
||||
// backwards from there.
|
||||
idx
|
||||
} else {
|
||||
// This is an internal page, so each key represents a lower
|
||||
// bound for what's in the child page. If there is no exact
|
||||
// match, we have to return the *previous* entry.
|
||||
//
|
||||
// 1 <-- return this
|
||||
// 3 <-- idx
|
||||
// 5
|
||||
idx.saturating_sub(1)
|
||||
}
|
||||
}
|
||||
};
|
||||
// idx points to the first match now. Keep going from there
|
||||
let mut key_off = idx * suffix_len;
|
||||
while idx < node.num_children as usize {
|
||||
let suffix = &node.keys[key_off..key_off + suffix_len];
|
||||
keybuf[prefix_len..].copy_from_slice(suffix);
|
||||
let value = node.value(idx);
|
||||
#[allow(clippy::collapsible_if)]
|
||||
if node.level == 0 {
|
||||
// leaf
|
||||
if !visitor(&keybuf, value.to_u64()) {
|
||||
return Ok(false);
|
||||
Err(idx) => {
|
||||
// No exact match. The binary search returned the index of the
|
||||
// first key that's > search_key. Back off by one, and walk
|
||||
// backwards from there.
|
||||
if let Some(idx) = idx.checked_sub(1) {
|
||||
idx
|
||||
} else {
|
||||
return Ok(false);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
#[allow(clippy::collapsible_if)]
|
||||
if !self.search_recurse(value.to_blknum(), search_key, dir, visitor)? {
|
||||
return Ok(false);
|
||||
}
|
||||
}
|
||||
idx += 1;
|
||||
key_off += suffix_len;
|
||||
}
|
||||
} else {
|
||||
let mut idx = match node.binary_search(search_key, keybuf.as_mut_slice()) {
|
||||
Ok(idx) => {
|
||||
// Exact match. That's the first entry to return, and walk
|
||||
// backwards from there. (The loop below starts from 'idx -
|
||||
// 1', so add one here to compensate.)
|
||||
idx + 1
|
||||
}
|
||||
Err(idx) => {
|
||||
// No exact match. The binary search returned the index of the
|
||||
// first key that's > search_key. Back off by one, and walk
|
||||
// backwards from there. (The loop below starts from idx - 1,
|
||||
// so we don't need to subtract one here)
|
||||
idx
|
||||
}
|
||||
};
|
||||
Either::Right((0..=idx).rev())
|
||||
};
|
||||
|
||||
// idx points to the first match + 1 now. Keep going from there.
|
||||
let mut key_off = idx * suffix_len;
|
||||
while idx > 0 {
|
||||
idx -= 1;
|
||||
key_off -= suffix_len;
|
||||
// idx points to the first match now. Keep going from there
|
||||
while let Some(idx) = iter.next() {
|
||||
let key_off = idx * suffix_len;
|
||||
let suffix = &node.keys[key_off..key_off + suffix_len];
|
||||
keybuf[prefix_len..].copy_from_slice(suffix);
|
||||
let value = node.value(idx);
|
||||
@@ -363,12 +338,8 @@ where
|
||||
return Ok(false);
|
||||
}
|
||||
} else {
|
||||
#[allow(clippy::collapsible_if)]
|
||||
if !self.search_recurse(value.to_blknum(), search_key, dir, visitor)? {
|
||||
return Ok(false);
|
||||
}
|
||||
}
|
||||
if idx == 0 {
|
||||
stack.push((node_blknum, Some(iter)));
|
||||
stack.push((value.to_blknum(), None));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user