mirror of
https://github.com/neondatabase/neon.git
synced 2025-12-22 21:59:59 +00:00
Performance test for pgvector HNSW index build and queries (#7873)
## Problem We want to regularly verify the performance of pgvector HNSW parallel index builds and parallel similarity search using HNSW indexes. The first release that considerably improved the index-build parallelism was pgvector 0.7.0 and we want to make sure that we do not regress by our neon compute VM settings (swap, memory over commit, pg conf etc.) ## Summary of changes Prepare a Neon project with 1 million openAI vector embeddings (vector size 1536). Run HNSW indexing operations in the regression test for the various distance metrics. Run similarity queries using pgbench with 100 concurrent clients. I have also added the relevant metrics to the grafana dashboards pgbench and olape --------- Co-authored-by: Alexander Bayandin <alexander@neon.tech>
This commit is contained in:
100
.github/workflows/benchmarking.yml
vendored
100
.github/workflows/benchmarking.yml
vendored
@@ -38,6 +38,11 @@ on:
|
||||
description: 'AWS-RDS and AWS-AURORA normally only run on Saturday. Set this to true to run them on every workflow_dispatch'
|
||||
required: false
|
||||
default: false
|
||||
run_only_pgvector_tests:
|
||||
type: boolean
|
||||
description: 'Run pgvector tests but no other tests. If not set, all tests including pgvector tests will be run'
|
||||
required: false
|
||||
default: false
|
||||
|
||||
defaults:
|
||||
run:
|
||||
@@ -50,6 +55,7 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
bench:
|
||||
if: ${{ github.event.inputs.run_only_pgvector_tests == 'false' || github.event.inputs.run_only_pgvector_tests == null }}
|
||||
env:
|
||||
TEST_PG_BENCH_DURATIONS_MATRIX: "300"
|
||||
TEST_PG_BENCH_SCALES_MATRIX: "10,100"
|
||||
@@ -120,6 +126,7 @@ jobs:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
|
||||
|
||||
generate-matrices:
|
||||
if: ${{ github.event.inputs.run_only_pgvector_tests == 'false' || github.event.inputs.run_only_pgvector_tests == null }}
|
||||
# Create matrices for the benchmarking jobs, so we run benchmarks on rds only once a week (on Saturday)
|
||||
#
|
||||
# Available platforms:
|
||||
@@ -197,6 +204,7 @@ jobs:
|
||||
echo "matrix=$(echo "$matrix" | jq --compact-output '.')" >> $GITHUB_OUTPUT
|
||||
|
||||
pgbench-compare:
|
||||
if: ${{ github.event.inputs.run_only_pgvector_tests == 'false' || github.event.inputs.run_only_pgvector_tests == null }}
|
||||
needs: [ generate-matrices ]
|
||||
|
||||
strategy:
|
||||
@@ -343,6 +351,92 @@ jobs:
|
||||
env:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
|
||||
|
||||
pgbench-pgvector:
|
||||
env:
|
||||
TEST_PG_BENCH_DURATIONS_MATRIX: "15m"
|
||||
TEST_PG_BENCH_SCALES_MATRIX: "1"
|
||||
POSTGRES_DISTRIB_DIR: /tmp/neon/pg_install
|
||||
DEFAULT_PG_VERSION: 16
|
||||
TEST_OUTPUT: /tmp/test_output
|
||||
BUILD_TYPE: remote
|
||||
SAVE_PERF_REPORT: ${{ github.event.inputs.save_perf_report || ( github.ref_name == 'main' ) }}
|
||||
PLATFORM: "neon-captest-pgvector"
|
||||
|
||||
runs-on: [ self-hosted, us-east-2, x64 ]
|
||||
container:
|
||||
image: 369495373322.dkr.ecr.eu-central-1.amazonaws.com/build-tools:pinned
|
||||
options: --init
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Download Neon artifact
|
||||
uses: ./.github/actions/download
|
||||
with:
|
||||
name: neon-${{ runner.os }}-release-artifact
|
||||
path: /tmp/neon/
|
||||
prefix: latest
|
||||
|
||||
- name: Add Postgres binaries to PATH
|
||||
run: |
|
||||
${POSTGRES_DISTRIB_DIR}/v${DEFAULT_PG_VERSION}/bin/pgbench --version
|
||||
echo "${POSTGRES_DISTRIB_DIR}/v${DEFAULT_PG_VERSION}/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Set up Connection String
|
||||
id: set-up-connstr
|
||||
run: |
|
||||
CONNSTR=${{ secrets.BENCHMARK_PGVECTOR_CONNSTR }}
|
||||
|
||||
echo "connstr=${CONNSTR}" >> $GITHUB_OUTPUT
|
||||
|
||||
QUERIES=("SELECT version()")
|
||||
QUERIES+=("SHOW neon.tenant_id")
|
||||
QUERIES+=("SHOW neon.timeline_id")
|
||||
|
||||
for q in "${QUERIES[@]}"; do
|
||||
psql ${CONNSTR} -c "${q}"
|
||||
done
|
||||
|
||||
- name: Benchmark pgvector hnsw indexing
|
||||
uses: ./.github/actions/run-python-test-set
|
||||
with:
|
||||
build_type: ${{ env.BUILD_TYPE }}
|
||||
test_selection: performance/test_perf_olap.py
|
||||
run_in_parallel: false
|
||||
save_perf_report: ${{ env.SAVE_PERF_REPORT }}
|
||||
extra_params: -m remote_cluster --timeout 21600 -k test_pgvector_indexing
|
||||
env:
|
||||
VIP_VAP_ACCESS_TOKEN: "${{ secrets.VIP_VAP_ACCESS_TOKEN }}"
|
||||
PERF_TEST_RESULT_CONNSTR: "${{ secrets.PERF_TEST_RESULT_CONNSTR }}"
|
||||
BENCHMARK_CONNSTR: ${{ steps.set-up-connstr.outputs.connstr }}
|
||||
|
||||
- name: Benchmark pgvector hnsw queries
|
||||
uses: ./.github/actions/run-python-test-set
|
||||
with:
|
||||
build_type: ${{ env.BUILD_TYPE }}
|
||||
test_selection: performance
|
||||
run_in_parallel: false
|
||||
save_perf_report: ${{ env.SAVE_PERF_REPORT }}
|
||||
extra_params: -m remote_cluster --timeout 21600 -k test_pgbench_remote_pgvector
|
||||
env:
|
||||
BENCHMARK_CONNSTR: ${{ steps.set-up-connstr.outputs.connstr }}
|
||||
VIP_VAP_ACCESS_TOKEN: "${{ secrets.VIP_VAP_ACCESS_TOKEN }}"
|
||||
PERF_TEST_RESULT_CONNSTR: "${{ secrets.PERF_TEST_RESULT_CONNSTR }}"
|
||||
|
||||
- name: Create Allure report
|
||||
if: ${{ !cancelled() }}
|
||||
uses: ./.github/actions/allure-report-generate
|
||||
|
||||
- name: Post to a Slack channel
|
||||
if: ${{ github.event.schedule && failure() }}
|
||||
uses: slackapi/slack-github-action@v1
|
||||
with:
|
||||
channel-id: "C033QLM5P7D" # dev-staging-stream
|
||||
slack-message: "Periodic perf testing neon-captest-pgvector: ${{ job.status }}\n${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}"
|
||||
env:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
|
||||
|
||||
|
||||
clickbench-compare:
|
||||
# ClichBench DB for rds-aurora and rds-Postgres deployed to the same clusters
|
||||
# we use for performance testing in pgbench-compare.
|
||||
@@ -351,7 +445,7 @@ jobs:
|
||||
#
|
||||
# *_CLICKBENCH_CONNSTR: Genuine ClickBench DB with ~100M rows
|
||||
# *_CLICKBENCH_10M_CONNSTR: DB with the first 10M rows of ClickBench DB
|
||||
if: ${{ !cancelled() }}
|
||||
if: ${{ !cancelled() && (github.event.inputs.run_only_pgvector_tests == 'false' || github.event.inputs.run_only_pgvector_tests == null) }}
|
||||
needs: [ generate-matrices, pgbench-compare ]
|
||||
|
||||
strategy:
|
||||
@@ -455,7 +549,7 @@ jobs:
|
||||
# We might change it after https://github.com/neondatabase/neon/issues/2900.
|
||||
#
|
||||
# *_TPCH_S10_CONNSTR: DB generated with scale factor 10 (~10 GB)
|
||||
if: ${{ !cancelled() }}
|
||||
if: ${{ !cancelled() && (github.event.inputs.run_only_pgvector_tests == 'false' || github.event.inputs.run_only_pgvector_tests == null) }}
|
||||
needs: [ generate-matrices, clickbench-compare ]
|
||||
|
||||
strategy:
|
||||
@@ -557,7 +651,7 @@ jobs:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
|
||||
|
||||
user-examples-compare:
|
||||
if: ${{ !cancelled() }}
|
||||
if: ${{ !cancelled() && (github.event.inputs.run_only_pgvector_tests == 'false' || github.event.inputs.run_only_pgvector_tests == null) }}
|
||||
needs: [ generate-matrices, tpch-compare ]
|
||||
|
||||
strategy:
|
||||
|
||||
@@ -54,6 +54,7 @@ build-backend = "poetry.core.masonry.api"
|
||||
exclude = [
|
||||
"^vendor/",
|
||||
"^target/",
|
||||
"test_runner/performance/pgvector/loaddata.py",
|
||||
]
|
||||
check_untyped_defs = true
|
||||
# Help mypy find imports when running against list of individual files.
|
||||
|
||||
47
test_runner/performance/pgvector/HNSW_build.sql
Normal file
47
test_runner/performance/pgvector/HNSW_build.sql
Normal file
@@ -0,0 +1,47 @@
|
||||
|
||||
\set ECHO queries
|
||||
\timing
|
||||
|
||||
-- prepare test table
|
||||
DROP TABLE IF EXISTS hnsw_test_table;
|
||||
CREATE TABLE hnsw_test_table AS TABLE documents WITH NO DATA;
|
||||
INSERT INTO hnsw_test_table SELECT * FROM documents;
|
||||
CREATE INDEX ON hnsw_test_table (_id); -- needed later for random tuple queries
|
||||
-- tune index build params
|
||||
SET max_parallel_maintenance_workers = 7;
|
||||
SET maintenance_work_mem = '8GB';
|
||||
-- create HNSW index for the supported distance metrics
|
||||
CREATE INDEX ON hnsw_test_table USING hnsw (embeddings vector_cosine_ops);
|
||||
CREATE INDEX ON hnsw_test_table USING hnsw (embeddings vector_ip_ops);
|
||||
CREATE INDEX ON hnsw_test_table USING hnsw (embeddings vector_l1_ops);
|
||||
CREATE INDEX ON hnsw_test_table USING hnsw ((binary_quantize(embeddings)::bit(1536)) bit_hamming_ops);
|
||||
CREATE INDEX ON hnsw_test_table USING hnsw ((binary_quantize(embeddings)::bit(1536)) bit_jaccard_ops);
|
||||
-- note: in a second psql session we can monitor the progress of the index build phases using
|
||||
-- the following query:
|
||||
-- SELECT phase, round(100.0 * blocks_done / nullif(blocks_total, 0), 1) AS "%" FROM pg_stat_progress_create_index;
|
||||
|
||||
-- show all indexes built on the table
|
||||
SELECT
|
||||
idx.relname AS index_name,
|
||||
tbl.relname AS table_name,
|
||||
am.amname AS access_method,
|
||||
a.attname AS column_name,
|
||||
opc.opcname AS operator_class
|
||||
FROM
|
||||
pg_index i
|
||||
JOIN
|
||||
pg_class idx ON idx.oid = i.indexrelid
|
||||
JOIN
|
||||
pg_class tbl ON tbl.oid = i.indrelid
|
||||
JOIN
|
||||
pg_am am ON am.oid = idx.relam
|
||||
JOIN
|
||||
pg_attribute a ON a.attrelid = tbl.oid AND a.attnum = ANY(i.indkey)
|
||||
JOIN
|
||||
pg_opclass opc ON opc.oid = i.indclass[0]
|
||||
WHERE
|
||||
tbl.relname = 'hnsw_test_table'
|
||||
AND a.attname = 'embeddings';
|
||||
|
||||
-- show table sizes
|
||||
\dt+
|
||||
52
test_runner/performance/pgvector/IVFFLAT_build.sql
Normal file
52
test_runner/performance/pgvector/IVFFLAT_build.sql
Normal file
@@ -0,0 +1,52 @@
|
||||
|
||||
\set ECHO queries
|
||||
\timing
|
||||
|
||||
-- prepare test table
|
||||
DROP TABLE IF EXISTS ivfflat_test_table;
|
||||
CREATE TABLE ivfflat_test_table AS TABLE documents WITH NO DATA;
|
||||
INSERT INTO ivfflat_test_table SELECT * FROM documents;
|
||||
CREATE INDEX ON ivfflat_test_table (_id); -- needed later for random tuple queries
|
||||
-- tune index build params
|
||||
SET max_parallel_maintenance_workers = 7;
|
||||
SET maintenance_work_mem = '8GB';
|
||||
-- create ivfflat index for the supported distance metrics
|
||||
-- the formulat for lists is # rows / 1000 or sqrt(# rows) if # rows > 1 million
|
||||
-- we have 1 million embeddings of vector size 1536 in column embeddings of table documents
|
||||
-- so we use 1000 lists
|
||||
CREATE INDEX ON ivfflat_test_table USING ivfflat (embeddings vector_l2_ops) WITH (lists = 1000);
|
||||
CREATE INDEX ON ivfflat_test_table USING ivfflat (embeddings vector_ip_ops) WITH (lists = 1000);
|
||||
CREATE INDEX ON ivfflat_test_table USING ivfflat (embeddings vector_cosine_ops) WITH (lists = 1000);
|
||||
CREATE INDEX ON ivfflat_test_table USING ivfflat (embeddings::halfvec(1536) halfvec_l2_ops) WITH (lists = 1000);
|
||||
CREATE INDEX ON ivfflat_test_table
|
||||
USING ivfflat ((binary_quantize(embeddings)::bit(1536)) bit_hamming_ops) WITH (lists = 1000);
|
||||
|
||||
\d ivfflat_test_table
|
||||
|
||||
|
||||
-- show all indexes built on the table
|
||||
SELECT
|
||||
idx.relname AS index_name,
|
||||
tbl.relname AS table_name,
|
||||
am.amname AS access_method,
|
||||
a.attname AS column_name,
|
||||
opc.opcname AS operator_class
|
||||
FROM
|
||||
pg_index i
|
||||
JOIN
|
||||
pg_class idx ON idx.oid = i.indexrelid
|
||||
JOIN
|
||||
pg_class tbl ON tbl.oid = i.indrelid
|
||||
JOIN
|
||||
pg_am am ON am.oid = idx.relam
|
||||
JOIN
|
||||
pg_attribute a ON a.attrelid = tbl.oid AND a.attnum = ANY(i.indkey)
|
||||
JOIN
|
||||
pg_opclass opc ON opc.oid = i.indclass[0]
|
||||
WHERE
|
||||
tbl.relname = 'ivfflat_test_table'
|
||||
AND a.attname = 'embeddings';
|
||||
-- show table sizes
|
||||
\dt+
|
||||
|
||||
|
||||
38
test_runner/performance/pgvector/README.md
Normal file
38
test_runner/performance/pgvector/README.md
Normal file
@@ -0,0 +1,38 @@
|
||||
---
|
||||
dataset_info:
|
||||
features:
|
||||
- name: _id
|
||||
dtype: string
|
||||
- name: title
|
||||
dtype: string
|
||||
- name: text
|
||||
dtype: string
|
||||
- name: text-embedding-3-large-1536-embedding
|
||||
sequence: float64
|
||||
splits:
|
||||
- name: train
|
||||
num_bytes: 12679725776
|
||||
num_examples: 1000000
|
||||
download_size: 9551862565
|
||||
dataset_size: 12679725776
|
||||
configs:
|
||||
- config_name: default
|
||||
data_files:
|
||||
- split: train
|
||||
path: data/train-*
|
||||
license: mit
|
||||
task_categories:
|
||||
- feature-extraction
|
||||
language:
|
||||
- en
|
||||
size_categories:
|
||||
- 1M<n<10M
|
||||
---
|
||||
|
||||
|
||||
1M OpenAI Embeddings: text-embedding-3-large 1536 dimensions
|
||||
|
||||
- Created: February 2024.
|
||||
- Text used for Embedding: title (string) + text (string)
|
||||
- Embedding Model: OpenAI text-embedding-3-large
|
||||
- This dataset was generated from the first 1M entries of https://huggingface.co/datasets/BeIR/dbpedia-entity, extracted by @KShivendu_ [here](https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M)
|
||||
72
test_runner/performance/pgvector/loaddata.py
Normal file
72
test_runner/performance/pgvector/loaddata.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import psycopg2
|
||||
from pgvector.psycopg2 import register_vector
|
||||
from psycopg2.extras import execute_values
|
||||
|
||||
|
||||
def print_usage():
|
||||
print("Usage: loaddata.py <CONNSTR> <DATADIR>")
|
||||
|
||||
|
||||
def main(conn_str, directory_path):
|
||||
# Connection to PostgreSQL
|
||||
with psycopg2.connect(conn_str) as conn:
|
||||
with conn.cursor() as cursor:
|
||||
# Run SQL statements
|
||||
cursor.execute("CREATE EXTENSION IF NOT EXISTS vector;")
|
||||
register_vector(conn)
|
||||
cursor.execute("DROP TABLE IF EXISTS documents;")
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE documents (
|
||||
_id TEXT PRIMARY KEY,
|
||||
title TEXT,
|
||||
text TEXT,
|
||||
embeddings vector(1536) -- text-embedding-3-large-1536-embedding (OpenAI)
|
||||
);
|
||||
"""
|
||||
)
|
||||
conn.commit()
|
||||
|
||||
# List and sort Parquet files
|
||||
parquet_files = sorted(Path(directory_path).glob("*.parquet"))
|
||||
|
||||
for file in parquet_files:
|
||||
print(f"Loading {file} into PostgreSQL")
|
||||
df = pd.read_parquet(file)
|
||||
|
||||
print(df.head())
|
||||
|
||||
data_list = [
|
||||
(
|
||||
row["_id"],
|
||||
row["title"],
|
||||
row["text"],
|
||||
np.array(row["text-embedding-3-large-1536-embedding"]),
|
||||
)
|
||||
for index, row in df.iterrows()
|
||||
]
|
||||
# Use execute_values to perform batch insertion
|
||||
execute_values(
|
||||
cursor,
|
||||
"INSERT INTO documents (_id, title, text, embeddings) VALUES %s",
|
||||
data_list,
|
||||
)
|
||||
# Commit after we insert all embeddings
|
||||
conn.commit()
|
||||
|
||||
print(f"Loaded {file} into PostgreSQL")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if len(sys.argv) != 3:
|
||||
print_usage()
|
||||
sys.exit(1)
|
||||
|
||||
conn_str = sys.argv[1]
|
||||
directory_path = sys.argv[2]
|
||||
main(conn_str, directory_path)
|
||||
@@ -0,0 +1,10 @@
|
||||
with x (x) as (
|
||||
select "embeddings" as x
|
||||
from hnsw_test_table
|
||||
TABLESAMPLE SYSTEM (1)
|
||||
LIMIT 1
|
||||
)
|
||||
SELECT title, "embeddings" <=> (select x from x) as distance
|
||||
FROM hnsw_test_table
|
||||
ORDER BY 2
|
||||
LIMIT 30;
|
||||
13
test_runner/performance/pgvector/pgbench_hnsw_queries.sql
Normal file
13
test_runner/performance/pgvector/pgbench_hnsw_queries.sql
Normal file
@@ -0,0 +1,13 @@
|
||||
-- run with pooled connection
|
||||
-- pgbench -T 300 -c 100 -j20 -f pgbench_hnsw_queries.sql -postgresql://neondb_owner:<secret>@ep-floral-thunder-w1gzhaxi-pooler.eu-west-1.aws.neon.build/neondb?sslmode=require"
|
||||
|
||||
with x (x) as (
|
||||
select "embeddings" as x
|
||||
from hnsw_test_table
|
||||
TABLESAMPLE SYSTEM (1)
|
||||
LIMIT 1
|
||||
)
|
||||
SELECT title, "embeddings" <=> (select x from x) as distance
|
||||
FROM hnsw_test_table
|
||||
ORDER BY 2
|
||||
LIMIT 30;
|
||||
@@ -100,6 +100,25 @@ QUERIES: Tuple[LabelledQuery, ...] = (
|
||||
)
|
||||
# fmt: on
|
||||
|
||||
# A list of pgvector HNSW index builds to run.
|
||||
# Please do not alter the label for the query, as it is used to identify it.
|
||||
#
|
||||
# Disable auto formatting for the list of queries so that it's easier to read
|
||||
# fmt: off
|
||||
PGVECTOR_QUERIES: Tuple[LabelledQuery, ...] = (
|
||||
LabelledQuery("PGV0", r"DROP TABLE IF EXISTS hnsw_test_table;"),
|
||||
LabelledQuery("PGV1", r"CREATE TABLE hnsw_test_table AS TABLE documents WITH NO DATA;"),
|
||||
LabelledQuery("PGV2", r"INSERT INTO hnsw_test_table SELECT * FROM documents;"),
|
||||
LabelledQuery("PGV3", r"CREATE INDEX ON hnsw_test_table (_id);"),
|
||||
LabelledQuery("PGV4", r"CREATE INDEX ON hnsw_test_table USING hnsw (embeddings vector_cosine_ops);"),
|
||||
LabelledQuery("PGV5", r"CREATE INDEX ON hnsw_test_table USING hnsw (embeddings vector_ip_ops);"),
|
||||
LabelledQuery("PGV6", r"CREATE INDEX ON hnsw_test_table USING hnsw (embeddings vector_l1_ops);"),
|
||||
LabelledQuery("PGV7", r"CREATE INDEX ON hnsw_test_table USING hnsw ((binary_quantize(embeddings)::bit(1536)) bit_hamming_ops);"),
|
||||
LabelledQuery("PGV8", r"CREATE INDEX ON hnsw_test_table USING hnsw ((binary_quantize(embeddings)::bit(1536)) bit_jaccard_ops);"),
|
||||
)
|
||||
# fmt: on
|
||||
|
||||
|
||||
EXPLAIN_STRING: str = "EXPLAIN (ANALYZE, VERBOSE, BUFFERS, COSTS, SETTINGS, FORMAT JSON)"
|
||||
|
||||
|
||||
@@ -245,3 +264,18 @@ def test_clickbench_collect_pg_stat_statements(remote_compare: RemoteCompare):
|
||||
log.info("Collecting pg_stat_statements")
|
||||
query = LabelledQuery("Q_COLLECT_PG_STAT_STATEMENTS", r"SELECT * from pg_stat_statements;")
|
||||
run_psql(remote_compare, query, times=1, explain=False)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("query", PGVECTOR_QUERIES)
|
||||
@pytest.mark.remote_cluster
|
||||
def test_pgvector_indexing(query: LabelledQuery, remote_compare: RemoteCompare):
|
||||
"""
|
||||
An pgvector test that tests HNSW index build performance and parallelism.
|
||||
|
||||
The DB prepared manually in advance.
|
||||
See
|
||||
- test_runner/performance/pgvector/README.md
|
||||
- test_runner/performance/pgvector/loaddata.py
|
||||
- test_runner/performance/pgvector/HNSW_build.sql
|
||||
"""
|
||||
run_psql(remote_compare, query, times=1, explain=False)
|
||||
|
||||
@@ -17,6 +17,7 @@ class PgBenchLoadType(enum.Enum):
|
||||
INIT = "init"
|
||||
SIMPLE_UPDATE = "simple-update"
|
||||
SELECT_ONLY = "select-only"
|
||||
PGVECTOR_HNSW = "pgvector-hnsw"
|
||||
|
||||
|
||||
def utc_now_timestamp() -> int:
|
||||
@@ -132,6 +133,26 @@ def run_test_pgbench(env: PgCompare, scale: int, duration: int, workload_type: P
|
||||
password=password,
|
||||
)
|
||||
|
||||
if workload_type == PgBenchLoadType.PGVECTOR_HNSW:
|
||||
# Run simple-update workload
|
||||
run_pgbench(
|
||||
env,
|
||||
"pgvector-hnsw",
|
||||
[
|
||||
"pgbench",
|
||||
"-f",
|
||||
"test_runner/performance/pgvector/pgbench_custom_script_pgvector_hsnw_queries.sql",
|
||||
"-c100",
|
||||
"-j20",
|
||||
f"-T{duration}",
|
||||
"-P2",
|
||||
"--protocol=prepared",
|
||||
"--progress-timestamp",
|
||||
connstr,
|
||||
],
|
||||
password=password,
|
||||
)
|
||||
|
||||
env.report_size()
|
||||
|
||||
|
||||
@@ -201,3 +222,13 @@ def test_pgbench_remote_simple_update(remote_compare: PgCompare, scale: int, dur
|
||||
@pytest.mark.remote_cluster
|
||||
def test_pgbench_remote_select_only(remote_compare: PgCompare, scale: int, duration: int):
|
||||
run_test_pgbench(remote_compare, scale, duration, PgBenchLoadType.SELECT_ONLY)
|
||||
|
||||
|
||||
# The following test runs on an existing database that has pgvector extension installed
|
||||
# and a table with 1 million embedding vectors loaded and indexed with HNSW.
|
||||
#
|
||||
# Run this pgbench tests against an existing remote Postgres cluster with the necessary setup.
|
||||
@pytest.mark.parametrize("duration", get_durations_matrix())
|
||||
@pytest.mark.remote_cluster
|
||||
def test_pgbench_remote_pgvector(remote_compare: PgCompare, duration: int):
|
||||
run_test_pgbench(remote_compare, 1, duration, PgBenchLoadType.PGVECTOR_HNSW)
|
||||
|
||||
Reference in New Issue
Block a user