Some callers of `VirtualFile::crashsafe_overwrite` call it on the
executor thread, thereby potentially stalling it.
Others are more diligent and wrap it in `spawn_blocking(...,
Handle::block_on, ... )` to avoid stalling the executor thread.
However, because `crashsafe_overwrite` uses
VirtualFile::open_with_options internally, we spawn a new thread-local
`tokio-epoll-uring::System` in the blocking pool thread that's used for
the `spawn_blocking` call.
This PR refactors the situation such that we do the `spawn_blocking`
inside `VirtualFile::crashsafe_overwrite`. This unifies the situation
for the better:
1. Callers who didn't wrap in `spawn_blocking(..., Handle::block_on,
...)` before no longer stall the executor.
2. Callers who did it before now can avoid the `block_on`, resolving the
problem with the short-lived `tokio-epoll-uring::System`s in the
blocking pool threads.
A future PR will build on top of this and divert to tokio-epoll-uring if
it's configures as the IO engine.
Changes
-------
- Convert implementation to std::fs and move it into `crashsafe.rs`
- Yes, I know, Safekeepers (cc @arssher ) added `durable_rename` and
`fsync_async_opt` recently. However, `crashsafe_overwrite` is different
in the sense that it's higher level, i.e., it's more like
`std::fs::write` and the Safekeeper team's code is more building block
style.
- The consequence is that we don't use the VirtualFile file descriptor
cache anymore.
- I don't think it's a big deal because we have plenty of slack wrt
production file descriptor limit rlimit (see [this
dashboard](https://neonprod.grafana.net/d/e4a40325-9acf-4aa0-8fd9-f6322b3f30bd/pageserver-open-file-descriptors?orgId=1))
- Use `tokio::task::spawn_blocking` in
`VirtualFile::crashsafe_overwrite` to call the new
`crashsafe::overwrite` API.
- Inspect all callers to remove any double-`spawn_blocking`
- spawn_blocking requires the captures data to be 'static + Send. So,
refactor the callers. We'll need this for future tokio-epoll-uring
support anyway, because tokio-epoll-uring requires owned buffers.
Related Issues
--------------
- overall epic to enable write path to tokio-epoll-uring: #6663
- this is also kind of relevant to the tokio-epoll-uring System creation
failures that we encountered in staging, investigation being tracked in
#6667
- why is it relevant? Because this PR removes two uses of
`spawn_blocking+Handle::block_on`
There is O(n^2) issues due to how we store these directories (#6626), so
it's good to keep an eye on them and ensure the numbers stay low.
The new per-timeline metric `pageserver_directory_entries_count`
isn't perfect, namely we don't calculate it every time we attach
the timeline, but only if there is an actual change.
Also, it is a collective metric over multiple scalars. Lastly,
we only emit the metric if it is above a certain threshold.
However, the metric still give a feel for the general size of the timeline.
We care less for small values as the metric is mainly there to
detect and track tenants with large directory counts.
We also expose the directory counts in `TimelineInfo` so that one can
get the detailed size distribution directly via the pageserver's API.
Related: #6642 , https://github.com/neondatabase/cloud/issues/10273
This PR contains the first version of a
[FoundationDB-like](https://www.youtube.com/watch?v=4fFDFbi3toc)
simulation testing for safekeeper and walproposer.
### desim
This is a core "framework" for running determenistic simulation. It
operates on threads, allowing to test syncronous code (like walproposer).
`libs/desim/src/executor.rs` contains implementation of a determenistic
thread execution. This is achieved by blocking all threads, and each
time allowing only a single thread to make an execution step. All
executor's threads are blocked using `yield_me(after_ms)` function. This
function is called when a thread wants to sleep or wait for an external
notification (like blocking on a channel until it has a ready message).
`libs/desim/src/chan.rs` contains implementation of a channel (basic
sync primitive). It has unlimited capacity and any thread can push or
read messages to/from it.
`libs/desim/src/network.rs` has a very naive implementation of a network
(only reliable TCP-like connections are supported for now), that can
have arbitrary delays for each package and failure injections for
breaking connections with some probability.
`libs/desim/src/world.rs` ties everything together, to have a concept of
virtual nodes that can have network connections between them.
### walproposer_sim
Has everything to run walproposer and safekeepers in a simulation.
`safekeeper.rs` reimplements all necesary stuff from `receive_wal.rs`,
`send_wal.rs` and `timelines_global_map.rs`.
`walproposer_api.rs` implements all walproposer callback to use
simulation library.
`simulation.rs` defines a schedule – a set of events like `restart <sk>`
or `write_wal` that should happen at time `<ts>`. It also has code to
spawn walproposer/safekeeper threads and provide config to them.
### tests
`simple_test.rs` has tests that just start walproposer and 3 safekeepers
together in a simulation, and tests that they are not crashing right
away.
`misc_test.rs` has tests checking more advanced simulation cases, like
crashing or restarting threads, testing memory deallocation, etc.
`random_test.rs` is the main test, it checks thousands of random seeds
(schedules) for correctness. It roughly corresponds to running a real
python integration test in an environment with very unstable network and
cpu, but in a determenistic way (each seed results in the same execution
log) and much much faster.
Closes#547
---------
Co-authored-by: Arseny Sher <sher-ars@yandex.ru>
The smaller changes I found while looking around #6584.
- rustfmt was not able to format handle_timeline_create
- fix Generation::get_suffix always allocating
- Generation was missing a `#[track_caller]` for panicky method
- attach has a lot of issues, but even with this PR it cannot be
formatted by rustfmt
- moved the `preload` span to be on top of `attach` -- it is awaited
inline
- make disconnected panic! or unreachable! into expect, expect_err
@problame noticed that the `tokio::sync::AcquireError` branch assertion
can be hit like in the added test. We haven't seen this yet in
production, but I'd prefer not to see it there. There `take_and_deinit`
is being used, but this race must be quite timing sensitive.
Rework of earlier: #6652.
This PR reverts
- https://github.com/neondatabase/neon/pull/6589
- https://github.com/neondatabase/neon/pull/6652
because there's a performance regression that's particularly visible at
high layer counts.
Most likely it's because the switch to RwLock inflates the
```
inner: heavier_once_cell::OnceCell<ResidentOrWantedEvicted>,
```
size from 48 to 88 bytes, which, by itself is almost a doubling of the
cache footprint, and probably the fact that it's now larger than a cache
line also doesn't help.
See this chat on the Neon discord for more context:
https://discord.com/channels/1176467419317940276/1204714372295958548/1205541184634617906
I'm reverting 6652 as well because it might also have perf implications,
and we're getting close to the next release. We should re-do its changes
after the next release, though.
cc @koivunej
cc @ivaxer
Do list-delete operations in batches instead of doing full list first, to ensure
deletion makes progress even if there are a lot of files to remove.
To this end, add max_keys limit to remote storage list_files.
This PR is preliminary cleanups and refactoring around `remote_storage`
for next PR which will move the timeouts and cancellation into
`remote_storage`.
Summary:
- smaller drive-by fixes
- code simplification
- refactor common parts like `DownloadError::is_permanent`
- align error types with `RemoteStorage::list_*` to use more
`download_retry` helper
Cc: #6096
if anon is in shared_preload_libraries.
Users cannot install it themselves, because superuser is required.
GRANT all priveleged needed to use it to db_owner
We use the neon fork of the extension, because small change to sql file
is needed to allow db_owner to use it.
This feature is behind a feature flag AnonExtension,
so it is not enabled by default.
@problame noticed that the `tokio::sync::AcquireError` branch assertion
can be hit like in the first commit. We haven't seen this yet in
production, but I'd prefer not to see it there. There `take_and_deinit`
is being used, but this race must be quite timing sensitive.
- Automatically set a node's availability to Active if it is responsive
in startup_reconcile
- Impose a 5s timeout of HTTP request to list location conf, so that an
unresponsive node can't hang it for minutes
- Do several retries if the request fails with a retryable error, to be
tolerant of concurrent pageserver & storage controller restarts
- Add a readiness hook for use with k8s so that we can tell when the
startup reconciliaton is done and the service is fully ready to do work.
- Add /metrics to the list of un-authenticated endpoints (this is
unrelated but we're touching the line in this PR already, and it fixes
auth error spam in deployed container.)
- A test for the above.
Closes: #6670
## Problem
One doesn't know at tenant creation time how large the tenant will grow.
We need to be able to dynamically adjust the shard count at runtime.
This is implemented as "splitting" of shards into smaller child shards,
which cover a subset of the keyspace that the parent covered.
Refer to RFC: https://github.com/neondatabase/neon/pull/6358
Part of epic: #6278
## Summary of changes
This PR implements the happy path (does not cleanly recover from a crash
mid-split, although won't lose any data), without any optimizations
(e.g. child shards re-download their own copies of layers that the
parent shard already had on local disk)
- Add `/v1/tenant/:tenant_shard_id/shard_split` API to pageserver: this
copies the shard's index to the child shards' paths, instantiates child
`Tenant` object, and tears down parent `Tenant` object.
- Add `splitting` column to `tenant_shards` table. This is written into
an existing migration because we haven't deployed yet, so don't need to
cleanly upgrade.
- Add `/control/v1/tenant/:tenant_id/shard_split` API to
attachment_service,
- Add `test_sharding_split_smoke` test. This covers the happy path:
future PRs will add tests that exercise failure cases.
This PR adds an API to live-reconfigure the VirtualFile io engine.
It also adds a flag to `pagebench get-page-latest-lsn`, which is where I
found this functionality to be useful: it helps compare the io engines
in a benchmark without re-compiling a release build, which took ~50s on
the i3en.3xlarge where I was doing the benchmark.
Switching the IO engine is completely safe at runtime.
The solution we ended up for `backoff::retry` requires always cloning of
cancellation tokens even though there is just `.await`. Fix that, and
also turn the return type into `Option<Result<T, E>>` avoiding the need
for the `E::cancelled()` fn passed in.
Cc: #6096
## Problem
Passing secrets in via CLI/environment is awkward when using helm for
deployment, and not ideal for security (secrets may show up in ps,
/proc).
We can bypass these issues by simply connecting directly to the AWS
Secrets Manager service at runtime.
## Summary of changes
- Add dependency on aws-sdk-secretsmanager
- Update other aws dependencies to latest, to match transitive
dependency versions
- Add `Secrets` type in attachment service, using AWS SDK to load if
secrets are not provided on the command line.
Adds an endpoint to the pageserver to S3-recover an entire tenant to a
specific given timestamp.
Required input parameters:
* `travel_to`: the target timestamp to recover the S3 state to
* `done_if_after`: a timestamp that marks the beginning of the recovery
process. retries of the query should keep this value constant. it *must*
be after `travel_to`, and also after any changes we want to revert, and
must represent a point in time before the endpoint is being called, all
of these time points in terms of the time source used by S3. these
criteria need to hold even in the face of clock differences, so I
recommend waiting a specific amount of time, then taking
`done_if_after`, then waiting some amount of time again, and only then
issuing the request.
Also important to note: the timestamps in S3 work at second accuracy, so
one needs to add generous waits before and after for the process to work
smoothly (at least 2-3 seconds).
We ignore the added test for the mocked S3 for now due to a limitation
in moto: https://github.com/getmoto/moto/issues/7300 .
Part of https://github.com/neondatabase/cloud/issues/8233
- log when we start walredo process
- include tenant shard id in walredo argv
- dump some basic walredo state in tenant details api
- more suitable walredo process launch histogram buckets
- avoid duplicate tracing labels in walredo launch spans
Don't require AWS access keys (AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY) for S3 usage in the pytests, and also allow
AWS_PROFILE to be passed.
One of the two methods is required however.
This allows local development like:
```
aws sso login --profile dev
export ENABLE_REAL_S3_REMOTE_STORAGE=nonempty REMOTE_STORAGE_S3_REGION=eu-central-1 REMOTE_STORAGE_S3_BUCKET=neon-github-ci-tests AWS_PROFILE=dev
cargo build_testing && RUST_BACKTRACE=1 ./scripts/pytest -k debug-pg16 test_runner/regress/test_tenant_delete.py::test_tenant_delete_smoke
```
related earlier PR for the cargo unit tests of the `remote_storage` crate: #6202
---------
Co-authored-by: Alexander Bayandin <alexander@neon.tech>
This commit adds a function to `KeySpace` which updates a key key space
by removing all overlaps with a second key space. This can involve
splitting or removing of existing ranges.
The implementation is not particularly efficient: O(M * N * log(N))
where N is the number of ranges in the current key space and M is the
number of ranges in the key space we are checking against. In practice,
this shouldn't matter much since, in the short term, the only caller of
this function will be the vectored read path and the number of key
spaces invovled will be small. This follows from the upper bound placed
on the number of keys accepted by the vectored read path.
A couple other small utility functions are added. They'll be used by the
vectored search path as well.
changes:
- two messages instead of message every second when gate was closing
- replace the gate name string by using a pointer
- slow GateGuards are likely to log who they were (see example)
example found in regress tests: <https://github.com/neondatabase/neon/pull/6542#issuecomment-1919009256>
## Problem
See https://github.com/neondatabase/cloud/issues/8673
## Summary of changes
Download missed SLRU segments from page server
## Checklist before requesting a review
- [ ] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
## Checklist before merging
- [ ] Do not forget to reformat commit message to not include the above
checklist
---------
Co-authored-by: Konstantin Knizhnik <knizhnik@neon.tech>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Depends on: https://github.com/neondatabase/neon/pull/6468
## Problem
The sharding service will be used as a "virtual pageserver" by the
control plane -- so it needs the set of pageserver APIs that the control
plane uses, and to present them under identical URLs, including prefix
(/v1).
## Summary of changes
- Add missing APIs:
- Tenant deletion
- Timeline deletion
- Node list (used in test now, later in tools)
- `/location_config` API (for migrating tenants into the sharding
service)
- Rework attachment service URLs:
- `/v1` prefix is used for pageserver-compatible APIs
- `/upcall/v1` prefix is used for APIs that are called by the pageserver
(re-attach and validate)
- `/debug/v1` prefix is used for endpoints that are for testing
- `/control/v1` prefix is used for new sharding service APIs that do not
mimic a pageserver API, such as registering and configuring nodes.
- Add test_sharding_service. The sharding service already had some
collateral coverage from its use in general tests, but this is the first
dedicated testing for it.
## Problem
PR #6500 has removed the limiting by number of versions/deletions for
time travel calls. We never get informed about how many versions there
are, and thus the call would just hang without any indication of
progress.
## Summary of changes
We improve the pageserver's behaviour with large prefixes, i.e. those
with many keys, removed or currently still available.
* Add a hard limit of 100k versions/deletions. For the reasoning see
https://github.com/neondatabase/cloud/issues/8233#issuecomment-1915021625
, but TLDR it will roughly support tenants of 2 TiB size, of course
depending on general write activity and duration of the s3 retention
window. The goal is to have a limit at all so that the process doesn't
accumulate increasing numbers of versions until an eventual crash.
* Lower the RAM footprint for the `VerOrDelete` datastructure. This
means we now don't cache a lot of redundant metadata in RAM like the
owner ID. The top level datastructure's footprint goes down from 264
bytes to 80 (but it contains strings that are not counted in there).
Follow-up of #6500, part of https://github.com/neondatabase/cloud/issues/8233
---------
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Since fdatasync is used for flushing WAL, changing file size is unsafe. Make
segment creation atomic by using tmp file + rename to avoid using partially
initialized segments.
fixes https://github.com/neondatabase/neon/issues/6402
It hanged if file size is less than of a normal segment. Normally that doesn't
happen, but it might in case of crash during segment init. We're going to fix
that half initialized segment by durably renaming it after cooking, so this fix
won't be needed, but better avoid busy loop anyway.
fixes https://github.com/neondatabase/neon/issues/6401
## Problem
The tenants we want to recover might have tens of thousands of keys, or
more. At that point, the AWS API returns a paginated response.
## Summary of changes
Support paginated responses for `list_object_versions` requests.
Follow-up of #6155, part of https://github.com/neondatabase/cloud/issues/8233
## Problem
Measuring cardinality using logs is expensive and slow.
## Summary of changes
Implement a pre-aggregated HyperLogLog-based cardinality estimate.
HyperLogLog estimates the cardinality of a set by using the probability
that the uniform hash of a value will have a run of n 0s at the end is
`1/2^n`, therefore, having observed a run of `n` 0s suggests we have
measured `2^n` distinct values. By using multiple shards, we can use the
harmonic mean to get a more accurate estimate.
We record this into a Prometheus time-series. HyperLogLog counts can be
merged by taking the `max` of each shard. We can apply a `max_over_time`
in order to find the estimate of cardinality of distinct values over
time
## Problem
Spun off from https://github.com/neondatabase/neon/pull/6394 -- this PR
is just the persistence parts and the changes that enable it to work
nicely
## Summary of changes
- Revert #6444 and #6450
- In neon_local, start a vanilla postgres instance for the attachment
service to use.
- Adopt `diesel` crate for database access in attachment service. This
uses raw SQL migrations as the source of truth for the schema, so it's a
soft dependency: we can switch libraries pretty easily.
- Rewrite persistence.rs to use postgres (via diesel) instead of JSON.
- Preserve JSON read+write at startup and shutdown: this enables using
the JSON format in compatibility tests, so that we don't have to commit
to our DB schema yet.
- In neon_local, run database creation + migrations before starting
attachment service
- Run the initial reconciliation in Service::spawn in the background, so
that the pageserver + attachment service don't get stuck waiting for
each other to start, when restarting both together in a test.
The top level retries weren't enough, probably because we do so many
network requests. Fine grained retries ensure that there is higher
potential for the entire test to succeed.
To demonstrate this, consider the following example: let's assume that
each request has 5% chance of failing and we do 10 requests. Then
chances of success without any retries is 0.95^10 = 0.6. With 3 top
level retries it is 1-0.4^3 = 0.936. With 3 fine grained retries it is
(1-0.05^3)^10 = 0.9988 (roundings implicit). So chances of failure are
6.4% for the top level retry vs 0.12% for the fine grained retry.
Follow-up of #6155
Adds a new `time_travel_recover` function to the `RemoteStorage` trait
that allows time travel like functionality for S3 buckets, regardless of
their content (it is not even pageserver related). It takes a different
approach from [this
post](https://aws.amazon.com/blogs/storage/point-in-time-restore-for-amazon-s3-buckets/)
that is more complicated.
It takes as input a prefix a target timestamp, and a limit timestamp:
* executes [`ListObjectVersions`](https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectVersions.html)
* obtains the latest version that comes before the target timestamp
* copies that latest version to the same prefix
* if there is versions newer than the limit timestamp, it doesn't do
anything for the file
The limit timestamp is meant to be some timestamp before the start of
the recovery operation and after any changes that one wants to revert.
For example, it might be the time point after a tenant was detached from
all involved pageservers. The limiting mechanism ensures that the
operation is idempotent and can be retried without causing additional
writes/copies.
The approach fulfills all the requirements laid out in 8233, and is a
recoverable operation. Nothing is deleted permanently, only new entries
added to the version log.
I also enable [nextest retries](https://nexte.st/book/retries.html) to
help with some general S3 flakiness (on top of low level retries).
Part of https://github.com/neondatabase/cloud/issues/8233
## Problem
For #6423, creating a reproducer turned out to be very easy, as an
extension to test_ondemand_activation.
However, before I had diagnosed the issue, I was starting with a more
brute force approach of running creation API calls in the background
while restarting a pageserver, and that shows up a bunch of other
interesting issues.
In this PR:
- Add the reproducer for #6423 by extending `test_ondemand_activation`
(confirmed that this test fails if I revert the fix from
https://github.com/neondatabase/neon/pull/6430)
- In timeline creation, return 503 responses when we get an error and
the tenant's cancellation token is set: this covers the cases where we
get an anyhow::Error from something during timeline creation as a result
of shutdown.
- While waiting for tenants to become active during creation, don't
.map_err() the result to a 500: instead let the `From` impl map the
result to something appropriate (this includes mapping shutdown to 503)
- During tenant creation, we were calling `Tenant::load_local` because
no Preload object is provided. This is usually harmless because the
tenant dir is empty, but if there are some half-created timelines in
there, bad things can happen. Propagate the SpawnMode into
Tenant::attach, so that it can properly skip _any_ attempt to load
timelines if creating.
- When we call upsert_location, there's a SpawnMode that tells us
whether to load from remote storage or not. But if the operation is a
retry and we already have the tenant, it is not correct to skip loading
from remote storage: there might be a timeline there. This isn't
strictly a correctness issue as long as the caller behaves correctly
(does not assume that any timelines are persistent until the creation is
acked), but it's a more defensive position.
- If we shut down while the task in Tenant::attach is running, it can
end up spawning rogue tasks. Fix this by holding a GateGuard through
here, and in upsert_location shutting down a tenant after calling
tenant_spawn if we can't insert it into tenants_map. This fixes the
expected behavior that after shutdown_all_tenants returns, no tenant
tasks are running.
- Add `test_create_churn_during_restart`, which runs tenant & timeline
creations across pageserver restarts.
- Update a couple of tests that covered cancellation, to reflect the
cleaner errors we now return.
Makes the `RemoteStorage` trait not be based on `async_trait` any more.
To avoid recursion in async (not supported by Rust), we made
`GenericRemoteStorage` generic on the "Unreliable" variant. That allows
us to have the unreliable wrapper never contain/call itself.
related earlier work: #6305
The pagebench integration PR (#6214) is the first to SIGQUIT & then
restart attachment_service.
With many tenants (100), we have found frequent failures on restart in
the CI[^1].
[^1]:
[Allure](https://neon-github-public-dev.s3.amazonaws.com/reports/pr-6214/7615750160/index.html#suites/e26265675583c610f99af77084ae58f1/851ff709578c4452/)
```
2024-01-22T19:07:57.932021Z INFO request{method=POST path=/attach-hook request_id=2697503c-7b3e-4529-b8c1-d12ef912d3eb}: Request handled, status: 200 OK
2024-01-22T19:07:58.898213Z INFO Got SIGQUIT. Terminating
2024-01-22T19:08:02.176588Z INFO version: git-env:d56f31639356ed8e8ce832097f132f27ee19ac8a, launch_timestamp: 2024-01-22 19:08:02.174634554 UTC, build_tag build_tag-env:7615750160, state at /tmp/test_output/test_pageserver_max_throughput_getpage_at_latest_lsn[10-13-30]/repo/attachments.json, listening on 127.0.0.1:15048
thread 'main' panicked at /__w/neon/neon/control_plane/attachment_service/src/persistence.rs:95:17:
Failed to load state from '/tmp/test_output/test_pageserver_max_throughput_getpage_at_latest_lsn[10-13-30]/repo/attachments.json': trailing characters at line 1 column 8957 (maybe your .neon/ dir was written by an older version?)
stack backtrace:
0: rust_begin_unwind
at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/library/std/src/panicking.rs:645:5
1: core::panicking::panic_fmt
at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/library/core/src/panicking.rs:72:14
2: attachment_service::persistence::PersistentState::load_or_new::{{closure}}
at ./control_plane/attachment_service/src/persistence.rs:95:17
3: attachment_service::persistence::Persistence:🆕:{{closure}}
at ./control_plane/attachment_service/src/persistence.rs:103:56
4: attachment_service::main::{{closure}}
at ./control_plane/attachment_service/src/main.rs:69:61
5: tokio::runtime::park::CachedParkThread::block_on::{{closure}}
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/park.rs:282:63
6: tokio::runtime::coop::with_budget
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/coop.rs:107:5
7: tokio::runtime::coop::budget
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/coop.rs:73:5
8: tokio::runtime::park::CachedParkThread::block_on
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/park.rs:282:31
9: tokio::runtime::context::blocking::BlockingRegionGuard::block_on
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/context/blocking.rs:66:9
10: tokio::runtime::scheduler::multi_thread::MultiThread::block_on::{{closure}}
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/scheduler/multi_thread/mod.rs:87:13
11: tokio::runtime::context::runtime::enter_runtime
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/context/runtime.rs:65:16
12: tokio::runtime::scheduler::multi_thread::MultiThread::block_on
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/scheduler/multi_thread/mod.rs:86:9
13: tokio::runtime::runtime::Runtime::block_on
at ./.cargo/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.34.0/src/runtime/runtime.rs:350:50
14: attachment_service::main
at ./control_plane/attachment_service/src/main.rs:99:5
15: core::ops::function::FnOnce::call_once
at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/library/core/src/ops/function.rs:250:5
note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.
```
The attachment_service handles SIGQUIT by just exiting the process.
In theory, the SIGQUIT could come in while we're writing out the
`attachments.json`.
Now, in above log output, there's a 1 second gap between the last
request completing
and the SIGQUIT coming in. So, there must be some other issue.
But, let's have this change anyways, maybe it helps uncover the real
cause for the test failure.
1. Introduce a naive `Timeline::get_vectored` implementation
The return type is intended to be flexible enough for various types of
callers. We return the pages in a map keyed by `Key` such that the
caller doesn't have to map back to the key if it needs to know it. Some
callers can ignore errors
for specific pages, so we return a separate `Result<Bytes,
PageReconstructError>` for each page and an overarching
`GetVectoredError` for API misuse. The overhead of the mapping will be
small and bounded since we enforce a maximum key count for the
operation.
2. Use the `get_vectored` API for SLRU segment reconstruction and image
layer creation.
The idea is to achieve separation between keyspace layout definition
and operating on said keyspace. I've inlined all these function since
they're small and we don't use LTO in the storage release builds
at the moment.
Closes https://github.com/neondatabase/neon/issues/6347
## Problem
See https://neondb.slack.com/archives/C06F5UJH601/p1705731304237889
Adding 1 to xid in `update_next_xid` can cause overflow in debug mode.
0xffffffff is valid transaction ID.
## Summary of changes
Use `wrapping_add`
## Checklist before requesting a review
- [ ] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
## Checklist before merging
- [ ] Do not forget to reformat commit message to not include the above
checklist
---------
Co-authored-by: Konstantin Knizhnik <knizhnik@neon.tech>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
## Problem
To test sharding, we need something to control it. We could write python
code for doing this from the test runner, but this wouldn't be usable
with neon_local run directly, and when we want to write tests with large
number of shards/tenants, Rust is a better fit efficiently handling all
the required state.
This service enables automated tests to easily get a system with
sharding/HA without the test itself having to set this all up by hand:
existing tests can be run against sharded tenants just by setting a
shard count when creating the tenant.
## Summary of changes
Attachment service was previously a map of TenantId->TenantState, where
the principal state stored for each tenant was the generation and the
last attached pageserver. This enabled it to serve the re-attach and
validate requests that the pageserver requires.
In this PR, the scope of the service is extended substantially to do
overall management of tenants in the pageserver, including
tenant/timeline creation, live migration, evacuation of offline
pageservers etc. This is done using synchronous code to make declarative
changes to the tenant's intended state (`TenantState.policy` and
`TenantState.intent`), which are then translated into calls into the
pageserver by the `Reconciler`.
Top level summary of modules within
`control_plane/attachment_service/src`:
- `tenant_state`: structure that represents one tenant shard.
- `service`: implements the main high level such as tenant/timeline
creation, marking a node offline, etc.
- `scheduler`: for operations that need to pick a pageserver for a
tenant, construct a scheduler and call into it.
- `compute_hook`: receive notifications when a tenant shard is attached
somewhere new. Once we have locations for all the shards in a tenant,
emit an update to postgres configuration via the neon_local `LocalEnv`.
- `http`: HTTP stubs. These mostly map to methods on `Service`, but are
separated for readability and so that it'll be easier to adapt if/when
we switch to another RPC layer.
- `node`: structure that describes a pageserver node. The most important
attribute of a node is its availability: marking a node offline causes
tenant shards to reschedule away from it.
This PR is a precursor to implementing the full sharding service for
prod (#6342). What's the difference between this and a production-ready
controller for pageservers?
- JSON file persistence to be replaced with a database
- Limited observability.
- No concurrency limits. Marking a pageserver offline will try and
migrate every tenant to a new pageserver concurrently, even if there are
thousands.
- Very simple scheduler that only knows to pick the pageserver with
fewest tenants, and place secondary locations on a different pageserver
than attached locations: it does not try to place shards for the same
tenant on different pageservers. This matters little in tests, because
picking the least-used pageserver usually results in round-robin
placement.
- Scheduler state is rebuilt exhaustively for each operation that
requires a scheduler.
- Relies on neon_local mechanisms for updating postgres: in production
this would be something that flows through the real control plane.
---------
Co-authored-by: Arpad Müller <arpad-m@users.noreply.github.com>
## Problem
The `/v1/tenant` listing API only applies to attached tenants.
For an external service to implement a global reconciliation of its list
of shards vs. what's on the pageserver, we need a full view of what's in
TenantManager, including secondary tenant locations, and InProgress
locations.
Dependency of https://github.com/neondatabase/neon/pull/6251
## Summary of changes
- Add methods to Tenant and SecondaryTenant to reconstruct the
LocationConf used to create them.
- Add `GET /v1/location_config` API
The remote_storage crate contains two copies of each test, one for azure
and one for S3. The repetition is not necessary and makes the tests more
prone to drift, so we remove it by moving the tests into a shared
module.
The module has a different name depending on where it is included, so
that each test still has "s3" or "azure" in its full path, allowing you
to just test the S3 test or just the azure tests.
Earlier PR that removed some duplication already: #6176Fixes#6146.
This implements the `copy` operation for azure blobs, added to S3 by
#6091, and adds tests both to s3 and azure ensuring that the copy
operation works.
## Problem
In #5980 the page service connection handler gets a simple piece of
logic for finding the right Timeline: at connection time, it picks an
arbitrary Timeline, and then when handling individual page requests it
checks if the original timeline is the correct shard, and if not looks
one up.
This is pretty slow in the case where we have to go look up the other
timeline, because we take the big tenants manager lock.
## Summary of changes
- Add a `shard_timelines` map of ShardIndex to Timeline on the page
service connection handler
- When looking up a Timeline for a particular ShardIndex, consult
`shard_timelines` to avoid hitting the TenantsManager unless we really
need to.
- Re-work the CancellationToken handling, because the handler now holds
gateguards on multiple timelines, and so must respect cancellation of
_any_ timeline it has in its cache, not just the timeline related to the
request it is currently servicing.
---------
Co-authored-by: Vlad Lazar <vlad@neon.tech>