This is a backwards-incompatible change. The new pageserver cannot
read repositories created with an old pageserver binary, or vice
versa.
Simplify Repository to a value-store
------------------------------------
Move the responsibility of tracking relation metadata, like which
relations exist and what are their sizes, from Repository to a new
module, pgdatadir_mapping.rs. The interface to Repository is now a
simple key-value PUT/GET operations.
It's still not any old key-value store though. A Repository is still
responsible from handling branching, and every GET operation comes
with an LSN.
Mapping from Postgres data directory to keys/values
---------------------------------------------------
All the data is now stored in the key-value store. The
'pgdatadir_mapping.rs' module handles mapping from PostgreSQL objects
like relation pages and SLRUs, to key-value pairs.
The key to the Repository key-value store is a Key struct, which
consists of a few integer fields. It's wide enough to store a full
RelFileNode, fork and block number, and to distinguish those from
metadata keys.
'pgdatadir_mapping.rs' is also responsible for maintaining a
"partitioning" of the keyspace. Partitioning means splitting the
keyspace so that each partition holds a roughly equal number of keys.
The partitioning is used when new image layer files are created, so
that each image layer file is roughly the same size.
The partitioning is also responsible for reclaiming space used by
deleted keys. The Repository implementation doesn't have any explicit
support for deleting keys. Instead, the deleted keys are simply
omitted from the partitioning, and when a new image layer is created,
the omitted keys are not copied over to the new image layer. We might
want to implement tombstone keys in the future, to reclaim space
faster, but this will work for now.
Changes to low-level layer file code
------------------------------------
The concept of a "segment" is gone. Each layer file can now store an
arbitrary range of Keys.
Checkpointing, compaction
-------------------------
The background tasks are somewhat different now. Whenever
checkpoint_distance is reached, the WAL receiver thread "freezes" the
current in-memory layer, and creates a new one. This is a quick
operation and doesn't perform any I/O yet. It then launches a
background "layer flushing thread" to write the frozen layer to disk,
as a new L0 delta layer. This mechanism takes care of durability. It
replaces the checkpointing thread.
Compaction is a new background operation that takes a bunch of L0
delta layers, and reshuffles the data in them. It runs in a separate
compaction thread.
Deployment
----------
This also contains changes to the ansible scripts that enable having
multiple different pageservers running at the same time in the staging
environment. We will use that to keep an old version of the pageserver
running, for clusters created with the old version, at the same time
with a new pageserver with the new binary.
Author: Heikki Linnakangas
Author: Konstantin Knizhnik <knizhnik@zenith.tech>
Author: Andrey Taranik <andrey@zenith.tech>
Reviewed-by: Matthias Van De Meent <matthias@zenith.tech>
Reviewed-by: Bojan Serafimov <bojan@zenith.tech>
Reviewed-by: Konstantin Knizhnik <knizhnik@zenith.tech>
Reviewed-by: Anton Shyrabokau <antons@zenith.tech>
Reviewed-by: Dhammika Pathirana <dham@zenith.tech>
Reviewed-by: Kirill Bulatov <kirill@zenith.tech>
Reviewed-by: Anastasia Lubennikova <anastasia@zenith.tech>
Reviewed-by: Alexey Kondratov <alexey@zenith.tech>
With a Mutex, only one thread could read from the layer at a time. I did
some ad hoc profiling with pgbench and saw that a fair amout of time was
spent blocked on these Mutexes.
It doesn't make much sense to compare TimelineMetadata structs with
< or >. But we depended on that in the remote storage upload code,
so replace BTreeSets with Vecs there.
* Add --id argument to safekeeper setting its unique u64 id.
In preparation for storage node messaging. IDs are supposed to be monotonically
assigned by the console. In tests it is issued by ZenithEnv; at the zenith cli
level and fixtures, string name is completely replaced by integer id. Example
TOML configs are adjusted accordingly.
Sequential ids are chosen over Zid mainly because they are compact and easy to
type/remember.
* add node id to pageserver
This adds node id parameter to pageserver configuration. Also I use a
simple builder to construct pageserver config struct to avoid setting
node id to some temporary invalid value. Some of the changes in test
fixtures are needed to split init and start operations for envrionment.
Co-authored-by: Arseny Sher <sher-ars@yandex.ru>
Since commit fdd987c3ad, it was only used in InMemoryLayers. Let's
just "inline" the code into InMemoryLayer itself.
I originally did this as part of a bigger PR (#1267). With that PR,
one in-memory layer, and one ephemeral file, would hold page versions
belonging to multiple segments. Currently, PageVersions can only hold
versions for a single segment, so that would need to be changed.
Rather than modify PageVersions to support that, just remove it
altogether.
These tests have intimate knowledge of the directory layeout and layer
file names used by the LayeredRepository implementation of the
Repository trait. Move them, so that all the tests that remain in
repository.rs are expected to work without changes with any
implementation of Repository. Not that we have any plans to create
another Repository implementaiton any time soon, but as long as we
have the Repository interface, let's try to maintain that abstraction
in the tests too.
The test creates a page version with a string like "foo 123 at 0/10"
as the content. But the LSN stored in that string was wrong: the page
version stored at LSN 0/20 would say "foo <blk> at 0/10".